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Abstract

Understanding speech in background noise is a complex and challenging
task that causes difficulty for many people, including young children
and older adults. Musicians, on the other hand, appear to have an
enhanced ability to perceive speech in noise. This has prompted suggestions
that musical training could help people who struggle to communicate in
complex auditory environments. The experiments presented in this thesis
were designed to investigate if and how musical training could be used as
an intervention for improving speech perception in noise.

The aim of Experiment 1 was to identify specific musical skills which
could be targeted for training. Musical beat perception was found to be
strongly correlated with speech perception in noise. It was hypothesised
that musical beat perception might enhance speech perception in noise by
facilitating temporal orienting of attention to important parts of the signal.

Experiments 2, 3 and 4 investigated this hypothesis using a rhythmic
priming paradigm. Musical rhythm sequences were used to prime temporal
expectations, with performance for on-beat targets predicted to be better
than that for temporally displaced targets. Rhythmic priming benefits were
observed for detection of pure-tone targets in noise and for identification
of words in noise. For more complex rhythms, the priming effect was
correlated with musical beat perception.

Experiment 5 used the metric structure within a sentence context to prime
temporal expectations for a target word. There was a significant benefit of
rhythmic priming for both children and adults, but the effect was smaller
for children.

In Experiment 6, a musical beat training programme was devised and
evaluated for a group of older adults. After four weeks of training, a
small improvement in speech reception thresholds was observed. It was
concluded that beat perception is a useful skill to target in a musical
intervention for speech perception in noise.
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CHAPTER1
Introduction

Understanding speech amid background noise is a challenging task that
causes difficulty for many people, especially young children and older adults.
Musicians, on the other hand, may have an enhanced ability to perceive
speech in noise. This chapter examines the skills needed for successful
speech perception in noise, and outlines the approach taken in this thesis to
investigate the potential of musical training as an intervention to help people
who struggle to communicate in complex auditory environments.

1.1 Musical training and speech perception
1.1.1 Musicians as expert listeners
Learning to play a musical instrument is a complex, multisensory

experience which engages multiple neural networks (Moreno and

Bidelman, 2014). Musicians spend considerable amounts of time honing

their skills and learning to appreciate acoustical features in music. This

intense focus on auditory perception means that musicians can be excellent

candidates for research into how the expert listening brain processes

sounds. Musical training also provides an ideal model for neural plasticity –

i.e., changes in the brain due to experience – and structural and functional

differences have been observed in musicians compared to non-musicians

(for reviews see, e.g., Moreno and Bidelman, 2014; Pantev and Herholz,

2011).

1



2 CHAPTER 1: INTRODUCTION

There is a large and growing body of literature based on this premise,

comparing highly trained musicians with non-musicians. Behavioural

advantages of musicianship have been reported for a variety of auditory

perceptual skills, including: spectral resolution (Micheyl et al., 2006;

Strait et al., 2010), temporal resolution (Rammsayer and Altenmüller,

2006; Strait et al., 2010), pitch processing (Magne et al., 2006; Schön

et al., 2004), rhythm perception (Rammsayer and Altenmüller, 2006), and

concurrent sound segregation (Zendel and Alain, 2009).

The particular promise of musical training as a possible intervention stems

from the fact that musician advantages are not limited to musical tasks. For

example, musicians demonstrate enhanced pitch processing ability in both

musical and speech contexts (Magne et al., 2006; Schön et al., 2004), and

also outperform non-musicians on cognitive tasks such as verbal working

memory (Chan et al., 1998; Ho et al., 2003; Jakobson et al., 2008).

At this point it is important to note that, while group comparisons have

provided a wealth of avenues for further research, these studies cannot

conclusively reveal if musical training caused the observed enhancements.

It could be argued that people with superior auditory processing abilities

are more likely to take up and persevere with musical training, and that the

groups are therefore self-selecting. Other pre-existing differences between

the groups could also confound the results, such as socio-economic status –

musical training is an expensive hobby – or personality traits – to reach a

high level, self-motivation would be a key factor (see Corrigall et al., 2013).

To address this issue of causality, the next section considers studies

which used an intervention paradigm to compare pre- and post-training

performance in order to directly evaluate the impact of musical training.

1.1.2 Evidence frommusical training studies
There is evidence of neural plasticity as a direct result of musical

interventions. In one study, a group of young children received fifteen

months of keyboard training while a control group – who were matched

in terms of age, gender and socio-economic status – received no training

(Hyde et al., 2009). Prior to the training, there were no group differences

in brain or behavioural measures. Fifteen months later, the trained group

showed structural plasticity in auditory and motor areas of the brain which

correlated with improvements in behavioural measures of auditory and
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motor musical skills (Hyde et al., 2009). Comparing the trained children

to an untrained control group allowed the authors to conclude that the

changes were above and beyond what would be expected from normal

development.

In another study, functional plasticity was observed after only two weeks

of piano training (Lappe et al., 2008). Non-musician participants were

randomly assigned to one of two training conditions: an auditory-motor

condition which involved learning to play melodies on the piano; or

an auditory-only condition which involved listening to the melodies and

making judgements about them. The auditory-motor training resulted

in greater improvements in both behavioural and neurophysiological

measures of melody discrimination compared to the auditory-only training

(Lappe et al., 2008). A subsequent study found a similar pattern of

results for rhythm training (Lappe et al., 2011). These results suggest

that the multimodal (i.e., sensorimotor) nature of music-making is an

important component in the success of musical training for improving

auditory perception.

Table 6.7 contains a brief summary of eight further studies which evaluated

the impact of musical training on a variety of behavioural outcome

measures. As shown in Table 6.7, significant improvements have been

reported for a number of perceptual, cognitive and linguistic skills.

1.1.3 Proposedmechanisms of transfer frommusic to speech
1.1.3.1 Common processing
Music and speech are two complex forms of auditory signals which

share some fundamental psychoacoustic properties. Both are created

by combining basic elements according to a set of rules. Both convey

important information via temporal rhythms and patterns of pitch changes

over time. Both are subject to normalisation, i.e., words and melodies can

be recognised regardless of the speaker or instrument.

It is reasonable to hypothesise that time spent training the auditory system

to appreciate these features in music could lead to enhanced processing of

the same features in speech (Besson et al., 2011; Patel, 2014; Shahin, 2011).

For example, pitch processing is important for both music and speech, and

transfer of musical training to speech perception has been observed for this

skill (Moreno et al., 2009).
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Table 1.1: Summary of musical training studies
Study details Musical training programme
Children aged 6–15 (n=50); 1 year of
training improved verbal (not visual)
memory; control group discontinued
training (Ho et al., 2003)

Established school orchestra programme;
included instrumental lessons

Dyslexic children, mean age 8.8 (n=9); 15
weeks’ training improved rapid auditory
processing, phonological ability, spelling;
15-week control period (Overy, 2003)

Bespoke teacher-led training based on
establishedmethods; specific focus on
rhythm and timing; 20-minute lesson, 3
days a week for 15weeks

Children aged 8 (n=32); pseudo-random
assignment; 24weeks’ training improved
pitch discrimination inmusic and language,
reading skills; compared to painting
training (Moreno et al., 2009)

Teacher-led programme based on
establishedmethods; included rhythm,
melody, harmony, timbre and form;
75-minute lesson, twice a week for 24
weeks

Children aged 4–6 (n=48); pseudo-random
assignment; 4 weeks’ training improved
verbal intelligence, executive function;
compared to visual arts training (Moreno
et al., 2011)

Bespoke computerized programme led by
teacher in classroom; primarily listening
activities; included rhythm, pitch, melody,
voice; two 1-hour lessons daily, 5 days a
week for 4 weeks

Children aged 5–6 (n=41); random
assignment; 20weeks’ training improved
phonological awareness; compared to
sports training (Degé and Schwarzer, 2011)

Bespoke programme based on established
methods; included joint singing, drumming,
dancing, rhythm, meter, pitch; 10-minute
lesson, 5 days a week for 20weeks

Children aged 8 (n=24); pseudo-random
assigment; 1 year of training improved
speech segmentation; compared to
painting training (François et al., 2013)

Teacher-ledmusic lessons based on
establishedmethods

Older adults aged 60–85 (n=31); random
assignment; 6months’ training improved
executive function, workingmemory;
untrained control (Bugos et al., 2007)

Individual piano instruction; 30-minute
lesson plus 3 hours practice each week for
6months

Older adults aged 61–84 (n=29);
assignment tomusic group based on
motivation and availability; 4 months’
training improved executive function,
general mood; control group did other
leisure activities (Seinfeld et al., 2013)

Teacher-led group piano lessons; bespoke
for older adults; 90-minute lesson plus
practice (45minutes on 5 days) each week
for 4months
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This concept of shared processing is a key feature in proposed transfer

mechanisms (e.g, Besson et al., 2011; Patel, 2014), but it does not explain

why musical training would improve processing beyond the level obtained

through experience with speech perception.

1.1.3.2 Working memory as a mediating factor
Working memory has several related components (Baddeley, 2003), two of

which are particularly relevant for the current research. The first involves

the temporary storage and processing of information, i.e., it is not simply

a storage system but also allows information to be manipulated in some

way. For example, in the backwards digit span working memory task,

participants must repeat back heard digits but in the reverse order, which

requires the numbers to be held in memory while being reordered.

The second role of working memory is one of cognitive control, being

responsible for executive functions such as allocating attention. The

important point to note, here, is that working memory has a limited

capacity. This means that performance on a cognitively demanding primary

task will be impaired by the introduction of a concurrent memory task

(Baddeley, 2003). Conversely, a primary task which is not cognitively taxing

will be unaffected by the increased memory demands of a concurrent task.

As mentioned above, musicians have greater auditory working memory

capacity compared to non-musicians (Chan et al., 1998; Ho et al., 2003;

Jakobson et al., 2008) and musical training can lead to enhancements in

working memory and executive function (Bugos et al., 2007; Ho et al.,

2003; Moreno et al., 2011).

Kraus et al. (2012) suggested that auditory working memory is the key

to transfer of learning from music to other domains. They proposed a

model in which cognitive enhancement precedes and subsequently leads to

fine-tuning of auditory processing. Consequently, the general improvement

in auditory perception would apply to both music and speech (Kraus et al.,

2012).

1.1.3.3 The OPERA hypothesis
Patel (2011) set out to explain not just how but also why musical training

might enhance speech perception. His OPERA hypothesis proposed that
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transfer of learning from music to speech will occur for a given acoustic

feature when five conditions are met:

Overlap – the neural networks for processing the acoustic feature in

music and in speech must overlap

Precision – the level of precision of the acoustic feature required

for successful musicianship must be greater than that needed for

everyday speech perception

Emotion – musical training that activates the neural network must

result in a positive emotional experience

Repetition – musical training that activates the neural network must

be repeated regularly

Attention – musical training that activates the neural network must

involve focused attention on the acoustic feature

The overlap criterion implies shared processing as discussed above.

However, with the precision criterion, the OPERA hypothesis goes one step

further in attempting to explain why musical training might benefit speech

perception. The final three criteria are based on factors which are known

to encourage plasticity and which could certainly be assumed to apply to

musical training (Patel, 2014). Music-making is an enjoyable activity, and

it is likely that training exercises focusing attention on various aspects of

music will be practised repeatedly until performance levels are reached.

Patel (2014) subsequently extended his OPERA hypothesis to include

cognitive processes as well as acoustic features with the same five criteria.

This allows for the possibility of auditory working memory as a transfer

process, as suggested by Kraus et al. (2012).

1.1.4 Musical training for speech perception in noise
Having discussed the benefits of musical training and possible mechanisms

by which learning could transfer to speech perception, the focus of this

introduction now turns to the specific task of interest: speech perception in

background noise.

Understanding speech in background noise is a complex task that causes

particular difficulty for young children, older adults, and those with

language disorders or hearing impairments (Pichora-Fuller et al., 1995;
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Stuart, 2008; Ziegler et al., 2009). Communication is an important part of

everyday life and it often takes place in less than ideal surroundings. Poor

speech perception in noise can have negative consequences for education

and social interactions (see Section 1.6). There are therefore many people

who could potentially benefit from a training programme to improve speech

perception in noise.

Outcomes of training are dependent on how well trainees comply with

the programme (Chisolm et al., 2013). Compliance, in turn, depends

on the participant’s perceived benefit and enjoyment of the training

(Tye-Murray et al., 2012). Feedback after one speech-based auditory

training programme included a number of comments about the tedious

and repetitive nature of some of the exercises (Tye-Murray et al., 2012),

and Sweetow and Sabes (2010) reported that compliance was less than

30% for patients who were recommended a home-based auditory training

programme.

Musical training could offer an enjoyable alternative – at least for people

who have an interest in music – which could encourage compliance.

In order to design a suitable musical training programme, it is first

necessary to understand which skills are important for speech perception

in background noise. The next sections will consider the sensory cues

and cognitive processes which contribute to successful speech perception

in background noise.

1.2 A brief introduction to auditory scene analysis
1.2.1 Setting the complex auditory scene
Imagine you are sitting in a crowded restaurant listening to your friend tell

an anecdote. The couple at a nearby table are having a heated argument,

and in the far corner a large group are celebrating a birthday. Jazz music

is coming out of the speaker on the wall behind you; a clattering of plates

and pans can be heard from the kitchen; and through the open window you

can hear traffic noise from the busy street outside.

In a complex acoustic environment such as this, the information arriving at

your ears at any given moment is a combination of sound waves from all

the different sources. However, while your ears hear only a single mixture,

you perceive the sounds as coming from separate sources spread around
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the room. You can identify these separate sources and choose to listen to

your friend’s voice while ignoring the background noise.

This is a remarkable feat, and an important one given that much of our

everyday communication occurs in less than ideal surroundings. In order

to attend to a target signal, it is necessary to separate out sounds coming

from different sources.

It is up to the brain to decode the combined information arriving at the ears

in order to create an accurate perception of the auditory environment, via

a process known as auditory scene analysis (Bregman, 1990).

1.2.2 Auditory scene analysis
In order to make sense of the auditory environment, the brain must

partition simultaneous acoustic information into separate auditory objects.

These auditory objects must also be grouped sequentially into streams from

each sound source as the signals unfold over time (Bregman, 1990).

Bregman (1993) outlined how environmental regularities can be utilised to

separate a waveform into auditory objects from different sources:

Temporal – sounds from a single source have synchronised onsets and

offsets, whereas sounds from two different sources are unlikely to

start and stop at the same time. If two sounds in the mixture are

asynchronous or overlap in time, these will be attributed to different

sources.

Spectral – many environmental sources (including voices and

musical instruments) produce harmonic sounds, meaning that

their component frequencies are multiples of a single fundamental

frequency. If the mixture contains subsets of frequency components

which are multiples of two different fundamentals, these subsets are

likely to be attributed to different sources.

Spatial – simultaneous sounds from a single source originate at the

same location. If sounds are spatially separated, then they are likely

to be perceived as coming from different sources.

Each of these cues can be unreliable in certain situations. For example,

sounds from different sources might occasionally be synchronised in

time; harmonic frequencies will not help to group noisy (inharmonic)
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sounds; spatial information is not as useful in reverberant rooms. In

combination, however, there is sufficient redundancy that variations in the

reliability of individual cues do not necessarily affect perception in realistic

environments (Bregman, 1993).

Rules of environmental regularity also apply to the sequential grouping

of objects into streams, although the emphasis here is on how properties

change over time (Bregman, 1993):

Temporal – sounds, or sequences of sounds, from a single source tend

to either remain constant or change gradually. A sudden change in

frequency, intensity or location will be interpreted as the onset of a

new acoustic event from a different source.

Spectral – a change in acoustic properties affects all components of

an auditory object in the same way. Frequency components with

differing patterns of change will be assigned to different auditory

streams.

In summary, successful auditory scene analysis relies on the auditory

system’s ability to differentiate spectral and temporal properties of sounds

in order to segregate and group auditory objects.

This passive, bottom-up (i.e., stimulus-driven) processing is not the whole

story, however. A listener will often want to focus on a particular auditory

stream, while ignoring irrelevant sounds, and this requires active, top-down

attentional control.

1.3 Selectively attending to target speech
Selective attention is the process by which a subject focuses on a

specific target object or characteristic and ignores task-irrelevant distractor

stimuli. This section introduces some basic concepts connected to selective

attention, before discussing some cues that can help to focus attention on a

target speech signal.

1.3.1 Endogenous and exogenous cues
Attention can be oriented using either salient cues which automatically

capture attention (exogenous) or symbolic cues which rely on the

participant voluntarily orienting attention in response to instructions

(endogenous).
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Posner (1980) developed a visual cueing paradigm to orient covert spatial

attention. The term ‘covert’ refers to the fact that participants maintain

central fixation while attention is cued to the left or right in their peripheral

vision. Overt spatial attention, by comparison, involves eye movements

towards the attended location.

In this paradigm, a target stimulus is preceded by a cue, which is either

a centrally presented arrow (endogenous) or an abrupt-onset stimulus

presented in one of the possible target locations (exogenous). Performance

on the task (measured by reaction times or accuracy of perceptual

judgements) is compared for trials in which the cue correctly predicts target

location (valid) and for trials in which the cue is misleading (invalid) or

uninformative (neutral).

This method has been used to demonstrate that both endogenous and

exogenous orienting of attention result in enhanced performance, but

there are some important differences between the two types of cue (see

Table 1.2). For example, since endogenous attention must be deliberately

oriented by the participant in response to a symbolic cue, these cues must

be valid in the majority of trials or the participant will realise that the cues

are not helpful for the task and may stop using them altogether (Wright

and Ward, 2008). Conversely, exogenous cues are so salient that orienting

persists even when the participant is instructed to ignore them.

Table 1.2: Summary of themain properties of endogenous and exogenous orienting of visual
covert spatial attention (Egeth and Yantis, 1997; Posner, 1980;Wright andWard, 2008)
Type of orienting Cue properties Participant task Time course
Endogenous
(voluntary, active,
goal-directed,
top-down)

Symbolic cues
presented at
fixation; majority of
trials must have
valid cues

Participant must
intentionally orient
attention; reduced
benefit observed in
dual-task designs

Builds to peak
300ms after cue;
can bemaintained
for longer periods

Exogenous
(automatic, passive,
stimulus-driven,
bottom-up)

Salient cue in
to-be-attended
location; difficult to
ignore and need not
be predictive

No need for
compliance; benefit
not affected by
concurrent working
memory demands

Peaks 100ms after
cue; dissipates
quickly unless
endogenous
attention engaged

Another important distinction between endogenous and exogenous

orienting is the differential reliance on working memory resources.
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Since endogenous cues require deliberate orienting of attention by the

participant, this process depends on working memory and is therefore

impaired by a concurrent working memory task. Conversely, exogenous

orienting happens automatically without the need of cognitive control, and

is therefore impervious to concurrent memory demands (Wright and Ward,

2008).

1.3.2 Attending to location
Early investigations into selective attention used a dichotic listening

paradigm, in which different spoken messages were presented to each ear

simultaneously. Listeners were asked to shadow the message presented to

one ear – i.e., to repeat it back quickly and accurately – while ignoring

the message presented to the other ear (Cherry, 1953). Participants were

able to fully focus attention on the target ear, to the extent that they could

not recall any of the unattended message and even failed to notice if it

switched language part way through (Cherry, 1953). Changes in spectral

features of the ignored message were observed, however, with listeners able

to identify when the unattended voice was switched from male to female,

or was replaced by a pure-tone signal (Cherry, 1953).

A subsequent study reported that listeners often remembered noticing their

own name in the unattended message (Moray, 1959); a phenomenon

which has been dubbed the ‘cocktail party effect’. This is an example of

an exogenous cue, which captures attention despite the listener’s focus

being endogenously oriented to the target message. It has been shown

that listeners with high working memory capacity are less likely to notice

their name being presented in the unattended ear (Conway et al., 2001),

demonstrating the link between working memory capacity and attentional

control, or more specifically the ability to ignore distracting stimuli.

The dichotic listening studies demonstrated that selective attention can

successfully be focused on one ear while ignoring the other. However, in

everyday situations, it is unlikely that a target message will be heard in only

one ear with all the background noise in the other ear. It is more likely that

both ears will receive a mixture of target and noise.

More recently, investigators have manipulated the spatial configurations of

target and masker speech in order to examine listeners’ ability to selectively

attend to a single location.
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The Coordinate Response Measure (CRM; Bolia et al., 2000) has often been

employed for such a purpose. It is a speech corpus in which all sentences

take the same form, e.g. ‘Ready, Baron, go to red five now’. Participants

listen out for a specific call-sign (e.g., ‘Baron’) in order to identify the target

sentence, and then report the colour and number heard. There are 32

possible colour–number combinations (4 colours; 8 numbers). One or more

masking sentences – with different call-signs, colours and numbers – are

played concurrently with the target.

When the target sentence and a masker sentence are spoken by the same

person and are presented from the same location, this task is extremely

difficult. Brungart (2001) reported that performance in this condition was

around chance level, and that the majority of incorrect answers were in fact

the colour or number which appeared in the masker sentence. This suggests

that listeners were able to segregate the concurrent sounds to correctly form

individual words, but they were unable to attribute the words to the correct

stream in the absence of further cues to aid attentional focus.

Spatial separation of the target and masker provides a perceptual benefit

compared to the condition in which they are colocated. This is referred

to as spatial release from masking. Figure 1.1 shows an example set-up

for this type of experiment. Multiple sound sources are placed equidistant

from the participant, along their audiovisual horizon, so that a speaker at

0◦ azimuth would be directly in front of the participant’s head.

Figure 1.1: Example configuration for a selective attention experiment using the Coordinate
ResponseMeasure
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For a CRM task with two male speakers, a separation of just 10◦ (i.e.,

sources at ±5◦ azimuth) was enough to boost performance to about 90%

correct (Brungart and Simpson, 2007, Figure 4).

Allen et al. (2008) measured spatial release from masking using two

masking sentences which were presented either colocated with the target

(at 0◦ azimuth) or ±30◦ azimuth. Performance was measured in terms

of the speech reception threshold (SRT), i.e., the signal-to-noise ratio for

which performance equals 50%. There was significant spatial release

from masking, with a 12 dB improvement in threshold for the separated

compared to the colocated condition.

A third condition was also investigated, in which the maskers were initially

separated from the target but subsequently moved to be colocated. In this

condition, spatial cues were available during identification of the target

sentence (i.e., when the call sign was heard) but not during presentation

of the two key words. Performance for this condition was significantly

better than for the fully colocated condition, with a 3.6 dB improvement in

threshold. The authors suggested that the initial spatial separation afforded

allocation of attention to other characteristics of the target voice, which

enhanced ongoing streaming even after colocation of the maskers (Allen

et al., 2008).

1.3.3 Attending to voice characteristics
When the target and masker sentences are spoken by different people

(but still colocated), characteristics of the target voice can be used to aid

attention and enhance streaming. Figure 1.2 shows data from two studies

which demonstrate this phenomenon. In each case, the data shown are

from the condition in which target and masker sentences were presented

at the same intensity level (i.e., at a signal-to-noise ratio (SNR) of 0 dB),

meaning that level differences could not be used as an attentional cue

(Brungart, 2001).

Brungart (2001) compared conditions in which the masker was spoken by

the same person as the target, or a different person of the same gender, or

someone of the opposite gender. Comparing the scores for these conditions

(black triangles on Figure 1.2) demonstrates that greater differences in

voice characteristics (e.g., fundamental frequency) correspond to improved

performance on the task.
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Figure 1.2: Performance on the CRM task under different target and masker conditions.
Plotted using data from Figure 1 of Brungart (2001) and Figure 2 of Johnsrude et al. (2013)

Johnsrude et al. (2013) investigated the hypothesis that people would

be better at distinguishing a voice that they had had a lot of experience

listening to. Each participant’s spouse was used for either the target or

the masker sentence (or neither), while other sentences were spoken by

unfamiliar voices of the same gender. The data (white squares on Figure

1.2) show a significant benefit for listening to a familiar voice, and also for

ignoring a familiar voice, compared with unfamiliar voices.

Together these results show that differences between the target and masker

voices, including acoustic characteristics and prior familiarity, can be

exploited in order to selectively attend to a target voice and improve

perception.

1.3.4 Selective attention is limited by sensory processing
It is important to note that selective attention can only be employed when

the sound sources are perceptually separable (e.g., Brungart and Simpson,

2007; Cherry, 1953). If sensory processing is insufficient for successful

auditory streaming, then the listener will be unable to focus attention on a

single source. This was evident in an early experiment by Cherry (1953).
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Two recordings of the same speaker were mixed and presented concurrently

to the subject. The listener found it extremely difficult to separate the

messages, and required many repetitions of the stimuli in order to identify

phrases from one of the messages (Cherry, 1953).

Similarly, in the CRM study mentioned above, when target and masker

sentences were colocated and spoken by the same voice, listeners

performed at chance level and often reported the colour or number from the

masker sentence (Brungart and Simpson, 2007). This signifies successful

formation of auditory objects, but a breakdown in the sequential streaming

of the two sources, which prevents attention being focused on the target

sentence.

These are extreme examples, of course, as a single person cannot

simultaneously speak two different messages. However, it highlights the

primary importance of sensory processing for understanding speech in

background noise, and goes some way to explaining why some people –

e.g., those with hearing loss – struggle with speech perception in complex

auditory environments. This will be discussed in more detail in Section 1.6

below.

In summary, as with the segregation and sequential organisation of sounds

via auditory scene analysis, there are multiple cues that can be used to

selectively attend to a target stream. Successful stream selection therefore

relies on the listener’s ability to differentiate the target voice on the basis

of these cues, and to focus attention accordingly. Furthermore, the ability

to selectively attend to a target and ignore distracting noises is associated

with working memory capacity.

Even with a range of available cues, it will not always be possible to

parse out a perfect signal from background noise, and some parts may

be completely masked. However, in the case of speech, understanding is

often robust even when the signal is degraded, and cognitive strategies can

compensate for gaps in the signal, as described in the next section.

1.4 Reconstructing a degraded or incomplete speech signal
When listening to speech in quiet conditions, there is considerable

redundant information in the signal. For example, speech recognition can

be achieved using primarily temporal cues when spectral information is
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severely degraded (Shannon et al., 1995). This inherent redundancy means

that speech perception can withstand considerable signal degradations such

as those caused by interfering background noise.

Even with such a robust signal, there may still be parts of the speech which

are completely masked by noise. Fortunately, there are other characteristics

of speech which can be exploited to reconstruct the signal.

Speech sounds are often influenced by preceding or subsequent sounds,

via coarticulation. If part of the speech is not heard due to noise, then

coarticulatory cues from neighbouring sounds might help to fill in the

gap. In fact, conversational speech can be understood even when periodic

silences replace parts of the signal, as long as the frequency of these

deletions is greater than 10 Hz (i.e., with silences of no more than 50 ms;

Miller and Licklider, 1950).

1.4.1 The role of linguistic knowledge
Even when coarticulatory information is not available, listeners can still

perceive a complete speech signal when part of a word has been completely

replaced by noise (Warren et al., 1970). This phenomenon is known as

phonemic restoration and it relies on linguistic knowledge. For example,

when the replaced phoneme was the first ‘s’ in the word ‘legislatures’, no

other phoneme would produce a meaningful word. In this case, participants

heard the complete word and perceived the noise to occur at another point

in time (Warren et al., 1970).

When there is ambiguity in the missing phoneme, i.e., when several

alternatives are possible, perception is influenced by the sentence context

(Warren et al., 1970). This demonstrates another source of redundancy

in speech which results from linguistic constraints. The rules of language

dictate syntactic structure which in turn allows predictions to be made

about upcoming word types (e.g., verb or noun). Semantic context also

provides information about which words are most likely to occur in order

for the sentence to have meaning.

Semantic information was manipulated in the development of the Speech

in Noise test (SPIN; Kalikow et al., 1977) which includes both low-context

and high-context sentences for each target keyword. Identification of

the final word is significantly easier when semantic context is provided

(high-context) than when no such clues to the meaning of the target word
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are available (low-context), demonstrating the importance of semantic

context when listening to speech in challenging conditions.

Linguistic cues can be used to make predictions about upcoming words

and can also be used to fill in parts of the signal that were unable to

be separated from the background noise. This process relies on auditory

working memory, since the degraded signal must be stored and replayed

while contextual constraints are applied.

Zekveld et al. (2007) developed a visual analogue for this process of

linguistic closure, wherein written text is partially obscured by black bars.

The amount of masked text is varied adaptively to find the point at which

performance equals 50%, called the text reception threshold (TRT). When

the same sentence stimuli are used for both visual and auditory tests, the

shared variance of the text reception threshold (TRT) and speech reception

threshold (SRT) can be interpreted as the contribution of domain-general

linguistic and cognitive abilities. Zekveld et al. (2007) reported a shared

variance between the tests of about 30%, even after controlling for age.

1.4.2 Listening to speech inmodulated noise
For a background noise that remains at a constant level, the masking of

speech sounds will be relatively uniform over time. In everyday listening,

it is more common to experience background noise which fluctuates in

intensity. The resultant fluctuations in signal-to-noise ratio allow for

additional information to be gleaned from the ‘dips’ in the noise, i.e.,

those times when the noise level drops and the speech can be heard more

clearly (e.g., Gnansia et al., 2008; Gustafsson and Arlinger, 1994; Miller

and Licklider, 1950).

The benefit for speech perception in amplitude-modulated noise compared

with steady noise is known as modulation masking release, and it varies

with the depth (Gustafsson and Arlinger, 1994; Gnansia et al., 2008) and

frequency (Füllgrabe et al., 2014; Gustafsson and Arlinger, 1994; Miller

and Licklider, 1950; Rhebergen et al., 2006) of the modulation. Masking

release increases with increasing depth of modulation (Gustafsson and

Arlinger, 1994; Gnansia et al., 2008), and this holds even when the

steady and modulated noises are equated in terms of overall intensity

(root-mean-square level). The increased benefit gained from deeper dips
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in noise (i.e., higher SNRs for glimpsing) offsets any disadvantage from

greater peaks in noise where speech may be completely masked.

Maximal masking release has been observed for modulation frequencies

between 8 and 20 Hz (Füllgrabe et al., 2014; Gustafsson and Arlinger,

1994; Miller and Licklider, 1950; Rhebergen et al., 2006). At lower

frequencies, extended periods of high intensity noise mean that larger

portions of speech (e.g., whole words) will be completely masked. This

impedes reconstruction of the signal, despite facilitating speech perception

in the corresponding extended periods of low intensity noise.

