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Abstract: 27 

Modern intensive farming caused pronounced changes to the European arable flora. Many species 28 

adapted to less intensive traditional farming declined severely, as did the potential of unsown arable 29 

vegetation to support higher trophic levels. To reverse these trends, various agri-environment 30 

measures were introduced. One such measure is to manage cereal headlands as conservation 31 

headlands, involving strict restrictions on pesticide and fertiliser use. An additional modification to 32 

management which could reduce crop competition and thus deliver benefits to arable plants is 33 

cereal sowing at reduced rates. However, little is known about its benefits to rare and declining 34 

arable plants, or to species of value to higher trophic levels, and whether it can be implemented 35 

without concomitant increase in undesirable weeds. 36 

We set up identical two-factorial experiments in winter wheat and spring barley, combining a 37 

nitrogen fertiliser vs. no fertiliser treatment with cereal sowing at economic rates vs. sowing at rates 38 

reduced by 75%, with added sowing of a mixture of rare arable species. Both experiments also 39 

included an uncropped but cultivated control equivalent to another agri-environment measure. 40 

Our results show that reduced cereal sowing in conservation headlands can benefit rare and 41 

declining species, as well as arable plant diversity, without necessarily resulting in a concomitant 42 

increase in undesirable weeds. While such benefits tended to be larger in uncropped cultivated 43 

controls, conservation headlands have the advantage of not requiring land being taken out of 44 

production. Moreover, as shown in this study, their benefits to arable plants can be maximised by 45 

reduced sowing. 46 

 47 
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Introduction 53 

From the late 1940s onwards, intensive methods of arable farming were rapidly adopted both in the 54 

UK (Robinson and Sutherland 2002) and in continental Europe (Stoate et al. 2001). Continued 55 

mechanisation, along with a substantial increase in the use of herbicides and fertilisers, facilitated a 56 

shift away from traditional mixed arable and livestock farming practices. These changes included a 57 

move towards simplified crop rotations which no longer included fallow periods, a shift from spring-58 

sown to autumn-sown cereals (Stoate et al. 2001; Robinson and Sutherland 2002), and a shift from 59 

ploughing to non-inversion tillage (Chancellor et al. 1984; Cannell 1985; Morris et al. 2010). These in-60 

field changes were accompanied by a reduction in non-productive landscape features and a trend of 61 

increasing farm size (Stoate et al. 2001; Robinson and Sutherland 2002). 62 

In their entirety, these developments had profound effects on the non-crop arable flora. 63 

Many non-crop species characteristic of traditional arable management declined dramatically, both 64 

in the UK (Sutcliffe and Kay 2000; Potts et al. 2010) and across Europe (Hilbig and Bachthaler 1992a, 65 

Richner et al. 2015), and trait-based analyses (Storkey et al. 2010; Pinke and Gunton 2014) have 66 

provided insights in the underlying mechanisms of decline.  At the same time, other species 67 

benefited from arable intensification, e.g. through their abilities to evolve herbicide resistance, to 68 

efficiently exploit high levels of nutrient availability, and to fit in with simplified cultivation and 69 

cropping regimes (Froud-Williams et al. 1983; Hilbig and Bachthaler 1992b; Hald 1999; Sutcliffe and 70 

Kay 2000), many of them becoming weeds. The net result of arable intensification was a steep 71 

decline in overall abundance and species diversity of non-crop plants, both in the UK (Sutcliffe and 72 

Kay 2000; Potts et al. 2010) and across Europe (Richner et al. 2015; Albrecht et al. in press). This is 73 

not only relevant in terms of the arable flora per se, with many traditional non-crop arable species 74 

now being threatened (Albrecht et al. in press), but also because of the important role that non-crop 75 

arable plants play as a food resource for higher trophic levels, including pollinating insects, other 76 

farmland invertebrates, and farmland birds (Wilson et al. 1999; Marshall et al. 2003; Franke et al. 77 



2009; Bretagnolle and Gaba 2015). This role has also been demonstrated experimentally in studies 78 

showing that rigorous weed control adversely affects such higher trophic levels (Hawes et al. 2003). 79 

The potential benefits of restrictions on agrochemical inputs into cropped field margins to 80 

arable plant diversity in general and to rare and threatened species in particular have been 81 

recognized since experiments investigating the benefits of reducing pesticide inputs to field 82 

headlands were done in the late 1970s and early 1980s, e.g. in Germany (Schumacher 1980) and in 83 

the UK (Boatman and Wilson 1988; Sotherton 1990). Similar experiments were subsequently carried 84 

out in Sweden (Chiverton 1994; Fischer and Milberg 1997) and in the Netherlands (de Snoo 1995; 85 

Kleijn and van der Voort 1997). 86 

In England, in response to the findings of these early studies, conservation headlands were 87 

first made available as agri-environment scheme (AES) options as part of the Arable Stewardship 88 

Pilot Scheme launched in two regions in 1998 (MAFF 1998). In 2002, these options were extended 89 

nationwide as part of the Countryside Stewardship Scheme (Defra 2002). In both schemes, two kinds 90 

of cereal headland option were offered, both with similar restrictions on herbicide use, and one with 91 

an additional ban on fertiliser application. Assessments of both schemes indicated that non-fertilised 92 

conservation headlands tended to be characterised by higher non-crop plant cover and species 93 

richness than their fertilised counterparts (Critchley et al. 2004; Walker et al. 2007). However, 94 

compared to uncropped cultivated margins, another arable AES option designed to promote arable 95 

plants, conservation headlands, even when unfertilised, tended to deliver relatively small benefits 96 

for arable plant diversity and rare arable species, when compared against conventionally-managed 97 

cereal margins with no restrictions on agrochemical or fertiliser inputs (Critchley et al. 2004; Walker 98 

et al. 2007). 99 

One further potential modification to the management of cereal headlands that might 100 

positively affect the size of benefit to arable biodiversity offered by conservation headlands is 101 

reduction in cereal sowing density, which is currently not promoted by the AES in Britain. Growth of 102 

uncompetitive rare arable species in cereal stands is positively related to light penetration levels, 103 



and these levels continuously decline while cereals grow, and form an increasingly dense canopy. 104 

