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Finite Element investigation of the effect of spina bifida on

loading of the vertebral isthmus

Conal Quah, Mark S Yeoman, Andrius Cizinauskas, Kevin Cooper, Donal McNally, Bronek

Boszczyk

Background:

Spondylolysis (SL) of the lower lumbar spine is frequently associated with spina bifida

occulta (SBO). There has not been any study that has demonstrated biomechanical or

genetic predispositions to explain the coexistence of these two pathologies. In axial rotation,

the intact vertebral arch allows torsional load to be shared between the facet joints. In SBO,

the load cannot be shared across the arch, theoretically increasing the mechanical demand

of the vertebral isthmus during combined axial loading and rotation when compared to the

normal state.

Purpose:

To test the hypothesis that fatigue failure limits will be exceeded in the case of a bifid arch,

but not in the intact case, when the segment is subjected to complex loading corresponding

to normal sporting activities.

Study Design:

Descriptive Laboratory Study

Methods:

Finite element models of natural and SBO (L4-S1) including ligaments were loaded axially to

1kN and were combined with axial rotation of 3°. Bilateral stresses, alternating stresses and

shear fatigue failure on intact and SBO L5 isthmus were assessed and compared.

Results:

Under 1kN axial load, the von Mises stresses observed in SBO and in the intact cases were

very similar (differences <5MPa) having a maximum at the ventral end of the isthmus that

decreases monotonically to the dorsal end. However, under 1kN axial load and rotation, the

maximum von Mises stresses observed in the ipsilateral L5 isthmus in the SBO case (31MPa)



was much higher than the intact case (24.2MPa) indicating a lack of load sharing across the

vertebral arch in SBO.

When assessing the equivalent alternating shear stress amplitude, this was found to be 22.6

MPa for the SBO case and 13.6 MPa for the intact case. From this it is estimated that shear

fatigue failure will occur in less than 70,000 cycles, under repetitive axial load & rotation

conditions in the SBO case, while for the intact case, fatigue failure will occur only over 10

million cycles.

Conclusion:

SBO predisposes spondylolysis by generating increased stresses across the inferior isthmus

of the inferior articular process, specifically in combined axial rotation and anteroposterior

shear.

Clinical Relevance:

Athletes with SBO who participate in sports that require repetitive lumbar rotation,

hyperextension and/or axial loading are at a higher risk of developing spondylolysis

compared to athletes with an intact spine.

Key Terms:

Spina Bifida Occulta, spondylolysis, finite element analysis, stress fracture, fatigue fracture,

lumbar spine

What is known about the subject:

SL of the lower lumbar spine is frequently associated with SBO. A recent investigation has

revealed a 3.7 fold Odd ratio for the presence of SL in individuals with SBO. As yet, it is

unclear if SBO is a predisposition for the development of SL.

What this study adds to existing knowledge:

Our study suggest that SBO increases load across the pars and does predispose to early

fatigue fracture, especially in athletes involved in activities requiring repetitive

hyperextension loading. We feel that the mechanical factors play a more important role in

the increased incidence of SL in patients with SBO than genetic factors.



Introduction

Spondylolysis (SL) of the lower lumbar spine is frequently associated with spina bifida

occulta (SBO). A recent investigation has revealed a 3.7 fold Odd ratio for the presence of SL

in individuals with SBO.21 As yet, it is however unclear if SBO is a predisposition for the

development of SL. While SBO is a congenital defect, SL is recognised as being a fatigue

fracture with an increased incidence among athletes participating in disciplines requiring

repetitive forceful hyperextension, axial loading and rotation.10, 13, 18, 20, 24 In theory, the

presence of SBO impairs load sharing across the vertebral arch and increases the load on the

isthmus especially in axial rotation.

We hypothesise that shear fatigue failure limits will be exceeded in the case of a bifid arch,

but not in the intact case, when the segment is subjected to complex loading corresponding

to normal sporting activities.

The aim of this finite element (FE) investigation therefore is to analyse the effect of SBO on

the load of the vertebral isthmus in a combination of loading patterns typical for sports

associated with SL – specifically detailing load distribution patterns of the ipsi- and

contralateral vertebral isthmus in combined axial loading and rotation.

