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Significance and Impact of the Study 13 

In this study, ultrasonic acoustic vibration is presented as a chemical-free, 14 

ecologically friendly alternative to conventional methods for the perturbation of microbial 15 

attachment to submerged surfaces. The results indicate the potential of an ultrasonic anti-bio-16 

fouling method for the disruption of microbial bio-films on marine sensor housings, which is 17 

typically a principle limiting factor in their long-term operation in the oceans. With 18 

increasing deployment of scientific apparatus in aquatic environments, including further off-19 

shore and for longer duration, the identification and evaluation of novel anti-fouling 20 

strategies that don’t employ hazardous chemicals are widely sought. 21 

  22 



Abstract 23 

Bio-fouling is a process of ecological succession which begins with the attachment 24 

and colonisation of microorganisms to a submerged surface. For marine sensors and their 25 

housings, bio-fouling can be one of the principle limitations to long-term deployment and 26 

reliability. Conventional anti-bio-fouling strategies using biocides can be hazardous to the 27 

environment, and therefore alternative chemical-free methods are preferred. In this study, 28 

custom made testing assemblies were used to evaluate ultrasonic vibration as an anti-bio-29 

fouling process for marine sensor housing materials over a 28-day time course. Microbial 30 

bio-fouling was measured based on (1) surface coverage, using fluorescence microscopy, and 31 

(2) bacterial 16S rDNA gene copies, using Quantitative PCR. Ultrasonic vibrations (20 KHz, 32 

200 ms pulses at 2 s intervals; total power 16.08 W) significantly reduced the surface 33 

coverage on two plastics, PMMA and PVC for up to 28 days. Bacterial gene copy number 34 

was similarly reduced, but the results were only statistically significant for PVC, which 35 

displayed the greatest overall resistance to bio-fouling, regardless of whether ultrasonic 36 

vibration was applied. Copper sheet, which has intrinsic biocidal properties was resistant to 37 

bio-fouling during the early stages of the experiment, but inhibited measurements made by 38 

PCR and generated inconsistent results later on.   39 
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Introduction 46 

Environmental monitoring networks increasingly rely upon the long-term deployment 47 

of sensor equipment in the ocean (Hart and Martinez, 2006). However, the accuracy and 48 

reliability of these systems are rapidly impaired by bio-fouling. This is a process of 49 

ecological succession, which begins with the formation of a conditioning film containing 50 

dissolved organic compounds (proteins and polysaccharides) leading to the establishment of a 51 

bacterial biofilm. This paves the way for the recruitment and settlement of single-celled 52 

eukaryotes and, later, marine invertebrates (Callow and Callow, 2002). The gradual build-up 53 

of bio-material on sensors and their housings can obstruct water movement, modify the 54 

microenvironment around the sensor head, obscure optical windows and electrodes, and 55 

increase the rate of corrosion (Videla and Characklis, 1992). At the end of the deployment 56 

lifetime the apparatus must be removed to dry dock and cleaned, often requiring hazardous 57 

chemicals, and leading to increased maintenance costs and “down-time”. Sensitive equipment 58 

such as sensor electrode arrays require specialist cleaning or must be replaced after each 59 

deployment.  60 

Current methods to reduce bio-fouling on sensors include, but are not limited to, the 61 

use of biocidal materials and coatings, the controlled release or generation of biocidal 62 

chemicals, and physical removal using wipers, scrapers or water jets (Manov et al., 2004; 63 

Whelan and Regan, 2006; Delauney et al., 2010). Each method has unique advantages and 64 

limitations; for example biocides contaminate the environment being monitored (Terlizzi et 65 

al., 2001), coatings can erode or become damaged and wipers require complicated moving 66 

parts, which must remain water-tight. Acoustic vibration, either within the audible (20 Hz – ≤ 67 