Accordingly, the primary reason why rare arable weed species perform better in unfertilised cereal 105 

stands than in fertilised ones appears to be that a decline to critical threshold light penetration levels 106 

below which growth of rare arable species is restricted may occur more rapidly in fertilised stands, 107 

resulting in a reduced temporal window for growth of these species (Kleijn and van der Voort 1997). 108 

By potentially extending this temporal window, reduced cereal sowing densities may promote both 109 

rare as well as more common arable species. On the other hand, sowing of cereal at reduced 110 

densities means that more resources become available to individual cereal plants, and we do not 111 

know to what extent increased tillering (Kirby 1967; Champion et al. 1998), particularly at high levels 112 

of nutrient availability (Aspinall 1961), may counteract the effects of reduced sowing, and thus limit 113 

any expected benefit to rare arable species. Moreover, if such benefits can be achieved, it is 114 

important that they can be delivered without simultaneously boosting populations of agronomically 115 

undesirable species, i.e. weeds (Jones and Smith 2007). This is even more important given farmers’ 116 

concerns regarding potential infestations by such undesirable weeds (Still and Byfield 2007), which 117 

may in fact be at least partly responsible for the low uptake of UK AES options targeted at boosting 118 

rare arable plants (Clothier 2013). 119 

Sowing cereals at reduced density has also recently been advocated in the context of 120 

reintroducing rare species by means of sowing (Epperlein et al. 2014). In many instances, such active 121 

reintroduction may be required, as natural recolonization may be highly unlikely, due to the fact that 122 

after extended periods of intensive management, rare species often are also no longer present in 123 

the local soil seed bank after having been lost from the vegetation, and due to many rare species 124 

lacking adaptations for dispersal (Albrecht et al. in press). A recent field study by Lang et al. (2016) 125 

showed that rare arable species can be reintroduced into cereal crops, provided the crop is managed 126 

sympathetically with respect to the needs of these species. Results from such studies also indicate 127 

that, as expected, yield losses due to reintroduction of uncompetitive rare species tend to be 128 

negligible (Epperlein et al. 2014; Lang et al. 2016).  129 



High rates of establishment in the first year after reintroduction may be crucial for long-term 130 

persistence, and at the same time would help bring down the cost of sowing rare species, which can 131 

be significant, given that few such species are as yet commercially available (Albrecht et al. in press). 132 

Nonetheless, few studies have so far investigated whether using reduced cereal sowing rates could 133 

boost rare species establishment (but see Albrecht et al. 2014). 134 

Furthermore, previous studies investigating the effects of reduced cereal sowing density 135 

have tended to ignore the potential effects of such a practice on species beneficial to arable faunal 136 

biodiversity and on agronomically undesirable species. In particular the latter aspect is important 137 

with respect to farmers’ acceptance of reduced sowing rates in cereal headlands to deliver benefits 138 

for biodiversity. 139 

In this study, we use experimental manipulation in conventionally-managed cereal fields to address 140 

the following questions: 141 

(1) How do sowing rate of major winter and spring cereal crops and application of nitrogen fertiliser 142 

affect species richness and overall abundance of desirable and undesirable arable plant species in 143 

arable headlands managed for conservation? 144 

(2) What are the effects on establishment of sown rare arable species? 145 

(3) In terms of impacts on the arable flora, how do experimental cereal headlands compare with 146 

field margins managed as uncropped cultivated land? 147 

 148 

Materials and Methods 149 

Experimental design 150 

Our study was carried out at Roundwood Estate, in the Hampshire Downs, England (51°12’N, 151 

1°17’W), in a typical arable landscape characterised by large arable fields with scattered woodland 152 

blocks and low hedgerows, with free-draining, thin chalky loams being the predominant soil type 153 

(Natural England 2014). A survey of arable plants carried out in 2009 confirmed a rich arable flora 154 

containing a large number of rare and declining arable species (Wilson 2010), making the estate a 155 



site of international importance for its arable flora according to Plantlife’s Important Arable Plant 156 

Area (IAPA) system (Byfield and Wilson 2005). Preliminary inspection of fields revealed low 157 

abundances of undesirable weed species, indicating high suitability for AES measures aimed at 158 

boosting rare and declining arable species.  159 

To determine the effects of cereal sowing density and of N fertilisation on arable plant 160 

species in cereal headlands, separate randomised block experiments were set up in different fields 161 

for winter wheat and for spring barley. Accordingly, in the following, these experiments will be 162 

referred to as the winter wheat experiment and the spring barley experiment. Both experiments 163 

were set up along headlands 12 m wide, and each experiment consisted of four replicate blocks with 164 

five treatments. Of these treatments, four corresponded to a 2x2 factorial design, with the two 165 

factors being cereal sowing density (sown at a standard density falling within the range of 166 

recommended densities for achieving optimum yield vs sown at 25% of this standard density) and N 167 

fertilisation (liquid N fertiliser applied at rates typically used for these two respective crops on this 168 

type of soil vs no N fertiliser). As shown by crop trials, compared to sowing at a standard density, 169 

sowing at 25% of that density can be carried out with minimal yield loss, provided timely sowing is 170 

ensured (Kirby 1967; Spink et al. 2000). The fifth treatment was an uncropped control with no cereal 171 

sowing and no fertilisation conforming to the cultivated, uncropped field margin management 172 

prescription of the English agri-environment scheme. The length of experimental plots was 10 m for 173 

treatments not receiving N fertiliser, and, due to operational requirements for fertiliser spreading, 174 

20 m for treatments receiving N fertiliser. 175 

In the winter wheat experiment, on 27 September 2013, seeds of winter wheat var. Horatio were 176 

drilled to a depth of 2.5 cm, using rates of 320 seeds m-2 and of 80 seeds m-2, respectively, on 177 

standard-density and quarter-density plots. In the spring barley experiment, on 14 March 2014, 178 

spring barley var. Concerto was drilled to a depth of 2.5 cm, using rates of 350 seeds m-2 and of 88 179 

seeds m-2, respectively, on standard-density and quarter-density plots. 180 



Pre-drilling, all treatment plots were cultivated using a Knight triple press, and phosphorus 181 

and potassium fertiliser was applied at fixed rates of 50 kg P ha-1 and 60 kg K ha-1.  On the same day 182 

as the cereals were drilled, seed mixtures containing five rare arable annual species – Kickxia spuria, 183 

