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Abstract 

During major disasters or other emergencies, Urban Search and Rescue 

(USAR) teams are responsible for extricating casualties safely from 

collapsed urban structures. The rescue work is dangerous due to possible 

further collapse, fire, dust or electricity hazards. Sometimes the necessary 

precautions and checks can last several hours before rescuers are safe to 

start the search for survivors. Remote controlled rescue robots provide the 

opportunity to support human rescuers to search the site for trapped 

casualties while they remain in a safe place.  

The research reported in this thesis aimed to understand how robot 

behaviour and interface design can be applied to utilise the benefits of robot 

autonomy and how to inform future human-robot collaborative systems. 

The data was analysed in the context of USAR missions when using semi-

autonomous remote controlled robot systems. The research focussed on the 

influence of robot feedback, robot reliability, task complexity, and 

transparency. The influence of these factors on trust, workload, and 

performance was examined. The overall goal of the research was to make 

the life of rescuers safer and enhance their performance to help others in 

distress. 

Data obtained from the studies conducted for this thesis showed that semi-

autonomous robot reliability is still the most dominant factor influencing 

trust, workload, and team performance. A robot with explanatory feedback 

was perceived as more competent, more efficient and less malfunctioning. 

The explanatory feedback was perceived as a clearer type of communication 

compared to concise robot feedback. Higher levels of robot transparency 

were perceived as more trustworthy. However, single items on the trust 

questionnaire were manipulated and further investigation is necessary. 

However, neither explanatory feedback from the robot nor robot 

transparency, increased team performance or mediated workload levels. 

Task complexity mainly influenced human-robot team performance and the 

participants’ control allocation strategy. Participants allowed the robot to 

find more targets and missed more robot errors in the high complexity 
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conditions compared to the low task complexity conditions. Participants 

found more targets manually in the low complexity tasks. 

In addition, the research showed that recording the observed robot 

performance (the performance of the robot that was witnessed by the 

participant) can help to identify the cause of contradicting results: 

participants might not have noticed some of the robots mistakes and 

therefore they were not able to distinguish between the robot reliability 

levels. 

Furthermore, the research provided a foundation of knowledge regarding 

the real world application of USAR in the United Kingdom. This included 

collecting knowledge via an autoethnographic approach about working 

processes, command structures, currently used technical equipment, and 

attitudes of rescuers towards robots. Also, recommendations about robot 

behaviour and interface design were collected throughout the research. 

However, recommendations made in the thesis include consideration of the 

overall outcome (mission performance) and the perceived usefulness of the 

system in order to support the uptake of the technology in real world 

applications. In addition, autonomous features might not be appropriate in 

all USAR applications. When semi-autonomous robot trials were compared 

to entirely manual operation, only the robot with an average of 97% 

reliability significantly increased the team performance and reduced the 

time needed to complete the USAR scenario compared to the manually 

operated robot. Unfortunately, such high robot success levels do not exist 

to date. 

This research has contributed to our understanding of the factors influencing 

human-robot collaboration in USAR operations, and provided guidance for 

the next generation of autonomous robots. 
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1 Introduction 

 

1.1 Chapter overview 

This chapter provides an introduction for the thesis and gives a brief 

background of the topic and explains why this topic is of importance to 

research and society. The aim of this work is to investigate how robot 

behaviour and interface design can be applied to utilise the benefits of robot 

autonomy and inform future human-robot collaborative systems. This is 

examined in the context of semi-autonomous remote controlled ground 

robots for Urban Search and Rescue (USAR). Also, this chapter provides an 

overview of the studies performed to address the individual aims and 

objectives. Furthermore, a brief overview of the thesis chapters is given. 

1.2 Background and motivation 

Over the past 30 years the number of natural and technological disasters 

has risen, as has their impact (Guha-Sapir, Below, & Hoyois, 2015). 

Earthquakes, storms and floods have the most economic impact (Munich 

Re, 2015a), whereby storms and earthquakes are the most deadly events 

(Munich Re, 2015b). The overall damage of natural disasters in USD in 2000 

was 61 billion, compared to 371 billion USD in 2011 (Munich Re, 2015a). 

The reason for such impacts of natural and technological disasters is mainly 

due to factors associated with urban occupation. Worldwide, more people 

live in urban areas and this trend is continuing to rise (United Nations, 

2014). Nowadays ca. 54 per cent of the world’s population live in urban 

areas and the United Nations project that by 2050, 66 per cent of the world’s 

population will be urbanised (United Nations, 2014). This is in contrast to 

30 per cent of the world’s population living in highly populated areas 65 

years ago. The more people live in urban areas, the higher will be the 

numbers of fatalities and economic impact of disasters (Deely et al., 2010). 

For example, highly populated areas, such as cities, are very vulnerable to 

the devastating effects of earthquakes. Buildings can collapse, 

infrastructure can be damaged and consequences such as the nuclear 
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incident at Fukushima, where the damage of a tsunami caused equipment 

failure and nuclear meltdowns, can arise. Next to natural disasters also 

terrorist attacks are posing a threat with increased numbers of attacks, such 

as explosive devices in crowded urban areas (Institute for Economic and 

Peace, 2014). 

An increase in disasters, terrorist attacks, urbanisation, and their resulting 

rising impact demands highly qualified Urban Search and Rescue teams with 

enhanced capacities, flexibility, and appropriate, up-to-date equipment. In 

general, Urban Search and Rescue (USAR) teams consist of regular 

firefighters who have had additional USAR training. USAR teams are called 

when urban structures collapse and people are trapped or buried under 

rubble or debris. When arriving at an incident site the team has to find and 

extricate casualties as fast as possible. Their job is very dangerous and they 

risk their lives to help others (Cowman, Ferrari, & Liao-Troth, 2004). 

Fast information collection is key to mission planning and success (The Fire 

Service College, 2014). Because information at the scene is very limited, 

often the number of casualties or their location on the incident site is 

unknown or based on estimates. The more is known about the scene, the 

better rescuers can plan ahead and aid people quickly and with fewer risks. 

Therefore, rescuers have to work fast and under constant time pressure in 

hostile environments. The golden rule of finding people highlights the 

reward of working fast because the most people alive can be rescued within 

the first hour (The Fire Service College, 2014). However, sometimes the 

circumstances at the incident site are too dangerous for rescuers to start 

their work. These restrictive conditions can include further collapse of 

buildings, fires, electricity hazards, etc. (The Fire Service College, 2014). 

New emerging technologies create a high potential to enhance rescue 

operations and make the process of rescuing safer, more efficient and more 

effective. For example during the earthquake in Nepal (2015), rescuers used 

a specially designed radar, called FINDER, which can detect heart beats 

under 30 feet of rubble. It was the first time this NASA technology was used 

in a real world context. FINDER managed to find four people buried under 

crushed materials (Partnership for Public Service, 2015). In another 
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example, at the Washington DC mudslide in 2014, Murphy et al. (2015) 

used an unmanned air vehicle to successfully build 2D and 3D 

representations of the inaccessible regions of the slide. This allowed 

geologists and hydrologists to assess the imminent risk to rescuers from 

further slides and flooding, and provided a better overall understanding of 

the incident.  

Technology holds promises for future rescue operations (Kruijff et al., 

2014). Rescue robots can go where humans cannot. They can go into areas 

such as cavities (voids), which are too dangerous or even inaccessible for 

the rescue teams. The robot’s main task is the collection of information 

during reconnaissance and mapping missions. This new technology offers 

the potential to support rescuers in their work and be beneficial for the 

overall rescue mission. Nevertheless, it is important that the design of these 

new technologies takes into account the context of their use and the human 

capabilities of those who will use them. The next paragraphs will clarify what 

a rescue robot is and where the focus of this PhD lies. 

1.3 What is a rescue robot? 

A robot in this work is described as a physical entity that is guided by a 

computer program or an electronic circuitry. A rescue robot is an unmanned, 

mobile, sensing and physically situated agent (Murphy, 2014). Rescue 

robots can have different application areas, they can operate on the ground, 

in the water, in the air or even in space. These mobile rescue robots are 

particularly challenging to develop. Most robots we hear from or even see, 

are industrial robots. To date they work very quickly, reliably, and 

accurately. But, the difference between these and rescue robots is that 

industrial robots perform pre-programmed repetitive tasks in a fixed 

environment, and a rescue robot needs to sense, adopt and act in a 

constantly changing environment. Furthermore, rescue robots need to take 

care of not destroying forensic evidence, causing rubble to move or bringing 

casualties further in danger (Murphy, 2014). 
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Additionally, different robot tasks demand different types of robots. For 

instance, bomb disposal robots are mostly heavy (armoured) and utilise a 

robotic arm or a similar manipulator in order to diffuse a bomb remotely 

(see Figure 1). Another example is pipe inspection robots. As shown in 

Figure 2, they are designed for a single purpose: to inspect a pipe. They are 

not designed to drive on any other terrain. 

 

 

Figure 1 - CUTLASS Bomb disposal robot used by the British Army (“CUTLASS EOD robot 

[Image],” 2012) 

Figure 2 - Pipe crawler Versatrax 150 (“Pipe crawler Versatrax 150 [Image],” 2015) 
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But rescue robots need to traverse unpredictable, changing, and dangerous 

terrains. They need to operate in areas where GPS or other signals are very 

limited. 

To the knowledge of the author only one USAR robot is actually part of a 

rescue team in the American New Jersey Task Force One (Urban Search and 

Rescue state team). This robot is used for a very distinct purpose (J. Bastan, 

Task Force Leader on New Jersey Task Force 1, personal communication, 

September 9, 2014): to find out whether a person is dead or alive. If a 

person is deep buried in a rubble pile it is an enormously time consuming 

and demanding task to remove all rubble carefully and gain proper access 

to that person. Knowing if a person is actually dead or alive is vital to focus 

workforce on the right tasks. Maybe the person is already dead; therefore 

the rescuers can concentrate to rescue other people that are still alive. 

Rescue robots need to be versatile and adaptable to cope with different 

tasks and environments (Shah & Choset, 2004). But there is always a trade-

off between equipment/sensors and robot weight. More advanced and 

accurate sensors can provide a better understanding of the remote 

environment for the human and the robot (Fong, Kaber, Scholtz, & Schultz, 

2004; Glas, Kanda, Ishiguro, & Hagita, 2012). They can inform the rescue 

teams more accurately in order to make better informed decisions. We can 

produce robots which have all sorts of sensors that will support the 

operator; however this will increase weight and bulk and the robot might 

not fit into narrow spaces or will bring rubble to a collapse (cf. Murphy, 

2004). For this reason, rescue robots are small and portable (Casper & 

Murphy, 2003) - small enough to enter voids and light enough not to cause 

secondary collapses, but big enough to carry important sensors, an 

appropriate camera, and sufficient battery power. Robot technology is 

evolving every day and soon technology is able to produce reliable and 

robust robot systems. With the acceptance and use of rescue robots the life 

of a rescuer can be made safer and maybe rescue operations can become 

more efficient (Mioch, Smets, & Neerincx, 2012; Steinbauer, Maurer, & 

Krajnz, 2014). 
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The environmental influences and the robot capabilities also influence the 

human-robot interaction (HRI). Operators have to understand the world 

through the “eyes” of the robot. This understanding is a very important 

aspect of HRI and also influences the trust in the robot, acceptance and 

usage of the robotic system. For operators, remote presence is very 

demanding because their natural perception is impaired by being detached 

from the physical environment they have to explore (Chen, Haas, & Barnes, 

2007). 

With the intention to reduce rescuers’ workload, robots are being developed 

with autonomous features. However, automatic robot features are not used 

(Larochelle, Kruijff, & Van Diggelen, 2013a), as technology is still prone to 

error, robots are only slowly being introduced into the area of search and 

rescue, and robots are far from standard rescue service equipment (Murphy, 

2014). There are several issues as to why robots are slowly accepted and 

barely used. One issue is that standards for rescue robots are missing 

(Murphy, 2014). Rescue equipment needs to be tested and be of a certain 

standard to be useful, safe, and reliable (Messina & Jacoff, 2006). Therefore, 

purchasing a robot for the Fire and Rescue Service, who is responsible for 

the USAR teams in the U.K., is difficult or even impossible. Most robots used 

are research robots and they are deployed mostly after the incidents to find 

dead people. Furthermore, operators do not always place trust in the robotic 

system and the benefits of such systems cannot be exploited fully. As 

previously mentioned, technology to date is still prone to error which makes 

operators quickly lose trust in rescue robots. Why trust seems to be 

important in human-robot collaboration is part of the research focus of this 

PhD. 

1.4 Scope of PhD 

This PhD focusses on human-robot collaboration and interaction in the 

context of unmanned robots for reconnaissance and mapping on the 

ground. These are light and agile robots that search inaccessible areas with 

a camera and other sensors, such as temperature, air quality, 3D scanner 

etc. 
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While rescue robots are still prone to error and lacking capabilities in 

mobility, sensing and appropriate autonomous behaviour, the greatest 

human related challenge still posed is the limited understanding of human-

robot interaction (Murphy, 2004). During human-robot interaction many 

human factors issues emerge: Is the technology understandable, easy to 

use, effective, and safe? 

Technology is evolving and robots are getting more intelligent and have 

more degrees of autonomy, which can provide them with abilities such as 

achieving independently prescribed task objectives, adapting to 

environmental stages and internal states as well as developing their own 

objectives (Huang, Messina, & Albus, 2003). Each robot will have its own 

level of autonomy, but regardless of this level, with new technologies, new 

interaction styles and new challenges for humans arise (cf. Burghart & 

Steinfeld, 2008; Sklar et al., 2011). The more complex a system gets, the 

more human factors needs to be considered. It is hoped that autonomous 

features can alleviate operators from the workload, mediate error rates and 

enhance human-robot team performance. However, experiments showed 

(Lee & Moray, 1992; Lee & See, 2004; Parasuraman & Riley, 1997) that 

these features are not utilised by operators due to their lack of trust into 

the technology. The presented work (Chapter 5 to Chapter 7) examines the 

issue of trust between operators and semi-autonomous robot systems in 

order to enhance mission performance, reduce workload, optimise robot 

communication, and establish so called calibrated trust. The goal is not to 

maximise trust, but rather to ensure an appropriate level of trust. Low levels 

of trust lead to operators not appropriately using the supporting features; 

too high levels of trust make operators trust robots when they should not, 

which leads to further errors (Lee & See, 2004). The detailed aims and 

objectives of this PhD are presented in the next section. 

1.5 Aims and objectives 

The overall aim of this PhD is to understand how robot behaviour and 

interface design can be applied to utilise the benefits of robot autonomy and 

inform future human-robot collaborative systems. This is examined in the 
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context of semi-autonomous remote controlled ground robots for Urban 

Search and Rescue (USAR). 

 Aim I: Develop a background understanding of the USAR domain and 

their work as well as describing the real world application of USAR in 

order to provide recommendations for the implementations of robots 

in British USAR teams. 

Objectives: 

1. Gather background knowledge of the USAR domain, 

especially their technical equipment used to date, as well as 

investigating the rescue culture and team behaviours within 

this user group to inform future experiments and robot 

designs. 

2. Study organisational structures and rescue processes to find 

an appropriate robot position in the system in order to give 

recommendations for an implementation of robots in British 

USAR teams. 

3. Collect data about rescuers’ attitudes towards robots. 

 

 Aim II: Improve understanding of underpinning cognitive concepts, 

thoughts and behaviours of participants while interacting with 

different autonomous and semi-autonomous robots, in order to 

inform future robot behaviour and interface design as well as the 

subsequent studies of this PhD. 

Objectives: 

4. Explore relevant rescue tasks with a retrospective verbal 

protocol and gather information about thoughts and feelings 

during human-robot interaction. 

5. Collect interview data regarding robot characteristics and 

participant preferences. 

 

 Aim III: Investigate how robot and environmental characteristics, 

influence user cognition, behaviour and performance. 
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Objectives: 

6. Identify the key cognitive concepts that are relevant to USAR. 

7. Identify, compare and select appropriate measurements of 

these key cognitive concepts against each other. 

8. Examine the effects of different feedback on trust. 

9. Investigate the influence of task complexity and robot 

reliability on performance, workload and trust. In addition, 

compare performance levels between semi-autonomous 

controlled robot and manual controlled robots. 

10.Compare, with the aid of the situation awareness 

transparency model, two different levels of interface 

transparency across two levels of task complexity. 

11.Develop a measurement of performance in semi-autonomous 

human-robot teams. 

How these aims and objectives were addressed in the following experiments 

is visualised in Figure 3. 
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Figure 3 - Overview how studies will address aims and objectives 

Overview and details of studies performed and which of the aims and 

objectives were addressed is shown in Table 1. 

Study 

number 

Study title Study details Aims & 

objectives 

Study I Urban 

Search and 

Rescue field 

work 

The researcher attended a two 

weeks USAR course in the U.K. and 

gathered insight knowledge of the 

behaviours and thoughts of 

rescuers. Furthermore, information 

about tasks, processes, and culture 

of the rescue domain were collected. 

Aim I 

Objective 1-3 

Study 

II 

The 

influence of 

robot 

reliability 

indication 

and 

feedback 

This study examined different 

amounts of robot feedback and 

reliability justification of the robot. 

The experiment used the 

retrospective verbal protocol method 

to elicit in-depth qualitative 

information from the participants. 

Aim II 

Objective 4-5 

Aim III 

Objective 8 
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Study 

III 

The 

influence of 

robot 

reliability 

and task 

complexity 

This simulation tested the influence 

of robot reliability and task 

complexity on trust, workload and 

performance. Additionally a base line 

group utilised manual mode only 

and was compared to the semi-

autonomous group regarding trust, 

workload, and performance. 

Aim II 

Objective 5 

Aim III 

Objective 7, 9, 

11 

Study 

IV 

The 

influence of 

robot 

transparency 

and task 

complexity 

The simulated robot showed 

different levels of transparency and 

the task changed in complexity. The 

influence of robot transparency and 

task complexity on trust, workload 

and performance was measured. 

Aim II 

Objective 5 

Aim III 

Objective 10 

 

Table 1 -Overview of studies performed and aims/objectives addressed 

An overview of the novel contributions to the body of knowledge and a 

summary of each chapter is provided in the next sections. 

1.6 Novel contributions 

This PhD addresses a variety of gaps in the literature and aims to add the 

following novel contributions to the body of research knowledge: 

 Although some data about processes, equipment and organisational 

structures are openly available to the public (HM Government, 2008; 

“The Personal Qualities and Attributes [Website],” 2014), detailed 

information about rescue work is still missing: 

o This thesis provides an overview of the work and equipment of 

USAR personnel in the U.K. from a first-hand perspective. 

 So far no research by using a retrospective verbal protocol while 

interacting with an autonomous remote controlled robot had been 

done: 

o Using verbalised thought analysis while participants interact 

with an autonomous robot. 

 Many authors have concentrated on autonomous machines and 

robots (Hoff & Bashir, 2014; Merritt, 2011). However, a complex task 

such as Urban Search and Rescue still needs the operator in the loop 

and take over certain aspects of the search tasks (e.g. identifying 

casualties) (Virk, Gatsoulis, Parack, & Kherada, 2008). In this case 

semi-autonomous robots are required. 
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o Performing a detailed performance analysis with respect to 

semi-autonomous robot systems and the emerging challenges 

with it. 

o Developing performance measuring techniques in semi-

autonomous robot systems. 

 Search and rescue teams encounter unpredictable environments (Y. 

Liu & Nejat, 2013) that can be highly complex. Investigation with task 

complexity and other known factors is important to design 

appropriate robot systems (Desai, Kaniarasu, Medvedev, Steinfeld, & 

Yanco, 2013). Furthermore, transparency is an emerging concept 

that aims to enhance human-robot team performance and is worth 

further investigation (Boyce, Chen, Selkowitz, & Lakhmani, 2015; 

Lyons, 2013). 

o Investigating the effect of task complexity and robot reliability. 

o Investigating the effect of task complexity and robot 

transparency. 

 In human-robot interaction several trust questionnaires exist (Jian, 

Bisantz, Drury, & Llinas, 2000; Muir, 1989; Schaefer, 2013; Yagoda 

& Gillan, 2012) but so far literature did not compare these 

questionnaires with each other regarding their usage in remote 

controlled semi-autonomous robot systems. 

o Comparing different trust questionnaires and their sensibility. 

1.7 Thesis overview 

 Chapter 1: Introduction 

This chapter provides an introduction for the thesis and gives a brief 

background of the topic and explains why this topic is of importance to 

research and society. The aim of this work is to investigate how robot 

behaviour and interface design can be applied to utilise the benefits of robot 

autonomy and inform future human-robot collaborative systems. This is 

examined in the context of semi-autonomous remote controlled ground 

robots for Urban Search and Rescue (USAR). Also, this chapter provides an 

overview of the studies performed to address the individual aims and 

objectives. Furthermore, a brief overview of the thesis chapters is given. 
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 Chapter 2: Literature review 

This chapter presents a critical review of robots used in USAR and human-

robot teams. Furthermore, trust is identified as an important factor of 

influencing the interaction between operator and robot. Therefore, this 

chapter reviews the academic literature and reports what trust is, why it is 

important and what models have been developed in the past. 

 Chapter 3: Methodology 

This chapter provides the methodology used to investigate the research 

objectives. The chapter starts with a review of the measures used in 

literature for human-robot performance and trust. Next, a justification for 

the selection of methods and tools is provided. The chapter concludes with 

a description of the equipment used. This includes an overview of the 

development of a simulated robot in a 3D virtual environment. The 

development and functionalities of the program are explained. 

 Chapter 4: Study I – Urban Search and 

Rescue field work 

This ethnographic study aimed to gather information about USAR 

technicians, their training, tasks, working environment, currently used 

equipment, behaviour and culture. Over a period of two weeks eleven 

delegates of the USAR Level 1 technician course were observed in order to 

gather requirements and implications for robots in terms of features, 

behaviours, interface design, and robot implementation in the U.K. Fire and 

Rescue Service. Furthermore attitudes and traits of the technicians were 

collected. The background information was used to inform the subsequent 

studies. The chapter concludes with recommendations of robot usage in the 

USAR domain as well as a set of search and rescue scenarios. 

 Chapter 5: Study II – The influence of 

reliability indication and feedback 

This chapter examines the influence of different amounts of robot feedback 

on trust, workload, performance, and participant’s perception of the robot. 

Two robots, each providing different amounts of feedback, autonomously 
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searching an environment for specific targets. Both indicate their reliability 

level, but one of the robots indicates why it is in a certain reliability level 

and what type of target it found. This explanatory feedback was perceived 

as a clearer type of communication and the robot was perceived as more 

competent, efficient and less malfunctioning. Furthermore, to collect 

qualitative data about human-robot interactions participants perform 

retrospective verbal protocols and answer interview questions after the 

trials. 

 Chapter 6: Study III – The influence of robot 

reliability and task complexity 

The chapter presents a simulated search and rescue scenario with a semi-

autonomous robot system which examines the influence of robot reliability 

and task complexity on workload, performance, and trust. A post-task 

questionnaire collects data about trust, subjective workload, robot 

characteristics, and participant’s experiences. This study also informs about 

possible measurements of performance in semi-autonomous robot systems. 

In addition, two trust questionnaires and their correlations are compared 

with each other and recommendations about their application provided. 

 Chapter 7: Study IV – The influence of robot 

transparency and task complexity 

This chapter’s study uses the same simulated environment and robot as the 

previous study. It examines the influence of robot transparency and task 

complexity on workload, performance and trust. The quantitative data of 

the previous study showed that robot transparency is of importance for the 

operator to understand the robots’ states and actions. Transparency levels 

in this chapter consist of two different interfaces with different levels of 

feedback and scenario information. Also, the study aims to see if task 

complexity will have similar effects as in the previous study and that high 

task complexity leads to lower trust levels and lower performance. Interview 

data examines and quantifies which elements of the interface were actually 

used and why, in order to understand the benefit of presenting more or less 

information for higher transparency levels. 
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 Chapter 8: Discussion 

The summary of research findings and the review of aims from the research 

conducted are discussed in this chapter. Recommendations are made for 

robot implementation and design. Furthermore, this chapter addresses 

several discussion points about trust and collaboration in human-robot 

teams and it highlights the limitations of the research. 

 Chapter 9: Conclusion and future work 

The chapter provides the main conclusions of this thesis in a short 

concluding statement. Furthermore, possible future work in the area of trust 

and human-robot collaboration research is outlined. 

1.8 Chapter summary 

This chapter provided an introduction for the thesis and gave a brief 

background of the topic and why it is of importance to research and society. 

The aim of this work is to investigate how robot behaviour and interface 

design can be applied to utilise the benefits of robot autonomy and inform 

future human-robot collaborative systems. The chapter explained the field 

of application, the scope of the thesis, and the novel contributions it will 

make to the body of knowledge. The structure of the thesis was presented 

by an overview of the upcoming chapters. 
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2 Literature review 

 

2.1 Chapter overview 

This chapter presents a critical review of robots used in USAR and human-

robot teams. Furthermore, trust is identified as an important factor of 

influencing the interaction between operator and robot. Therefore, this 

chapter reviews the academic literature and reports what trust is, why it is 

important and what models have been developed in the past. 

2.2 Chapter introduction 

Human-robot trust is still a new field with limited but growing research. As 

with many topics in research, it is very context dependent and advancing 

technologies produce new challenges and opportunities. Rescue robots can 

be advanced robot systems with autonomous capabilities and cooperative 

behaviour that grant opportunities for faster and more effective rescue 

missions. At the same time new challenges arise: human-robot task 

distribution and human-robot team coordination, new sources of error, trust 

issues, information flow, etc. This chapter gives an overview of the literature 

which provided the basis for the research of this thesis. It is divided into 

three sections. First, the review discusses rescue robots in the Urban Search 

and Rescue (USAR) domain by presenting research projects concerned with 

rescue robots, current commercially available robots and past deployments 

of rescue robots. In addition, a robot’s possible automation capabilities are 

discussed. Second, theoretical foundations of teamwork and human-robot 

team structures are explained. The third section is concerned with the issue 

of trust, why trust is important, what trust is and what models of trust exist. 

Further review of literature can be found at the beginning of each chapter. 

2.3 Robotics in USAR 

It is necessary to understand what types of robots have been used to date 

and the technologies engineers are working on. We can only produce an 

optimum robot system if development, design, and science work together. 

For instance, robots have been tested in the field and failed to demonstrate 
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usefulness to rescuers, due to inadequate design (Casper & Murphy, 2003; 

Murphy et al., 2015) or usability issues (Matsuno et al., 2014). This section 

of the PhD aims to look at existing robot systems and current commercially 

available robot systems, as well as lessons learned from past deployments 

and projects. 

 Commercially available robots 

The following examples present current commercially available robots that 

are appropriate or possible to use for search and rescue reconnaissance 

tasks. Despite this relevance to USAR, most of these robots were not 

exclusively designed for search and rescue or have fully autonomous 

capabilities. Most systems are aimed to provide military support (e.g. 

reconnaissance) or inspection of inaccessible areas (e.g. pipes). However, 

with these systems it is possible to perform certain tasks in rescue missions 

that relate to reconnaissance. The review of available robot systems aims 

to provide the reader with an understanding of currently used robots and 

their capabilities. 

TALON 

TALON from QinetiQ (former Foster-Miller) is a 52 kg heavy robot with a 

gripper arm, obstacle navigation and stairs climbing capabilities. The TALON 

also provides different cameras such as infrared, thermal, fish eye, and 

night vision. As shown in Figure 4, this quite large robot, which is 43 cm in 

height, 57 cm width and a length of 86 cm, is aimed for manipulation tasks 

such as bomb disposal. 

 

 Figure 4 - TALON robot from QinetiQ (“TALON robot [Image],” 2015) 



19 
  

This robot had been purchased for ca. 79,000 GBP in 2005 by the Miami 

Police Bomb Squad (Martin, 2012). The price includes a camera and other 

equipment to operate the robot appropriately. Although this robot is not 

specifically for search and rescue, it can be used in flat terrain for 

reconaissance missions or manipulation tasks. 

Dragon Runner 

The little brother of TALON is the Dragon Runner (see Figure 5) and is also 

produced by QinetiQ. This throwable robot weights 4.5 kg has a microphone, 

as well as day and night vision. It longest side is 38 cm. This size is much 

more appropriate for rescue operations. Originally the Dragon Runner was 

designed for reconnaissance missions; with some add-ons it can also climb 

stairs. The robot can also be equipped with an additional gripper arm. 

 

 

In 2009 QinetiQ had been awarded contracts with the U.K. Ministry of 

Defence of over 12 million GBP for providing 100 Dragon Runner robots 

(including spare parts and support) for the military operations in 

Afghanistan (QinetiQ, 2009). 

110 First Look 

iRobot produced the reconnaissance robot 110 First Look (Figure 6). It is 

throwable (e.g. it can also be dropped or thrown towards the area of use), 

can be equipped with different cameras, and can autonomously self-right 

itself. The longest side of this robot is 25 cm. The robot is small, rugged and 

expandable according to iRobot. In 2014 the American Saginaw Police 

Department purchased a First Look robot for nearly 13,200 GBP (Tower, 

Figure 5 - Dragon Runner 10 from QinetiQ (“Dragon Runner 10 [Image],” 2015) 
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2014). The aim of the police department is to drive remote-reconnaissance 

missions in inaccessible or dangerous areas (e.g. car accidents or taking of 

hostages). 

 

 

Recon ThrowBot LE 

One of the smallest reconnaissance robots is the Recon Scout ThrowBot (see 

Figure 7). It only weights 500 g and has a length of 19 cm with a diameter 

of 8 cm. It offers easy transportation and can be deployed immediately 

(“Recon Scout Throwbot LE [Website],” 2015). 

 

 

The operator control unit solely has a screen (showing the video of the 

robot) and a single joystick. It is also throwable and silent. A working 

configuration starts at a price of 3,200 GBP (ReconRobotics, 2010). 

Figure 6 - 110 First Look from iRobot (“110 First Look [Image],” 2015) 

Figure 7 - Recon ThrowBot LE from Recon Robotics (“Recon Scout - Throwbot LE 

[Image],” 2015) 



21 
  

R2i2 Delta Extreme/Micro 

This model was already successfully deployed during the terrorists’ attacks 

on the World Trade Center (WTC) 2001 in New York: the R2i2 Delta 

Extreme, also known as Inuktun VGTV (Variable Geometry Tracked 

Vehicle). The robot was initially developed by Inuktun and is now 

purchasable via RECCE robotics. The tracks are flexible and can traverse 

very difficult terrain. It incorporates a camera, bi-directional audio and a 

tether cable. Prices are not readily available but a used robot could be 

purchased for ca. 5,000 GBP (without sensors) according to Booysen and 

Mathew (2014). This robot is also utilised as a permanent asset of the USAR 

team New Jersey Task Force 1 (see Figure 8). 

 

 

Its system and sensors were adapted by the CRASAR team to fit the needs 

of the USAR missions. A smaller version of this robot is the 6.2 kg heavy 

R2i2 Delta Micro (see Figure 9). 

 

 

It is equipped with a camera and lighting. Optional are camera tilt feedback 

and inclinometer. 

Figure 8 - R2i2 Delta Extreme from RECCE robotics (“R2i2 Extreme [Image],” 2015) 

Figure 9 - R2i2 Delta Micro from RECCE robotics (“R2i2 Delta Micro [Image],” 2014) 
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The next section will emphasise on past deployments of robots in the field 

and discuss the implications for future robot systems. 

 Deployment of robots and lessons learned 

Terrorist attacks, World Trade Center (2001) 

The first real world disaster that led to the use of robotic assistance was the 

WTC disaster in New York. In 2001 the two towers of the WTC collapsed as 

a result of being struck by two airplanes, which were hijacked by terrorists. 

