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Abstract

The Finite Element (FE) modelling of manufacturing processes of-
ten requires a large amount of large plastic strain flow stress data in
order to represent the material of interest over a wide range of temper-
atures and strain rates. Compression data generated using a Gleeble
thermo-mechanical simulator is difficult to interpret due to the com-
plex temperature and strain fields which exist within the specimen
during the test. In this work, a non-linear optimisation process is
presented, which includes an FE model of the compression process to
accurately determine the constants of a five-parameter Norton Hoff
material model. The optimisation process is first verified using a re-
duced three-parameter and then the full five-parameter model using a
known set of constants to produce the target data, from which the er-
rors are assessed. Following this, the optimisation is performed using
experimental target data starting from a set of constants derived from
the test data using an initial least-squares fit, and also an arbitrary
starting point within the parameter space. The results of these tests
yield coefficients differing by a maximum of less than 2% and signifi-
cantly improve the representation of the flow stress of the material.
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1 Introduction

Finite Element (FE) modelling of large deformation manufacturing processes
such as forging, forming, welding and machining requires a wide range of ma-
terial properties to be generated in order to represent the material behaviour.
The relevant plastic flow stress data is usually generated across a wide range
of temperatures and strain rates by using axisymmetric compression testing.
Typically isothermal compression tests are used, where specimens are soaked
at the test temperature to remove the temperature gradient from within the
specimen before the compression test is performed [?], however this soak time
can significantly alter the microstructure of the material meaning that the
test does not represent the condition of the material during the actual pro-
cess. An alternative method is a compression test following rapid heating,
such as that used in the Gleeble thermo-mechanical simulator. The Gleeble
uses the resistance heating method to achieve high heating rates and once
the test temperature is reached at the desired heating rate, the compression
test is then performed.

Conventional material testing methods can be used to determine basic
material properties accurately (such as Young’s modulus for example). How-
ever with more complex testing methods such as thermo-mechanical com-
pression testing, additional effects such as an initial specimen temperature
profile, adiabatic heating or the effects of friction can influence the output
of the test making the results more difficult to interpret [?, ?, ?, ?]. Opti-
misation techniques are one tool that can be used to improve the quality of
material data generated for use in FE modelling.

Optimisation of the elastic-plastic properties of a power-law material us-
ing data from both the loading and unloading curves generated during in-
dentation testing of materials was carried out by Kang et al. [?, ?]. They
produced both axisymmetric and 3D FE models of the indentation tests us-
ing the ABAQUS FE software and a routine developed using the MATLAB
programming environment to perform the optimisation. They concluded
that the results of the optimisation were significantly improved when con-
sidering multiple indenters of different geometries and that the accuracy of
the optimisation was reduced when considering the optimisation of material
parameters using experimental curves as opposed to target datasets created
from known parameters using the FE model.

Optimisation of the flow stress of a Boron steel using an FE model of
the Gleeble (1500) compression test has been carried out by Åkerström and
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Oldenburg [?], however this model did not include the effects of an initial
temperature profile present within the specimen or adiabatic heating dur-
ing the compression, which could lead to errors in the optimised results as
highlighted by the work of Bennett et al. [?, ?].

The focus of this work is to develop a robust optimisation procedure that
can be used to improve the characterisation of the large deformation plastic
behaviour of materials, in the form of a Norton-Hoff material model in this
case, using experimental Gleeble compression data and an FE model of the
Gleeble compression process. The Norton-Hoff material model is often used
to represent large strain plastic flow stress of a material across a wide range
of temperatures and strain rates [?], which is particularly applicable for the
modelling of forming and forging manufacturing processes [?, ?, ?]. The FE
model included in this optimisation process includes the resistance heating
of the specimen and the adiabatic heating during compression, which have
both been shown to be important and can affect the flow stress data which
is generated during the test [?].

2 Finite Element Gleeble compression test

model

A Finite Element (FE) model of the Gleeble compression test model, which
has been developed in the DEFORM FE software [?], is used in this work
to form the basis for optimisation of the material properties. An overview of
this model is presented in Figure 1.