Lithospermum arvense, Papaver argemone, Scandix pecten-veneris, and Silene noctiflora 184 

(nomenclature follows Stace 2010) – were sown into the central 5 m × 5 m area of each plot. Sowing 185 

rates varied among species, ranging between 30 seeds m-2 for the largest-seeded species, S. pecten-186 

veneris, and 285 seeds m-2 for the smallest-seeded species, P. argemone, with the remaining species 187 

sown at 150 seeds m-2. A similar rationale, based on the assumption of a positive correlation 188 

between seed size and establishment probability, has also been applied by e.g. Lang et al (2016). All 189 

of these species have been reported to occur at the estate, albeit generally only locally and at low 190 

densities (Wilson 2010). Liquid fertiliser was applied to the growing cereal crop to treatment plots 191 

designated to receive N fertiliser, at rates of 240 kg ha-1 N and 48 kg ha-1 S to winter wheat, and of 192 

130 kg ha-1 N and 22 kg ha-1 S to spring barley respectively, in line with regular practice at the estate 193 

when growing these crops. 194 

 195 

Data collection 196 

A single count of all sown rare arable species, combined with a vegetation survey of all arable plants, 197 

was carried out between 28 July and 30 July 2014, just before the harvest of winter wheat and spring 198 

barley. Recording was carried out in the central 5 m × 5m area of each treatment plot in five 0.5 m × 199 

0.5 m quadrats that were placed in a regular pattern, one in the centre of the plot, and the other 200 

four in the centres of each of four 2.5 m x 2.5 quadrants. 201 

In each quadrat, the following parameters were recorded: (1) numbers of individuals of each sown 202 

species; (2) total number of cereal tillers; (3) vegetation height, using the drop disc method (Stewart 203 

et al. 2001); and (4) vegetation composition, by estimating percent visual cover of all species rooting 204 

in the quadrat and of bare ground. 205 

 206 



Species classification 207 

The herbaceous non-crop species encountered during vegetation recording were classified into four 208 

mutually exclusive groups: (1) common species that are of potential value to the fauna of arable 209 

habitats and that are not considered undesirable by farmers; (2) common species considered 210 

undesirable, irrespective of their potential value to the fauna; (3) specifically arable species that are 211 

rare and/or declining, irrespective of their potential value to the fauna; and (4) common species 212 

thought to be of only limited benefit to the fauna and that are not considered undesirable 213 

(= ‘neutral’ species). Regarding the group of undesirable species, we mostly followed the list of 214 

common pernicious weeds by Storkey and Westbury (2007), but added two competitive species 215 

encountered in our experiments, Dactylis glomerata and Urtica dioica. Some of the species 216 

considered undesirable – in particular Cirsium arvense, Cirsium vulgare, Rumex crispus, Senecio 217 

jacobaea, and Urtica dioica – can deliver considerable potential benefit to farmland birds and 218 

invertebrates. Nonetheless, for two reasons, a classification into mutually exclusive groups appeared 219 

preferable over assigning these species to multiple groups. Firstly, as the aforementioned species 220 

are tall-growing and do not flower in the first year after establishment, any benefits specifically to 221 

pollinating insects (via nectar and pollen) and to farmland birds (mostly via seeds) are highly unlikely 222 

to materialize within a single year after cereal sowing, even in the case of overwintering stubble. 223 

Secondly, as this study is concerned specifically with the management of arable headlands in 224 

keeping with AES options whose uptake by the farming community is noticeably affected by farmers’ 225 

concerns over infestations by undesirable weeds (Clothier 2013), it appeared expedient to focus 226 

specifically on the potential benefits to arable fauna brought about by those species other than 227 

undesirable weeds. 228 

Regarding the plant species potentially benefitting faunal biodiversity, we considered three 229 

different aspects of potential value: (1) to phytophagous insects; (2) to farmland birds; and (3) to 230 

insect pollinators. Value to phytophagous insects was assessed on the basis of numbers of unique 231 

species-level interactions in the Database of British Insects and their Foodplants (DBIF; available 232 



online at http://www.brc.ac.uk/dbif/ and accessed on 8 April 2016; see Smith and Roy 2008). Value 233 

to farmland birds was assessed at the genus level, based on information in the review by Holland et 234 

al. (2006). Value to insect pollinators was primarily assessed on the basis of a recently published 235 

nectar database (Baude et al. 2016), under additional consideration of a plant species’ ability to 236 

provide nutritionally valuable pollen collected by insect pollinators, based on the literature (Carvell 237 

et al. 2006; Hanley et al. 2008; Kleijn and Raemakers 2008). Rare and declining species were 238 

identified on the basis of their IAPA score according to Byfield and Wilson (2005), including all 239 

species that had received a rating on the scale from 1 (= of local concern) to 9 (= critically 240 

endangered according to Cheffings and Farrell 2005). 241 

Results of the classification of 61 non-crop herbaceous species encountered in the winter wheat and 242 

spring barley experiments are summarised in Table 1. For a more detailed description of 243 

classification criteria and species-level ratings see Table S1. While these ratings suggest that none of 244 

the species classified as rare or declining are of notable benefit to faunal biodiversity. This may, to 245 

some extent, reflect the paucity of evidence available for rarer species, as e.g. numbers of 246 

interactions in the DBIF tend to be positively correlated with the commonness of species (Smith and 247 

Roy 2008). 248 

 249 

Statistical analyses 250 

Prior to analyses, count data was summed up at plot level across the five sampled 0.5 m × 0.5 m 251 

quadrats, and cover and vegetation height data was averaged. Average cover values were arcsine-252 

transformed (Crawley 2007). Average vegetation height was Box-Cox-transformed, with optimal 253 

coefficients for transformation being estimated using spread-level plots as provided in the ‘car’ 254 

package v 2.0-12 (Fox and Weisberg 2011) within R v 2.15.1 (R Foundation for Statistical Computing, 255 

