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Essential genes of pathogens are potential therapeutic targets, but are difficult to verify. Here, gene es-
sentiality was determined by targeted knockout following engineered gene duplication. Null mutants of
candidate essential genes of Clostridium difficile were viable only in the presence of a stable second copy
of the gene.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Clostridium is a bacterial genus composed of around 100 species
which are either of industrial or medical importance. Arguably, the
most noteworthy clostridial species are those that cause human
and animal diseases, and in particular Clostridium difficile.
Responsible for Clostridium difficile-associated disease (CDAD), it is
the leading cause of hospital-acquired and antibiotic-associated
diarrhoea worldwide. In the US, C. difficile was responsible for
almost half a million infections and 29,000 deaths in 2011, while
similar rates of infection are estimated in Europe [1,2]. Treatment
options remain limited [3]. Moreover, the emergence of strains
resistant to currently used antibiotics [4] has led the CDC to include
C. difficile as one of the major “Antibiotic Resistance Threats in the
United States, 2013” [5]. New therapies are required.

Oneoption is to identify those genes and their productswhich are
essential for the bacterium's survival, and thendevelop interventions
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that target that function. Direct demonstration of gene essentiality is
not, however, a straightforward process. One indirect approach, is to
use high-throughput sequencing methods (Transposon-Directed
InsertionSite Sequencing, TraDIS) to allowsimultaneous screeningof
saturating transposon libraries. Those genes found not to contain
transposon insertions are presumed to be essential for growth under
the conditions used to make the library [6]. When applied to the
C. difficile strainR20291, 404 geneswere suggested to be essential [7].
Another strategy, and that adopted here, is to show that a particular
gene can only be inactivated if the target cell is made a merodiploid
through the addition of a second functional copy of the gene in
question [8]. Our approach was made possible by the properties and
characteristics of two clostridial gene tools: (i) the ClosTron [9], a
Group II intron retargeting mutagen which is absolutely reliant on
the presence of a specific recognition sequencewithin the gene to be
inactivated, and (ii) Allele-Coupled Exchange (ACE) technology,
which allows the rapid integration of DNA of any size or complexity
into the C. difficile genome [10].

For proof of principle studies we chose metK (S-adenosylme-
thionine synthetase) and trpS (tryptophan tRNA synthetase) as
both have been shown to be essential in Bacillus subtilis [11] and
were included in the list of 404 essential C. difficile genes identified
using TraDIS [7]. Retargeted ClosTrons directed against each gene
were designed and constructed using standard procedures [9]. In
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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parallel, both genes were resynthesized exactly as the wildtype,
except over the two 45 nucleotide regions that encompassed two
predicted ClosTron target sequences. Here, several synonymous
codon replacements were made, in order to change the DNA
sequencewithout affecting the amino acid sequence of the encoded
MetK or TrpS protein (Fig. 1). As a consequence, these regions were
no longer recognised as intron targets using the Peruka algorithm
[12]. In each case, care was taken not introduce any rare-codons
into the amino acid sequence so the protein's translational effi-
ciency would be as close as possible to the native proteins.

The ACE integration vector pMTL-JH18 [10] is designed (through
provision of flanking asymmetric homology arms) to create a
deletion in the pyrE gene (encodes orotate phosphoribosyl-
transferase) which confers on the host resistance to 5-fluorouracil
(FOA). The two synthetic genes including their natural promoter,
were cloned into pMTL-JH18 [10], transformed into C. difficile
630Derm and plated on media supplemented with thiamphenicol.
Single crossover integrants, selected on the basis of their larger
colony size, were plated onto minimal media containing FOA and
uracil [10]. The majority of the FOA-resistant (R) colonies that arose
(e.g. 16 of 17 in the case of metK) were clones in which the metK or
trpS had integrated into the genome concomitant with inactivation
of the pyrE locus. Authenticity was confirmed by undertaking a PCR
screen employing two primers flanking pyrE (Fig. 2). Those few
Fig. 1. Protection of the synthetic merodiploid copy of the candidate essential gene. The Clos
(a) displayed by a box encompassing the two target sites for each candidate essential gene.
degenerate changes made to synthetic gene codons are shown in bold lowercase. Those chan
not used in the study.
FOAR colonies which arose that lacked an insertion most likely
represented spontaneous mutants in pyrE or pyrF.

The resulting merodiploids for metK and trpS were respectively
used in parallel with the wild type 630Derm strain, as recipients in
ClosTron mutagenesis experiments directed against the native
metK and trpS genes. Following the transfer of the four retargeted
plasmids (two targets for each gene) to both the wild type and the
appropriate merodiploid strain, putative ClosTron mutants were
isolated as erythromycin-resistant (EmR) colonies. In the case of the
wild type 630Derm strain, despite screening 70 such EmR clones for
each target, no intron insertions in either metK or trpS were
detected. In contrast, intron insertions were readily found when a
merodiploid strain was the recipient, with the majority of the 20
EmR colonies tested for each target being intron insertions in either
metK or trpS (Table 1). These data demonstrate that the metK and
trpS genes are essential under the growth conditions employed and
cannot be inactivated unless a second, functional copy of the gene is
also present in the cell.