Casper and Murphy (2003) produced a report about this disaster including 

an extensive set of recommendations for USAR HRI. During the WTC 

disaster, the Robotic Assisted Search and Rescue Center (CRASAR) were in 

charge of the robot deployments. CRASAR is located in the US and aims to 

develop robots and technologies for disaster prevention, response, and 

recovery. The Center consists of academic researchers, industry partners 

and rescuers (“CRASAR [Website],” 2015). Their later developed and tested 

technologies were adopted by official emergency response teams across 

Europe (“CRASAR [Website],” 2015). 

At the WTC disaster robots were used to access small voids and areas that 

were too dangerous for rescuers to enter in order to search for casualties. 

Also, robots were used in a later mission on site to record video material for 

structural engineers. Of the ten robots at the incident site only three were 

actually used: the models Inuktun MicroTracs, Inuktun MicroVGTV, which 

can be carried by a single person, and Foster-Miller SOLEM (see Figure 10). 

 

 Figure 10 - Foster-Miller SOLEM (“Foster-Miller Solem [Image],” 2010) 
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The 15 kg heavy SOLEM is not commercially available anymore. The product 

got replaced by newer versions of the TALON robot and Dragon Runner (see 

section 2.3.1). The Inuktun models are also replaced by newer versions. 

The MicroVGTV’s new model is the R2i2 Delate Micro and Extreme (see 

section 2.3.1). 

The decision of using the robots stated above was made due to the small 

entry points of the voids. For example, Casper and Murphy’s (2003) report 

stated that the TALON (described in section 2.3.1) and the Inuktun Pipe 

crawler were too large to carry to the deployment location or to even enter 

the voids. The Defense Advanced Research Projects Agency (DARPA) 

prototype iRobot was too fragile and the operator control unit was not 

appropriate for field work as well as too difficult to use. Generally, DARPA 

develops new technologies for the US military (“DARPA: Tactical Technology 

Office [Website],” 2015).  The robots selected for rescue operations were 

battery powered and could be used between four and seven hours. Further, 

the report of Casper and Murphy (2003) stated, with respect to personnel, 

that during deployment a robot needed one operator to be brought to the 

desired starting location. The bigger Foster-Miller SOLEM needed to be 

deployed by two people. After bringing the robot to its starting location 

another two people were usually required to operate the robot: one person 

had to keep the tether/safety rope from getting caught and the other person 

remote controlled the robot. Casper and Murphy (2003) explain that in 

general robot communication was limited to the camera, power, 

movements, camera tilt, illumination and height change. Also no 

autonomous features were available. Casper and Murphy (2003) presented 

seventeen findings in detail; the details concerned with human factors and 

the control of the robot are outlined below (see Casper & Murphy, 2003, pp. 

376–379). 

 A major issue was cognitive fatigue of personnel due to lack of sleep. 

This was a major source of mistakes and decreased performance. 

 The skill levels between robot personnel and fully certified rescuers 

were different and therefore issues of trust towards robots and robot 

personnel emerged. 
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 Since video was the only feedback from the robot, it was very difficult 

for the operators to determine status and location of the robot. 

Furthermore, the inability to adapt sensor capabilities (e.g. equip, 

substitute or remove sensors) and the poor video quality inhibited 

effective use of robots. They also found that there was a need for 

feedback so that the operator can diagnose problems. Other required 

information was the position of the robot and the mapping of the 

environment. Moreover, different viewing angles would help to 

identify objects faster and with more certainty. 

 The acceptance of the robots seems to be determined by the 

similarity to existing technical search equipment. The USAR 

specialists selected robots that were small, had simple interfaces, 

simple control units, and needed minimal numbers of personnel. 

 Rescuers still trusted humans, common search tools and search dogs 

more than the complex robot systems. 

 Casper and Murphy (2003) advised that the robot and the interface 

need to be designed for infrequent use and minimum training time. 

Proficiency needs to be maintained over longer periods of time. In 

general, search equipment is used in training for 30 minutes twice a 

year. 

 The visual channel was over-used. Headphones could not be worn 

due to the protective gear rescuers were required to wear. 

 The acceptance of robots and users’ confidence diminished when 

communication failed. 

(Casper & Murphy, 2003) 

It must be kept in mind that none of the robots was designed for USAR and 

were not intrinsically safe, which further reduced the deployment of the 

robots.  

Later Stopforth et al. (2010) took up the findings from Casper and Murphy 

(2003), which are outlined above, and developed a new robot called 

CAESAR (Figure 11). In 2010 they tested the CAESAR robot on a training 

site and it could be deployed under three minutes (Stopforth et al., 2010). 

They especially emphasised the need for good communication between the 

operator and robot. For better movements the robot had so called flippers. 
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With the flippers, operators were able to lift and lower the robot as well as 

push it over obstacles. A composite body construction of the robot kept heat 

away from critical internal systems. Additionally, the robot tracks were 

made out of metal and did not soften under high levels of heat. The operator 

unit displayed colour indication warnings and showed the positions of the 

flippers. 

 

Figure 11 - CAESAR robot with flippers (“CAESAR robot [Image],” 2015) 

Earthquakes, Italy (2012) 

After this first usage of robots in 2001, a further 33 robot deployments in 

real world disasters were reported between 2001 and 2012 (Murphy, 2014). 

During these disasters different types of robots from different projects and 

development teams were used. For example, two earthquakes occurred in 

Italy in May 2012 left widespread damage to urban areas and made 

thousands of people homeless (“Italy quake homeless in emergency 

shelters,” 2012). The human-robot team from the NIFTi project was called 

to assess the damage to buildings in order to estimate the risk of further 

collapse (Kruijff et al., 2012). The EU-funded project NIFTi concentrated 

their efforts on human-robot teams that perform reconnaissance missions 

during USAR operations. With their user-centric approach they developed 

robot requirements, prototypes, and models in autonomous robot behaviour 

and human-robot collaboration (Kruijff et al., 2012; “NIFTi [Website],” 

2014). The deployed unmanned air (UAV) and ground (UGV) vehicles are 

shown in Figure 12. The NIFTi ground robot incorporated video streaming 
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from several cameras and a laser-based 3D scanner. Some lessons learned 

and recommendations regarding the interface and human factors of the 

NIFTi robots from Kruijff et al. (2012) are outlined below. 

UGV 

 The interface included a 3D model of the robot and the environment. 

With this feature the operator could see the position of the flippers in 

relation to the surface immediately. However operators needed to 

switch between camera and 3D model, which increased the operator’s 

cognitive load and time to finish the mission. 

 Moving the camera separately to the robot’s main body (pan and tilt) 

decreased the situation awareness of the operator. Furthermore, 

when the camera turned, the operator was not aware of the 

movement direction of the robot (main body). To counteract this, the 

team set pre-defined camera positions that were reachable via the 

interface. Recovery with this feature was easier for the operator. 

UAV 

 The cognitive load and stress of the operator flying one of the UAVs 

provoked pilot mistakes. This could be mediated by providing more 

autonomous features of the robot such as holding a certain position 

in the air when no command is given. 

 The pilots had sub-optimal situation awareness due to poor depth 

perception via video feed. 
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Figure 12 - NIFTi UAV (left) and UGV (right) platform (“NIFTi UGV [Image],” 2013) 

In terms of the use of autonomy, Larochelle et al. (2013a) tested the same 

ground robot as mentioned above, which was developed by the NIFTi project 

and manufactured by BlueBotics (see Figure 12), in a simulated USAR 

mission. Although this was not a real incident, real firefighters took part in 

this very high-fidelity simulation. Their robot had three different autonomy 

levels: executional (accelerating, observing objects), operational (following 

a planned route), and tactical (which robot will investigate which areas). 

The participants used autonomy during scenarios but when their 

expectations were not met, they switched to manual control. This showed 

how important initial robot performance is and that the expectations that 

participants have, has to be calibrated before interaction. Their findings 

supported previous studies (Beer, Fisk, & Rogers, 2014; Lee, 2008; Yagoda, 

2011) in that autonomy was not easily accepted and factors such as 

reliability, trust and transparency were important influential determinants 

of operators’ control allocation. 

Earthquake, Japan (2014) 

Another robot was used in the aftermath of the Great Eastern Japan 

earthquake which involved the Tsunami and after the Fukushima power 

plant accident (Matsuno et al., 2014). Overall, Matsuno and colleagues 

(2014) experiences showed that robots are useful for victim and economic 

recovery missions. They deployed the research robot KOHGA3 robot (Figure 

13). The pan-tilt-zoom camera was very valuable because zooming could 
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give a clear picture of distant objects without the need to move the robot 

to a certain location and the camera could be tilted to get different viewing 

angles. Additionally, the sensor arm made it possible to look into rooms or 

behind obstacles, even though they were not accessible for the robot’s main 

body. Matsuno et al. (2014) further found that a battery and signal strength 

indicator was missing on the user interface and that the system should 

provide easy exchange of sensors to fit the mission needs. 

 

Figure 13 - KOHGA3 ground robot (“KOHGA3 ground robot [Image],” 2011) 

With respect to autonomous features, Matsuno et al. (2014) reported that 

the robot should autonomously be able to indicate whether a terrain is 

traversable or not. To reduce operator’s workload they desired 

autonomous/semi-autonomous functions such as show possible routes or 

the ability to return to the start point. 

The robots needed the capability to record pictures and video to be able to 

report states and show other stakeholders the situation. Matsuno et al. 

(2014) also found that the robots needed to be easily portable, fast to 

deploy, rugged and be able to record evidence. Interestingly, the human-

robot interaction was still very challenging; loss of situation awareness and 

lack of feedback were the main concerns that emerged during field 

deployment. Matsuno’s team cooperated with the International Rescue 

System Institute and CRASAR. 
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Mudslide, Washington State USA (2014) 

Recently, CRASAR deployed commercially available UAVs during the 

Washington State mudslides in 2014 (Murphy et al., 2015). The rain soaked 

site and logging in the area fostered a landslide that killed 44 people and 

destroyed the riverside community (Cornwall, 2014). 

The use of small air vehicles provided some advantages over helicopters 

which are too dangerous to fly near to the ground and they are ten times 

more expensive than deploying UAVs (Murphy et al., 2015). The UAVs were 

tasked with helping to identify the geological and hydrological state of the 

mudslide with pictures, 2D, and 3D reconstructions of the area. Due to 

limited time and manual flying, data sets were incomplete because the area 

was not covered appropriately. Murphy et al. (2015) emphasised, again, the 

fact that the system needs to be easily portable (e.g. over rough terrain). 

Engineers expected to have a remote view, but autonomous data collection 

without a live stream from the camera compromised the acceptance and 

utility of the system. Although the robot flew autonomously, due to the 

Federal Aviation Administration requirements a constant line-of-sight 

needed to be maintained. This posed high demands on the operator as it 

was possible to lose sight of the UAV when checking the operator control 

unit at the same time. 

Lessons learned summary 

These insights from selected real world deployments repeatedly suggest 

that robotic rescue systems must be rugged in terms of hardware and 

reliability otherwise they will not be used. If a flimsy connector breaks in 

the field and has to be repaired it will cost time and resources, especially 

when the equipment needed for the repair is not immediately available due 

to the remote position of the rescue teams (e.g. Matsuno et al., 2014). 

In general, for rescue operations, robots need to be small and man-

portable. Existing commercial systems do not fit the needs of the rescuers 

yet. More development with the collaboration of rescuers, academia and 

industry is required. Many issues in human-robot interaction still exist in 

real world contexts and need to be investigated, preferably in the field.  
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Much of the literature discusses a demand for more modular sensors and 

interfaces, so that a robot’s capabilities can be customised and the interface 

accordingly to cope with the huge variety of possible incidents, whether they 

have to inspect buildings in danger of secondary collapse or to search for 

casualties in voids (Casper & Murphy, 2003; Driewer, Schilling, & Baier, 

2005; Peschel, 2012; Rule & Forlizzi, 2012). However, every new feature 

will have implications for human-robot interaction and can create the 

potential for new possible types of errors (Hoff & Bashir, 2014). 

 Robot autonomy levels 

Team organisation and robot capabilities are dependent on the autonomy 

level of the robot. Some robots do not have any autonomous capabilities 

and are used as a remote viewing tool. Other robots might be capable of 

driving and locating targets autonomously. In order to capture the 

differences between these systems this section discusses autonomy levels 

and other types of autonomy. 

Sheridan and Verplank (1978) introduced a ten level of automation 

taxonomy. The levels are described by who is doing what and where 

information is held and are applicable mainly to cognitive tasks. This 

taxonomy is very much focussed on pure automation aids. Therefore 

Endsley and Kaber (1999) developed a new taxonomy of levels of 

automation (LOA) based on Sheridan and Verplank’s (1978) work to have a 

wider scope, including teleoperation. They incorporated domains with 

multiple goals and tasks, and high demands as well as limited resources. 

They further identified general functions that needed to be incorporated: 

human monitoring, option/strategy generation, option/strategy selection, 

and the implementation of these options/strategies. The stated functions 

were either assigned to the human or the system (Endsley & Kaber, 1999, 

pp. 464–465). An overview of these function allocations is illustrated in 

Table 2. 
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LOA 
Moni- 

toring 

Gener-

ating 

Selec-

ting 

Imple-

menting 

Commen

t 

1 Manual control H H H H 

Human is 

still able 

to 

intervene 

in certain 

task steps 

2 Action support H H H H/S 

3 Batch 

processing 

H H H S 

4 Shared control H H/S H H/S 

5 Decision 

support 

H H/S H S 

6 Blended 

decision making 

H H/S H/S S 

7 Rigid system H S H S 

8 Automated 

decision making 

H H/S S S 

9 Supervisory 

control 

H S S S 

10 Full automation S S S S Human 

out of the 

loop 

H - human; S - system 

 

Table 2 - Overview of levels of automation from Endsley and Kaber (1999, pp. 464–465) 

Endsley and Kaber’s (1999) experimental studies found that the level of 

automation influenced automated system performance. Automation levels 

that used human option/strategy generation and robot implementation 

were superior to pure manual control or full automation. Endsley and Kaber 

(1999) pointed out that automated system guidance (system provides 

option guidance) or option selection (system generates options that can be 

selected) was counter-productive, since participants had to gauge their 

choices against the robot’s choices. 

With the expansion of the body of literature in human-robot interaction, 

Beer et al. (2014) proposed a framework that would help to choose the 

required levels of autonomy for certain applications in human-robot 

interaction. Although the previous models (Endsley & Kaber, 1999; 

Sheridan & Verplank, 1978) are a good guide for a human-robot interaction 

framework, they did not take into account autonomous robots as a physical 

entity with mobility, capable of environmental manipulation or social 

interaction (Beer et al., 2014). The decision aid framework is embedded into 

five guidelines as shown in Figure 14. Beer et al. (2014) considered this 

framework for a search and rescue operation. The following USAR example 
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was made by Beer et al. (2014) to clarify their guidelines. Please refer to 

the guideline questions in Figure 14. 

 

Figure 14 - Level of robot autonomy framework from Beer et al. (2014). 

Guidelines according to Beet et al. (2014). Guideline 1: High task criticality 

and high environmental complexity is present in USAR scenarios. This 

suggests that it might be challenging for a robot to perform all tasks reliably. 

Therefore, an initial thought might be to design the robot with low autonomy 

levels. Guideline 2: Workload of operators is very high during teleoperation 

and situation awareness poses another great challenge. Guideline 3: 

literature shows that the unpredictable environments and new situations a 

robot encounters are quite challenging and that the human often needs to 

intervene or help the robot. Guideline 4: previous guideline answers suggest 

that for a rescue robot the autonomy category teleoperation or supervisory 
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control, depending on task complexity and the operator’s situation 

awareness, can be chosen. Guideline 5: If a robot autonomy is chosen, its 

effects on robot-related variables, social variables and human-related 

variables need to be considered. These are task and robot specific factors 

that vary due to application or specific task. 

The final consideration of Beer et al. (2014) was to use sliding autonomy 

for USAR robots in order to adapt to different task complexities and situation 

awareness levels. Sliding autonomy presents the possibility for the operator 

or the robot to adjust the level of autonomy as needed (Desai & Yanco, 

2005). Beer et al.’s (2014) suggestion to use sliding autonomy for USAR 

robots is in agreement with other literature (Sellner, Heger, Hiatt, Simmons, 

& Singh, 2006). Furthermore sliding autonomy can also be beneficial for 

multi-robot control (Heger & Singh, 2006). 

What is important in human-robot teams and how they can be organised, 

is documented in the next section. 

2.4 Human-robot teams 

Robotic technology is evolving rapidly and robots are changing from merely 

being tools to becoming team mates. They are capable of making their own 

decisions and collaborating with humans. Advances in technology create 

new questions as to how machines and human can work together. This 

section will discuss theoretical foundations of teamwork, by examining the 

different underlying concepts/models/frameworks that researchers use to 

describe human-robot team organisation, followed by an overview of single- 

and multi-robot systems. 

According to Salas et al. (2005), teams are more adaptable, and provide 

higher productivity and creativity than a single person. Collaboration will 

also increase the flexibility of robot automation (Bradshaw, Dignum, Jonker, 

& Sierhuis, 2012; Brogårdh, 2009). In teams, approaches to solve 

organisational problems can be more complex, more innovative and 

comprehensive than for individuals. Salas et al. (2005) also defined the “Big 

Five” factors of teamwork and coordinating mechanisms: team leadership, 

mutual performance monitoring, backup behaviour, adaptability, and team 
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orientation (goals). Coordinating mechanisms within “Big Five” factors are 

shared mental models, mutual trust and closed-loop communication. 

Gao et al. (2012) noted that in teams where humans collaborate with 

autonomous agents, the complexity increases and the methods of 

communication and interaction may change. For instance, human-human 

teams communicate in a natural way (e.g. using speech or gesturing), but 

a robot may not be able to understand natural communication and is 

dependent on specific commands. Furthermore, Groom and Nass (2007) 

stated that the acceptance of robots by human team members will 

determine if the robots’ benefits are fully utilised. In order to understand 

how human-robot teams can work together, the theoretical foundations of 

teamwork are discussed next. 

 Theoretical Foundations of Teamwork 

Teamwork models can inform computer science on how to program a robot 

to execute collaborative behaviour; the behaviour must produce human-like 

interaction to be understood intuitively by the human partner and to be 

suitable for the given situation (Kim et al. 2007). The theoretical 

foundations of teamwork are very well described in Hoffman & Breazeal 

(2004). Similarly to Salas et al. (2005), they claim that collaboration 

consists of shared activity, joint intention, common ground and goals: 

 Shared activity: According to Bratman (1992) a shared activity 

consists of mutual responsiveness, commitment to the joint activity 

and commitment to mutual support. Bratman further explains that in 

order to create a joint activity, “meshing up” of individual plans is of 

importance. 

 Joint intention: The Joint Intention Theory from Cohen (cf. P. R. 

Cohen & Levesque, 1991) describes the importance of 

communication in a team. Team members have to communicate with 

each other for maintaining mutual beliefs about the state of the goal. 

Scheutz et al. (2006) used the Joint Intention Theory to inform their 

robot architecture. The robot is able to show positive and negative 

affect in order to contribute to a mutual belief of the joint intention 
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in the team. Showing affect enhanced human-robot team 

performance. 

 Common ground: Common ground is the sum of the shared 

knowledge, beliefs or assumptions of the team (Clark, 1996). 

According to Klein et al. (2005) common ground is important for 

inter-predictability, and interdependent actions of joint activities. 

 Goals: A goal-centric view is of importance to teams, allowing team 

members to interpret other team members’ actions on the basis of 

intended goals and not on the performed physical activities (Hoffman 

& Breazeal 2004) as there are different approaches to reaching a 

goal. Goals must be mutual and coordinated for successful teamwork. 

Understanding the underlying concepts of teams can be useful when 

modelling robot behaviour. For example, Bicho et al. (2010) used the above 

described elements of teamwork to inform a control architecture for a 

collaborative robot, which was able to anticipate human needs, and detect 

and respond to unexpected events (cf. Breazeal, Kidd, Thomaz, Hoffman, & 

Berlin, 2005). A robot needs to be predictable and give sufficient feedback 

in order to establish joint intention or common ground. 

Other models and frameworks address specific problems within human-

robot collaboration (HRC), for example Fiore et al. (2005) proposed a 

theoretical framework for understanding memory failures in distributed 

human-robot teams and they argued that it would be productive to use 

agent technology to augment team cognition. Cuevas et al. (2007) used 

elements from organisational and cognitive science to inform a framework 

with the goal to enhance human-agent team cognition and coordination. 

The framework describes the influence of information exchange and 

updating on the different levels of cognition. Also incorporated are task-

related stressors, such as workload or time pressure. In contrast to other 

team models, it explicitly includes automation technology. 

Due to the rising complexity of human-robot teams, they can also be seen 

as Joint Cognitive Systems (JCS). JCS were introduced by Hollnagel & 

Woods (1999) and aim to describe a human-robot team as a system capable 
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of modifying behaviour, on the basis of experience, by mutual interaction 

(Kim et al. 2007; Neerincx & Grant 2010). 

Some common team organisations are described in the next section. It is 

important to differentiate between co-located and teleoperated robots 

because the nature of interaction is different. For instance, co-located robots 

engage with humans in close physical proximity and communication 

happens face-to-(robot)face. Here, social behaviour and safety are critical 

concerns (Bradshaw et al., 2004). With teleoperated robots, the interaction 

is limited to displays and controls. In remote control situations focus lies on 

the interface’s usability (e.g. screens, control units, etc.) (Eliav, Lavie, 

Parmet, Stern, & Edan, 2011). The interface needs to convey the 

information from the remote environment to the operator and generate an 

accurate shared mental model for the human-robot team (Oleson, Billings, 

Kocsis, Chen, & Hancock, 2011). 

 Single robot systems 

Single robot systems are teams consisting of a single robot and one or more 

humans. These robots are common in social robotics (e.g. medication or 

entertainment robots) and in search and rescue missions (Murphy, 2014). 

If a robot has much more autonomy it can be used in multi-robot systems 

(H. Wang, Chien, et al., 2009), which are described in the subsequent 

section. 

 Co-located Robots 

Examples of co-located teams are robots in our homes (e.g. service robots 

or health-care robots), where individual users engage with single robots on 

a social level. For instance the personal service robot “wakamaru”, as shown 

in Figure 15, can undertake conversations with humans, can give wake-up 

calls, inform about the appointments of the day, detect burglars and provide 

desired information from the internet (Shiotani et al., 2006). 
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Figure 15 - "wakamaru" service robot (“Wakamaru [Image],” 2013) 

In such social robotics, the goal is to enhance communication and mutual 

understanding. The autonomy level of such robots is very high and mostly 

there is very little monitoring or support required. There are also single 

robots which interact with a lot of different people, for instance mobile 

assistive robots, which can support an assembly line in logistic tasks (e.g. 

bringing goods from person A to person B) (see Angerer, Strassmair, 

Rootenbacher, & Robertson, 2012). Regardless of the domain, health-care 

robots or rescue robots, robots will need social interfaces (Fincannon, 

Barnes, Murphy, & Riddle, 2004). For instance, Murphy et al. (2011) 

developed the Survivor Buddy; this robot acts as a medium between a 

trapped victim and the outside world. 

 Teleoperated Robots 

Teleoperated robots are used in health care (teleoperated nurse 

robots/telepresence robots), in the military, and in the search and rescue 

domain. In search and rescue missions it is necessary to separate the 

operator from a possibly dangerous environment (e.g. collapsing houses, 

chemicals, fire etc.). The communication between the human and robot is 

via displays and controls. Social interaction is not the first priority in these 

performance-driven and time-pressured teams. The aim is to enhance the 

operator’s situation awareness and reduce the workload to increase overall 

team performance (Crossman, Marinier, & Olson, 2012). A single robot is 

used by one operator, if the robot’s autonomy level is low and mainly 
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manual control of the user is required. However, with increasing robot 

autonomy the human operator can experience less workload from the task. 

Researchers have proposed that operators could make use of that capacity 

by handling multiple robots (Crandall & Goodrich, 2005). 

 Multi-robot systems 

Increasing robot autonomy enables humans to control multiple teleoperated 

robots simultaneously. Although, operators are not required to manually 

control each robot, they still have a high workload caused by monitoring, 

communicating, coordinating and complex decision-making across multiple 

robots (Gao et al., 2012). The number of team members and the ratio of 

humans to robots is mostly dependent on the type of task, characteristics 

of the robot and the setting. 

The goal is to maximise the performance in human multi-robot teams. 

Unfortunately this performance is very much dependent on the autonomy 

level of the robot and the workload of the task. Crandall & Goodrich (2005) 

developed a model to determine the fan-out of human-robot systems. Fan-

out is the maximum number of robots a single operator can handle. They 

describe a measurement methodology to obtain necessary values for their 

fan-out algorithm, which includes, among other variables, the ratio of 

neglect time and the interaction time of the human with each robot. A 

similar approach can be found in the work of Olsen & Wood (2004). In the 

search and rescue domain, Lewis et al. (2011) recommended on the basis 

of their experiments, that a single operator should monitor a maximum of 

10 robots. 

Team complexity increases if a team consists of several humans interacting 

with each other and with multiple robots. In the search and rescue setting, 

two organisation structures of teams are possible (Lewis et al., 2011): the 

first structure is to allocate certain assignments of a robot to one operator, 

called assigned robots. The second possibility is that all operators share all 

robots and look after a robot if it requires attention. This structure is called 

shared pool. Overall assigned robots reduce the number of robots for each 

operator. Additionally, Lewis et al. (2011) claimed that if the robots are 

grouped in a defined area the situation awareness of a single operator is 
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higher. In contrast to that, in a shared pool, one operator (overlapping 

assignment) may observe things a second operator had missed. 

Chien & Lewis's (2012) experiment examined team structure (assigned 

robots and shared pool) and how automated robot navigation or operator 

assigned way-point navigation interacts with team performance. The results 

of the search and rescue simulations showed that in tasks performed with 

the assigned robots structure and with automated path planning, more 

victims were found, more territory was explored and victims were marked 

more accurately. In general, teams with automated navigation had more 

cognitive resources available for other tasks. Increased automation 

enhanced performance in both assigned robots and shared pool conditions. 

However, if the robot took over navigation, the situation awareness of the 

operator decreased. 

Although multi-robot teams sounds a promising endeavour, the current 

developmental stage of rescue robots is still challenged by designing 

performance enhancing interaction with one robot with little autonomy. 

Literature showed that trust plays an important role in human-robot 

collaboration. Therefore, the issue of trust, why trust is important and what 

trust is, is the object of investigation of the next section. In addition, an 

overview of relevant trust models provides an understanding of the factors 

that influence trust and how these factors are connected to each other. 

2.5 Trust in human-robot teams 

 Why is trust important? 

When people interact with automated or semi-autonomous systems their 

subjective trust in these systems can predict and influence the allocation of 

functions (e.g. letting the robot navigate autonomously or navigate 

manually) within the human-automation system (Muir & Moray, 1996). An 

appropriate level of trust is key to the usage of automated systems (Lee & 

See, 2004). An inappropriate level of trust can lead to misuse or disuse of 

the system, for example, that errors can occur due to over-trusting or 

under-trusting the system and eventually the potential benefits of the 

system can be lost (Parasuraman & Riley, 1997). This appropriate level of 
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trust is also the key to improving safety and productivity (Hoff & Bashir, 

2014). 

If we accept the notion that robots can be team mates capable of proper 

communication and independent task performance, then trust is an 

important issue because of its impact on effectiveness of collaboration. 

Generally, if team members do not trust each other they will waste time 

and resources checking and inspecting other team members’ work and 

consequently team participation, team contribution, cycle times and task 

quality can be negatively affected (Salas et al., 2005). In addition, humans 

tend to interpret a person’s behaviour differently according to the level of 

trust in that person (Simons & Peterson, 2000). What is valid in human-

human teams can also partly be projected onto human-robot teams. If the 

users mistrust a robot, their willingness to accept robot-generated 

information decreases (Freedy & de Visser, 2007); they will constantly be 

checking the autonomous work of the robot, or they will perform the tasks 

on their own, to the detriment of the system’s performance. It could also 

be that the user will interpret robot behaviour negatively. For instance, if 

the robot tells the operator to take regular breaks, the human can 

negatively interpret this as being controlled by a machine. The next section 

will discuss what trust is and what types of trust exist. 

 What is trust? 

We experience trust every day, sometimes unconsciously, sometimes 

consciously. Trust is a very fuzzy, interconnected construct, and is difficult 

to define and measure. Trust often refers to a variety of constructs and is 

used in many different disciplines with different definitions (for a 

comprehensive overview see Mcknight & Chervany, 1996). For instance the 

personality psychologist Rotter (1967, p. 651) defined interpersonal trust 

as, “an expectancy held by an individual or a group that the word, promise, 

verbal or written statement of another individual or group can be relied 

upon”. The sociologist Shapiro (1987) saw trust as a structural phenomenon 

(e.g. trust is controlled by norms, constraints, restrictions, policies, etc.) 

and economic-oriented researchers such as Castaldo et al. (2010, p. 666) 

defined trust as, “an expectation (or a belief, a reliance, a confidence, and 
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synonyms/aliases) that a subject distinguished by specific characteristics 

(honesty, benevolence, competencies, and other antecedents) will perform 

future actions aimed at producing positive results for the trustor in 

situations of consistent perceived risk and vulnerability”. Bhattacharya et 

al. (1998) captured key trust elements across several disciplines and 

proposed a mathematical trust model, which they simplistically described 

as, “Trust is an expectancy of positive (or nonnegative) outcomes that one 

can receive based on the expected action of another party in an interaction 

characterised by uncertainty”. 

In terms of trust in automation, Lee and See (2004, p. 50) defined trust as, 

“the attitude [of the trustor] that an agent will help achieve an individual’s 

goals in a situation characterised by uncertainty and vulnerability”, whereby 

the agent can be an automated system or another person. McKnight and 

Chervany (1996) argued that most definitions are too narrow to define trust 

properly, such as that put forward by Wagner (2015, p. 485), who 

operationalised the definition from Lee and See (2004) to the following: 

Trust is “a belief, held by the trustor, that the trustee will act in a manner 

that mitigates the trustor’s risk in a situation in which the trustor has put 

its outcomes at risk”. This definition is less appropriate in human-robot trust 

regarding rescue robots because it neglects the fact that trust is something 

you are willing to give or not. In human-robot interaction, Hancock et al. 

(2011) defined trust as follows: “[…] as the reliance by an agent that actions 

prejudicial to their well-being will not be undertaken by influential others”. 

All of these definitions describe trust and they have certain factors in 

common. First, from most of the trust definitions one can infer that there is 

an expectation towards the trustee, which includes a certain amount of 

predictability or faith. Thus it can be argued that an operator has certain 

expectations towards a robot and that predictability is an important 

characteristic of that robot. Second, trust is always required in situations 

where uncertainty exists. Remotely operating a robot in complex 

environments, such as Urban Search and Rescue, includes various 

uncertainties. Third, having trust means we are willing to depend on 

someone or something. For example an operator is willing to depend on a 

robot to find casualties at an incident site. To bring together the three 
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common factors from previous definitions, in this PhD a very broad 

definition from Bhattacharya et al. (1998, p. 462) was adapted and modified 

to fit the needs of this work: 

Trust is the willingness to rely on a system with the expectancy of positive 

outcomes that one can receive based on the expected action of that system 

in an interaction characterised by uncertainty. 

The following section introduces different models and types of trust and will 

illustrate similarities and differences between them. 