20 KHz) or ultrasonic (≥ 20 KHz) frequency range, has been demonstrated as a promising, 68 

ecologically friendly alternative to conventional methods for the removal of organic and in-69 

organic material attached to submerged surfaces (Gittens et al., 2013; Legg et al., 2015). For 70 



clarity, the term “ultrasonic” is used herein to describe the acoustic vibration used in this 71 

study, 20 kHz, which lies on the border between the audible and ultrasonic frequencies. The 72 

cavitation induced by ultrasonic pulses propagating through water can inhibit bio-fouling on 73 

solid sub-strata, including the removal or destruction of bacterial biofilms (Qian et al., 1997; 74 

Mermillod-Blondin et al., 2001), and reduction in the settlement rate of barnacle larvae 75 

(Branscomb and Rittschof, 1984; Kitamura et al., 1995; Guo et al., 2011a; Guo et al., 2011b). 76 

The latter is most pronounced at a frequency of approximately 20 KHz (Kitamura et al., 77 

1995; Guo et al., 2011b). Not surprisingly, there are numerous patents relating to the use of 78 

acoustics for the removal of bio-fouling, and ultrasonic cleaning systems are already 79 

underdevelopment (Mazue et al., 2011) or commercially available for “in the water” 80 

maintenance of ship / boat hulls (e.g. SonicShield by CMS Marine Ltd, SHIPSONIC by 81 

Globus Benelux, Sonihull by NRG Marine Ltd, UltraSystem by Ultrasonic Antifouling Ltd 82 

and ClearHull by Ultrasonic Works Ltd). Recently, a multi-national European collaboration, 83 

the “Cleanship” project, undertook field trials of an ultrasound-based method for the 84 

detection and prevention of bio-fouling on submerged steel plates (De Carellan et al., 2014), 85 

and there have been reports of successful long-term sea trails of acoustic anti-biofouling 86 

systems fitted to commercial and military vessels, although these references are not readily 87 

available.  88 

Despite the clear potential, and increasing popularity of ultrasonic anti-fouling 89 

methods, there is a paucity of data relating to the potential application for the protection of 90 

marine sensing. In this study, ultrasonic acoustic vibration is evaluated as an anti-bio-fouling 91 

method on three types of material used for the fabrication of marine sensor housings; 92 

Poly(methyl methacrylate) (PMMA), Polyvinyl chloride (PVC) and Copper (Cu). The tests 93 

were carried out on small pieces of each material, the size of a microscope slide, which were 94 

fixed to stainless steel plates via nylon spacers. The plates were submerged at 1.5 m depth, in 95 



baffled housings, in a busy industrial dock for 28 days during the summer of 2015. One plate 96 

was fitted with a commercially available ultrasonic transducer, the ClearHull 110 system, 97 

which produced ultrasonic acoustic vibrations (20 KHz 200 ms pulses at 2 s intervals; total 98 

power 16.08 W) over the duration of the experiment; another was deployed without 99 

ultrasonic acoustic vibration as a control. The extent of micro-fouling on each material was 100 

quantified after 1, 3, 14, 21 and 28 days during the deployment using two principle methods; 101 

(1) surface coverage using DAPI staining with fluorescence microscopy, and (2) bacterial 102 

16S rDNA gene copy number using Quantitative Polymerase Chain Reaction (qPCR). The 103 

demonstration of ultrasonic anti-fouling is timely considering the increasing use of sensor and 104 

measurement apparatus in the ocean, and the increasing preference for environmentally 105 

friendly, biocide-free anti-fouling methods that don’t contaminate the environment. To the 106 

best of our knowledge this is the first quantitative, time course evaluation of ultrasonic anti-107 

fouling for the protection of marine sensor housings.  108 



Results and Discussion 109 

 The effects of ultrasonic vibration on the bio-fouling of marine sensor housing 110 

materials were evaluated using custom made testing assemblies, as shown in Figure 1. The 111 

extent of bio-fouling was measured over a 28 day deployment using two parameters; surface 112 

coverage and bacterial 16S rDNA gene copy number. From the determination of the surface 113 

coverage using the DAPI staining and fluorescence microscopy, shown in Figure 2, the 114 

application of ultrasonic vibrations to the materials led to a significant (t-test, P = <0.05) 115 

reduction in DAPI staining, particularly during the later stages of the experiment (from day 116 