Having demonstrated the utility of the system, CD0274, a pre-
viously [13] suspected essential gene identified and annotated as
gldA (glycerol dehydrogenase) in Clostridium beijerinckii and dhaT
(1,3-propandiol oxidoreductase) in C. difficile, was used to validate
the method. CD0274 is proposed to play a pivotal role in the
detoxification of the toxic metabolite methylglyoxal (MG) [13,14].
Tron group II intron recognises a 45mer target site on the sense (s) or anti-sense strand
The native gene (wt) is shown above, and the re-synthesised gene below (Synth). The
ges made outside of the boxed target regions represent alterative ClosTron target sites



Fig. 2. Construction of target gene merodiploid cell lines. (A) The synthetic gene (CD0274) lacking the intron target (dashed box) to be delivered is cloned between the two
homology arms of the replication defective vector, pMTL-JH18, and integrated into the genome using ACE [10]. Concomitant with integration, the pyrE gene is inactivated resulted in
a cell that is auxotrophic for uracil and resistance (R) to fluoroorotic acid (FOA). Insertion of the group II intron is selected on the basis of acquisition of resistance to erythromycin
due to acquisition of the activated ermB gene (indicated as a filled arrow). Insertion of the intron into the original CD0274 gene only takes place in the merodiploid cell and not the
wild type strain. The position of the two PCR primers F1 (Cdi630:pyrD-F1) and R1 (Cdi630:CD0189-R1) used to confirm insertion of the merodiploid gene at the pyrE locus is shown
beneath the relevant region of the genome. (B) PCR screening of three double crossover clones of each target gene (CD0274, metK and trpS) using primers Cdi630:pyrD-F1 (F1) and
Cdi630:CD0189-R1 (R1). The molecular weight marker (MW) used (lane 1) is an NEB 1 Kbp DNA Ladder. Lane 2 on all three gels is water only negative control, lane 3 is the wildtype
(expected size ~2 kbp) C. difficile 630Derm DNA control, lanes 4 are candidate clones of the three target genes as indicated (expected size ~ 3.3 kbp).

Table 1
ClosTron Group II intron Insertion Frequencies at Target Gene.

Target gene ClosTron target Wild type recipient Merodiploid recipient

Colonies screened Intron insertions Frequency (%) Colonies screened Intron insertions Frequency (%)

metK 548s 70 0 0 20 20 100
676a 70 0 0 20 20 100

trpS 548s 70 0 0 20 20 100
623a 70 0 0 20 18 90

CD0274 436a 70 0 0 20 15 75
460a 70 0 0 20 20 100
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Accordingly, the CD0274 gene was synthesised as before and the
sequences of the two highest scoring [12] ClosTron targets altered
through the use of degenerate codon sequences (Fig. 1). The syn-
thetic gene was sub-cloned into pMTL-JH18 [10] and integrated
into the genome at the pyrE locus using ACE [10]. Following the
constructing of the CD0274 merodiploid, we were able to show
that ClosTron mutants could be obtained with high efficiency in
this strain, but not in the parent 630Derm wild type strain
(Table 1). Previously, mutants made in this gene using single
crossover plasmid integration developed no further than pin-prick
colonies, and could not be propagated further [13]. Our data re-
inforces the view that this gene is essential and could represent
a potential drug target for combating C. difficile infections. Inter-
estingly, the equivalent gene in R20291 (CDR20291_0278 but
misannotated as metE) was not designated as essential in the
TraDIS study [7].

In this study, the necessary merodiploid cell was created
through ACE-mediated inactivation of the pyrE locus. An alternative
optionwould be to use a pyrEminus host and introduce the second
copy of the gene into the genome concomitant with correction of
the pyrE allele to wildtype. Restoration of uracil prototrophy
(growth on minimal media without uracil supplementation) rep-
resents a simpler selective phenotype. More importantly, because
the pyrE deletion mutation cannot revert, there can be no false
positives. The required pyrE minus mutants of C. difficile strains
R20291 and 630 are available [15], and are relatively easily created
in any Clostridium [16].

In conclusion, we have developed a simple and rapid method
that may be used to experimentally confirm essentiality in, but not
limited to, C. difficile. Using this system, we demonstrated that trpS,
metK, and CD0274 are essential in C. difficile 630Derm. Our method
may be used to confirm suggestions of essentiality that arise from
genome-wide mutational methods such as TraDIS.
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