 Models of trust 

Models of trust include factors that influence trust and can show how they 

are connected or related. Trust changes over time and can be influenced by 

a variety of discipline-specific factors, therefore each discipline, such as 

management, psychology or human-robot interaction, has its own trust 

models. This section considers a variety of trust types and concepts to 

compare their underlying trust constructs and the implications for this work 

and human-robot trust in the rescue domain. 

 Model of initial trust 

An important dimension of trust is time. Trust needs to be established over 

time, for example through positive experiences (Wiethoff & Lewick, 2000) 

or in the case of human-robot interaction, through initial exposure to the 

technology (Oriz, Fiorella, & Vogel-Walcutt, 2010). A countermeasure 

against lack of trust is training. Training can be employed to reduce initial 

biases, for example teaching people about the capabilities of the robot 

(Freedy & de Visser, 2007) and the underlying assumptions of the software. 

The operator needs to get to know the robot and find out the robots’ 

strengths and weaknesses. Therefore many models assume a low initial 

level of trust (e.g. Williamson, 1993). 

However, there is also evidence that high levels of early trust exist 

(McKnight, Cummings, & Chervany, 1998). For example Kramer (1994) 

studied participants who did not know each other. It was expected that they 

would show low levels of initial trust but surprisingly some participants 

showed high initial trust levels. McKnight et al. (1998) therefore developed 
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a model of initial trust with the aim to define factors and processes that 

happen when initial trust establishes. Initial trust cannot be based on any 

type of experience instead it will be based on one’s disposition to trust. 

McKnight et al. (1998) combined several theories of trust research because 

in this model they argued that each of the trust theories (calculative-based 

trust, knowledge-based trust, trusting intentions, trusting beliefs) is 

necessary to understand the big picture. This model, shown in Figure 16, 

depicts an individual’s general disposition to trust or their tendency to trust 

in general. 

 

Figure 16 - McKnight (1998), High level model of initial trust formation 

It consists of the trusting stance, which describes to what extent people 

think (or believe) dealing with other people is beneficial and how much they 

have faith in humanity, which is the extent people believe others are 

typically reliable and well-meaning. Although this model derives from the 

economic discipline, the factor institution-based trust, can be seen as the 

belief that the circumstances and the environment (e.g. regulations, 

guarantees, contracts, etc.) are appropriate for successful interaction. This 
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belief influences the general trusting intention and the trusting beliefs. 

Trusting beliefs are the individual’s beliefs that the other person is 

benevolent, competent, honest and predictable in a certain situation. 

Trusting beliefs are mainly influenced by cognitive processes such as 

categorisation (due to reputation, stereotyping, etc.) or how much a person 

thinks they are in control of the situation. Overall, the disposition to trust, 

trusting beliefs and institution-based trust influence the trust intention 

someone has in an initial encounter. 

The model explains how trusting intentions can be very high in new 

relationships and how trust can be robust or even fragile, due to the 

different influencing constructs. This model suggests that in terms of rescue 

robots, the attitude towards robots or technology is an influencing factor 

that should be captured prior to experiments or prior to interaction and that 

positive trust experiences can foster higher levels of trust between the 

human and the robot. However, also the regulations (e.g. only use the robot 

under a certain temperature) and guarantees (e.g. the robot can dive up to 

1 meter) have to be clearly communicated to support successful 

interactions. 

 Interpersonal trust 

Interpersonal trust is the expectancy that a person holds, that the other 

person can be relied upon (cf. Rotter, 1967). Therefore, interpersonal trust 

is trust humans have among one another. In the trust in automation 

literature Muir and Moray (1996) mention that interpersonal trust can 

capture some important aspects of human-machine trust. They based their 

experiments on a model of “dynamics of trust” from Rempel et al. (1985). 

Rempel and colleagues (1985) considered three attributional components in 

their model of trust: predictability, dependability and faith. The 

predictability of a person is dependent on consistency and the stability of 

the social environment. In close relationships it is believed that 

predictability is learned by experiences. Strongly related to predictability is 

dependability. It is important how much a partner depends on the other and 

how trustworthy they are. Dependability is based on past experiences and 

evidence. Sometimes unpredictable things happen and in these situations 

the role of faith is eminent. With faith people assume things that go beyond 



45 
  

their previous evidence. In a close relationship where we have faith, we 

trust our partner to be responsive and caring even in unpredictable 

situations. Rempel et al. (1985) mention that past predictability and 

dependability provides a foundation for faith and therefore these three 

components are interrelated. 

Simpson (2007) formulated six fundamental principles of interpersonal trust 

in relationships: the partners dispositions to trust, test situations, joint 

decisions, expectancies, perceptions of trust, and perceptions of felt 

security. With these principles he developed a dyadic model of trust to 

highlight the most important situational and psychological processes in a 

pair of individuals, as well as the development and maintenance of close 

relationships. The squared boxes in Figure 17 depict the constructs and the 

two circles entail the individual differences of the partners. This model 

assumes that the initial trust and intention to trust lies within the partners’ 

dispositions. 

 

Figure 17 - Dyadic model of trust in relationships from Simpson (2007). 

Both partners enter into “test situations”, which are situations where the 

other could fail or win in showing how trustworthy they are. This is similar 
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to the model of Rempel et al. (Rempel et al., 1985), where experiences play 

a key role in developing trust. If a partner succeeds and wins those trust 

situations and shows they care for each other, it may positively change the 

motives of the relationship and the attributes designated to partners, thus 

the resulting expectations can change. With time the perception of trust 

develops and positive trust situations give the partners a perception of 

security in the relationship. The model assumes that each step has feedback 

loops. Additionally, the authors raise the issue that early in a relationship 

many trust transformations are possible but over time partners integrate 

the other person into their self-concepts which leads to less transformation 

of motivation later on in the relationship. 

According to interpersonal trust concepts, the human and the robot need to 

have many positive experiences in order to build and maintain trust over 

time. However, this might be difficult since it is usually only possible to have 

limited training time with a robot and real-world deployments (e.g. 

earthquakes, terrorist attacks) are relatively rare compared to everyday 

firefighting. 

 Human-animal/human-robot analogy 

Human-animal trust has been used as an analogy to human-robot trust 

(Billings et al., 2012; Coeckelbergh, 2010; Schaerer, Kelley, & Nicolescu, 

2009). On the one hand, in both concepts, predictability, performance, and 

anthropomorphic characteristics seem to influence the development of 

trust. In addition, the concepts have in common that the experience and 

amount of training of the human with the animal is associated with trust. 

Other factors, such as communication or risk, influence the relationship 

between human and animal as well as between human and robot (Billings 

et al., 2012). On the other hand, animals possess self-preservation and 

other instincts that allow them to act differently to their trained behaviour 

(Billings et al., 2012). Robots do not have instincts and will act as intended 

by the designer/programmer, even if that means to destroy themselves. 

Furthermore humans are familiar with animals and tend to forgive them 

more easily but their expectations towards machines/robots are very high 

and the level of forgiveness is quite low (Billings et al., 2012). 
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The human-animal model also emphasises that the experience in teams 

plays a major role in the development of trust. Interestingly expectations 

and forgiveness are different between animals and machines. An intriguing 

question arises from here: Can we design a robot form and behaviour so 

that people forgive it more easily, like R2-D2 from Star Wars? 

 Technology acceptance model 

The technology acceptance model might shed light on the mechanisms and 

behaviours humans display when interacting with robots. Although this is 

not a trust model, it needs to be considered that a robot is still technology. 

Davis (1986) modified the social psychology grounded theory of reasoned 

action, which was used as an intention model across several domains 

towards the technology acceptance model (TAM). TAM aimed to address 

computing technology usage behaviour (see Figure 18). It is a tool to 

identify why a certain technology is not accepted and determine the impact 

factors. 

 

Figure 18 - Technology acceptance model from Davis (1986); picture source: Zaied (2012) 

The core of this model is built on the assumption that perceived usefulness 

and perceived ease of use are the main factors of technology acceptance 

and usage. Perceived usefulness is the belief of a person that using the 

technology will increase their task performance. Perceived ease of use is the 

expected level, of the technology, of being free of effort. In some domains 

the perceived usefulness is one of the most critical factors that determines 

the usage of technology (K. Chen & Chan, 2011; Hancock, Billings, 

Schaefer, et al., 2011; Wilkowska & Ziefle, 2009). Some authors further 

External 

Variables 
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mention that if the benefits are valuable enough, they can overcome the 

barriers of low perceived usability (Wilkowska & Ziefle, 2009). 

Further, an attitude towards a system is built on the beliefs of the perceived 

usefulness and the perceived ease of use. Ease of use is also claimed to 

influence the perceived usefulness of a system (Holden & Rada, 2011). 

Davis et al. (1989) distinguish two mechanisms of the perceived ease of 

use: self-efficacy and instrumentality. They claim that the easier it is to use 

a system, the higher the level of the subjective efficacy and perceived 

control. “Instrumentality” refers to the perception of performing better with 

less effort. In addition, the model assumes that a person’s intention to use 

a technology is jointly influenced by the attitude towards the technology 

and the perceived usefulness. In particular, people intend to use a system 

they have positive affect for (Davis et al., 1989). The main focus of people 

in using a technology is the improvement of their task performance; this is 

incorporated in the model with a direct relationship between perceived 

usefulness and behavioural intention to use the technology. According to 

Davis et al. (1989), people would use a technology that is beneficial to their 

performance, whether they have a positive or negative attitude towards it. 

To date only some evidence is available that rescue robots are beneficial in 

real world emergency scenarios (Matsuno et al., 2014; Steinbauer et al., 

2014). It seems that in order to create an intention to use robots, the robot 

primarily needs to demonstrate usefulness in the field and has to be 

perceived as easy to use. 

 Trust in automation 

Most of the research in robot trust was done in the area of automation (see 

Oriz et al., 2010). When a robot is solely remote controlled the focus of trust 

is not on its autonomy, instead it is focussed on safety, 

physical/technological reliability, and the level of performance compared to 

a human (Oriz et al., 2010). Trust in automation and trust in a remote 

controlled robot are two different trust concepts. Since this PhD focusses on 

semi-autonomous robot systems, trust in automation is an important 

consideration. Moray and Inagaki (1999) classified trust models between 

humans and machines into five categories: regression models, time series 
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models, qualitative models, argument-based probabilistic trust, and neutral 

net models. 

Regression models are based on multiple regressions in order to identify 

independent variables that influence trust or capture the time humans 

spend in automatic control or willingly relied on automatic control (Lee & 

Moray, 1992; Muir, 1989). The downside of the regression models is that 

they do not capture the dynamics of trust. Based on Lee and Moray (1992) 

findings showed that control allocation is based on someone’s own 

confidence in their ability to perform a task correctly. In a later study Lee 

and Moray (1994) found that control allocation is influenced by both, trust 

and self-confidence. They developed a model that is classified as a time 

series model, which captures the dynamics of trust over time. 

 

Figure 19 - Time series model from Lee and Moray (1994) 

The model helps to understand the association between trust, self-

confidence and the use of automatic controllers. As shown in Figure 19, the 

use of automatic features over time [% Automatic(t)] is influenced by the 

difference between trust and self-confidence [T-SC(t)]. Furthermore, 

previous experience [Ф] and individual biases can play a role. The dot [a(t)] 

represents normally distributed independent fluctuations. 

Qualitative models are useful to guide research and describe factors that 

are known to influence trust. An example of this is the simple qualitative 

model for trust dynamics based on experiences from Jonker and Treur 

(1999), as shown in Figure 20. However, compared to the time series model 

depicted above, they lack the ability to make quantitative predictions. Other 
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qualitative models were described by Muir (1994) and Desai (2012). Muir’s 

model showed that in order to develop trust, the user needs to interact with 

the system and experience faults and other non-nominal situations (e.g. 

misunderstanding the system’s intent). In a later work, Muir and Moray 

(1996) also emphasise that to know what the system is doing next 

(predictability) and to be able to rely on the constant behaviour of a system 

(dependability) is important for the development of trust. 

 

Figure 20 - Simple qualitative model for trust dynamics based on experiences 

An example for an argument-based probabilistic trust model is the 

qualitative work by Cohen et al. (1998). They proposed that the issue of 

accepting automation is not under-trust or over-trust, but inappropriate 

trust. Their model is based on the information value theory and uses 

available evidence from the task, the human, and the system to reduce 

uncertainty. Basically this model measures an automated decision aid’s 

performance by the likelihood (probability) of the appropriateness of the 

system’s actions. This model is able to show specific conditions under which 

an automated aid will not perform properly. It is especially useful to identify 

the conditions that affect good and bad system performance. 

The findings of these previous studies point towards the important fact that 

trust is a major influencing factor that may predict whether a person uses 

automatic or manual control. Ultimately, control allocation influences the 



51 
  

human-machine performance. In addition, the development of trust is 

shaped by prior experiences with the system and is dependent on 

dispositional trust. With the aim of predicting the use of automation, later 

researchers specified factors and system characteristics that influence trust 

(Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Jian et al., 2000; 

Lee & See, 2004; Merritt, Lee, Unnerstall, & Huber, 2014; Merritt, 2011; 

Schaefer et al., 2013). An overview of these factors with respect to HRI are 

very well summarised in the work of Schaefer (2013). The corresponding 

trust model will be explained in a later section with the aid of Figure 25. 

Recently, Hoff and Bashir (2014) followed up on a systematic review, 

previously undertaken by Lee and See (2004), and reviewed 127 empirical 

research studies on trust in automation between 2002 and 2013. They 

developed a comprehensive model of trust in automation with three main 

layers of trust: dispositional trust, situational trust, and learned trust (see 

Figure 21). 

 

Figure 21 - Trust in automation model from Hoff and Bashir (2014). Dotted arrows 

represent factors that can change with the course of a single interaction. 
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As mentioned previously, dispositional trust is based on the intrinsic traits 

of a person (e.g. culture, gender, age, and personality traits). Therefore it 

is the tendency of someone to trust automation. The second layer consists 

of situational trust, representing the factors influencing trust in a given 

situation. These influences can create external variability (e.g. type of 

automation, task difficulty, perceived benefits, etc.) or internal variability 

(e.g. self-confidence, mood, attentional capacity, etc.). The last layer, initial 

learned trust, represents the developed trust that builds on past 

experiences with the system or similar systems and the current interaction. 

The three layers described above build the initial reliance strategy of the 

human. However, an interaction is of a dynamic nature. Dynamic learned 

trust tends to vary due to the current system performance (Hoff & Bashir, 

2014). System performance can be affected by certain design features. 

Overall, the reliance on the system is determines the current system 

performance and is influenced by situational factors (not related to trust) 

and the dynamic learned trust. This model also shows that different 

concepts of trust are not exclusive but can also complement each other. 
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Hoff and Bashir (2014) state that it is important to see the interdependence 

of system performance, dynamic learned trust and the operator’s reliance 

on the system (see Figure 22): The performance of the system influences 

the trust of the operator and the trust level determines the reliance 

strategy, which again can affect the system’s performance. 

 

Figure 22 - Interdependence between system performance, operator trust and reliance 

strategy 

Further, Hoff and Bashir (2014) found that the higher the complexity of the 

automation, the more situations with uncertainty occur, and the more 

opportunities operators have to compare automated performance to 

manual. In addition, the higher the level of the human’s freedom to make 

decisions, the stronger is the relationship between reliance and trust. 

Interpersonal trust and trust in automation have many factors in common. 

The factors predictability and dependability are as valid in interpersonal 

trust as in trust in automation. Additional factors in trust in automation are 

the operator’s self-confidence and the level of complexity of an automated 

system. The higher the complexity, the more uncertainty is involved in the 

interaction. This can be interpreted as a warning not to over-complicate 

automated systems. Complicated and complex automated systems can be 

challenging to predict and eventually the ironies of automation will lead to 

the failure of a human-automation system (Bainbridge, 1983). 

One of the main advantages of automation is that a system has the ability 

to perform complex and repetitive tasks quickly and without errors. 

System 
performance

Operator 
trust

Reliance 
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However, search and rescue is not a repetitive task. There is still a difference 

between pure automation and autonomous/semi-autonomous rescue robots 

because robots may be mobile, encounter situations with great uncertainty, 

possess different levels of autonomy and/or may be designed like living 

creatures (e.g. humans, dogs, cats, etc.). There is insufficient evidence that 

findings from automation studies can be transferred “one-for-one” to 

human-robot interactions (Desai, 2012; cf. Hancock, Billings, Schaefer, et 

al., 2011). Trust in automation provides a solid base for research in trust in 

human-robot interaction. 

 Trust in human-robot interaction 

Trust is especially important in the context of the military and emergency 

situations where the safety and survival of people depend on good human-

robot system performance (Hancock, Billings, Schaefer, et al., 2011). 

Building a universal trust model for human-robot interaction is quite 

challenging. There are different characteristics of users, unpredictable and 

changing environments in varying fields of application, and many different 

robot systems with different tasks and purposes. Therefore only models of 

trust that are general or aimed to address remote controlled robots are 

considered in this review. 

Computational and mathematical models focus mainly on the entire human-

robot system. Figure 23 shows a computational systems approach to 

modelling collaboration between a human and automation during the 

control of multiple robots in a search and rescue scenario (Gao, Clare, 

Macbeth, & Cummings, 2013). 
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Figure 23 - Human-Automation Collaboration Model (Gao et al., 2013) 

The model can be used in computer simulations to predict human behaviour 

and performance. It consists of three major parts: system performance, 

trust in automation, and cognitive overload. Factors which influence victim 

discovery rate (performance) are the total number of victims, the speed of 

the robot, and the human influence, which is an additive factor to the victim 

discovery rate. For the trust in automation loop the initial trust, 

expectations, and general fluctuation/dynamic trust behaviour (Trust 

Change Time Constant) of the operator are considered. The third part 

consists of the cognitive overload loop. This part acknowledges that rising 

workload levels can improve performance, but when workload levels are too 

high it can cause cognitive overload leading to a decline of performance. In 

a validation study the model accurately predicted the performance of the 

system but gave mixed results in terms of the frequency of teleoperation 

(Gao et al., 2013). There are also other computational models that are 

concerned with single robot control and which feature similar trust elements 

as well as mixed control modes and real time/dynamic trust concepts (Y. 

Wang, Shi, Wang, & Zhang, 2014; Xu & Dudek, 2013). 

These computational models can be very accurate in the situation they were 

developed for. However, these kind of simulations use a variety of 

simplifications, such as a simple search process or that operators correctly 

perceive the capabilities of the system (Gao et al., 2013). USAR cannot be 

simplified in such ways and entails still a great deal of uncertainties. Still, 

the influence of trust factors and workload have been shown to influence 

human control allocation and performance. 

Hancock et al. (2011) conducted a fundamental and extensive meta-

analysis of factors affecting trust in general human-robot interaction. 

Twenty-nine empirical studies measuring trust towards a robot and used 

human participants were selected to calculate effect sizes. Figure 24 shows 

possible factors influencing human-robot trust. The factors were collected 

via a literature review and subject matter expert guidance. In this overview, 

three major elements influence human-robot trust: the human, the robot 

and the environment. Human-related factors include ability-based factors 

such as expertise or level of competence, and other characteristics such as 
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personality traits, self-confidence or propensity to trust. Many of these 

factors are similar to those in trust in automation and interpersonal trust 

models. 

Robot-related determinants are classified into performance-based and 

attribute-based types. Environmental factors are grouped into team 

collaboration and task characteristics. 

 

Figure 24 - Factors of trust development in human-robot interaction. Factors included in the 

correlational analysis are starred (*). Factors included in the group difference analysis are 

crossed (+). (Hancock, Billings, Schaefer, et al., 2011) 

Ten studies were included in a correlational analysis (see Figure 24, * 

items); the data showed that there was a moderate global effect between 

trust and all starred factors (Figure 24). An analysis for each of the 

categories revealed that robot-related factors were mostly associated with 

trust, followed by the environmental characteristics and the human 

dimensions. Overall, the largest influencing factors in their analysis were 
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performance-based characteristics of robots. However the performance 

based factors rely on only two studies. 

Still, there is agreement in the level of reliability associated with the level 

of trust: the more reliable the system, the higher the level of trust (Desai, 

2012; Hancock, Billings, Schaefer, et al., 2011). Studies where group 

differences were tested (see Figure 24, + items) showed that there was a 

large global effect regarding trust. Again, the largest effects were associated 

with robot characteristics, followed by a moderate effect of environmental 

dimensions and small effects of human influences. 

Based on this model and another meta-analysis (Oleson et al., 2011) a new 

descriptive model was developed (Schaefer et al., 2013), keeping the robot, 

human and environmental factors at its core (see Figure 25). 

 

Figure 25 - Updated descriptive human-robot trust model (Schaefer, 2013) 
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The human factors were divided into traits and states and the robot factors 

into features and capabilities. In particular, due to the influence of trust in 

automation (Schaefer et al., 2013), mode of communication and feedback 

was added to the model because these variables were shown to have a small 

or moderate effect on trust. An extensive review of the factors in this model 

can be found in the work of Schaefer et al. (2013). This is the first model to 

show the “big picture” of factors influencing trust in HRI. 

As discussed above Hancock et al. (2011) and Schafer et al. (2013) found 

that robot performance characteristics are the most influencing factor on 

trust. This is also in agreement with Desai et al. (2012) who created a model 

for human-robot interaction regarding remote controlled robots (see Figure 

26). 

 

Figure 26 - HARRT model from Desai (2012). Blue arrows indicate a positive relationship 

and orange arrows indicate a negative relationship. 

The data was collected across several studies. The model is a qualitative 

visualisation of correlations and does not consider the magnitudes of 

association (see Figure 26). Trust was measured using the Muir (1989) trust 

questionnaire (Desai, 2012). RA is the abbreviation for robot assisted mode, 

which indicates a lower level of autonomy (similar to manual mode) 
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compared to the full autonomy mode. In this model trust (Muir) was mainly 

influenced by the risk attitudes of the participants (RQ2 and RQ3). On the 

one hand, this model does not incorporate the performance of the robot, 

which was the main influencing factor in previous literature (Hancock, 

Billings, Schaefer, et al., 2011). On the other hand, the overall human-robot 

team performance was incorporated by the items Time, Manual errors, 

Wrong turns and Hits. Interestingly, there is no direct relationship between 

control allocation and trust (Muir). Desai (2012) claims that this does not 

mean that there is no relationship, just that there are stronger relationships 

that influence the control allocation strategy. 

This section has provided an overview of the main aspects and the models 

that will inform the design of the studies in this PhD. Most relevant for the 

subsequent studies will be the models of trust in HRI. They provide relevant 

factors and the relationships between factors in order to select appropriate 

independent variables to examine and which dependent variables to 

measure. 

2.6 Conclusion 

The chapter has reviewed literature about the three main topics: Robotics 

in USAR, human-robot teams and trust. Although the body of knowledge 

that is directly concerned with rescue robots and human factors is rare, 

some literature could be found and discussed. 

From the literature emerged that trust in human-robot teams is of 

importance and requires further investigation. Trust determines the use of 

autonomous/semi-autonomous robot systems and can possibly influence 

the mission performance. Especially, the more autonomy is introduced by a 

system, the more complex and challenging gets the design of the 

robot/interface, and it is more difficult to foster successful usage and 

collaboration. The lessons learned from the deployment of the robots 

showed that especially in terms of robot behaviour, feedback and 

transparency, research and development is still needed. Further, literature 

does not provide sufficient information about U.K. rescue teams, their 

behaviour, training, working processes, and current equipment in order to 
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develop an appropriate and beneficial system for the U.K. Fire and Rescue 

Service. 

The following factors selected from literature, as shown in Figure 27, are of 

relevance to human-robot interaction and will be further investigated in this 

PhD. 

 

Figure 27 - Selected factors that influence human-robot interaction 

The USAR environment delivers a testbed for performance oriented, time 

critical and complex tasks to investigate. Therefore this PhD will investigate 

trust in conjunction with robot feedback, transparency, reliability and task 

complexity with the aid of USAR scenarios. The goal is to design robot 

systems that are easily accepted, require minimum amounts of training, 

provide situation awareness and support the rescue team in an efficient and 

effective manner. 

The next chapter discusses the methodology of the overall PhD, explains 

different measures and methods used and justifies the experimental 

approaches of each of the studies. 
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2.7 Chapter summary 

This chapter presented a literature review that gave an overview of robots 

used in USAR, their deployments and autonomy levels. It further identified 

trust to be an important factor affecting the collaboration between operators 

and robots. Subjective trust can predict the allocation of functions within 

the human-robot team, misuse and disuse of a system, and establishing 

appropriate levels of trust can optimise performance and reveal the 

potential benefits of using an automated robotic system. The research 

reported in this thesis is informed by this literature review and carried out 

with the focus on trust, workload and performance. 
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3 Methodology 

 

3.1 Chapter overview 

This chapter provides the methodology used to investigate the research 

objectives. The chapter starts with a review of the measures used in 

literature for human-robot performance and trust. Next, a justification for 

the selection of methods and tools is provided. The chapter concludes with 

a description of the equipment used. This includes an overview of the 

development of a simulated robot in a 3D virtual environment. The 

development and functionalities of the program are explained. 

3.2 Measuring performance 

The biggest challenges in measuring performance are the many different 

types of robots, robot autonomy levels, tasks, and areas of application 

which need to be considered. Most frameworks and sets of metrics are 

therefore only valid in certain domains or solely applicable under strict task 

constraints (Fong et al., 2004; Singer & Akin, 2011). 

Common metrics to measure the performance of humans and robots in 

human-robot task-oriented interaction were investigated by Fong et al. 

(2004). They categorised the performance into system performance, 

operator performance and robot performance. This is the same taxonomy 

that Murphy and Schreckenghost (2013) adopted. 

 System performance 

System performance can be quantitative or subjective. The quantitative 

performance measures judge the effectiveness and efficiency of the human-

robot team (Fong et al., 2004). Efficiency can be the time required to 

complete the task. Effectiveness is how well the mission was accomplished 

(e.g. 80%). According to Fong et al. (2004) effectiveness measures need to 

consider the design of the autonomy of the robot. For example, a robot that 

is designed to support only in certain situations autonomously (e.g. 50% of 

the time) but the human needs to intervene 25% of the time the robot acts, 

the system has an effectiveness of 37.5 %. 
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Quantitative measures often used in human-robot teams are the number 

and mental costs of human interventions (Fong et al., 2004), task 

completion time and average time between failures (Singer & Akin, 2011). 

Specific to search and rescue the measures victims found, area explored, 

and workload are of importance (Hamp et al., 2013; H. Wang, Lewis, 

Velagapudi, Scerri, & Sycara, 2009). In order to assess how the quantitative 

performance is perceived, subjective ratings should be collected from all 

involved team members (Fong et al., 2004). 

Another category of system performance presents the issue of appropriately 

regulating the control allocation (Desai et al., 2013). Control allocation can 

be measured by calculating the ratio of performance benefit to resource 

allocation or by measuring the effort of the human to work as a team (Fong 

et al., 2004). The latter is, according to Fong et al. (2004), most appropriate 

when both competencies, from the human and the robot, are required. 

Desai (2012) measured performance in semi-autonomous teleoperation 

objectively by hits (hitting an obstacle with the robot), time needed and 

wrong turns. Additionally, he used subjective measures by asking the 

participants to rate the robot’s performance and their own performance. He 

distinguished between the human’s and robot’s performance by determining 

the source of the error (e.g. errors made by automation or errors made 

during manual operation). Problems emerge when participants do not 

perceive the mistakes of the system, then the perceived or observed 

performance of the system is different to the actual performance (Chien & 

Lewis, 2012). 

 Operator performance 

The human’s performance is influenced by their capabilities, situation 

awareness, trust and workload (Murphy & Schreckenghost, 2013). One 

method to measure subjective workload is the NASA Task Load index (Hart 

& Staveland, 1988). This method is widely used in HRI (Chien & Lewis, 

2012; de Visser & Parasuraman, 2011; Desai, 2012; Helldin, 2014; 

Sanders, Wixon, Schaefer, Chen, & Hancock, 2014; Selkowitz, Lakhmani, 

Chen, & Boyce, 2015). In order to assess situation awareness often the 

SAGAT, short for “Situation Awareness Global Assessment Technique” 



65 
  

(Endsley, 1988), has been used in HRI (T. B. Chen, Campbell, Gonzalez, & 

Coppin, 2014; Desai, 2012; Selkowitz et al., 2015). Nevertheless, Singer 

and Akin (2011) mention that situational awareness can have different 

perspectives: The human’s awareness of the overall missions and tasks, or 

the human awareness of the robot’s current state and the environment it is 

in. Therefore, it should be clear which perspective needs to be measured. 

Furthermore the accuracy of mental models needs to be considered (Fong 

et al., 2004; Murphy & Schreckenghost, 2013). This includes the 

appropriate design of affordances, operator expectations, and matching the 

interface and controls to the human mental model (Fong et al., 2004). 

Singer and Akin (2011) mentioned that also the information type and 

variety delivered by the robot are influencing factors on human 

performance. 

 Robot performance 

In manual teleoperation without autonomous robot support, only the robot’s 

physical capabilities and technical reliability are influencing factors of the 

robot performance. With increasing robot autonomy additional metrics 

emerge. These metric are robot autonomy level, self-awareness and 

human-awareness (Fong et al., 2004). Self-awareness of a robot is the 

ability of the robot to know its current state and be aware of possible errors. 

For example the indication of the robot about its current reliability level 

shows a high self-awareness. Human-awareness often refers to co-located 

robots and to the extent the robot is able to sense, recognise and interpret 

human behaviour. If human and robot share a task, such as a hand-over 

task, the robot needs to be aware of the human’s positon and trajectory 

(e.g. Dehais, Sisbot, Alami, & Causse, 2011). For remote controlled robot 

systems the human-awareness would be the correct implementation of 

human commands or the adaption of the system to the current state of the 

human. For instance, the heart rate and pupil diameter of a human is 

changing and indicating higher levels of workload (Kramer, 1991): a robot, 

being human-aware, could adapt its autonomy or the amount of feedback 

to support the human. 
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As mentioned by Murphy and Schreckenghost (2013) literature identified 

many metrics that can be captured but does not give many suggestions as 

to how to measure these. This PhD will investigate this issue and propose 

measures that can be applied in semi-autonomous remote controlled 

human-robot teams. The next section gives an overview of existing trust 

questionnaires for HRI. 

3.3 Measuring trust 

As established in the literature review (section 2.5.3 Models of trust) there 

are different types of trust. But most questionnaires only measure one type 

of trust. For example, trust can be measured by a single item question such 

as, “Do you trust this system?” with an binary answer: yes or no (e.g. 

Robinette, Wagner, & Howard, 2015). However, trust is a far more complex 

construct and influenced by many different factors. In order to investigate 

trust issues and their cause, more detailed questionnaires are necessary, 

but the details and trust factors are domain dependent (trust in 

management, trust in people, trust in robots, etc.). Most questionnaires and 

trust models for HRI were developed from interpersonal trust and trust in 

automation questionnaires because these domains are most similar to trust 

in human-robot teams. The sections below provide an overview of the trust 

scales used in HRI to investigate which questionnaire might be appropriate 

to use in semi-autonomous remote controlled robot systems. 

 Trust in automation (Muir, 1989) 

The first questionnaire developed for trust in automation, and later used for 

HRI, was developed by Muir (1989). Early on Muir suggested that the 

amount of trust will determine the use of automatic controllers. Therefore 

he developed a fast and easy to complete questionnaire with four questions 

regarding the system in question, which could be answered on a scale from 

1 (Not at all) to 10 (Completely). The items included the system’s 

predictability, effectiveness, faith in future performance and a direct trust 

question. This scale was used for measuring trust in HRI by Desai et al. 