Conversely, at higher frequencies, the opportunities for dip listening will be

shorter and good temporal resolution will be required to gain the maximum

information from these periods (Dubno et al., 2002). Once a partial signal

has been gleaned from the dips, linguistic cues and working memory can

be used to restore missing parts of the speech as discussed above.

1.5 The importance of temporal information in speech
A speech signal unfolds over time and its temporal structure is important

for comprehension. When temporal information is degraded, there is a

corresponding reduction in speech intelligibility (Drullman et al., 1994a,b).

Conversely when temporal cues are preserved, speech can be intelligible

even when very little spectral information is available (Shannon et al.,

1995).

Syllable rate is also important for perception, and time-compressed signals

lead to reduced intelligibility Ghitza and Greenberg (2009). By increasing

the syllable rate three-fold, the intelligibility of the speech was greatly

reduced. Silent intervals of either equal or varied lengths were then

inserted into the compressed signals. Intelligibility was highest when

the original syllable rate was restored by inserting equal-length silences,

thereby recreating the rhythmic information from the original speech signal

(Ghitza and Greenberg, 2009).

Together these results suggest that rhythmic information contained in

the temporal envelope is useful for understanding speech. Given the

importance of rhythmic information for speech intelligibility, a number of

authors have proposed a role for prediction in models that could apply

to the perception of speech in challenging listening environments (Elhilali
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et al., 2009; Schroeder et al., 2008; Zion Golumbic et al., 2012). If

target onsets can be predicted, then listeners can orient attention to those

time-points in order to enhance processing.

1.5.1 Orienting attention in time
As described in Section 1.3, cueing methods for endogenous and exogenous

orienting of attention have been clearly defined and explored in visual

spatial attention. However, the focus here is on orienting temporal

attention during an ongoing auditory signal. Just as spatial attention refers

to the orienting of attention to a point in space, temporal attention refers to

the orienting of attention to a point in time. The next sections will consider

how the concepts of endogenous and exogenous attention apply to auditory

temporal attention.

1.5.1.1 Endogenous orienting of attention to points in time
Auditory attention can be oriented cross-modally using visual cues. In

one study, lights above loud speakers were used to indicate when and/or

where a target signal would appear (Best et al., 2007b). When a light

cue indicated either the spatial location or the time interval, identification

accuracy was improved in comparison to a no cue condition. When

a combined cue provided both the target location and time interval,

performance was further enhanced, suggesting an additive effect of spatial

and temporal orienting of attention.

Another technique to orient temporal attention is to train participants to

expect the target at a certain point in time. If an auditory cue precedes the

target by a fixed interval on the majority of trials, then listeners will come

to expect the target after this time interval. Task performance for targets

at the expected time can then be compared to that for infrequent early

or late targets. This method has been used to demonstrate that temporal

attention enhances detection of pure-tone targets in both forward-masking

(target preceded by narrowband noise; Wright and Fitzgerald, 2004) and

simultaneous-masking (target presented in broadband noise; Werner et al.,

2009) paradigms.

These cueing methods are comparable to the endogenous cueing paradigm

described above for orienting visual spatial attention. They use symbolic

or learnt cues to instruct participants when to attend, and the majority of

trials have valid cues. Any benefit for validly cued targets is reliant on
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deliberate control of attention by the participant, and as a consequence the

effect is diminished by a concurrent working memory task (Capizzi and

Correa, 2012). In other words, the concept and methods of endogenous

cueing apply equally well to both spatial and temporal attention.

1.5.1.2 Exogenous orienting of attention via rhythmic priming
In spatial attention, an exogenous cue is a stimulus which precedes the

target in the to-be-attended location and is salient enough to automatically

capture attention. It has been suggested that an abrupt-onset stimulus also

draws attention to its temporal locus, via ‘reactive attending’ (Jones et al.,

2002). However, for the purposes of the current thesis, it is more relevant

to consider orienting temporal attention to future events, via ‘anticipatory

attention’ (Jones et al., 2002).

Auditory anticipatory attention can be oriented via rhythmic regularities

in a priming sequence. According to dynamic attending theory (Jones

and Boltz, 1989; Large and Jones, 1999), attention will automatically

entrain to an external rhythmic stimulus so that peaks in attention coincide

with predicted onsets in the ongoing rhythm. Stimuli which match these

expectations will therefore benefit from enhanced processing compared to

those which do not align with expected onsets (see Figure 1.3).

Figure 1.3: Illustration of dynamic attending theory: an external rhythmic stimulus drives
anticipatory attention in order to orient temporal attention to predicted future onsets (Jones
et al., 2002)

There is a growing body of evidence in support of dynamic attending theory.

Jones et al. (2002) were the first to demonstrate that rhythmic priming
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can enhance auditory processing for non-temporal tasks. Participants

were required to compare the pitch of a standard and a comparison

tone which were separated by an isochronous (equally spaced in time)

sequence of tones. When the comparison tone occurred on the next beat

of the sequence, performance on the pitch task was better than when the

comparison tone occurred between beats. The performance profile was

quadratic in shape, centred around the on-beat position, consistant with a

peak in anticipatory attention in line with the beat of the sequence (Figure

1.3). To test the assumption that entrainment persists beyond the end of

the external stimulus, the experiment was repeated with targets presented

on or around the next but one beat of the sequence. As predicted, a

similar performance profile was obtained: quadratic in shape with peak

performance for on-beat targets. Finally, when an irregular (i.e., no

isochronous beat) priming sequence was used, the expectancy profile was

flatter, without the characteristic quadratic trend associated with peaks in

anticipatory attention Jones et al. (2002).

Rhythmic priming effects have also been shown to enhance perception of

speech targets in quiet. A musical rhythm sequence was used to prime

expectations in a phoneme detection task, and reaction times were shorter

for on-beat compared to late targets (Cason and Schön, 2012).

The beneficial effects of rhythmic priming do not rely on deliberate

orienting by participants; in fact, they persist even when participants are

instructed to ignore the priming stimuli (Bolger et al., 2013; de la Rosa

et al., 2012; Jones et al., 2002). The process is also unaffected by a

concurrent working memory task (de la Rosa et al., 2012), suggesting that

rhythmic priming does not place high demands on cognitive control. In

these respects, rhythmic priming is comparable with the classic exogenous

cueing paradigm (see Table 1.2).

One way in which the paradigms diverge is in the apparent temporal

specificity of exogenous predictive orienting in the auditory domain. In

one study, Rimmele and Sussman (2011) compared the effects of implicit

temporal and spatial orienting in audition. The stimuli consisted of a

moving sequence of 12 tones, followed by a burst of white noise and then a

final tone. The final tone was either a target (complex tone) or a non-target

(pure tone) and participants were required to respond as quickly as possible

only to target stimuli. Temporal regularity in the tone sequence resulted in
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faster and more accurate responses, while spatial predictability provided no

behavioural benefit for the go/no-go task (Rimmele and Sussman, 2011).

1.5.2 Rhythmic priming during speech listening
In an early study, Meltzer et al. (1976) manipulated the timing of phoneme

targets in a sentence context such that they could occur early, on-time or

late with respect to the target’s original position in the unaltered sentence.

When targets were temporally displaced, listeners were slower to react

than when the target coincided with the on-time position (Meltzer et al.,

1976). This suggests that listeners do form temporal predictions to orient

attention during speech listening. There is also some evidence that listeners

orient temporal attention to word onsets when listening to narrative speech

(Astheimer and Sanders, 2009).

While speech does not necessarily contain a strictly isochronous beat, it

does make use of acoustic emphasis, and the pattern of stressed and

unstressed syllables – referred to as meter – creates a sense of rhythm. In

fact, listeners perceive regularity even when the speech signal does not

contain strict isochrony (Schmidt-Kassow and Kotz, 2009). Listeners can

also tap along to the pattern of stressed syllables, just as they would tap

along to the beat in music (Lidji et al., 2011).

It has been suggested that listeners use this rhythmic metric structure to

orient attention towards stressed syllables, and that attention ‘bounces’

from one stressed syllable to the next (the attentional bounce hypothesis;

Pitt and Samuel, 1990).

To investigate this hypothesis, Pitt and Samuel (1990) used a

phoneme-detection task and compared performance for neutral-stress

targets in syllables which were predicted to be stressed with those in

syllables which were predicted to be unstressed. When the targets

were embedded in a sentence context, fewer errors were observed for

predicted-stress targets, but there was no significant difference in reaction

times. In a second experiment, lists of disyllabic words – with matching

stress patterns (either weak–strong or strong–weak) – were used to create

a stronger sense of alternating stress. Reaction times were significantly

shorter for targets occurring in predicted-stress syllables (Pitt and Samuel,

1990).
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A similar paradigm, with phoneme targets embedded in lists of disyllabic

words, was used by Quené et al. (2005). An additional manipulation

was applied so that the temporal intervals between stressed syllables were

either identical (isochronous rhythm) or jittered. Reaction times to a

phoneme target were significantly shorter for the isochronous compared

to the jittered condition, suggesting that increased rhythmic regularity can

improve speech perception (Quené et al., 2005).

Together these results support the idea that temporal attention is oriented

towards stressed syllables. The benefit of anticipatory attention depends

on the strength of the rhythmic information available in the speech context,

and this can be enhanced via the use of predictable stress patterns and

temporal regularity.

1.6 A lifespan perspective on speech perception in noise
Understanding speech in background noise is a complex process which

relies on a variety of perceptual, cognitive and linguistic skills, as discussed

above and summarised here:

Spectral resolution – to separate concurrent sounds in terms of

fundamental frequency or mistuned harmonics

Temporal resolution – to separate auditory objects with asynchronous

onsets/offsets; to take advantage of dip listening in modulated noise

Selective attention – to aid streaming by focusing on properties of the

target speech, such as voice characteristics or spatial location

Working memory – to aid attentional control and inhibition of

distractors; to store and replay the degraded speech signal while

linguistic constraints are applied

Linguistic knowledge and experience – to restore missing parts of the

signal using coarticulatory cues, phonemic restoration, or syntactic or

semantic context

The capacity to use all of these skills develops with age and experience,

and there is great individual variation in speech perception in noise. The

perceptual and cognitive skills develop at different rates during childhood

and are also subject to age-related decline in older adulthood. Young

children and older adults are therefore believed to be at a disadvantage
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when it comes to speech perception in noise (e.g., Pichora-Fuller et al.,

1995; Stuart, 2008).

1.6.1 Development during childhood
For speech in quiet conditions, children reach adult levels of perception

at around 8 years of age (Stuart, 2005, 2008). For speech in background

noise, development depends on the masker (Nishi et al., 2010; Bonino et al.,

2013) and in some conditions perception does not reach adult levels until

about 14 years of age (Hall et al., 2012; Johnson, 2000; Stuart, 2008).

This is not surprising given the variety of perceptual, cognitive and

linguistic skills that are required for successful speech perception in noise,

all of which develop at different rates:

Spectral resolution – reaches adult levels of performance by age 6

years (Hartley et al., 2000); younger children (5–7 years) require

more spectral information than older children (10–12 years) for

comprehension of degraded speech (Eisenberg et al., 2000)

Temporal resolution – is still developing at age 11 years (Hartley et al.,

2000; Stuart, 2005); modulation masking release is reduced in young

children (4–6 years) compared to adults (Hall et al., 2012), but does

not appear to improve with age for children aged 6–15 years (Stuart,

2008)

Working memory – older children (10–12 years) have better auditory

working memory than younger children (5–7 years) (Eisenberg et al.,

2000)

Spatial release from masking – young children (4–7 years) do benefit

from spatial separation of target and masker, and the amount of

masking release is similar to that experienced by adults (Litovsky,

2005)

Linguistic knowledge and experience – young children (5 years) do

benefit from linguistic context when age-appropriate language is used

(Fallon et al., 2002)

In summary, children can benefit from spatial release from masking,

modulation masking release, and linguistic context, but their perception
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of speech in noise is hindered by still developing sensory and cognitive

systems.

1.6.1.1 Consequences of noisy classrooms
For children, much of their everyday communication takes place in a

classroom environment. Understanding what the teacher is saying is crucial

to the purpose of a classroom. Neuman et al. (2010) measured speech

reception thresholds for sentences in background noise conditions which

are typical of school classrooms. Speech thresholds improved as a function

of age for normal-hearing children aged 6–12. Younger children (aged 6–8)

performed worse than older children (aged 10–12) who in turn performed

worse than adults (Neuman et al., 2010).

In a study of 8-year-old children, learning in a noisy classroom was

associated with poor performance on tests of phonological processing, as

well as higher annoyance levels and less favourable relationships with

teachers and peers (Klatte et al., 2010). These results suggest that

the ability to understand speech in background noise has an impact

on academic achievement, social relationships, and the child’s overall

experience at school. For children with learning or language impairments,

who often struggle to understand speech in noise (e.g., Ziegler et al., 2009),

the detrimental effects of a noisy classroom may be considerable.

1.6.2 Decline during older adulthood
A recent large-scale population study reported subjective and objective

hearing measures for adults aged 40–69 across the United Kingdom (Moore

et al., 2014). Subjective reports of hearing difficulties increased linearly

with age. Speech perception in noise declined exponentially with age,

with a steeper rate of change after age 50. Performance on cognitive

tests (including working memory and processing speed) also declined

with increasing age, and these scores were related to speech perception

thresholds (Moore et al., 2014).

These results are in line with previous reports that older adults struggle

with speech perception in noise due to a combination of hearing loss and

cognitive decline (e.g., Humes, 1996; Pichora-Fuller et al., 1995; Schneider

et al., 2002).
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People with hearing loss demonstrate impaired performance on tests of

temporal resolution (George et al., 2007), speech perception in steady and

modulated noise (George et al., 2007; Hall et al., 2012) and modulation

masking release (Hall et al., 2012). For hearing-impaired listeners,

audibility is the most important factor for speech perception in noise,

although cognition does also play a part (Akeroyd, 2008; George et al.,

2007).

Even those older adults with clinically normal hearing perform worse than

younger hearing-matched controls on tests of speech perception in noise,

which has been attributed to cognitive decline (Füllgrabe et al., 2014).

In fact, for normal-hearing listeners, conclusions about speech perception

in noise abilities appear to depend mainly on cognitive factors (Füllgrabe

et al., 2014; George et al., 2007).

Older adults do, however, benefit as much as younger adults in terms

of both modulation masking release and spatial release from masking

(Füllgrabe et al., 2014). They also benefit from a lifetime’s experience of

listening to speech. While perception of an unfamiliar voice amid masking

speech declines with increasing age, no age-related decline is observed

when the target speaker is the listener’s spouse (Johnsrude et al., 2013).

Pichora-Fuller et al. (1995) compared the performance of young

normal-hearing adults, older normal-hearing adults, and older

hearing-impaired adults using high and low context sentences in noise.

In terms of overall performance, the younger adults did better than

the older normal-hearing adults, who in turn did better that the older

hearing-impaired adults. The interesting finding was that both groups of

older adults achieved greater benefit from semantic context than did the

younger adults (Pichora-Fuller et al., 1995).

The findings from Pichora-Fuller et al. (1995) suggest that older adults may

rely on their linguistic experience to to fill in the extra gaps in a speech

signal which result from perceptual impairments. Dependence on this

compensatory mechanism appears to come at a price in terms of cognitive

effort, as demonstrated by a concurrent working memory task combined

with a speech perception in noise test (Pichora-Fuller and Souza, 2003). At

challenging signal-to-noise ratios, Pichora-Fuller and Souza (2003) found

that older adults could recall fewer words, suggesting that working memory

resources were allocated to the processing of the degraded signal. This
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explanation is supported by the authors’ clinical experience with older

adults. Even those with normal hearing report that listening to speech

in everyday situations requires a lot of effort and is therefore very tiring

(Pichora-Fuller et al., 1995). For older adults with hearing loss, this

problem will be compounded, as even in quiet a verbal memory task is

impacted by the extra effort required to process auditory stimuli (McCoy

et al., 2005).

In summary, age-related decline in auditory perception and cognitive ability

leads to poorer speech perception in noise by older adults. A lifetime of

linguistic experience can partially compensate for a degraded speech signal,

but this requires additional cognitive effort. Everyday communication may

become frustrating and tiring as a result, and this could lead to avoidance

of social events and a decline in well-being (Schneider et al., 2002).

1.7 Musician advantage for speech perception in noise
Young children and older adults are two groups who could potentially

benefit from a training programme to improve speech perception in noise.

At the other end of the scale, musicians may have an advantage for speech

perception in noise, the evidence for which is discussed in this section.

1.7.1 Evidence from group comparison studies
Given the evidence that musicians have enhanced perceptual and cognitive

abilities related to auditory scene analysis (see Section 1.1.1), it follows

that they should have an advantage when it comes to speech perception in

noise.

The first direct evidence for a link between musical training and speech

perception in noise was reported by Parbery-Clark et al. (2009). Young

adult participants (aged 19–31) completed two sentence-in-noise tests:

HINT (Nilsson et al., 1994) – which uses simple sentences in a steady

speech-spectrum noise – and QuickSIN (Killion et al., 2004) – which uses

more complex sentences in a babble masker.

Musicians outperformed non-musicians on both speech tests,

demonstrating a significant musician advantage for speech perception

in noise (Parbery-Clark et al., 2009). Performance on QuickSIN was

correlated with years of musical training, suggesting a possible dose

response. There was no difference between the groups for the easier



28 CHAPTER 1: INTRODUCTION

HINT condition in which the target sentence and masker were spatially

separated. A similar musician advantage for QuickSIN and HINT was also

found for older adults (45–65 years with normal hearing; Parbery-Clark

et al., 2011).

These studies both reported statistically significant group differences, but

the observed musician benefit for speech reception thresholds was small

(<1 dB). Results from subsequent studies cast doubt on the reproducibility

of a musician enhancement for speech perception in noise.

Zendel and Alain (2012) reported that older musicians showed less

age-related decline for speech perception in noise (QuickSIN). However,

no group difference is apparent for the younger adults in their Figure 4

(Zendel and Alain, 2012).

Ruggles et al. (2014) reported no group difference for musicians versus

non-musicians on QuickSIN or HINT, despite using similar criteria for

defining their groups as did Parbery-Clark et al. (2009). Similarly, no

musician advantage was observed for perception of HINT-like sentences in

a range of maskers: competing speech (different gender talker), rotated

speech (unintelligible), speech-modulated noise, steady noise (Boebinger

et al., 2015). Boebinger et al. (2015) reported that more than two hundred

participants would be needed to find a significant group difference if the

observed effect size was accurate.

A recent study aimed to elucidate the nature of any musician advantage for

speech perception in noise (Swaminathan et al., 2015). By manipulating

masker intelligibility and spatial separation, four test conditions were

created which varied in difficulty and cognitive demands. The use of

intelligible speech maskers and spatially separated sound sources was

intended to be more ecologically valid than clinical tests such as HINT and

QuickSIN.

In this study, target and masker sentences always took the form: [name]

[verb] [number] [adjective] [object], with 8 possible options for each word.

The target sentence was identified by use of the name ‘Jane’ (e.g., ‘Jane took

two new toys’), while the two masker sentences used different names.

The target and masker sentences were spoken by different female voices,

which were randomly selected on each trial. The target always originated

from straight ahead, while the masker sentences were either colocated with
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the target or separated by ±15◦ azimuth. The masker sentences were

either presented forward (intelligible) or were reversed on a word-to-word

basis (to make them unintelligible while maintaining speech-like amplitude

modulation). See Figure 1.4 for a summary of the conditions and main

findings from Swaminathan et al. (2015).

In the most difficult condition, where the maskers were intelligible and

colocated with the target, performance was universally poor, with no

group difference between musicians and non-musicians. Conversely, in

the easiest condition (unintelligible maskers spatially separated from the

target) all listeners performed well, again with no group difference. This is

comparable to the spatially separated HINT condition for which no group

difference was reported by Parbery-Clark et al. (2009). The other two

conditions provided more interesting results.

Figure 1.4: Experimental conditions and results from Swaminathan et al. (2015)

When unintelligible maskers were colocated with the target, a significant

musician advantage was observed (Swaminathan et al., 2015). This

condition is comparable to QuickSIN which also uses a colocated modulated

masker, but the threshold difference was greater than that previously

reported by Parbery-Clark et al. (2009). It could be that the two

reversed-speech maskers provided more frequent and deeper dips in which

to glimpse the target, compared to the multi-talker babble used in QuickSIN.

Success in this condition would therefore rely on both perceptual and
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cognitive skills to extract the target from the maskers and fill in the

gaps in the signal, as discussed in Section 1.4.2. The thresholds in this

condition showed greater individual variability compared to the easier

spatially separated unintelligible masker condition.

When intelligible maskers were spatially separated from the target,

musicians had an even greater enhancement in threshold and demonstrated

significantly more spatial release from masking (Swaminathan et al., 2015).

The authors considered this to be the most ecologically valid condition,

similar to having a conversation while other people are talking nearby,

and also cognitively demanding. As discussed in Section 1.3.2, spatial

separation allows the listener to take advantage of voice characteristics in

order to selectively attend to a target sentence (Allen et al., 2008). In this

condition, masking sentences were intelligible, confusible with the target,

and also spoken by female voices, making it crucial to take advantage of

the spatial separation to succeed. This reliance on cognitive as well as

perceptual abilities resulted in a large group difference and a wide range of

individual variation among the non-musicians.

The findings of Swaminathan et al. (2015) add support to the idea of

a musician enhancement for speech perception in noise, and suggest

important considerations for future work in this field. Speech perception

tasks should be sufficiently difficult (though not impossible) to place high

demands on both perceptual and cognitive abilities in order to maximise

individual variability and provide the best chance of observing group

differences. The greatest difference was observed for spatially separated

intelligible maskers, although the colocated unintelligible (modulated)

masker condition also resulted in a significant musician advantage

(Swaminathan et al., 2015). These two conditions are therefore good

candidates for use in further research in this field.

1.7.1.1 Limitations of defining comparison groups
All of the studies discussed in the previous section involved comparisons

between a group of musicians and a group of non-musicians. This approach

has provided valuable insights into the brains and behaviours of musicians

as expert listeners, as discussed in Section 1.1.1, but it is not without its

shortcomings. The most obvious limitation is that it is not possible to infer

causation from a cross-sectional design, as discussed above. However, there

are also pitfalls associated with defining the comparison groups.



MUSICIANADVANTAGE FOR SPEECHPERCEPTION INNOISE 31

Defining ‘musicians’
In each of the studies discussed above, participants were included in a

musician group only if they met a number of strict criteria. For example,

Parbery-Clark et al. (2009) defined musicians as those who started formal

music training before age 7, had played for at least 10 years, and had

continued to practise at least 3 times per week in the 3 years leading up

to the study.

Although similar criteria were used to define the groups in each study, it is

not clear which of these criteria might be sufficient for the question at hand.

If all of these criteria are in fact necessary to observe a musician advantage

for speech perception in noise, then it is unlikely that a short-term musical

training programme – particularly one for older children or adults – would

have the desired impact.

Despite the seemingly stringent criteria for musicians, there is one

factor that has rarely been considered: the instruments they play. A

comparison of percussionists, string players and non-musicians produced

an interesting pattern of results for auditory tasks (Rauscher and

Hinton, 2003). Percussionists outperformed non-musicians on duration

discrimination, while string players outperformed non-musicians on

frequency discrimination (Rauscher and Hinton, 2003). These results are

perhaps not surprising given the nature of the two instrument groups:

percussionists require precise timing perception while string players require

precise pitch perception to tune their instruments.

The type of instrument also has an impact on the musician advantage

for speech perception in noise. Drummers achieved significantly better

thresholds for QuickSIN compared to non-musicians, with vocalists in

between these groups (although not significantly different from either)

(Slater and Kraus, 2015). Findings such as these confirm that caution

should be exercised before assuming that results from group comparison

studies will generalise to all musicians.

Defining ‘non-musicians’
Non-musicians are often quite simply defined as having little or no formal

musical training. For example, Parbery-Clark et al. (2009) selected

non-musicians who failed to meet their musician criteria and had not had

any musical training in the 7 years prior to the study.
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The focus on formal instrument training doesn’t take into consideration

other musical experience which could contribute towards the development

of musical ability. Self-taught instrumentalists, choral singers, or DJs, for

example, could be counted as non-musicians as they might not have had

formal training.

Another potential problem with group comparisons is that the musician

advantage for speech perception in noise might be mediated by musical

aptitude or ability rather than involvement in training. If this were the

case, then the results could be confounded by ‘musical non-musicians’,

i.e., people who have an aptitude for music but who have never pursued

formal musical training. There would then be considerable overlap between

the two groups, and this could explain some of the contradictory findings

discussed above (e.g., Ruggles et al., 2014, Figure 3).

1.7.2 Evidence from a longitudinal training study
Slater et al. (2015) recently reported promising results from a longitudinal

study looking at the impact of musical training on speech perception in

noise. Participants (mean age 8.2 ± 0.7) were recruited from the waiting

list of an established community music programme, which provides free

access to musical training for children in low-income areas. After an initial

assessment, the children were randomly assigned to two groups: one group

started training immediately, while the other started after one year and

therefore acted as a control group during the first year. A significant

improvement in HINT threshold (2.1 dB) was observed after 2 years of

musical training (Slater et al., 2015), and the final HINT threshold was

correlated with the number of hours of instrument training.

No significant improvements in speech threshold were found for either

group after their first year of training, although some individuals did show

significant improvement after just one year (Slater et al., 2015). The

authors discussed these findings in terms of the length of time needed

for far transfer of skills from music to speech (Slater et al., 2015). It is

worth noting, however, that the design of the music programme involved a

comprehensive musicianship course of up to a year before children started

instrumental lessons. It is therefore possible that transfer occurred more

quickly than assumed, but after an initial delay.
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The latter is a more encouraging explanation when considering a short-term

intervention for improving speech perception in noise, and several studies

have reported near and far transfer effects after relatively short musical

training programmes (see Table 6.7).

Figure 1.5 summarises speech perception in noise across the lifespan:

perception develops and later declines with age, while musician advantages

have been observed for each age group.

Figure 1.5: Development of speech perception in noise across the lifespan and through
musical training

1.8 Designing amusical training programme
The studies in Table 6.7 provide some useful insight into different

approaches to designing a musical training programme.

Most of the studies included instrumental lessons, either as the major focus

of training or as a smaller part of classroom lessons, although Moreno et al.

(2011) had some success using primarily listening activities. The training
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was generally quite time-intensive, involving lessons or practice on several

days of the week. Although this is typical of musical training, it may not

be practical as an intervention if it must be sustained over a long period.

These studies are persuasive as an argument for including music education

in schools or in residential homes for older adults, but it is not clear if such

programmes would work for short-term rehabilitation.

One noticeable commonality among the training studies is that all but

one attempted to recreate a comprehensive musical programme based on

established methods, which encompassed a range of key skill areas such

as rhythm, pitch, melody, timbre and sometimes musical theory. Such

multifaceted training is time consuming, and likely contains elements

which do not directly contribute to the outcome measure of interest.

The one exception was the study with dyslexic children which focused on

rhythm and timing skills (Overy, 2003). It had previously been shown that

dyslexic children have deficits in timing tasks (e.g., Goswami et al., 2002),

so it was logical to target the training accordingly.

An ideal training programme would retain the varied, engaging, motivating

nature of music-making, while minimising redundancy associated with

irrelevant skills. The approach taken in the current research is to first

identify specific musical skills which contribute to speech perception in

noise, so that an efficient, targeted training programme can be devised.

With the OPERA hypothesis in mind, a targeted musical training

programme for speech perception in noise should focus on processes which

are common to both music and speech. Auditory working memory is

certainly one such process. However, if working memory does mediate the

musician enhancement for speech perception in noise (Kraus et al., 2012),

then this could be a consequence of the complex, cognitively demanding

nature of musical training rather than a benefit afforded specifically by

music.

Instead, the approach taken in this research is to focus on key aspects of

music perception and consider how each of these might be useful for speech

perception in noise.
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1.8.1 Pitch andmelody
As summarised in Section 1.6, spectral resolution and selective attention

to frequency over time can both aid speech perception in background noise.

Furthermore, frequency discrimination is enhanced in musicians and is also

associated with speech perception thresholds in babble noise (Parbery-Clark

et al., 2009).

In musical terms, frequency relates to pitch, and changes in pitch over time

create melodies. Pitch contours are also an important aspect of speech, and

artificially manipulated contours result in impaired perception of speech

in background noise (Miller et al., 2010). Musicians have enhanced

perception of pitch contours in both music and speech (Schön et al., 2004),

suggesting that melody perception could be a potential candidate skill for

targeted training.

1.8.2 Rhythm and beat
Music consists of temporal patterns – rhythms – based around an

isochronous (equally spaced in time) beat. The rhythmic structure of

speech consists of patterns of alternating stressed and unstressed syllables

– meter. While speech meter does not necessarily contain strict isochrony,

listeners can perceive and entrain to regularity in speech (Lidji et al., 2011;

Schmidt-Kassow and Kotz, 2009) as they do with music.

There is also evidence that instrumental music reflects the spoken prosodic

rhythms of the language of the composer (Patel and Daniele, 2000),

suggesting a link between rhythm in speech and in music.

Disruptions in temporal information result in impaired speech perception

(Drullman et al., 1994a,b; Ghitza and Greenberg, 2009), confirming the

importance of rhythm in speech. Musicians have enhanced rhythm

discrimination and this is also associated with speech perception in noise

(Slater and Kraus, 2015).

There is also evidence for impaired rhythm and beat processing in groups

of children who often have difficulties with speech perception in noise.

For example, children with specific language impairments had difficulty

tapping along to a beat (Corriveau and Goswami, 2009), children with

auditory processing disorder were impaired in a rhythm task (Olakunbi
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et al., 2010), and dyslexic children had deficits in beat perception

(Muneaux et al., 2004).

Together, these findings suggest that rhythm and beat perception – along

with melody – should be considered as candidate skills for a musical

training programme for speech perception in noise.

1.9 Research questions and outline of thesis
The ultimate goal of this research is to design and evaluate a

short-term musical training programme for improving speech perception

in background noise.

As discussed above, an efficient training programme will target

specific musical skills which might contribute to speech perception in

noise. This approach should reduce the redundancy associated with

a comprehensive musical programme while maintaining the enjoyable

nature of music-making which promotes it as a promising alternative to

speech-based auditory training.