14). These effects were also apparent on the steel plates to which the materials were mounted, 117 

and the assembly fitted with ultrasonic anti-fouling remained mostly clear throughout the 118 

deployment, whilst the control became colonised extensively by barnacles (not shown). Cu 119 

had the lowest levels of DAPI staining during the early stages of the deployment (day 1 and 120 

3), in line with its intrinsic anti-fouling properties, but had high levels of DAPI staining from 121 

day 14. This coincided with the formation of a blue / green patina over the Cu surface which 122 

prevented proper examination, and therefore the results for Cu from day 14 onwards were 123 

inconclusive. PVC displayed the greatest resistance to bio-fouling, and had significantly 124 

lower surface coverage than PMMA, both on the control and with ultrasonic disruption. 125 

The number of bacterial 16S rDNA gene copies on each material was quantified as an 126 

additional measure of bio-fouling during the later stages of the deployment, from day 14. 127 

This analysis included the biological material that accumulated outward from the surface of 128 

each sample, and which could not be measured in 2-dimensions as surface coverage. In these 129 

experiments the bio-fouling on each material was removed into sterile dock water with a 130 

sterile swab and divided into two representative samples. One of these was left untreated, 131 

whilst another was exposed to PMA, a photo-reactive compound, which diffuses across 132 

broken cell membranes and intercalates with the genome. Subsequent photo-activation of 133 



PMA-DNA complexes leads to irreversible covalent modification of DNA, preventing its 134 

amplification by PCR. Thus, using membrane integrity as a proxy for cell viability, only 135 

viable cells are included in subsequent amplification of genomic DNA by PCR. The number 136 

of 16S rDNA gene copies detected on PMMA and PVC, with or without ultrasonic anti-137 

fouling is shown in Figure 3, along with the estimated bacterial viability calculated by 138 

comparing the gene copy number with and without PMA pre-treatment. The results for Cu 139 

are not shown; the presence of labile copper in the samples inhibited PCR amplification, 140 

requiring additional DNA purification leading to loss of sample and making quantification 141 

unreliable. 142 

On both plastics, the ultrasonic vibration led to a reduction in the number of bacterial 143 

gene copies. This indicates a reduction in bio-fouling in support of the results from DAPI 144 

staining, shown in Figure 2. However, the difference was only statistically significant (t-test, 145 

P = > 0.05) for PVC. PMMA presented with more DAPI staining than PVC throughout the 146 

experiment (with or without anti-fouling), but conversely the material recovered from the 147 

surface contained significantly fewer bacterial gene copies. Bacterial colonisation typically 148 

occurs during the primary stages of bio-fouling followed by the settlement of other 149 

microorganisms and small invertebrates, which may influence the bacterial component of the 150 

biofilm, for example through competition for nutrients and predation. These processes may 151 

contribute to the discrepancy between total bio-fouling estimated using DAPI staining, and 152 

bacterial bio-fouling estimated using qPCR. 153 

  Two principle mechanisms of action for ultrasonic disruption to biofilms 154 

include (1) detachment / dislodging of biological material from the surface and (2) damage / 155 

death of living cells from sheer stress induced by cavitation. PMA is a state of the art method 156 

for differentiating between total and viable bacterial populations on the basis of cell wall / 157 

plasma membrane integrity. On PMMA, ultrasonic anti-fouling had no significant effect on 158 



bacterial viability over the experimental time course. In contrast, on the PVC there was an 159 

increase in the proportion of viable bacteria over time; specifically at day 28 the bacteria 160 

remaining on the surfaces had a greater than 90 % viability. This implies the formation of a 161 

sparse, but healthy community of organisms, with mechanism (1) predominating. 162 