(2012, 2013). They found that the Muir scale is not sensitive to changes in 

trust when participants were presented with different reliability profiles of 

robots (Desai, 2012). In a later study Desai et al. (2013) stated that the 
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trust scale, since it is a post-task questionnaire, seems to be biased by a 

primacy-recency effect. However, the biggest advantage is the short length 

of the questionnaire. 

 Jian trust scale (Jian et al., 1998) 

The Jian trust scale was also developed for measuring trust in automation 

(Jian et al., 2000). This questionnaire did not distinguish between the 

different trust domains such as human-human or human-machine trust. By 

using, among other methods, a word elicitation study and paired 

comparison they developed a 12-item questionnaire that consisted of 

statements about the system (e.g. the system is reliable). The statements 

can be answered on a 7-point scale (1 = not at all and 7 = extremely). In 

parts, the questionnaire is negatively phrased with questions such as, “The 

system is deceptive” or “The system’s actions will have a harmful or 

injurious outcome”. Modified versions of this questionnaire were used by 

Chen and Terrence (2009) in a military context involving robotics tasks and 

Chien and Lewis (2012) in the context of USAR with multiple robots. In both 

cases, no significant difference in trust could be found. 

Desai (2012) compared Jian et al.’s (2000) questionnaire to Muir’s (1989) 

questionnaire and obtained nearly identical results for both questionnaires 

in user trials with a semi-autonomous robot system and suggested that 

using just one of these questionnaires is sufficient. 

 HRI trust scale (Yagoda and Gillan, 2012) 

Yagoda and Gillan (2012) developed a HRI trust scale by creating a list of 

factors that influence trust from literature and subject matter experts. The 

main HRI topics that the questionnaire contains are team configuration, 

team process, context, task, and system. All 37 items were tested for inter-

correlation and an exploratory factor analysis was performed. Each item is 

scored on a 7-point Likert rating scale ranging from “strongly disagree” to 

“strongly agree”. In addition a field with “N/A” provides the possibility to 

omit certain questions if they are not appropriate or applicable in the given 

context. 
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Yagoda and Gillan (2012) emphasise on the additional use of the Inter-

personal trust scale from Rotter (1967). For a comprehensive picture of 

trust, the incorporation of individual differences is important. What 

distinguished this questionnaire from typical automation questionnaires was 

the use of questions that asked for team configurations and the physical 

environment. However, this questionnaire was not further used or validated 

in research literature. 

 Real-time trust (Desai, 2012) 

Desai (2012) developed a real-time trust measure in order to capture the 

dynamics of trust over time and show immediate changes of trust after 

robot failures. Participants were asked to state every 25 seconds if their 

trust increased, decreased or had not changed by pressing an upward, 

downward or horizontal arrow. The data points were drawn up on a graph 

over time and the area under the curve was calculated as a trust value. This 

method was also used to prove that early failures of the robot have a higher 

impact on trust than later failures. 

However, using the area under the curve produces a mathematical problem. 

Since the graph starts at zero, which already assumes initial trust is zero, 

negative effects accumulate mathematically. For example, as shown in 

Figure 28, if an early mistake is made and trust declines, but then rises 

continuously because of high reliability until the end, the area under the 

curve is lower than a later drop in reliability. The early drop curve can never 

be bigger than the later drop curve, because the participant can only 

indicate increase (+1) or decrease (-1) during fixed intervals. This means 

that from a mathematical point of view an earlier drop in trust will always 

produce less trust under the curve than a later drop. It might be useful to 

use absolute values and then calculate the area under the curve for an 

overall trust score. This can also overcome the shortfall of assuming that 

trust starts at zero because initial trust can also be high (Kramer, 1994). 
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Figure 28 - Area under the curve real-time trust measure 

Therefore taking the area under the curve as evidence that early failures of 

the robot have a more negative impact on trust than later failures, might 

not be sufficient. 

 Human-robot trust scale (Schaefer, 2013) 

With the aid of the human-robot trust model (see Figure 25, p. 57) Schaefer 

(2013) developed a human-robot trust scale with 40 items, as well as a 

short version with 14 items. An extensive review of the literature on trust 

led to the collection of 172 items that were proposed to be influencing 

factors of trust. These items were reduced by conducting six experiments, 

deduction techniques, and with the support of subject matter experts. 

Furthermore, two of the six experiments validated the scale. The scale 

produces a trust percentage score between 0% and 100%. This scale was 

later used by Schaefer’s research group (Sanders, Harpold, Kessler, & 

Hancock, 2015; Sanders et al., 2014). However, the scale was not 

specifically developed for semi-autonomous robot systems. 
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In conclusion, the only trust measures that have been used in conjunction 

with semi-autonomous robot systems are the Jian et al. (2000) (Ross, 

Szalma, & Hancock, 2007) and Muir (1989) questionnaire (Desai, 2012). 

And since both show similar results the Muir (1989) questionnaire is 

favoured due to its short length. However, a very detailed and promising 

questionnaire is the Schaefer (2013) trust measure. In subsequent studies 

the Muir (1989) and Schaefer (2013) questionnaires will be tested. The next 

section will discuss the selection of the experimental methods of this thesis. 

3.4 Experimental methodology 

This section discusses and justifies the selection of the different 

experimental methodologies used. The specific application of the methods 

is explained in the methods chapter of the individual study chapters. 

 Approach to data collection and analysis 

Overall, four studies were performed by using a variety of methods that 

include qualitative and quantitative data. This mixed methods approach 

mostly collected quantitative data via questionnaires and qualitative data 

with the aid of interviews. Qualitative data collected during the studies was 

analysed with the theme-based content analysis (TBCA) from Neale & 

Nichols (2001). This method was selected due to the fact that it retains the 

raw quotes and orders the qualitative data into quantifiable themes. 

An appropriate level of trust is key to the usage of automated systems (Lee 

& See, 2004) and exploiting the potential benefits of an automated system 

(Parasuraman & Riley, 1997). In this thesis trust was generally measured 

with a single item rating question and the Schaefer (2013) human-robot 

trust questionnaire. The Schaefer (2013) trust questionnaire was chosen, 

because it proved to be sensitive to trust changes and is specific to human-

robot interaction. Added to the questionnaires were ‘not applicable’ options 

for each item, because some questions were aimed at social or co-located 

robots. 

Workload can influence misuse and disuse of automation (Parasuraman & 

Riley, 1997) as well as the task performance (Prewett, Johnson, Saboe, 

Elliott, & Coovert, 2010). After each task participants were asked to 
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complete a NASA-Task Load Index (NASA-TLX) questionnaire (Hart & 

Staveland, 1988). The NASA TLX is a multi-dimensional scale to obtain 

subjective workload and was developed by the Human Performance Group 

at NASA's Ames Research Center. This tool was used because of the easy 

utilisation and its common use (Fong et al., 2004). 

According to a meta-analysis from Hancock et al. (2011) personality traits 

are also likely to influence trust ratings. The shortened version of the 

personality questionnaire of Goldberg’s Big Five factor structure (Goldberg, 

1992) was used. This shortened 50-item ‘IPIP’ personality questionnaire 

(Gow, Whiteman, Pattie, & Deary, 2005) was applied because it showed 

good internal consistency and related strongly with the known dimensions 

of personality (Gow et al., 2005). 

The specific approaches are grouped into the aims and objectives 

established in the introduction of this thesis. An overview of the studies is 

visible in Table 1 (p. 11). 

 Aim I 

Aim I: Develop a background understanding of the USAR domain and their 

work as well as describing the real world application of USAR in order to 

provide recommendations for the implementations of robots in British USAR 

teams. This aim includes the objectives: 

1. Gather background knowledge of the USAR domain, 

especially their technical equipment used to date, as well as 

investigating the rescue culture and team behaviours within 

this user group to inform future experiments and robot 

designs. 

2. Study organisational structures and rescue processes to find 

an appropriate robot position in the system in order to give 

recommendations for an implementation of robots in British 

USAR teams. 

3. Collect data about rescuers’ attitudes towards robots. 

In order to gather background knowledge and address objective 1 an 

autoethnographic approach was used. The author took part of a USAR 
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Technician Course and was involved in all training aspects a firefighter would 

get in order to be qualified for a USAR mission (see Chapter 4). 

Autoethnography comes from “auto” (self), “ethno” (culture) and “graphy” 

(writing) (Munro, 2011) and is a qualitative method that combines 

autobiography and ethnography (Ellis, Adams, & Bochner, 2011), therefore 

a combination of personal experience and observation. Studies can be 

composed of a pure autoethnographic ‘story’ (e.g. "There are survivors" 

from Ellis (1993)) or they can combine autoethnographic elements with 

other observations. Autoethnography is a method to describe and analyse 

personal experience with the aim to understand cultural experience (Ellis et 

al., 2011). To the knowledge of the author no studies in the USAR domain 

used an autoethnographic approach yet. With respect to human factors it is 

used in the investigation of workplaces, their culture, conflicts and 

performance. For example Sobre-Denton (2012) investigated workplace 

bullying, gender discrimination and white privilege with an 

autoethnographic approach. She chose this approach as a method of sense-

making through her own personal identity situated in her workplace and 

experiencing the social activity around her. Also, a very amusing piece of 

autoethnographic work with invaluable insight into job satisfaction and 

informal interaction was done by Roy (1959). The title “banana-time” 

derived from the fact that within the group, where the author became part 

of, most working breaks got names such as, coffee time, peach time, or 

banana time. From his autoethnographic work he could derive a variety of 

practical and theoretical considerations regarding job satisfaction. With the 

background knowledge gathered, future experiments could be adequately 

informed and designed to reproduce a real-world like scenario. 

For objective 2 informal interviews were used to gather relevant quotes that 

support inferences of the author. With the study of organisational structures 

and rescue processes possible implementation recommendations for robotic 

aids could be established. 

Objective 3: In order to collect the attitude of rescuers towards robot the 

“Negative Attitude Toward Robots Scale” (NARS) was used (Tsui et al., 

2010). This attitudinal questionnaire was chosen because it is not a general 

attitude questionnaire towards technology, but is directly aimed at robots. 
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The NARS has been applied in the area of autonomous and telepresence 

robots (Tsui, Desai, Yanco, Cramer, & Kemper, 2010). The scale provides a 

baseline of the general attitude of the participant towards rescue robots in 

general. The scale is divided into three subscales which ask for the different 

areas of attitude: negative attitudes toward situations and interactions with 

robots, negative attitudes toward social influence of robots, and negative 

attitudes toward emotions in interaction with robots. 

 Aim II 

Aim II: Improve understanding of underpinning cognitive concepts, 

thoughts and behaviours of participants while interacting with different 

autonomous and semi-autonomous robots, in order to inform future robot 

behaviour and interface design as well as the subsequent studies of this 

PhD. The aim comprises the following objectives: 

4. Explore relevant rescue tasks with a retrospective verbal 

protocol and gather information about thoughts and feelings 

during human-robot interaction. 

5. Collect interview data regarding robot characteristics and 

participant preferences. 

In order to inform the objectives above, Study II (can be found in Chapter 

5) used a video stream of an autonomous rescue robot. Participants had to 

interact with the autonomous robot and were filmed during that task. After 

the task they watched their own video and performed a retrospective verbal 

protocol (RVP). The pilot study showed that a concurrent verbal protocol 

interfered too much with the main task and secondary task. The RVP data 

was divided into certain events that happened during the task (e.g. robot 

successfully identified target). In conjunction with the theme-based content 

analysis (TBCA) the events were further grouped into emerging themes. 

With this method, feelings and thoughts in form of quotes could be 

appropriately grouped and quantified. In addition, in study II (Chapter 5), 

III (Chapter 6), and IV (Chapter 7), interviews provided information about 

robot characteristics (e.g. robot speed, map visualisation, etc.) and 

participant’s preferences of these characteristics. 
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 Aim III 

Aim III: Investigate how robot and environmental characteristics, influence 

user cognition, behaviour and performance. The aim contains the objectives 

listed below. 

6. Identify the key cognitive concepts that are relevant to USAR. 

7. Identify, compare and select appropriate measurements of 

these key cognitive concepts against each other. 

8. Examine the effects of different feedback on trust. 

9. Investigate the influence of task complexity and robot 

reliability on performance, workload and trust. In addition, 

compare performance levels between semi-autonomous 

controlled robot and manual controlled robots. 

10.Compare, with the aid of the situation awareness 

transparency model, two different levels of interface 

transparency across two levels of task complexity. 

11.Develop a measurement of performance in semi-autonomous 

human-robot teams. 

Objective 6 was addressed with a critical literature review (Chapter 2). The 

review gave insight into the factors that were relevant to remote controlled 

robot systems and human-robot collaborative systems. The subsequent 

studies were designed on the basis of this review. 

The methodology, in section 3.2 and 3.3, also informed about existing 

measures for performance and trust, which responds to objective 7. In 

addition, study III (Chapter 6) compared two trust questionnaires with each 

other: Muir (1989) and Schaefer (2013). The comparison aimed to 

determine how sensitive these questionnaires were and which was 

appropriate to use in the subsequent studies. 

For objective 8 the second study (Chapter 5) compared two robots with 

different amounts of feedback. Qualitative data was gathered with a 

retrospective verbal protocol. 

Study III (Chapter 6) informs objective 9 by comparing the performance 

scores and other collected measures between participants who used a mixed 
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control mode (using automatic and manual teleoperation) and participants 

who exclusively used manual mode. This also aimed to quantify the benefits 

of robot automation on rescue performance. 

Objective 10 is addressed with Study IV (Chapter 7). The study used the 

situation awareness transparency model to create two different levels of 

interface transparency. They were tested across two different task 

complexities. 

In study III (Chapter 6) different performance measures were developed in 

order to approach objective 11. So far there were no standard performance 

measures for human-robot teams. This is a starting point for discriminating 

between observed robot performance and objective robot performance. 

Because mistakes from the robot can be overlooked by the participant and 

alter their perception of the robot performance and consequently their trust 

in the robot. Therefore the measure “observed performance” was proposed. 

3.5 Equipment used during experiments 

 Robot system 

The robot used in Study II was a LEGO Mindstorms NXT 2.0 robot with a 

32-bit microprocessor and 4 output ports. Connected to the ports were two 

servo motors for moving the robot, an ultrasonic sensor for measuring 

proximity to obstacles, and a colour sensor for guided navigation. 

Furthermore a wireless camera with TV signal was paired with a PC screen 

that was visible to the participant. The NXT could drive automatically or be 

controlled via a PC keyboard. The robot was programmed with LabVIEW. 

With the use of the colour sensor it was able to follow a line on the floor and 

an operator could take over manual control if necessary. Due to technical 

faults and unreliable signal strength it was decided to use a video stream 

from the robot rather than an uncontrollable robot system. An unreliable 

system would have introduced unintended and uncontrollable system faults 

that would have influenced the measures of the study significantly. For later 

studies a new virtual rescue scenario was developed, tested and utilised. 

The development of the scenario is described in the next section. 
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 The development of a Virtual USAR scenario 

in UNITY 

To overcome technical issues experienced in Study II, a new search and 

rescue scenario was developed in UNITY. The scenario includes a simulated 

robot in a simulated 3D environment. Participants would interact with the 

program via a desktop PC. The developed program was used in study III 

and IV. The development and functionalities of the program are explained 

in the following paragraphs. 

Many research areas use virtual reality based experimental setups to save 

resources, time and/or not bringing their participants in danger (e.g. driving 

simulators) or discomfort them (e.g. Lewis, 2014). In this PhD a virtual 

reality approach was used because of limited resources, the possibility to 

create laboratory-like conditions, and not bringing participants in dangerous 

emergency situations. Furthermore, the remote position and the interface 

interaction are very similar to the real world application, where the operator 

is only able to interact with the robot via a screen and a controller. 

Previous rescue robot studies were performed either, with real robot 

systems, the Wizard of Oz method, or in USARSim (Chien, Lewis, Mehrotra, 

Brooks, & Sycara, 2012; Gao et al., 2012; Horsch, Smets, Neerincx, & 

Cuijpers, 2013). USARSim is a high-fidelity simulation software of USAR 

robots and environments. It is used as a research tool for robot 

development and human-robot interaction. The program has the capability 

to accurately display user interfaces, robot automation, and the remote 

environment. The unreal engine based simulation is very coding intensive 

and requires a skilled programmer to develop high-fidelity simulations. 

Craighead, Burke and Murphy (2008) discussed the use of the Unity game 

engine for a search and rescue gaming environment. They stated that Unity 

can present a high-fidelity simulation environment for search and rescue. 

Unity is a game development engine for creating multiplatform (Windows, 

Mac, Smartphones, etc.) games in 3D and 2D. It has an easy to learn and 

user-friendly environment (Menard, 2011). Unity can be used free for 

private and academic developers. Although Unity is a game engine it has 

the flexibility and capability to also support researchers in their work 
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(Robinette et al., 2015). For example it can be used for stimulus 

presentation in psychology experiments and it can collect data in text files 

that can be used in other programs (e.g. SPSS). 

For Chapter 6 and Chapter 7 virtual USAR scenarios were developed by 

using the Unity game engine. The main reason were the limited time for 

development and the limited skills of programming of the author. The 

software has an object oriented work-flow that allows easy development of 

environments via drag and drop. In comparison to other software a 

minimum of coding is required. Furthermore, Unity has an asset store where 

developers can download ready-made 3D models, animations, scripts, and 

shaders. Models can be imported and assigned physical properties and 

control scripts. 

The robot control script was developed with the substantial help of Dimitrios 

Darzentas from the Horizon Doctoral Training Centre at the University of 

Nottingham. The design of the virtual environment, robot behaviour, and 

tasks were informed by the experiences and documentation of study I 

(Chapter 4). 

 System overview 

The simulation requires a laptop or computer that is able to run the Unity 

Engine. Two screens were used, one for the researcher to observe the 

participant’s performance and the simulation for errors, and a screen for the 

Game View, which represents the robot interface for the 

participant/operator. In order to steer the robot through the environment 

an XboX controller was used, in some cases the keyboard needed to be used 

(e. g. secondary task). The XboX controller was also used by Desai (2012). 

Figure 29 shows the experimental setup from the perspective of the 

participant. 
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A Unity project includes different environments (in specialist jargon called 

scenes). Environments are the simulated surroundings that participants see 

on the screen. For the different studies different environments were used 

to avoid a learning effects of routes and targets’ positions. An example of 

such an environment is shown in Figure 30 from the perspective of the 

developer (bird’s eye view). 

Figure 29 - Required hardware for rescue simulation: Laptop that runs the Unity program 

(left), a second screen (middle), XboX controller, second keyboard for participants. 
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Figure 30 – Example of a Unity environment (scene) 

The next paragraphs will explain the different simulated Unity components, 

such as the environments, the robot, and the interface (only visible 

component to the participant). Screenshots and example scripts are 

provided for a better understanding of the simulation. The scripts are mostly 

coded in C# and Java. 

 Simulated components 

 Environments 

Each environment consisted of a variety of objects in the environment, so 

called “3D models”. Models could be rubble piles, doors, canisters, chairs, 

and other objects. They were mostly imported from the asset store and 

occasionally modified. Each environment visualised a partly collapsed office 

complex, with corridors and rooms. The objects in the environment are 

explained below. 

Waypoints - For the purpose of comparability waypoint indicators showed 

participants where they had to go next, depending from which direction they 

approached the cube. Furthermore the doors had labels that corresponded 
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to the waypoint indicators (see Figure 31). This ensured that all participants 

used a similar route and therefore experienced similar viewing angles of the 

environment. There were several groups of objects which are outlines 

below. 

 

Figure 31 - Waypoint indicator and room label 

Rubble - Most of the environment consisted of rubble, barrels, chairs, tables 

etc. Each object possess physical characteristics and a collider. A collider is 

an invisible box around an object, with the purpose that other objects, such 

as the robot, cannot penetrate it, and therefore they would collide with each 

other. 
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Figure 32 - Rubble, chair, and other objects in the environment 

Figure 32 shows an example of the rubble and other objects that were used 

to clutter the environment. During the experimental conditions the amount 

of rubble and objects changed depending on the task complexity level. 

Smoke – Smoke particles were used to make sensors inaccurate and the 

visibility more difficult. Smoke could also produce lag in the signal between 

the robot and the participant. Smoke is shown in Figure 33. 

 

Figure 33 - Smoke particles in the environment 

Fire – Fire produced the same issues as smoke but did additionally trigger 

the temperature gauge of the interface to rise. If participants drove too near 

to a fire the robot would be incapacitated and the mission aborted. An 

example of a fire in the environment is visualised in Figure 34. 
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Figure 34 - Fire particles in the environment 

Targets – The participant was required to find specific targets, as shown in 

Figure 35. These targets could be trapped humans (victims), hazard signs, 

 

Figure 35 – Examples of targets in the environment. Top left to bottom right: Victim, 

hazard sign, bomb, weapons 
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bombs, or weapons. Victims were not injured or disfigured to not 

unnecessarily unsettle or upset participants. Generally, hazard signs 

consisted of different symbols such as biohazard, flammable materials, etc., 

and bombs looked like self-made plastic explosives. Targets were 

distributed equally in all environments to keep participant runs comparable. 

Figure 35 depicts the original interface view of participants, the environment 

was very dark and difficult to search. 

Triggers – A collider can be configured as a trigger. If a collider is a trigger 

other objects can penetrate it and “trigger” another programmed event 

(script). In the rescue scenarios these triggers were temperature zones or 

CO2 zones. For example, if the robot collides with the temperature collider, 

it can penetrate the object as if it was not there, but a trigger is activated. 

In the case of the temperature collider the trigger updates the temperature 

gauge to the set trigger vale (e.g. the temperature rises from 50% to 60%). 

So each collider, which is configured as a trigger, can activate any script, 

behaviour or actions needed. Figure 36 depicts such a collider in the editor 

view (green lines). The collider is not visible to the participants. 

 

Figure 36 - Collider configured as a trigger. Collider is invisible to the participant. 

An example script of a trigger is shown below (see Figure 37).  
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Figure 37 - Script of temperature trigger (collider) 

The script shows, when the trigger (collider) is entered (OnTriggerEnter) 

and it is entered by the robot (if-statement) then the interface changes the 

text (labelTemp.text) and the scroll bar of the temperature gauge 

(scrollBarTemp.value) according to the provided value of the trigger 

(Temperature). 

 Robot 

At this point it is essential to understand that the robot’s behaviours were 

pre-programmed and entirely simulated. Therefore, the algorithms are 

developed for research and not for real world applications. The robot 

system’s faults and successes were pre-programmed. Full control over the 

robot’s behaviour was necessary to eliminate the interference of undesirable 

robot performance. The autonomous robot navigation could only be 

overwritten by the participant when using manual control. 

Robot navigation 

The robot’s route was pre-planned by numbered waypoints that the system 

would work through. Waypoints are objects in the environment with a 

trigger (see Figure 38). 
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If the robot triggered that waypoint, the waypoint was reached and the 

robot proceeded to the next waypoint on the list. Additionally each waypoint 

had a square red Look-at-box (see Figure 38, top left corner). This Look-at-

box represented a LookAt-function. A LookAt-function made the robot, when 

reaching the waypoint, turn and focus with the camera on this square red 

box (not visible to the participant). By this procedure the robot gives the 

impression to look around in the environment. 

The waypoints with colliders (green lines in the environment) and the list of 

waypoints (right in the inspector window) are shown in Figure 39. 

Figure 38 - Waypoint with trigger 
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Figure 39 - Waypoints in the environment with waypoint list 

The waypoint indicators and the layout of the rooms were designed so that 

the operator had to follow that pre-planned route. Therefore, when the 

robot was in manual mode and participants passed a collider of a waypoint, 

this waypoint got deactivated. If the participant decided to go back to auto 

mode the robot would drive to the next active waypoint, on the shortest 

way possible. 

The script for a waypoint is depicted in Figure 40. If this function is triggered 

the current waypoint to reach (Waypoints[currentTarget]) is set as the 

next target. Then the Look-at-box is retrieved to get the information where 

the robot needs to look next (lookTarget). The script will check if the look-

at-box is activated. If it is deactivated the robot will just drive to the 

waypoint but not turn to look at around (if 

(lookTarget.activeInHierarchy)). Additionally, this step is only 

executed when the robot is in auto mode (if (AutoMode)). 
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Figure 40 - Script for reaching the next waypoint 

Collision detection during auto mode was done by baking a navigation mesh 

onto the environment. This is a mesh (surface) where the robot is able to 

drive on by nestling around obstacles (see Figure 41). 

 

Figure 41 - Navigation mesh visualised in blue, overlaid with the environment 

Robot target recognition 

The robot was not able to detect or function like a real robot system and 

had no real target recognition. However, to give the participant the 
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impression that the robot can identify targets, the Look-at-boxes were used. 

A Look-at-box can have the characteristic to imitate a target. This procedure 

will be made clearer with an example: The target will be positioned as 

planned. Then a waypoint is positioned next to the target and the Look-At-

box will be placed directly on the target and assigned the characteristic of 

being a target. If the robot, approaches the waypoint and starts too look at 

the Look-At-box a trigger activates the interface to display the message that 

a target was found. The script of the message is provided in Figure 42. How 

this message is shown on the screen of the participant is provided in Figure 

44. 

 

Figure 42 - Script for displaying a message 

The coding for such an event works as followed: If the robot is in auto mode 

it will look at the victim and give the impression to recognise the victim by 

giving a short delay (WaitForSeconds). Then the message for finding a 

victim is enabled (alertVictim.enabled). The message will be displayed 

for two seconds (WaitForSeconds) and then be deactivated again. 

 Interface 

The interface is the only element that the participant will be seeing from 

this simulation. For the subsequent studies different interface elements 

were utilised. In general the Interface is generated from a camera that is 

coupled with the robot’s 3D model. Since it is dark and foggy in the 

environment the robot uses a torch like light source to illuminate the 

surroundings. The following elements could be used in the interface: 
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Figure 43 – Rescue robot interface with all elements visible 

 Current task: Starting on the top left of Figure 43, the current task 

that is in progress is displayed. Therefore at the moment the robot is 

searching for targets. 

 Rear view: The rear view camera gives a slightly squashed image of 

the environment behind the robot. This centred position on the top 

of the screen was used because most people are familiar with driving 

a car, where the rear mirror is similarly located. 

 Status: In the top right corner the status of the robot is indicated 

with a green smiling face that the robot is working properly. If the 

robot malfunctioned, a sad face coloured in red and the type of error 

would be displayed. 

 Battery: Percentage indicator of how many battery power is left. 

 Signal: Percentage indicator of how strong the signal of the robot is 

at the moment. 

 Top view map: This is a map that the robot creates with the help of 

proximity sensors. The sensors are positioned 360 degree around the 
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robot. If the proximity sensor hits an object, the edge of the object 

will be shown in the map. The waypoints are visualised as orange 

squares as well as the shortest distance between them by an orange 

line. 

 Current reliability level: This indicator shows how confident the robot 

is about its own performance. Or in other words how reliable it 

performs. The indicator can show high, middle, and low reliability 

levels. 

 Robot log: Different trigger boxes will write log entries into the box. 

Here the robot indicates what it is doing. For example it indicates that 

it enters a new room (e.g. “Enter room 1”) or that it looked behind 

an object and it did not find anything (e.g. “Behind object = area 

clear”). 

 Mission info: This box counts how many targets have been found so 

far, an estimated number of targets in the environment, and how 

many rooms have to be searched. In addition it shows in seconds, 

how long the scenario is running for and how much battery time is 

left. 

 System mode: Located in the bottom right the system mode indicates 

in which mode the robot is at the moment (auto or manual). The 

mode that is active appears read and the deactivated mode appears 

grey. 

 Environmental indicators: These indicators show on a scroll bar how 

hot the environment is and how much CO2 is present. To the 

participants was explained that these are percentage values. The 

temperature shows how much heat the robot can endure. Therefore 

a heat of 100% would damage the robot. The CO2 shows in 

percentage the survivability of victims. A CO2 level of 100% means, 

that there is too much CO2 present that no victim could have survived 

this area. 

During a scenario different messages from the robot can appear on the 

participant’s screen.  
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Figure 44 - Message from the robot displayed on the interface 

These were displayed when the robot found a certain type of target: 

“Victim/Weapon/Hazard found, Position marked”. An example of such a 

message, on the screen of the participant, is illustrated in Figure 44. In 

addition to the message a sound is played. 

The individual configurations of the environments, robot behaviours, and 

interfaces are explained in each study chapter that used the virtual rescue 

scenario approach. 

3.6 Chapter summary 

This chapter gave an overview of the measures of performance and trust. 

Furthermore, the methods used in this PhD were presented. For each 

measure and method a justification and detailed explanation was given. 

Each aim and objective was addressed by a certain study with a certain 

method in order to answer the overall research question. This chapter also 

showed how the virtual rescue scenario was developed and what functions 

and features it provides. All scenarios were designed and programmed in 
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Unity, a game development engine. The components of the program are 

explained in detail and examples of scripts are explained. The progress has 

shown that using Unity without having extensive knowledge in coding is 

possible. Unity proved to be a very useful and versatile research tool. 
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4 Study I - Urban Search and Rescue field 

work 

 

4.1 Chapter overview 

This ethnographic study aimed to gather information about USAR 

technicians, their training, tasks, working environment, currently used 

equipment, behaviour and culture. Over a period of two weeks eleven 

delegates of the USAR Level 1 technician course were observed in order to 

gather requirements and implications for robots in terms of features, 

behaviours, interface design, and robot implementation in the U.K. Fire and 

Rescue Service. Furthermore attitudes and traits of the technicians were 

collected. The background information was used to inform the subsequent 

studies. The chapter concludes with recommendations of robot usage in the 

USAR domain as well as a set of search and rescue scenarios. 

4.2 Introduction 

USAR is the abbreviation for Urban Search and Rescue. USAR teams are 

specialised incident/emergency response teams for rescue in urban areas. 

USAR teams have the expertise to localise casualties in collapsed structures, 

such as houses or tube tunnels, provide first aid and extricate casualties 

safely. Their equipment aids them in lifting, cutting and removing rubble as 

well as to shore up/support urban structures which are in danger of collapse. 

USAR teams consist of specially trained firefighters, who perform USAR 

additionally to their normal fire service duties. Overall, 20 fully trained USAR 

teams (each 30 firefighters) are strategically distributed across the UK. 

Performance standards demand that they have to respond within 45 

minutes to emergencies (West Midlands Fire Station, 2013). 

After the terrorist attacks on the World Trade Centre in New York of 11 

September 2001, the U.K. government developed a new programme to 

enhance the Fire and Rescue Services’ capacity to respond to terrorist and 

other large-scale incidents. The new programme was called “New 
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Dimension” and it aims to build resilience against catastrophic, chemical, 

biological, radiological, nuclear or conventional terrorists’ incidents and 

make emergency response rapid, effective and flexible. For the United 

Kingdom Fire and Rescue Service (UKFRS) the programme includes revised 

command and control structures, new vehicles, equipment, and training 

necessary to respond appropriately to large-scale USAR incidents. 

Particularly difficult in terms of USAR incidents are the unpredictable 

environments and the possible size of the incidents (Casper & Murphy, 

2003; Y. Liu & Nejat, 2013). Incidents can have a variety of causes, which 

can be natural disasters, road accidents or terrorist attacks, involving 

unstable or collapsed urban structures. Flexibility and expanded skill-sets 

are necessary to cope with this uncertainty and the high induced stress 

levels (National Audit Office, 2008). 