Vienna, Austria). 256 

Disregarding the control treatment, both experiments conformed to a two-factorial design of cereal 257 

sowing density vs. nitrogen fertiliser application. Accordingly, we analysed data from each 258 

http://www.brc.ac.uk/dbif/


experiment in two ways, (1) as two-factorial design including only treatments involving cereal 259 

sowing, and (2) as one-way design including the uncropped cultivated control treatment. For two-260 

factorial analyses, cereal sowing density and nitrogen fertiliser application, along with their two-way 261 

interaction, were specified as fixed factors, and block was included as random effect. For one-way 262 

analyses, treatment, consisting of five levels, was specified as the sole fixed factor, and block as a 263 

random effect. In one-way analyses, in case of a significant treatment effect, pairwise comparisons 264 

were carried out using Dunnett tests with Dunnett-Hsu adjustment to investigate differences 265 

between the control treatment and each of the four other treatments. 266 

Depending on the type of data, one of two kinds of statistical model was used.  Total cover of all 267 

non-crop vegetation, summed cover of undesirable species, summed cover of species beneficial for 268 

faunal biodiversity, summed cover of rare and declining species, vegetation height and bare ground 269 

cover  were analysed with linear mixed models (LMM), using Proc Mixed in SAS 9.3 for Windows 270 

(SAS Institute Inc., Cary, NC, USA). In contrast, count parameters – including cereal tiller density, 271 

total species richness, richness of rare and declining species with an IAPA score ≥ 1, and numbers of 272 

established plants of sown rare arable species – were analysed with generalized linear mixed models 273 

(GLMM) and Poisson errors, using Proc GLIMMIX in SAS 9.3 for Windows (SAS Institute Inc., Cary, NC, 274 

USA). Regarding the numbers of established plants of sown species, analyses were carried out for 275 

aggregate numbers of plants across all sown species, and individually for those species for which 276 

establishment was sufficiently high for allowing successful convergence of the iterative GLMM 277 

modelling approach. 278 

 279 

Results 280 

Detailed results of two-factorial analyses of the effects of N fertilisation and cereal sowing density 281 

are presented in Table S2, with significant results presented below. Results of one-factorial analyses 282 

are indicated by asterisks in Figures 1 to 4, showing which individual cereal headland treatments 283 

differ significantly from uncropped controls. 284 



 285 

Summed cover and species richness 286 

N fertilisation had a negative effect on summed cover of arable plant species in the spring barley 287 

experiment (F1,9 = 5.24; p = 0.048; see trend in Fig. 1b), but not in the winter wheat experiment 288 

(Table S2). However, negative effects of fertilisation on arable plant species richness were manifest 289 

in both experiments, but were more pronounced in spring barley (F1,9 = 40.59; p < 0.001; see trend in 290 

Fig. 2b) than in winter wheat (F1,9 = 11.54; p = 0.008; see trend in Fig. 2a). For spring barley, there 291 

was a significant interaction with sowing density (F1,9 = 9.04; p = 0.015), in that the negative effect of 292 

fertilisation was more pronounced at the standard rate of sowing than at the reduced rate (see 293 

trend in Fig. 2b). In contrast, in winter wheat, sowing density affected species richness 294 

independently of fertiliser application, as indicated by a significant main effect (F1,9 = 5.52; p = 295 

0.043), with slightly higher richness at reduced sowing density (see trend in Fig. 2a). 296 

No significant treatment effects were detected regarding summed cover of species of faunal 297 

value (Table S2). However, in spring barley, species richness of this group was highly significantly 298 

affected by N fertilisation (F1,9 = 14.99; p = 0.004), with a significant interaction (F1,9 = 5.85; p = 0.039) 299 

indicating that that this effect was more pronounced at the standard rate of sowing than at the 300 

reduced rate (see trend in Fig. 2d). In contrast, in winter wheat, N fertilisation fell short of affecting 301 

species richness of this group (F1,9 = 5.10; p = 0.050).  302 

In winter wheat, rare and declining arable species benefited from reduced cereal sowing 303 

rates both in terms of summed cover (F1,9 = 5.64; p = 0.042; see trend in Fig. 1e) as well as species 304 

richness (F1,9 = 10.21; p = 0.011; Fig. see trend in 2e), whereas in spring barley, such an effect was 305 

only observed for rare species richness (F1,9 = 6.89; p = 0.028; see trend in Fig. 2f). N application, on 306 

the other hand, had a strong negative effect on rare species in spring barley, both in terms of their 307 

summed cover (F1,9 = 11.71; p = 0.008; see trend in Fig. 1f) and species richness (F1,9 = 14.08; p = 308 

0.004; see trend in Fig. 2f), but had no significant effect on either parameter in winter wheat. 309 



Summed cover of undesirable weeds was very low in both experiments, and was not 310 

significantly affected by experimental treatments regardless of cereal sown (Table S2; see also Figs. 311 

1g and 1h).  312 

 313 

Establishment of sown rare species 314 

Numbers of established plants pooled across sown species were not affected by the experimental 315 

treatments in winter wheat (Table S2), where establishment was generally low. However, in spring 316 

barley, where overall establishment was somewhat higher, a significant negative effect of N 317 

application was found (F1,9 = 9.14; p = 0.014; see trend in Fig. 3b). For individual species, 318 

establishment was generally poor, with the exception of Kickxia spuria, whose plants made up about 319 

2/3 of all recorded individuals (226 out of a total of 343). However, no significant treatment effects 320 

were found for this species (Table S2). Papaver argemone was characterised by sporadic 321 

establishment, with higher establishment in the spring barley experiment, and the three remaining 322 

species, Scandix pecten-veneris, Silene noctiflora and Lithospermum arvense, had very low 323 

establishment. For all four species, establishment was too low to allow statistical analysis. For a 324 

more detailed breakdown of establishment at species level see Table S3. 325 

 326 

Vegetation structure 327 

Effects of experimental treatments on bare ground cover were only observed in the winter wheat 328 

experiment, where levels were strongly reduced by N fertilisation (F1,9 = 18.36; p = 0.002; see trend 329 

in Fig. 4a). Effects of cereal sowing rate on wheat tiller density were still detectable just before 330 

harvest, i.e. lower tiller densities were observed in plots sown at the reduced rate (F1,9 = 20.13; p = 331 

