-

View metadata, citation and similar papers at core.ac.uk brought to you byj’f CORE

provided by Nottingham ePrints

r The Uniyersitg of
M | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Ulker, Ozgr and Landa-Silva, Dario (2010) A O/1 integer
programming model for the office space allocation
problem. Electronic Notes in Discrete Mathematics, 36 .
pp. 575-582. ISSN 1571-0653

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/35596/1/dls_isc02010.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:
The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please

see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

https://core.ac.uk/display/76971923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

A 0/1 Integer Programming Model for the
Office Space Allocation Problem

Ozgir Ulker! and Dario Landa-Silva

Automated Scheduling, Optimisation and Planning (ASAP) Research Group
School of Computer Science, University of Nottingham, UK

Abstract

We propose a 0/1 integer programming model to tackle the office space aliof@ga)
problem which refers to assigning room space to a set of entities (peopihines, roles,
etc.), with the goal of optimising the space utilisation while satisfying a set of addlitio
requirements. In the proposed approach, these requirements can bkecthasieonstraints
(hard constraints) or as objectives (soft constraints). Then, weuobisome experiments
on benchmark instances and observe that setting certain constraintslgadtaal con-
straints) or soft (objectives) has a significant impact on the computatiiffiaulty on this
combinatorial optimisation problem.

Keywords: Office Space Allocation, Integer Programming

1 Introduction

In this work, we tackle the office space allocation (OSA) pealy commonly en-
countered in universities, companies, government inging, etc. The problem
Is that of having a set of rooms (offices, halls, etc.), a setntities (people, ma-
chines, roles, etc.) and then to allocate each of the enti@ room. Each room
has a capacity and each entity has a size. One of the goalspgitoise the space
utilisation by means of minimising the space wastage (wleg room capacity)
and space overuse (exceeding room capacity). Other gogls mclude satisfy-
ing certain requirements that establish conditions fovtag in which entities are
allocated to rooms (more details below).

1 Email: oxu@s. nott. ac. uk
2 Email: dari o. | andasi | va@ot ti ngham ac. uk

One of the earliest works on the optimisation of office spadesation is that
of Ritzman et al. 8], who developed a linear programming model for the distribu
tion of academic offices at the Ohio State University. Benjaeatial. [L] also used
linear programming for planning the layout of floor space manufacturing lab-
oratory. Giannikos et al5] developed a goal programming approach to automate
the distribution of offices among staff in an academic insth. More recently, re-
searchers have proposed several heuristic approachkslimgcpopulation-based
meta-heuristics and multi-objective methods, to tackéedfiice space allocation
problem in Universities3,2,4]. The most recent results on benchmark instances
of the office space allocation problem investigated hermreported in the paper
by Landa-Siva and Burke/[who developed an asynchronous cooperative local
search method. In this study, we tackle the office spaceatltmt problem as de-
scribed in Landa-Silvad]. We develop a 0/1 integer programming formulation for
this problem and then apply CPLEX to solve the model.

Section2 defines the office space allocation problem studied here @sdpts
the proposed 0/1 integer programming model. Sec8doriefly describes the
benchmark instances used in our experiments and presentgghlts from our
initial study to investigate the computational difficultiitbe proposed model. Our
experiments focus on trying to understand whether setongesconstraints as hard
or as soft has a significant impact of the difficulty of the OSAlgem. The Final
Remarks section summarises our observations and desaooipesfgture work.

2 TheProposed 0/1 | P Formulation

The set of rooms is denoted BR/and the set of entities is denoted By Let & be
the size of entitye andC; the capacity of room. There is a matrix of |R| x |E|
binary decision variables where eadk = 1 if entity e is allocated to roonr,
otherwiseder = 0. Let A be the adjacency list dR| adjacency vectors each one
denoted byA; and holding the list of rooms that are adjacent to raor8imilarly,
let N be the nearby list ofR| nearby vectors each one denoted\Npyand holding
the list of rooms that are near to roam The adjacency vectok, for a roomr
is usually quite smaller compared to the nearby vedtqri.e. more rooms are
considered to be near to roanthan considered adjacent to the same room.

There are seven requirements or constraints that we haadde Any of these
constraints can be set hard (must be satisfied) @oft(desirable to satisfy) in our
formulation. In other words, when a constraint is set as soiftimising its viola-
tion becomes an objective in the problem formulation. Theegkion here is the
All allocated constraint (all entities must be allocated) which is alwagorced.
The next subsections present these alternative formofatio

2.1 Modelling Hard Constraints
All allocated: each entitye € E must be allocated to exactly one roora R.
(1) ;6@' =1 VecE

re

Allocation: entity e has to be allocated to room
2 Oer =1
Sameroom: entitiese; ande, have to be allocated to the same room.
Oer=1-0,r=1 VreR ie.
3) Oer —0er =0 VIreR
Not sharing: entity e should not share a room with any other entity.
Oer=1—03 =0 VBec(E—-€) VreR ie.