One of the core disciplines include collecting as much information as possible 

about the incident site through searches (visual and technical) and mapping 

of the area. In technical searches common used equipment are ultrasonic 

sensors and cameras. With advancing technology also robots with 

autonomous features could be used for USAR missions. The main advantage 

of USAR robots is that they could be sent into highly dangerous areas, while 

rescuers can stay in a safe place. For example, reconnaissance robots could 

explore inaccessible terrain, voids and instable structures to map the 

environment (e.g. with 3D scanning technology), locate victims and provide 

information for more accurate rescue plans and whilst rescuers can keep a 

safe distance. However, these systems are not used often due to cost 

issues, no standardisation and low trust levels between operators and 

robots. Despite the potential benefits of making rescuers’ work safer, the 

author is only aware of one known USAR Team in the world who uses a 

rescue robot: New Jersey Task Force 1, a USA state team (Murphy, 2014, 

p. 53). 

From the literature review trust emerged as an important factor in human-

robot interaction. Trust is necessary to use the full potential of rescue robots 

and presents a challenge for design and implementation (Groom, 

Takayama, Ochi, & Nass, 2009; Sanders, Oleson, Billings, Chen, & Hancock, 



95 
  

2011). In particular, this study aims to develop the author’s own knowledge 

about the nature of work and workers in USAR and ensure that experimental 

stimuli and tasks that are developed have ecological validity and are 

representative of the real world. Furthermore, the study aims to provide a 

basis for guidance for design of robots that emerges from this thesis and 

identify a potential user group of robots within the UKFRS because it is still 

unclear where such robot technology can be implemented. 

In the later sections the author will occasionally refer to herself with “I” and 

“me” in order to emphasise on the autoethnographic nature of this study. 

Most sections are accompanied by personal and participant’s quotes to bring 

across feelings, stress and complex constructs of rescue work. 

The observation study took place at the Fire Service College (FSC) in 

Moreton-in-Marsh. The Fire Service College provides leadership, 

management and advanced operational training courses for senior fire 

officers from the United Kingdom and other foreign fire authorities. The FSC 

offers different courses regarding USAR, varying from USAR initial tool skills 

to Technician level 5 timber shoring course. I attended the two-week USAR 

technician 2 course, which aims to further develop USAR knowledge, skills 

and understanding of operations across the range of core disciplines 

including breaching and breaking, lifting and moving, shoring and technical 

search. This course was chosen due to the technical aspect of rescue and 

because the technicians are a potential user group of robots. 

The report will give an overview of the working environment, tasks and tools 

rescuers are using and about different aspects that shape their behaviour. 

It will conclude with implications for USAR robots. 

“It was just an amazing experience to see how USAR technicians actually 

work. Every researcher has an idea of what their target group is doing and 

how they behave, but actually “doing” the whole training is a very different 

experience with all the ups and downs, with all the dirt and dust.” – 

Katharina Gabrecht 
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4.3 Methodology 

 Participants 

The eleven delegates from the USAR Technician 2 course 2014 had an 

average age of 41 years (SD=5.99). All delegates were from the same Fire 

Station and knew each other. None of the firefighters had experience with 

robots in the Search and Rescue (SAR) or Urban Search and Rescue (USAR) 

environment. 

 Materials 

The researcher needed a journal and a video camera to record the 

experiences at the USAR course. Furthermore, printed questionnaires were 

used to capture the attitudes of the rescuers towards robots (see Appendix 

A). Study information and consent form can be found in Appendix K - - 

Digital Appendix I (p. 404). The author also needed the complete kit of 

personal protective equipment, which is explained in Section 4.4.1.1. 

 Experimental design 

In order to gather background knowledge an autoethnographic approach 

was used. Autoethnography comes from “auto” (self), “ethno” (culture) and 

“graphy” (writing) (Munro, 2011) and is a qualitative method that combines 

autobiography and ethnography (Ellis et al., 2011), therefore a combination 

of personal experience and observation. With the background knowledge 

gathered, future experiments can be adequately informed and designed to 

reproduce a real-world like scenario. The researcher wrote a details journal 

to collect the experiences and note observations. 

In order to collect attitudes towards robots and further data of the 

delegates, in order to inform the aims and objectives of this study, the 

firefighters were asked to complete a consent form and a general 

questionnaire. Additionally the general questionnaire comprised a Negative 

Attitude toward Robot Scale. The “Negative Attitude Toward Robots Scale” 

(NARS) has been applied in the area of autonomous and telepresence robots 

(Tsui et al., 2010). In this study the scale aimed to provide a baseline of 

the general attitude of participants towards robots in the SAR context. 
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Occasionally, the researcher undertook informal interviews. Quotes are 

provided throughout this chapter. 

 Procedure 

On the first day of the course the researcher explained the aims and 

objectives of the study. Then participants completed the consent form and 

the questionnaires. Over a period of two weeks the researcher accompanied 

the eleven firefighters and documented the experiences in a journal and 

with a video camera. 

4.4 Results 

The results section is divided into collected background knowledge, 

emerged factors of USAR work and the results from the questionnaires. The 

collected background knowledge was compiled from the 

observations/experiences of the researcher. The emerged factors of USAR 

work present in detail parts of the journal (indicated with personal note) the 

author wrote to collect the study data.  

 Collected background knowledge 

During the course the researcher collected relevant knowledge about USAR 

work, management, tasks, and equipment. In addition, literature and 

course materials are cited to complement the background knowledge. 

 Working environment 

Since USAR teams consist of Firefighters, they risk their lives to help others 

(Cowman et al., 2004). The environments they are working in are hostile 

and dangerous. In addition, major incidents and disasters are unpredictable 

(Y. Liu & Nejat, 2013). For instance, heavy transport incidents, confined 

space rescues (e.g. mine accidents), collapsed buildings of any kind, floods 

or terrorist bombings can happen without a warning. 

Personal note: Environments can include fire, water, dust, hazardous 

materials or explosive devices. The USAR technicians need to be highly 

flexible to respond to all sorts of events. I was quite overwhelmed by all the 

different things you have to look for. The search environment is mostly 

unstructured, cluttered and very complex. Different training scenarios 
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showed that rescue approaches are very different, because of the different 

complexities of the task. For example, searching an intact area of the 

disaster site [disaster training ground at the Fire Service College], where 

less rubble and obstacles are present, is much easier compared to a 

collapsed room, which can only be searched with cameras through little 

entry points. I was totally helpless when trying to map a room [at the 

training site] through little holes in the rubble. I needed to concentrate very 

hard. 

In order to be protected by the environment rescuers need to wear personal 

protective equipment (PPE), these include: 

 Helmet 

 Hearing protection 

 Full eye protection 

 Work gloves 

 Dust mask (half/full) or breathing operator 

 Knee and elbow pads 

 Ankle supporting steel load safety boots 

During an operation a variety of tasks need to be performed, ranging from 

search management to lifting and moving rubble. These tasks depend on 

the nature of the incident, resources and personnel available. 

 Management, Tasks and Tools 

Personal note: The main tasks of the rescuers were to localise, give aid 

and extricate casualties from the incident site. In order to accomplish these 

tasks a variety of skills were required. It included search management, 

technical and dog searches, shoring, and lifting, moving, breaking, 

breaching of rubble or other materials. 

For the purpose of an overview these skills are briefly described in this 

section. 

 Search management 

A search is organised by the six stages of rescue, called REPEAT (The Fire 

Service College, 2014). The acronym stands for: 
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1. Reconnaissance and Survey 

Gathering of as much information as possible, which include 

numbers of persons missing, possible locations of casualties, 

mapping of the area, existing hazards, structural assessment, cause 

of collapse and resource management. 

2. Elimination of Utilities 

The environment needs to be safe for rescue operations, therefore 

utilities such as water, gas, electricity or oil needs to be isolated. 

3. Primary Surface Search and Rescue 

This is an initial search to check how safe the area is and for saving 

all visible casualties that are lightly trapped. Additionally, equipment 

for longer searches is prepared and rescuers hail and listen for 

further casualties. 

4. Exploration of Voids and Spaces 

Dependent on equipment voids under a rubble pile or other difficult 

reachable areas will be explored. This equipment can be listening 

devices, cameras or even robots/drones (see 4.4.1.2.2 Technical 

search). The goal is to locate casualties, possible survivable areas 

and their entry points. 

5. Access by Selected Debris Removal 

At this stage the exploration goes even further with more detailed 

structural assessment, shoring and air quality test. 

6. Termination by General Debris Removal 

The last stage consists of using heavy lifting equipment for 

removing debris to recover remaining casualties. Occasionally 

reassessment of structures and shoring will be still necessary. 

Casualties’ chance of survival is mainly dependent on time. Statistically 91% 

survive the first 30 minutes, 81% the first day, 37% the second day and 

only 7% after 5 days (The Fire Service College, 2014). 

Personal note: The environment and the tasks are changing over and over 

again. It feels like an iterative process. There are very complex and difficult 

searches that require special equipment and skill. There are also tasks that 

are very easy but still require vigilance. Search complexity changes all the 

time and can be very demanding. 
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 Technical search 

Technical equipment for victim localisation can be visual search devices 

(e.g. cameras), vibration detection equipment (e.g. seismic detectors) or 

scent detectors (e.g. search dogs or oxygen detectors). However, the 

primary search devices are the rescuer’s ears and eyes. 

“Always use your ears and eyes. Your eyes can see better than the camera, your ears can hear 

better than the microphone.” said the instructor several times. 

Important for visual search devices is that they are organised and 

systematic, because the rescuer is only able to see a part of the void at a 

time. Common used equipment in the U.K. are gas monitors, cameras, and 

life detection systems. 

SnakeEye 

 

 

SnakeEye is a remote visual inspection system and is also used in technical 

inspections (e.g. turbines or pipes). The camera (see Figure 45) can be 

mounted on a wand with a swivel head or onto a goose neck to be able to 

look into more difficult reachable areas. The system can take pictures, short 

videos and can be used under water. 

  

Figure 45 - SnakeEye monitor (left) and goose neck extension (right) 
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Search Cam 

 

 

The search cam is especially build for search and rescue operations. The 

camera has a variety of extensions for variable length of the pole and an 

articulated head to look to both sides. Also video, voice and pictures can be 

recorded. Figure 46 depicts the basic configuration of the search camera. 

Personal note: It is very useful to take pictures of casualties or items that 

might look like improvised explosive devices (IEDs) to they can be passed 

on for further professional inspection. 

DELSAR – Life detector 

 

 

The DELSAR is an acoustic and seismic search system. Sensors are deployed 

over the incident site (see Figure 47) to can pick up seismic (sound that 

travels through solid materials) and acoustic sounds (sound that travels 

through air) and the monitor will display these vibration or noise in a visual 

bar graph for each deployed sensor in order to locate the casualty. 

Figure 46 - Search Cam 3000 

Figure 47 - DELSAR Life Detector LD3 with sensor channel monitor (left) and a sensor on a 

rubble pile (right) 
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Personal note: By occasional shouting the casualties were instructed by 

rescuers to make noises. This could be any kind of noises such as scratching 

on a surface, banging on concrete, or screaming. 

Gas monitor 

 

 

This portable device, as shown in Figure 48, monitors the atmosphere for 

different gases. It can be used to check the atmosphere of a void or other 

spaces, which can indicate if there are hazardous levels of certain gases or 

if the atmosphere is survivable. It is standard to use this device before 

breaching into a void. 

No robots are currently deployed in any USAR teams across England, Wales, 

Scotland or Northern Ireland. 

 Dog searches 

Personal note: Dogs are used for casualty detection and localisation. They 

are deployed mainly in Stage 4 (Exploration of Voids and Spaces) of rescue 

operations but they can be used for hasty searches in Stage 1 and 3 as well 

as repeated searches in Stage 5. (Stages of rescue see 4.4.1.2.1, p.98). 

 

 

Figure 48 - Gas monitor Impact Series from Honeywell 

Figure 49 - Handler with search dog during training 
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Across England and Wales there are a minimum of 20 USAR canine teams. 

A USAR canine search team consists of a certified dog and its handler (see 

Figure 49). The handler knows how to deploy the dog, is aware of its 

capabilities, and can read the dog’s body language (Nuttall, 2008). 

Dogs are able to locate, with their superior sense of smell, humans over the 

air transported scent. This fact includes a variety of constraints. Scent 

particles are affected by wind, temperature and humidity. Figure 50 

illustrates how far and dispersed scent of a live casualty can be. 

 

 

Personal note: Dogs are trained to find the strongest location of the 

recognised scent and to bark at that location. That will not indicate the 

actual location of the casualty, but a qualified handler is able to give 

indications for casualty locations. During training the dog handler 

demonstrated a dog search and instructed the rescuer how to behave if a 

search dog is present. 

Advantages of search dogs are that they are able to detect deeply buried 

casualties or even unconscious casualties. Dogs are lighter than humans 

and have more contact points (four legs) and therefore using dogs can be 

quicker and safer for searching an incident site (Nuttall, 2008). 

 Shoring 

Personal note: When rescuers are operating at the incident site and the 

structure or structures around them are unsafe, rescuers need to support 

these structures. This temporary support is called shoring. The aim of 

Figure 50 - Casualty under a collapsed structure and scent movements 
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shoring is to protect the rescuers and casualties from further collapse and 

provide rescuers secure access to trapped casualties. For these operations 

USAR technicians need to be able to distinguish different types of loads and 

constructions for selecting the appropriate shoring technique. 

 

 

The materials used for shoring are timber and Paratech. Paratech are heavy 

duty struts which are specially designed for rescue operations (The Fire 

Service College, 2014). Paratech consists of a strut which is height 

adjustable, further extensions and different types of base plates. An 

example of two post vertical shores is shown in Figure 51. The shore is 

constructed with Paratech and timber. There are a variety of different types 

of shores, each suitable for a certain type of structural problem. 

 Lifting and moving 

Personal note: To gain access to casualties, huge masses of rubble, floors, 

walls or other obstructing elements need to be moved carefully. Depending 

on the weight of the load, different equipment has to be used. For lighter 

loads pure physical strength, crow bars or rope hauling systems are 

appropriate. 

Figure 51 - Two post vertical shores 
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Figure 52 depicts the extrication of a casualty from a rubble pile with the 

aid of leavers and wedges. If loads are heavier the use of tripods (see Figure 

52) or bipods is necessary. During the process of lifting the load needs to 

be secured at all times to avoid backwards movements or crashing. This is 

done with wedges, staked timber or other support structures. 

 Breaking and Breaching 

Sometimes it can be required to breach through floors or walls made of 

different materials when a casualty is located behind them. Tools for 

removing sections of concrete can be hydraulic breakers, 

chipping/rotary/demolishing hammers or concrete chain saws (see Figure 

53). 

 

 

Personal note: Before breaching the rescuers need to drill a hole through 

the concrete and make an oxygen test as well as confirming the position of 

the casualty (e.g. with eyes/search camera). The casualty might be lying 

Figure 52 - Casualty extrication with crow bars and wedges (left) and Paratech tripod for 

lifting (right) 

Figure 53 - Hydraulic concrete chain saw 
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too close to the area of breaching. Therefore, dependent on the position of 

the casualty different kinds of breaches are used (e.g. dirty or clean breach). 

The breach will be mostly a triangle of the size to fit the casualty through 

(see Figure 54). Stick out rebar has to be removed or bend away. A tarp 

makes ingress and egress easier and safer. 

 

 

The previous mentioned tasks and tools for USAR teams are an overview, a 

variety of many other methods, tools and processes are available and needs 

to be used depending on the nature of the incident, because the working 

environments of USAR teams are highly unpredictable. 

 Work organisation: Organisational structure 

The local authority Fire and Rescue Services are responsible for USAR in 

England. Training and equipment is mostly provided by the government 

within the New Dimension programme (National Audit Office, 2008). 

When it comes to a major incident or disaster the Gold-Silver-Bronze 

command structure is used. Gold level is the overall strategic command 

which is not present at the incident site. The Silver level compromises the 

tactical implementation and Bronze is the operational level. In general the 

Gold Commander gives the strategic input, which the Silver Commander 

puts into steps of actions which are executed by the Bronze Commander 

(HM Government, 2008). 

Figure 54 - Concrete breach 
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First, an Incident Commander (Bronze) is selected, which is mostly the most 

senior officer present. If the incident requires multi-agency the Incident 

Commander starts operating at Silver level. If the incident is even larger, a 

Gold level needs to be established. When specialist equipment is required, 

such as USAR or pumps for flood incidents, the Silver Commander may have 

assistance from a specialist advisor. The specialist advisor is then in the 

command support and coordinates his/her particular field. Every USAR team 

will have a team leader who is in communication with the command support. 

If the co-ordination of more than one USAR team is required, a USAR sector 

commander is selected, who will coordinate actions with the USAR team 

leaders. The organisational structure changes with the size of the incident. 

A very simplified model of this command structure is depicted by Figure 55. 

The command team consists of the Incident Commander, the Command 

Supporters (specialist advisors) and Operations Commanders. Operation 

commanders are coordinating the regular Fire and Rescue Units, but that 

area is not in the focus of this work. Each supporter will communicate with 

their area of expertise and each operation commander will communicate 

with their assigned operational sectors. If necessary, the strategic input for 

the Incident Commander will be provided by the Gold level. 

Personal note: During training the command structure was always clear 

and if in doubt, automatically, the most senior rescuer is in charge. These 

clear structures left no room for misunderstandings or discussions. 

Figure 55 - Simplified incident organisational structure for Fire Service Operations 
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However, each rescuer in charge was always open to suggestions and acted 

in the interest of the team. 

 Emerged factors of USAR work 

During the USAR course the researcher wrote a journal. From this journal a 

variety of factors that are important in search and rescue emerged. These 

factors are outlined below and underpinned with personal notes from the 

journal entries. 

 Mental Fitness 

Firefighters and therefore USAR personnel are confronted with very 

stressful, unpredictable, life threatening situations. During operations they 

have to do tasks under enormous mental and physical stress and make 

decisions in a very small time frame. They have to stay calm and confident 

to master all sorts of dangerous events. Further rescuer may encounter 

cruel scenes of dead or dying people which put huge emotional stresses on 

them. During the application process for being a firefighter the confidence 

and resilience of an applicant is tested to investigate if he or she is suitable 

for the job. 

“We see a lot of stuff, especially hard it is, - when children are involved.” The rescuer 

(delegate) stares thoughtful into the distance. 

Personal note: In their everyday working life these people have to make 

very hard decisions which can depend on life or death. This was clear to me 

when it came to the final exercise, when a whole rescue mission was 

planned and performed: Five of the six 

rescuers and me were deep down in a void 

of a collapsed building (e.g. Figure 56), 

they just strapped a casualty on a 

stretcher, but the small tunnels in the void 

made it difficult to manoeuvre the casualty 

towards the entry point. All of a sudden 

there was an alarm sound which indicated 

the immediate danger of collapse and therefore indicated the rescuers to 

leave the void as soon as possible. A short debate began regarding whether 

Figure 56 - A rescuer in a void 



109 
  

to take the casualty with us. Obviously it would have taken more time to do 

so. The group decided with a heavy heart to leave the casualty behind. The 

rule is: First my (rescuers) safety, than the team (rescue team), than the 

task (includes rescuing casualty). Even though this decision is debateable it 

was justified. After the exercise the sixth team member was beside himself 

because five rescuers were not able to rescue one casualty. The concerned 

rest of the team were obviously not happy with leaving the casualty but 

defended their decision. A short and slightly heated debate broke free. This 

was "just" an exercise but still motivation, eagerness, guild and frustration 

were present. The whole heart is involved in their work. They have to live 

with the decisions they have made. This emphasises on the importance of 

understanding the competing elements that influence rescue work, such as 

stress, physical strain, organisational and social aspects. 

 Education level 

As mentioned before USAR technicians are regular firefighters with 

additional training for USAR missions. There is no formal qualifications 

required to become a firefighter. However, applicants need to pass a series 

of written and aptitude tests (“Fireservice Recruitment [Website],” 2014). 

The delegates participating in the observed course were asked about their 

level of education/training. Five of the participants answered “GCSE or 

equivalent”, three answered “A-levels or equivalent” and one answered 

“Degree or equivalent”. One of the participants achieved none of the 

education levels (see Figure 57). 
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Four of the ten USAR technicians are performing a second job next to their 

fire and rescue duties. Four had an apprenticeship in another area before 

joining the rescue service. 

Personal Note: The USAR technicians are down to earth and focussed 

rescuers. They are highly qualified in the tasks necessary for rescue 

personnel, although some new technology (e.g. GPS devices) can be 

challenging to use for them. 

 Physical Fitness 

USAR rescuers are exposed to physically demanding situations, which may 

include operating heavy equipment (e.g. a hydraulic breaker which weights 

ca. 34 kg) or moving large pieces of rubble to free casualties and carry this 

person to a safe place. At the same time a rescuer needs to wear full 

personal protective equipment, such as a respirator, helmet, glasses, ear 

protection, safety shoes/boots and gloves. In addition, work might be 

performed in dark areas, confined spaces or at heights, as well as in 

atmospheres with low oxygen levels or hot and humid environments. 

Physical Fitness is an essential part of being a USAR rescuer, it is important 

to perform duties safely and efficiently and needs to be maintained. For this 

purpose fitness programs and equipment is provided by each fire brigade. 

None; 1

GCSE or 

equivalent; 5

A levels or 

equivalent; 3

Higher 

education: 

Degree or 
equivalent; 1

Figure 57 - Education level of USAR technicians 
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Personal note: I was aware that certain tools need to be robust and 

needed to be deployed in really rough and difficult accessible environments. 

However, not just that these tools are very heavy (e.g. a hydraulic breaker 

which weights ca. 34 kg), they are also deployed in environments which are 

cramped and difficult to access. For example, it can be required to use tools 

upside down (e. g. breach concrete in a ceiling). Figure 58 shows two 

workers using a 10 kg demolition hammers overhead in confined space. In 

this position rescuers are not able to work for more than 20 minutes without 

being exhausted (I was exhausted after 5 min!). The officer in charge will 

enforce a strict working rotation. After a rescuer has been on a tool he/she 

has to have a break. These breaks are important to counteract exhaustion 

and potential errors/slips which could lead to injuries. 

Even after a hard day on the training ground, most of the delegates were 

going to the gym or to the swimming pool. It seems most of them really 

like to perform sports and fitness as an integral part of their everyday lives. 

These activities were also made in the group or in smaller sub-groups, which 

shows the existing team cohesion. 

 Teamwork 

One requirement to become a firefighter is “Working with others”. Working 

effectively with other is an important attribute in this field. Teamwork is 

necessary to cope with the everyday stresses and risks. It is also necessary 

Figure 58 - Tool usage upside down in confined space 
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to carry out firefighter duties. One firefighter alone is not able to extinguish 

a fire. The whole team needs to work together, everyone in his/her role has 

to be able to accomplish firefighting and person rescue successfully. The 

same is valid for USAR members. 

The delegates of the course very much depict the Personal Qualities and 

Attributes Framework of the UKFRS (“The Personal Qualities and Attributes 

[Website],” 2014) (excerpt): 

 Commitment to Diversity and Integrity 

 Openness to Change 

 Confidence and Resilience 

 Working with others 

 Effective Communication 

 Commitment to Development 

 Problem Solving 

 Situational Awareness 

 Commitment to Excellence 

Personal note: My first appearance resulted in me looking at very muscular 

and mostly bald heads, which intimidated me a bit, since they all were male 

and I was the only female. I was sitting, a bit alien, in the back row of the 

class room and took notes of the presentations about building structures. 

In the coffee/tea break some of the delegates were very friendly and asked 

questions about my work and what I was aiming for. And very soon the first 

impression of a very cool and distant atmosphere turned into a very warm 

and friendly one. After asking them to provide some information about their 

attitude towards SAR robots and giving their consent for being 

photographed and filmed, we had our first outdoor exercise with a search 

dog to see how they work and how to behave in front of them. At that point 

I was not that alien anymore. I also got my PPE which integrated me even 

more. 

The next day we were doing our first practical training which involved 

shoring of a house entrance. I was still a bit shy and was more observing 

than laying hands on. However, I am a very practical person and have a 

variety of manual skills, so I was tempted to help with shoring. I received 
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sceptical looks and was uncertain what to do. But, after they realised I am 

not the stereotype of an untalented office sitter the relationship between 

me and the group changed rapidly and they accepted me as a full team 

member. They even provided me with a real USAR overall, so I could blend 

in very well. I felt very accepted. I think if they see your motivation and 

team spirit you are easily part of the team. 

Especially the team spirit impressed me most. The entire group functions 

as a unit. Surprisingly there is no structure of power; also there is not a 

structure of the strongest. Everyone has certain strengths and weaknesses 

which are communicated and visible in the team. Through that process the 

team can dynamically use their members in terms of their individual 

strengths and weaknesses to perform tasks highly effective and efficient. 

Team members are not afraid to ask if something is in question or not afraid 

to ask for help. Knowledge is shared willingly, accurate and effective. I felt 

people were very pure and honest. They have to deal with saving lives, 

there is asking questions in training no shame at all. Important is the goal 

and the teams are immensely goal oriented. Of course conflicts are present; 

however they did not compromise the work itself. Conflicts were solved 

uncomplicated at an appropriate moment. 

“We sometimes take the piss out of each other, this is how we are. But it’s never 

serious.” said one of the firefighters. 

Nevertheless, the atmosphere is rough and uncensored as the hostile 

working environment around them. Some communication seems harsh and 

unfriendly, but it is necessary to have a fast and clear communication in 

dangerous situations. Still, there was always a strong sense of cohesion 

within the team. Also after work, during the two weeks course, most of the 

activities were done together or in smaller parts of the group. 

 Questionnaires and robot attitude 

The eleven delegates from the USAR Technician 2 course 2014 had a mean 

age of 41 years (SD=5.99). All delegates were from the same Fire Station 

and knew each other. They were asked how frequently they are using 

computers. Two answered “1-2 times a week”, the rest “everyday”. None 
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of the firefighter had experience with robots in the SAR or USAR 

environment. 

Additionally the general questionnaire compromised a Negative Attitude 

toward Robot Scale (NARS). Delegates were asked to answer the questions 

with regards to SAR robots. 

 Negative Attitude Toward Robots Scale 

In this study the scale aims to provide a baseline of the general attitude of 

the participant towards robots in general. The entire questionnaire can be 

found in Appendix A (p. 362). The scale is divided into three subsets which 

ask about different aspects: 

 Subset 1: 

Negative Attitudes toward Situations and Interactions with Robots 

 Subset 2: 

Negative Attitudes toward Social Influence of Robots, 

 Subset 3: 

Negative Attitudes toward Emotions in Interaction with Robots 

The subsets of the questionnaire were compared to each other to identify if 

a certain subset is of more concern than the others. This can help to 

determine which area of attitude delegates are more or less inclined to have 

negative emotions to. This subset analysis was also used by Bartneck and 

colleagues (2006), who identified that, for example, female participants had 

significantly higher positive attitudes towards the social influence of robots 

than their male counterparts. 

The Shapiro-Wilk test showed that not all of the recorded data sets met the 

assumptions of normality, therefore non-parametric tests were used. For a 

better comparison of the subsets, which have different item counts, the 

scores are reported in percentages. 
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The following scale will aid to understand the relative scores of the NARS 

(see Figure 59). The lower the negative attitude score, the more positive 

participants about robots. 

Multiple comparison with Wilcoxon signed-rank tests and Bonferroni 

correction (see Figure 60) showed that there is a significant difference 

between Subset 1 (Mdn=38%) and Subset 2 (Mdn=46%) (Z=-2.675 

p<.016, r=-.57). However, there was no difference between Subset 1 

(Mdn=38%) and Subset 3 (Mdn=42%) (Z=-2.201, p=.028, r=-.47) and no 

difference between Subset 2 (Mdn=46%) and Subset 3 (Mdn=42%) (Z=-

.582, p=.560). 

 

 

Most positive

attitude
Positive Neutral Negative

Most negative

attitude

0 % 12.5 % 25 % 37.5 % 50 % 62.5 % 75 % 87.5 % 100 %

Median; 43%

Median; 38%

Median; 46%

Median; 42%

0% 10% 20% 30% 40% 50% 60% 70%

Overall

Subset 1

Subset 2

Subset 3

Negative attitudes toward rescue robots

sig.

Figure 60 - NARS relative median scores for each subset and the overall score 

 

Figure 59 – Percentage indication of NARS questionnaire percentage scores 
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In general participants were more positive towards situations and 

interactions with robots (Mdn=38%) compared to social influence of robots 

(Mdn=46%) and emotions in interactions with robots (Mdn=42%). The 

social influence of robots was the subset with the most negative responses 

(Mdn=46%). Nevertheless, in general the attitude towards robots was 

neutral (Mdn=43%) with a tendency towards a positive attitude. 

4.5 Implications for USAR robots 

USAR robot is a wider term for several types of robots: bomb-disposal 

robots, heavy lifting robots, or unmanned reconnaissance drones. This 

study focussed on unmanned reconnaissance ground and air vehicles. These 

are robots with the aim of exploring inaccessible areas for providing more 

accurate information and locating casualties. 

The implications mentioned in this section are derived from the personal 

experience of the author and organised into organisational factors, 

tasks/functions of the robot, and the robot interface. Organisational factors 

are implications for when and where robots should be used. Task and 

functions are capabilities which are required from a robot according to the 

tasks of USAR technicians. The interface section will illustrate some factors 

which might be important when rescue technicians are interacting with 

robots. 

Organisational factors: Robot operators in USAR teams 

So far the UKFRS have never obtained or used a USAR robot. Therefore no 

knowledge base or implementation plans exist. Generally, a full USAR team 

has 33 operational members. Each team member is a trained USAR 

technician with one or more additional skill sets, which could be for example 

Advanced Shoring Specialist, Trench Rescue, dog handler or Technical 

Search Management. This is very important in order to be able to respond 

flexibly enough to any kind of incident. One of these skills could include 

operating a USAR robot. It can be one of the special skill sets and not every 

member needs to be trained in robot handling. Since the USAR team 

members are normal firefighters and the USAR work is additional to their 

normal duties it is important that the training required to use the robot is 



117 
  

very low. Establishing a new robot operator position outside the team is not 

recommended due to an additional source of information for the sector 

commander and additional management of people directly operating at the 

incident site, as well as higher personnel costs. For a fast deployment it is 

proposed that the robot is stored in the modules provided for USAR 

operations (Module 1 First Strike alongside technical search equipment). 

That implies that the robot is packable and able to be stored easily and safe. 

Bearing the search management REPEAT in mind (cf. 4.4.1.2.1 Search 

management, p.98), these robots might already be used in the phase of 

Reconnaissance and Survey (Stage 1), when solely information is gathered. 

This might not be possible for all robots, since they would need to be 

intrinsically safe. The main deployment stage would be for Exploration of 

Voids and Spaces (Stage 4). Robots can already start with searching during 

the Primary Surface Search and Rescue stage (Stage 3), because they are 

able to take more risks than humans or dogs. However, the deployment of 

a robot is very much dependent on its capabilities and the equipped sensors. 

Furthermore, deployment time is a very critical factor. 

Personal note: The task was to breach through a concrete wall in confined 

space. In order to determine the position and type of breach, the space 

behind the wall needs to be searched for casualties. In order to do that a 

small spy hole on the top will be drilled into the concrete. Using one of 

search cams takes a bit of time, because the system needed to boot up. 

This could take up to 2-3 minutes. In training the rescuers didn’t want to 

wait that long and they got out their phone, pushed it through the small 

hole and made a picture of the void behind the concrete. This was a much 

faster way of localising a casualty. 

Therefore it is important that a robot is very fast and easy to deploy. 

Tasks/Functions of the robot: 

The main tasks of the operator and robot are exploring the extremely 

cluttered incident site and search for victims. The more equipment/features 

the robot has the bigger its physical body. It is a challenging task to find 

trade-offs between functionality and physical dimensions. 
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From the observations in this study it is clear that one of the most important 

feature is the camera. However, there are more features that might support 

the work of rescuers. 

