
Ulker, Ozgr and Landa-Silva, Dario (2010) A 0/1 integer
programming model for the office space allocation
problem. Electronic Notes in Discrete Mathematics, 36 .
pp. 575-582. ISSN 1571-0653

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/35596/1/dls_isco2010.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76971923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

A 0/1 Integer Programming Model for the
Office Space Allocation Problem

Özg̈ur Ülker1 and Dario Landa-Silva2

Automated Scheduling, Optimisation and Planning (ASAP) Research Group
School of Computer Science, University of Nottingham, UK

Abstract

We propose a 0/1 integer programming model to tackle the office space allocation (OSA)
problem which refers to assigning room space to a set of entities (people,machines, roles,
etc.), with the goal of optimising the space utilisation while satisfying a set of additional
requirements. In the proposed approach, these requirements can be modelled as constraints
(hard constraints) or as objectives (soft constraints). Then, we conduct some experiments
on benchmark instances and observe that setting certain constraints as hard (actual con-
straints) or soft (objectives) has a significant impact on the computationaldifficulty on this
combinatorial optimisation problem.

Keywords: Office Space Allocation, Integer Programming

1 Introduction

In this work, we tackle the office space allocation (OSA) problem, commonly en-
countered in universities, companies, government institutions, etc. The problem
is that of having a set of rooms (offices, halls, etc.), a set ofentities (people, ma-
chines, roles, etc.) and then to allocate each of the entities to a room. Each room
has a capacity and each entity has a size. One of the goals is tooptimise the space
utilisation by means of minimising the space wastage (underusing room capacity)
and space overuse (exceeding room capacity). Other goals might include satisfy-
ing certain requirements that establish conditions for theway in which entities are
allocated to rooms (more details below).

1 Email: oxu@cs.nott.ac.uk
2 Email: dario.landasilva@nottingham.ac.uk

One of the earliest works on the optimisation of office space utilisation is that
of Ritzman et al. [8], who developed a linear programming model for the distribu-
tion of academic offices at the Ohio State University. Benjamin et al. [1] also used
linear programming for planning the layout of floor space in amanufacturing lab-
oratory. Giannikos et al. [5] developed a goal programming approach to automate
the distribution of offices among staff in an academic institution. More recently, re-
searchers have proposed several heuristic approaches, including population-based
meta-heuristics and multi-objective methods, to tackle the office space allocation
problem in Universities [3,2,4]. The most recent results on benchmark instances
of the office space allocation problem investigated here, are reported in the paper
by Landa-Siva and Burke [7] who developed an asynchronous cooperative local
search method. In this study, we tackle the office space allocation problem as de-
scribed in Landa-Silva [6]. We develop a 0/1 integer programming formulation for
this problem and then apply CPLEX to solve the model.

Section2 defines the office space allocation problem studied here and presents
the proposed 0/1 integer programming model. Section3 briefly describes the
benchmark instances used in our experiments and presents the results from our
initial study to investigate the computational difficulty of the proposed model. Our
experiments focus on trying to understand whether setting some constraints as hard
or as soft has a significant impact of the difficulty of the OSA problem. The Final
Remarks section summarises our observations and describes some future work.

2 The Proposed 0/1 IP Formulation

The set of rooms is denoted byR and the set of entities is denoted byE. Let Se be
the size of entitye andCr the capacity of roomr. There is a matrixδ of |R|× |E|
binary decision variables where eachδer = 1 if entity e is allocated to roomr,
otherwiseδer = 0. Let A be the adjacency list of|R| adjacency vectors each one
denoted byAr and holding the list of rooms that are adjacent to roomr. Similarly,
let N be the nearby list of|R| nearby vectors each one denoted byNr and holding
the list of rooms that are near to roomr. The adjacency vectorAr for a roomr
is usually quite smaller compared to the nearby vectorNr , i.e. more rooms are
considered to be near to roomr than considered adjacent to the same room.