0.002). In contrast, no such differences were detectable in spring barley (F1,9 = 0.09; p = 0.769). N 332 

application, on the other hand, had a much more pronounced effect on tiller density in spring barley 333 

(F1,9 = 16.15; p = 0.003; see trend in Fig. 4d) than in winter wheat (F1,9 = 5.48; p = 0.044; see trend in 334 

Fig. 4c). Vegetation height was strongly increased in both crops by N application (winter wheat: F1,9 = 335 



37.77; p < 0.001; spring barley: F1,9 = 348.60; p < 0.001; see trends in Figs. 4e and 4f). Reduction of 336 

cereal sowing rate was associated with a small but nonetheless significant increase in vegetation 337 

height in spring barley (F1,9 = 6.83; p = 0.028; see trend in Fig. 4f). 338 

 339 

Comparison of cereal headland treatments with the uncropped cultivated treatment 340 

In the spring barley experiment, summed cover of all arable plant species and of rare and declining 341 

species was generally higher in uncropped cultivated control plots than in either of the cereal 342 

headland treatments, with significant differences being highlighted in Figs. 1b and 1f. With the 343 

exception of the cereal headland treatment involving cereal sowing at the standard rate in the 344 

absence of N application, this was also the case for species of faunal value, as highlighted in Fig. 1d. 345 

Generally, many fewer significant pairwise differences between the uncropped cultivated treatment 346 

and individual cereal headland treatments were found in the winter wheat experiment (left-hand 347 

side of Fig. 1), where, compared to the spring barley experiment (right-hand side of Fig. 1), summed 348 

cover generally tended to be higher in cereal-sown plots, particularly in the case of arable species in 349 

general and of species of faunal value, as shown in the top two rows of Fig. 1. 350 

Species richness not just of non-crop species in general, but also of species of faunal value 351 

and of rare and declining species, was generally not higher on uncropped cultivated plots than on 352 

cereal-sown plots, with the exception of spring barley plots sown at the standard rate and receiving 353 

N fertiliser, as highlighted for each respective group in Figs. 2b, 2d, and 2f. 354 

Similarly, a comparison of sown species establishment pooled across all sown species, 355 

between uncropped cultivated treatment and the cereal headland treatments, yielded only a single 356 

pairwise difference between a headland treatment and the uncropped treatment, again for spring 357 

barley sown at the standard rate and receiving N fertiliser, as highlighted in Fig. 3b. 358 

Structurally, uncropped cultivated control plots differed markedly from cereal headland plots, with 359 

vegetation height and, for obvious reasons, cereal tiller density, being markedly lower in the former, 360 

as highlighted in Figs. 4c to 4f. On the other hand, as highlighted in Figs. 4a and 4b, levels of bare 361 



ground just before harvest tended to be roughly similar between uncropped controls and cereal-362 

sown headland treatments. 363 

 364 

Discussion 365 

Conservation headlands involving restrictions to agrochemical and fertiliser inputs have the 366 

distinctive advantage of providing ecosystem services and supporting rare and declining arable 367 

plants without requiring land being taken out of food production (Albrecht et al. in press). This study 368 

shows that reduced rates of cereal sowing in such headlands can help boost extant populations of 369 

rare and declining arable species, both in terms of total cover as well as in terms of species richness, 370 

without necessarily resulting in a pronounced increase in undesirable weeds, if levels of the latter 371 

are low to begin with. 372 

These positive effects of a reduction in cereal sowing density on extant rare arable species 373 

appeared to be more pronounced in winter wheat. In contrast, fertilisation had pronounced 374 

negative effects in spring barley, but not in winter wheat. As evidenced by treatment effects on tiller 375 

density, these crop-specific differences in treatment effect on rare species may at least partly have 376 

been the result of intrinsic differences between the tested cereals crops in terms of their ability to 377 

respond to higher resource availability at the level of individual plants - brought about either by 378 

reduced sowing or by added nitrogen - with increased tillering. Such a tillering response was 379 

generally more pronounced in the spring barley experiment than in the winter wheat experiment. 380 

Unlike the wheat crop, the barley crop compensated perfectly for reduced sowing by increased 381 

tillering. Similarly, the tiller density increase in response to N application was more pronounced in 382 

barley than in wheat. 383 

On the other hand, while the observed differences between cereals in tillering thus appear 384 

to support an explanation of crop-specific responses to treatments, seasonal differences in the 385 

timing of cultivation between the two crops may have also have contributed to our results. Many 386 

rare arable species show seasonal preferences in terms of emergence (Wilson 1994; Pywell et al. 387 



2010), and the same applies to common species, resulting in marked effects of cultivation season on 388 

floristic composition (Hald 1999; Critchley et al. 2006). 389 

Nonetheless, in the case of N fertilisation, similar crop-specific effects on the weed flora to 390 

the ones found by us were found by Bischoff and Mahn (2000). In their three-year study on a long-391 

term crop-rotation experiment, peak weed densities were significantly lower on plots receiving N 392 

fertiliser than on plots not receiving N in the year when spring barley was planted, whereas in the 393 

year when winter wheat was planted, the opposite was the case, indicating that weed densities in 394 

spring barley, but not in winter wheat, were suppressed by N application. 395 

 396 

Management for rare and declining species 397 

Few insights were possible based on the sowing component of our experiments due to the sporadic 398 

establishment of all but one sown rare species, although we found that, pooled across species, in 399 

spring barley, establishment was significantly reduced by N application. However, potentially due to 400 

this sporadic establishment, we failed to establish any potential effects of reduced cereal sowing 401 

density. Recent work by Albrecht et al. (2014) has shown that establishment of rare arable species 402 

can indeed be bolstered by sowing cereals at reduced rate, although they tested other cereals in 403 

their study, i.e. rye and spelt. The results of previous studies suggest that reduced cereal sowing can 404 