Methods and Materials

A three-dimensional, non-linear FE-model of an intact L4-S1 human lumbar motion segment

including ligaments was used in this study (Figure 1). Validation of the intact three-

dimensional lumbar model has been done against the work of Zhu et al.29 The intact three-

dimensional model was adapted to mimic the spina bifida occulta condition by removing a

section of the L5 vertebral arch and spinous process, as illustrated in Figure 2. The sacral

slope which represents the angle between the sacral plate and the horizontal line of both

models were orientated to 66% mimicking the degree of sacral slope in athletes with a high

pelvic incidence.12, 25 A commercial software package COMSOL 3.5a, was used to perform

the finite element analysis. The models consisted of two vertebrae, the inter-vertebral disc,

and the following ligaments; intertransverse, facet capsule, flaval, supraspinous,

interspinous, anterior and posterior longitudinal ligaments. For the SBO condition, the

supraspinous and interspinous ligmaments where obviously not considered.



The inner and outer Annulus fibrosis regions of the intervertebral disc were modelled with

orthotropic material models using a cylindrical co-ordinate system in line with the central

axis of the inter-vertebral disc. The nucleus was modelled as a low modulus nearly

incompressible body with a stiffness of 1MPa and Poisson’s ratio of 0.499. The ligaments

were represented by shell elements with linear elastic material relationships. The shell

elements allowed for loading in tension but buckled under compression. The articulating

facet surfaces were modelled with cartilage regions and utilised a surface contact penalty

algorithm with a normal penalty contact factor of 5x1011 Pa/m and the surfaces were

considered frictionless (zero coefficient of friction). The facet cartilage region was assumed

to have a thickness of 0.6 mm and was initially in point contact. The capsular ligaments were

modelled with shell elements.

The cancellous regions of the vertebral bodies for both models were meshed using 4-noded

tetrahedral elements, while the cortical region of the vertebral bodies and the ligaments

were modelled using Mindlin-Reissner shell elements. The cortical region was modelled with

2.5mm thick shells while the ligaments were modelled with 2mm thick shells. Both the 4-

noded tetrahedral and Mindlin-Reissner shell elements were meshed with a maximum

element size of 3mm.

Two loading conditions were studied: an axial load of 1kN applied to superior vertebral

endplate of L4, and the same axial load combined with a 3° axial rotation (rotation of spinal

processes of L4 toward left lateral side when viewed from posterior) (Figure 3). Note that

axial loading of L4 results in a component of AP shear at both the L4-5 and L5-S1 disc spaces.

Stresses (von Mises) and strains on both ispsilateral and contralateral inferior lines of the L5

isthmus as illustrated in Figure 4 were assessed and compared. Graphs were then plotted

with the length of the isthmus represented in percentage, where zero represents the ventral

end of the isthmus line, close to the veterbral body. In addition, we calculated the mean

stress and alternating stresses from the observed 1st and 3rd principle stresses. Goodman

diagrams and the Soderberg relationship were then used to relate stress amplitude and

mean stress to an equivalent alternating shear stress.14, 23, 30

The failure characteristics of human cortical bone have been studied extensively. Cortical

bone has a shear strength that is considerably smaller than compressive or tensile strength.8,

30 It is therefore usual for bone to fail in shear. Furthermore, the shear strength of bone

reduces with the number of loading cycles to which it is subjected – it fatigues. This fatigue



behaviour has been characterised by Zioupos et al. in the form of Wöhler curves (or S-N

Curves).30 It is possible to predict either the fatigue strength (S) or the number of cycles to

failure (Nf) using the relationship:

S = So + Sr log(Nf) (1)

and

So = 36.6 MPa (Shear Strength in a single cycle failure)

Sr = -2.9 MPa

From this relationship, a shear stress of more than 36.6 MPa will result in failure in a single

cycle, 19.2MPa at 1 million cycles and 16.3 MPa at 10 million cycles.

Results

Axial Loading

Because the L4-5 and L5-S1 disc spaces are not parallel to the L4 superior endplate (where

the load is applied), there is a component of shear loading between L4 and L5 and L5 and S1.