Figure 3.5 illustrates the general approach taken in this thesis. The aim

is to elucidate how musical training might lead to enhancements in speech

perception in noise, in order to inform the design of the training programme

to be evaluated.

Figure 1.6: Flowchart illustrating the research questions investigated in this thesis

This approach is divided into three research questions, which will be

investigated in turn:

Question 1: Are there specific musical skills which are associated with

speech perception in noise?

Question 2: How might these skills contribute to speech perception in

noise?
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Question 3: Can short-term training in these musical skills improve

speech perception in noise?

Before embarking on an investigation of musical skills and speech

perception in noise, it is crucial to select appropriate measures for each

skill to be tested. Chapter 2 will outline the general methods and tests to

be used in this research, and discuss the reasons for choosing these.

Chapter 3 will focus on identifying specific musical skills which could

be targeted for training. The aim is to find measurable skills which

are correlated both with amount of musical experience and with speech

perception in noise. The sample will be drawn from the general population,

thereby avoiding the pitfalls associated with defining ‘musician’ and

‘non-musician’ groups, as discussed in Section 1.7.1.1.

Possible mechanisms for how the identified musical skills aid speech

perception in noise will be investigated in Chapters 4 and 5. The

developmental aspect of such mechanisms will also be considered in a study

comparing young children and adults.

Chapter 6 will discuss the design of a musical training programme based

on findings from the previous chapters. The impact of the musical training

programme on speech perception in noise will be evaluated for a group of

older adults.

Finally, Chapter 7 will summarise and discuss the main findings of this

thesis, consider limitations of the studies, and suggest directions for future

research.





CHAPTER2
General methods

The first goal of the current research is to identify musical skills which might
underlie the reported link between musical training and speech perception in
noise. To do this, it is first necessary to identify suitable tests for assessing
speech-in-noise perception, musical experience, and musical skills. This
chapter describes the requirements for each of these measures and the
reasons for choosing the tests to be used in this thesis. Psychophysical
methods of presenting stimuli and estimating perceptual thresholds are also
introduced as these are used in Chapters 4 and 5.

2.1 Quantifyingmusical experience
In order to investigate the association between musical training and

speech-in-noise perception in the general population, it is necessary to have

an appropriate quantifiable measure of musical experience.

2.1.1 Measuringmusical training
In studies which compare musicians and non-musicians, the musician

group are usually defined by criteria such as duration of formal training,

age at onset of training, and amount of time spent practising their

instrument (e.g., Parbery-Clark et al., 2009; Zendel and Alain, 2012).

These variables are often then used as proxy measures for musical training

when investigating a possible dose response on some other variable (e.g.,

Parbery-Clark et al., 2009).

39
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Non-musicians are usually those who do not meet the musician criteria and

report having no (or little) formal training. This leaves open the possibility

of having ‘musical non-musicians’, i.e., people who have aptitude or skill

in music but have never pursued formal musical training (as discussed in

Section 1.7.1.1). There are many types of musical experience that would

not be counted as formal training but nevertheless are likely to improve

musical skills.

Since one of the aims of this research is to investigate musical skills in

the general population, it would be useful to have a measure of musical

experience which is not limited to formal training, and would therefore

provide informative (non-zero) scores for musical non-musicians.

One such measure, which has been designed specifically to quantify facets

of musical sophistication in the general population, is the Goldsmiths’

Musical Sophistication Index (Müllensiefen et al., 2011). The index

contains several subtests, one of which focuses on musical training, as

described below.

2.1.1.1 Goldsmiths’ Musical Sophistication Index
The training subscale of the Goldsmiths’ Musical Sophistication Index

(Müllensiefen et al., 2011) consists of 9 items, encompassing questions on

both formal instrument training and informal musical experience. Figure

2.1 shows the training subscale in the form that it was presented to

participants in the current research.

Figure 2.1: The nine questions of the training subscale of the Goldsmiths’ Musical
Sophistication Index (Müllensiefen et al., 2011); each item is scored from 1 to 7 (the first
three items are scored on a reversed scale as they are negative statements)
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2.2 Assessingmusical skills
As outlined in Section 1.9, the first aim of this thesis is to investigate

whether specific musical skills are related to speech perception in

background noise within a sample of people with a range of musical

experience. The three aspects of musicality that were identified as potential

predictors are melody, rhythm and beat perception (see Section 1.8).

Tests for each of these three skills are required, which are:

independent – separate scores are needed for the three musical skills

suitable for use with the general population – tests must not require any

prior musical knowledge to understand the instructions or perform

the tasks

auditory perception tasks – tests must not include musical production

tasks which would require expertise, nor tasks which are reliant on

auditory-motor synchronisation as this could confound results

sensitive to individual differences – a wide range of scores is needed in

order to investigate relationships with other variables.

2.2.1 Melody and rhythm
There are several commonly used test batteries for musical skills, many

of which have been developed for specific populations. For example,

the Montreal Battery of Evaluation of Amusia (MBEA; Peretz and Hyde,

2003) uses a same/different paradigm to assess five separate melodic and

rhythmic skills. However, as these tests were designed for use with people

who have impaired musical abilities, there would be a ceiling effect with

trained musicians. Conversely, an imitation test, which requires some level

of musical performance to reproduce a heard rhythm or melody, might have

a floor effect when used with non-musicians.

A popular measure of musical aptitude is Gordon’s Advanced Measures

of Musical Audiation (AMMA; GIA Publications, Inc., Chicago, IL, USA).

This test assesses memory for melodic and rhythmic patterns using a

same/different paradigm. Participants hear two musical phrases and must

judge whether the second is the same as the first or differs in either rhythm

or melody. One issue with this test is that the rhythm violations occur within

a melodic context. The two scores are not entirely independent, as they are
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susceptible to attention effects, e.g., a preference for attending to melody

over rhythm or vice versa. For this reason, the AMMA is not well-suited for

the intended purpose.

2.2.1.1 Musical Ear Test
The Musical Ear Test (Wallentin et al., 2010) also presents pairs of musical

phrases and asks the listener to judge whether they are the same or

different, and it also contains subtests for melody and rhythm. The melodic

phrases are made up of tones of sampled piano sounds and the rhythmic

phrases use beats played on a wood block. This means that, unlike in the

AMMA where the rhythm deviations occur in melodic phrases, the rhythm

subtest of the Musical Ear Test assesses rhythm independently of melodic

context.

Each subtest of the Musical Ear Test consists of 52 trials: 26 ‘same’ trials

and 26 ‘different’ trials. The different trials contain one pitch or rhythm

change, and the difficulty of detecting the deviations is varied by inclusion

of features that alter the complexity of the phrases. The Musical Ear

Test has been shown to correlate with amount of practice in a group

of musicians, and can also successfully distinguish groups of professional

musicians, amateurs, and non-musicians (Wallentin et al., 2010).

Another advantage of the Musical Ear Test is that the rhythm subtest

has been reported to correlate with speech perception in noise within a

combined group of percussionists, vocalists and non-musicians (Slater and

Kraus, 2015). The Musical Ear Test will therefore be used to assess melody

and rhythm skills.

2.2.2 Musical beat perception
Studies of beat skills often focus on the ability to tap along to a regular

beat (e.g., Slater et al., 2013; Tierney and Kraus, 2013b). While this is an

important skill in playing music, it relies on auditory-motor synchronisation

and would therefore be influenced by an impairment in motor skills. It

is also common for the tapping task to be synchronised to a metronome

rather than to actual music (e.g., Slater et al., 2013; Tierney and Kraus,

2013b). A different approach is needed to assess musical beat perception

independently of motor skills.
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2.2.2.1 Beat Alignment Test
The Beat Alignment Test (Iversen and Patel, 2008) contains a

perception-only subtest which does not rely on motor skills – in fact,

participants are instructed not to tap or move along to the music. The

test uses 12 musical excerpts (mean length 15.9 seconds ± 3.1 s) from

three different genres (4 each of jazz, rock, and pop orchestral). A regular

sequence of beeps (1 kHz pure tones, 100 ms duration) starts after about 5

seconds of music, and participants are required to judge whether the beeps

are on or off the beat of the music.

The off-beat beeps are adjusted either in tempo (10% too fast or too slow)

or in phase (30% ahead of or after the beat). The saliency of the beat,

and therefore the difficulty of the task, varies considerably among the 12

excerpts, making the test suitable for examining individual differences in

beat perception.

2.3 Testing speech-in-noise perception
The choice of a speech-in-noise test is not trivial. There are several factors

that affect a test’s suitability for a given purpose, such as the complexity

of the sentence material, the acoustic properties of the noise masker,

and the test procedure. It is therefore critical to consider the research

questions and the target population when specifying the requirements for

a speech-in-noise test.

As discussed in Chapter 1, the ultimate goal of this research is to

evaluate a musical training programme in terms of potential benefit for

speech perception in noise. In order to compare pre- and post-training

performance, the speech-in-noise test will need to be performed multiple

times by each participant. The first requirement of the speech-in-noise test

is therefore that it should be repeatable, without participants being able to

memorise the sentence material.

The test must also be sensitive to potentially small improvements due to

training, and must be reliable so that any improvement can be attributed to

training and not to test-retest differences. Sufficient sensitivity to individual

differences is also crucial for the first aim of the research which is to

examine associations between musical skills and speech-in-noise perception

in the general population. If there is little variation in speech reception

thresholds, then it will be difficult to identify any significant associations.
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In order to investigate if musical skills are associated with different masker

conditions, it will be necessary to compare steady and modulated maskers

using the same sentence material. This will also allow for the modulation

masking release to be calculated, and this could provide another potential

variable of interest (see Section 1.4.2).

With multiple conditions to test, the time needed for each measure should

be minimised. The most efficient way to obtain a threshold is to use an

adaptive procedure, wherein the signal-to-noise ratio is altered on each

trial based on the previous answer. If a correct answer is given, the next

trial will be harder, and vice versa, until the procedure closes in on the

threshold estimate.

Two variables which are not of interest in the current research are spatial

separation and linguistic context. With the possible exception of musicians

within an orchestra, musical training does not involve particular focus on

using spatial cues. Similarly, there is no reason to expect that musical

training would help with the accumulation of the linguistic knowledge

which is necessary for using contextual cues. The first aim of the thesis

is to identify musical skills which might explain individual variance in

speech perception in noise. Since spatial separation and/or linguistic

context would introduce variance which is not expected to be linked to

musical abilities, this would be an unnecessary confound. For this reason,

targets and maskers will always be colocated and sentence material will not

contain semantic cues.

In summary, the ideal speech-in-noise test would be:

Repeatable – sentences should not be semantically predictable nor

easily learned through repetition of the test

Flexible – able to be used with different noise maskers for comparison

of conditions

Efficient – an adaptive procedure with multiple scoring opportunities

per sentence will minimise testing time

Sensitive – capable of identifying small differences between

individuals and between pre- and post-training performance

Reliable – able to provide stable measures of an individual’s

performance with minimal test-retest differences
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2.3.1 Choosing a sentence test
Many commonly used speech-in-noise tests (including HINT, QuickSIN and

SPIN, which were discussed in Chapter 1) are designed as open sentence

tests. This means that, as far as the listener is concerned, there are no

restrictions on which words could occur. However, since each sentence is

unique, the number of sentence lists in the corpus is limited. Repeated

exposure to these lists might allow listeners to learn the sentence material,

and the test would therefore become easier over time.

Closed sentence tests, on the other hand, employ a limited number of

possible words for each target position, but these words can be combined to

form a large number of possible sentences. This means that memorisation

of the exact sentences is not possible, though some improvement is

observed during an initial familiarisation phase. Sentences have the same

syntactic structure and do make sense, but there is no semantic context

to aid prediction of target words. Listeners can, however, make educated

guesses about partially heard words since they are choosing from a finite

list of options.

One example of a closed sentence test is the Coordinate Response Measure

(CRM), which was introduced in Chapter 1. In this test, there are two target

words in each sentence (a colour and a number), with a choice of four

colours and eight numbers, giving a total of 32 possible combinations. An

answer is usually deemed to be correct if both targets are identified (Allen

et al., 2008; Brungart, 2001; Brungart and Simpson, 2007). Performance

is often measured in terms of percent correct (Brungart, 2001; Johnsrude

et al., 2013) although speech reception thresholds can also be estimated

(Allen et al., 2008).

The CRM meets the criterion of repeatability, and its simple stimuli would

be particularly suitable for use with children. However, the small number

of possible target words (e.g., only four colours) would make it relatively

easy for listeners to guess based on partial information, especially as the

target words (red, white, blue, green) do not share common phonemes.

There is another closed sentence test which offers a greater number of

possible target words, five scoring opportunities for each sentence, and a

quick procedure for estimating the speech reception threshold: the Matrix

Sentence Test.
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Figure 2.2: Screenshot of the response screen showing the matrix of possible words that
make up the sentences in theMatrix Sentence Test; each sentence consists of oneword from
each column, for example: ‘Hannah likes six pinkmugs’

2.3.1.1 Matrix Sentence Test
Originally developed in Swedish by Hagerman (1982), and later adapted

and refined for German (Kollmeier and Wesselkamp, 1997), there are now

matrix sentence tests available in several languages, including a UK version

which is described here (HörTech gGmbH, Oldenburg, Germany).

In this test, each target sentence has the same 5-word structure: name, verb,

number, adjective, noun. The sentences are drawn from a matrix with 10

choices for each word (see Figure 2.2). The sentences make syntactic and

semantic sense, but are not predictable as there are no contextual clues

which might make the later words easier to guess. This means that for each

sentence, there are 5 independent scoring opportunities, and an efficient

adaptive procedure can be used to find a reliable threshold from a test list

of 20 sentences (Brand and Kollmeier, 2002). All sentences are spoken by

the same female talker, and they are all equally intelligible (Hewitt, 2008).

The sentences are not likely to be remembered, since there are 100,000

possible combinations of the base words. However, since there is a

limited number of possible words, some learning does occur during the

first few lists as participants become familiar with the test materials
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(Hagerman, 1982; Wagener and Brand, 2005). Performance stabilises more

quickly when participants are shown the matrix of possible words after

each sentence presentation as opposed to recalling sentences without this

information (Hewitt, 2008). After the initial familiarisation process, the test

can be used repeatedly with the same subjects without any further learning

effects (Wagener and Brand, 2005).

Another point in favour of the matrix test is that a similar sentence corpus

was used by Swaminathan et al. (2015) in their study of musicians and

non-musicians. A musician advantage was observed for perception of this

kind of sentence material when it was colocated with a reversed speech

(unintelligible, amplitude-modulated) masker.

Jansen et al. (2012) compared the French version of the matrix test to an

everyday sentence test (similar to HINT) and a digit triplets test (usually

used to screen for hearing loss). They found that all three tests correlated

with each other, and that the matrix test was better able to distinguish

between individuals than the other two tests.

The Matrix Sentence Test appears to be a good choice to meet the criteria of

repeatability and sensitivity, although sensitivity also depends on the type

of noise maskers used, as discussed in the next section.

2.3.2 Selecting noisemaskers
The choice of masker can have substantial effects on the properties of a

speech-in-noise test. For example, amplitude-modulated maskers provide

better differentiation between listeners (George et al., 2007; Wagener and

Brand, 2005) but may also make the test less reliable (Wagener and

Brand, 2005). The masker supplied with the matrix test is a steady

speech-spectrum noise, matching the long-term spectrum of the sentence

material (Hewitt, 2008). It is also possible to introduce additional noise

signals into the software in order to compare performance in different

conditions.

Wagener and Brand (2005) examined the influence of different noise

maskers using the German matrix test with normal-hearing and

hearing-impaired listeners. They compared the steady noise with two

fluctuating noises: icra5 and icra7 (Dreschler et al., 2001). The ICRA

maskers are artificial noise signals which were designed to mimic some

of the spectral and temporal properties of different types of speech, but
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with no actual speech content (Dreschler et al., 2001). The icra5 masker

simulates the modulations in speech with a single male talker; icra7

represents a babble noise of six people speaking concurrently.

Overall, Wagener and Brand (2005) recommended using fluctuating,

speech-shaped noise if the goal is to differentiate between subjects.

However they noted that the highly fluctuating icra5 noise has long gaps

(up to 2 seconds, which is a long time in the context of a 5-word sentence)

which reduced the test-retest reliability. This loss of reliability can be

reduced, while retaining the improved sensitivity, by using an adapted

version of icra5 in which the maximum gap length is 250 ms (Wagener,

2003).

An alternative approach, which affords greater control over the fluctuations

in noise level, is to modulate the amplitude of a steady noise by applying a

regular function, such as a sine wave (Gnansia et al., 2008). Manipulation

of the modulation parameters (frequency and depth) has a direct effect

on the amount of masking release observed (Gnansia et al., 2008). This

technique has successfully been used in investigations of ‘dip listening’ (see

Section 1.4.2).

2.3.2.1 Creation of modulated noise maskers
In order to compare the sensitivity and reliability of the matrix

test with different noise conditions, two additional maskers were

created. Each modulated masker was made by applying a sinusoidal

amplitude-modulation to the standard speech-spectrum noise:

m(t) = [1 + dsin(2πft)]n(t) (2.1)

where n(t) is the steady noise masker; d is the modulation depth (0.6 or

0.8); and f is the modulation frequency (8 Hz). The two modulation

depths (60% and 80%) were chosen to give moderate and high amounts

of masking release respectively (Gnansia et al., 2008). All noise signals

were subsequently matched in overall intensity (root-mean-square level).

Waveforms for all three noise maskers are shown in Figure 2.3.
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Figure 2.3: Example waveforms of the three noise maskers to be used with the
matrix sentence test: steady noise (0% modulation depth) and two sinusoidally
amplitude-modulated noises (modulation frequency = 8 Hz; modulation depths of 60%
and 80%)

2.4 Psychophysics
Psychophysical methods attempt to quantify the relationships between

external stimuli and perception. By systematically varying the stimulus in

some way, and recording performance on a perceptual task, a psychometric

function can be plotted. Figure 2.4 shows an example psychometric

function for a speech perception in noise task. Here the stimulus is varied

by way of the signal-to-noise ratio (SNR) and performance is measured in

terms of the percentage of words correctly identified for a given SNR. Above

a certain SNR, the task becomes very easy and all words can be identified.

Similarly, below a certain SNR, the task is so difficult that performance will

be at chance level. The area of interest is the slope in between these two

extremes, and particularly the speech reception threshold, i.e., the SNR for

which performance is equal to 50% correct.
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Figure 2.4: An example psychometric function for a speech perception in noise task

In order to estimate the perceptual threshold, the psychometric function

must be plotted as accurately as possible. Data points at ceiling or floor do

not provide much information about the shape of the psychometric function.

Data need to be sampled at various points (i.e., performance measured for

various SNRs) along the slope of the function in order for a curve to be

fitted.

2.4.1 Adaptive staircases
An efficient way to sample the psychometric function is via an adaptive

procedure such as a staircase (Levitt, 1971). An adaptive staircase does just

what its name suggests: starting from a relatively easy SNR, the signal level

is then stepped up or down depending on the response given. A correct

response is followed by a more difficult trial, while an incorrect response

is followed by an easier trial. Different staircases target different threshold

levels. For example, a 3-down 1-up staircase, in which 3 correct responses

are required before the level is made harder but a single incorrect response

would make it easier, targets the 79% threshold (Levitt, 1971).

Using an adaptive staircase procedure means that within a few trials the

observed performance will be around threshold level, and the remaining

trials will provide information about the slope of the psychometric function.

This is an efficient method for estimating the threshold, but it does have
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some disadvantages. For example, presenting the majority of targets close

to threshold level can be frustrating for the participant if the staircase is

targeting a fairly difficult threshold (e.g., 50%).

Another problem with adaptive staircases is their sensitivity to differences

in perceptibility between targets. In an established sentence-in-noise test,

such as the Matrix Sentence Test described above, a considerable amount of

care is put into ensuring that every sentence in a list is matched in terms of

perceptibility. If this were not the case, then the occurrence of an unusually

easy target at a difficult SNR, or an unusually difficult target at an easy

SNR, could result in an undue reversal of direction during the staircase

which would affect the threshold estimate.

2.4.2 Method of constant stimuli
The method of constant stimuli is another procedure for sampling the

psychometric function. A number of SNRs are chosen in advance and

stimuli are presented several times at each level, within a randomised block

of trials. Ideally, the SNRs are chosen so that at most one level is close

to ceiling performance and at most one level is close to floor performance,

guaranteeing that the majority of data will provide useful information about

the slope of the psychometric function.

One disadvantage of the method of constant stimuli is that each threshold

estimate requires a large number of trials. In such a time-consuming

method, it is important to ensure that useful data is collected efficiently.

If the chosen SNRs do not cover a range of performance, with sufficient

data around the threshold, then time is wasted on collecting uninformative

data (i.e., large numbers of trials at ceiling or floor performance).

2.4.3 Threshold estimates from fitted functions
Once the data have been collected, a psychometric function is plotted.

Figure 2.5 shows two examples: one for a tone-detection task and one

for a speech-in-noise task. The latter was already discussed above, and the

differences to note for the tone-detection task are visible on the vertical axis:

performance is measured in terms of the percentage of ‘yes’ responses; the

lower limit of performance is set as the participant’s false alarm rate, i.e.,

the proportion of no-signal trials for which the participant reported hearing

a target tone.
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Figure 2.5: Using the method of constant stimuli to estimate thresholds: when fitting
psychometric functions, the lower limit of the function is defined to be the false alarm rate
for a tone-detection task (left) and chance-level performance in a speech-perception task
(right)

In order to estimate the threshold, a psychometric function must be fitted

to the data. For the data in Chapters 4 and 5, functions were fitted using

the Palamedes toolbox for Matlab (Kingdom and Prins, 2009). There are

several possible forms of psychometric function, but in most cases a logistic

curve provided a good fit for the data (see Equation 2.2). Curves were fitted

for each condition for each participant in order to obtain estimates for the

threshold (α) and slope parameter (β).

f(x;α, β) =
1

1 + exp(−β(x− α))
(2.2)

For each condition, the fitted slope parameter, β, was converted to give

a meaningful value for the slope of the function. This was calculated as

(f(α+1)−f(α))×100, and indicates the percentage change in performance

per dB change in SNR at threshold (α).

This is a useful metric for comparing conditions, but it should be noted

that this figure only applies to signal-to-noise ratios in the region of the

speech reception threshold (i.e., the SNR which results in 50% correct

performance). As shown in Figure 2.4, this is the steepest part of the

psychometric function. Further away from the threshold – i.e., at very

challenging or very easy signal-to-noise ratios where the slope is shallower –

the same change in SNR would equate to little change in task performance.

It is therefore difficult to interpret the results in terms of real world benefit,

since this will vary for different listening environments.
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2.4.4 Quantifying rhythmic priming effects
For the rhythmic priming experiments in Chapter 4, a quantifiable measure

was needed for the magnitude of the rhythmic priming effect. As discussed

in Section 1.5.1.2, dynamic attending theory suggests that a regular rhythm

leads to enhanced processing for on-beat targets compared to temporally

displaced targets. Specifically, the oscillatory nature of such anticipatory

attention (see Figure 1.3) results in a quadratic performance profile centred

around the on-beat target position (Jones et al., 2002).

Therefore, for the rhythmic priming experiments, quadratic curves were

fitted to the data (see Equation 2.3).

f(x) = ax2 + bx+ c (2.3)

The strength of the rhythmic priming effect was defined to be the coefficient

(a) of x2 in the fitted function. The greater this coefficient, the steeper the

curve, and the greater the priming effect (see Figure 2.6).

Figure2.6: Illustration of the quadratic coefficient as ameasure of priming effect: the greater
the value of a, the greater the benefit for on-beat targets compared to temporally displaced
targets





CHAPTER3
Investigatingmusical skills for speech
perception in noise

This chapter presents results of a correlational study which investigated
the relationships between musical experience, musical skills, and speech
perception in noise for a sample of participants with a range of musical
backgrounds. The main aim of this study was to identify specific musical
skills which could be targeted in a musical intervention for improving speech
perception in background noise.

3.1 Introduction
The ultimate goal of this thesis is to design and evaluate a

short-term musical training programme for improving speech perception

in background noise. As discussed in Section 1.9, the first step towards this

goal is to identify specific musical skills which could be targeted for training.

In addition, a reliable outcome measure for speech-in-noise perception

is required which will be sensitive to training-related improvements.

Experiment 1 was designed to address these aims.

55
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3.2 Experiment 1
3.2.1 Aims
The aims of Experiment 1 were threefold, and each is discussed in turn

below.

3.2.1.1 Assess suitability of matrix sentence test with different noise maskers
An ideal speech-in-noise test will be both sensitive and reliable, and these

qualities can be assessed in terms of inter- and intra-subject variability:

Inter-subject variability – this is a measure of the sensitivity of the test

and should be maximised. Greater variation between subjects means

that the test is more sensitive to individual differences. This also

facilitates correlational analyses as relationships may not be apparent

if there is a very narrow range of observed values.

Intra-subject variability – this is a measure of the reliability of the test

and should be minimised. If repeated scores from a single participant

do not agree with each other, then the test is not reliable.

According to Wagener and Brand (2005), the inter-subject variability

should be at least twice the intra-subject variability in order for the test

to significantly discriminate between participants.

Amplitude-modulations in a masking noise allow listeners to benefit from

temporary increases in signal-to-noise ratio (SNR) and this usually results

in an improved speech reception threshold (SRT) (Wagener and Brand,

2005). Listeners vary in their ability to take advantage of these dips in

noise level, so a greater range of SRTs is commonly observed for modulated

maskers compared to steady noise maskers (George et al., 2007; Wagener

and Brand, 2005). Use of a modulated masker therefore improves a test’s

ability to differentiate between subjects, but this increased sensitivity comes

at a cost in terms of test-retest reliability (Wagener and Brand, 2005).

In order to identify suitable measures for speech-in-noise perception for

use in future studies, three maskers were included in the current study:

one steady noise and two modulated noises. The same sentence material

was used with each masker, which allowed for direct comparisons of the

sensitivity and reliability of the test in each condition. The intention behind

including two modulated maskers was to choose the one which provided
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the best ratio of inter- to intra-subject variability, i.e., the best ability to

reliably discriminate between subjects.

Although modulated noise maskers were predicted to provide better

differentiation between individuals, the steady masker was also included in

order to calculate the modulation masking release (i.e., the improvement

for modulated versus steady noise). If a skill is associated with masking

release, then it is likely to contribute to dip listening. As discussed in

Section 1.4.2, such skills might include working memory and temporal

resolution. On the other hand, if a skill is associated with speech perception

in steady noise, then it likely contributes to the separation of the target

speech from the background noise, via either auditory scene analysis (see

Section 1.2.2) or orienting of attention (see Section 1.3).

3.2.1.2 Investigate the link between musical experience and speech
perception in noise

The evidence for a link between musical training and speech-in-noise

perception has so far come from studies comparing highly trained musicians

with non-musicians (Parbery-Clark et al., 2009; Swaminathan et al., 2015;

Zendel and Alain, 2012). Given the intended short-term nature of a

musical intervention, it would not be sufficient to identify associations in a

population of highly trained musicians who have spent years honing their

skills. If a relationship exists only for lifelong musicians, then it is unlikely

that short-term musical training would be beneficial for improving speech

perception in noise. This study did not use any musical criteria to recruit

participants, in the hope that associations between musical experience,

musical skills and speech-in-noise perception could be examined for a

general population sample with a range of musical backgrounds.

3.2.1.3 Examine associations betweenmusical skills and speech perception in
noise

In order to inform the design of a targeted training programme, this

study aimed to find specific musical skills which are correlated with both

musical experience (indicating that they might be improved by training)

and speech-in-noise perception.

In Section 1.8, three musical skills were identified as potential candidates

for training: melody, rhythm, and beat perception. Tests for each of these

skills were introduced in Chapter 2. When examining relationships between
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these measures and speech reception thresholds, it is necessary to consider

the nature of each test and whether other factors might mediate any

observed association. In particular, it is important to control for variables

which might influence scores on the musical tests despite not being directly

related to the musical skill of interest. Partial correlations will therefore be

carried out to examine the associations between musical skills and speech

perception in noise while controlling for the variables discussed below.

For the melody and rhythm tests, performance is certainly reliant

on working memory as the phrases need to be stored while making

same/different judgements. Working memory has been shown to be

enhanced in musicians (e.g., Chan et al., 1998; Jakobson et al., 2008),

associated with speech-in-noise perception (Akeroyd, 2008), and has

been suggested to mediate the musician enhancement for speech-in-noise

perception (Parbery-Clark et al., 2009). Therefore, to assess any specific

contribution of melody or rhythm skills to speech reception thresholds,

working memory needs to be measured so that it can be controlled for in

the analysis.

The design of the beat perception test involves pure-tone ‘beeps’

superimposed over music. If a listener has very poor frequency

discrimination, they may not be able to separate the beeps from the music

and this would impair performance on the task. In this case, their score

might not be an accurate reflection of beat perception per se. Frequency

discrimination is enhanced in musicians and is associated with speech

perception in some masking noises (Parbery-Clark et al., 2009). The

test also requires the perception of musical beat to be held in memory

while making a judgement about the superimposed beeps. It is therefore

important to control for frequency discrimination and working memory

when examining associations with beat perception.

There are other psychoacoustic factors which would influence performance

on the musical skill tests, but these are not considered confounding

variables as they are an integral part of the skill being measured. For

example, frequency discrimination is likely associated with performance

on the melody test since poor frequency discrimination would impair the

ability to judge changes in the melodic sequences. Similarly, temporal

resolution is likely associated with the ability to judge whether or not a
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beep occurred on the beat, but this is an essential part of beat perception

and so was not included as a possible confound in this study.

3.2.2 Methods
3.2.2.1 Participants
Twenty-four native English speakers (10 male; age range 19–40, mean age

25.9, standard deviation 6.1 years) were recruited via posters from the

University of Nottingham student population and the general public, and

they received an inconvenience allowance for taking part. All participants

had normal hearing, defined as pure-tone audiometric thresholds of

≤20 dB HL across octave frequencies from 250 Hz to 8 kHz. Participants

were also screened for normal non-verbal IQ using the Matrix Reasoning

subset from the Wechsler Abbreviated Scale of Intelligence (Wechsler,

1999).