The maximum specimen diameter from the FE model is used to derive
the strain, ε, according to:

ε = 2ln
(
D0 + ∆D

D0

)
(1)

and stress, σ, according to:

σ =
F

π(D0+∆D)2

4

(2)

where D0 is the original specimen diameter, ∆D is the change in specimen
diameter and F is the applied load, however it has been shown that errors
can still be present in the compression test process [?, ?] due to complex
temperature and strain fields within the specimen.
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The frictional shear stress, fs, between the platens and specimen is com-
monly represented using one of the following two relationships:

fs = µp (3)

where p is a compressive normal stress and µ is the coefficient of friction,
or:

fs = mk (4)

where m is the friction coefficient and k is the shear strength of the
material.

Equation ?? is commonly used to the represent the friction shear stress
during sheet metal forming, while Equation ?? is commonly used in the
analysis of bulk metal forming such as that discussed in this work [?]. As
such a value of 0.3 is used for m in Equation ?? throughout the analyses in
this work as it was shown in the work of Bennett et al. [?] that the results
are relatively insensitive to this value.

2.1 Test parameters

In this work, two test temperatures and two nominal strain rates have been
chosen as the basis for the optimisation procedure. Initial temperature fields
in the specimen have been generated at 900◦C and 1100◦C using the tech-
niques described by Bennett et al. [?]. Strain rates of 1 and 10 s−1 are
considered.

2.2 Material Model

For Nickel-based superalloys, typically there is no reduction in yield strength
below around 800◦C due to the strengthening phases that exist in the ma-
terial [?]. Above around 800◦C, these strengthening phases begin to dissolve
and the yield strength reduces. In this temperature region (T > 0.5Tm, where
Tm is the melting temperature) and at large deformations, as considered here,
the behaviour of the material is strongly dependent on the strain rate [?] and
therefore the equivalent flow stress of the material, σ̄ can be represented by
the Norton-Hoff material model of the form:

σ̄ = K(ε̄+ ε̄0)n ˙̄ε
m

(
β

Tabs

)
(5)
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where ε̄ is the equivalent plastic strain, K (MPa sm), m, n, ε̄0 and β (K)
are material constants and Tabs is the absolute temperature in Kelvin.

The experimental Gleeble compression data for the material used as a
basis for this study at 900◦C and 1100◦C is presented in Figure 2. It can be
seen that significant softening of the material occurs over this temperature
range, with peak stresses shown at approximately 1300 MPa at 900◦C at a
nominal test rate of 10 s−1, reducing to under 400 MPa at 1100◦C at the
same rate.

3 An optimisation procedure for determining

material properties

3.1 Optimisation model

In this study, a non-linear optimisation technique has been devised within
the MATLAB programming environment using the non-linear least-squares
optimisation function (LSQNONLIN) [?].

This optimisation procedure is guided by the gradient evaluation and
iterates until convergence is reached. The optimisation model in this work
is:

F (x) =
n∑
i=1

[σ(x)prei − σ
target
i ]2 → min (6)

where F (x) is the objective function, x is the optimisation variable,
σ(x)prei is the predicted stress from the finite element model and σtargeti is
the target stress data at a corresponding strain level, denoted by the data-
point i and n is the number of test data pairs.

x is a vector in the n-dimensional space, Rn, which contains the set of
material constants in the Norton-Hoff model

x ∈ Rn (7)

x = [K,m, n, ε̄0, β]T (8)

LB ≤ x ≤ UB (9)
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where LB and UB are the lower and upper bounds respectively of x
during the optimisation as presented in Table ??.

Table 1: Lower and upper bounds of x
Parameter LB UB
K 0 0.2
m 0 0.5
n 0 0.5
ε̄0 0 0.1
β 0 20000

3.2 Optimisation procedure

The outline of the optimisation procedure is defined in Figure 3. Initial
values of the material constants are provided and a series of functions have
been written in MATLAB to control the pre-processing, post-processing and
running of the DEFORM Finite Element (FE) compression models during
the optimisation process. A set of base key-files for the compression models
containing test conditions including the initial temperature field are held
throughout the optimisation process, which are modified on each call of the
objective function with the appropriate Norton-Hoff material constants to
define the behaviour of the material.