There are seven requirements or constraints that we handle here. Any of these
constraints can be set ashard (must be satisfied) orsoft(desirable to satisfy) in our
formulation. In other words, when a constraint is set as soft, minimising its viola-
tion becomes an objective in the problem formulation. The exception here is the
All allocatedconstraint (all entities must be allocated) which is alwaysenforced.
The next subsections present these alternative formulations.

2.1 Modelling Hard Constraints

All allocated: each entitye∈ E must be allocated to exactly one roomr ∈ R.

∑
r∈R

δer = 1 ∀e∈ E(1)

Allocation: entity ehas to be allocated to roomr.

δer = 1(2)

Same room: entitiese1 ande2 have to be allocated to the same room.

δe1r = 1↔ δe2r = 1 ∀r ∈ R i.e.

δe1r −δe2r = 0 ∀r ∈ R(3)

Not sharing: entityeshould not share a room with any other entity.

δer = 1→ δβr = 0 ∀β ∈ (E−e) ∀r ∈ R i.e.

δer +δβr ≤ 1 ∀β ∈ (E−e) ∀r ∈ R(4)

δer = 1→ ∑
e∈E

δer = 1 ∀r ∈ R i.e.

δer ≤ ∑
e∈E

δer ≤ |E|− (|E|−1)δer ∀r ∈ R(5)

Adjacency: entitiese1 ande2 have to be allocated to adjacent rooms.

δe1r = 1→ ∑
s∈Ar

δe2s = 1 ∀r ∈ R i.e.

δe1r ≤ ∑
s∈Ar

δe2s ≤ 1 ∀r ∈ R(6)

Group by: entities in a group have to be allocated near to the group head.

δer = 1→ ∑
s∈Nr

δβs = 1 ∀r ∈ R i.e.

δer ≤ ∑
s∈Nr

δβs ≤ 1 ∀r ∈ R(7)

Away from: entitiese1 ande2 have to be allocated in rooms away from each other.

δe1r = 1→ ∑
s∈Nr

δe2s = 0 ∀r ∈ R i.e

0≤ ∑
s∈Nr

δe2s ≤ 1−δe1r ∀r ∈ R(8)

2.2 Modelling Constraints as Objectives

Allocation: indicator variableσc1 is set if soft constraint not satisfied.

σc1 = 1−δαr(9)

Same room: indicator variableσc2 is set if soft constraint not satisfied (ε is an
arbitrarily small number which we set to 0.01).

2σc2
r −1≤ δe1r −δe2r ≤ 1− ε+ εσc2

r ∀r ∈ R(10)

σc2 = ∑
r∈R

σc2
r(11)

Not sharing: indicator variableσc3 is set if soft constraint not satisfied.

∀β ∈ (E−e) (1+ ε)− (1+ ε)σc3
r ≤ δer +δβr ≤ 2−σc3

r ∀r ∈ R(12)

σc3 = ∑
r∈R

1−σc3
r(13)

Adjacency: indicator variableσc4 is set if soft constraint not satisfied.

σc4
r +δe1r −1≤ ∑

s∈Ar

δe2s ≤ δe1r − ε+(1+ ε)σc4
r(14)

σc4 = ∑
r∈R

1−σc4
r(15)

Group by: indicator variableσc5 is set if soft constraint not satisfied.

σc5
r +δer−1≤ ∑

s∈Nr

δβs ≤ δer− ε+(1+ ε)σc5
r ∀r ∈ R(16)

σc5 = ∑
r∈R

1−σc5
r(17)

Away from: indicator variableσc6 is set if soft constraint not satisfied.

1−δe1r + ε− (1+ ε)σc6
r ≤ ∑

s∈Nr

δe2s ≤ 2−δer−σc6
r ∀r ∈ R(18)

σc6 = ∑
r∈R

1−σc6
r(19)

Note that we use two different formulations for theNot sharingconstraint. The
first formulation is based on comparing each row vector (rooms) of that specific
entity with all the other row vectors of the other entities. The other formulation is
based on the notion that the column sum of a room should be equal to one if that
specific entity is allocated to that room. We observed that the former formulation

uses too much memory in the linear relaxation stage at the root node but yields
better results faster while the latter formulation uses up considerably less memory.
Therefore, in our experiments, we used a combination of two formulations for a
balance of memory consumption and computation time.