3.2.2.2 Procedure
Testing took place in a sound-attenuating booth, and auditory stimuli were

presented diotically through Sennheiser HD-25 headphones. The order of

the test battery is shown in Table 3.1. The same order was used for all

participants, with the exception of the order of the three noise masker

conditions which was counterbalanced across participants. The protocol

was designed to aid attention by varying the tasks, e.g., by alternating

between speech and music tasks, and participants were permitted to take

breaks when needed. Details of the individual test procedures are given

below.

Table 3.1: The test battery used for Experiment 1
Task Approximate duration (minutes)

1 Auditory workingmemory 5
2 Frequency discrimination 5
3 Speech in noise: Masker 1 20
4 Musical skill: Melody 10
5 Speech in noise: Masker 2 20

Break 15
6 Musical skill: Rhythm 10
7 Speech in noise: Masker 3 20
8 Musical skill: Beat perception 15

Total = 120
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Auditory workingmemory
The digit span from the Wechsler Adult Intelligence Scale (Wechsler, 2008)

was used as a measure of auditory working memory. Both forward and

backward subtests were administered to give an overall total. For the

forward subtest, the experimenter read aloud strings of digits (at a rate of

one digit per second), starting with 2 digits and working up to a maximum

of 9, with two trials for each string length. Participants were required to

repeat all of the digits in the correct order to score a point for that trial. The

test was stopped if a participant failed on both trials at a given sequence

length. The procedure was then repeated for the backward test in which

participants had to repeat the digits in reverse order (up to a maximum

length of 8 digits).

Pure-tone frequency discrimination
Frequency discrimination thresholds were obtained using a three-interval

three-alternative forced-choice procedure, with stimuli created and

presented using Matlab v2008a (The MathWorks, Natick, MA). Each trial

consisted of three tones of 100 ms duration (including 15 ms cosine on/off

ramps) with an interstimulus interval of 300 ms. Two of the tones were

identical (standard frequency, f = 1 kHz) while the target tone had a

frequency of f + ∆f where ∆f was determined adaptively as a percentage

of f . The order of the three tones was randomised on each trial, and the

participants were instructed to press the button that corresponded to the

tone that was different from the other two. There was no time limit for

the response, and visual feedback was given after each trial. An adaptive

staircase procedure was used to target the 79.4% correct threshold. The

starting value of ∆f was 50%, and this was divided by 2 after each correct

response until the first reversal, after which a 3-down 1-up staircase was

implemented with a factor of
√

2. Participants completed five practice trials

followed by two tracks (of 50 trials each); the two thresholds were averaged

to obtain the final score.

Speech-in-noise perception
The UK Matrix Sentence Test (HörTech gGmbH, Oldenburg, Germany) was

used to determine the speech reception threshold (SRT; the signal-to-noise

ratio (SNR) that equated to 50% intelligibility). In this test, sentences

take the form name–verb–numeral–adjective–noun and are formed from

a closed matrix with 10 possible choices for each word (see Section 2.3.1.1

and Figure 2.2).
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Three maskers were used: an unmodulated speech-spectrum noise

(supplied with the test; also referred to as steady or 0% modulation

depth noise) and two sinusoidally amplitude-modulated versions of the

original noise (modulation frequency of 8 Hz for both; modulation depths

of 60% and 80%). The modulation parameters were chosen as they had

previously been shown to give moderate and high amounts of masking

release respectively (Gnansia et al., 2008). See Section 2.3.2.1 and Figure

2.3 for further details of the stimuli. All noise signals were matched in

overall intensity (root-mean-square level).

Each test list consisted of 20 sentences. On each trial, the noise signal

started from a random point at a level of 65 dB. The starting SNR was

10 dB, i.e., the speech started at a level of 75 dB, and was adaptively varied

to target the SRT (50% correct). After each sentence, the matrix of possible

words appeared on screen and participants used a touch screen or mouse

to select the words they had heard. There was no time limit for responses

and no feedback was given.

For each masker, participants completed a block of four test lists: one

practice run which was not included in the analysis, and three further lists

which were used to obtain an average SRT. The order of these three blocks

was counterbalanced across participants.

Musical experience
The training subscale of the Goldsmiths’ Musical Sophistication Index

(Müllensiefen et al., 2011) was used as a measure of musical experience.

The subscale consists of 9 questions which encompass both formal

instrument training and informal musical experience (see Figure 2.1).

Musical skills: Melody and rhythm
The Musical Ear Test (Wallentin et al., 2010) was used to measure memory

and rhythm skills in separate subtests. The melodic phrases are made up

of 3–8 tones of sampled piano sounds while the rhythmic phrases consist

of 4–11 unpitched sounds from a wood block. Each subtest has 52 trials:

26 ‘same’ trials and 26 ‘different’ trials. The ‘different’ trials contain one

deviation, in pitch or rhythm for the subtests respectively. Participants

listened to the instructions and two example pairs (one same, one different)

at the beginning of each subtest, and then recorded their responses on an

answer sheet. The order of trials was randomised, and no feedback was

given during the test.
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Musical skills: Beat perception
The auditory-only subsection of the Beat Alignment Test (Iversen and Patel,

2008) was used to measure musical beat perception. The test uses 12

musical excerpts (mean length 15.9 ± 3.1 seconds) from three different

genres (4 each of jazz, rock, and pop orchestral). A train of beeps (1 kHz

pure tones, 100 ms duration) starts after about 5 seconds of music, and

is either on or off the beat. The off-beat beeps are adjusted either in

tempo (10% too fast or too slow) or in phase (30% ahead of or behind

the beat). The test comprises 36 trials: 12 on the beat and 6 each of the

four off-beat conditions. For each excerpt, one on-beat, one tempo-adjusted

and one phase-adjusted trial is included. Before the test, participants heard

a demonstration of the beeps on their own, two on-beat examples (the same

excerpt with beeps at two different tempi), and two off-beat examples (one

tempo-adjusted, one phase-adjusted). Participants were instructed not to

move or tap along to the music, but just to listen and record on an answer

sheet whether the beeps were on or off the beat.

3.2.2.3 Analysis
Comparison of noisemaskers
The means and standard deviations for the speech reception thresholds

(SRTs) with the three different maskers are shown in Figure 3.1.

As expected, performance improved with increased modulation depth,

reflecting the benefit of dip listening.

One participant was identified as having thresholds more than 2 standard

deviations from the group mean. Exclusion of this participant had very little

effect on the analysis comparing the masking conditions, however, and so

all data were included in this analysis.

An ideal masker would provide maximal inter-individual variation,

allowing for differentiation between subjects, while minimising

intra-individual variation across multiple lists, ensuring test-retest

reliability. According to Wagener and Brand (2005), the ratio of these

two measures should have a value of at least 2 in order for the test

to significantly discriminate between participants. Another measure of

reliability is the intraclass correlation. This is a measure of consistency

which can be applied when more than two measurements are taken, as

was the case here. These statistics are given in Table 3.2.



EXPERIMENT 1 63

Figure 3.1:Means (and standard deviations) of the speech reception thresholds for the three
different masking conditions

Table 3.2: Sensitivity and reliability statistics for the matrix sentence test with the three
different noise maskers; 0% modulation depth refers to the steady noise masker (no
modulation applied)
Maskermodulation depth 0% 60% 80%
Mean threshold (dB SNR) –10.51 –12.76 –15.55
Inter-subject standard deviation (dB) .82 .81 1.27
Intra-subject standard deviation (dB)a .27 .44 .50
Inter s.d. / intra s.db 3.01 1.87 2.52
Intraclass correlationc .90 .76 .85

a Derived from the one-way ANOVA (subject as factor): root mean square error term divided by√3
b This should be at least 2 in order to reliably discriminate between subjects (Wagener and Brand, 2005)
c Two-waymixedmodel consistencymeasure based on averaging three lists

Comparing the two modulated noises, it is clear that the 80% depth masker

offered the better differentiation (higher inter-subject standard deviation)

and also the better reliability (lower intra-subject standard deviation and

higher intraclass correlation). The 60% modulation depth masker provided

no improvement in differentiability compared to the steady masker, while

also showing reduced reliability. Data from the 60% depth masker was

therefore excluded from further analysis.

From this point, the two maskers used in the analysis will be referred to

as ‘steady’ and ‘modulated’ (80% modulation depth), and the difference

between these two thresholds will be called the ‘masking release’

(modulated SRT minus steady SRT). The intraclass correlations (see Table
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3.2) for both of these maskers were very high, demonstrating that these

measures are very reliable when an average of three thresholds is used.

Checking for bivariate outliers
As mentioned above, one participant was identified as a possible outlier in

terms of speech reception thresholds. To investigate this potential outlier,

preliminary regression analyses were run. Based on previous findings

(Parbery-Clark et al., 2009), the variables of musical experience, frequency

discrimination and working memory were all expected to be associated

with speech perception in modulated noise. For each of these variables, a

separate regression analysis was run (with a single predictor and modulated

SRT as the dependent variable). In all three cases, the potential outlier had

a studentized residual greater than 2, suggesting that this participant was

a bivariate outlier in the analyses as well as an outlier in speech-in-noise

perception. Given the small sample size and the undue influence of this

single case, it was decided to exclude this participant from further analysis.

Correlation analysis
The normality assumption was checked for all variables using a

combination of histograms, probability plots and Kolmogorov-Smirnov

tests. The only variable which was not normally distributed was frequency

discrimination, which was highly skewed. A reciprocal transformation was

applied to the frequency discrimination data (i.e., new score = 1/original

score) which resulted in normalised data.

Pearson correlations were performed to investigate the relationships among

all the variables. Given the exploratory nature of the study, the data were

not corrected for multiple comparisons, although correlations which would

persist even with stringent (Bonferroni) corrections were identified. Finally,

partial correlation coefficients were calculated to examine the relationships

between musical skills and speech reception thresholds when controlling

for frequency discrimination and working memory.

3.2.3 Results
3.2.3.1 Relationships among predictor variables
Figure 3.3 shows the relationships among the predictor variables;

corresponding correlation coefficients are given in Table 3.3. All

correlations are in the expected direction (i.e., better performance on one

task relates to better performance on the other).
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Figure 3.2: Scatter matrix showing the relationships between predictor variables

Table 3.3: Pearson correlation coefficients for the relationships between predictor variables
Predictor variables 1 2 3 4 5 6

1 Musical experience – .33 .66*** .44* .39* .54**
2 Workingmemory – .38* .50** .54** .40*
3 Frequency discrimination – .52** .21 .40*
4 Melody – .64*** .32
5 Rhythm – .44*
6 Beat perception –
*p<.05, **p<.01, ***p<.00147 (Bonferroni corrected alpha level for 34 comparisons); all one-tailed

Musical experience was strongly correlated with frequency discrimination

which is consistent with previous findings that musicians have enhanced

frequency discrimination (e.g., Micheyl et al., 2006; Parbery-Clark et al.,

2009). There was no significant correlation between musical experience

and working memory, which was unexpected given the reported musician

advantage for auditory working memory (Chan et al., 1998; Parbery-Clark

et al., 2009). However, this might have been influenced by the choice
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of memory test. The digit span is a fairly simple measure of working

memory with a limited range of scores. This may have reduced the observed

correlation in comparison to a more complex combined measure such as

that used by Parbery-Clark et al. (2009) which would have given a wider

range of individual variation.

All three musical skills improved with increased musical experience, as

would be expected if these skills are improved through training, although

the moderate correlations would not reach significane if corrected for

multiple comparisons.

The melody and rhythm subtests were strongly related to each other and

also to working memory as expected. The shared variance is likely due

to the nature of the same/different task which is dependent on working

memory. The skill-specific variance is evident in the fact that melody – but

not rhythm – was related to frequency discrimination as expected.

3.2.3.2 Predictors of speech reception thresholds
The speech reception thresholds for steady and modulated noises were

strongly correlated (r=.86, p<.001). This demonstrates the benefit of

using the same sentence material with different maskers when investigating

modulation masking release. For example, Parbery-Clark et al. (2009)

found that HINT and QuickSIN were not related and had different patterns

of associations with other variables, but as these tests differ in both

complexity of sentences and maskers, it is not clear which is the most

important factor.

Figure 3.3 shows the relationships between the six potential predictor

variables and the three speech perception in noise measures. The

corresponding correlation coefficients are given in Table 3.4. All trends

are in the expected direction (i.e., better (higher) scores for predictor

variables associated with better (lower) speech reception thresholds and

greater (more negative) masking release).

Musical experience was moderately correlated with SRTs in steady and

modulated noise (although these correlations would not be significant if

corrected for multiple comparisons). This supports the notion that a link

between musical training and speech-in-noise perception might exist in the

general population, rather than being restricted to lifelong musicians.
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Figure 3.3: Scatter matrix showing the relationships between predictor variables and the
threemeasures of speech perception in noise: SRT in steady noise, SRT inmodulated noise,
masking release (benefit for modulated versus steady noise)

Table 3.4: Pearson correlation coefficients for the relationships between predictor variables
and the three speech-in-noise perceptionmeasures: steady, modulated, andmasking release
Predictor variables Steady Modulated Release
Musical experience –.36* –.40* –.29
Workingmemory –.33 –.33 –.21
Frequency discrimination –.34 –.41* –.33
Melody –.18 –.22 –.18
Rhythm –.46* –.37* –.13
Beat perception –.62*** –.69*** –.50**
*p<.05, **p<.01, ***p<.00147 (Bonferroni corrected alpha level for 34 comparisons); all one-tailed

Musical beat perception was strongly correlated with SRTs in steady and

modulated noise, and these correlations would still be significant with a

stringent correction for multiple comparisons (Bonferroni). Beat perception
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was also strongly correlated with modulation masking release. The rhythm

test was also moderately correlated with speech reception thresholds in

steady and modulated noise. Together these results suggest that a training

programme focusing on temporal aspects of music (i.e., beat and rhythm)

could be a good candidate for improving speech-in-noise perception.

However, as discussed in Section 3.2.1.3, it is important to control for

possible confounds due to test design before attributing the shared variance

to a specific musical skill. Partial correlations were therefore carried out to

control for working memory and frequency discrimination as planned.

Partial correlations
Table 3.5 gives the partial correlations between rhythm and beat perception

and speech-in-noise measures while controlling for possible confounding

variables.

Table 3.5: Partial correlation coefficients for the relationships between predictor variables
and the three speech-in-noise measures, controlling for working memory (WM) and
frequency discrimination (FD)
Partial correlations Steady Modulated Release
Rhythm –.36 –.23 –.02
(controlling forWM)
Beat perception –.54** –.61** –.42*
(controlling forWM&FD)
*p<.05, **p<.01 (all one-tailed)

When controlling for working memory, the association between rhythm and

speech-in-noise perception is considerably reduced, just failing to reach

significance for the SRT in steady noise (p=.05). This suggests that rhythm

perception – as measured by the Musical Ear Test – is not related to speech

perception in noise, and the original correlation was simply due to working

memory. However, the design of the same/different task means that the

skill being tested is actually memory for rhythm. Perhaps an alternative

task which tests rhythm perception without such working memory demands

might reveal a relationship with speech perception in noise. This will be

discussed further in Chapter 7.

Beat perception is strongly correlated with SRTs in steady and modulated

noise, and moderately with masking release, even when controlling for

working memory and frequency discrimination. Figure 3.4 shows the
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scatter plots for beat perception against the three speech-in-noise measures

both before (left) and after (right) controlling for these two factors.

Figure 3.4: Scatter plots showing the relationships betweenmusical beat perception and the
threemeasures of speech perception in noise; the right-hand column shows the partial plots
when controlling for workingmemory and frequency discrimination

The fact that beat perception was associated with the amount of masking

release suggests that it is linked with the ability to listen in the dips of the
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noise. It is possible that the relationship is mediated by temporal resolution,

as this would be important both for judging temporal alignment of the

beeps in the beat test and for taking advantage of dip listening (see Section

1.4.2).

If temporal resolution were the only factor underlying the association

between beat perception and speech perception in noise, then strong

correlations would have been expected only for speech in modulated

noise and masking release. The equally strong correlation between beat

perception and speech perception in steady noise – where there are no

opportunities for dip listening – suggests that there is another mechanism

linking beat perception and speech perception in noise. This will be

discussed further below.

3.3 Discussion
Previous research has shown that highly trained musicians have an

enhanced ability to perceive speech in background noise when compared

to non-musicians (Parbery-Clark et al., 2009, 2011; Swaminathan et al.,

2015). Experiment 1 used a correlational design to explore the link

between musical experience and speech-in-noise perception in a sample

of participants with a range of musical backgrounds. The aims of the study

were threefold:

1. To identify a suitable modulated masker for use with the Matrix

Sentence Test which can reliably discriminate between individuals

2. To assess whether an association between musical experience and

speech-in-noise perception is observable in a sample of participants

with a range of musical histories

3. To identify specific musical skills which are associated with speech

perception in noise

3.3.1 Evaluation of noisemaskers
Three noise maskers were used with the Matrix Sentence Test: a steady

speech-spectrum noise, and two sinusoidally amplitude-modulated versions

of the steady noise. Comparison of the sensitivity and reliability statistics

for the three conditions revealed that the masker with a modulation depth

of 60% was unsatisfactory in its ability to reliably distinguish individual
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differences. The steady noise and the masker with a modulation depth of

80% both met the requirements for a reliable and sensitive test.

As expected, modulation of the background noise led to increased

inter-individual differences even within a normally hearing young adult

sample. As discussed in Section 1.4.2, modulation masking release depends

on good temporal resolution and places extra demands on working memory

and linguistic knowledge to reconstruct the partial signal. Since individuals

vary in all of these abilities, the sensitivity of this test will likely be

further increased in populations which already have greater variation for

speech perception in noise. For example, for people with hearing loss,

speech perception in steady noise depends mainly on their hearing acuity,

whereas speech perception in modulated noise additionally depends on

non-auditory cognitive and linguistic factors (as measured by the text

reception threshold, see Section 1.4.1; George et al., 2007).

The use of both steady and modulated maskers with the same sentence

material allows for the calculation of masking release which can be a useful

measure in its own right. Future studies should therefore include both of

these masking conditions. In each case, the test is reliable when a practice

list is discarded and an average threshold is obtained from three repeated

lists.

3.3.2 Musical experience and speech-in-noise perception
The current study used a sample of participants with a range of musical

experience. A musical experience score was obtained which included

measures of both formal training and informal musical experience. This

score was moderately correlated with speech reception thresholds in steady

and modulated noise. This supports the idea that musical training might

be linked with improved speech perception in noise, which has previously

been reported when highly trained musicians have been compared with

non-musicians (Parbery-Clark et al., 2009, 2011; Swaminathan et al.,

2015). This result therefore indicates that lifelong musical training is not a

requirement to observe an enhancement for speech perception in noise.

3.3.3 Musical beat perception and speech-in-noise perception
The main aim of this study was to identify specific musical skills which

might underlie the reported musician enhancement for speech perception
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in noise and which could therefore be targeted for training.

The strongest predictor of speech-in-noise performance was musical beat

perception. This skill was strongly correlated with speech reception

thresholds in both steady and modulated noise, as well as with modulation

masking release, even when controlling for working memory and frequency

discrimination. The rhythm test also correlated with speech reception

thresholds in steady and modulated noise, although a considerable part

of this variance was explained by working memory.

The results suggest that beat perception could provide a useful link between

musical training and speech-in-noise perception, although no direction

of causation can be inferred from a correlation analysis. This issue of

causation will be addressed in Chapter 6, when a beat training programme

will be assessed for its impact on speech perception in noise. First,

though, the focus turns to the second aim of the thesis – to investigate the

mechanism by which musical beat perception might contribute to speech

perception in noise.

Entrainment to a regular beat is a fundamental musical skill and an innate

human ability that has been observed in infants (Honing, 2012). However,

individuals do vary in how and how well they perceive a beat (Grahn

and McAuley, 2009; Thompson et al., 2015), and beat perception can be

improved by musical training (Slater et al., 2013).

To achieve a high score in the beat perception test, listeners must tune in to

the beat of the music and form predictions about when the next beats will

occur. This enables comparison of the superimposed beep positions with

the predicted beats. If the beeps coincide with the expected beat positions,

then they will be judged as being on the beat.

Unlike music, speech does not necessarily contain an isochronous beat.

There is, however, regularity in the metric structure of strong and weak

syllables in speech, and listeners are able to tap along to this regularity as

they would to a beat in music (Lidji et al., 2011). It has been shown that

the metric structure of speech can facilitate predictions about when the next

strong syllable will occur (see Section 1.5.2; Pitt and Samuel, 1990). When

listening to speech in challenging environments, such predictions could be

particularly useful to focus attention at points in time when important parts

of the signal are expected. People who are adept at perceiving a musical
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beat might also derive greater benefit from the metric structure of speech,

and this might underlie the association between beat perception and speech

reception thresholds observed in the current study (see Figure 3.5).

Figure 3.5: Flowchart of the proposedmechanism bywhichmusical beat perceptionmight
aid speech-in-noise perception

It should be noted that the sentences of the matrix test all have the same

syllabic structure and are therefore rhythmically predictable. It is possible,

therefore, that the choice of speech test led to an enhanced correlation

with beat perception. However, given the strength of the relationship, this

is unlikely to be the whole story.

Chapters 4 and 5 will explore the hypothesis that musical beat perception is

linked to the use of rhythm to orient attention towards points in time when

a target signal is predicted to occur, and that this mechanism enhances

speech perception in challenging environments.





CHAPTER4
Rhythmic priming of anticipatory
attention to targets in noise

This chapter explores the hypothesis that beat perception contributes to
speech perception in noise by facilitating temporal predictions about when
target words will occur. Three experiments were designed to investigate
whether rhythmic priming of anticipatory attention can enhance perceptual
thresholds for targets which occur at expected times in noise.

4.1 Introduction
In Section 1.9, the main research question of this thesis was broken down

into three steps. The first of these was addressed in Experiment 1, and beat

perception was identified as a possible link between musical training and

speech-in-noise perception. The next step is to investigate the mechanism

by which beat perception might enhance speech perception in noise.

In Section 3.3.3, it was hypothesised that listeners with good musical beat

perception might benefit from the metric structure in speech when listening

in challenging environments (see Fig 3.5). This proposed mechanism of

transfer is based on two assumptions which will be tested in this chapter:

75
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1. Anticipatory attention driven by beat-based rhythms enhances the

perception of target sounds in background noise

2. Perceptual benefits of rhythmic priming are associated with musical

beat perception

4.2 Experiment 2: Primingwith a simple beat
4.2.1 Aims
The aim of Experiment 2 was to establish a rhythmic priming paradigm

to manipulate temporal expectations in order to determine if anticipatory

attention can enhance perception of targets in noise. Specifically, two tasks

were included in order to build on prior research:

Pure-tone detection in noise – it has previously been shown that

endogenous orienting of temporal attention enhances pure-tone

detection in noise (Werner et al., 2009). The first aim of the current

experiment was to investigate if a similar benefit would be observed

from anticipatory attention driven by rhythmic priming.

Speech perception in noise – priming with a musical rhythm reduced

reaction times to an on-time speech target in quiet (Cason and Schön,

2012). The second aim of Experiment 2 was to examine the effects

of rhythmic priming on the speech reception threshold for words in

noise.

4.2.2 Task design
4.2.2.1 Priming sequence
A simple isochronous sequence of tones – similar to that used by Jones

et al. (2002) – was used to orient anticipatory attention. In order to ensure

that temporal expectations were formed on a trial-by-trial basis rather than

being built up over a block of trials, the tempo of the priming sequence

was jittered. For each trial, the inter-beat interval was selected at random

from a set range (600 ms ± 5%). This range of inter-beat intervals was

chosen to exceed the just-noticeable difference in tempo for speech and

music (Quené, 2007) while avoiding large differences between trials which

might have been distracting for participants.

The aim of the experiment was to investigate priming of attention for

targets in noise. Since any additional stimulus onsets might have interfered
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with temporal expectations, the background noise was steady and present

throughout the trial. The level of the priming sequence was chosen so that

it was clearly audible over the noise.

4.2.2.2 Speech perception task
A set of monosyllabic (consonant–vowel–consonant) words were chosen as

the possible targets to be identified in the speech task. A key consideration

in designing the speech task was deciding how to align these target words

with the beat of the priming sequence. Simply aligning the targets by

syllable onset would not have been sufficient to produce a perception of

regularity (Patel et al., 1999). Instead, it was necessary to identify the

‘perceptual centre’ or ‘p-centre’ of each target word. This is the point within

the syllable that is perceived as the moment of occurrence for that syllable.

Figure 4.1:Waveforms of speech targets
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There is no simple method for finding the p-centre, although various

acoustical correlates and models have been suggested (Patel et al., 1999).

Therefore, the p-centres for each target word were located manually as

follows:

1. An initial estimate for the p-centre was taken as the onset of the vowel,

as identified by examining the waveform of the target word

2. The target word was looped alongside a metronome, with the

estimated p-centre aligned with the onset of each click

3. The alignment was fine-tuned, and steps 2 and 3 repeated until the

target word was perceived as occurring on the beat of the metronome

4. The alignment was double-checked by a second musically trained

experimenter who listened to the priming sequence plus target in

quiet, for all target words and positions in a random order, and judged

whether the target sounded early, on-beat or late in each case

The waveforms of a selection of target words, with the p-centres aligned

(dashed line), are shown in Figure 4.1.

4.2.2.3 Tone task
A single-interval, yes/no task was used for pure-tone detection in

Experiment 2. This means that on each trial the participant simply had

to state whether or not they heard the target tone. Yes/no tasks can be

prone to bias, in that each participant may have a tendency to answer ‘yes’

more often than ‘no’, or vice versa. This kind of bias can be avoided using

a multiple-interval forced-choice task, where participants must choose the

interval in which the target appeared (Kingdom and Prins, 2010). However,

a multiple-interval paradigm was not suitable for the current experiment,

as it would have required repetition of the rhythmic sequence to prime

expectation in the second interval. This would have resulted in a long gap

between the intervals which would make it difficult for listeners to compare

their memory traces for each interval to make the decision at difficult SNRs.

Another alternative would be to use comparison intervals around the next

two beats of the sequence, since peaks in anticipatory attention should

continue to occur (Jones et al., 2002). However, the effects of anticipatory

attention on subsequent beats have not previously been investigated within

the same experiment so it is not clear if this would provide a fair
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comparison. It would also be difficult to demarcate the two time intervals

for participants without interfering with the rhythmically driven temporal

expectations.

For these reasons, a single-interval yes/no task was chosen, despite the

possible influence of bias. Since the aim of the current experiment was to

compare performance for early, on-time, and late targets, the issue of bias

was actually not a critical one. If a participant has a biased response pattern,

there is no reason to assume that this pattern would vary between the

target conditions. Therefore, while bias would affect the absolute threshold

estimates, it should not affect any differences between thresholds. In order

to minimise effects of bias on the threshold estimates, catch trials were

included in which no target was present. The proportion of ‘yes’ responses

to these trials – the false alarm rate – was used when fitting psychometric

functions to each participant’s data.

4.2.2.4 Target positions
An isochronous priming sequence orients anticipatory attention towards

subsequent beats in the sequence. Jones et al. (2002) found that temporal

expectations were primed not just towards the next beat in the sequence,

but that this effect also extended to the following beat as well. However,

these findings were from two separate experiments so it is not possible to

directly compare the effects of anticipatory attention in each case.

In the current experiment, the priming sequence consisted of six tones, or

beats. For the tone-detection task, on-time targets could occur in line the

seventh or eighth beat of the sequence, with early and late targets either

side of these beats. This design enabled direct comparison of the effects of

anticipatory attention for the two beats following the end of the priming

sequence.

For the speech task, there were multiple possible target words, and

these were counterbalanced across conditions to negate any differences in

intelligibility. In order to maintain a comparable and feasible block length,

only one beat condition was used in the speech task: on-time targets always

occurred in line with the seventh beat of the sequence.

In all conditions, anticipatory attention was expected to enhance thresholds

for targets occurring in line with subsequent beats of the priming sequence,

compared with those for temporally displaced targets.
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4.2.2.5 Estimating the perceptual thresholds
In order to examine the effects of anticipatory attention, thresholds needed

to be estimated for each of the target positions. It was vital that all target

positions were combined in a single block with equal probability, in order to

prevent endogenous temporal orienting to a most frequent target position.

As discussed in Section 2.4.1, an adaptive procedure is the most efficient

way to obtain a threshold estimate. However, for the current experiment

there were arguments against the use of an adaptive staircase.

While piloting the tone-detection task, it became clear that listeners needed

a regular reminder of the target sound to assist with the task. If the majority

of targets were presented at difficult SNRs, as is the case with adaptive

staircases, listeners reported perceiving a target in the noise signal even

when it was not present.

The current experiment used monosyllabic target words, which are unlikely

to be perfectly matched in perceptibility even when matched in overall

intensity. As discussed in Section 2.4.1, an adaotive procedure would not

be suitable for use with such stimuli.

It would have been possible to solve the first of these problems for the

tone-detection task by including additional easy trials spaced throughout

the staircase, or by targeting a higher threshold level. However, the second

issue with the speech task meant that the use of an adaptive staircase was

inappropriate. It was therefore decided to use the method of constant

stimuli for both tasks.

In order to efficiently sample the psychometric functions, it was decided

that the SNR levels would be set for each participant, as follows.

An adaptive procedure was used to assess a participant’s performance on

each target task in the absence of the priming stimuli, and SNR levels

were set according to this initial estimate. Participants completed a practice

block, after which the SNR levels were reassessed. If the data showed that

two or more of the levels resulted in ceiling performance, and participants

reported that the majority of trials were easy, the SNRs were decreased.

Conversely, if the data showed that two or more SNRs resulted in floor

performance (equal to guess rate or false alarm rate), and the participant

reported finding the task very difficult, then SNRs were increased. When

adjustments were necessary, the experimenter used the practice data to
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choose SNRs which would give a good threshold estimate by covering the

full range of performance.

4.2.3 Methods
4.2.3.1 Participants
Participants were recruited via posters placed around the Queen’s Medical

Centre and University of Nottingham campus, and were näıve to the

purpose of the study. Fourteen native English speakers (4 male), aged

between 19 and 36 (mean age 26, standard deviation 6.1 years), with

normal hearing (≤20 dB HL across the standard audiometric frequencies

from 250 Hz to 8 kHz) took part in this study. Participants gave their

informed consent prior to starting the study and received an inconvenience

allowance.