Load and radial displacement data at the axial centre on the surface of
the specimen are extracted from each of the DEFORM Gleeble compression
models and converted to stress-strain curves (according to Equations ?? and
??) to compare with the target values (either experimental or a reference
model). Each function call results in four FE models being run to generate a
complete dataset of stress-strain values across the range of test conditions for
each new set of material constants. The history of the optimisation process
is recorded by storing the material constants at each iteration in an external
file using a custom output function called by the LSQNONLIN function.

4 Optimisation using reference stress-strain

curves from Finite Element simulation

In order to verify the optimisation procedure, stress-strain curves generated
from the Finite Element (FE) model of the Gleeble compression test using
known sets of constants, are used as the target solution. A set of initial guess
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values is then chosen for the optimisation process and the convergence of the
solution is checked against the target solution and values. This process is
performed for a reduced, three parameter version of the Norton-Hoff mate-
rial model (Equation ??) and the full five parameter model as presented in
Equation ??.

4.1 Three parameter optimisation

Initial trials were carried out using a reduced three parameter material model.
The values of n and ε̄0 in Equation ?? were set to 0, removing the dependency
on strain and reducing the material model to:

σ̄ = K ˙̄ε
m

(
β

Tabs

)
(10)

The target stress-strain curves (σtargeti ) were generated using material
constants derived from a least-squares fit of Equation ?? to the experimental
data. Three sets of initial guess parameters (test 1, test 2 and test 3) were
then chosen and the convergence of the solutions is presented in Figure 4
along with the details of the optimisation results in Table ??. These results
show that the errors in the constants produced by the optimisation procedure
are very low (less than 1 ×10−1 % in all cases) for the three parameter model
and verifies the validation procedure that has been developed.

Table 2: Three parameter optimisation
Test Parameter Target Values Initial Values Optimized Values % error Iterations

K 8.5453×10−2 1.0×10−1 8.5467×10−2 3.8×10−2

1 m 1.2336×10−1 2.5×10−1 1.2336×10−1 2.0×10−3 17

β 1.0906×104 1.0×104 1.0906×104 4.1×10−3

K 8.5453×10−2 1.5×10−1 8.5466×10−2 2.6×10−2

2 m 1.2336×10−1 3.0×10−1 1.2336×10−1 2.0×10−3 20

β 1.0906×104 1.5×104 1.0906×104 2.9×10−3

K 8.5453×10−2 1.0×10−1 8.5467×10−2 2.6×10−2

3 m 1.2336×10−1 0.1×10−1 1.2336×10−1 2.0×10−3 24

β 1.0906×104 0.5×104 1.0906×104 2.8×10−3

4.2 Five parameter optimisation

Again, a target set of stress-strain curves (σtargeti ) were produced using a set
of material constants derived from a least squares fit of Equation ?? to the
experimental compression test data and three sets of initial guess parameters
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were chosen to verify the optimisation procedure. These initial parameters,
along with the target and final optimised values, are presented in Table ??.
It can be seen in all cases for the five parameter material model that the
number of iterations required to determine the optimised material properties
are considerably more than with the three parameter material model due to
the increased complexity of the problem. For this model, the errors in the
constants K, m, n and β are all less than 2% however large errors are present
in the value of ε̄0 that has been determined, however, as Figure 5 shows for
the example of 900◦C at 1 s−1, the Norton-Hoff material model is insensitive
to the value of ε̄0 at the high plastic strain values considered in this work,
showing only sensitivity below strain values of approximately 2×10−3.

Table 3: Five parameter optimisation
Test Parameter Target Values Initial Values Optimized Values % error Iterations