This loading is resisted by the intervertebral discs but also by the facet joints. For L5, the

superior facets are loaded (by L4) in an anterolateral direction whilst the inferior facets are

loaded (by S1) in a posteromedial direction. This turning moment results in twisting of the

pedicles (left pedicle anticlockwise when viewed from posteriorly, right pedicle clockwise).

The bridge formed by the posterior arch will be compressed by such loading, but will share

loading with the pedicles. Hence, in the case of SBO, the pedicles experience greater

torsional forces and therefore the shear stress along the isthmus is expected to be greater.

This effect is masked when von Mises stresses are considered (Figure 5a). Von Mises stresses

in the intact and SBO cases are very similar (differences <5MPa) having a maximum at the

ventral end of the isthmus that decreases monotonically to the dorsal end (Figure 5a, Table

1).

Combined axial loading and rotation

Axial rotation is resisted within the lumbar spine by the posterior portion of the articular

facets; the ipsilateral facets are loaded in compression (via the articular surfaces) whilst the

contra-lateral joints are loaded in tension (via the capsular ligaments). 3 Such loading of the

superior and inferior facets generates twisting moments about the pedicles. However, unlike



the shear case above, these moments are in the same direction for both pedicles

(anticlockwise when viewed from posterior with rotation of the superior vertebrae to the

left as in Figure 3).

In the intact case, the posterior bridge (vertebral arch) prevents the pedicles from twisting

independently; a coupled motion of the entire segment is produced instead. In terms of

lateral rotation the ipsilateral joints are free to translate superiorly, whereas the

contralateral joint capsules are already under tension and hence act as a pivot point. The

segment therefore experiences a lateral rotation towards the contralateral side.

In the SBO case, the pedicles are free to rotate independently. There is therefore greater

local deformation of the pedicles compared to whole segment motion. It should be

remembered that the axial rotation is superimposed upon a forward shear load. In the case

of the ipsilateral pedicle (left pedicle) the rotations generated by both act in the same

direction and therefore reinforce one another. In the case of the contralateral pedicle (right

pedicle) the rotation induced by the shear load is clockwise whilst that from the axial

rotation is anticlockwise. The two effects therefore have a tendency to cancel each other

out.

We can see that the mechanical behaviour described above is reflected in the von Mises

stresses calculated at 3° axial rotation and 1000N axial compression (Figure 5b). The

ipsilateral pedicle in SBO experiences higher von Mises stresses from the locations 30-75%

from ventral to dorsal along the isthmus line compared to intact. The ability of pedicles to

twist independently in SBO has a slightly protective effect on the contralateral pedicle 5-45%

from ventral to dorsal along the isthmus line compared to the intact (Figure 5b).

This observation is much clearer from the fatigue stress graph (Figure 6), where the

maximum stress amplitude for the ipsilateral SBO and Intact model were 22.5 MPa and 13.6

MPa respectively.

Fatigue Failure

We can test out our hypothesis that SBO predisposes fatigue failure of the isthmus by

considering Figure 6 which is a graph of maximum shear stress amplitude along the inferior

L5 istmus whilst rotating axially from 3° left to 3° right under 1000 N axial load. As noted

previously, we can expect fracture initiation within 10 million cycles if this parameter

exceeds 16.3 MPa. In the intact case, shear stress amplitude remains below 14 MPa and is



therefore unlikely to experience fatigue failure. Whereas the SBO case peaks at 22.5 MPa at

a position 57% of the way from ventral to dorsal along the isthmus line. This magnitude of

shear stress corresponds to failure after 70,000 cycles. Figure 7 (location of shear stress

exceeding 106 cycle threshold) is a representation of the locations along the isthmus line

where fatigue failure is predicted to occur in less than 1 million cycles.

Discussion

Our results strongly support the hypothesis that SBO predisposes SL by generating increased

stresses across the inferior isthmus of the inferior articular process, specifically in combined

axial rotation and posterior anterior shear. We demonstrated that reasonable physiological

loading leads to focal regions of shear stress that exceed levels required for fatigue failure

located at the point on the isthmus where spondylolytic fractures are initiated in segments

with SBO but not in intact specimens. We found that axial loading alone, however, was not

sufficient to generate loading that would cause injury. For injury to occur, the axial loading

needed to be combined with axial rotation.