4.2.3.2 Stimuli
On each trial, the priming sequence was followed by a target sound, with

a background noise present throughout the trial (ending after a random

interval following the target offset). The priming sequence was clearly and

comfortably audible over the background noise (5 dB SNR for speech task;

0 dB SNR for tone task).

Priming sequence
The priming sequence consisted of 6 pure tones (440 Hz frequency, 60 ms

duration including 10 ms cosine on/off ramps) presented isochronously. As

discussed in Section 4.2.2.1, the tempo of the sequence was selected at

random for each trial, with the inter-beat interval ranging from 570 to

630 ms. This range of intervals was chosen so that differences in tempo

were noticeable – to prevent expectations being built up across the block –

while also ensuring that the resultant range of possible target positions in

the different conditions were far from overlapping (see Figure 4.5).

Speech targets
The target stimuli were monosyllabic words recorded by a male native

English speaker. There were 12 target words, each taking the form

consonant–[i]–consonant. The targets were chosen so that at least one

of the consonant sounds was confusable with another word in the list (see

Figure 4.2). Participants responded by choosing the word they had heard

from the list of 12 possible targets presented on a touch screen monitor.
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Figure 4.2: The target words used in Experiment 2

Tone target
The target tone was a 1 kHz pure-tone of 80 ms duration (including 10 ms

cosine on/off ramps). Participants responding by pressing a button which

corresponded with their answer: ‘yes’ when they heard the target; ‘no’ when

they did not.

Background noise
For the speech task, the background was a speech-spectrum noise matching

the long-term spectrum of the target stimuli, and was presented at 60 dBA.

For the tone task, a background of white noise was present (at 60 dB SPL)

throughout each trial.

4.2.3.3 Target positions
For the speech-perception task, target words occurred in three positions

relative to the seventh beat of the priming sequence: early, on-beat or late.

Early and late targets were temporally displaced by one-third of the trial

inter-beat interval. The three target positions were equally likely to occur.

Figure 4.3 shows a schematic of a trial with an on-beat target.

Figure 4.3: Schematic diagram of a trial in the speech discrimination task in Experiment 2

For the tone-detection task, on-time targets occurred in line with the

seventh or eighth beat of the sequence, with early and late targets either
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side of these beats. In the early and late conditions, targets were displaced

by one-quarter of the trial inter-beat interval. Figure 4.4 shows a schematic

of a trial showing the six possible target positions.

Figure 4.4: Schematic diagram of a trial in the tone detection task in Experiment 2

Figure 4.5: Effect on target positions of jittering the inter-beat interval

4.2.3.4 Method of constant stimuli
The method of constant stimuli was used, with a constant noise level and

five possible SNRs for the target sound.

For the speech task, each participant completed 4 blocks of 180 trials (12

target words × 5 SNRs × 3 target positions). The order of trials was

randomised within each block, and the target words were balanced across

all target positions and SNRs to average out any differences in perceptibility.

For the tone task, each participant completed 4 blocks of 216 trials (5 SNRs

× 6 target positions × 6 repetitions, plus 36 trials with no target present).
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The order of trials was randomised within each block. No-signal trials were

included to assess the rate of false alarms for each participant.

Setting levels for each participant
The SNR levels for each participant were determined using an adaptive

procedure.

For the speech task, a 3-down 1-up staircase was used to estimate the 79%

threshold (Levitt, 1971) for identifying the target words in noise (without

the priming sequence). The average of two such thresholds (rounded to the

nearest dB) was used as the second highest SNR for the speech task, with a

difference of 3 dB between the other SNRs. For example, if a participant’s

average threshold from two adaptive staircases was –14 dB SNR, then the

SNRs used in the experiment would have been –11, –14, –17, –20 and –23.

For the tone task, a 3-down 1-up staircase was used to estimate the 79%

threshold for detecting the target in a 3-alternative forced choice task

(without the priming sequence). Feedback was given during the adaptive

procedure, to help familiarise participants with the target sound. The

average of two thresholds (rounded to the nearest dB) was used as the

second highest SNR for the experiment, with a difference of 2 dB between

the other SNRs.

For each task, participants completed a practice block, after which the

data were assessed by the experimenter. If necessary, the SNR levels were

adjusted to ensure that the full range of performance would be observed

during the experimental blocks.

4.2.3.5 Procedure
Testing took place in a sound-proof booth over two sessions. All auditory

stimuli were presented diotically using Sennheiser HD-25 headphones,

using Matlab v2008a (The MathWorks, Natick, MA).

In the first session, participants completed the speech discrimination task,

including two adaptive tracks to determine SNR levels (as described above),

a practice block of 30 trials, and all four blocks of the speech task, with

breaks in between blocks as required.

In the second session, participants completed the tone detection task,

including hearing three samples of the target in noise, two adaptive tracks
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(as described above), a practice block of 36 trials, and all four blocks of the

tone detection task, with breaks when needed.

All tasks were self-paced in that the response triggered the start of the next

trial, and participants were not required to respond within a set time limit.

Participants were instructed that the tone sequences were designed to

prepare them for the next trial and were not part of the task. At the end of

the second session, participants were debriefed regarding these instructions,

and asked whether they paid attention to the priming sequences or simply

ignored them.

4.2.3.6 Analysis
Psychometric functions were fitted to the data as described in Section 2.4.3.

The effects of rhythmic priming on the threshold of the psychometric

functions were analysed using repeated-measures ANOVAs. For the speech

task, the only factor entered into the analysis was target position (with 3

levels: early, on-beat, late). For the tone task, there were two within-subject

factors: beat (i.e. whether the target was closest to the beat immediately

following the priming sequence (Beat 1) or the one after that (Beat 2))

and target position (with 3 levels: early, on-beat, late). The performance

profile across target positions was predicted to be quadratic in shape,

centred around the on-beat target position (Jones et al., 2002). Polynomial

contrasts were used to test this prediction and quadratic curves were fitted

to the data (see Equation 2.3).

4.2.4 Results
4.2.4.1 Effect of rhythmic priming on speech perception in noise
The mean thresholds and slopes for the three target positions are given in

Table 4.1.

Table 4.1: Themean thresholds and slopes for the speech perception task in Experiment 2
Target position Mean threshold Mean slope

(dB SNR) (% per dB SNR)
Early (–0.2 s from beat) –15.3 12.8
On-beat (0 s from beat) –15.9 11.5
Late (+0.2 s from beat) –15.5 11.4
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The repeated-measures ANOVA showed a significant main effect of target

position on speech reception threshold (F(2,26) = 10.0, p = .001, partial

η2 = .44). There was a significant quadratic trend over target positions

(F(1,13) = 38.2, p < .001, partial η2 = .75). Figure 4.6 shows the mean

thresholds for the three target positions, with the fitted quadratic curve.

Planned comparisons (Bonferroni corrected) showed that the threshold for

on-beat targets was significantly lower than that for both early (p = .001)

and late targets (p = .026) as predicted. This means that rhythmic priming

did enhance speech perception in noise.

Figure 4.6: The speech task results from Experiment 2, showing mean thresholds and
standard error bars for the three target positions

Perception performance for individual target words
Table 4.2 shows the percent correct performance at each SNR (all target

positions combined) for each target word. There were clear differences

in perceptibility between the targets, justifying the use of the method of

constant stimuli over an adaptive procedure. Some words were correctly

identified more often than expected even at the hardest SNRs (e.g., ship,

whizz) while others were difficult to distinguish even at the easiest SNRs

(e.g., fib, witch).
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It is likely that certain sounds were easier to pick out of the noise. For

example, ship was the only word with ‘sh’ at the start, and participants

found this easy to distinguish. Similarly, whizz had the unique ‘zz’ which

made it relatively easy to identify. At the other end of the scale, fib and

witch also had unique sounds (‘b’ and ‘tch’ respectively) but these were

apparently better masked by the background noise, and there were multiple

other targets beginning with ‘f’ or ‘w’ which made a correct guess less likely.

Removal of these four target words would leave eight words with more

similar perceptibility.

One participant remarked that they found hearing the word ‘kill’ quite

distracting, so this will also be removed for Experiment 3, along with ‘kiss’

as this word would then have no confusible sounds. This leaves six target

words for use in Experiment 3: dip, fill, fish, hip, will, wish.

Table 4.2: Perception performance for the individual target words used in Experiment 2
Target word Percent correct identification for each SNR SNRs combined

Hardest Easiest
dip 5 11 41 82 99 48
fib 13 18 18 19 28 19
fill 21 50 74 94 96 67
fish 8 19 63 89 96 55
hip 12 17 43 71 89 46
kill 15 36 77 96 100 65
kiss 22 57 89 96 99 73
ship 39 68 89 99 99 79
whizz 33 70 96 98 99 79
will 17 44 82 92 99 67
wish 8 27 61 79 82 51
witch 3 5 18 46 78 30
Words combined 16 35 63 80 89 57
Standard deviation 11 22 27 24 21 19

4.2.4.2 Effect of rhythmic priming on pure-tone detection in noise
The mean thresholds and slopes for the three target positions (with data

from Beat 1 and Beat 2 combined) are given in Table 4.3.



88 CHAPTER 4: RHYTHMIC PRIMINGOFANTICIPATORYATTENTION TOTARGETS INNOISE

Table 4.3: Themean thresholds and slopes for the tone detection task in Experiment 2
Target position Mean threshold Mean slope

(dB SNR) (% per dB SNR)
Early (–0.15 from beat) –19.7 17.9
On-beat (0 s from beat) –20.2 17.1
Late (+0.15 s from beat) –19.7 17.1

The repeated-measures ANOVA showed a significant main effect of target

position (F(2,26) = 10.1, p = .001, partial η2 = .44). There was a

significant quadratic trend over target positions (F(1,13) = 24.5, p < .001,

partial η2 = .65) as expected. Figure 4.7 shows the mean thresholds for the

early, on-beat and late target positions. Planned comparisons showed that

the threshold for on-beat targets was significantly lower than that for both

early (p = .003) and late targets (p = .004) as predicted. This means that

rhythmic priming did enhance tone detection in noise.

Figure 4.7: The tone detection task results from Experiment 2, showing mean thresholds
and standard error bars for the three target positions

The main effect of beat (i.e. which beat the target was closest to) was

not significant, but the beat by target position interaction was significant

(F(2,26) = 7.01, p = .004, partial η2 = .35). Separate univariate analyses
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for Beat 1 and Beat 2 both showed a significant main effect of target

position (Beat 1: F(2,26) = 9.39, p = .001, partial η2 = .42; Beat 2:

F(2,26) = 7.19, p = .003, partial η2 = .36) and a significant quadratic trend

(Beat 1: F(1,13) = 20.9, p = .001, partial η2 = .62; Beat 2: F(1,13) = 6.61,

p = .023, partial η2 = .34). Figure 4.8 shows the mean thresholds for all

six target positions.

For Beat 1, the on-beat threshold was significantly lower than the early

threshold (p < .001), but there was no significant difference between the

on-time and late target positions (p = .307). For Beat 2, the on-beat

threshold was significantly lower than the late threshold (p = .019) but not

significantly different from the early threshold (p = 1.0). These different

patterns support the decision not to use a two-alternative forced-choice task

with comparison intervals based around the two subsequent beats.

Figure 4.8: The tone detection results from Experiment 2, showing mean thresholds and
standard error bars for the six target positions
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4.2.4.3 Comparison of rhythmic priming effects in the two tasks
Table 4.4 contains summary statistics for the rhythmic priming effects

observed in the speech and tone tasks. Comparison of the coefficients of x2

in the fitted quadratic functions suggests that the effect of rhythmic priming

was greater for pure-tone detection than for speech perception.

Table 4.4: Table showing summary statistics for the speech and tone tasks in Experiment 2.
Note that the target positions differed in the two tasks, so the two benefit statistics are not
directly comparable
Summary statistic Speech task Tone task
Priming effecta 11.5 22.1
Mean slopeb (% per dB SNR) 11.9 17.4
Mean threshold benefitc (dB SNR) 0.46 0.50
Equivalent performance benefitd (% correct) 5.5 8.6

a The coefficient of x2 in the fitted quadratic
b Averaged over all three target positions
cMean of thresholds for displaced targets minus threshold for on-beat targets
dMean benefit multiplied bymean slope

Another measure of priming benefit is the difference between thresholds for

on-beat and displaced targets. For both tasks the improvement in threshold

for on-beat targets was around 0.5 dB, although it should be noted that the

early and late targets were displaced by different intervals in the two tasks,

so these values are not directly comparable. This benefit can be converted

to an improvement in performance by multiplying the threshold benefit by

the mean slope of the threshold. The benefit for on-beat (compared to

early and late) words is equivalent to a 5.5% increase in discrimination

performance. The benefit for on-beat (compared to early and late) tones is

equivalent to an 8.6% improvement in detection performance.

4.2.5 Discussion
In this experiment, a rhythmic priming paradigm was used to test

the hypothesis that stimulus-driven anticipatory attention can enhance

perception of targets in noise.

For this study, there was quite a wide age range within the relatively small

sample of participants, which is not ideal. However, within the young

adult age range being tested, neither thresholds nor rhythmic priming were

expected to change with age. This was in fact the case, with no significant
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correlations observed for age and threshold or for age and priming effect

for either task (all p-values > .1).

Rhythmic priming has previously been shown to reduce response times to

a speech target presented in quiet (Cason and Schön, 2012). In the current

experiment, the effects of rhythmic priming were investigated for speech

targets in noise, and for perceptual thresholds rather than reaction times.

The results indicate that rhythmic priming can lead to enhanced speech

reception thresholds for targets occurring on the beat.

Previous research has also shown that deliberate orienting of attention to a

point in time can enhance detection of a pure-tone target in noise when this

target occurs in line with the temporal expectation (Werner et al., 2009).

The results of the current experiment demonstrate that pure-tone detection

in noise can also be enhanced by automatic orienting of temporal attention

via a rhythmic sequence. Detection performance was superior for targets

which occurred on future beats of the priming rhythm.

Different patterns of results were observed for targets which occurred

around the first and second beats following the priming sequence. This

is in contrast to a previous report (Jones et al., 2002) that performance

profiles were similar for targets occurring around the next two beats of

a priming rhythm . In that study, the two beat conditions were tested

separately, whereas in the current study all target positions were combined

within the same blocks. The results of this experiment therefore indicate

that, although anticipatory attention does persist beyond the end of the

priming sequence, the pattern of effects may not be consistent. In future

experiments, targets will be located around a single beat, to avoid any

confounds arising from the different patterns of results observed here.

As with prior rhythmic priming studies (de la Rosa et al., 2012; Jones

et al., 2002), listeners were instructed that the priming sequence was not

part of the task and they did not need to attend to the tones. However,

during debrief, several participants reported that they had tapped along

with or counted the priming tones. It is possible, therefore, that the

observed attentional effect could have had an endogenous component,

despite that fact that the on-beat targets occurred in only one third of the

trials and were therefore not predictive (usually a condition of endogenous

orienting). As no control condition was included in the current study, it
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cannot be concluded definitively that the observed effects were entirely due

to automatic orienting of attention by the isochronous priming sequence.

The paradigm used in this experiment was successful in manipulating

temporal expectations. However, there are several possible refinements to

the tasks that will be discussed in the design of Experiment 3.

4.3 Experiment 3: Primingwithmusical rhythms
4.3.1 Aims
Experiment 2 confirmed that stimulus-driven anticipatory attention can

enhance perception of both speech and tone targets in noise. However, a

simple isochronous priming sequence is not representative of the complex

metrical rhythms found in music or speech.

Rhythmic priming is an automatic process, somewhat comparable to the

exogenous cueing discussed in Section 1.3. For an exogenous cue to

successfully capture attention, it must be sufficiently salient. In rhythmic

priming, the cue could be considered to be the beat of the priming sequence,

so salience here could refer to the strength of the beat percept that arises

as a result of the rhythmic sequence.

An isochronous sequence would result in a strong beat percept, whereas for

more complex musical rhythms the beat might not be so obvious. For more

complex rhythms, the strength of the priming cue could depend on the

listener’s ability to perceive the beat. It would then follow that the rhythmic

priming effect from such rhythms should be correlated with musical beat

perception.

In Experiment 3, different rhythmic sequences were used in order to

compare the effects of priming with:

• simple rhythms with a strong, salient beat percept (no musical ability

needed to perceive the beat)

• more complex rhythms with a less salient beat percept (musical ability

needed to perceive the beat)

• non-beat rhythms with no isochronous pulse (control condition)
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4.3.2 Task design
4.3.2.1 Speech stimuli
The twelve target words used in Experiment 2 resulted in a wide range of

performance (see Table 4.2). To remove confounds due to variations in

perceptibility, a subset of six of these words was used in Experiment 3 (see

Section 4.2.4.1). These words were identified as having a similar level of

perceptibility, while still containing confusable consonant sounds: dip, fill,

fish, hip, will, wish.

4.3.2.2 Target positions
In Experiment 2, there were three target positions around each on-beat

position. While the data are consistent with enhanced performance at the

on-beat position, with just three points it is not possible to determine if

the performance profile is in fact quadratic, as would be expected by the

oscillatory explanation of dynamic attending theory (see Figure 1.3).

In order to examine the shape of the performance profile in more detail, five

target positions were used in Experiment 3. As before, a quadratic shape

was expected, centred with peak performance at the on-beat position (as

reported by Jones et al. (2002)).

4.3.2.3 Priming rhythms
The priming seqences used in Experiment 3 were based on those

investigated by Grahn and Rowe (2009). The rhythmic sequences were

arranged in common time (i.e., 4 beats to each bar) and different methods

were used to emphasise the first beat in each bar (the ‘downbeat’) in order

to create the perception of a regular pulse. The interval between downbeats

will be referred to as the inter-beat interval.

The first type of rhythm, referred to as ‘volume beat’, consisted of an

isochronous sequence of tones in which every fourth tone was presented at

a higher intensity. This is a highly salient way to emphasise the downbeat,

and no musical expertise is needed to perceive the beat.

The ‘duration beat’ condition exploited the fact that changes in note lengths

can be used to create emphasis during a musical sequence (Grahn and Brett,

2007). Sequences of identical tones were created such that the inter-onset

intervals were equal to one-quarter, one-half, three-quarters, or one times

the inter-beat interval. The intervals were arranged in a metrical structure



94 CHAPTER 4: RHYTHMIC PRIMINGOFANTICIPATORYATTENTION TOTARGETS INNOISE

so that each group of intervals added up to one inter-beat interval. This

resulted in sequences in which an emphasised tone would be perceived on

every downbeat, despite the fact that all tones were acoustically identical.

This is a less salient way to create a perception of musical beat compared

to the volume beat condition.

It is useful to consider these different rhythm types in the context of the beat

alignment test. The test uses music from different genres and the salience of

the beat varies between excerpts. For example, in the rock excerpts, drums

or other percussion instruments are used to produce a loud sound on each

downbeat – this is similar to the volume beat condition. Conversely, in

the orchestral excerpts, there is no percussion and instead the beat percept

arises from the metrical structure and relative durations of notes – similar

to the duration beat condition. To perform well on the beat alignment test,

the listener must be able to perceive the beat in both types of music.

Two other priming conditions were also included in this experiment: an

isochronous sequence, in order to compare results to those obtained in

Experiment 2; and a non-beat sequence, which was designed to act as a

control condition.

It was predicted that each of the three beat conditions would result in a

quadratic performance profile (with the greatest enhancement for on-beat

targets), while the non-beat condition would result in a flatter performance

profile. It was also predicted that musical beat ability (as measured by the

beat alignment test) would correlate with the priming benefit observed for

the less salient duration beat condition.

4.3.2.4 Refining the method of constant stimuli
In Experiment 2, an adaptive procedure was used to determine the SNR

levels for each participant. Of the 14 participants, a majority (9 in the

speech task; 8 in the tone task) were eventually tested using the same set

of SNRs, with only small variations for other listeners. Examination of the

performance data from Experiment 2 confirmed that a single set of SNRs

would have adequately covered the range of observed thresholds. The SNRs

were therefore fixed in Experiment 3.

Given the number of conditions to be tested in this experiment, the number

of trials per condition needed to be minimised. A bootstrapping procedure

was applied to the data from Experiment 2, as follows. The collected
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data were sampled at random to create a possible set of observations for

a given number of repetitions, and this sampling was repeated 1000 times

to obtain a mean set of results. Psychometric functions were fitted to the

resampled data, and the effect of target position on threshold was analysed

with a repeated-measures ANOVA. This process was repeated for different

numbers of repetitions in order to determine how many repetitions were

required in order to observe a significant effect of rhythmic priming.

For the speech task, it had already been decided to use a set of six

target words in the current experiment. To balance these words across

all conditions, the number of repetitions needed to be a multiple of six.

Bootstrapping with six repetitions was not sufficient to observe a significant

effect of target position (p> .4). Twelve repetitions, however, was sufficient

to observe the quadratic priming effect for both speech and tone tasks

(p = .001). Therefore, in Experiment 3, twelve repetitions were included

for each target position and SNR combination.

4.3.3 Methods
4.3.3.1 Participants
The sample size to be used for this experiment was decided using an a

priori power analysis conducted in G*Power 3 (Faul et al., 2007). Inputs

were the effect size from Experiment 2 (partial η2 was equal to 0.44 for

both tasks), an alpha level of 0.05 and a desired power level of 0.8, for a

repeated measures ANOVA with one group and five measures. The output

suggested a sample size of 17 people. However, as the counterbalancing

of conditions required a multiple of 8 participants, the power level based

on 16 participants was calculated. The resulting value was 0.79 which was

deemed to be sufficient.

Participants were recruited via posters placed around the Queen’s Medical

Centre and University of Nottingham campus. Sixteen native English

speakers (6 male), aged between 18 and 24 (mean age 21, standard

deviation 1.5 years) completed this experiment. They were näıve to the

purpose of the study and had not previously taken part in Experiment 2.

Participants were screened for normal hearing using pure tone audiometry

(≤20 dB HL across standard audiometric frequencies from 250 Hz to 8 kHz).

Participants gave their informed consent prior to starting the study and

received an inconvenience allowance for their time.
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4.3.3.2 Stimuli
Priming sequences
Four priming conditions were used: isochronous, volume beat, duration

beat, and non-beat. All of the tones in all of the priming sequences were

pure-tones of 440 Hz frequency and 60 ms duration (including 10 ms cosine

on/off ramps). The inter-beat interval was jittered randomly within a range

(570–630 ms), as in Experiment 2.

The isochronous sequence consisted of seven tones, with each inter-onset

interval equal to the inter-beat interval.

The volume beat sequence consisted of an isochronous sequence of tones,

with each inter-onset interval equal to one-quarter of the inter-beat interval.

The first, and thereafter every fourth, tone was presented at a higher

volume (65 dB) than the remaining tones (55 dB). The loud tones defined

the beat, and therefore the onset interval between loud tones was equal to

the inter-beat interval.

In the duration beat condition, the shortest inter-onset interval was the

same as that in the volume beat condition (one-quarter of the inter-beat

interval). The remaining intervals were integer multiples of this duration,

and intervals were arranged into groups that added up to the inter-beat

interval. For example, the duration beat sequence in Figure 4.9 could be

written as 2+1+1, 2+2, 3+1, 3+1, 1+3, 2+2. The relative durations of

the intervals created the perception of beat, and a tone occurred on every

downbeat in the sequence.

The non-beat sequences were created by altering a sequence of identical

tones in which all inter-onset intervals were initially equal to one-quarter of

the inter-beat interval. One third of the inter-onset intervals were reduced

by 30% and one third were increased by 30%. These intervals were then

arranged in a random order on each trial in order to create a sequence

which had no regular beat.

Examples of these four types of sequence are shown in Figure 4.9. The

vertical lines in the figure represent the beat structure, and tone onsets

which are aligned with these vertical lines are on the beat. All of the

priming sequences started with a tone on the first beat and ended with

a final tone occurring on the seventh beat. The three beat conditions also

had tones on beats two through six, whereas the non-beat condition did not.
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The target stimulus occurred on or around the eighth beat, as described

below.

Figure 4.9: Example priming sequences from the four rhythmic conditions, with dotted lines
showing the position of beats 1 to 7

Speech targets
The six target words used in Experiment 3 are shown in Figure 4.10. This

subset of words were chosen from those used in Experiment 2 as they

produced similar levels of perceptibility, and each contains at least one

confusable consonant sound.

Figure 4.10: Theword list used in Experiment 3

Tone target
The tone target was the same as in Experiment 2 (1 kHz pure-tone, 80 ms

including 10 ms cosine on/off ramps).

Background noise
The background noise was the same as in Experiment 2 (speech task:

speech-spectrum noise at 60dBA; tone task: white noise at 60 dB SPL).

4.3.3.3 Target positions
For both tasks, targets occurred in five positions with equal probability.

On-beat targets were aligned with the eighth beat of the priming sequence,

while early and late targets were temporally displaced by either one-sixth

or one-third of the trial inter-beat interval (see Fig 4.11).
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Figure 4.11: Schematic of the task used in Experiment 3, showing the five target positions in
relation to a shortened isochronous sequence

Due to a programming error, the targets in the duration beat condition were

presented slightly later than intended. The delay was equal to one-quarter

of the trial inter-beat interval minus 60 ms. So, for an interval of 600 ms,

the targets occurred 90 ms later than intended – meaning that ‘on-beat’

targets were actually presented just 10 ms before the late target position,

etc. This did not impair the analysis of priming effects as thresholds were

fitted for each position, and the actual displacements were used for fitting

quadratic curves to the data. All results figures display the actual target

positions which were presented.

4.3.3.4 Method of constant stimuli
The method of constant stimuli was used, with a constant noise level and

five possible SNRs for the target sound.

For the speech task, each participant completed 2 blocks for each of the 4

priming conditions. Each block consisted of 150 trials (6 target words × 5

SNRs × 5 target positions). The five SNRs were fixed for all participants:

–12, –14, –16, –18, –20 dB SNR. The order of trials was randomised within

each block, and the target words were balanced across all target positions

and SNRs.

For the tone task, each participant completed 2 blocks for each of the 4

priming conditions. Each block consisted of 180 trials (5 SNRs × 5 target

positions × 6 repetitions, plus 30 trials with no target present). The five

SNRs were fixed for all participants: –16, –18, –20, –22, –24 dB SNR. The

order of trials was randomised within each block. No-signal trials were

included to assess the rate of false alarms for each participant.
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4.3.3.5 Subjective beat ratings of priming sequences
The aim of this experiment was to compare rhythmic priming using

sequences of varying beat salience. To determine if the manipulations

were successful, a subjective rating exercise was completed at the end of

the final session, separate from the priming task. Listeners heard eight

tone sequences (two for each rhythm type) in a randomised order, and

judged each on a scale from 1 (no regular pulse) to 10 (obvious beat).

The two ratings for each rhythm type were averaged to give a score which

represented how easy it was to hear the beat.

4.3.3.6 Musical beat perception
Participants’ ability to perceive a musical beat was assessed using the

auditory-only section of the Beat Alignment Test (Iversen and Patel, 2008).

Details were the same as in Experiment 1 (see Section 3.2.2, page 62).

4.3.3.7 Procedure
Testing took place in a sound-proof booth over four sessions. All auditory

stimuli were presented diotically using Sennheiser HD-25 headphones,

using Matlab v2008a (The MathWorks, Natick, MA).

In each session, participants completed both blocks of the speech task for

one priming condition, and both blocks of the tone task for a different

priming condition. The order of priming conditions for each task was

counterbalanced across participants.

Prior to starting each task, participants completed five practice trials with

audible targets in order to familiarise themselves with the task, the target

sound, and the sequence type. An additional practice block (25 or 30 trials

for speech or tone tasks respectively) was included only in the first session.

All tasks were self-paced in that the response triggered the start of the next

trial, and participants were not required to respond within a set time limit.

As in Experiment 2, participants were instructed that the tone sequences

were designed to prepare them for the next trial and were not part of

the task. At the end of the final session, participants completed the

subjective beat ratings and beat alignment test, and were debriefed about

their behaviour during the priming task.
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4.3.3.8 Analysis
Psychometric functions were fitted to the data as described in Section 2.4.3.

For one participant, there was cause for concern regarding the

concentration level during the non-beat condition of the tone task.

Inspection of the raw data confirmed the listener had lost focus during

this block, resulting in a low detection rate even at the highest SNRs. The

data from this participant for this condition were therefore excluded from

analysis.

The effects of rhythmic priming on the threshold of the psychometric

functions were analysed using repeated-measures ANOVAs. Due to the

exclusion of one participant in the non-beat condition, and the error

in presented target positions for the duration beat condition, separate

analyses were run for the four priming conditions. The single factor of

target position (5 levels) was entered into the analysis for both tasks.

Polynomial contrasts were used to examine the performance profiles, and

quadratic curves were fitted to the data (see Equation 2.3).

Finally, Pearson correlations were used to analyse the relationship between

musical beat perception and the priming effect in each beat condition.

4.3.4 Results
4.3.4.1 Subjective beat ratings
The scores show that the different rhythmic accents had the desired effect

(see Figure 4.12). The isochronous and volume beat conditions scored

very highly, confirming that the beats in these sequences were easy to

hear. The duration beat condition scored lower, with more variability,

meaning that people differed in how easy they found it to hear the beat

in these sequences. This suggests that the beat was indeed less salient in

the duration beat condition.

Beat salience cannot, however, explain the variability observed for the

non-beat condition, since there was no isochronous beat to be perceived.

While the non-beat rhythms were rated the lowest of the four, as expected,

two participants judged these sequences as having a clear beat. It is possible

that this reflects a misunderstanding of the instructions or the description

of a regular pulse. It could also be that these listeners failed to perceptually

distinguish between the isochrony in the beat rhythms and the lack of it
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in the non-beat rhythms, and they genuinely perceived what they thought

was a regular pulse in the non-beat rhythms.

The subjective rating scores were not normally distributed, so

non-parametric analyses were used. The Friedman test was significant

(χ2(3) = 44.2, p<.001). Post hoc analysis using Wilcoxon signed-rank tests

with Bonferroni corrections confirmed that all pairwise comparisons were

significant (Isochronous vs Volume beat: Z = -2.23, p = .026; Isochronous

vs Duration beat: Z = -3.52, p<.001; Isochronous vs No beat: Z = -3.52,

p<.001; Volume beat vs Duration beat: Z = -3.53, p<.001; Volume beat vs

No beat: Z = -3.52, p<.001; Duration beat vs No beat: Z = -2.83, p = .005).