This preliminary investigation indicates that ultrasonic anti-fouling can significantly 163 

inhibit bio-fouling on PMMA or PVC marine sensor housings for up to 28 days, which may 164 

enhance the deployment lifetime  and accuracy of the sensors contained within them. PVC 165 

showed the greatest resistance to biofouling indicating that it may be preferred for sensor 166 

housing fabrication. Although the results for Cu were inconclusive, it is likely that, due to the 167 

intrinsic biocidal properties of this material, it would have displayed the greatest overall 168 

resistance to bio-fouling, regardless of ultrasonic vibration. However, it is also relatively 169 

expensive and cannot be readily moulded into complicated designs, unlike the thermoplastics 170 

PMMA and PVC. Furthermore,  there is an increasing preference for environmentally 171 

friendly, biocide-free anti-fouling methods that don’t contaminate the environment or 172 

interfere with measurements; as in, for example, the inhibition of the PCR analysis in this 173 

particular study from Cu-exposed samples.  174 

The results presented in this study were generated using ultrasonic acoustic vibration 175 

with a frequency of 20 kHz, which has also been demonstrated to be effective at perturbing 176 

the settlement of barnacle larvae (Kitamura et al., 1995; Guo et al., 2011b), with short 200 ms 177 

pulses every 2 s.  Comprehensive optimisation of these ultrasonic acoustic parameters, made 178 

according to the material type and architecture, may achieve greater reductions in 179 

colonisation rate. Crucially, the use of short, intermittent pulses may alleviate interference to 180 

sensor measurements caused by structural vibrations, where these measurements are made in 181 

between pulses. Another, important consideration is the power consumption of ultrasonic 182 

anti-fouling over a long deployment, which is a potential limitation of this method compared 183 



to, for example, the use of biocidal coatings. The Clear Hull 110 system configuration used 184 

for this study operated with a total power of 16.08 W from a 12 V transformer, connected to 185 

the mains supply (240 V). This generated a consumption of 134 mAh (based on 200 ms 186 

pulses every 2 s), which could be sustained for a period of 30 days using a battery pack 187 

containing 24 D-cell batteries (assuming 3.6 V / 17 Ah cells working with 4 batteries in 188 

series, with 6 series in parallel), or equivalent. This is within reasonable specifications, 189 

however significant reductions in power consumption could be achieved by further 190 

optimisation of the electronics and the ultrasonic acoustic parameters. The findings of this 191 

investigation show considerable promise for the development and commercialisation of 192 

ultrasonic anti-fouling systems for sensor housings and support structures, in addition to the 193 

systems already available for the protection of marine vessels.  194 



Materials and Methods 195 

Testing Equipment. The effect of ultrasonic acoustic vibration on the adhesion of 196 

microorganisms to three sensor housing materials, Poly(methyl methacrylate) (PMMA), 197 

Polyvinyl chloride (PVC) and Copper (Cu), was evaluated using submersible assemblies, 198 

shown in Figure 1. Each assembly was fabricated from a 3 mm thick stainless steel plate 199 

(Marine Grade 316), onto which were mounted an array of removable “Packets” supporting a 200 

sample of each material, cut to the equivalent size of a conventional glass microscope slide 201 

(25 mm by 75 mm). The packets were constructed from rigid, glass-filled Nylon blocks (100 202 

mm by 95 mm) secured to the steel plate at each corner using 20 mm A4 grade M4 hex head 203 

machine screws (Din 933) with A4 grade M4 Nylock nuts. The materials were secured within 204 

a recessed portion of the Nylon surface by two lateral stainless steel bars, screwed into the 205 