also boost size (Svensson and Wigren 1982; Kleijn and van der Voort 1997; Albrecht et al. 2014) and 405 

per capita seed production (Peters and Gerowitt 2014) of rare arable plant individuals. In the present 406 

study, additional insights regarding the effects of cereal sowing rate on rare and declining species 407 

were obtained from analyses of summed cover and species richness of the group of rare and 408 

declining arable species found in the experiment, including both unsown and sown species. These 409 

analyses demonstrated that reduced cereal sowing rate increased both summed cover and species 410 

richness of rare and declining arable species in winter wheat, but only species richness in spring 411 

barley.  412 



Regarding the effects of N application, in line with the observed reduction in establishment 413 

of sown rare species, analyses both of summed cover and species richness of rare and declining 414 

species in spring barley also indicated a strong negative effect of N fertilisation. However, no such 415 

effects were detected in the winter wheat experiment. 416 

Taken together, these findings appear to suggest that N application may affect rare and declining 417 

species more strongly in spring barley than in winter wheat. However, it is important to keep in mind 418 

that these were two separate experiments carried out in different fields. As indicated by the 419 

uncropped control treatments in both experiments, which provide an indication of potential 420 

maximum values of summed cover and species richness of rare and declining species as well as of 421 

sown species establishment, higher maxima for all three variables occurred in spring barley than in 422 

winter wheat. This suggests that it may have been more difficult to detect significant N application 423 

effects on rare and declining species in winter wheat than in spring barley. Moreover, negative 424 

effects on N application on rare species establishment in winter wheat have been demonstrated by 425 

previous studies (e.g. Wilson 1999), and our results should thus not be interpreted as a challenge to 426 

the perceived wisdom of N application negatively affecting populations of rare arable species in 427 

cereal crops. 428 

 429 

Management for plant and faunal diversity 430 

Our study failed to demonstrate evidence from our study for reduced rates of cereal sowing to result 431 

in increased cover of common arable species of faunal value that are expected to support higher 432 

trophic groups, although reduced sowing of winter wheat resulted in slightly more species-rich 433 

arable vegetation, which could mean resource provision for a wider range of fauna (Meek et al. 434 

2002; Asteraki et al. 2004). 435 

There was however strong evidence for beneficial effects of not applying N fertiliser on non-436 

crop plant diversity, both in terms of overall species richness, as well as in terms of richness of those 437 

species known to be of faunal value. Both in the winter wheat experiment and in the spring barley 438 



experiment, and in agreement with findings from a comparative study of arable options in a 439 

previous English AES (Walker et al. 2007), non-crop species richness was much higher in cereal 440 

stands not receiving N fertiliser than in those with N application. The same clearly applied to species 441 

of faunal value in spring barley, and a similar effect in winter wheat bordered on significance. Again, 442 

such positive treatment effects on plant species richness may be indicative of an increased ability of 443 

the plant cover to support higher faunal diversity (Meek et al. 2002; Asteraki et al. 2004). Matching 444 

these findings for species richness, N application resulted in reduced summed cover of non-crop 445 

species in the spring barley experiment, but not in the winter wheat experiment.  446 

In agreement with our findings, Kleijn and van der Voort (1997) demonstrated a clear 447 

negative relationship between N application and light penetration beneath the canopy of barley 448 

stands, whereas previous studies carried out in wheat crops have shown that N fertilisation can 449 

boost both establishment (Bischoff and Mahn 2000) and total biomass of weeds (Rial-Lovera et al. 450 

2016). Together with these findings by other authors, our results suggest that effects of N 451 

application on the arable flora may vary between different types of cereal, e.g. being potentially 452 

more detrimental in spring barley than in winter wheat. 453 

Summed cover of species of biodiversity value remained unaffected by N application, 454 

irrespective of cereal sown. While, due to comparatively low replication, our ability to detect such 455 

effects may have been somewhat limited, our findings indicate that restricting N application does 456 

not necessarily lead to marked increases in resource provision to arable fauna. In fact, e.g. in wheat 457 

crops, certain potentially beneficial species may respond positively to N fertilisation (Rial-Lovera et 458 

al. 2016). 459 

 460 

Comparison of cereal headlands with uncropped cultivated controls 461 

In spring barley, summed cover of arable species, as well as of species of faunal value and of rare 462 

and declining species, tended to be higher in uncropped cultivated controls treatment than in the 463 

various cereal headland treatments. However, no such effects was found for overall species richness 464 



or for richness of rare and declining species, except for comparing uncropped controls with the most 465 

intensively-managed type of headland which received N fertiliser and was sown at standard density. 466 

In contrast, in winter wheat, there were hardly any differences between control plots and the 467 

various types of cereal headland treatments, suggesting that cereal exerted much stronger 468 

competitive effects on the non-crop vegetation in the spring barley experiment than in the winter 469 

wheat experiment. While these results also fit with the observation of higher compensatory tillering 470 

in spring barley, providing an explanation in terms of more intense competition, it is again important 471 

to keep in mind that timing of cultivation may also have affected species composition, e.g. due to 472 

seasonal preferences for emergence. 473 

 474 

Conclusions 475 

In this study, we have demonstrated the potential benefits to rare and declining arable species in 476 

conservation headlands of reduced cereal sowing densities, and we have confirmed similar benefits 477 

from restrictions in N fertiliser application. However, as suggested by the crop-specific results both 478 

in the winter wheat and spring barley experiments, the relative extent of such benefits may vary 479 

between different types of cereal, e.g. in relation to  attributes such as tillering capacity or crop 480 

height (Andrew et al. 2015), or e.g. depending on season of sowing. Thus, building on the findings of 481 

this study, further experiments investigating these aspects of managing conservation headlands 482 

should focus on establishing under which conditions such management modifications may deliver 483 

the greatest benefit to rare and declining arable plants. 484 
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Table 1. Results of the classification of herbaceous non-crop species recorded in the winter wheat 691 

and spring barley experiments into (A) common species with known faunal value, (B) common 692 