Several finite element studies of an intact spine have demonstrated much higher stress

magnitudes in the pars interarticularis than other regions along the vertebral arch under

simulated loads.4, 5, 26 Chosa et al. carried out a biomechanical study of lumbar SL using three

dimensional finite element analysis and concluded that the stress in the pars interarticularis

was high particularly under extension and rotation.4 Other studies have also reported similar

findings which suggest combined movements of hyperextension, rotation and axial stress are

relatively high risk factors that can lead to SL.22 Our results are broadly congruent with the

only other finite element analysis by Sairyo et al that specifically made a biomechanical

comparison of the lumbar spine with and without SBO.19 This study only reports von Mises

stresses at the ventral and dorsal cortex of the pars interarticularis (the former

corresponding to the dorsal end of the isthmus in our study). We predict very similar

magnitudes of stress at this point 7.4-8.6 MPa vs. 10.6-12.3 MPa (ipsilateral) and 1.7-6.5

MPa vs. 3.8-4.6 MPa (contralateral). The small differences can be attributed to differences

between the geometry and loading conditions in the two models. The conclusion we draw,

that SBO changes the loading of the vertebra in a way that will lead to spodylolytic fracture,

contrasts to the conclusion of Sairyo that SBO does not influence vertebral biomechanics.

This difference must be addressed; fortunately the explanation is actually straightforward.

Sairyo only reported loading at two points on the pars interarticularlis, whereas we



considered the full length of the inferior cortex of the pedicle. It can be seen clearly in

Figure 6 that we also found no difference in loading between the intact and SBO cases in the

same location at the ventral end of the pars. The difference that we observed between the

two occurred more ventrally towards the pedicle. Whilst single cycle failure stresses were

not observed in any of the models, stresses that correspond to shear fatigue failure after

70,000 cycles of repetitive axial load and rotation conditions in the SBO case were observed.

For the intact case, fatigue failure will only occur over 10 million cycles. Clearly, for such an

observation to be clinically significant, the magnitude and number of cycles to failure need

to be placed within an appropriate physiological context.

The axial load applied to the segment was 1 kN; this can be placed in context by using in vivo

measurements of intradiscal stress under normal activities and ex vivo measurements of

intradiscal stress under axial loading applied to isolated spinal segments.1, 9, 27 These studies

suggest that activities such as jogging in normal shoes, standing leaning forward and holding

a 20kg weight close to the body correspond to segment axial loads of approximately 1 kN.

The magnitude and number of loading cycles (but without the axial rotation critical to

fracture initiation) that we predict will initiate spondylolytic fracture therefore corresponds

to seven 10k runs. A 45° axial trunk rotation has been shown to result in a 1.7° and 1.6° axial

rotation at L4-5 and L5-S1 respectively.7 In our study we applied a rotation of 3° over these

two levels, which would therefore correspond to a 41° trunk rotation. Clearly this level of

trunk rotation is common in a wide range of sporting and daily activities. It is therefore

entirely reasonable to expect that a sportsman will exceed, in terms of axial load, axial

rotation and number of cycles, the conditions that will lead to spondylolytic fracture in cases

of SBO.

The prevalence of lumbar SL is higher in athletes (8%) when compared to the general

population (3-6%).6, 24, 28 Athletes who are involved in sports such as cricket, gymnastics,

swimming or American football are at a particular risk of developing SL due to the repetitive

lumbar rotation, hyperextension and/or axial loading.10, 13, 24 SBO is a benign clinical

condition which is often present in patients with SL.15 It occurs most commonly in the

lumbosacral junction with an estimated incidence of 20% in the general population.8 Despite

a high correlation of SBO in the spondylolytic population, there has not been any study that

has demonstrated any biomechanical or genetic predispositions to explain the coexistence of

these two pathologies.11, 15 This is the first study that has provided a biomechanical

mechanism by which SL of the lower lumbar spine is predisposed by SBO.