Nylon using 12 mm A4 stainless steel M4 machine screws. Each slide was cleaned with 206 

detergent and 70 % (v/v) ethanol solution to remove any residual grease and debris prior to 207 

deployment. The entire assembly was housed within an opaque polypropylene box featuring 208 

baffled openings to allow water movement and prevent large marine life from entering, and 209 

secured to the back plate using a 12 mm A4 stainless steel M4 machine screw at each corner. 210 

Two testing assemblies were deployed simultaneously, either with or without the application 211 

of ultrasonic vibration provided by a Clear Hull 110 ultrasonic anti-fouling system 212 

(Ultrasonic Works Ltd, UK). The Clear Hull 110 features an aluminium transducer attached 213 

to a control unit by a water-proof cable, and powered from a 12 V transformer connected to a 214 

240 V (mains) electrical supply. The transducer was fixed to the stainless steel back plate 215 

through a central 11 mm hole. It was set to emit 200 ms pulses at 2 s intervals, tuned to a 216 

frequency of 20 kHz with a total power of 16.08 W. A sacrificial Zn anode was attached to 217 

the back plate containing the aluminium transducer to prevent corrosion. The equipment was 218 

hung at a depth of 1.5 meters from a pontoon within the Empress Dock, Southampton (UK) 219 



between the 8th of July and the 5th of August 2015. During this time the Empress Dock water 220 

had a temperature of between 18.6 and 19.1 oC, and a mean salinity of 31 ± PSU. 221 

Sample Recovery. Three “Packets” were recovered from each assembly after 1, 3, 222 

14, 21 or 28 days post deployment. At each time point, the assemblies were removed from 223 

the water and the back plates were released from their housings. The packets were unbolted 224 

and immersed in 0.2 μm filtered dock water for later analysis. The equipment was re-225 

assembled and submerged within five minutes to minimise disruption to the remaining 226 

samples.  227 

Fluorescence Microscopy. Each sample of material was washed three times by 228 

immersion in Phosphate Buffered Saline (PBS) (pH 7.4). Then, the materials were immersed 229 

in 5 mL of PBS containing 100 μL of 4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, 230 

UK) in darkness for 5 minutes. These were removed to air, and kept in darkness, at room 231 

temperature for 20 minutes prior to observation using an EVOS™ FL cell imaging 232 

microscope (Thermo Fisher Scientific) with a DAPI filter set (344-357 nm Excitation; 447-233 

460 nm Emission).  Images were captured using a 10x objective from ten locations on each 234 

slide, which were selected at random by deriving coordinates using a random number 235 

generator. Images were collected from each material sample, at each time point over the 236 

course of the deployment. Each image was analysed using the thresholding function of 237 

ImageJ Image Analysis Software (Schneider et al., 2012) to estimate the percentage 238 

coverage.  Equivalent thresholding limits were applied to each image in order to make a fair 239 

comparison.  240 

Propidium Monoazide (PMA) Pre-treatment and DNA Extraction. PMA pre-241 

treatment was carried out according to published methods (Magiopoulos et al., 2016). Each 242 

sample of material was immersed in 10 mL of a sterile PBS (pH 7.4) and the surface bio-243 

fouling was removed using a sterile Buccal swab (IsoHelix, UK). The PBS and swab head 244 



were transferred to a sterile, tube, vortexed, and divided into two samples. One sample was 245 

mixed with 2.5 μL of a 50 μM solution of PMA, and the other was mixed with 2.5 μL of 246 

sterile water. The samples were left in darkness for 5 minutes and then, on ice, irradiated with 247 

white light from two 650 W lamps (FLASH 2000 L, DTS, Italy) placed approximately 20 cm 248 

from the samples for 3 min. Each sample was washed three times in sterile PBS prior to DNA 249 

extraction using the PowerWater DNA isolation kit (MoBio Inc., USA) according to the 250 

manufacturer’s recommended protocol. 251 

Quantitative Polymerase Chain Reaction (qPCR). The DNA recovered from each 252 

sample of material, with or without PMA pre-treatment, was used to quantify the number of 253 