2.3 Objective Function

We consider the minimisation objective to be a weighted aggregating function com-
prising of two parts:

Ob jectiveFunction= UsagePenalty+So f tConstraintPenalty

TheUsagePenaltypart is the weighted sum of the penalty due to the overuse and
underuse of office space. Usually, it is more undesirable fora room to be overused
than underused. Then, we penalise overuse more by setting a weight equal to 2.
The amount of overused or underused office space is simply calculated by taking
the absolute value of the difference between the room capacity and the space used
by the entities allocated to the room.

UsagePenalty= underuse+2×overuse

The SoftConstraintPenaltyis the weighted sum of the penalty due to the vio-
lation of the constraints that are considered soft. Since wewant to compare our
results with those previously reported in the literature, we use the penalty weights
for the violation of soft constraints as in [6]. Recall thatSe is the size of entityeand
Cr is the capacity of roomr. The penalty weight for the violation of soft constraint
c j is denoted aswc j. Then, the objective function to minimise is given by:

Z = ∑
r∈R

max

(

Cr − ∑
e∈E

δerSe , 2 ∑
e∈E

δerSe−Cr

)

+
j=6

∑
j=1

wc j
|c j|

∑σc j(20)

3 Experiments and Results

We used a set of six benchmark instances taken from [6]. To solve the 0/1 IP
formulation, we used CPLEX 11 (single-threaded mode) on a PC with processor
Core 2 Duo E8400 3Ghz and 2GB of RAM. When dealing with the constraints as
objectives, we used the penalty weights as in [6]: Allocation penalty = 20,Same
roompenalty = 10,Not sharingpenalty = 50,Adjacencypenalty = 10,Grouped by
penalty = 11.18, andAway frompenalty = 10.

In our initial experiments, we set all constraints as hard and tried to minimise
the space usage penalty. However, we were unable to find a feasible solution for any
of the benchmark datasets. We then observed that the computation time required

by the solver increases considerably as more terms are included in the objective
function. For example, we incorporated all constraints as soft into the objective
function. For larger instances, this resulted in unreasonable computation times with
poor lower bounds. Therefore, we later decided to set some ofthe soft constraints
as hard removing them from the objective function. By doing this, we were able
to obtain better results in considerably less computation time. We now report on
experiments in which the two constraints studied are theAllocationandSame room
constraints.

Table1 shows the results obtained by setting theSame roomconstraints as hard
and using 2000 seconds as the limit on the computation time. The 2nd and 3rd
columns show the obtained results and percentage gaps from the optimal solution
when all theAllocationconstraints are set as hard. The 4th and 5th columns show
the obtained results and percentage gaps when all theAllocationconstraints are set
as soft. Note that except for instance Notta, the solver was able to obtain optimal
results for all instances. We can also observe that for several instances, the optimal
result remains the same regardless of theAllocationconstraints being set as hard or
soft whenSame roomconstraints are set as hard.

Allocation (hard) Allocation (soft)

Instance Result Gap % Result Gap %

Notta 379.88 0.0 N/A N/A

Nottb 410.26 0.0 410.26 0.0

Nottc 414.58 0.0 305.73 0.0

Nottd 202.73 0.0 202.73 0.0

Notte 177.70 0.0 177.70 0.0

Wolver 634.20 0.0 634.20 0.0

Table 1
Results obtained on the satisfaction of theAllocationconstraints when theSame room

constraints are set as hard.