Necessary features: 

 Camera: With photo and video function 

 Microphone: Direction of detected sound 

Additional useful features: 

 Air quality sensors 

 Infra-red sensors 

 3D scanning/automatic mapping of the environment 

 Two way Communication with casualty (e.g. Survivor buddy in 

Murphy et al., 2011)  

 Automatic navigation over irregular terrain: Path planning and 

collision avoidance 

 IED + casualty identification 

Not all features are always usable, for example if a collapsed building is very 

hot due to fires an infra-red camera will not detect warm bodies, because 

the heat of the building will overlay that signal. This suggests to use a 

customisable robot where sensors can be added, substituted, or removed. 

This list emerged from features of existing equipment and due to the 

observation of training scenarios as well as hands-on training. The list is not 

complete and just provides main headings that should be covered in future 

developments. 

Interface 

Since the rescue environment can be wet, hot, cold, or dusty the interface 

must be easy to read and controls need to be able to be operated with PPE 

(e.g. gloves, respirator, etc.). 

Since the education level of firefighters is mainly GCSE level or equivalent 

the interface should not provide too much complexity. Because of the 

cluttered environment and the high visual demands the display needs to be 

ordered and not too overloaded. Key information should always be visible. 
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Most of all the picture needs to be clear and as big as possible, because it 

needs to be considered that rescuers may be deprived from sleep and 

experience constant stress during deployment. 

Providing the state of the robot is necessary to identify problems and current 

reliability/needed attention level. Furthermore mapping and orientation is 

vital for gathering accurate information. Personal note: One of the training 

tasks is to map a void through small spy holes. By using the search cam 

operators lost orientation and had to restart the search action again. 

Another team even mapped an area as one room, although in reality it 

consisted of two rooms. 

Other remarks: 

The robot size must be appropriate to fit through the breaking and breaching 

zones and shoring constructs the technicians make. These dimensions 

usually are as big as the casualty to extricate. However, smaller robots can 

be useful to feed through drilled spy holes in order to gather information as 

early as possible, and not waiting for the breach through the concrete. 

Since the environment is unpredictable, the robot needs to be safe against 

water, heat, and dust. Moreover the robot should be able to drive over 

uneven ground with big and small rubble pieces. An advantage would be if 

the robot is packable/wearable, because sometimes rescuers have to bring 

the robot to its deployment area which is already deep in the “hot zone”. 

The meta-analysis of factors affecting trust by Hancock et al. (2011) 

suggested is the main influencing factor on trust is the robot’s performance. 

This means that everything that influences the perception of performance 

is related to the level of trust operators will have towards the robot. 

Therefore, the software needs to be as robust and stable as possible. This 

does not mean that the robot needs to perfectly perform to be trustworthy. 

More importantly, the robot’s performance needs to be constant, then the 

operator will “trust” the robot to make certain mistakes (Freedy & de Visser, 

2007). 
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Furthermore, task complexity did vary greatly during training missions and 

influenced the choice of equipment, number of technical equipment 

operators and it had influence on the stress of the operators and me. 

4.6 Discussion 

The researcher used an autoethnographic approach and was able to produce 

valuable background knowledge by participating in the USAR technician 

course at the Fire Service College in Moreton-in-Marsh. Previous literature 

did not report such insight into tasks, processes, and equipment of USAR 

units in the U.K. The data and knowledge gathered can inform the design 

of the subsequent research of this thesis. This study collected and 

documented the main tasks and attitudes towards robots of USAR personnel 

and derived implications for rescue robots. 

Main tasks of USAR technicians: 

 Identify hazards/failing structures/collapse patterns/loads in the 

urban search & rescue environment. 

 Apply the “6 Stages of Rescue”. 

 Assess the incident ground. 

 Mapping and planning of operations. 

 Shoring of unstable structures. 

 Breaking and breaching methods. 

 Lifting and moving methods. 

 Effectively select and operate all USAR technical search equipment. 

Attitudes and traits of USAR technicians: 

 The Overall NARS scores indicated that USAR technicians are neutral 

towards robots. Rescuers were more positive towards situations and 

interactions with robots (Mdn=38%) compared to social influence of 

robots (Mdn=46%) and emotions in interactions with robots 

(Mdn=50%). 

Implications for robots: 
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Organisational key points: 

 Usage of robots right from the first phase of search and rescue as 

well as in the following stages. 

 Robot operator skills part of USAR technician skill set. 

 Implement at standard USAR operational level; no extra 

personnel/support team. 

 Training required must be a minimum. 

 Robot should be part of USAR Module 1 (First Strike), where also the 

technical search equipment is stored. 

 Fast and easy deployment are key. 

Function/features/tasks: 

 Necessary features: 

o Camera: With photo and video function 

o Microphone: Direction of detected sound 

 Additional useful features: 

o Air quality sensors 

o Infra-red sensors 

o 3D scanning/automatic mapping of the environment 

o Two way Communication with casualty (e.g. Survivor buddy in 

Murphy et al., 2011)  

o Automatic navigation over irregular terrain: Path planning and 

collision avoidance 

o EOD + casualty identification 

Interface: 

 Robot controllable with PPE. 

 Take into account sleep deprivation, exhaustion and constant stress. 

 Uncluttered, clear and big display. 

 Key information always visible. 

 Provide robot status. 

 Mapping and orientation aids. 

Other remarks: 
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 The size of the robot needs to be small enough to be able to access 

voids and big enough to not fall between rubble. 

 Resistance against water, heat, and dust. 

 Packable/wearable for easy deployment at operational area. 

 For trust consistent performance is more important than perfect 

performance. 

Limitations and future work 

However, due to the nature of the study the researcher was not able to 

constantly document the experiences. For instance, if she was searching for 

casualties deep in a rubble pile, there was no chance to write notes or 

analyse the situation in detail. The data gathered is therefore mostly from 

journal entries that have been written down hours after the experience. 

Personal note: Sometimes I forgot that I am here as a researcher; I was 

stressed, sweating, physically exhausted and had only one goal: rescue that 

casualty! 

Future studies have to introduce U.K. USAR teams to real robots and let 

them use the systems during training and gather first impressions and 

feedback. Personal note: They were very interested in my work and asked 

a lot of questions. They thought robots would be “cool” and they seemed 

very open minded. 

4.7 Conclusion 

The researcher could gain very valuable background knowledge and insight 

into USAR work. This study documented the main tasks of USAR teams and 

showed that they had a neutral attitude towards robots. Similar to other 

research (Casper & Murphy, 2003; Murphy et al., 2015), this study 

emphasised on the fact that rescue robots need to be fast and easy to 

deploy. A variety of recommendations for necessary and optional hardware 

and features was provided. 

The information collected can inform future robot and interface design. The 

following list shows aspects that were taken into consideration when 

designing the subsequent studies of this thesis: 
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 Incorporate sensors such as sound, air quality and casualty 

identification as well as integrate robot capabilities of path planning 

and autonomous driving. 

o The interface of the robot was equipped with temperature and 

air quality indicators. The robot was able to identify certain 

targets in the virtual environment and was capable of 

navigating through the environment. The participant had 

headphones and could hear 3D sounds of the virtual 

environment (robot motor, general humming noise, fire). 

 Consider the influence of task complexity in subsequent studies. 

o With the aid of the collected experiences relevant task 

complexity elements were selected and manipulated for study 

III and study IV (please see Section 6.2). 

 Give participants the context of their work and a scenario description 

to work with. 

o The scenarios for study II, III, and IV had be derived from the 

experiences the author made in this chapter (for example see 

Section 6.3.2.4). 

 Participants need to receive an understandable task description that 

clearly defines what they have to do and what their responsibilities 

are. 

o The participants were responsible to find all targets in each of 

the experiments. They were also responsible to supervise the 

robot and take over control if they needed to correct the robot. 

 Participants should be able to operate the system with a minimum 

amount of training. 

 An element of stress or pressure should be introduced to simulate a 

more realistic rescue scenario. Rescue work is very complex and a 

secondary task could simulate the multi-tasking and stress factor. 

o A secondary task was introduced for study II, III, and IV. In 

addition, each rescue scenario needed to be completed as soon 

as possible. In study IV the battery time decreased on the 

display and participants were able to run out of time. 

 The design of the virtual rescue scenarios (virtual environment) will 

be based on the experiences and documentation of this experiment. 
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4.8 Chapter summary 

This chapter provided information about the tasks, working environments, 

currently used equipment and behaviour of rescuers in the role of an Urban 

Search and Rescue technician. In addition, recommendations about the 

implementation of robots in the U.K. Fire and Rescue Service, as well as 

recommendations about robot and interface design were provided. The 

collected information will inform subsequent studies. 
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5 Study II - The influence of robot 

reliability indication and feedback 

 

5.1 Chapter overview 

This chapter examines the influence of different amounts of robot feedback 

on trust, workload, performance, and participant’s perception of the robot. 

Two robots, each providing different amounts of feedback, autonomously 

searching an environment for specific targets. Both indicate their reliability 

level, but one of the robots indicates why it is in a certain reliability level 

and what type of target it found. This explanatory feedback was perceived 

as a clearer type of communication and the robot was perceived as more 

competent, efficient and less malfunctioning. Furthermore, to collect 

qualitative data about human-robot interactions participants perform 

retrospective verbal protocols and answer interview questions after the 

trials. 

5.2 Introduction 

Urban Search and Rescue (USAR) is the search for and rescue of victims 

trapped in urban areas, such as collapsed buildings or other structures. 

USAR operations include finding victims, giving first aid and removing 

people from danger (see Chapter 4 for details). 

With advancing technology, robots with autonomous features could be used 

for USAR missions. The main advantage of USAR robots is that they could 

be sent into highly dangerous areas, while rescuers can stay in a safe place 

(Virk et al., 2008). For example, reconnaissance robots could explore 

inaccessible terrain, voids and unstable structures to map the environment 

(e.g. with 3D scanning technology), locate victims and provide information 

for more accurate rescue plans (Murphy, 2014). Human-robot interaction is 

an important element and can foster clear communication and shared 

understanding between the operator and the human in order to ease the 

use of robots and enhance human-robot team performance (Green, 
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Billinghurst, Chen, & Chase, 2008; Jung & Lee, 2013; Murphy & 

Schreckenghost, 2013). 

Desai et al. (2013) examined the impact of a robot’s confidence feedback 

and its effects on trust and control allocation. The robot used was an UGV 

platform from iRobot with customised sensors for research purposes. 

Confidence level was indicated by a high, neutral, or low interface button. 

They found that the overall trust levels in the system were the same 

whether participants received confidence feedback or not. Similar results 

were found by Chien and Lewis (2012). However, Desai et al. (2013) found 

a positive influence of confidence feedback on control allocation (when to 

use manual or auto mode). Participants in the feedback condition switched 

away from the autonomous mode more often during low reliability. 

Interestingly, participants also switched away from the autonomous mode 

when the reliability dropped from high to neutral. Further, Desai et al. 

(2013) examined whether semantic or non-semantic feedback was 

appropriate and came to the conclusion that semantic indicators (smileys) 

of confidence level evoked more sudden control allocation changes. For a 

more steady trust level they suggested using non-semantic indicators (plus 

and minus symbols). In a later study Kaniarasu et al. (2013) showed that 

people generally over-trust automation when no confidence feedback is 

given. 

Another study looked into backchanneling (feedback) of robots in a search 

and rescue scenario (Jung & Lee, 2013). A fully autonomous humanoid robot 

used backchanneling verbally (acknowledging and repeating 

command/request) and non-verbally (nodding, gaze towards speaker). 

Backchanneling reduced the perceived stress and cognitive load of 

participants in highly complex tasks, however, it led robots to be perceived 

as less competent (Jung & Lee, 2013). 

The studies outlined above show that a robot’s indication of reliability does 

not appear to negatively impact trust and has the potential to support the 

appropriate trust calibration. However, not many researchers have studied 

this topic in detail and further validation is necessary to develop a broader 

view on understanding the relationship and interaction between humans 
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and reconnaissance robots. This study investigates the attitudes and 

behaviour of people towards an autonomous rescue robot. The goal is to 

understand what shapes people’s thoughts and feelings about robots and 

how to make robots more comprehensible, intuitive to use and predictable 

in order to establish appropriate levels of trust. In addition, the influence of 

different amounts of feedback from a robot on perceived trust, performance, 

workload, and robot characteristics was examined. 

As mentioned previously, studies have shown that indication of reliability 

(e.g. an estimation of how well the robot performs at any given moment) 

can affect trust alignment (Kaniarasu et al., 2013) and control allocation 

strategy positively (Desai, 2012). Furthermore, recent literature 

investigated that trust is, among other variables, influenced by predictability 

and transparency of the robot (Hancock, Billings, Schaefer, et al., 2011). 

Robot transparency is a property of an interface to convey the intent, future 

plans, performance, and reasoning processes (Chen & Barnes, 2014). For 

example, the lack of background information leads operators to trust robots 

less and may lead them to use the autonomy inefficiently (Stubbs, Hinds, & 

Wettergreen, 2007). 

This study examines if trust and attention allocation can be further 

enhanced (calibrated) when participants are provided with explanatory 

feedback (higher transparency) about the current reliability level and if this 

affects their workload and perception of the robot characteristics. 

In order to investigate these circumstances further the following hypotheses 

were tested: 

H1) The amount of explanation given by the robot will affect an operator’s 

cognitive workload. 

H2) The amount of explanation given by the robot will affect task 

performance. 

H3) The amount of explanation given by the robot will affect an operator’s 

perceived characteristics of the robot. 

H4) The amount of explanation given by the robot will affect the trust an 

operator has in the robot. 
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H5) The indication of reliability will affect an operator’s visual attention 

allocation. 

It is also predicted that the workload and trust will increase with the amount 

of explanatory feedback and that the amount of feedback given will enhance 

task performance. 

Furthermore the collected qualitative data was analysed to support 

understanding of trust and the influencing factors on trust. 

5.3 Methodology 

 Participants 

Participants were recruited using advertisements, emails and posters. 24 of 

25 participants successfully finished the study. One participant experienced 

technical difficulties and was not able to complete the experiment; their 

data was excluded from this study. Participants were staff (n = 13) and 

students (n = 9) from different areas of the university as well as from the 

general public (n = 2). The participants’ age ranged from 21 to 50 years 

with a mean age of 34 years (SD = 9.6). The sample population consisted 

of thirteen female and eleven male participants. Twenty-one participants 

were native English speakers. All participants used computers on an 

everyday basis. Nineteen participants reported playing computer games, 

app games or console games. 

 Materials 

A maze and a remote controlled unmanned ground vehicle were used to 

simulate an Urban Search and Rescue (USAR) mission. The ground vehicle 

was a LEGO Mindstorms robot with a wireless camera which was controlled 

by a laptop with the aid of a LabVIEW interface. The participants could hear 

the robot and give voice comments (e.g. to indicate of a robot error) via a 

headset with a microphone. Due to technical problems the robot could not 

be controlled by the participant and was therefore completely autonomous. 

However, it was explained to participants that the voice comments (e.g. 

indicating a target that was missed by the robot) would be recorded and 

incorporated in the robot’s reconnaissance data. 
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The autonomous robot was simulated by showing participants a pre-

recorded video from the perspective of the robot. This also ensured that 

each participant saw the same scenes of the robot investigating a collapsed 

warehouse environment. Therefore, participants were presented with a 

video rather than a live camera picture from the robot. Each of the two trial 

videos (each with a different robot) comprised the same path length, 

number of turns and timing of targets that emerge. Each video lasted for 

seven minutes. To maintain the impression of a robot actually working next 

to the operator, the USAR maze was still intact and presented to the 

participants before starting the trials. The maze (Figure 61) consisted of 

walls that simulated rooms, rubble (e.g. piles of stones) and other obstacles 

(e.g. planks, styrofoam). The targets that were required to be found were 

human clothes, hazard signs and victims. There were three items of clothing 

and six to seven hazard signs and two victims hidden in the maze. For each 

trial the number of low reliability phases was the same, but not the location 

of these phases. A reliability drop consisted of the robot not looking into all 

corners and missing a target. All signs, clothes and victims were printed on 

paper, cut out and placed on obstacles or walls in the maze. Irrelevant 

objects for distraction were scattered throughout the maze. 

An information sheet and consent form (Appendix K - Digital Appendix II, 

p. 404), a general questionnaire (Appendix B, p. 368), and a post-task 

questionnaires (Appendix C, p. 371) were completed by the participant. The 

post-task questionnaire asked for robot communication and perception 

ratings. Robot communication asked three questions about the amount of 

feedback provided by the robot and six questions about the robot’s 

communication. On a 5-point scale the following six bipolar adjectives were 

shown: confusing/clear, inconsistent/consistent, hard to understand/easy 

to understand, unfriendly/friendly, unnatural/natural, and 

machinelike/humanlike. The items were borrowed from Bartneck, Kulić, 

Croft, and Zoghbi (2009). Perception ratings consisted of asking about 

perceived robot intelligence and competence as used by Jung and Lee 

(2013). 

Participants were also given an instruction sheet for the task. A secondary 

task consisted of another screen showing a variety of blue boxes, where 
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participants had to count these boxes and click on the corresponding 

number on the keyboard. In addition, a camera recorded the participant 

during interaction with the robot. 

 Experimental design 

 Trial description 

Each participant watched two pre-recorded videos of two different robots 

(within subject design) driving through a maze (see Figure 61). 

 

Figure 61 - The maze in which the video was recorded 

Each robot gave a different type of audio feedback. Participants were not 

aware that they were watching a video. The events of the two videos 

occurred at the same time, in a different order, and with slightly different 

timing. However, the first reliability drop was indicated at the same time, 

because previous research showed that timing of errors can significantly 

influence trust (Kaniarasu, Steinfeld, Desai, & Yanco, 2012). A reliability 

drop consisted of the robot not looking into all corners and missing a target. 
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Participants were required to find hazard signs, human clothes and victims 

in the maze (see Figure 62). In order to introduce uncertainty into the trial, 

the participants did not know which type or part of human clothes they 

needed to find, which aimed to make the trial more realistic (adding 

uncertainty). 

The participants’ main task was to indicate and explain an error of the robot 

into the microphone whenever the robot made a mistake, for example, 

“Error, this was not a hazard sign.” At the same time they were asked to 

perform a secondary task, if they felt comfortable doing so. The difference 

between the type of feedback from the two robots participants had to use 

is explained in the next paragraph. 

 Robot audio feedback types 

The following actions were performed by the robot: 

• Navigating through the environment (video) 

• Identifying possible targets 

• Indicating low reliability phases, where the target identification 

system could be faulty 

• Indicating system problems while moving 

Two different audio feedback strategies were used to investigate the 

influence of robot feedback on trust. Robot 1 gave very basic feedback and 

was called “Roy”. Robot 2, called “Parker”, gave more detailed feedback, as 

shown in Table 3. 

  

Figure 62 – Example targets 
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ROY – basic audio feedback PARKER – detailed audio feedback 

“Target identification low.”/ “Target 

identification high.” 

“Target identification likelihood low, 

because of low lighting levels. “; 

“Target identification likelihood low, 

because of unreachable area.”; 

“Target identification likelihood low, 

because of heat influencing the 

sensors.” / 

“Target identification likelihood high.” 

“System got stuck – Recovery.” 

“Navigation stopped, because right 

tyre got stuck in debris. Recovering 

now.” 

“Target found.” 

“Hazardous sign found.”; 

“Human evidence found.”; 

“Victim found.” 

 

Table 3 - The differences in feedback given by the two robots. 

The presentation order of the robots was counterbalanced to avoid order 

effects. 

 Secondary task 

The secondary task was a non-loading task and participants could allocate 

attention to this task whenever they wanted to. In the secondary task, a 

certain number of boxes were shown on the screen and participants were 

required to click the corresponding number (count) on the keyboard. 

Participants were given brief feedback to indicate if they were right or wrong 

before the program switched automatically to the next screen with a 

different number of boxes. 

 Measures and performance 

Performance was measured by correctly identified targets and correctly 

answered secondary tasks. The overall performance score was based on the 

following scoring system: 

 Indicate a missed victim      +30 

 Indicate a missed target/false identified target   +10 

 Missed target/false identified target     -5 

 Secondary task/one correct answer    +1 

 Secondary task/one wrong answer    -1 
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The scoring system was developed by keeping in mind the main focus of the 

task. It is most important not to miss human casualties (+30) and other 

targets (+10). For each correct secondary task answer they earned one 

point. Penalties were given for not indicating a missed target (-5) and for 

each wrong secondary task answer (-1). Participants were made aware of 

the ranks of the scoring system, but not the detailed scoring values. 

Video observation of the participants were used in order to capture the 

visual attention towards the robot. Questionnaires and a semi-structured 

interview provided data about attitudes, workload (NASA TLX), perceived 

robot characteristics, and trust. Furthermore the subsequent retrospective 

verbal protocol was analysed with a theme based content analysis (Neale & 

Nichols, 2001). 

 Compensation 

For introducing a risk factor and an incentive for better performance, 

compensation was given based on the overall performance. The maximum 

amount that the participants could earn was 30 GBP. Every participant had 

a basic compensation of 10 GBP. The overall best scoring participant 

received further 20 GBP and the second best, an additional 10 GBP. 

 Procedure 

After giving informed consent, participants were asked to complete a 

general questionnaire which asked for demographics (age, gender, 

occupation, etc.), and their general trust attitude. Participants were 

informed about the task itself and the rescue scenario. Participants had a 

five minute training session supervising the robot while it was searching in 

the maze. They were asked to practise until they felt comfortable 

performing the task. Examples of each type of target were shown to them, 

so they could familiarise themselves with what they were looking for. In 

addition, participants received training how to perform a retrospective 

protocol (RVP). After training, they performed the two trials. Each 

supervision trial of the robot took seven minutes: the goal was to find and 

mark all relevant targets. After the trials, participants were presented with 

a post-task questionnaire which asked them to rate their workload and how 

they generally felt about the robot and how the robot communicated. Then 
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the video of the interaction was shown to the participants and they were 

asked to perform a RVP. After a short pause they had to perform another 

trial with the other robot, answer the post-task questionnaire, and perform 

another RVP. The study concluded with a short semi-structured interview, 

which included questions about the two robots and whether participants 

preferred the first or the second robot. 

5.4 Results 

The results section reports the findings from the general questionnaire 

which asked about general demographics and attitudes towards robots, the 

measures of performance, subjective workload and robot communication. 

Next, the visual attention allocation, followed by a correlation analyses are 

presented and the main body of qualitative data is presented in the 

retrospective verbal protocol and interview section. 

 General Questionnaire 

The general questionnaire incorporated questions regarding participants’ 

general information (age, gender, etc.), and general trust attitude. The 

following sections will describe the different question sets of the general 

questionnaire. The complete questionnaire can be found in Appendix B (p. 

368). 

The participants’ age ranged from 21 to 50 years with a mean age of 34 

years (SD = 9.6). The sample population consisted of thirteen female and 

eleven male participants. Twenty-one participants were native English 

speakers. All participants used computers on an everyday basis. Nineteen 

participants reported playing computer games, app games or console 

games. 

 Trial performance and robot perception 

 Performance 

Performance was measures by the scoring system explained in 5.3.3.4, 

p.132. The relative performance was calculated by how many per cent the 

participants achieved of the maximum possible score. The performance data 

did not meet the assumptions of normality and therefore was analysed with 



135 
  

parametric tests with the aid of bootstrapping. Relative mean performance 

scores showed that there was no significant difference between the task 

performance of Parker (53.38%) and Roy (51.11 %), t(21) = .496, p > .05 

(see Figure 63). 
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Figure 63 – Relative mean performance bewteen Parker and Roy. Error bars show 95% 

confidence intervals. 

 

 

Figure 64 – Relative mean performance between first and second performed task. Error 

bars show 95% confidence intervals. 
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However, there was a significant large task learning effect, as the first trial 

(44.6%) was performed significantly less well than the second trial (59.9%), 

as shown in Figure 64, t(21) = -4.18, p < .01, r = .51 (paired samples t-

test with bootstrap; 1000 samples). The starting task was counterbalanced 

across the experiment. 

Further analysis with an ANOVA showed that there was an interaction effect 

between robot and task order (F(1;40)=7.09, p < 0.5, r = .39). This means 

that the effect of the task order on performance was different for Parker 

and Roy. Post hoc tests (Mann-Whitney U tests) revealed that there was no 

significant effect between the performances of Parker whether it was used 

first or second by the participant (see Figure 65). But there was a significant 

effect on the performance of Roy whether it was used first or second by 

participants (U = 13.5, p < .01, r = 0.66). It seemed that the performance 

of Parker remained similar between participants using it first or second in 

the study. If participants used Roy first their performance was particularly 

low (37%), but when they used Roy after they have used Parker, their 

performance was highest (65.18%). This could suggest that participants 

had a carryover effect from the behaviour of Parker to Roy. Because Parker 

was explaining the errors and giving additional feedback, with this 

knowledge in mind participants handled Roy differently and achieved higher 

performance levels. 

 

Figure 65 - Robot effect on task order performance with 95% confidence intervals 
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But it is inconclusive if the amount of information provided by the robot did 

or did not influence the performance scores. 

 NASA TLX Workload 

After each trial participants were asked to complete a NASA-Task Load 

Index (NASA-TLX) questionnaire (Hart & Staveland, 1988). The NASA TLX 

is accompanied in Appendix C (p. 371). Wilcoxon signed-rank tests showed 

no significant differences in any of the items of the NASA TLX Task 

questionnaire, therefore there were no significant differences in perceived 

workload across the two different robots (see Table 4), Z = -0.467, p > .05 

(overall workload score). Also, there were no significant changes in the sub 

scales of the NASA TLX. 

Workload ratings across conditions 

Condition Mean (SD) 

Parker 55.75 (12.29) 

Roy 57.75 (14.38) 

 

Table 4 - Workload ratings across conditions 

 Robot ratings 

Robot communication 

In addition to the workload measure the participants had to answer twenty 

further questions regarding the communication and perception of the robot 

and how they perceived the robot (Appendix C, p. 371). 
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Figure 66 visualises the mean and median ratings for the robot 

communication ratings. The questions with significant differences are 

marked with a star (*). Wilcoxon signed-rank tests showed significantly 

different ratings for question 2 (Z = -2.18, p < .05, r = .31) and question 

4 (Z = -2.00, p < .05, r = .29). The difference of question 2 had a medium 

effect size and question 4 had a small effect size (Cohen, 1988) Participants 

rated that the information given by Roy was not detailed enough, whereby 

the information given by Parker was just right (question 2). In terms of the 

1 2 3 4 5 6 7

1. Do you think the amount of information given

to you by the robot was appropriate? ("too little"

- "too much")

2. Do you think the information given to you by
the robot was detailed enough? ("Not detailed

enough" - "Too detailed")*

3. Do you think the information given to you by

the robot was helpful? ("Not at all helpful" -

"very helpful")

4. Robot communication was "confusing" -

"clear"*

5. Robot communication was "inconsistent" -
"consistent"

6. Robot communication was "hard to

understand" - "easy to understand"

7. Robot communication was "unfriendly" -
"friendly"

8. Robot communication was "unnatural" -

"natural"

9. Robot communication was "machinelike" -
"humanlike"

Parker (M) Roy (M) Parker (Mdn) Roy (Mdn)

Figure 66 – Robot communication ratings with confidence intervals (*significant difference) 
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level of confusion the information given by the robots evoked, Parker was 

rated clearer than Roy (question 4). 

There was a tendency that the amount of information given (see question 

1) from Parker was just right and Roy gave “too little” information (Z = -

1.63, p > .05), but the difference was not significant. Further, the 

information given by Parker was reported as more helpful (question 3) than 

the information from Roy (Z = -1.46, p > .05). However, these ratings were 

not statistically significant, either. 

Both robots were rated as generally consistent (question 5), easy to 

understand (question 6), and friendly (question 7) in their communication. 

This was anticipated since both robots had the same simulated type of voice. 

With respect to their articulation Parker was rated slightly more natural (Z 

= -1.03, p > .05) and more humanlike (Z = -1.19, p > .05) than Roy 

(question 8 & 9). Nevertheless, these were not significant differences. 

Robot perception 

The ratings for the perception were on a scale from 1 = “strongly disagree” 

to 7 = “strongly agree” (see Figure 67 and Appendix C, p. 371). With the 

Wilcoxon signed-rank test significantly differences were found between the 

answers of question 10 (Z = -2.07, p < .05, r = -.3), question 12 (Z = -

2.50, p < .05, r = -.36) and question 15 (Z = -2.68, p < .05, r = -.39). The 

questions with significant differences are marked with a star (*). All 

differences showed medium effect sizes. Hence, participants felt that they 

together with the robot accomplished the task more efficiently (question 10) 

with Parker then compared to Roy and Parker was more competent 

(question 12) and malfunctioned less (question 15). Answers to the 

malfunction question was generally negative, because at the end of both 

robot trials the robot got stuck on debris. Although, Parker was rated as 

more intelligent (question 11), more trustworthy (question 13), more 

dependable (question 18), more reliable (question 19) and participants 

were more confident in Parker than in Roy, these differences were not 

statistically significant. Participants also rated, but not significantly 

different, they would like to operate Parker more than Roy again (question 

14). Further the participants were not particularly wary about either of the 
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robots (question 16) and felt competent operating either of them (question 

20). 

 

 

Robot task contribution 

Also, the question about the extent to what the robot contributed to the 

task (Figure 68) was higher with Parker than with Roy. Yet, the difference 

was approaching significance and had a small effect size (Z = -1.92, p = 

.055, r = -.27). In this particular question Participants could rate in intervals 

of 10% from 0% to 100%. 

1 2 3 4 5 6 7

10. Our team accomplished the task

efficiently.*

11. I felt I was working with an intelligent
being.

12. The robot was very competent.*

13. I can trust the robot.

14. I would like to operate this robot
again.

15. I think the robot malfunctioned.*

16. I am wary of the robot.

17. I am confident in the robot.

18. The robot is dependable.

19. The robot is reliable.

20. I felt competent operating the robot.

Parker (M) Roy (M) Parker (Mdn) Roy (Mdn)

Figure 67 – Robot perception ratings on a scale from 1 = “strongly disagree” to 7 = 

“strongly agree” with confidence intervals (* significant difference) 

 



141 
  

 

Figure 68 – Percentage rating of robot contribution to task success with confidence 

intervals 

 Visual attention allocation 

In order to investigate if the robot’s indication of reliability can support the 

visual attention allocation of the participants, the attention towards the 

robot during low and high reliability phases was examined. Furthermore, it 

is investigated if the explanatory feedback from Parker can improve the 

attention allocation. The attention towards the robot was analysed via the 

recorded video of the face of the participant. A frame-by-frame analyses 

counted the time (seconds) the participant looked at the robot screen and 

not glancing towards the secondary task screen. For the purpose of this 

analysis, a glance is defined as a maximum attention of 500 ms of a second 

not allocated to the robot and includes the transition times, because the 

eyes, during transition from one screen to the other, were off the robot. 

Both robots had the same amount and duration of high and low reliability 

phases. An ANOVA revealed that there was a significant effect of robot 

reliability phase on relative visual attention allocation time, F(1. 21) = 

24.86, p < .001, r = .74. However, there was no effect of the robot (Roy or 

Parker), F(1. 21) = 0.96, p > .05. Therefore, Parker (with explanatory 

feedback) could not improve this attention allocation. 

81.25 %

76.25 %
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To what extent did the robot contribute

to the success of the task performance?