Figure 4.12: Boxplots of the subjective beat ratings for the four priming rhythms.
Participants rated each sequence on a scale from 1 (no discernible beat) to 10 (easy to
hear beat).

4.3.4.2 Effect of rhythmic priming on speech perception in noise
The mean thresholds for the four priming conditions and five target

positions are shown in Figure 4.13. Repeated-measures ANOVAs revealed

no significant effects of target position on threshold for any of the

four conditions (Isochronous: F(4,60) = .10, p = .98; Volume beat:

F(4,60) = .29, p = .88; Duration beat: F(4,60) = 1.20, p = .32; No beat:

F(4,60) = 2.32, p = .07).

This means that the rhythmic priming had no effect on the perception

of speech targets in Experiment 3. Figure 4.14 shows the results of the

isochronous priming condition in Experiments 2 and 3 for comparison.

Summary statistics for these two tasks are given in Table 4.5.
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Figure 4.13: The speech task results from Experiment 3, showing mean thresholds and
standard error bars for the five target positions; quadratic curves have been fitted to the
data for clarity although no significant relationships were observed

Figure4.14: The speech task results for the isochronous priming condition fromExperiments
2 and 3, showingmean thresholds and standard error bars for each target position
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Table 4.5: Table showing summary statistics for the isochronous condition of the speech
discrimination tasks in Experiments 2 and 3
Summary statistic Experiment 2 Experiment 3
Mean priming effecta 11.5 2.7 (n.s.)
Standard deviation 7.0 20.2
Mean slopeb (% per dB SNR) 11.9 14.7
Mean threshold benefitc (dB SNR) 0.46 0.12 (n.s.)
Equivalent performance benefitd (% correct) 5.5 1.7

a The coefficient of x2 in the fitted quadratic
b Averaged over all target positions
cMean of thresholds for displaced targets minus threshold for on-beat targets
dMean benefit multiplied bymean slope

Despite the similarities between the tasks used in the two experiments, the

results appear to be quite different: the Experiment 2 results show a clear

quadratic trend, with significant benefit for on-beat targets; the Experiment

3 results show a much flatter profile with no significant effects of target

position. Possible reasons for these different patterns will be discussed

below.

4.3.4.3 Effect of rhythmic priming on tone detection in noise
The mean thresholds for the four priming conditions and five target

positions are shown in Figure 4.15. Repeated-measures ANOVAs revealed a

significant effect of target position on threshold in each of the four priming

conditions (Isochronous: F(4,60) = 7.67, p < .001, partial η2 = .34,

with Greenhouse-Geisser correction applied; Volume beat: F(4,60) = 5.52,

p = .001, partial η2 = .27; Duration beat: F(4,60) = 16.5, p < .001, partial

η2 = .52; Non-beat: F(4,56) = 2.96, p = .027, partial η2 = .18).

For all four conditions, the performance profile was significantly quadratic

in shape (Isochronous: F(1,15) = 38.0, p < .001, partial η2 = .72;

Volume beat: F(1,15) = 10.8, p = .005, partial η2 = .42; Duration beat:

F(1,15) = 27.7, p < .001, partial η2 = .65; Non-beat: F(1,14) = 9.37,

p = .008, partial η2 = .40). The non-beat condition appears to have resulted

in a shallower curve, as predicted, although the priming effect (see Table

4.6) is not significantly different from the other conditions (all pairwise

comparisons with p > .3).
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Figure 4.15: The tone-detection task results from Experiment 3, showingmean detection
thresholdswith standard error bars for thefive target positions in the four priming conditions

Table 4.6: Table showing summary statistics for the tone-detection task in Experiment 3
Summary statistic Isochronous Volume

beat
Duration
beat

No beat

Priming effecta 22.5 17.4 22.9 14.5
Mean slopeb (% per dB SNR) 17.9 17.8 18.5 18.1
Mean threshold benefitc (dB SNR) 0.86 0.70 0.84 0.59
Equivalent benefitd (% correct) 15.5 12.5 15.6 10.7

a The coefficient of x2 in the fitted quadratic
b Averaged over all target positions
cMean of thresholds for very displaced targets minus threshold for on-beat targets
dMean benefit multiplied bymean slope

The results from the isochronous priming condition for Experiments 2 and

3 are shown in Figure 4.16 and summarised in Table 4.7. Unlike for the

speech task, the priming effects observed for the tone-detection task in the

two experiments were very similar.
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Figure 4.16: The tone-detection task results for the isochronous priming condition from
Experiments 2 and 3, showing mean thresholds and standard error bars for each target
position

Table 4.7: Table showing summary statistics for the isochronous condition of the
tone-detection tasks in Experiment 2 and 3
Summary statistic Experiment 2 Experiment 3
Priming effecta 22.1 22.5
Mean slopeb (% per dB SNR) 17.4 17.9
Mean threshold benefitc (dB SNR) 0.50 0.50
Equivalent performance benefitd (% correct) 8.6 9.0

a The coefficient of x2 in the fitted quadratic
b Averaged over all target positions
cMean of thresholds for displaced targets minus threshold for on-beat targets; comparable thresholds (± 0.15 s)
estimated from quadratic graph for Experiment 3
dMean benefit multiplied bymean slope

4.3.4.4 Musical beat ability
Table 4.8 shows the Pearson correlation coefficients for the relationships

between beat perception score and priming effect for the three beat

conditions. As predicted, when the priming sequence had a less salient beat

(duration beat condition), the priming effect was correlated with musical

beat perception (r = .48, p = .030 (one-tailed); see Fig 4.17).
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The cocor program (Diedenhofen and Musch, 2015) was used to run

comparative analyses of the correlations for the most salient beat condition

(isochronous) and the least salient beat condition (duration beat). The

correlation coefficient between these two priming effects was 0.21 (p=.22).

As hypothesised, this difference was significant, with beat perception more

strongly associated with the priming effect in the less salient duration beat

condition (example analyses from cocor: Hotelling’s t = 1.89, df = 13,

p = .04; Williams’ t = 1.87, df = 13, p = .04; Dunn and Clark’s z = 1.76,

p = .04).

Table 4.8: Pearson correlation coefficients between beat perception and rhythmic priming
effects
Correlations Isochronous Volume Beat Duration Beat
Beat perception –.08 .11 .48*
*p<.05 (one-tailed)

Figure 4.17: Scatter plot showing the association betweenmusical beat ability (as measured
by the Beat Alignment Test) and the priming effect in the three beat conditions

4.3.5 Discussion
The aim of Experient 3 was to compare anticipatory attention driven by

different types of musical rhythms. It was hypothesised that musical

beat perception would influence the size of effect observed for a priming

sequence with a less salient beat.

4.3.5.1 Speech discrimination task
There was no significant effect of rhythmic priming on the perception of

speech targets in noise. This was the case even in the isochronous condition

which was comparable to that used in Experiment 2 (for which an effect

was observed).
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There were a number of changes from Experiment 2 to Experiment 3 which

could have had an effect on the results:

• Six target words instead of 12

• Five target positions instead of three

• Four priming conditions instead of one

• Fewer repetitions for each condition at each SNR

• A different sample of participants

With five target positions in Experiment 3, it may be that any enhancement

was diluted by the overlap of speech stimuli with other target positions.

This would not have been an issue in the tone task since the target tones

are considerably shorter than the target words. This possibility will be taken

into account in the design of Experiment 4.

Experiment 3 was conducted over four separate sessions and each

participant completed a total of 16 blocks of priming tasks, compared to

two sessions of four blocks in Experiment 2. Most participants completed

the study without problems, but a few complained about boredom at

having to repeat the task this many times. Perhaps understandably then,

during debrief participants reported quite different behaviours from those

in Experiment 2.

Most participants reported that they were simply ignoring the tone

sequences and just listening out for a speech sound (this possiblity will

be investigated in Experiment 4). A few participants claimed that they

were focusing specifically on the background noise to tune out the tone

sequences. Although rhythmic priming is an automatic process that does

not require deliberate attention (Jones et al., 2002), there may be a

difference between passively listening to the sequence and actively ignoring

it.

This behaviour is in stark contrast to that reported by participants in

Experiment 2, some of whom counted or tapped along to the priming

tones, despite being told that these sequences were not part of the task. As

discussed in Section 4.2.5, this behaviour may have enhanced the priming

effect by adding an endogenous component on top of that predicted from

automatic processing of the priming rhythm. This was not the case in

Experiment 3. The rhythmic cues were informative in only one-fifth of
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trials – compared to one-third of trials in the previous experiment – which

might have further discouraged endogenous orienting of attention.

It is therefore possible that the priming effect observed for the speech task

in Experiment 2 was due in part to endogenous orienting to the priming

rhythms, rather than purely automatic, stimulus-driven, anticipatory

attention as hypothesised. Alternatively, it may simply be that the

participants in Experiment 2 were more likely to be influenced by a

rhythmic prime than those recruited for Experiment 3, although the

findings for the tone-detection task, below, suggest that that was not the

case.

Another issue is that the bootstrapping procedure – to determine the

required number of repetitions – and the power analysis – to determine

the required sample size – were based on the results of Experiment 2. With

multiple differences between the two experiments, any of which could have

influenced results as discussed, it may be that these numbers were not in

fact sufficient to observe a significant effect of rhythmic priming for speech

targets.

4.3.5.2 Tone detection task
Priming with musical rhythms had a significant effect on detection

thresholds for pure tones in white noise. Detection was enhanced for

targets occurring on or close to the next beat of the priming sequence, and

the performance profiles were quadratic in shape as predicted.

When the beat of the rhythmic priming sequence was less salient (duration

beat condition), and therefore required some musical expertise to perceive,

the size of the priming effect was associated with musical beat perception

ability. Moreover, this correlation was significantly greater than that for

beat ability and priming by isochronous sequences. This result supports

the hypothesis that listeners with good beat perception can benefit from

underlying, complex rhythms (such as those found in music and speech)

which orient anticipatory attention towards points in time when important

parts of the signal are likely to occur.

The non-beat condition was intended to be a control which would not

induce rhythmic priming. However, the performance profile in this

condition was also quadratic, albeit slightly – if not significantly – flatter

than for the beat conditions. Irregular sequences have been reported to
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cue temporal attention (de la Rosa et al., 2012), and some participants did

report hearing regularity even in the non-beat sequences. This suggests that

these sequences may not have been an effective control for examining the

effects of rhythmic priming. An alternative control sequence will be tested

in Experiment 4.

4.4 Experiment 4: Primingwith speech sounds
4.4.1 Aims
After the speech task of Experiment 3, participants reported ignoring the

priming tones and instead listening out for a speech sound. This strategy

was possible because the tones and targets were acoustically distinct, and

so selective attention could be oriented to the frequency characteristics of

the target voice. This may have overshadowed any orienting of temporal

attention. To test this possibility, Experiment 4 used a similar paradigm

but replaced the tones of the priming sequence with a syllable sound in the

same voice as the target words.

4.4.2 Task design
The speech discrimination task from Experiment 3 was used here, with just

two rhythm conditions: duration beat and non-beat. The duration beat

condition was chosen as this was associated with musical beat ability in

Experiment 3, and the non-beat condition was designed as a control.

The duration beat sequences were adapted by substituting each of the

tones with a speech sound of the same duration. These sequences were

therefore rhythmically identical to those used in Experiment 3, but the

priming sounds and target words were acoustically similar (spoken by the

same talker). The intention was to discourage participants from completely

ignoring the priming sequences.

The non-beat sequences consisted of just two speech sounds, timed to

match the first and last beats of the duration beat sequence, with a long

gap in between. These sequences therefore offered participants the same

preparation time as the duration beat condition, but with no possibility that

a regular beat could be perceived.
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In order to reduce the overlap of target positions due to the length of the

speech targets, the target positions used here were further apart than those

used in Experiment 3.

4.4.3 Methods
4.4.3.1 Participants
Participants were recruited via posters placed around the Queen’s Medical

Centre and University of Nottingham campus. Fourteen native English

speakers (5 male), aged between 18 and 23 (mean age 19.4, standard

deviation 1.7 years) completed this experiment. They were näıve to the

purpose of the study and had not previously taken part in Experiment

2 nor 3. Participants were screened for normal hearing using pure tone

audiometry (≤20 dB HL across standard audiometric frequencies from

250 Hz to 8 kHz). Participants gave their informed consent prior to starting

the study and received an inconvenience allowance for their time.

4.4.3.2 Stimuli
The speech task, target words and background noise were identical to those

used in Experiment 3. Instead of a pure tone, the sound used to create the

priming sequences was a 60 ms excerpt (including 10 ms cosine on/off

ramps) of the syllable “ba”, extracted from the same corpus as the target

words (i.e., recorded by the same speaker).

Two priming conditions were used: duration beat and non-beat. The

duration beat rhythms were identical to those used in Experiment 3; the

non-beat sequences consisted of the first and final (7th) beats only. The

inter-beat interval was jittered randomly within a range (570–630 ms), as

in the previous experiments.

4.4.3.3 Target positions
Targets occurred in five positions with equal probability. On-beat targets

were aligned with the eighth beat of the priming sequence, while early and

late targets were temporally displaced by either one-quarter or one-half of

the trial inter-beat interval.

4.4.3.4 Method of constant stimuli
The method of constant stimuli was used, with a constant noise level and

five possible SNRs for the target sound. Each participant completed 2 blocks
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for each of the 2 priming conditions. Each block consisted of 150 trials (6

target words × 5 SNRs × 5 target positions). The five SNRs were fixed for

all participants: –12, –14, –16, –18, –20 dB SNR. The order of trials was

randomised within each block, and the target words were balanced across

all target positions and SNRs.

4.4.3.5 Procedure
Testing took place in a sound-proof booth in a single session. All auditory

stimuli were presented diotically using Sennheiser HD-25 headphones,

using Matlab v2008a (The MathWorks, Natick, MA).

Participants completed both blocks of the speech task for one priming

condition, and then both blocks for the other priming condition. The order

of priming conditions was counterbalanced across participants.

Prior to starting the first condition, participants completed five trials with

audible targets, then a practice block of 25 trials, in order to familiarise

themselves with the task, the target sound, and the sequence type. For

the second condition, participants just completed five practice trials to

demonstrate the priming sequence.

All tasks were self-paced in that the response triggered the start of the next

trial, and participants were not required to respond within a set time limit.

As in the previous experiments, participants were instructed that the tone

sequences were designed to prepare them for the next trial and were not

part of the task.

4.4.3.6 Analysis
Psychometric functions were fitted to the data as in the previous

experiments (see Section 2.4.3). The effects of rhythmic priming

on the threshold of the psychometric functions were analysed using

repeated-measures ANOVAs.

4.4.4 Results
The mean thresholds for the two priming conditions and five target

positions are shown in Figure 4.18. Repeated-measures ANOVAs revealed

no significant effects of target position on threshold for either condition

(Duration beat: F(4,52) = 1.45, p = .25, with Greenhouse-Geisser
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correction applied; Non-beat: F(4,52) = 1.49, p = .25, with

Greenhouse-Geisser correction applied).

Figure 4.18: The speech task results from Experiment 4, showing mean thresholds and
standard error bars for the five target positions; quadratic curves have been fitted for clarity
although no significant effects were observed

Examination of each participant’s results suggested that there may

be individual differences in performance profiles. Figure 4.19 shows

individual results from six representative participants. A few participants

demonstrated the predicted pattern of results, while others showed a range

of different profiles. A greater sample size would be needed to examine

these different patterns and possible reasons for them. However, these

results demonstrate that individual differences should be taken into account

where possible, especially when the priming rhythm (duration beat) was

expected to produce a range of performance (linked to musical beat ability).
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Figure 4.19: The speech task results from Experiment 4 for six participants

4.4.5 Discussion
In Experiment 3, no significant effect of rhythmic priming was observed for

the speech discrimination task. It was proposed that any potential benefit

of temporal expectations may have been overshadowed by the participants’

reported selective attention to speech sounds.

Experiment 4 was designed to test this possibility by using speech sounds

within the priming rhythms. There was no significant benefit for on-beat

targets, meaning that rhythmic priming did not enhance speech perception

even when the priming and target sounds were acoustically similar.

Individual differences may have influenced the results – particularly as the

duration beat condition was deliberately chosen as it was predicted to be

associated with musical beat ability. However, the idea that participants

were ignoring the tone sequences in Experiment 3 does not seem to

sufficiently explain the findings.
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It is possible that rhythmic priming does not automatically enhance speech

perception, and that the benefit observed in Experiment 2 was purely

due to endogenous orienting of temporal attention. It is worth noting,

however, that there is evidence of rhythmic priming reducing reaction

times in phoneme detection tasks (Cason and Schön, 2012; Meltzer et al.,

1976; Quené et al., 2005). It may be that entraining to speech meter can

make speech processing more efficient, and in a continuous speech-in-noise

situation this would be beneficial. Such an enhancement would not have

been observed in the studies presented in this chapter as reaction times

were not collected and the stimuli were too short to see a benefit over time.

It is also likely that if rhythmic priming is used during speech perception,

then it would be driven by speech meter in a continuous manner (see

Section 1.5.2). Using a musical rhythm to prime a single monosyllabic

target would not be the best way of observing such a mechanism. The next

chapter will therefore investigate the effects of anticipatory attention on the

perception of target words within a sentence context.

4.5 Summary
The aims of this chapter were to investigate whether priming with a regular

rhythm can enhance perception of targets in noise, and whether observed

benefits would be associated with musical beat ability.

Anticipatory attention driven by rhythmic priming sequences had a small

but significant benefit for the detection of a pure-tone target in white noise.

When the target occurred on or close to the next beat of the priming

sequence, detection thresholds were lower than for targets which occurred

far from this expected time-point.

When the beat of the rhythmic priming sequence was less salient and

therefore required some musical ability to perceive, the size of the

attentional benefit was associated with musical beat perception ability.

These results support the hypothesis that listeners with good beat

perception benefit from underlying rhythm which generates predictions

about when important parts of the signal will occur, and therefore benefit

from anticipatory attention. It remains to be seen whether predictions

based on speech meter can enhance speech perception in noise, and this

will be the focus of the next chapter.



CHAPTER5
Rhythmic priming of attention during
speech listening

When listening to speech in background noise, spatial location and voice
characteristics can be used to orient attention to a target speaker. In other
words, knowingwhere andwho the speaker is can enhance perception of
speech in noise. This chapter explores the hypothesis that listeners also
benefit from speech meter to orient temporal attention to the expected
occurrence of a target, i.e.,when it will occur. Consideration is also given to
the development of rhythmic priming as a mechanism for enhancing speech
perception in noise during childhood.

5.1 Introduction
The experiments in Chapter 4 demonstrated that:

1. rhythmic priming can enhance perception of targets in noise

2. the magnitude of effect is associated with musical beat perception

when the priming rhythm contains an implicit rather than salient beat.

Experiment 5 was designed to investigate whether anticipatory attention

driven by speech meter can also enhance perceptual thresholds for speech
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in background noise. If this is the case, then temporally displaced targets

should not be perceived as well as those which occur at their natural point

in a sentence context.

An additional aim of Experiment 5 was to investigate whether children and

adults achieve similar benefits from rhythmic priming for speech in noise.

In Section 1.6.1, the development of speech perception in noise during

childhood was discussed in terms of the underlying skills and the various

cues that can aid perception. In summary, although children’s perception

of speech in noise is hindered by still developing sensory and cognitive

systems, they are able to take advantage of various cues. Children

benefit from spatial release from masking, modulation masking release, and

linguistic context. It remains to be seen whether they will also benefit from

rhythmic priming.

Musical beat perception has been observed in infants (Honing, 2012), so

rhythmic priming benefits might be observed for young children. On the

other hand, beat perception also develops with experience (Thompson

et al., 2015; Slater et al., 2013), so rhythmic priming benefits might

increase with age. In the latter case, it could be hypothesised that musical

beat training might speed development of speech perception in noise during

childhood by enhancing the benefit of priming attention via speech meter.

5.2 Experiment 5
5.2.1 Aims
It has been shown that listeners orient temporal attention to stressed

syllables and that this improves reaction times to phoneme targets when

listening to speech in quiet (Pitt and Samuel, 1990; Quené et al., 2005).

Experiment 5 was designed to investigate whether anticipatory attention

driven by speech meter can also enhance perceptual thresholds for speech

in background noise.

The second aim of Experiment 5 was to compare performance of children

and adults in order to explore the developmental trajectory of rhythmic

priming as a mechanism to aid speech listening in adverse conditions.
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5.2.2 Task design
5.2.2.1 Speech stimuli
As discussed above, the beneficial effects of temporal orienting depend on

the predictions that can be made from the priming context. The greatest

effects have been observed when the preceding speech contains a clear

alternating stress pattern and temporal regularity (Pitt and Samuel, 1990;

Quené et al., 2005).

The aim of this chapter was to investigate rhythmic priming in a sentence

context, so the word lists used in previous studies would not have been

suitable. The Coordinate Response Measure (Bolia et al., 2000) was

identified as a good candidate for this study as the simple stimuli are

suitable for use with children (with numbers as the target words). In

addition, the carrier phrase (‘Ready Baron, go to red...’) is inherently

rhythmic and can be easily manipulated to increase the temporal regularity

of stressed syllables. The procedure for recording the stimuli in order to

enhance the rhythmic cues will be described below.

5.2.2.2 Estimating the perceptual thresholds
The children were recruited as part of the annual Summer Scientist event at

the University of Nottingham, and the time available for testing each child

was limited. As discussed in Section 2.4.1, an adaptive procedure would

provide a relatively quick threshold estimate but this may not be reliable for

a speech task with targets that are not identical in terms of perceptibility.

Therefore, the method of constant stimuli was used again here, but with

four possible SNRs instead of five, in order to reduce the number of trials

needed. Suitable levels for each age group were identified during piloting.

The time constraints also influenced the choice to use just two target

positions: on-time and late (early targets would have overlapped with the

carrier phrase). It was predicted that thresholds for on-time targets would

be better than those for late targets.

5.2.2.3 Age-specific predictions
In previous studies, group comparisons have revealed interesting results,

with 8 years appearing to a be a critical age in development (e.g, Bonino

et al., 2013; Nishi et al., 2010; Stuart, 2005, 2008). For example, Stuart

(2005, 2008) reported that speech perception in quiet reached adult levels
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by age 8, while speech perception in noise matured beyond age 11 years.

Other studies have reported that 8–10 year-old children perform similarly

to adults for some masker conditions, but for other maskers they perform

worse than adults but still better than 6–7 year-old children (Bonino et al.,

2013; Nishi et al., 2010). It was therefore decided to compare three age

groups: younger children (6–7 years), older children (8–11 years), and

adults (18–40 years).

It was predicted that speech thresholds would improve with age. Further,

it was predicted that all groups would benefit from rhythmic priming and

that the magnitude of the priming effect would increase with age.

5.2.3 Methods
5.2.3.1 Participants
Adult participants were recruited via posters from the University of

Nottingham student population and the general public, and they received

an inconvenience allowance for taking part. All adult participants

were native English speakers with normal hearing, defined as pure-tone

audiometric thresholds of ≤20 dB HL across octave frequencies from

250 Hz to 8 kHz.

Children were recruited as part of an annual event run by the Department

of Psychology at the University of Nottingham. Children completed short

studies in return for tokens which could be spent on games and other

treats. The children’s hearing was not objectively assessed during this event,

but no hearing problems were reported by their parents on a background

questionnaire.

Children were split into two age groups: 6–7 and 8–11 years. Further

details for the three age groups are given in Table 5.1.

Table 5.1: Participant data for the three age groups in Experiment 5
Age group n Mean age (s.d.)
6 to 7 years 26 (13male) 6.98 (.50)
8 to 11 years 41 (26male) 9.71 (.98)
Adults (18–40) 20 (3male) 20.9 (5.1)
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5.2.3.2 Stimuli
The speech stimuli were based on those used in the Coordinate Response

Measure (Bolia et al., 2000). Sentences of the form ‘Ready Baron, go to

red one now’ were recorded by a female speaker for target numbers one

through nine, excluding seven (as it is the only disyllabic number in the

range). The talker was instructed to speak the final three words as separate

units in order to avoid coarticulatory information either side of the target

number. The speaker listened to a metronome during recording to ensure

a consistent tempo (120 beats per minute) and to emphasise the regular

rhythm of the sentences. The word ‘now’ was spoken on beat 7, in order to

constrain the length and intonation of the target number (see Figure 5.1),

but this word was subsequently removed so that the target number was the

final word.

The recordings were equalised for root mean square level and then cut

to separate out the target number and remove the word ‘now’. Multiple

tokens were recorded for each target, but variability in the quality of the

recordings meant that for two targets there was only one usable token. It

was therefore decided to choose the single best recording for each target

number. The criteria for selecting tokens included clarity of speech, lack

of coarticulation and lack of other noise. Similarly, a single recording

of the carrier phrase (‘Ready Baron, go to red’) was chosen to act as the

prime. The selected recording was clearly spoken with the correct rhythmic

structure and a salient ‘beat’ of stressed syllables, in order to provide strong

cues for driving temporal attention.

On each trial, the prime was followed by one of the target numbers, which

occurred either at its original position (aligned with beat 6) or after a pause

of 350 ms (see Figure 5.1). The length of pause was chosen so as to create

a noticeable gap (no overlap of target positions) but also occur well before

the next beat in the sequence (which may also be attended).

Figure 5.1: Schematic diagram of the stimuli and task used in Experiment 5
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The noise masker was a steady speech-spectrum noise (ICRA, track 1;

Dreschler et al., 2001) and was present throughout each trial. As in

Chapter 4, a steady noise was used so that it did not contain any temporal

information that could distract from the task. The noise level was constant

at 60 dBA with the priming phrase presented at 0 dB SNR so that it was

clearly audible on every trial. The SNR of the targets was varied to obtain

a threshold estimate as described below.

5.2.3.3 Procedure
All auditory stimuli were presented diotically through Sennheiser HD-25

headphones, using Matlab v2008a (The MathWorks, Natick, MA).

Participants used a touch screen monitor to indicate which number they

had heard from the eight options.

For the adult group, testing took place in a sound-proof booth. This facility

was not available for the child groups, but the level of background noise

incorporated into the task was sufficient to mask any external noise and

allow the children to focus on the task.

The method of constant stimuli was used with a constant noise level

(60 dBA) and four possible SNRs for the target. The levels for each group

were determined during piloting: for the children, targets were presented

at 0, –5, –10 and –15 dB SNR; for the adults, targets were presented at –5,

–10, –15 and –20 dB SNR.

At the start of the session, participants completed 5 familiarisation trials at

the highest SNR, followed by a practice block of 15 trials (5 trials at each of

the three remaining SNRs). All targets were on-beat during these practice

trials, and the data were not included in the analysis.

Participants then completed a single experimental block of 128 trials (8

target words × 4 SNRs × 2 target positions × 2 repetitions). The order of

trials was randomised and the target words were balanced across all target

positions and SNRs to average out any differences in perceptibility.

All tasks were self-paced in that the response triggered the start of the next

trial, and participants were not required to respond within a set time limit.

The task took about 15 minutes to complete, and the children were offered

a short break twice during the block.
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The task was presented to the children as a spy game, in which they needed

to decode secret messages. The instruction screen is shown in Figure 5.2.

Figure 5.2: Screenshot of the participant instructions for Experiment 5

5.2.3.4 Analysis
Psychometric functions were fitted to the data using the Palamedes toolbox

for Matlab (Kingdom and Prins, 2009).

Logistic curves were initially fitted to the data as in Chapter 4. However,

visual inspection of the graphs revealed some asymmetry in the data

which meant that the logistic function was not a good fit in this case. A

much better fit was obtained using Gumbel curves, with the minimum and

maximum values of the function defined to be the guess rate (0.125) and

an assumed lapse rate of 0.01, respectively. Gumbel curves were therefore

fitted to the data and estimates obtained for the speech reception threshold

and a measure of the slope of the function for each of the two target position

for each participant (see Equation 5.1).

f(x;α, β) = 1− exp(−10β(x−α)) (5.1)

The data for each age group were then inspected for outliers. Two children

from the 8–11 year-old group were excluded from further analysis as their
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thresholds were more than three standard deviations away from the group

mean. One of these children performed far worse than their peers, possibly

due to an underlying hearing problem or a lack of concentration during

the task. The other performed far better than the rest of their age group.

This child was the oldest in the group and this level of performance may

have been a true measure of ability. However, as the estimated threshold

fell outside the range of SNRs measured for the children, the threshold

estimate may not have been accurate for this participant.

The effect of rhythmic priming on the speech threshold was analysed using

a repeated-measures ANOVA with age group and target position entered as

factors.

5.2.4 Results
The mean thresholds for the three age groups and two target positions

are given in Table 5.2 and shown in Figure 5.3. As expected, thresholds

improved with age, and the ANOVA revealed that the main effect of

age group was significant (F(2,82) = 14.4, p < .001; η2 = .26).

Bonferroni-corrected pairwise comparisons were all significant (younger vs

older children p = .005; younger children vs adults p < .001; older children

vs adults p = .020).

As predicted, thresholds for on-time targets were better than those for late

targets. The main effect of target position was significant (F(1,82) = 81.1,

p < .001; η2 = .50).

There was also a significant interaction effect on threshold (F(2,82) = 3.94,

p = .023; η2 = .09). Inspection of Figure 5.3 revealed that the two

child groups showed similar amounts of benefit from priming while the

adult group showed a greater priming effect. This suggested that the

interaction was driven by differences between the older children and adults.

A follow-up ANOVA with just these two age groups was conducted to test

this observation. A significant interaction of age group and target position

did indeed occur between the older children and adults (F(1,57) = 7.84,

p = .007; η2 = .12). Improvement in threshold was greater for on-beat

targets than for late targets, suggesting further development of rhythmic

priming mechanisms beyond 11 years of age.
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Table 5.2: Means (and standard deviations) for the threshold parameter, α (dB SNR; see
Equation 5.1)

Age group On-time targets Late targets
6 to 7 years –13.03 (1.74) –11.73 (1.75)
8 to 11 years –14.27 (1.46) –12.98 (1.67)
Adults –16.03 (1.72) –13.54 (2.24)

Figure 5.3:Means (and standard error bars) for the threshold parameter for each age group
and each target position

Table 5.3 shows the summary statistics for the three age groups. The benefit

of rhythmic priming was greater for adults than children, while the two

child groups produced similar results.