We observed from our experiments that the most difficult softconstraint to op-
timise seems to be theSame roomconstraint. To clarify this issue, we now present
additional results on the Notta and Nottb instances from experiments in which we
set a percentage of theSame roomconstraints as hard whileAllocationconstraints
are set as hard (the other constraints are set as before). Thetime limit for these ex-
periments was 1 hour and 2 hours for Nottb and Notta respectively. The results are
presented in Table2 where the 1st column shows the percentage ofSame roomcon-

Notta Nottb

% Result Bound Gap % Result Bound Gap %

0 410.26 410.26 0.00 379.88 379.88 0.00

20 351.06 350.96 0.03 379.88 353.22 7.02

40 312.28 286.80 8.16 379.88 353.22 7.02

60 309.61 260.52 15.86 385.38 333.89 13.36

80 265.26 180.51 31.95 415.91 307.88 25.97

100 246.18 139.35 43.40 392.88 307.88 21.64

Table 2
Results obtained by setting a percentage of Same Room constraints as soft while

Allocationconstraints are set as hard.

straints set as hard in each instance. The columnsresult, boundandgapshow the
results found and the percentage gap from the lower bound obtained after the time
limit expires. As it can be seen from these results, while it is possible to ‘soften’
theSame roomconstraint and obtain better results for Nottb, the lower bound drops
drastically for this dataset (from 410.26 to 139.35). However for Notta instance, the
drop for the lower bound was not as drastic (from 379.88 to 307.88) yet we were
not even able to improve the results when we ‘soften’ theSame roomconstraint.

Instance Best Obtained Best Literature

Notta 379.88 482.20

Nottb 246.18 417.20

Nottc 305.73 315.40

Nottd 202.70 N/A

Notte 177.70 N/A

Wolver 634.20 634.20

Table 3
Best results obtained compared with the literature.

Finally, in Table3 we compare the best results from our experiments to the best
results reported in the literature for the benchmark instances considered here [7].
We were able to improve on the previous results considerably.

4 Final Remarks

We presented a 0/1 IP formulation to tackle the office space allocation problem. In
this model, constraints can be set as hard (actual constraints) or soft (objectives),
giving flexibility to model different situations arising inreal-world scenarios. We
presented some results from our experiments on solving the model with CPLEX. So
far, our results indicate that setting all constraint typesas hard makes the problem
unsolvable. Also, setting the satisfaction of theSame roomconstraint as objec-
tive seems to be particularly challenging. Future work contemplates modifying the
IP model to improve computational time and memory consumption, developing a
general IP model, and developing hybrids between the IP model and heuristics.

References

[1] Benjamin, C., I. Ehie and Y. Omurtag,Planning facilities at the university of missouri-
rolla, Interfaces22 (1992), pp. 94–105.

[2] Burke, E. K., P. Cowling and J. D. Landa Silva,Hybrid population-based metaheuristic
approaches for the space allocation problem, in: Proceedings of the 2001 Congress on
Evolutionary Computation(2001), pp. 232–239.

[3] Burke, E. K., P. Cowling, J. D. Landa Silva and B. McCollum,Three methods to
automate the space allocation process in uk universities, in: The Practice and Theory
of Automated Timetabling III, LNCS 2079(2001), pp. 254–273.

[4] Burke, E. K., J. D. Landa Silva and E. Soubeiga,Multi-objective hyper-heuristic
approaches for space allocation and timetabling, in: T. Ibaraki, K. Nonobe and
M. Yagiura, editors,Meta-heuristics: Progress as Real Problem Solvers, Selected
Papers from the 5th Metaheuristics International Conference(2005), pp. 129–158.

[5] Giannikos, J., E. El-Darzi and P. Lees,An integer goal programming model to allocate
offices to staff in an academic instituition, Journal of the Operational Research Society
46 (1995), pp. 713–720.

[6] Landa-Silva, D., “Metaheuristics and Multiobjective Approaches forSpace Allocation,”
Ph.D. thesis, School of Computer Science and Information technology, University of
Nottingham (2003).

[7] Landa-Silva, D. and E. Burke,Asynchronous cooperative local search for the office-
space-allocation problem, INFORMS Journal on Computing19 (2007), pp. 575–587.

[8] Ritzman, L., J. Bradford and R. Jacobs,A multiple objective approach to space planning
for academic facilities, Managament Science25 (1980), pp. 895–906.

	Introduction
	The Proposed 0/1 IP Formulation
	Modelling Hard Constraints
	Modelling Constraints as Objectives
	Objective Function

	Experiments and Results
	Final Remarks
	References