16S rRNA gene copies using qPCR. PCR was carried out using universal bacterial primers, 254 

341F and 785R and 5 PRIME HotMaster Taq DNA Polymerase (5 PRIME GmbH, Germany) 255 

according to the manufacturer’s recommendations. Each reaction was spiked with EvaGreen 256 

DNA binding dye (Biotium, USA) and 5 µL of template DNA; the total volume was 20 µL. 257 

The thermal cycling parameters were 94 oC for 2 minutes, followed by 40 cycles of 94 oC for 258 

20 seconds, 46 oC for 10 seconds and 65 oC for 50 seconds with a final elongation step of 65 259 

oC for 10 minutes. The reactions were carried out in triplicate, and measured in real-time 260 

using an Mx3005P real-time thermalcycler (Agilent Technologies, USA). A post-261 

amplification, high-resolution melting curve was plotted to ensure product specificity. The 262 

efficiency of the PCR amplification was determined according to the method of Pfaffl (Pfaffl, 263 

2001), and was found to be 97 %. Quantification of 16S rRNA gene fragments was achieved 264 

by comparing the threshold cycle (Ct) values obtained from the samples with those from a 265 

dilution series of custom made 16S rRNA gene DNA standards with concentrations ranging 266 

from 2,000,000 to 200 copies per reaction, as described by Magiopoulos et al (Magiopoulos 267 

et al., 2016). 268 



Statistical Analysis. The results of the DAPI-fluorescence analysis, and qPCR 269 

analysis were tested, where appropriate, for statistical significance using the Paired T-test 270 

with a 95 % confidence. Statistical tests were carried out using Minitab (Minitab Ltd, UK; 271 

version 17).  272 
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Figure Legends. 330 

Figure 1. Photographs of the ultrasonic anti-fouling testing apparatus. The apparatus was 331 

carefully designed to enable the synchronous evaluation of bio-fouling on three materials, 332 

using a single ultrasonic transducer, and wherein a sample of each material could be 333 

recovered at regular intervals, and in a short period of time to minimise disruption to the 334 

experiment. “Packets” were prepared to contain small samples of marine sensor housing 335 

materials, Cu (top), PMMA (middle) and PVC (bottom), fixed to glass-filled Nylon blocks by 336 

stainless steel lateral support plates (Panel A). The packets were bolted to a stainless steel 337 

back-plate featuring a central hole (Panel B), used to affix a ClearHull 110 ultrasonic 338 

transducer (Panel C). This was connected to a control module on the pontoon, via a 339 

waterproof cable, and powered by a 12 V transformer connected to a mains (240 V) power 340 

supply (not shown). The assemblies were enclosed within a plastic housing featuring baffled 341 

openings to restrict the entry of large debris / marine life, whilst allowing water circulation 342 

over the surfaces (shown in Panel D with or without the steel plate attached). Two identical 343 

assemblies were deployed, with or without the ClearHull 110 ultrasonic transducer.  344 

Figure 2. Percentage cover by DAPI-stained biological matter on the surfaces of sensor 345 

housing materials. The materials were deployed for up to 28 days, with or without ultrasonic 346 

anti-fouling. The results represent the mean from at least 3 replicate samples, recovered at 347 

each time point. The error bars show the standard deviation of the mean. Statistically 348 

significant differences (t-test, P > 0.05) between control and ultrasound are denoted with an 349 

asterisk. 350 

Figure 3. Top: bacterial 16S rDNA gene copy number measured on PMMA and PVC, after 351 

14, 21 or 28 days with or without ultrasonic anti-fouling. The results show the mean from at 352 

least 3 material samples, and the error bars show the standard deviation. Statistically 353 

significant differences (t-test, P > 0.05) between control and ultrasound are denoted with an 354 



asterisk. Bottom: the table shows the estimated percentage of viable bacteria on each material 355 

sample based on a comparison between PMA pre-treated and untreated samples. 356 
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