Rating

Parker (M)
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Results of a post-hoc paired samples t-test showed that participants 

generally allocated significantly more time to the robots when in low 

reliability phases (see Figure 69). In high reliability phases participants 

supervised Parker on average 77% of the time rather than attending to the 

secondary task. In low reliability they allocated more time to the robot (M 

= 86%) compared to the low reliability conditions (t(21) = -3.624, p < .05, 

r = .62, with bootstrap; 1000 samples). For Roy on average 80% of the 

participants’ time was allocated in high reliability phases. In low reliability 

phases, they allocated 87% towards Roy (t(21) = -3.247, p < .05, r = .58, 

with bootstrap; 1000 samples). Both differences were significant and had a 

large effect size.  
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Figure 69 – Attention allocation towards the robot in low and high reliability 

phase with confidence intervals 
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 Summary of quantitative results 

 

Table 5 provides an overview of the results. Each dependent variable and 

their results are listed. The robot performance was kept constant. 

Dependent 

variable 

Independ

ent 
variable 

Significanc

e 

Result details 

Trial 
performance 

Explanatory 
feedback 

no 
significance 

Possible learning effect 
between first and second 

performed task. 

Workload Explanatory 

feedback 

no 

significance 

 

Robot 

communication 

ratings 

Explanatory 

feedback 

significant Explanatory feedback was 

perceived as a clearer type 

of communication. 

Robot 

perception 

ratings 

Explanatory 

feedback 

significant A robot with explanatory 

feedback was perceived as 

more competent, efficient 

and less malfunctioning. 

Robot task 

contribution 
ratings 

Explanatory 

feedback 

no 

significance 

 

Visual attention 
allocation 

Explanatory 
feedback /  

High and 

low 

reliability 
phases 

significant Independent of explanatory 
feedback, participants 

allocated significantly more 

time to the robot in 

indicated low reliability 
phases. 

 

Table 5 - Summary of quantitative results 

 Retrospective verbal protocol analysis 

The retrospective verbal protocol (RVP) was used for a qualitative analysis 

of events rather than for revealing cognitive models or thinking structures. 

For the latter the length of each trial (about seven minutes) was too long 

and the disruption of answering the questionnaires after each trial extended 

the time between doing the trial and the RVP further. The pilot study showed 

that a concurrent verbal protocol interfered too much with the main task 

and secondary task. For a practical analysis the RVPs were divided into the 

following events: 

Events: 

 Robot succeeded (the robot just identified a target correctly or 

ignored an incorrect target). 
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 Robot mistaken (the robot just identified a wrong target or missed a 

target. 

 Reliability indication (the robot indicated a low or high reliability 

phase). 

In-between events (see Appendix D, p. 374): 

 Visual attention allocation (participants explained strategies or issues 

about their attention allocation). 

 Robot/Interface characteristics (participants commented on matters 

concerning the robot or its interface). 

Due to the length of the analysis the in-between events were moved to the 

Appendix (see Appendix D, p. 374). 

To analyse each event the theme-based content analysis (TBCA) from Neale 

& Nichols (2001) was used. Originally this qualitative method was developed 

for evaluating virtual environments and desktop environments. The 

interaction in this study via a computer screen can be categorised as 

desktop environments. TBCA provides information about opinions and 

behaviours and is able to indicate important issues by meaningful grouping 

of data. 

Under each sub-event the relevant categories/themes and conspicuous 

issues found in the retrospective verbal protocol are discussed. Additionally 

only selected citations will be reported, which might best represent the 

whole picture. An overview of the raw transcript and assigned themes is 

provided in Appendix K - - Digital Appendix III (p. 404). 

It is recommended to refer to the tables (e.g. Table 6) at the beginning of 

each section in order to capture the quantity and content of comments. In 

these tables (e.g. Table 6) the bold items are explained in more detail (e.g. 

with quotes) below the table. Only the most often mentioned themes are 

discussed, due to the limited length of this chapter. Themes in the 

paragraphs are indicated in italic. Numbers provided in squared brackets 

represent the number of all comments in that theme. Brackets behind a 

quote indicate the following: participant number, name of robot, timestamp 

(optional). For example: (P17; Parker; 00:01). Participant is abbreviated 
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with “P” and the robot is abbreviated with “R”. If the context within a quote 

needs to be explained the relevant information is inserted in squared 

brackets. 

 Event: Robot succeeded 

The following events occurred before and during the time the robot 

succeeded in finding a target. 

 Sub-event: Participant waits for robot [31] 

Event: Robot succeeded 

Theme Sub-event: Participant waits for robot [31] 

Sub-theme General [25] Participant declared 

error [6] 

Raw data 

theme 

• General waiting [14] 

• P anticipated R's delay [3] 

• P anticipated R better performance [2] 
• P anticipated R to fail [1] 

• P seeks explanation of delay [1] 

• P happy to win against R [1] 

• P is negative about delay [3] 

• "I was quicker" [1] 

• Nearly declared error 

   [4] 
• Not used to robot [1] 

 

 

Table 6 - TBCA overview of sub-event: Participant waits for robot 

A major issue was that the participants had to wait for the robot to identify 

a target (see Table 6). The theme was mentioned 31 times. Waiting for the 

robot costs a lot of allocation time and also annoyed participants. Overall, 

25 times they mentioned that they waited for the robot. 

Their general waiting comments [14] were: 

 “Yes, I was just waiting, squinting again. Hazard sign.” (P23; Roy) 

 “I waiting for the robot to identify the shoe.” (P02; Parker) 

 “I am just waiting for it.” (P14; Roy) 

 “I was spotting it and I was waiting for the robot to identify it.” (P17; 

Parker) 

Later on, some already anticipated the delay until identifying a target [3]: 

 “I was wondering if it gonna miss that. Yeah, I thought, it kind of went 

away, I thought, maybe it come back around, it usually turns and looks 

directly at the object, so just waited. And it obviously picked it up.” (P15; 

Parker; 03:42) 



146 
 

 “Because from what happened previously, there seemed to be a slight 

delay between looking at it and then identifying it, I am not sure how 

many seconds it was. But it felt like it identified it [Target] within that 

frames so I didn't say anything.” (P02; Roy; 06:00) 

Because of the robot’s delay to identify a target participants declared or 

nearly declared a robot error [6]: 

 “So here that's the thing, so I saw it before it zoomed in, I saw it like 

you know as it was moving, the robot, so I thought: Okay I wasn't sure 

if it was gonna turn back there, so I said it but then it identified it right 

after I said it, so I was thinking okay: I was just a bit quicker.” (P23; 

Parker) 

 “[P declared error] and then it identified it [later]. It came on the picture 

first and then it panned around and then it came back. So again that's 

about getting to know the robot […].” (P14; Parker) 

These comments implicate that there is a need to visualise the process of 

identification of the robot. This could incorporate a visual overlay and/or a 

loading bar as well as the information if the robot tries to get another 

angle/view upon the target. It also would be useful if operators (if they 

already identified the object) can abort the identification and declare that it 

is a target or not a target. 

 Sub-event: Robot better [20] 

Event Robot succeeded 

Theme Sub-event: Robot was better [20] 

Sub-
theme 

Positive [7] Neutral [8] Negative [5] 

Raw data 
theme 

(Good/impressed
/proud) [7] 

(P couldn’t 
see/easy to 

miss/R vision 

better) [8] 

(P poor time 
allocation/I 

failed/R better) 

[5] 
 

Table 7 - TBCA overview of sub-event: Robot better 

If the robot performed better than the participant, for example the robot 

saw the target and the participant didn’t, then the feedback was mostly 

neutral [8] or positive [7] (see Table 7). For example, positive quotes were: 



147 
  

 “Yeah he spotted that one, I was very proud of that one. Because 

normally I miss all the clothing.” (P03; Parker) 

 “Generally speaking the robot was one time he finds a shoe, and I was 

really impressed. Cause I haven't seen that at all.” (P05; Roy) 

 “[Robot found target] Oh, yeah, right that’s true! Oh if it wasn’t for the 

robot, I would have missed that. So that was a good moment, me and 

the robot.” (P23; Roy) 

However there were also negative comments [5] the participants made 

about themselves: 

 “I think I look away here to do something (secondary task). And the 

robot sees the shoe. I did not see the shoe. Not until the robot marked 

it. I was distracted. Very poor time allocation.” (P03; Roy) 

 “Okay this is the shoe, I failed. And I just disregarded. And then I think 

he says, Target acquired.” (P05; Roy) 

If the robot’s success is rated positive seems to vary among individuals. 

Participants mainly directed negative comments at themselves. 

 Sub-event: Found in low reliability [9] 

Event Robot succeeded 

Theme Sub-event: Found in low reliability [9] 

Sub-theme General [9] 

Raw data 

theme 

• More relaxed [3] 

• Impressed (Still found it!) [3] 

• More confident in R [1] 
• Perfectly happy [1] 

• more trust = more relaxed [1] 

 

Table 8 - TBCA overview of sub-event: Found in low reliability 

When the robot found a target in a low-reliability phase (see Table 8) people 

were impressed [3]: 

 “And I believe it had two [targets found], oh okay, despite low 

reliability it is still finding them.” (P20; Roy) 

They stated to have more trust and being even more relaxed [3]: 
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 “Particularly having known it picked things up in low reliability you 

relax even more, you got more trust in it.” (P17; Roy) 

This underlines that a good performance under difficult circumstances is 

valued by the operator. 

 General feelings [23] and general feedback [25] 

Event Robot succeeded 

Theme General feelings 

[23] 

General feedback [25] 

Sub-theme General [23] Positive [19] Neutral [6] Negative [2] 

Raw data 

theme 

• More 

confidence in 

R/R competent 

[7] 

• R is reliable [3] 
• Happy [2] 

• P happy for R [1] 

• more trusting [2] 

• P felt better 
(relaxed/comfort

able) [3] 

• Relief [1] 

• Useful [1] 
• P assumes R 

okay [1] 

• Leave it to it [1] 

• P feels useless 

[1] 

• Good/well 

done/fine 

[14] 

• R works 

properly [2] 
• 

Persistent/th

orough [2] 

• R good in 
negotiating 

[1] 

• Okay [3] 

• fairly clear 

[1] 

• No need to 

highlight [1] 
• Correct [1] 

• 

Inaccurate 

[2] 

 

Table 9 - TBCA overview of sub-event: General feelings and general feedback 

In terms of feelings, see Table 9, the robots success of finding a target 

evoked that participants were more confident in the robot [7]: 

 “Maybe feel confident that it was working and doing his job.” (P13; Roy) 

 “This one it spotted. I was thinking at that point: Oh I think it spotted 

most of them so I was really quite confident with it.” (P20; Roy) 

And participants felt better [3]: 

 “The more reliable I found it to be the more I kind of relaxed a bit. 

Knowing that it was doing a pretty good job.” (P08; Roy) 

 “[…] I was a bit more relaxed now, that it picked up a few things that I 

had seen, a bit more confident in it.” (P17; Parker) 
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Yet, one participant claimed to feel useless: “I saw this one so that was ok. 

[Hesitation sound], I think the image was clearer at that point, now it was 

flashing again so I couldn't see anything. And I felt like: Oh, I am useless.” 

(P25; Roy). 

With respect to feedback the robot got positive comments (19 positive 

comments opposed to 2 negative comments). The only negative feedback 

about the robot happened when participants started with Parker and then 

used Roy. They saw Roy as inaccurate [2]:  

 “So it helped that it spot something, but I identified which type of target 

it is.” (P24; Roy) 

 “[…] I was waiting for the next one, which was there (hazard sign) and 

it said: target found, again. And then I thought it is not, it doesn’t give 

you as much information as the other one, but because it said target 

found but it could be anything.” (P18; Roy) 

As expected a robot’s successful action gained positive comments from the 

participants and overall contributed to more trust in the robot (directly 

stated by 2 participants). 

 Secondary task [13] 

Event Robot succeeded 

Theme Secondary task [13] 

Sub-theme General [13] 

Raw data 

theme 

• Carry on/start [9] 

• Do secondary more [2] 

• Do secondary until R finds something [1] 

• Focus on secondary task [1] 

 

Table 10 - TBCA overview of sub-event: Secondary task 

All of the participants comments indicated that they were doing the 

secondary task more [2], started it or carried on [9] with it (see Table 10). 

Another interesting comment was, that: 

 “Yeah [hesitation sound] on this one I saw that it's there [P found 

target], and I was like, kind of: Oh doing the secondary task, and if 

the robot doesn't say it I will say it.” (P25; Roy) Do secondary until 

R finds something. 
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So, it happened that participants identified a target before the robot and 

they used the time until the robot said something to do the secondary task. 

This is also visible in the videos and supports the implication of being able 

to abort the robot’s identification process and already mark the object in 

question as target/no target. 

 Participant uncertain/unsure [19] 

Event Robot succeeded 

Theme P uncertain/unsure [19] 

Sub-theme unsure about robot [4] unsure about target [15] 

Raw data 

theme 

• Unsure about R feedback 

[3] 

• Unsure about R performance 

[1] 

• followed R decision [5] 

• Closer look for target [2] 

• Making sure [2] 

• P wants manual control [1] 
• Double check/checking 

sharply [3] 

• Confirm with list [1] 

• P called error [1] 

 

Table 11  TBCA overview of sub-event: Participant uncertain/unsure 

There were situations where participants were unsure about the robot’s 

feedback and what that actually meant for them [3] (see Table 11). An 

overview of what the robot can say and what that explicitly means might be 

useful. When participants were unsure about a target they were trying to 

make sure [2] and double-checked [3]: 

 “I think at the bottle I wanted to make sure, because there was a lot of 

light, glare on the skull, it was definitely a skull I remember that, and 

there was a lot of light glare so I just wanted to make sure that it was 

definitely a skull.” (P16; Roy) 

 “There has not being an error at this point. Although, you certainly 

checking very sharply for it.” (P10; Parker) 

Mostly, if still unsure, they followed the robot’s decision [5]: 

 “There I see a little dot and I don't know what it is, because the light is 

in the way. [Hesitation sound], but I trust the robot would have picked 

up on something. So I didn’t say anything.” (P04; Roy) 
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 “Here I was a bit curious, cause even I couldn't see, I didn't think I could 

see that, so I guess the robot was right, he was like low visibility for 

sure.” (P16; Parker) 

 “Yeah I couldn't tell what it was. And the robot didn't think it was 

anything. So I kind of accepted it judgement at that point. […] And I 

couldn’t tell what it was and I was like, fair enough. He looks pretty 

competent.” (P03; Roy) 

At one instance a participant called an error: 

 “[…], it was particularly with bright objects [hesitation sound] this 

particular robot seemed more susceptible to where I couldn't quite 

distinguish it [target], so it was enough doubt there to highlight it [called 

error], I am not sure if it was [a target], it was definitely a bright object 

which seemed to be the problem.” (P10; Parker) 

Participants were more likely to trust the robots judgement when they were 

uncertain about a target. This could lead to over-trust in the robot. It could 

help to contribute to the human’s decision making process by providing a 

percentage of accuracy (how sure the robot identified/not identified a 

target). 

 Sub-event: 1st target found [23] 

Event Robot succeeded 

Theme Sub-event: 1st target found [23] 

Sub-theme Positive feedback 

[5] 

Improved feelings 

[9] 

Learning 

experience [9] 

Raw data 

theme 

• Good [4] 

• Useful [1] 

• More trust/R 

more competent 

[5] 
• More relaxed [3] 

• R works properly 

[1] 

• Voice [6] 

• Verify 

expectations [2] 
• Targets [1] 

 

Table 12 - TBCA overview of sub-event: Sub-event 1st target found 

The first target that the robot acquired in a trial, was quite interesting in 

terms of the feedback participants gave [23] (see Table 12). There was 

positive feedback how useful [1] and good [4] it is to know that the system 

works: 
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 “The robot did identify that, yeah that's right. That was useful for me, 

it's first time that it picked something up, […].” (P10; Roy); useful 

 “Yeah, I thought that was great, it is working properly. It has done it 

right.” (P18-Parker) 

 “When he saw the first one or he identified that it was quite a relief in 

some way, because I didn't know what was gonna happen, if that make 

sense. Obviously you expect everything, I had some expectation but I 

didn't know what voice would be there and the fact that it was quite clear 

and understandable and you know, [unclear]. It was a good relief.” (P01; 

Parker) 

When the first target was found participants learned (learning effect [9]) 

how the voice of the robot sounds like [6]: 

 “I was still wondering about things. Is possibly now it started, - saw 

something and it started to talk to me.” (P15; Roy) 

 “[…] I was confused there, because he said, target identified rather than 

evidence found, like the other one. I wasn't sure if that was a mistake 

or whether it was a different robot.” (P05; Roy) 

 “So here he found it, so here because I didn't expect the audio so I 

thought it was gonna say: target found. I didn't and I wasn't ready for 

it, let’s say, it said something: hazardous sign or something […]. (P23; 

Parker) 

These comments already implicate that there is a need for continuously 

visualising the status of the robot and giving a starting message, so that 

people can familiarise with the voice, the level of loudness, and know that 

the system works properly. Again, an overview of what the robot can say 

might be beneficial. 

 Event: Robot mistaken 

The following themes and sub-themes were recorded when the robot made 

a mistake. The main themes were general comments [43], sub-event: 

participants wait for robot [5], and sub-event: two mistakes in succession 

[14]. In this section only detailed analysis was done for the general 

comments [43] and the sub-event: two mistakes in succession [14]. That 
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participants had to wait for the robot was similar to the sub-event: 

participant waits for robot during the event: robot succeeded. 

 General comments [43] 

Event Robot mistaken 

Theme General comments [43] 

Sub-

theme 

General 

feedback [7] 

General 

feelings [16] 

Explanation of 

mistake [12] 

P uncertain/ 

unsure [5] 

Raw 

data 
theme 

• Obvious 

target [4] 
• that's not 

right [1] 

• not very well 

[1] 

• R was fast [1] 

• Less 

confidence 
[5] 

• More 

attention [2] 

• P 

pleased/happ
y spotting 

target [4] 

• Not happy [1] 

• Need a 
human [1] 

• Good to 

have (human) 

backup [1] 
• Humans 

winning 

against robots 

[1] 

• Happy about 
R error [1] 

• Because in 

LR phase [2] 
• Because 

unclear picture 

[2] 

• Because of 

difficult 
environment 

[2] 

• R needs to 

get close [2] 
• R needs to 

see whole 

triangle [1] 

• R just 
identifies 

shapes [2] 

• R in a small 

confined space 

[1] 

• Unsure about 

object [3] 
• P wants 

manual control 

[2] 

 

Table 13 - TBCA overview of sub-event: General comments 

General feedback [7] and General feelings [16] 

Some of the general feedback [7] showed disappointment or lack of 

understanding about the robots performance (see Table 13): 

 “[…] there were a couple of times when they couldn't see something, 

which was right in front of him.” (P03; Roy); that's not right 

 “Yes it missed that, it was funny because it did zoom on it and I thought: 

ok, it's like clear.” (P23; Roy); Obvious target 

 “And there it is very obviously there is a [unclear] of a man. And it just 

completely misses them. […]” (P03; Parker) ; Obvious target 

In terms of feelings [16] participants felt less confidence in the robot after 

a mistake [5]: 
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 “Yes that was a blank triangle, but it picked it up as a hazardous sign. 

[hesitation sound]. It wasn't. And just be a bit more suspicious again 

[…].” (P10; Parker) 

 “[…], I was probably more wary of it being wrong again, […].” (P18; Roy) 

 “It made me think it might be less reliable, […]” (P08; Roy) 

 “[…] where the second one, it missed, you lose confidence in it.” (P10; 

Roy) 

Participants also paid more attention after a mistake [2]: 

 “Okay. Bearing in mind that I thought it might had missed something, 

then, so I was probably still engaged, make sure and then relax a bit.” 

(P17; Parker) 

 “Yeah I was trying to stay focussed and I got it.” (P25; Parker) 

Interestingly four of the participants were pleased about the error, because 

they spotted the mistake  

 “So I was quite pleased there, I don't think that she [the robot] said 

anything in a while […]” (P16; Roy) 

 “I was quite like pleased […] this one was quite clear and I could see 

it.” (P25; Roy) 

Two participants pointed out, that their role is not redundant: 

 “[…] when it's looking at something that is behind something and 

then can't be absolutely sure, so that’s where you need a human to, 

- investigate that further.” P21; Roy; Need a human 

 “I think in this situation it is good to have a [human] backup.” P13; 

Roy; Good to have (human) backup 

Participant 16 even pointed out that they won against the robot: “I was 

quite pleased that I gained something above the robot, you know, humans 

winning or something.” (P16; Parker); Humans winning against robots 

Participant 21 was very enthusiastic to spot an error: “Error, here you go 

[happy voice] - Thank you.” (P21; Roy); Happy about R error 
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In general an error from the robot evoked negative feelings and led the 

participant to allocate more attention towards the robot and having less 

confidence in it. 

Explanation of mistake [12] 

Some of the participants tried to explain the mistake the robot made (see 

Table 13). It seemed some empathised with the robot. The explanations 

were low reliability phases [2] or a difficult environment [2]. 

 “[…] I guess here towards the end it was failing, but it did fail in the low 

visibility ones, so I can’t really blame it.” (P16; Roy); low reliability phase 

 “[…] so even I said that was an error I was waiting for him to correct 

himself but he didn’t at that occasion. Probably because it was hidden.” 

(P14; Parker); difficult environment 

 “[…] I only just caught the victim I think, it was quite, I think the victim 

was quite faint.” (P12; Parker); difficult environment 

Participants also assumed certain robot information processing procedures 

such as the robot needs to get close enough [2], the robot needs to see the 

whole triangle [hazard sign] [1], or the robot can just identify shapes [2]: 

 “[…] yes it is an error but probably just being programmed to identify 

the shape as opposed to having the information in it [symbol in the 

target/triangle].” (P18; Parker); R just identifies shapes 

 “The second one is (missed), is cause the bottom right corner is not very 

clear, I think. And he needs to see the whole triangle to spot it.” (P03; 

Roy); robot needs to see the whole triangle 

This suggests that if more information about the robot’s internal 

mechanisms would be available to participants (e.g. how the robot actually 

identifies the objects), a deeper understanding between robot and operator 

could be achieved and participants may be able to more accurately predict 

the robot’s actions. 
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 Two mistakes in succession [14] 

Event Robot mistaken 

Theme Sub-event: Two mistakes in succession 

Sub-theme General 

Raw data 

theme 

• General mentioning [8] 

• Paying more attention to R [3] 
• Less confidence/trust in R [2] 

• P questions its own performance [1] 

 

Table 14 - TBCA overview of sub-event: Sub event two mistakes in succession 

An overview of the raw data themes is provided in Table 14. Often, 

participants mentioned they noticed two mistakes in succession (8 times 

general mentioning). This also led participants to pay more attention 

towards the robot [3]: 

 “I was checking a bit more often because it just missed those two, 

[…]” (P17; Parker) 

And having less confidence in the robot [2]: 

 “Yeah, yeah towards the end I was definitely doubting the confidence, 

cause I had to say like three things in quick succession, […]” (P16; 

Roy) 

In case of participant six, two mistakes in succession were a total loss of 

trust in the robot: 

 “I think, in there sort of missing it, missing one before, as soon as he 

had seen it, one, had been messed up, that was it for me, I think.” 

(P06; Roy); Less confidence/trust in R. 

Interestingly one participant started even to question their own 

performance: 

 “[…] it to have missed two in quite quick succession and I only just 

caught the victim I think, it was quite, I think the victim was quite 

faint. l [hesitation sound], that’s engaged me more with it, now I am 

questioning whether or not I have missed anything in the past and I 

know that I need to concentrate just a little bit more within the 

future.” (P12; Parker) 
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Making two mistakes in a quick succession seemed to have a bigger impact 

on confidence in the robot than more timely spaced mistakes. 

 Event: Reliability indication 

This event consist of comments that were made by participants when the 

robot indicated high or low reliability. The reliability indication event was 

further categorised into general comments [14], comments from the low 

reliability phase [77], and from the high reliability phase [25]. 

 General comments [14] 

Event Reliability indication 

Theme General comments [14] 

Sub-

theme 

General feelings [2] General feedback 

[10] 

Misunderstanding 

[2] 

Raw data 

theme 

• more 

trust/confidence [1] 

• sympathetic 

towards robot [1] 

• No difference 

between 

reliability phases 

[5] 
• Reliability was 

how good P sees 

[2] 

• Reliability 

information was 
useful [2] 

• Where is the focus 

of low reliability? [2] 

 

Table 15 - TBCA overview of sub-event: General comments 

General feedback [10] 

In this section the general feedback comments are explained in detail (see 

also Table 15). In the general feedback it is noticeable that some 

participants mentioned, that they couldn’t recognise any differences 

between the reliability phases [5], but these comments were exclusively 

mentioned when supervising Roy. This might be down to the fewer amount 

of feedback which did not provide a reason about the source of the low 

reliability (e.g. heat). 

Reliability was perceived as good as the participant was able to see [2]: 

 “Yeah reliability was high, but here with the picture breaking up, I 

was looking at that a lot more focussed on it [robot].” (P10; Roy) 
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 “[…] but that was more to do with the area it was looking at, rather 

than the fact that it said like, identification was high. Yeah it had more 

to do with, what I see.” (P07; Roy) 

Also the comment “Visibility good enough for me” (P09; Roy) when the 

robot indicated low reliability, underlines the assumption that a lot of people 

project their own ability to perform, onto the reliability of the robot. 

 Low reliability phase (LR) [77] 

Event Reliability indication 

Theme Low reliability phase [77] 

Sub-

theme 

General 

feedback [21] 

General 

feelings [10] 

P actions [30] secondary 

task [16] 

Raw 

data 

theme 

• More 

information = 

good/more 
trust/useful/ 

accurate [5] 

• I don't need 

to know why 
[1] 

• Low reliability 

make sense in 

low light [2] 
• dark/light = 

anticipated 

low/high 

reliability [2] 

• Visibility good 
enough for me 

[1] 

• Other [10] 

• Sympathetic 

towards robot 

[6] 
• No complete 

trust = 

reliability 

change makes 
no difference  

[1] 

• Confident 

about 
themselves [1] 

• P could see = 

feel 

confident/reliab

ility good  [1] 
• Was heat the 

environment or 

robot? [1] 

• More 

attention/con

centration/ 
checking 

towards R 

[25] 

• Closer to 
screen [4] 

• R took more 

time to look [1] 

• Stop [8] 

• Less [5] 

• Wide space = 
playing [1] 

• Still playing 

[1] 

• made target 
out = 

secondary a bit 

more [1] 

 

Table 16 - TBCA overview of sub-event: Low reliability phase 

Table 16 shows the themes of the low reliability comments. Most 

participants were happy with the more information provided by Parker [5], 

one stated they do not need to know why. 

In terms of general feelings [10] participants also empathised with the robot 

[6]: 

 “[…] because it couldn't get close enough to the [point at target], 

because there was, I think it meant to be rubble, in the way.” (P18; 

Parker) 
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 “Yeah that was quite a difficult scene! To work out visually what was 

going on and through that grid.” (P06; Roy) 

 “Yeah that was really hard because it was all the grating and it was 

very difficult to see anyway what was happening, [hesitation sound]. 

I wasn't very helpful for the poor robot, […]” (P19; Roy). 

When participants encountered low reliability (LR) phases (P actions), 25 

stated to pay more attention to the robot: 

 “[LR] So here again full attention to the thing [robot].” (P16; Roy) 

And checking more vigilant 

 “Yeah, I felt I just had to be extra vigilant when the robot said, their 

likelihood of spotting a target was low […]” (P06; Parker) 

The secondary task statements [16] agree with the fact that people paid 

more attention to the robot in LR than in HR. During LR eight participants 

mentioned to stop the secondary task and five stated to do less secondary 

tasks. Other people continued the secondary task when they felt confident 

in the environment: 

 “Reliability is low again and I am playing on this [secondary task]. 

Because I, […], it was in quite of broad space.” (P07; Roy) Wide space 

= playing 

In general, the robot indication of low reliability phases made participants 

pay more attention towards the robot and in some cases participants 

empathised with the robot as to why a mistake happened. 
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 High reliability phase (HR) [25] 

Event Reliability indication 

Theme High reliability phase [25] 

Sub-

theme 

General feedback 

[3] 

General feelings 

[8] 

secondary task [14] 

Raw 

data 

theme 

• Good [1] 

• Image clear [1] 

• Still a lot to see 

[1] 

• more 

trust/confidence 

[4] 

• Relaxed [3] 
• Not more 

confident in R [1] 

• Do/do more/carry 

on [10] 

• Always flicking [1] 

• lot of stuff = 
secondary task, but 

checking [1] 

• Picture still 

flashing = keep 

looking at R [1] 
 

Table 17 - TBCA overview of sub-event: High reliability phase 

An overview of the themes is shown in Table 17. When the robot indicated 

high reliability the comments about general feelings [8] were mostly that 

people got relaxed [3] and had more confidence in the robot [4]. 

 “And then I did feel, when he said back to high reliability that I can 

relax a bit more […]” (P14; Roy); relaxed 

 “I was checking a bit more often because it just missed those two, 

but the high reliability thing I felt confident with.” (P17; Parker); 

more trust/confidence 

However, one participant stated that he/she was not more confident in the 

robot: 

 “[…] I wasn't that bothered whether is high or low. […] I probably 

think, when it does say high, I did do a little bit more on here 

[secondary task]. But it's not that I felt more confident in it or 

anything.” (P07; Roy) 

Ten participants commented that in HR phases they did more of the 

secondary task: 

 “[…]if it said it was picking stuff up, […], then I was probably more 

inclined to go for the secondary task at that point.” (P10; Roy) 

 “So I was clicking away [secondary task].” (P17; Roy). 
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Nevertheless on some occasions they did not commit to the secondary task 

more: 

 “It said high, but it was still flashing and like lots of things around, so 

I still kept looking, maybe there was something I could see.” (P25; 

Parker); Picture still flashing = keep looking at R 

 “Even when it said it was in a high identification area I never once 

solely looked at the secondary task. I was always flicking my head, 

my eyes between the two (screens) Even though I knew that it was 

very reliable, […].” (P08; Parker); Always flicking 

 “[…] it’s a balance, so he says it's a high reliability but there is a lot 

of things to look at, […] I am going about the same pace at the 

secondary task and checking [robot].” (P14; Roy); lot of stuff = 

secondary task, but checking 

High reliability indication led people to be more relaxed and allocate more 

time towards the secondary task. This agrees with the time participants 

allocated towards the robot in low and high reliability phases (see Figure 

69, p.142). 

 Retrospective verbal protocol conclusions 

Due to the huge amount of data collected, a summary of the results from 

the retrospective verbal protocol is given in Table 18. Results are shown by 

a bulleted list and conclusions are marked in bold. 

Event Summarised results and Conclusion 

Robot 

succeeded 

 One of the biggest issue was that participants had to wait for 

the robot to identify a target. This cost a lot of allocation time 
and it also annoyed participants; later on some already 

anticipated the delay and because of this delay participants 

also declared errors. 

These comments indicate that there is a need to visualise 

the process of identification of the robot. This could be done 
using a visual overlay and a loading bar as well as by 

providing information if the robot tries to get another 

angle/view upon the target. It would also be useful if the 

operator (if he or she has already identified it) can abort the 
identification and declare that it is a target/no target. 

 If the robot performed better than the participant (e.g. 

identified the target first) then the feedback from participants 

was mostly neutral or positive. 
 When the robot found a target in a low-reliability phase, people 

were impressed. 
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This underlines that a good performance under difficult 

circumstances is valued by the operator. 

 In general, the robot’s success resulted in positive feedback. 
 The robot’s success led to participants being more confident in 

the robot and having more positive feelings towards the robot. 