4) Oer+03 <1 VBc(E—€) VreR
6er:1—> 6er:1 VI’ € R |e
2
) Gor < 3 Gor < [E| - (E -1 W1 R
ec

Adjacency: entitiese; ande; have to be allocated to adjacent rooms.
SS

(6) Oeyr < Zléezsgl VreR
Sc

Group by: entities in a group have to be allocated near to the groug.hea
SNy

(7 Ber < %65331 vreR
SEN;

Away from: entitiese; ande; have to be allocated in rooms away from each other.

SEN

(8) 0< Z‘ZSezsgl—éelr VreR
SENy

2.2 Modelling Constraints as Objectives
Allocation: indicator variables®® is set if soft constraint not satisfied.
9 0% =184

Same room: indicator variableo® is set if soft constraint not satisfied {s an
arbitrarily small number which we set to 0.01).
(10) 209 — 1< 8 — By <1—e+€0% WreR
(11) 0% = ERGEZ
re

Not sharing: indicator variableo® is set if soft constraint not satisfied.
(12) VBE(E—6€) (1+&) —(1+&)0F <8+ <2—02 VreR

(13) 0% = ;1 — o
re
Adjacency: indicator variables® is set if soft constraint not satisfied.
(14) Of* + &g — 1< §6@s§6e1r—s+(1+s)o$4
Sc
(15) 0% = ;1 — g%
re

Group by: indicator variables® is set if soft constraint not satisfied.

(16) 0P +8er—1< %Bﬁsgéer—s+(l+s)cf5 vreR
SENr
(17) o® = Epl —o®
re
Away from: indicator variables® is set if soft constraint not satisfied.
(18) 1—8er+e—(14€)0B < § 8e,s<2—8er—0® VreR
se
(19) 0% = ERl —o®
re

Note that we use two different formulations for tNet sharingconstraint. The
first formulation is based on comparing each row vector (r®poai that specific
entity with all the other row vectors of the other entitieheTother formulation is
based on the notion that the column sum of a room should bd &moae if that
specific entity is allocated to that room. We observed thatféhmer formulation

uses too much memory in the linear relaxation stage at thenmae but yields
better results faster while the latter formulation usesamsterably less memory.
Therefore, in our experiments, we used a combination of tvmélations for a
balance of memory consumption and computation time.

2.3 Objective Function

We consider the minimisation objective to be a weighted eggfing function com-
prising of two parts:

ObjectiveFunction= UsagePenalty- So ftConstraintPenalty

TheUsagePenaltpart is the weighted sum of the penalty due to the overuse and
underuse of office space. Usually, it is more undesirabla fmom to be overused
than underused. Then, we penalise overuse more by settirggghtvequal to 2.
The amount of overused or underused office space is simptyletéd by taking
the absolute value of the difference between the room ciypacd the space used
by the entities allocated to the room.

UsagePenalty= underuser 2 x overuse

The SoftConstraintPenaltis the weighted sum of the penalty due to the vio-
lation of the constraints that are considered soft. Sincevewet to compare our
results with those previously reported in the literature,wse the penalty weights
for the violation of soft constraints as if)]][Recall that. is the size of entitg and
C; is the capacity of room. The penalty weight for the violation of soft constraint
cj is denoted as’l. Then, the objective function to minimise is given by:

j=6 |c]

20 Z=Ymax[C~ § 8%,2F 8 -C |+ T W o
@ 2 gmm(o- gas agas-o) 5l

3 Experimentsand Results

We used a set of six benchmark instances taken frgjm To solve the 0/1 IP
formulation, we used CPLEX 11 (single-threaded mode) on a RIC processor
Core 2 Duo E8400 3Ghz and 2GB of RAM. When dealing with the comsgras
objectives, we used the penalty weights as@h Allocation penalty = 20,Same
room penalty = 10Not sharingpenalty = 50 Adjacencypenalty = 10Grouped by
penalty = 11.18, andway frompenalty = 10.

In our initial experiments, we set all constraints as hard @ied to minimise
the space usage penalty. However, we were unable to findial&sglution for any
of the benchmark datasets. We then observed that the cotoputiane required

by the solver increases considerably as more terms arededlin the objective
function. For example, we incorporated all constraintsasiato the objective
function. For larger instances, this resulted in unreasien@mputation times with
poor lower bounds. Therefore, we later decided to set sorntfgea$oft constraints
as hard removing them from the objective function. By doing,tive were able
to obtain better results in considerably less computaiime.t We now report on
experiments in which the two constraints studied areMleationandSame room
constraints.

Tablel shows the results obtained by setting 8ame roontonstraints as hard
and using 2000 seconds as the limit on the computation tintee 2Zhd and 3rd
columns show the obtained results and percentage gaps ewoptimal solution
when all theAllocation constraints are set as hard. The 4th and 5th columns show
the obtained results and percentage gaps when alltbeationconstraints are set
as soft. Note that except for instance Notta, the solver Wwésta obtain optimal
results for all instances. We can also observe that for akirestances, the optimal
result remains the same regardless ofAlecationconstraints being set as hard or
soft whenSame roonconstraints are set as hard.