Table 5.3: Table showing summary statistics for Experiment 5
Summary statistic 6 to 7

years
8 to 11
years

Adults

Mean slopea (% per dB SNR) 7.10 7.24 5.79
Mean threshold benefitb (dB SNR) 1.31 1.29 2.50
Equivalent performance benefitc (% correct) 8.24 9.60 15.06

a Averaged over both target positions
b Difference between on-beat and late thresholds
cMean benefit multiplied bymean slope

To investigate whether the choice of age groups influenced the findings,

Pearson correlations were used to examine the relationships between



124 CHAPTER 5: RHYTHMIC PRIMINGOFATTENTIONDURING SPEECH LISTENING

age and threshold and between age and priming benefit for all of the

children combined (see Figure 5.4). While thresholds improved with

age as expected (r=–.40, p=.001), there was no correlation between age

and priming effect (r=–.08, p=.54). These results are in line with the

group comparisons, and suggest that while children as young as 6 years

old do benefit from rhythmic priming during speech listening, further

development of this mechanism occurs beyond 11 years of age.

Figure 5.4: Scatter graphs of the relationships between age and threshold and between age
and priming effect

5.3 Discussion
The aims of this experiment were to investigate whether temporal attention

driven by speech meter enhances perception of speech in noise, and to

explore how this mechanism develops during childhood.

There was a significant effect of target position, with all age groups

achieving better thresholds for on-time targets than for late targets. This

suggests that the rhythmic information contained in the carrier phrase was

sufficient to orient temporal attention to the expected target position.

Although all age groups exhibited a priming effect, the benefit was greatest

for the adult group. Within the child groups, the priming benefit did not

increase with age, suggesting that – at least for the simple stimuli used

here – development of the rhythmic priming mechanism occurs outside of

the measured age range (6–11 years).
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The results of the current study may not generalise to everyday speech

listening situations. The stimuli used here were manipulated to increase

the chances of observing rhythmic priming effects. A deliberate choice was

made to sacrifice ecological validity for this preliminary exploration of the

hypothesis.

Another consideration is that the carrier phrase used to orient attention

was identical on each trial. There is evidence that prior knowledge of the

rhythmic structure of a sentence can aid perception of a final target word.

When listeners hear a musical prime prior to a sentence with matching

rhythm, they are quicker to respond to a target phoneme (Cason et al.,

2015). Even reading a written carrier phrase (minus the final target word)

prior to hearing a sentence in noise enhances perception of the target word

(Freyman et al., 2004). In the current study, the prime was identical each

time, so the listeners knew both the rhythmic and semantic context of the

carrier phrase. It is therefore possible that temporal expectations were

built up over the course of the block rather than for each individual trial.

If this was the case, then the results would still support the hypothesis

that orienting temporal attention enhances speech perception in noise, but

further research would be needed to test if on-line temporal predictions are

formed when listening to novel speech.

Further studies are also needed to explore rhythmic priming driven by more

complex and more natural speech stimuli. For example, a follow-up study

could use multiple carrier phrases with different rhythmic structures, and

remove the manipulation to ensure isochrony. The use of a more complex

rhythm – in which a regular ‘beat’ is difficult to perceive – might also help

to highlight developmental differences that were not observable with the

simple isochrony used in the current study.





CHAPTER6
Trainingmusical beat perception

Results from the preceding chapters suggest that targeting musical beat
perception – particularly its role in orienting temporal attention – could
provide an effective intervention for speech perception in noise. These
findings are used in the current chapter to guide the selection of a suitable
training method. The effectiveness of the training programme is evaluated
for older adults, as this group are often reported to have difficulties
understanding speech in background noise.

6.1 Introduction
The ultimate goal of the current research is to evaluate a musical training

programme for improving speech perception in background noise. The

studies presented in the previous chapters explored the link between

musical ability and speech perception in noise, in order to inform the design

of an efficient, targeted training programme.

In Chapter 3, musical beat perception was identified as a key skill to target

for training. Beat perception is linked to the ability to form predictions

about the timing of future events. It was hypothesised that good beat

perceivers benefit from rhythmic priming which orients temporal attention
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to important parts of an auditory signal. The experiments in Chapters 4

and 5 provided evidence in support of this hypothesis.

These findings will be considered below in the discussion of a suitable

training programme to target beat perception skills. However, suitability

also depends on the population to be trained. To assess whether musical

training could help those who struggle with speech perception in adverse

conditions, it was decided to target a population who are often reported to

struggle with this task – older adults (see Section 1.6.2).

6.1.1 Trainingmusical beat perception
Beat perception is a fundamental human ability that has been observed in

infants (Honing, 2012), but it can also be improved via musical training

(Slater et al., 2013). For example, when listening to complex rhythms

– such as the duration beat sequences used in Experiment 4 – musicians

are more likely than nonmusicians to perceive the beat (Grahn and Rowe,

2009).

A key feature of beat perception is how it relates to movement. When

listening to music, people often spontaneously move along to the beat,

and regular auditory rhythms activate motor areas of the brain even in

the absence of movement (Grahn and Brett, 2007).

This cross-modal relationship works in both directions: movement also

influences auditory perception of the beat. When listening to ambiguous

rhythms, movement can influence which of two possible beat structures

is perceived (Phillips-Silver and Trainor, 2005, 2007). Tapping along to

the beat of a priming sequence also improves the accuracy of judgements

about whether subsequent events occur on the beat (Manning and Schutz,

2013), suggesting that moving to the beat aids the orienting of anticipatory

attention.

Movement also aids the process of searching for a beat in a rhythm

sequence with no salient accents, and this is especially true for

non-musicians (Su and Pöppel, 2012). When asked to perform this task just

by listening, trained musicians were able to internally generate a beat, but

non-musicians found it difficult to establish a stable beat. When movement

was encouraged during the beat-finding phase, the two groups achieved

similar levels of performance (Su and Pöppel, 2012).
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It appears to be the case that audio-motor synchronisation plays an

important part in musical training for beat perception, and after sufficient

training beat perception can be achieved without overt movement. This

is supported by the finding that musicians display greater connectivity

between auditory and motor areas of the brain during a beat-finding task

(Grahn and Rowe, 2009). It has also been shown that audio-motor musical

training leads to more robust changes in the auditory cortex compared to

auditory-only training (Lappe et al., 2008, 2011).

Together these findings emphasise the importance of using multimodal

training when targeting beat perception. Synchronising movements to

music will therefore play a key role in the training programme to be used

in this study.

The training programme must also be suitable for use with older adults, and

must achieve the levels of engagement and enjoyment that make musical

training an attractive prospect for therapeutic interventions (as discussed

in Chapter 1). With this goal in mind, established methods of musical

training were explored to see if a suitable candidate could be found. While

all approaches to teaching music include some element of beat training, one

method stood out due to its focus on experiencing rhythm and beat through

movement – Dalcroze Eurythmics.

6.1.1.1 Dalcroze Eurhythmics
Developed by Émile Jaques-Dalcroze in the early 1900s, Dalcroze

Eurhythmics is a long established method of teaching musical concepts

through movement. This approach is practised worldwide, has been shown

to improve rhythmic abilities in children (Zachopoulou et al., 2003), and is

suitable for use with older adults (Trombetti et al., 2011).

Dalcroze lessons comprise a variety of individual, pair and group tasks.

Typical activities include: walking in time to improvised piano music and

responding to changes in tempo; clapping to one subdivision of the beat

while walking in time with another; throwing, bouncing or rolling balls in

time with the beat (Frego et al., 2004; Seitz, 2005). Many of the activities

are also cognitively demanding, requiring multitasking to continue the

ongoing movement while sustaining auditory attention in order to react

quickly to changes in the music or verbal instructions to switch between

two alternative movements (Kressig et al., 2005; Trombetti et al., 2011).
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The cognitive aspect of the Dalcroze approach has been exploited to

investigate potential benefits for older adults. Declines in dual-task ability

in older adulthood can lead to an increased risk of falling, as it becomes

difficult to perform a concurrent task while walking (Kressig et al., 2005;

Trombetti et al., 2011). Older adults with a long history of practising

Dalcroze Eurythmics show less stride variability under dual-task conditions

than their peers (Kressig et al., 2005). Six months of weekly Dalcroze

classes led to improvements in gait variability under dual-task conditions

for a group of older adults compared to a control group, and the benefit

was still evident six months after training finished (Trombetti et al., 2011).

A secondary analysis of this study reported that the training group also

showed decreased anxiety and improved cognitive function compared to

the control group (Hars et al., 2013).

In summary, Dalcroze Eurythmics offers an established approach to

teaching musical skills that has been used successfully with older adults.

The approach places a great emphasis on audio-motor synchronisation

which was identified above as a key requirement for training beat

perception. The wide variety of possible activities and the social aspect

of including pair and group work should also satisfy the requirement for an

enjoyable musical training programme.

Having identified Dalcroze Eurythmics as a potential training technique

for this study, the next step was to consult a qualified Dalcroze teacher

– who has experience working with older adults – to aid with the design

and delivery of the training programme. She confirmed that Dalcroze

techniques were indeed appropriate for the intended purpose of the

training, and that activities could be adapted to specifically target beat

perception skills.

6.2 Experiment 6
6.2.1 Aims
The aim of Experiment 6 was to evaluate the impact of short-term musical

beat training on speech perception in noise for a group of older adults.
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6.2.2 Methods
6.2.2.1 Participants
Nine native English speakers (2 male; age range 51–75, mean age 67.0,

standard deviation 10.1 years) completed the study. They were recruited

via posters and word of mouth from the general public and they received

an inconvenience allowance for taking part.

Two further participants were initially recruited but had to withdraw due

to personal reasons prior to the start of the training programme. All nine

participants who began the training programme went on to complete the

study.

The Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005) was

used to screen for mild cognitive impairment. All participants scored at

least 26 out of 30, indicating normal cognitive function (Nasreddine et al.,

2005).

It was a requirement that participants should not use hearing aids, but other

than this no selection was made on the basis of hearing ability. Audiometric

data for all participants are shown in Figure 6.1. Normal hearing is usually

considered to be anything up to 20 dB hearing loss. The figure shows that

this group of participants had good hearing, despite their age, with some

mild hearing loss evident for a few participants in addition to the high

frequency (8 kHz) loss that is very common in this age group.

Figure 6.1: Audiometric data for all participants; the bold line indicates themean
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6.2.2.2 Protocol
The study protocol included a control period prior to training so that

participants would act as their own controls. The protocol is shown in

Figure 6.2. Participants were tested four times: a comprehensive baseline

assessment was completed at T0, and a shorter battery was completed on

three subsequent occasions (T1, T2 and T3).

Figure 6.2: Training study protocol used in Experiment 6

6.2.2.3 Testing procedures
All testing took place in a sound-attenuated booth, and auditory stimuli

were presented diotically through Sennheiser HD-25 headphones. The

order of the initial baseline test battery is shown in Table 6.1 and the

shorter battery used in subsequent testing is given in Table 6.2. Details

of the individual test procedures are given below.

Table 6.1: Test battery for baseline assessment
Task Approximate duration (minutes)

1 Questionnaires 10
2 Audiometry 10
3 Cognitive assessment (MoCA) 10
4 Speech in noise: Practice 10
5 Speech in noise: Steadymasker 15
6 IQ:WASI vocabulary subtest 10

Break 15
7 Speech in noise: Modulatedmasker 15
8 IQ:WASI matrix reasoning subtest 10
9 Beat perception 15

Total = 120
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Table 6.2: Test battery for subsequent assessments
Task Approximate duration (minutes)

1 Speech in noise: Steadymasker 15
2 Beat perception 15
3 Speech in noise: Modulatedmasker 15

Total = 45

Questionnaires
Participants completed a background questionnaire which elicited

information about their current levels of physical and musical activity, as

well as any difficulties they experience with their hearing, e.g. listening to

speech in noisy environments. Participants were asked to keep a diary of

any musical activity throughout the study, and were instructed to continue

with their normal routines throughout the control and retention periods.

The training subscale of the Goldsmiths’ Musical Sophistication Index

(Müllensiefen et al., 2011) was used as a measure of musical experience.

The subscale consists of 9 questions which encompass both formal

instrument training and informal musical experience (see Figure 2.1).

Cognitive tests
As mentioned above, the Montreal Cognitive Assessment (Nasreddine et al.,

2005) was used to screen for mild cognitive impairment.

In addition, the vocabulary and matrix reasoning subtests of the Weschler

Abbreviated Intelligence Scale (WASI; Wechsler, 1999) were used to obtain

a measure of IQ.

Speech-in-noise perception
The UK Matrix Sentence Test (HörTech gGmbH, Oldenburg, Germany) was

used to determine the speech reception threshold (SRT; the signal-to-noise

ratio (SNR) that equated to 50% intelligibility). See Section 2.3.1.1 and

Figure 2.2 for details of the stimuli and Section 3.2.2.2 for the procedure.

Two maskers were used: an unmodulated speech-spectrum noise (supplied

with the test) and a sinusoidally amplitude-modulated version of the

original noise (modulation frequency of 8 Hz; modulation depth of 80%).

The noise signals were matched in overall intensity (root-mean-square

level). Both of these maskers were found to have good sensitivity and

reliability with the matrix test (see Section 3.2.2.3) which make them

suitable for studying training effects.
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At the start of the baseline testing session, participants completed a practice

list with each masker to familiarise them with the stimuli and procedure

and to allow for the substantial learning that usually takes place on first

attempting the test (see Section 2.3.1.1). The results from these practice

lists were not included in the analysis.

For each masker, participants completed a block of three test lists, which

were used to obtain an average threshold.

Musical beat perception
The auditory-only subsection of the Beat Alignment Test (Iversen and Patel,

2008) was used to measure musical beat perception. See Section 3.2.2.2 for

details of the stimuli and procedure. In addition to being asked to make a

beat judgement for each excerpt, listeners were asked to rate how confident

they were about their answer on a scale from 0 (guess) to 2 (certain). This

was a feature of the original test (Iversen and Patel, 2008) and is included

here as a second measure of beat ability since the sensitivity of the Beat

Alignment Test to training effects is unknown. In addition, some of the

young adults in Experiment 1 scored maximum marks on the test. If the

same were to happen here, then there would certainly be no room for

measurable training effects.

6.2.2.4 Training programme
The training programme ran for four weeks. Each week the whole group

of participants attended a 2-hour workshop, led by a highly experienced

Dalcroze teacher. The workshops took place in a large hall equipped

with a piano. Activities focused on moving to the beat while the teacher

improvised music on the piano. Participants were required to listen

carefully and change their movements in response to changes in tempo

or structure of the music or to predefined verbal instructions. Individual,

pair and group tasks were included, and props such as balls were used for

some exercises. For example, in one activity, participants had to bounce a

ball in time with the music, but when the rhythmic pattern changed from

a waltz to a march they had to switch to throwing the ball in time with the

new beat, and vice versa.

Each workshop was recorded, and videos were provided to the participants

so that they could practise a selection of the activities at home during the

following week. Participants were asked to consolidate their learning by
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practising the homework activities (approximately 30 minutes) on three

different days during the week. The videos were also used on the rare

occasions when a participant had to miss a class through illness. In

that case, the participant was asked to work through the whole of the

class at home on their own, and then to practise the activities as normal.

Participants were provided with a tennis ball for use during the homework

activities.

One disadvantage of the training programme is that it was not possible

to obtain objective measures for each participant’s improvement on the

trained tasks. The teacher’s subjective assessment was that the group

definitely improved throughout the four weeks. In place of a quantifiable

measure of improvement on the trained tasks, the beat perception scores

were used as proxy measures.

6.2.2.5 Analysis
A general note is required about the analysis used in this study. With only 9

participants, the analysis was underpowered. No corrections have been

applied for multiple comparisons, and caution should be applied when

interpreting the results. Limitations of the study and the analysis will be

discussed below.

6.2.3 Results
6.2.3.1 Baseline assessment: time T0
The mean speech perception thresholds are shown in Figure 6.3 and in

Table 6.3. The data from the young adults from Experiment 1 have been

included for comparison. The figure shows that the older adults needed

more favourable SNRs to achieve the same level of performance as the

young adults. The older adults did benefit from modulation masking

release, but to a lesser extent than the young adults who participated in

Experiment 1. All group comparisons were significant (see Table 6.3).
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Figure 6.3: Means (and standard errors) for the baseline speech perception in noise
measures, with the Experiment 1 data from young adults included for comparison

Table 6.3: Means (and standard deviations) for the baseline speech perception in noise
measures, with the Experiment 1 data from young adults included for comparison

Older adults Young adults Independent
t-test

SRT in steady noise (dB SNR) –9.8 (.71) –10.6 (.73) t(30) = 2.9,
p = .007

SRT inmodulated noise (dB SNR) –13.8 (1.4) –15.7 (1.2) t(30) = 3.8,
p = .001

Masking release (dB SNR) –4.0 (1.0) –5.1 (.70) t(30) = 3.3,
p = .003

Examination of scatter plots revealed that hearing ability (defined as the

better-ear pure-tone average hearing loss) was correlated with the speech

perception measures (see Figure 6.4). The Pearson correlation coefficients

are given in Table 6.4. No other factors appeared to be associated with

speech perception in noise at baseline. This is keeping with previous

research that suggests that hearing ability is the primary predictor of speech

perception in noise (Akeroyd, 2008).
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Figure 6.4: Scatter plots showing the relationships between hearing ability (measured in dB
hearing loss (HL)) and speech reception thresholds (SRT) at baseline assessment; greater
hearing loss was associated with worse speech thresholds and less masking release

Table 6.4: Pearson correlation coefficients for the relationships between hearing ability and
speech perception in noisemeasures at baseline assessment

Steady Modulated Release
PTA better ear .52 .82** .79**
*p<.05, **p<.01 (all one-tailed)

6.2.3.2 Control period: T0 to T1
The period following baseline assessment and prior to training was

intended to act as a control period. No changes in SRTs were expected

to occur during this time. The data in Figure 6.5 and Table 6.5 indicate

that this was not entirely the case. While the SRT in steady noise

remained stable, the SRT in modulated noise improved and there was a

corresponding increase in masking release.

Figure 6.5: Means (and standard errors) for the changes in speech reception thresholds
(SRT) during the control period (from baseline at time T0 to time T1)
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Table 6.5: Changes in themeans (and standard deviations) of the key variables during the
control period: from time T0 to time T1

T0 T1 Paired
t-test

SRT in steady noise (dB SNR) –9.8 (.71) –9.8 (.94) t(8) = –.09,
p = .93

SRT inmodulated noise (dB SNR) –13.8 (1.4) –14.6 (1.2) t(8) = –3.6,
p = .007

Masking release (dB SNR) –4.0 (1.0) –4.8 (.91) t(8) = –3.6,
p = .007

Beat perception (out of 36) 30.0 (5.0) 30.6 (4.2) t(8) = .43,
p = .68

Beat confidence (scale 0 to 2) 1.46 (.44) 1.37 (.39) t(8) = –.91,
p = .39

The improvement for speech in modulated noise was unexpected given the

previous finding that this test had good test-retest reliability on repeated

measures (see Section 3.2.2.3). Previous investigations of the matrix test

suggest that, although learning does initially occur as participants become

familiar with the stimuli, with the procedure used here the threshold

should stabilise after a couple of practice lists (Hewitt, 2008). Participants

completed four lists in the baseline session, so further learning was not

expected to occur. The findings with the matrix test were not verified

across multiple sessions, but another study using sentences in noise showed

that there were no learning effects across five sessions for either steady or

modulated noise (Stuart and Butler, 2014).

These findings do not preclude the possibility that the particular

participants in this study did improve from one session to the next. Perhaps

the gap between sessions gave them time to consider strategies for the test.

However, there is another possible explanation which is worth considering.

In designing the test battery, it was desirable to alternate between different

types of task in order to stave off boredom and tiredness during the long

baseline assessment. For the subsequent testing sessions, a similar approach

was employed but, with only three tasks to do, this meant completing the

beat perception test directly before the speech test in modulated noise,

whereas previously it had been done at the end.

It is possible that focusing on musical beat perception for 15 minutes

prior to completing the speech task could have improved performance
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on the task, via temporarily strengthened temporal orienting. This idea

is supported by examination of Figure 6.6. At the baseline assessment

(T0), there was no discernible relationship between beat perception and

masking release. However, at time T1, when the modulated noise condition

had a proposed boost related to beat perception, the amount of masking

release (which is the difference between the ‘boosted’ modulated SRT and

the ‘unboosted’ steady SRT) was strongly correlated with beat perception

(r = –.85, p = .002). In fact, beat perception and hearing ability together

explained 95% of the variance in masking release (see Table 6.6).

Figure 6.6: Scatter plots of beat perception andmasking release at time T0 and time T1

Table 6.6: Linear regressionmodel for masking release
Outcomemeasure andmodel Predictors β p
Masking release Hearing ability .52 .001
R2 = .95, F(2,6) = 76.1, p< .001 Beat perception –.68 <.001

The finding that prior exposure and attention to a beat perception task

could enhance subsequent speech perception in noise is a valuable result

in its own right and will be discussed further in Chapter 7. However, for

the purposes of the current study, it means that the baseline measure of

SRT in modulated noise (and masking release) cannot reliably be used

in comparison with subsequent measures, and there is therefore no true

control period for these outcomes.
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6.2.3.3 Training period: T1 to T2
Changes in the key variables over the training period are displayed in Figure

6.7 and Table 6.7. The most promising result is the SRT in modulated

noise which was significantly improved at the post-test (T2) compared

to the pre-test (T1): t(8) = 1.97, p = .043, effect size r = .57. The

mean improvement was 0.53 dB, which is equivalent to an increase in

intelligibility of about 6% (based on the reference slope data for the matrix

sentence test (Hewitt, 2008)).

Figure 6.7:Means (and standard errors) for the changes in speech perception thresholds
during the training period (from pre-test at time T1 to post-test at time T2)

Table 6.7: Changes in themeans (and standard deviations) of the key variables during the
training period: from time T1 to time T2; all p-values are one-tailed since all variables were
expected to improve during training

T1 T2 Paired
t-test

SRT in steady noise (dB SNR) –9.8 (.94) –9.9 (.86) t(8) = –.83,
p = .22

SRT inmodulated noise (dB SNR) –14.6 (1.2) –15.2 (1.7) t(8) = –2.0,
p = .043

Masking release (dB SNR) –4.8 (.91) –5.2 (1.1) t(8) = –1.4,
p = .11

Beat perception (out of 36) 30.6 (4.2) 31.2 (4.4) t(8) = 1.2,
p = .14

Beat confidence (scale 0 to 2) 1.37 (.39) 1.48 (.42) t(8) = .95,
p = .19

As discussed in Section 6.2.2.4, there were no objective measurements for

improvement on the trained tasks. The beat measures (total score and

confidence rating) were used as proxy measures, as the intention of the
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training was to improve beat perception. Neither of the beat scores showed

significant improvement over the training period, although both show a

small trend in the expected direction.

To investigate how changes in the speech measures might be linked to

training, relationships between the outcome measures (SRTs in steady and

modulated noise) and the skills targeted during training (beat perception

and beat confidence) were explored (see Figure 6.8 and Table 6.8). The

pattern of results for masking release was very similar to that for SRT in

modulated noise, so masking release has not been included here.

Figure 6.8: Scatter plots showing the relationships between outcomemeasures (SRTs) and
trained skills (beat score and confidence rating)

Table 6.8: Pearson correlation coefficients for the relationships between outcomemeasures
and trained skills

Change in steady SRT Change inmodulated SRT
Change in beat score –.66* .05
Change in beat confidence –.65* –.65*
*p<.05, **p<.01; all one-tailed

Changes in outcome measures appear to be linked to changes in trained

skills. An issue with relying on improvements in the beat perception score
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is that some participants scored highly at the baseline assessment and

consequently did not have much room for improvement. This variable is

therefore subject to ceiling effects and is not normally distributed. As a

precaution, Spearman correlations were also checked and the pattern of

results was identical.

The beat confidence rating was included for exactly this reason – as an

alternative measure of whether training was enhancing some measure of

beat perception. The fact that improvements in this measure are associated

with improvements in SRTs is encouraging.

Finally, associations between changes in SRTs and baseline performance

were investigated (see Figure 6.9 and Table 6.9). The baseline (T0)

measures were used instead of the pre-test (T1) measures to avoid the

confound of correlating (T2 – T1) with T1. For speech in modulated noise,

improvements in SRT were correlated with baseline performance for speech

in steady noise and for the beat perception test.

The worse the baseline measure of beat perception, the greater the

improvement for speech perception in modulated noise. If the improvement

in SRT is indeed mediated by training-related improvements in beat

perception (as suggested by the increase in beat confidence), then this

finding fits with the perceptual learning literature. It is commonly reported

that the magnitude of training improvement is inversely proportional to

the baseline performance, i.e., the worse the initial performance, the more

room for improvement and the faster the learning (e.g., Astle et al., 2013;

Fahle and Henke-Fahle, 1996). On this premise, poor initial beat perception

could have led to greater training improvement for beat perception, which

may then have transferred to speech perception in modulated noise as

hypothesised.

Conversely, the better the baseline measure of SRT in steady noise, the

greater the improvement for SRT in modulated noise. This appears to

disagree with findings from perceptual learning, although the two speech

tasks do not measure exactly the same skills. Speech perception in steady

noise is mainly a task of perceptually separating the speech from the

background, whereas listening in modulated noise additionally engages

other factors such as working memory to listen in the dips (see Section

1.4.2). The skills required for speech perception in steady noise could

be considered as a subset of the skills needed for speech perception in
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modulated noise. Perhaps, then, a certain level of performance in steady

noise is required in order for training benefits to be observed for the more

complex modulated noise condition.

Baseline SRT in steady noise and training improvement in beat confidence

account for 88% of the improvement for SRT in modulated noise (see Table

6.10).

Figure 6.9: Scatter plots showing the relationship between changes in thresholds during the
training period and baseline performance

Table 6.9: Pearson correlation coefficients for the relationships between training-related
changes

Change in steady SRT Change inmodulated SRT
Baseline steady SRT –.17 .79**
Baselinemodulated SRT –.49 .33
Baseline beat score .01 .66*
*p<.05, **p<.01; all one-tailed

Table 6.10: Regressionmodel for the improvement in speech perception in modulated noise
Outcomemeasure andmodel Predictors β p
Change inmodulated SRT Baseline steady SRT .71 .001
R2=.88, F(2,6)=30.6, p = .001 Change in beat confidence –.54 .005
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6.2.3.4 Retention period: T2 to T3
Changes during the post-training retention period are given in Figure 6.10

and Table 6.11. Although the changes are not statistically significant, there

are some interesting patterns. Masking release and SRT in modulated noise

(which had shown improvement during training) show a declining trend,

as do the beat measures (although training improvements in these were

small and non-significant). This is what might be expected if the training

programme was insufficient to cause lasting changes, i.e., improvements

have not been retained. Although this could be interpreted as a negative

result, since retention is an important part of any training, it also suggests

that the improvements in these outcomes were in fact due to training. If

that is the case, then perhaps a longer training programme could lead to

lasting improvements.

On the other hand, SRT in steady noise continued on a trend towards

improvement, possible indicative of delayed transfer of training to this skill.

Although this improvement did not reach significance, when the overall

change (from time T1 to T3) in SRT for steady noise is considered, the

result is a significant improvement (t(8) = 2.0, p = .043). The mean

improvement was 0.37 dB SNR, which is equivalent to a performance

benefit of about 4%.

Table 6.11: Changes in themeans (and standard deviations) of the key variables during the
retention period: from time T2 to time T3

T2 T3 Paired
t-test

SRT in steady noise (dB SNR) –9.9 (.86) –10.2 (.75) t(8) = –1.8,
p = .11

SRT inmodulated noise (dB SNR) –15.2 (1.7) –14.9 (1.5) t(8) = 1.5,
p = .18

Masking release (dB SNR) –5.2 (1.1) –4.7 (1.0) t(8) = 2.3,
p = .051

Beat perception (out of 36) 31.2 (4.4) 30.1 (4.1) t(8) = –1.0,
p = .35

Beat confidence (scale 0 to 2) 1.48 (.42) 1.39 (.40) t(8) = –2.2,
p = .063
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Figure 6.10:Means (and standard errors) of the changes in speech perception thresholds
during the retention period (from T2 to T3)

6.2.3.5 Summary: T0 to T3
The speech perception in noise data for this study are summarised in

Figures 6.11 and 6.12.

Figure6.11:Means (and standard errors) formeasures of the SRT in steadynoise throughout
the study; training was administered between T1 and T2

For speech in steady noise, there was no change during the control period

(T0 to T1) as expected. During and after the training programme, there was

a trend towards improving SRT in steady noise. The greatest improvement

for SRT in steady noise was between T1 and T3. This improvement was

significant and was equal to 0.37 dB SNR. Comparison of the change in



146 CHAPTER 6: TRAININGMUSICAL BEAT PERCEPTION

SRT for steady noise over this time period compared to the control period

did not reach significance (t(8) = 1.0, p = .16).

Figure 6.12: Means (and standard errors) for measures of the SRT in modulated noise
throughout the study; training was administered between T1 and T2

For speech in modulated noise, there was significant improvement during

what was intended to be the control period. As discussed above, this may

have been due to the different testing order used at each time point rather

than a true reflection of change in performance. There was a significant

improvement in SRT for modulated noise during the training period (equal

to 0.53 dB SNR), but performance declined during the retention period.

Due to the issue with the control period and the general lack of power in this

study, a final analysis was performed to examine individual improvements

based on a confidence interval approach. Using the pre-test data from

time T1, the intra-individual standard deviation for the two SRTs was

derived from the one-way ANOVA (with subject as the factor): root mean

square error divided by
√

3 (as an average of three values was used). The

intra-individual standard deviations were 0.33 and 0.49 for SRT in steady

and modulated noise respectively. These values were used to create 95%

confidence intervals (±1.96×s.d.) around each participant’s pre-test SRTs

at time T1. These confidence intervals are displayed in Figures 6.13 and

6.14. In each figure, the solid line represents identical scores at both time

points, and the dotted lines are the confidence intervals: a data point lying
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below the bottom dotted line indicates significant improvement for that

participant.