Athletes with SBO who are keen to get involved in these high risk sports at a professional

level should be counselled appropriately as our results suggest that they are at an increased

risk for developing SL when compared to athletes with an intact spine. SL can be treated

conservatively with early diagnosis however will require a prolonged period of rest from

training and competition ultimately resulting in loss of playing time. Injury surveillance

instigated by the governing bodies of professional cricket in Australia and United Kingdom

have shown that the specific diagnosis which result in the loss of playing time for

professional fast bowlers are lumbar stress injuries such as SL and spondylolisthesis.16 This

creates a serious problem particularly for professional athletes. As SBO is quite often an

incidental finding on X-rays, screening athletes for SBO who are interested in taking up high

risk sports professionally may be an option in the future so that the individual can be

counselled appropriately. Radiographs of the lumbar spine in certain sports such as college

football have already been a standard part of the preparticipation athletic physical in some

universities.10 The coach, trainer and team physician can then prescribe the appropriate

technique, workload, exercise regime and playing position to improve the athlete’s

performance and safety.

Several limitations of this study should be recognised. This study used constant axial load of

1kN to represent both muscle and gravitational forces. This is clearly a considerable

simplification, however this assumption does allow direct, like with like, comparison of all

cases. The remodelling potential of the vertebral body, resulting from a congenital

deformity, was not taken into consideration. Again this is a simplification that allows direct

comparisons between cases to be made. We also assumed that the gap in the pars defect,

which has been shown to fill with lysis tissue did not transmit loads. This is a reasonable

assumption to make since such tissue has been shown not to withstand external shear

forces.2 These assumptions have not prevented this lumbar spine FEA model from gaining a

better understanding of altered load transfer in combined axial rotation and anteroposterior

shear in SBO. There should be further research to analyse the influence of pelvic incidence in

developing SL, as the variation in pelvic incidence may further effect the loading

characteristics across the isthmus.17

In conclusion, our FE results suggest that SBO increases load across the pars and does

predispose to early fatigue fracture, especially in athletes involved in activities requiring

repetitive hyperextension loading. We feel that the mechanical factors play a more

important role in the increased incidence of SL in patients with SBO than genetic factors.



Screening for SBO in athletes who participate in high risk sports may have a role to play in

professional sports.
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Figure 1: Natural L4-5 model in a lateral and posterior view with intact vertebral arch.

Figure 2: Spina Bifida Occulta Model in a view from lateral and posterior with deficient L5

vertebral arch.

Figure 3: Image of SBO model illustrating load conditions and direction of axial rotation &

deformed image of SBO model illustrating ipsilateral & contralateral sides

Figure 4: Inferior L5 isthmus lateral lines used to obtain results



Figure 5 : von Mises stresses, on inferior lateral lines of the L5 isthmus in 1000N axial load only.

Figure 5b : von Mises stresses, on inferior lateral lines of the L5 isthmus with 1000N axial and 3°

rotation load.

Figure 6: Graphs of Alternating Fatigue Stress (Shear) on the inferior lateral lines of the L5 isthmus



Figure 7: Representation of the location along the L5 isthmus line where fatigue failure is predicted

to occur in less than 1 million cycles

Region

1000N Axial Load Only
1000N Axial Load & 3° Rotation

Ipsilateral Contralateral

Intact SBO

%
difference
between
Intact &
SBO

Intact SBO

%
difference
between
Intact &
SBO

Intact SBO

%
difference
between
Intact &
SBO

Units MPa MPa % MPa MPa % MPa MPa %

L5 Ventral 14.45 9.72 -32.7 9.2 9.98 8.5 24.66 18.68 -24.2

L5 Dorsal 2.81 0.65 -76.9 8.57 7.37 -14.0 6.47 1.69 -73.9

L5 Max 14.45 9.72 -32.7 24.24 31.03 28.0 24.66 19.37 -21.5

Table 1: von Mises stress on Cortical Bone at Ventral & Dorsal Points on the inferior L5 isthmus. L5

max represents the point of maximum stress observed along the inferior L5 istmus.