‘neutral’ species with no or just minor faunal value, (C) rare and declining arable species, and (D) 693 

undesirable weed species. For further explanation, see text. 694 

(A) With faunal value (B) Neutral (C) Rare and declining (D) Undesirable weeds 

Capsella bursa-pastoris Aethusa cynapium Anthemis cotula Alopecurus myosuroides  

Cerastium fontanum Anagallis arvensis Chaenorhinum minus Avena fatua  

Chenopodium album Arenaria serpyllifolia Euphorbia exigua Cirsium arvense  

Echium vulgare Epilobium montanum Fumaria densiflora Cirsium vulgare  

Euphorbia helioscopia Epilobium obscurum Fumaria parviflora Dactylis glomerata  

Fumaria officinalis Epilobium parviflorum Kickxia elatine Elytrigia repens 

Fallopia convolvulus Epilobium tetragonum Kickxia spuria Galium aparine 
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Figure captions: 701 

 702 

Figure 1. Summed percent cover of (a, b) all non-crop species, (c, d) species of faunal value, (e, f) 703 

rare and declining arable species, and (g, h) undesirable weeds. Left panel: winter wheat 704 

experiment; right panel: spring barley experiment. Back-transformed means ± SE shown for different 705 

combinations of cereal sowing at standard (‘1/1’) vs. one-quarter of standard (‘1/4’) densities and N 706 

application at typical rates (‘+N’) vs. no N (‘-N’), and also for an uncropped cultivated control 707 

treatment (‘Control’). Asterisks indicate significant pairwise differences between individual cereal-708 

sown treatments and the uncropped control (Dunnett tests: *: 0.01 ≤ P < 0.05; **: 0.001 ≤ P < 0.01’ 709 

***: P < 0.001). 710 

 711 

Figure 2. Species richness per 1.25 m2 of (a, b) all non-crop species, (c, d) species of faunal value, and 712 

(e, f) rare and declining arable species. Means ± SE shown. See also caption and legend of Fig. 1. 713 

 714 

Figure 3. Establishment of sown rare arable species in terms of numbers of plants per m2 of (a, b) all 715 

sown species pooled together and (c, d) K. spuria. Means ± SE shown.  See also caption and legend of 716 

Fig. 1. 717 

 718 

Figure 4. Vegetation structural parameters, including (a, b) percentage bare ground, (c, d) cereal 719 

tiller density, as number of tillers per m2, and (e, f) vegetation height in metres. Means ± SE shown.  720 

See also caption and legend of Fig. 1. 721 
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Table S1. Classification of species recorded in the winter wheat and spring barley experiments. 

Faunal value was assessed using three criteria, including (1) importance for insect herbivores, (2) 

value for insect pollinators, and (3) importance for farmland birds. Each criterion was assessed on a 

four-point scale: (-) = not important; (+) = of limited importance; (++) = fairly important; and (+++) = 

of considerable importance. Importance for insect herbivores was based on number of unique 

interactions in the Database of British Insects and their Foodplants (DBIF; available online at 

http://www.brc.ac.uk/dbif/ and accessed on 8 April 2016; see Smith and Roy 2008), with +: 6 to 20; 

++: 21 to 60; and +++: ≥ 61 documented interactions. Value for insect pollinators was primarily based 

on nectar productivity in kg/ ha cover/ year, as reported by Baude et al. (2016), with nectar 

productivities of +: >20 to 80 kg/ ha cover/ year; ++: >80 to 400 kg/ ha cover/ year; and +++: > 400 

kg/ ha cover/ year. When no value was reported, an ad hoc assessment was based on values for 

congeneric species. In addition, we looked at production of nutritionally valuable pollen and its 

utilization by various pollinators, according to a range of literature sources (Carvell et al. 2006; 

Hanley et al. 2008; Kleijn and Raemakers 2008). These additional pollen ratings are indicated by the 

superscript letter P. Importance for farmland birds was based on genus-level information collated by 

Holland et al. (2006), with +: genus representing >2% of the diet of at least one species in at least 

one life stage; ++: genus representing >10% of the diet of at least one Red-List species in at least one 

life stage; and +++: genus representing >10% of the diet of at least two Red-List species in at least 

one life stage. In addition, the genus Fallopia, which was not reviewed by Holland et al. (2006), was 

rated as fairly important (=++), as it is incorporated in farmland bird diet where locally available 

(Robinson 2004). Important Arable Plant Area (IAPA) species scores according to Byfield and Wilson 

(2005). 

Species IAPA 
score 

Importance for 
insect herbivores 

Value for insect 
pollinators 

Importance for 
farmland birds 

Species of biodiversity 
value: 

    

Capsella bursa-pastoris  ++ - +++ 
Cerastium fontanum  + + ++ 
Chenopodium album  ++ - +++ 
Echium vulgare  ++ +++/+P  
Euphorbia helioscopia  + n/a ++ 
Fallopia convolvulus  + - ++ 
Fumaria officinalis  + - ++ 
Galium verum  ++ ++ - 
Medicago lupulina  ++ + - 
Myosotis arvensis  + +++ + 
Papaver rhoeas  + +++P - 
Plantago lanceolata  +++ +P - 
Poa annua  +++ - +++ 
Poa pratensis  ++ - +++ 
Polygonum aviculare  +++ - +++ 
Senecio vulgaris  +++ + ++ 
Silene latifolia  + ++  - 
Sonchus asper  + - ++ 
Stellaria media  +++ - +++ 
Taraxacum officinale agg.  +++ +++ ++ 
Trifolium repens  +++ +++/++P ++ 
Tripleurospermum inodorum  ++ ++ - 
Viola arvensis  - + +++ 

http://www.brc.ac.uk/dbif/


Species IAPA 
score 

Importance for 
insect herbivores 

Value for insect 
pollinators 

Importance for 
farmland birds 

     
Common neutral species:     
Aethusa cynapium  + + - 
Anagallis arvensis  - - - 
Arenaria serpyllifolia  - - - 
Epilobium montanum  + - - 
Epilobium obscurum  - - - 
Epilobium parviflorum  + - - 
Epilobium tetragonum  - - - 
Lapsana communis  + - - 
Matricaria discoidea  - + + 
Papaver dubium  - ++P - 
Plantago major  ++ - - 
Sisymbrium officinale  ++ - - 
Veronica arvensis  - - - 
Veronica persica  - + - 
Vulpia bromoides  - - - 
     