Figure 6.13: Scatter plot of individual SRTs in steady noisemeasured pre-training (time T1)
and at the follow-up test (time T3); the solid line represents identical scores, while the dotted
lines represent confidence intervals; points below the bottom dotted line indicate significant
improvement

Figure 6.14: Scatter plot of individual SRTs inmodulate noisemeasured pre-training (time
T1) and post-training (time T2); the solid line represents identical scores, while the dotted
lines represent confidence intervals; points below the bottom dotted line indicate significant
improvement
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Based on the confidence interval approach, four participants displayed

significant improvement for speech perception in steady noise (from T1 to

T3) and three participants displayed significant improvement for speech

perception in modulated noise (from T1 to T2). The current data is

insufficient to explain why these particular individuals might have been

predisposed to benefit from the training, or if others would benefit given

more time. However, for some individuals it is possible to offer an

explanation. For example, one participant who showed no benefits of

training had in fact been a dancer throughout her life, and had therefore

no doubt had copious prior experience moving to the beat of music.

6.3 Discussion
Experiment 6 aimed to evaluate a musical beat training programme

in terms of its impact on speech perception in noise for older adults.

Overall, the results are promising, but caution should be exercised when

interpreting these results as the study had considerable limitations. The

small sample size, lack of an active control, and lack of measurable

outcomes of the trained activities should all be taken into account. Further

studies will be needed to confirm the findings reported here.

The Dalcroze workshops were successful in creating an engaging musical

atmosphere, and all participants who started the training went on to

complete the study. Feedback from the participants confirmed that they

enjoyed the workshops, and particularly liked the social aspect of coming

together once a week to share the experience. The homework activities

were not so successful, perhaps because it was not possible to recreate

the enjoyable social atmosphere at home. Participants did their best to

complete the activities, and record these on their diary sheets, but feedback

suggested that they did not enjoy this part of the training as much. The

homework activities were included in an attempt to make the training quite

intensive over a short period. Future studies should consider using either

more frequent workshops or a longer training period or both, to explore the

timeframe of any improvements.

In terms of speech perception in noise, there were modest significant

improvements in threshold for modulated noise immediately after training

and for steady noise after a prolonged period. However, the lack of an

active control (or indeed any reliable control for the modulated noise
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condition) means that caution should be exercised when interpreting these

results. Further research is needed to investigate the timecourse of any

improvements and to see if a longer training programme will lead to lasting

benefits, and whether the size of improvement would be meaningful to a

patient (McShefferty et al., 2016).

Dalcroze methods place demands on auditory, motor and cognitive systems.

The aim of this study was to target beat perception to see if this would

transfer to speech in noise perception. However, it is also possible that any

observed benefits were due to cognitive improvements brought about by the

multitask practice included in the training. The fact that improvements in

speech thresholds were associated with improvements in beat confidence

suggests that beat perception does play a part. Future studies should

incorporate additional measures of cognitive function and beat perception.

These should be sensitive to training improvements with no ceiling effect

in order to elucidate the likely nature of transfer.

Further work is also needed to explore the effect of individual differences

on potential benefits of training. It is not necessarily the case that one

training regimen will work for every individual. Some factors to consider

include: musical experience, dance experience, personality and personal

preference (i.e., do they like music?).

An accidental discovery in this study also indicates further new avenues

for research. Results from the control period suggest that performing the

beat perception test prior to the speech test (in modulated noise) may have

primed the mechnism by which attention is oriented in line with temporal

predictions and therefore improved the speech reception threshold. This

possibility will be discussed in more detail in Chapter 7.





CHAPTER7
General discussion

The ultimate goal of the research presented in this thesis was to investigate
whether short-term musical training could improve speech perception in
background noise. This goal was broken down into three separate research
questions which were investigated in turn. This chapter presents a summary
and discussion of the main findings and limitations of the current research,
and proposes possible directions for future research.

7.1 Question 1: Are specific musical skills associated with
speech perception in noise?

In Chapter 3, a correlational design was used to explore the relationships

between musical skills and speech perception in noise. To avoid the

confounds associated with testing highly trained musicians, this study

recruited a sample from the general population, who therefore had a range

of musical backgrounds. The analysis revealed that musical beat perception

was strongly associated with all of the speech perception measures, even

when controlling for potentially confounding factors (working memory and

frequency discrimination).

151
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Beat perception was therefore identified as a possible link between musical

training and speech perception in noise and became the focus of subsequent

research presented in this thesis.

7.1.1 Whymightmusical beat training transfer to speech perception?
The issue of how beat perception might contribute to speech perception

in noise was the second topic of investigation in this thesis and will be

discussed below. This section considers the question of why transfer may

occur, with reference to the proposals introduced in Section 1.1.3.

7.1.1.1 Common processing
If the same skill is used in both music and speech perception, then it follows

that improving this skill in one domain should improve it in the other

(Besson et al., 2011). This begs the question: is beat perception used in

speech perception as it is in music?

While music contains an isochronous beat around which rhythms are based,

regularity in speech is created by the metric structure of stressed and

unstressed syllables. So the ‘beat’ in speech refers to the quasi-regular

pattern of stressed syllables.

Musical beat perception can be demonstrated by synchronising movements

with the beat; for example, by dancing, clapping along with a musical

performance, or – more commonly in laboratory settings – tapping a finger

(e.g., Drake et al., 2000). Lidji et al. (2011) found that listeners can entrain

finger taps to speech meter in a similar way, suggesting a shared process

between music and speech.

It has also been shown that musicians are more sensitive to speech meter

(Marie et al., 2011), which adds further support for the idea of a link

between beat processing in music and speech.

7.1.1.2 Working memory as a mediating factor
Kraus et al. (2012) proposed that working memory is the key factor in the

transferral of learning from music to speech.

In Experiment 1, performance on the Beat Alignment Test was linked with

digit span scores. This could be a consequence of the task design which

requires beat predictions to be held and updated in working memory ready

to be compared to the timing of superimposed beeps. In fact, partial
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correlations between beat perception and speech reception thresholds

remained strong even when controlling for working memory. These

findings suggest that working memory was not involved in mediating the

observed link between beat perception and speech perception in noise.

Listening to music often results in spontaneous movement to the beat,

suggesting that beat perception happens automatically and without

cognitive effort. The current hypothesis that beat perception provides a link

between musical training and speech perception in noise is not, therefore,

compatible with the working memory proposal put forward by Kraus et al.

(2012).

7.1.1.3 The OPERA hypothesis
The OPERA hypothesis (Patel, 2014) suggests that musical training can

enhance speech perception via any sensory or cognitive process that is

common to both domains, as long as certain conditions are met. Namely

that the brain networks for speech and music processing overlap, that music

places greater demands on the process than does speech, and that music

engages the process with emotion, repetition and attention.

Overlap – Musical beat perception is known to recruit motor areas of

the brain, including the basal ganglia (Grahn and Brett, 2007; Grahn

and Rowe, 2012). Patients with Parkinson’s disease – which affects

the basal ganglia – display deficits in beat-based musical rhythm

perception (Grahn and Brett, 2009) as well as in the processing of

speech rate (Breitenstein et al., 2001). Furthermore, patients with

lesions in the basal ganglia have impaired speech meter perception

(Kotz and Schmidt-Kassow, 2015). Together these findings suggest

that the basal ganglia could be part of an overlapping network for beat

processing in music and speech, thereby satisfying the first criterion.

Precision – Regular meter is useful for speech perception, but beat

perception is crucial for successful musical performance. An audience

is unlikely to appreciate musicians who cannot play in time with

each other. Synchronisation of playing in time with music must be

preceded by precise perception of the beat. It is logical therefore that

musical training would demand a higher precision of beat processing

than is required for everyday speech perception.
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Emotion – Moving to a beat is a key part of enjoyable social activities

such as music-making and dancing. It is easy to imagine that

practising synchronising with music, particularly if it also involves

entraining movements with other people, could elicit the positive

emotion necessary for this criterion to be fulfilled.

Repetition – Musical beat training will inevitably involve repeated

practise of entraining to a beat.

Attention – In the previous section, it was noted that beat perception

happens spontaneously and without cognitive control. While it is not

necessary to orient attention towards the temporal structure of music

in order to perceive a beat, it is possible to focus attention on the

beat and this will be necessary in order to improve synchronisation

abilities during training.

In conclusion, with an appropriately designed programme, training in

musical beat perception could satisfy all of the criteria of the OPERA

hypothesis. This supports the idea that training in musical beat perception

could result in transfer of learning to speech perception.

7.1.2 Consideration of othermusical skills
The aim of Experiment 1 was to identfy musical skills which are associated

with speech perception in noise. Musical beat perception appears to be one

such skill, but it is not necessarily the only one. Further work in this area

might consider other musical skills which were not tested here, or indeed

different tests for melody and rhythm perception.

The Musical Ear Test uses a same/different paradigm which is common

amongst musical aptitude tests (e.g., Gordon’s Advanced Measures of

Musical Audiation – AMMA; GIA Publications, Inc., Chicago, IL, USA). This

design is by its nature heavily dependent on working memory. Memory

for melodies and memory for rhythms are no doubt important skills for

musicianship, but in Experiment 1 the working memory confound made

it unclear whether rhythm skills are linked to speech perception in noise

or if the observed correlation was purely due to working memory. This

could be addressed by using alternative measures for melody and rhythm

perception which require a perceptual judgement of a sequence rather than

a same/different comparison. For example, categorising pitch contours, as

these are important for speech perception (Miller et al., 2010).
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There are other aspects of musical ability that were not considered for

Experiment 1, but which could potentially be linked to speech perception

in noise. For example, recognising timbres of different instruments could

be linked to recognising – and selectively attending to – different voices.

Similarly, harmony skills could be linked to auditory scene analysis, since

harmonic components can be used to separate sound sources (see Section

1.2.2).

Both of these skills could be predicted to help in separating a target voice

from competing speech. However, it is unlikely that correlations would

have been observed for the noise maskers used in Experiment 1, since this

task did not involve separation of multiple voices or harmonic sounds. A

further study would be needed to examine the relationships between timbre

and harmony skills and speech perception with speech maskers.

7.1.3 Interpreting differences in speech reception thresholds
The Matrix Sentence Test was used to assess speech perception in steady

and modulated noise maskers. For the young adults who participated in

Experiment 1, the range of measured thresholds spanned 3.1 dB for steady

noise and 4.4 dB for modulated noise. Comparable ranges were found for

the older adults in Experiment 6, although the absolute thresholds were

significantly worse than for the young adults. Combining the data from the

two groups results in ranges of 3.2 dB and 5.9 dB for steady and modulated

maskers respectively.

The just-noticeable difference in signal-to-noise ratio for speech in steady

noise has been reported to be 3 dB (McShefferty et al., 2015). This suggests

that, for the participants tested here, the thresholds for the very best and

very worst performers should only just be distinguishable from each other.

It is important to note that none of the participants reported having any

particular difficulties understanding speech in background noise. This begs

the question: do the measured differences in thresholds actually translate

to meaningful differences in real world abilities?

It could, however, be argued that such a question is not appropriate given

the myriad differences between the two situations. In the lab, participants

were wearing headphones and were focused on the task at hand; stimuli

were carefully controlled; masking noise was consistent throughout; the

test was repetitive, allowing familiarisation with the task and stimuli; target
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words were drawn from a finite number of options; and attention was only

required in short bursts, i.e., the length of a sentence.

In the real world, it is much more likely that listeners will need to:

following an ongoing conversation for a prolonged period of time; try to

ignore multiple dynamic sound sources, often including competing speech;

repeatedly switch focus between different talkers and other demands on

their attention; and piece together the speech signal without the benefit of

advance information about the content or frequent opportunities to pause

and work out what was said.

Given the varied and changeable nature of everyday listening environments,

objective tests of speech perception in noise with controlled stimuli

are necessary and provide insight into auditory perception, even if the

thresholds do not directly relate to listeners’ subjective experiences in the

real world.

7.1.4 Beat perception in specific populations
The participants in Experiment 1 had a range of musical backgrounds, but

they were all young adults with normal hearing. It would be interesting

to see if the link between beat perception and speech perception in noise

persists in other populations.

7.1.4.1 Clinical populations
To better understand the relationship between beat perception and speech

perception in noise, it would be useful to test these skills in clinical

populations that are known to have poor speech perception in noise.

For example, children with language disorders often struggle with speech

perception in noise (e.g., Ziegler et al., 2009) and have also been reported

to have difficulty with musical beat tasks (Corriveau and Goswami, 2009;

Muneaux et al., 2004). However, as these tasks were not tested within

the same group of children, it is impossible to deduce the nature of any

association between the two skills.

This idea partially motivated the recruitment of older adults for the training

study in Chapter 6. However, despite the advanced age of some of the

participants, the levels of hearing ability among the group were actually

very good. Despite performing worse on the matrix sentence test than

the young adults in Experiment 1, the older adults reported no particular
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difficulty with speech perception in noise in their everyday lives. This was

unexpected given prior research (see Section 1.6.2).

Some of the training participants also had excellent musical beat perception

at the start of the study, which meant they were less likely to benefit from

the beat training as they had little capacity for improvement (Astle et al.,

2013; Fahle and Henke-Fahle, 1996).

An alternative approach would be to study a population who are known to

have impaired musical beat perception and assess their ability to perceive

speech in background noise. For example, Parkinson’s disease affects the

basal ganglia – an area of the brain which is involved in beat perception

(Grahn and Brett, 2009) and has also been proposed to be involved

in forming temporal predictions during speech perception (Kotz et al.,

2009). Patients with Parkinson’s disease have been shown to have difficulty

discriminating beat-based rhythms (Grahn and Brett, 2009), so it would be

interesting to see if they also have deficits for speech perception in noise.

7.1.4.2 Non-native speakers of English
Another population who have difficulties with speech perception in noise

are non-native speakers of the language (e.g., Mayo et al., 1997; van

Wijngaarden et al., 2002). Given the evidence that instrumental music

reflects the spoken prosodic rhythms of the language of the composer (Patel

and Daniele, 2000), perhaps musical beat training could be used to help

non-native speakers of English.

Lidji et al. (2011) found that both English and French speakers could tap

along to the meter of English and French utterances. However, tapping

to English utterances was more regular than to French utterances because

of the stress-based rhythm in English that does not occur in French.

Furthermore, English speakers tapped more regularly than French speakers

and were more likely to pick out the underlying ‘beat’ rather than tapping

along with the syllables. Lidji et al. (2011) suggested that the English

speakers’ long-term experience with the language allowed them to entrain

to the meter of the English utterances to a level that French speakers could

not.

Perhaps non-native speakers’ non-familiarity with the rhythmic structure

of English could at least partially explain their difficulties with speech

perception in noise. Non-native speakers might therefore benefit from
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training in beat perception using English music or indeed a combination

of music and speech rhythm tasks, in order to become more familiar with

the stress-based metric structure of the English language.

7.2 Question 2: How might beat perception contribute to
speech perception in noise?

To do well in the beat perception test, it is necessary for the listener to

form predictions about when the next beat will occur in order to judge if

a superimposed beep arrives at the same time. This reasoning led to the

hypothesis that beat perception could enhance speech perception in noise

via orienting of attention to points in time when a target is predicted to

occur.

In Experiment 2, priming with an isochronous sequence was shown

to enhance detection of pure-tone targets in noise and perception of

monosyllabic words in noise. Thresholds for targets which occurred at

expected times (on the beat) were significantly better than for targets which

were displaced in time. More complex rhythms were used in Experiment 3,

and it was shown that when the beat of the priming sequence was less

salient, and therefore required some musical expertise to perceive, the

magnitude of the priming effect for tone detection was associated with

musical beat perception.

Returning to the initial focus of speech perception in noise, Experiment

5 used a sentence context to show that rhythmic priming can be driven

by speech meter as well as by the musical rhythms used in Chapter 4.

Thresholds for the final target word were better when the target occurred

at its natural (and therefore predicted) point in time compared to when it

was delayed.

Together, these findings support the hypothesis that beat perception may

enhance speech perception in noise via rhythmic priming driven by the

metric structure of speech.

7.2.1 Musical beat perception and rhythmic priming
The current research successfully demonstrated that rhythmic priming can

enhance the perception of targets in noise. The second assumption of the

hypothesis – that this priming effect is modulated by beat perception – was

shown for the duration beat rhythm primes in Experiment 3, but not for
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priming with speech meter. One encouraging piece of evidence is that

musicians have an enhanced sensitivity to speech meter (Marie et al., 2011),

but further research is needed to test if musical beat perception does in fact

have an influence on rhythmic priming during speech listening.

The priming paradigm from Experiment 5 (‘Ready Baron, go to red...’)

could be adapted to vary the colour which precedes the target number,

using words of different lengths and/or stress patterns. To observe a

priming benefit in this case, the temporal prediction for the target location

would have to be adapted accordingly. If a few different possibilities

are mixed within a block, then temporal predictions would have to be

formed on a trial-by-trial basis. This would avoid the potential confound

in Experiment 5, whereby the rhythmic pattern of the priming phrase was

identical throughout the block.

Further research could use speech with more complex metrical structures

to see if an association would emerge between beat perception and

the priming effect. These adaptations might also reveal developmental

differences during childhood, which were not evident for the 6–11 year-olds

tested with the simple stimuli in Experiment 5.

7.2.2 Converging evidence from neuroscience
The research presented in this thesis adopted a purely behavioural

approach. However, there is converging evidence from neuroscience that

is worth considering. This section will present a brief description of some

neuroscientific findings that support the hypothesis explored in this thesis.

7.2.2.1 Orienting of attention during music listening
Anticipatory attention effects have been reported during real music

listening, with enhanced processing for probe sounds which coincided with

the beat of the music (Bolger et al., 2013; Tierney and Kraus, 2013a). In

addition, this enhancement was correlated with the ability to tap along

to a beat (Tierney and Kraus, 2013a). This suggests a link between

synchronisation to a simple beat and perception of the beat in real music.

In both of these studies (Bolger et al., 2013; Tierney and Kraus, 2013a),

the musical excerpts (classical and pop respectively) were carefully chosen

so that the beat was easily perceivable by all participants. Perhaps if

a more complex musical piece – with a less salient beat – were used,
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then a correlation might be observed between rhythmic priming and beat

perception. This would support the hypothesis that good beat perceivers

have an enhanced mechanism for extracting implicit regularity in order to

benefit from anticipatory attention.

7.2.2.2 Orientation of attention during speech listening
Behavioural evidence that attention is oriented towards stressed syllables

when listening to speech was reviewed in Section 1.5.2.

There is also neuroscientific evidence that listeners employ temporal

attention when listening to narrative speech. Astheimer and Sanders

(2009) examined electrophysiological responses to attention probes which

could either coincide with word onsets or occur at random control times

during a continuous speech stream. Probes which occurred around the time

of word onsets were found to elicit larger responses – indicative of greater

allocation of attention – than probes which occurred at control times. The

authors concluded that attention is oriented to word-initial segments when

listening to narrative speech.

Together these findings support the concept of dynamic attending –

oscillatory entrainment of anticipatory attention in response to rhythmic

stimuli (Large and Jones, 1999) – and suggest that similar priming

mechanisms are used for both music and speech listening.

7.2.2.3 Neural entrainment as a mechanism of selective attention
Dynamic attending theory (Large and Jones, 1999) is based upon the idea

that internal oscillations entrain to external rhythmic stimuli in order to

orient temporal attention, as described in Section 1.5.1.2. Oscillations are

phase-locked so that peaks in neuronal excitability coincide with predicted

onsets, thereby affording enhanced processing to stimuli which occur at

predicted times.

When listening to speech, it has been shown that oscillations in the

auditory cortex entrain to temporal envelope information, and that this

phase-locking is enhanced when the speech is intelligible (Peelle and

Davis, 2012). Furthermore, when there are two competing speech signals,

phase-locking to the attended speech stream is stronger than that to the

unattended stream (Horton et al., 2013). Phase-locking to the unattended

speech was in the reverse direction, so that minimum excitability coincided
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with predicted onsets, suggestive of a suppression effect of entrainment on

unattended stimuli (Horton et al., 2013).

In the rhythmic priming experiments in Chapters 4 and 5 a steady noise

masker was chosen so as to minimise confounding temporal information.

However, if entrainment to temporal regularity can enhance attended

streams while also suppressing unattended streams, then perhaps a masker

with temporal regularity (such as modulated noise or competing speech)

would have resulted in greater benefits of rhythmic priming. By extension,

as beat perception is hypothesised to enhance the entrainment mechanism,

then greater modulatory effects of musical beat perception may have been

observed.

Further research in this area could utilise combined methods to put the

behavioural findings in a neuroscientific context. Power et al. (2012)

developed a rhythmic priming paradigm that could be used to study

individual differences in oscillatory entrainment. Such a paradigm could be

useful for exploring the link between musical beat perception and rhythmic

priming.

7.2.3 What is ameaningful difference in threshold?
In the studies presented in this thesis, differences in threshold due to

attention or training have been reported in terms of the performance benefit

(% correct) per 1 dB improvement in signal-to-noise ratio at threshold.

For example, in Experiment 5, the benefit of priming for on-beat speech

targets for the adult group was a 2.5 dB improvement in threshold. This

was equivalent to an extra 15.1% of targets correctly identified. However,

this figure only applies to signal-to-noise ratios in the region of the speech

reception threshold (see Section 2.4.3). It is therefore difficult to interpret

the results in terms of real world benefit, since this will vary for different

listening environments.

The just-meaningful difference in signal-to-noise ratio – defined as the

minimum improvement for which a patient would seek an intervention

such as a hearing aid – was recently reported to be 6 dB (McShefferty et al.,

2016). This is far greater than the benefits reported in the current research,

but that doesn’t necessarily mean that the results are not meaningful. The

benefits reported here were for participants who did not report difficulties
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with speech perception in noise. Greater benefit may be observed for people

who do struggle to understand speech in complex auditory environments.

7.2.4 Adaptations of the rhythmic priming paradigm
Rhythmic priming paradigms have typically measured benefits in terms of

reaction times to targets in quiet (e.g., Cason and Schön, 2012; Quené

et al., 2005). Having successfully demonstrated that rhythmic priming can

also enhance perceptual thresholds for targets in noise, there are numerous

potential avenues for future research.

7.2.4.1 Audibility of priming sequences
In the current paradigm, the priming sequences were always clearly audible

above the noise, and only the level of the target varied. This choice was

made to maximise the likelihood of observing rhythmic priming effects, but

it came with a sacrifice in terms of ecological validity. If listening to speech

in background noise, the whole speech stream will be masked to a similar

degree.

The experiments could be repeated with the priming sequences matching

the varying target level, but this would pose extra questions. How much

of the speech prime would need to be heard in order to generate rhythmic

priming? Does it need to be intelligible, or just loud enough so that cues to

lexical stress can be identified?

Perhaps electrophysiological methods could be used for this purpose with

attention probes like those used by Astheimer and Sanders (2009). The

signal-to-noise ratio of the ongoing speech could be manipulated and

attention probes used to determine for which levels rhythmic priming

effects are observed.

The use of continuous speech in a behavioural priming paradigm is another

area for future work. The short sentences and monosyllabic target words

used in the current research did not allow for the examination of the

timecourse of rhythmic priming, i.e., does entrainment strengthen over

time?

7.2.4.2 Addition of visual cues
In all of the priming studies presented in this thesis the stimuli have

been purely auditory. In everyday speech listening situations, it is likely



QUESTION 2: HOWMIGHTBEAT PERCEPTIONCONTRIBUTE TO SPEECHPERCEPTION INNOISE? 163

that visual information will also be available. A speaker’s natural head

movements have been shown to enhance speech perception in noise

(Munhall et al., 2004). The head movements were related to the prosody of

the speech, and so it may be that the visual information provided additional

cues to strengthen temporal expectations. The inclusion of visual cues also

influences neural entrainment to speech (Power et al., 2012).

It has also been shown that hearing-impaired listeners gain a similar

amount of benefit from endogenous visual cues for when to listen compared

with normal-hearing listeners (Best et al., 2007a). Combining these two

ideas, perhaps comparing an auditory-only with an audio-visual priming

paradigm could elucidate how hearing-impaired listeners form temporal

predictions. Are they able to orient temporal attention based purely on

auditory rhythms? If they do not perform as well as normally-hearing

listeners, then perhaps the combination of auditory and visual prosodic cues

could compensate for the difference. If so, perhaps participants could be

trained to use visual cues to orient temporal attention to assist with speech

perception in noise.

7.2.4.3 Encourage endogenous attention
The focus in the current research was on automatic orienting of temporal

attention via rhythmic priming, and so endogenous orienting of attention

was discouraged. However, it may still have played a part in some cases, as

discussed in Chapter 4.

With the simple isochronous sequence used in Experiment 2, or the simple

speech prime in Experiment 5, it would be straightforward to deliberately

orient attention to the predicted target location. Future research could

investigate whether it is possible to endogenously orient temporal attention

during speech listening in order to enhance rhythmic priming effects. If this

were possible, then this could potentially be utilised in a training paradigm

as well.

7.2.4.4 Rhythmic stimulation
The inadvertant discovery in Experiment 6 that performing a beat

perception task prior to a sentence-in-noise test might improve perception

may be worth pursuing in its own right. It has previously been shown that

children with language disorders perform better on a syntactic judgement
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task when they listened to music with a regular beat prior to starting the

task (Przybylski et al., 2013).

Perhaps focusing on the beat of musical excerpts prior to undertaking the

matrix sentence test had a similar preparatory effect. Further studies would

be required to see if this was indeed the case, and if the effect would extend

to other speech stimuli with less regular rhythms.

7.3 Question 3: Can short-term beat training improve
speech perception in noise?

The new-found knowledge that beat perception could enhance speech

perception in noise via temporal prediction mechanisms was used to inform

the design of a training programme. An established method of music

teaching (Dalcroze Eurythmics) was adapted to focus on developing beat

perception skills through synchronising movements to music. The impact of

this training was evaluated for a group of older adults. Small improvements

in speech perception thresholds in noise were observed after four weeks

of training, although caution should be exercised when interpreting these

results.

This study had considerable limitations – a small sample size and no active

control group, for example – and future directions for building on this

research are discussed below. For a preliminary pilot study, the results were

quite promising and suggest that audio-motor musical beat training may be

worth pursuing as a potential tool for improving speech perception in noise.

However, the results are not conclusive and further training studies will be

needed to verify if this is the case.

7.3.1 Considerations for future training studies
The training study presented in Chapter 6 had considerable limitations,

including a small sample size, lack of an active control group, and no

way to objectively measure participants’ progress in the trained activities.

Although the goal of the research was to investigate short-term training,

four weeks may have been too short, especially given that the homework

activities were not as successful as originally conceived. All of these

things should be considered in future studies, along with some other ideas

discussed here.
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7.3.1.1 Target groups
For Experiment 6, it was decided to train older adults as speech perception

in noise has been shown to decline with age (see Section 1.6.2).

An additional advantage in training this group is that the hypothesised

mechanism by which beat perception might transfer to speech – i.e.,

rhythmic priming – is an automatic process which is not dependent on

working memory. Since speech perception in older adults is adversely

affected by cognitive decline, training to enhance a mechanism that is

independent of cognitive demands could offer clear benefits if successful.

However, the older adults recruited for the training study did not display

the expected deficits. Although their speech reception thresholds were

significantly worse than for the young adults in Experiment 1, they reported

no particular difficulties with listening to speech in noisy environments.

Future training studies should consider targeting groups who definitiely

have room to improve (see Section 7.1.4). If a connection can be found

between poor beat perception and poor speech perception in noise for a

specific population, then that population would be an ideal target group for

a future training study. As the intention is to train musical beat perception

and evaluate any transfer to speech perception, it makes sense to select

participants who have the potential to benefit. This would also provide

a truer representation of whether musical training can be used to help

those who struggle with speech perception in noise, which was the original

motivation for this research.

7.3.1.2 Development of intermediate outcomemeasures
As well as coming up with ways to directly measure improvements in

trained tasks, it may be possible to use intermediary measures. If the

trained task is synchronisation with a beat, and the final outcome measure

is speech perception in noise, then an intermediate measure could be

part way through the hypothesised transfer mechanism. This was the

intention behind using the beat perception test, but unfortunately it was not

sufficiently sensitive to training differences as several participants scored

highly at baseline. Another option could be to use a priming paradigm with

complex rhythms to see if the priming effect increases as beat perception

improves.
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7.3.1.3 Individual differences
As discussed in Chapter 6, there were some participants who were less

likely to benefit from the training as they already had good beat perception,

possibly due to musical or dance experience. This highlights the importance

of an individual differences approach to training interventions.

It was suggested above that targeting a clinical population who actually do

struggle with speech perception in noise is likely to produce more training

improvements. However, it may not be that simple. Speech perception in

noise is a complex task, and it is likely that beat perception and rhythmic

priming account for just a small part of the puzzle. There may be some

individuals who have deficits in both skills and who may therefore benefit

from musical beat training. For others, speech perception in noise might be

challenging for some other reason unrelated to beat perception.

It is also important to take participants’ personal preferences into account.

An argument in favour of musical training is that it is enjoyable and likely

to encourage compliance. However, for some individuals music may not

interest them and so this would not be the case.

7.3.1.4 Creating a music–speech hybrid
The goal of the current research was not to identify the best possible

training programme for speech perception in noise, but rather to test

whether musical beat training would be one possibility.

There are elements of the training which were successful. Participants

enjoyed the sessions – both the activities and the social aspect – and the

retention rate was 100%, showing that the training definitely satisfied the

emotion criterion of the OPERA hypothesis (Patel, 2014). The training was

also multimodal, which has been shown to enhance benefits and plasticity

compared to purely auditory training (Lappe et al., 2008, 2011).

Future training studies should retain these elements while considering if a

purely musical approach is the best option for improving speech perception

in noise. The potential benefits of music in terms of enjoyment and

compliance have already been discussed (see Section 1.1.4), and beat

perception does appear to be a suitable skill to target. However, this is

likely to be only a small part of the picture.
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It may be that the ideal training programme would involve a mixture of

musical and speech-based activities. For example, adding lyrics to the music

could be useful as song lyrics are often aligned such that stressed syllables

occur on the beat of the music. Poetry, especially that with fixed rhythmic

structures such as limericks, or even rap could also be used to develop

participants ability to entrain to regularities in speech, while still retaining

the enjoyable variety that is associated with musical training.

7.4 Conclusion
The goal of this thesis was to investigate the potential of musical training

as an intervention for improving speech perception in background noise.

The key findings from the current research are that:

1. musical beat perception is associated with speech perception in noise

2. rhythmic priming enhances the perception of targets in noise

In conclusion, musical training does have some potential for use as an

intervention for speech perception in noise. Any future attempts at

designing such a programme should consider musical beat perception as

a useful skill to target.
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