Allocation (hard) || Allocation (soft)

Instance| Result| Gap % | Result| Gap %
Notta | 379.88| 0.0 N/A N/A
Nottb | 410.26 0.0 410.26| 0.0
Nottc | 414.58| 0.0 305.73) 0.0
Nottd | 202.73] 0.0 202.73| 0.0
Notte | 177.70 0.0 177.70, 0.0

Wolver | 634.20 0.0 634.20, 0.0

Table 1
Results obtained on the satisfaction of &kicationconstraints when thBame room
constraints are set as hard.

We observed from our experiments that the most difficult softstraint to op-
timise seems to be tHgame roontonstraint. To clarify this issue, we now present
additional results on the Notta and Nottb instances froneargents in which we
set a percentage of tt&ame roontonstraints as hard whilgllocation constraints
are set as hard (the other constraints are set as before)infdbmit for these ex-
periments was 1 hour and 2 hours for Nottb and Notta resgdgtiVhe results are
presented in Tabl2 where the 1st column shows the percentaggashe rooncon-

Notta Nottb

% | Result| Bound| Gap % | Result| Bound| Gap %
0 |410.26| 410.26/ 0.00 | 379.88| 379.88| 0.00
20 | 351.06| 350.96| 0.03 || 379.88| 353.22| 7.02
40 | 312.28| 286.80| 8.16 | 379.88| 353.22| 7.02
60 | 309.61| 260.52| 15.86 || 385.38| 333.89| 13.36
80 | 265.26| 180.51| 31.95 || 415.91| 307.88| 25.97
100 | 246.18| 139.35| 43.40 || 392.88| 307.88| 21.64

Table 2
Results obtained by setting a percentage of Same Room constraints asikoft wh
Allocationconstraints are set as hard.

straints set as hard in each instance. The columsiglt boundandgap show the
results found and the percentage gap from the lower bourainaat after the time
limit expires. As it can be seen from these results, whils passible to ‘soften’
theSame roonconstraint and obtain better results for Nottb, the lowentabdrops
drastically for this dataset (from 410.26 to 139.35). Hoarder Notta instance, the
drop for the lower bound was not as drastic (from 379.88 ta&®)/yet we were
not even able to improve the results when we ‘soften’Shene roontonstraint.

Instance| Best Obtained Best Literature
Notta 379.88 482.20
Nottb 246.18 417.20
Nottc 305.73 315.40
Nottd 202.70 N/A
Notte 177.70 N/A
Wolver 634.20 634.20
Table 3

Best results obtained compared with the literature.

Finally, in Table3 we compare the best results from our experiments to the best
results reported in the literature for the benchmark instarconsidered heré][
We were able to improve on the previous results considerably

4 Final Remarks

We presented a 0/1 IP formulation to tackle the office spdoeation problem. In
this model, constraints can be set as hard (actual consfrainsoft (objectives),
giving flexibility to model different situations arising meal-world scenarios. We
presented some results from our experiments on solving tlaemvith CPLEX. So
far, our results indicate that setting all constraint type$iard makes the problem
unsolvable. Also, setting the satisfaction of thame roontonstraint as objec-
tive seems to be particularly challenging. Future work eorglates modifying the
IP model to improve computational time and memory consumptileveloping a
general IP model, and developing hybrids between the IP hasakheuristics.

References

[1] Benjamin, C., I. Ehie and Y. Omurta@Janning facilities at the university of missouri-
rolla, Interface22 (1992), pp. 94-105.

[2] Burke, E. K., P. Cowling and J. D. Landa Siludybrid population-based metaheuristic
approaches for the space allocation probldm Proceedings of the 2001 Congress on
Evolutionary Computatio2001), pp. 232-239.

[3] Burke, E. K., P. Cowling, J. D. Landa Silva and B. McColluifhree methods to
automate the space allocation process in uk universitiesThe Practice and Theory
of Automated Timetabling Ill, LNCS 2072001), pp. 254-273.

[4] Burke, E. K., J. D. Landa Silva and E. Soubeiddulti-objective hyper-heuristic
approaches for space allocation and timetablirig: T. Ibaraki, K. Nonobe and
M. Yagiura, editors,Meta-heuristics: Progress as Real Problem Solvers, Selected
Papers from the 5th Metaheuristics International Conferef2@95), pp. 129-158.

[5] Giannikos, J., E. El-Darzi and P. Lee) integer goal programming model to allocate
offices to staff in an academic instituitiodournal of the Operational Research Society
46 (1995), pp. 713-720.

[6] Landa-Silva, D., “Metaheuristics and Multiobjective ApproachesSpace Allocation,”
Ph.D. thesis, School of Computer Science and Information technologyetdity of
Nottingham (2003).

[7] Landa-Silva, D. and E. BurkeAdsynchronous cooperative local search for the office-
space-allocation problemiNFORMS Journal on Computintp (2007), pp. 575-587.

[8] Ritzman, L., J. Bradford and R. Jacolsmultiple objective approach to space planning
for academic facilitiesManagament Scien@b (1980), pp. 895-906.

	Introduction
	The Proposed 0/1 IP Formulation
	Modelling Hard Constraints
	Modelling Constraints as Objectives
	Objective Function

	Experiments and Results
	Final Remarks
	References