Undesirable species:     
Alopecurus myosuroides  + - - 
Avena fatua  + - - 
Cirsium arvense  +++ ++/+P ++ 
Cirsium vulgare  ++ +++/+P ++ 
Dactylis glomerata  +++ - - 
Elytrigia repens  +++ - - 
Galium aparine  ++ - - 
Rumex crispus  ++ - +++ 
Senecio jacobaea  +++ +++ ++ 
Urtica dioica  +++ - +++ 
     
Rare species:     
Anthemis cotula 7 + n/a - 
Chaenorhinum minus 1 - n/a - 
Euphorbia exigua 6 - n/a ++ 
Fumaria densiflora 3 - n/a ++ 
Fumaria parviflora 7 - n/a ++ 
Kickxia elatine 2 - n/a - 
Kickxia spuria 3 - n/a - 
Lamium amplexicaule 1 - (+) + 
Legousia hybrida 3 - n/a - 
Papaver argemone 7 - ++P - 
Papaver hybridum 3 - +P - 
Scandix pecten-veneris 9 - n/a + 
Sherardia arvensis 1 - - - 
Silene noctiflora 7 - + - 
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Table S2. Treatment effects on non-crop vegetative cover and species richness, on establishment of 

sown rare species, and on vegetation structural parameters in winter wheat and in spring barley. 

Parameters were analysed using linear mixed models (LMM) or generalized linear mixed models 

(GLMM). F-values and significance levels given, significant (P < 0.05) model terms shown in bold. 

Parameter Method 

 

mis 

mis 

arvensis

mi 

Cereal sowing rate N fertilisation Cereal sowing × N fertilisation 

  F1,9 P F1,9 P F1,9 P 

A. Winter wheat experiment        

Non-crop vegetative cover        

All spp. LMM 1.81 0.212 0.89 0.371 1.70 0.225 

Spp. of faunal value LMM 0.00 0.996 0.17 0.688 2.25 0.168 

Rare and declining spp. LMM 5.64 0.042 0.37 0.560 1.04 0.334 

Undesirable weeds LMM 2.95 0.120 0.12 0.741 1.20 0.302 

Non-crop species richness        

All spp. GLMM 5.52 0.043 11.54 0.008 0.01 0.935 

Spp. of faunal value GLMM 2.88 0.124 5.10 0.050 0.02 0.888 

Rare and declining spp. GLMM 10.21 0.011 4.59 0.061 0.53 0.486 

Sown species establishment        

Pooled rare spp. GLMM 0.05 0.835 0.00 0.947 1.45 0.260 

Kickxia spuria GLMM 0.10 0.762 0.83 0.386 3.44 0.096 

Vegetation structure        

Bare ground LMM 0.20 0.668 18.36 0.002 0.01 0.908 

Cereal tiller density GLMM 20.13 0.002 5.48 0.044 0.02 0.896 

Vegetation height LMM 4.96 0.053 37.77 < 0.001 1.80 0.212 

B. Spring barley experiment        

Non-crop vegetative cover        

All spp. LMM 0.93 0.360 5.24 0.048 0.21 0.660 

Spp. of faunal value LMM 0.11 0.752 3.86 0.081 1.07 0.327 

Rare and declining spp. LMM 2.42 0.154 11.71 0.008 3.16 0.109 

Undesirable weeds LMM 1.04 0.335 0.18 0.684 0.07 0.902 

Non-crop species richness        

All spp. GLMM 2.75 0.132 40.59 < 0.001 9.04 0.015 

Spp. of faunal value GLMM 0.00 0.951 14.99 0.004 5.85 0.039 

Rare and declining spp. GLMM 6.89 0.028 14.08 0.004 1.96 0.195 

Sown species establishment        

Pooled rare spp. GLMM 0.00 0.981 9.14 0.014 1.06 0.329 

Kickxia spuria GLMM 0.12 0.737 4.02 0.076 0.53 0.484 

Vegetation structure        

Bare ground LMM 0.05 0.830 2.40 0.156 0.02 0.898 

Cereal tiller density GLMM 0.09 0.769 16.15 0.003 1.56 0.243 

Vegetation height LMM 6.83 0.028 348.60 < 0.001 1.87 0.204 

 

 

 

 



Table S3. Establishment of five sown rare arable species in the winter wheat and spring barley 

experiments. Means ± SE given for established plants per m2. 

 Treatment 

 Control 1/4 sown, 

no N 

1/4 sown, 

with N 

1/1 sown, 

no N 

1/1 sown, 

with N 

Winter wheat      

Kickxia spuria 4.8 ± 1.0 0.6 ± 0.2  1.4 ± 1.1 2.4 ± 1.0 0.2 ± 0.2 

Lithospermum arvense 0 0 0 0 0 

Papaver argemone 0 0.8 ± 0.8 0 0 0 

Scandix pecten-veneris 0.2 ± 0.2 0 0.2 ± 0.2 0 0 

Silene noctiflora 0 0 1.0 ± 1.0 0 1.0 ± 1.0 

Total 5.0 ± 0.9 1.4 ± 0.6 2.6 ± 1.3 2.4 ± 1.0 1.2 ± 1.0 

Spring barley      

Kickxia spuria 11.6 ± 1.3 6.6 ± 2.5 3.6 ± 1.0 11.0 ± 3.9 3.0 ± 2.2 

Lithospermum arvense 0 0 0 0 0 

Papaver argemone 6.2 ± 2.9 4.4 ± 1.0 1.0 ± 0.4 5.4 ± 1.5 0 

Scandix pecten-veneris 0 0.6 ± 0.4 0.2 ± 0.2 0.4 ± 0.2 0.2 ± 0.2 

Silene noctiflora 0.6 ± 0.6 0 0.4 ± 0.4 0.6 ± 0.6 0.2 ± 0.2 

Total 18.4 ± 3.9 11.6 ± 2.8 5.2 ± 0.8 17.4 ± 5.8 3.4 ± 2.2 
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