K 8.8251×10−2 1.0×10−1 8.8265×10−2 2.7×10−2

m 1.2352×10−1 2.5×10−1 1.2352×10−1 2.1×10−4

1 n 1.7937×10−2 2.5×10−1 1.7965×10−2 1.6×10−1 18

ε̄0 2.2453×10−10 1.0×10−4 1.0×10−4 4.5×107

β 1.0913×104 1.0×104 1.0914×104 2.5×10−3

K 8.8251×10−2 1.0×10−2 8.8282×10−2 3.5×10−2

m 1.2352×10−1 1.0×10−2 1.2352×10−1 2.1×10−4

2 n 1.7937×10−2 1.0×10−2 1.8230×10−2 1.6 44

ε̄0 2.2453×10−10 1.0×10−3 1.0×10−3 4.5×108

β 1.0913×104 1.5×104 1.0914×104 9.71×10−4

K 8.8251×10−2 1.0×10−2 8.8251×10−2 4.8×10−3

m 1.2352×10−1 4.9×10−1 1.2352×10−1 2.1×10−4

3 n 1.7937×10−2 4.9×10−1 1.7937×10−2 1.0×10−3 23

ε̄0 2.2453×10−10 0.0 2.2204×10−20 100

β 1.0913×104 0.5×104 1.0914×104 5.7×10−4

The convergence history of the remaining four parameters is presented in
Figure 6, which again shows good convergence from a wide range of initial
parameters.

5 Optimisation using experimental stress-strain

curves

The optimisation procedure has been performed using the experimental stress-
strain curves presented in Figure 2 as the target data (σtargeti in Equation ??).
The convergence behaviour and final values from two sets of initial constants
were studied. In Test 1, the initial constants were chosen as the set of con-
stants determined by an initial least-squares fit to the target data, while
in Test 2, an arbitrary set of initial constants were chosen to demonstrate
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the ability of the optimisation process to determine material constants from
a non-related initial set of values. The optimisation process used Gleeble
compression models run across the same range of parameters used in the
experimental testing (at 900 and 1100◦C with nominal strain rates of 1 and
10s−1).

The results of the optimisation process are presented in Table ?? for
both of the tests, while the optimisation history is shown in Figure 7. It
can be seen that, as expected, the optimisation process is complete in fewer
iterations for Test 1 when the initial constants have been determined from the
experimental data. The percentage difference between the two tests carried
out using the experimental target data is presented in Table ?? where it can
be seen that while differences appear between the coefficients determined
from the optimisation procedure, they are less than 10% in all cases showing
that the optimisation procedure is robust enough to cope with an arbitrary
guess of initial constants.

A comparison is made between the experimental Gleeble compression
data and the Gleeble compression model run with both the original and
optimised Norton-Hoff parameters from Test 1 in Figure 8. A significant
improvement can be seen in the correlation of the Gleeble model data run
with the optimised parameters, particularly at the lower temperature (higher
stress values), suggesting that they are a better representation of the actual
behaviour of the material.

Table 4: Five parameter optimisation using experimental target data
Test Parameter Initial Values Optimized Values Iterations

K 8.8251×10−2 4.9829×10−2

m 1.2352×10−1 1.5036×10−1

1 n 1.7937×10−2 1.1188×10−2 16

ε̄0 2.2453×10−10 6.8898×10−11

β 1.0913×104 1.1913×104

K 1.0×10−2 5.0276×10−2

m 1.0×10−2 1.4669×10−1

2 n 1.0×10−2 1.2086×10−2 26

ε̄0 1.0×10−3 1.0×10−3

β 1.5×104 1.1907×104

Table 5: Percentage difference between Test 1 and 2 optimised values
Parameter Percentage difference between test 1 and 2 values
K 0.89
m 2.5
n 7.7
ε̄0 not applicable
β 0.05
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6 Conclusions

An optimisation procedure has been developed and implemented in MAT-
LAB using a Finite Element (FE) model of the Gleeble compression test,
which includes the initial temperature profile in the specimen and adiabatic
heating, in order to optimise the five parameters (K, m, n, ε̄0 and β) of the
Norton-Hoff material model. The optimisation algorithm developed has been
shown capable of optimising the parameters to within 1% of a set of target
values using various initial guess values based on a simplified three parame-
ter material model. When the five parameter material model was considered,
good convergence to the target values were shown (to within 10%) for four
out of the five parameters and poor convergence was shown for the ε̄0 param-
eter, however, it was shown that the dominant behaviour of this parameter
was at low strain values which were not the main focus of this study. It is
expected however that similar convergence could be achieved for this value
if small strain behaviour was being considered.

A significant improvement in the stress-strain curves generated from the
Gleeble compression model was shown when the optimisation process was
carried out for two initial parameter sets using the experimental stress-strain
data as the target curves for the optimisation. This suggests that the opti-
misation procedure, coupled with the Gleeble compression model could be
used to improve the representation of materials for other forming and forg-
ing modelling applications where accurate material data is key to generating
useful results.
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