As expected a robot’s successful action gained positive 

comments from the participants and overall contributed to 
more trust in the robot. 

 Participants’ comments indicated that they were doing the 

secondary task more, started it or carried on with it. 

 Participants identified a target before the robot and they used 
the time until the robot said something to do the secondary 

task. 

 When participants were unsure about a target they were trying 

to make sure and double-checked (e.g. using manual mode or 
look more carefully). 

 If participants were unsure they followed the robot’s decision 

(only one participant declared an error). 

An overview of what the robot can say and what that 

explicitly means might be useful. 
Participants were more likely to trust the robot’s judgement 

when they were uncertain about a target. This could lead to 

over-trust in the robot. The human’s decision making 

process could be aided by providing a percentage of 
accuracy (how confident the robot identified/not identified 

a target). 

1st target 

found 

 The event gave participants the impression the system works. 

 Hearing the voice for the first time was important for some 

participants. 

These comments indicate that there is a need for 
continuously visualising the status of the robot and giving a 

starting message, so that people can familiarise themselves 

with the robot’s voice and the level of loudness. Again, an 

overview of what the robot can say might be beneficial. 

Robot 

mistaken 

 Some of the comments showed disappointment or lack of 

understanding about the robot’s performance. 

 In terms of feelings, participants felt less confidence in the 
robot after a mistake. 

 Participants also paid more attention towards the robot after a 

mistake. 

In general an error from the robot evoked negative feelings 
and led the participant to allocate more attention towards 

the robot and it also led to reduced confidence in the robot. 

 Some of the participants tried to explain the mistake by saying 

the robot was in a low reliability phase or a difficult 
environment. It seemed they empathised with the robot. 

 Participants also assumed certain robot information processing 

procedures. 

It can be assumed that if information about robot 

procedures was available to the participants, (e.g. how the 
robot actually identifies the objects) a deeper 

understanding between robot and operator could be 

achieved. 

 Participants often mentioned when they noticed two mistakes 
in succession. This also led participants to more attention 

towards the robot. 
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Making two mistakes in quick succession seemed to have a 

bigger impact on confidence in the robot than mistakes 

occurring over a longer time. 

Reliability 

indication 

 Some participants mentioned that they could not recognise any 

differences between the reliability phases (Roy only). This 
might be down to the lesser feedback which did not provide a 

reason about the source of the low reliability (e.g. heat). 

 Robot reliability was perceived as good as the participant could 

see in the remote environment. 
A lot of people projected their own ability to perform onto 

the reliability of the robot. 

 In low-reliability, participants were happy with the greater 

amount of information provided by Parker and they empathised 
with the robots. 

 If low reliability was indicated, participants paid more attention 

to the robot. 

In general, feedback indicating low reliability made people 

pay more attention towards the robot. 
 When the robot indicated high reliability, the feedback was 

mostly that people were relaxed and had more confidence in 

the robot again. 

 Some participants commented that in high reliability phases 
they did more of the secondary task. 

High reliability indication led people to be more relaxed and 

allocate more time towards the secondary task. 

Attention 

allocation 

 They mostly switched from the robot to the secondary task 

when they could see a clear and wide area in front or when the 

robot was advancing towards an obvious point. 
 The more familiar and experienced participants felt with the 

robot, the more they switched to the secondary task. 

 As soon as some participants identified a target (before the 

robot) they did the secondary task and at the same time waited 

for the robot to identify/not identify the target. 
Generally, participants switched to the secondary task when 

the picture was clear and not cluttered. Experience with the 

task led to more secondary task performance. 

 The most stated reason for switching back towards the robot 
were cluttered and complex environments or when the robot 

turned towards a new area. 

 Bad picture quality also led to participants switching back to 

the robot. 
 When the robot slowed down, stopped or behaved 

uncharacteristically, participants allocated their attention to it. 

It can be assumed that the robot movement had a huge 

influence on visual attention allocation, indicating not only 
what the robot sees, but also how fast or slow it moves. As 

expected, busy or cluttered environments with potential 

targets and bad picture quality led participants to watch the 

robot more. 

The main reasons for not switching were when people felt 
unfamiliar with the task, when there was bad picture 

quality, less trust in the robot or they forgot about the 

secondary task. 

Robot/ 

Interface 

character-
istics 

 The additional feedback from Parker was positive 

 Further, the robot had a good distance to objects, good 

speed and an understandable/comprehensible search 
strategy. 
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 Participants asked about physical dimensions of robot 

 The robot’s process of identifying a target was questioned in 

many different ways by participants 
It seems that a more detailed explanation of the robot’s 

victim identification process is necessary. This missing 

information could be provided during training: a 

representation of the decision making of the robot and the 
mechanism of identifying targets (iteration of planes, 

points, heat pattern, etc.) could be beneficial.  

 Three participants commented on having no feedback at the 

beginning. 
It is important to continuously provide the status of the 

robot and give a starting message, so that people hear the 

robot’s voice and know the robot works properly. In 

addition, the robot motor sound could positively contribute 
to the overall understanding of the robot’s state. For 

instance when we are driving a car uphill the motor needs 

more power and will sound differently, the same could be 

applied to the robot; if the robot drives over rubble (not 

obviously visible for the operator) and is therefore 
uncharacteristic slow, the operator can hear that it might be 

due to the surface. 

 In some cases the robot was too fast for the participants. 

Even though the robot might be autonomous it should be 
possible to slow it down to be adaptable to different skilled 

operators. 

 Ideas from participants: 

o Participants wanted feedback if there was no target, 
a command to go back/check again and an 

explanation of what the robot was actually telling the 

operator. 

o Regarding the camera and movement participants 

wished that they were provided with a surround view 
of the area when entering a new section. 

o Other ideas included adjusting the robot’s speed to 

the operator’s skills. 

o With respect to the screen/display participants were 
not sure whether they were still in low or high 

reliability phases therefore it would be useful to have 

visible feedback of reliability feedback. 

o Show reliability bars on screen constantly (e.g. light, 
heat, accessibility and overall reliability) in terms of 

percentages. 

o Top view diagram of robot indicating faults. 

Recapping these ideas the movement of the robot should be 
adjustable by the operator. If the robot turns towards new 

areas a surround view is given to the operator. The 

reliability (low or high) should be visualised on the screen, 

as well as the light levels, heat levels and accessibility 

levels. The idea offered was a bar in percent. Furthermore if 
the robot identifies a target it can also provide a percentage 

of how sure it is about the identification. If there is no target 

the robot will indicate that, too. Another feature could be a 

top view of the robot indicating any faults. 
 

Table 18 - Retrospective verbal protocol implications and conclusion 
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The following points were addressed on the subsequent studies (Study III 

and/or Study IV): 

 The status of the robot is visualised constantly (study III: 

auto/manual mode; study IV: reliability level, status icon, battery 

percentage, signal percentage). 

 Although no starting message was provided, participants had an 

intensive but short training at the beginning of the experiments. This 

included adjusting the loudness of the robot, be presented with all 

possible messages the robot is able to provide, how the robot 

navigates through the environment, and how the robot identifies 

targets. 

 Providing the robot motor and environmental sounds to provide a 

richer picture of the remote environment. 

 In study IV: When the robot entered a new area it provided a look 

around the area and indicated if it would get another angle to better 

identify an object. 

 Interview analysis 

At the end of the two trials a semi-structured interview was conducted with 

each participant. The answers to each of the four questions were 

categorised into the possible answer themes (e.g. yes/no/undecided). Each 

participant could only be in one of these categories. By using the Chi-Square 

Goodness-of-Fit test the significance of the differences of the number of 

participants in a certain category were tested. The percentage was 

calculated from 23 participants who successfully completed the experiment. 

Each question shows the percentage of people in each of the specific 

categories. After that, the content of the answers was analysed using the 

theme based content analysis method (Neale & Nichols, 2001). Content 

themes (marked in italic) and their supporting quotes will illustrate the 

answers given by the participants. The number of occurrences of each sub-

theme is shown with a number in square brackets (e.g. [5]). 
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 Question 1 

The first question asked if participants noticed the different amount of 

feedback given by the robots. Both robots had the same type of voice, but 

gave different amounts of feedback. 

 

 

Figure 70 shows how many of the participants realised that the robots gave 

different depths of detail in their feedback. Significantly more participants 

(78%) were aware of the difference than not (X2(1, N = 23) = 7.35, p < 

.05, w = .57). 

Content themes 

Content themes Count 

Feedback difference realised 18 

Focussed on other differences 2 

No difference realised 1 

Not listening 2 

 

Table 19 - TCBA content theme overview of question 1 

An overview of the content themes can be seen in Table 19. Some 

participants did not realise there was a difference between the robots, 

because they were not listening what the robot was saying [2]: 

 “The voice were the same for me.” (P01) 

 “I suppose I didn’t take any notice of the first voice either, so.” (P14) 

Yes

78%

No

22%

Q1: Did the participant notice the different 

amount of feedback?

Figure 70 – Did participants realise a difference between the robots? 
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It seemed that participants who did not realise that there was a difference 

in feedback were focussing on other traits of the robot [2]: 

 “[..] both seem to take about the same amount of time to identify 

[…] seem to take similar speed […] one of them was lower to the 

ground?” (P02) 

 “[…] maybe one had wheels and [the other] tracks […] one didn’t 

seem to react so good […] they both highlighted the same things […]” 

(P21) 

 Question 2 

The second question asked participants which robot they preferred. 

Significantly more participants preferred Parker (65%) compared to Roy 

(22%) (X2(1, N = 20) = 5, p < .05, w = .5). 13% of the participants were 

undecided (see Figure 71). 

 

 

All participants with no preference also did not realise there was a difference 

between the amounts of feedback the robots gave. 

  

Parker

65%

Roy

22%

No 

preference

13%

Q2: Did you prefer one of the robots?

Figure 71 – Which robot is preferred over the other? 
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Content themes 

Table 20 provides an overview of the emerged content themes. 

Content themes Count 

Preferred Roy 5 

Preferred Parker 15 

Preferred Parker, because of additional information 8 

No preference 3 

Familiarity had impact on preference 2 

 

Table 20 - TCBA content theme overview of question 2 

Some of the reasons why people chose Roy were as follows [5]: 

 “The first one [Roy] even though I wanted to speak more. But not 

speak like the second one.” (P07) 

 “[Roy] was more consistent for longer.” (P16) 

 “[…] but then if you have only got a limited amount of time to do your 

rescuing, […] I would go for the second one [Roy], just because it is 

faster.” (P18). 

Participants who preferred Parker appeared to favour Parker due to the 

additional information provided [8]: 

 “[…] first one [Parker], there was more information about what the 

fault was than the second one [Roy].” (P02) 

 “[Parker], because of the more information it gave. More confidence 

in that.” (P05) 

 “Because it gave me more detailed information. But I didn't think it 

was any more reliable.” (P06) 

 “It kept the signs clearer what he was finding and giving me a lot 

more information. […] And If I had another task to do, then I could 

rely on this [information] a little bit more.” (P13) 

There also seemed to be a learning effect which might have biased their 

preference [2]: 

 “The second one [Roy], […] because I felt more comfortable, maybe 

that was more to with me feeling more familiar with the system and 

what I was doing, then the robot and stuff.” (P14) 
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 “I would say second one [Parker] but that might be only because I 

already knew what I was doing.” (P25). 

 Question 3 

Regarding the third question about which asked participants which robot 

they would trust more (see Figure 72), most of the participants were 

undecided (48%). 39% would trust Parker more and 13% would trust Roy 

more. However, these differences were not significant (X2(2, N = 23) = 

4.52, p > .05). 

 

 

Content themes 

Content themes Count 

General performance 4 

Reliability 3 

Consistency 1 

Effectiveness 1 

 

Table 21 - TCBA content theme overview of question 3 

Participants associated trust with certain general performance related robot 

traits [4]. Further, participant mentioned that reliability [3], consistency 

[1], and effectiveness [1] were the main attributes of the robot they 

associated with trust (see Table 21): 

Parker

39%

Roy

13%

Undecided

48%

Q3: Which robot would you trust 

more?

Figure 72 – Which robot would you trust more? 
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Performance in general [4]: 

 “I thought the first one [Parker] performed better.” (P01) 

  “I think they are both fairly equally trustworthy as to the information 

they can detect.” (P15) 

Reliability [3]: 

 “[…] I think that the reliability was comparable, […].” (P19) 

 “Probably the first one (Parker), because it seemed to do a more 

thorough job of looking around everything, even though they were 

both equally reliable.” (P18) 

Consistency [1]: 

 “[…] the second robot [Parker] seemed much worse in the conditions 

where it was too crowded. Whereas, that was consistent, whereas 

with the other robot [Roy] it didn't seem to had a consistent pattern 

of where would it recognise things […].” (P19) 

Effectiveness [1]: 

 “I don't think I trust any different, because they both missed 

something […]. I am not sure which one was the most effective. […]. 

I didn't feel I put more trust in it because it was giving me more 

information. But it [Parker] helped me to do my part of the job more 

effectively.” (P17) 

 Question 4 

The final question asked which robot was more intelligent (see Figure 73). 
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More preferred Parker (26%) over Roy (17%) and 57% were undecided. 

However, the differences were not significant (X2(2, N = 23) = 5.83, p = 

.054). 

Content themes 

Content themes Count 

Performance 10 

more engaging robot 1 

More information 4 

 

Table 22 - TCBA content theme overview of question 4 

The Table 22 shows what participants associated with intelligence. 

Intelligence appeared to be associated mostly with performance [10] but 

also with the additional information provided by the robot [4]: 

Performance [10] 

 “But from judging what they did recognise [targets], they seemed 

even.” (P05) 

 “You got hunches to say the second, just because the shear amount 

of feedback, but I think […] the first one [Roy] definitely seem to 

have less errors and therefore would be more intelligent.” (P10) 

 “Both are just as intelligent. […] They found the targets for the same 

success rate and they assessed the risks and did that with the same 

Parker

26%

Roy

17%

Undecided

57%

Q4: Do you think one of the robots 

was more intelligent?

Figure 73 – Which robot is more intelligent? 
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level of competence, […] I don’t think that is intelligence, - that is 

computation.” (P20) 

Additional feedback given [4]: 

 “Possibly the second one [Parker] because it had the ability to reason, 

to know why things were going on, I would say that made it more 

complex.” (P08) 

 “I have to say the second, only because it gave me more information 

but that might not be true at all.” (P13) 

 “[Parker] was more intelligent, […], it was able to give you the 

information as to what was malfunctioning.” (P15) 

5.5 Discussion 

This study aimed to investigate the influence of the amount of feedback 

provided by a robot on workload, performance, perceived robot 

characteristics, visual attention allocation and trust. The two robots used in 

this study were named Parker and Roy. Both gave reliability feedback as to 

how reliable they are at the given moment. Parker gave more detailed 

feedback (explaining the reason for low reliability, stating the cause of 

faults, and identifying the type of target found) than Roy. 

 The influence of additional robot feedback 

Relating back to the research questions the following results were obtained. 

H1) The amount of explanation given by the robot will affect an operator’s 

cognitive workload. 

The amount of explanation from the robot did not significantly affect the 

reported subjective cognitive workload. Desai’s (2012) experiments showed 

that the introduction of reliability feedback itself produced significantly 

higher workload. In this study Roy and Parker both indicated reliability 

feedback but Parker gave a more detailed explanation as to why the 

reliability was low. This additional information did not influence subjective 

workload ratings significantly. This suggests that reliability feedback 

produces higher workload ratings (Desai, 2012), but additional explanation 

does not increase workload significantly further. 
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H2) The amount of explanation given by the robot will affect task 

performance. 

The amount of information provided by the robot did not significantly 

influence task performance scores. However, further data analysis revealed 

a significant learning effect between the first and second task performed. 

Therefore, the learning effect could have blurred the results. 

H3) The amount of explanation given by the robot will affect an operator’s 

perceived characteristics of the robot. 

The intelligence ratings showed no significant difference between Parker and 

Roy. However, the competence rating differed significantly: Parker was 

rated more competent than Roy. 

H4) The amount of explanation given by the robot will affect the trust an 

operator has in the robot. 

Overall, the depth of explanation provided by the robot had no influence on 

the trust participants had in the robot. Yet significantly more participants 

would prefer to use Parker instead of Roy and most of the participants were 

undecided which of the two robots they would trust more. Parker’s 

communication was rated as being significantly clearer than Roy’s 

communication and Parker was seen as more competent and malfunctioning 

less than Roy. It seems that providing more information and the reason for 

the state of the robot can make robots appear more competent. 

H5) The indication of reliability will affect an operator’s attention 

allocation. 

The indication of reliability influenced the visual attention allocation 

significantly. Participants supervised the robot more when it was in a low 

reliability phase. This is in agreement with Chien and Lewis (2012) as well 

as Desai et al. (2013), who found that participants switched control modes 

when the reliability of the robot dropped and the indication of the robot’s 

reliability improved the efficiency of the human-robot interaction. 

Participants in this study rated that the human-robot team accomplished 
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the task significantly more efficiently with Parker, who provided more 

information. 

 Combined discussion 

A visualisation of the results is given in Figure 74. The additional explanatory 

feedback had influence only on items of perceived robot perception and 

communication. A robot with additional feedback was also not perceived as 

more trustworthy. 

 

Figure 74 - Qualitative overview of research results of study II; positive influences are 

indicated with (+), negative influences indicated with (-) 

Workload, trial performance and rated robot task contribution was not 

affected by the additional information given. Therefore other factors have 

greater influence on these variables. The main influencing factor in human-

robot interaction, which is robot reliability, was kept constant. But the 

indication of reliability by the robot, with and without explanatory feedback, 

contributed to a better visual attention allocation of the participants. 

 Qualitative data analysis 

The retrospective verbal protocol provided a large amount of data regarding 

the human-robot interaction. This method had not been previously used in 

conjunction with autonomous remotely operating robots. It needs to be 
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considered that this is a purely qualitative analysis which is naturally biased 

by the interpretation of the researcher. The study revealed the impact of 

different aspects of robot features and behaviour, such as illustrating the 

importance of visual cues about robot running processes and the influence 

of robot speed/movement on human attention. In general, the data 

suggests that a higher degree of robot transparency is necessary for the 

operator in order to understand the robot’s actions. 

Participants favoured Parker (65%) due to the additional information 

provided. Associated attributes of the robots regarding trust were 

performance, reliability and consistency. The result is in accordance with 

other researchers who investigated trust factors in human-robot teams 

(Hancock, Billings, Schaefer, et al., 2011; Park, Jenkins, & Jiang, 2008). 

Interestingly, also robot intelligence was associated with performance and 

with the additional information provided by the robot. 

 Limitations and future work 

It has to be acknowledged that the participant sample was not 

representative of actual search and rescue workers. Rescue personnel might 

have different approaches to tasks and a different self-confidence level in 

performing them, which can have a different influence on trust and 

workload. Future studies, if possible, should incorporate rescuers in their 

studies. 

Even though the participants had five minutes of training (and more if 

requested), the learning effect between the first and second task was 

significant. Therefore the learning effect could have influenced the 

significance levels of the other dependent variables. In addition, the sample 

size was relatively small and might not be sufficient for a generalisation of 

these findings. However, the qualitative analysis provided rich information 

about participants’ strategies and feelings when dealing with a robot. 

Trust was measured with a single rated question and was further asked 

about in the semi-structured interview. This was done due to the time 

limitations between the end of the trials and the beginning of the RVP. A 

more detailed questionnaire about trust that is quantifiable will be used in 
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subsequent studies. By doing so it might be possible to identify sources of 

distrust and change the robot’s interface design and behaviour accordingly. 

Furthermore there were not many significant differences which could be an 

indicator that the independent variable of this experiment was not strong 

enough to elicit major differences in the perception of the robot. Since both 

robots had the same performance, which is the most influencing factor on 

trust (Hancock, Billings, Schaefer, et al., 2011), the additional information 

(explaining, providing a reason) given by the robot might just have had a 

small influence on the overall construct of trust. In addition, sometimes 

participants did not observe an error and the robot had a higher perceived 

performance than intended by the researcher. This issue will be addressed 

in the subsequent studies. 

A variety of recommendations about robot characteristics and robot 

behaviour emerged from the quantitative data. Future studies can use these 

recommendations to develop and test new interfaces and robot designs. 

Furthermore it would be useful to investigate the factors affecting the 

perception of performance and how these affect the trust between the 

human and the robot. 

The harsh search and rescue environment must not be neglected. Collecting 

more information about the working conditions and possible target groups 

(users) in the U.K. would aid the design process. For example, by developing 

guidelines for the design of robot interfaces with the aid of focus groups 

consisting of subject matter experts. 

5.6 Conclusion 

Reconnaissance robots in search and rescue missions can make rescuers’ 

work safer and allow them to search areas that are too dangerous or 

inaccessible for humans to investigate. This experiment aimed to 

investigate the thoughts, attitudes and behaviours of robot operators when 

interacting with an autonomous reconnaissance robot. The study showed 

that robot transparency is of importance for the operator to understand the 

robots’ states and actions. 



177 
  

Trust in the robot is mainly influenced by the performance shaping 

attributes of the robot, which is in accordance with previous research. Both 

robots had the same performance levels which might have been the reason 

why trust did not change across experimental conditions. 

Both of the tested robots, Roy and Parker, indicated their reliability level 

during the trials. Parker gave additional feedback as to why the current 

reliability level was low. The robots’ indication of reliability levels positively 

influenced the visual attention allocation (whether to supervise the robot or 

attend to the secondary task). In low reliability phases, participants watched 

the robot more thoroughly and in high reliability phases they relaxed and 

scored more on the secondary task. 

In general it might be useful to provide participants with additional 

explanations of the robot states. Although the additional feedback from 

Parker did not increase performance or trust levels, the perceived workload 

of participants did not increase either. Parker was significantly favoured 

over Roy and was perceived as malfunctioning less, communicating more 

clearly and being more competent. However, these findings were obtained 

in a constant task without varying the task complexity or task difficulty. 

Different task complexity levels are very likely encountered in the search 

and rescue domain and might interact with workload and performance 

measures. 

In conclusion, reliability indication can more accurately inform participant’s 

appropriate visual attention allocation and providing additional explanatory 

feedback can enhance the quality of communication between the operator 

and the robot without risking higher levels of workload. Nevertheless, the 

most influencing factor regarding trust is the robot’s performance. If 

performance is kept constant it is likely that trust levels will not change 

significantly. 

5.7 Chapter summary 

The chapter tested the influence of different amounts of robot feedback, in 

addition to reliability feedback, on trust, workload, and performance. This 

chapter showed that there was no influence on trust, workload, or 



178 
 

performance, which could have been occurred due to a flaw in the study 

design. However, the study suggests that reliability indication is a valid 

method to support better control allocation strategies of operators. 

Furthermore, a variety of qualitative data and their implications for robot 

design and behaviour was collected. 
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6 Study III - The  influence  of  robot  

reliability  and  task  complexity 

 

6.1 Chapter overview 

The chapter presents a virtual search and rescue scenario with a semi-

autonomous robot system which examines the influence of robot reliability 

and task complexity on workload, performance, and trust. A post-task 

questionnaire collects data about trust, subjective workload, robot 

characteristics, and participant’s experiences. This study also informs about 

possible measurements of performance in semi-autonomous robot systems. 

In addition, two trust questionnaires and their correlations are compared 

with each other and recommendations about their application are provided. 

6.2 Introduction 

Search and rescue tasks are complex by nature, primarily due to their safety 

and time-critical characteristics within dynamic and unpredictable 

environments (Wegner & Anderson, 2004). Therefore it is important to 

investigate how task complexity influences trust, workload, manual mode 

usage, participant’s perceptions, and overall human-robot team 

performance. 

The literature has repeatedly shown that the higher the reliability of the 

robot, the higher are the levels of trust of operators in the robot (Chen & 

Terrence, 2009; Chien & Lewis, 2012; de Visser & Parasuraman, 2011; 

Desai et al., 2012; Robinette et al., 2015). In the previous study (Chapter 

5) the reliability of the robots was constant. This chapter examines how 

failures of autonomy (reliability) influence trust and if this interacts with 

task complexity. This short literature review starts with discussing robot 

reliability in terms of effects of errors and their influence on trust. Next, task 

complexity factors are reviewed. 

There are different effects that reliability (errors made by the robot) can 

have on trust. First, the initial impression matters: Fallon et al. (2005) and 
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Freedy & DeVisser (2007) found that initial system errors produced lower 

levels of overall trust than highly reliable first encounters. Desai et al. 

(2013) found by using a remote controlled robot in a search scenario that 

early errors of the robot had a more negative impact on trust than later 

occurring errors. Therefore, not only does the general level of reliability 

have an influence on trust and control allocation (participants allocation of 

control to the robot or themselves), so does the timing of the errors (Desai 

et al., 2012). Additionally, Desai et al. (2013) found that trust after an error 

recovers slower than trust would develop without an error. Furthermore 

they suggest that early reliability drops might confuse participants and lead 

them to poor control allocation. The use of automation is also influenced by 

a positivity bias of novice users (Desai et al., 2012; Dzindolet et al., 2003). 

Novice users are more willing to trust automation initially (Robinette et al., 

2015). 

Second, predictable errors are trustworthy: Freedy & DeVisser (2007) found 

that trust is not only concerned with the expectation of “correct 

performance” but also with the expectation of “level of performance”. For 

example, if the user knows that at a certain stage the robot will fail to 

perform, he or she "trusts" the robot to fail and overall trust remains even 

if errors occur. Nevertheless, in situations where users could not "trust" the 

robot to fail in a distinct situation, overall trust decreased over time (Freedy 

& de Visser, 2007). Therefore it might be the case that the robot’s correct 

performance is not always the most influencing factor on trust, the 

predictability and consistent behaviour may be more important. 

However, there can also be a discrepancy between intended robot reliability 

and the perception of the operator. In multi-robot control where a human 

has to supervise and control more than one robot, there is a need for 

automated aids in order to shift the operators attention between the robots 

in an effective and efficient manner (de Visser & Parasuraman, 2011). In 

the Chien and Lewis work (2012) system alarms (robot requests for 

assistance) directed the operator’s attention where needed. They 

introduced misses and false alarms of the robots. Results showed that there 

was no difference in trust because it was difficult for operators to 

discriminate between low and high reliability as well as spotting failures that 



181 

  

did not alarm them. Notably, in high reliability conditions participants 

focussed their attention on dealing with the robot’s help requests rather 

than with the task of finding victims, which increased the rate of unmarked 

victims (errors). 

However, still some literature reports that there is a discrepancy between 

the reported trust towards the robot and the actual use of the autonomy 

features of the robot. Participants sometimes used the robots features 

although they reported not trusting them (e.g. Robinette et al., 2015). 

A recent study from Kaniarasu and Steinfeld (2014) investigated the effects 

of error attribution or better known as blame. In their study the robot 

assigned blame either to the user, to itself or to the team. Participants did 

not rate differently in real-time or post task trust questionnaires. When they 

ranked the robots, which one they trust most, there was no clear majority. 

In general blame attribution by the robot lowers the trust in the robot. 

Furthermore some participants did not trust the self-blame robot, which 

must be like a co-worker who always points out their negative performance, 

because this co-worker is likely to be seen negatively (Kaniarasu & 

Steinfeld, 2014). 

Summarising the previous points made, a robot’s initial performance is vital 

for continued trust (Robinette et al., 2015). Poor initial performance has a 

strong negative impact on a person’s trust in the robot. Furthermore, 

operators’ expectations have to be adjusted appropriately for the system to 

be used. 

The other variable that is tested in this study is task complexity. Search and 

Rescue tasks are complex by nature, primarily due to their safety and time-

critical characteristics within dynamic and unpredictable environments 

(Wegner & Anderson, 2004). Therefore, it is important to investigate how 

task complexity influences trust, workload, manual mode usage, 

participant’s perceptions, and overall human-robot team performance. 

The previous studies (Chapter 4 and Chapter 5) of this thesis emphasised 

that task complexity is an important factors in USAR. For example, Desai 

(2012) examined the influence of task difficulty on mode switching 
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behaviour and trust in human-robot teams. Even though task complexity 

and task difficulty are similar concepts but they are not the same. Different 

and contradicting concepts/definitions of task complexity and task difficulty 

exist in the literature (Bedny, Karwowski, & Bedny, 2012; Braarud & Kirwan, 

2011; Campbell, 1988; Hendy, Liao, & Milgram, 1997). According to Liu and 

Li (2012) task complexity refers to objective characteristics of the task and 

task difficulty focusses on the perception of the difficulty of the task by the 

performer. A difficult task does not need to be complex but it is likely that 

a more complex task is more difficult (Braarud & Kirwan, 2011). Therefore 

task complexity in the present study is defined as follows: 

“Task complexity is the aggregation of any intrinsic task characteristic that 

influences the performance of a task.” (P. Liu & Li, 2012, p. 559) 

As mentioned earlier, Desai (2012) investigated the influence of task 

difficulty on mode switching behaviour and trust. Desai (2012) used a real-

world robot system and asked participants to drive around boxes in a 

corridor. Compared to his base-line experiment he increased the width 

between boxes to present an easier task. The easier task did not influence 

trust ratings or workload ratings but as expected the overall performance 

and the participant’s self-performance ratings were better. According to the 

task complexity definition above Desai (2012) in fact did change task 

complexity in order to influence the difficulty of the task. However, Desai 

(2012) only made obstacles smaller so it is easier to navigate the robot. 

USAR missions require not only navigation but also searching the scene for 

targets. 

USAR missions are immensely complex that there are a variety of task 

factors contributing to task complexity and eventually to task difficulty. 

Therefore this experiment examined complexity levels that are relevant and 

most likely to occur during USAR missions. 

Liu and Li (2012) developed a task model (see Figure 75) with five 

components that influence task complexity. Each task component has 

complexity contributing factors. To vary task complexity across objective 

task characteristics in the present study two of five task components of this 

model varied across experimental conditions. The selection of the factors is 
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based on the knowledge gathered in study I (Chapter 4) and the literature 

review (Chapter 2). Process and presentation were kept constant, because 

rescuers are highly trained in their relevant working steps (see Chapter 4). 

Furthermore participants received training with the robot and the interface 

until they felt comfortable to do so. In addition, time constraints were not 

changed across complexity levels. Higher complex tasks needed to be 

performed within the same timeframe as less complex tasks. 

Each mission is different and goals will change accordingly (Wegner & 

Anderson, 2004). Therefore, Goal/Output was changed in clarity, quantity, 

and redundancy. Participants had to search for more different targets, some 

target information was ambiguous or redundant. The input was changed in 

clarity, quantity, and diversity. The environment, which represents the main 

input of the task, was more or less cluttered and the quantity as well as the 

diversity of objects cluttering the environment changed. These two task 

components were chosen because they are most challenging in remote 

rescue operations: diversity of the hostile environments and the hard to see 

or unrecognisable targets. 
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Figure 75 - Task-component-factor-dimension framework (P. Liu & Li, 2012) 
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In addition to task complexity, the robot’s reliability was varied across 

conditions. This aimed to investigate the interaction effects between task 

complexity and robot reliability. A robot’s performance is claimed to be the 

most influencing factor on trust (de Visser & Parasuraman, 2011; Oleson et 

al., 2011; Robinette et al., 2015) and is very likely to vary among new 

technologies (that have mostly not been tested in the field), such as search 

and rescue robots, because these robots will encounter numerous 

unexpected situations that will be unique and extreme. Subjective workload 

data was collected because it is an important factor in the USAR domain: 

operators are working under high levels of stress and time pressure and 

have high workload levels. A reduction in workload can result in higher 

performance levels. In addition, information about participant’s personality 

traits was collected. According to a meta-analysis from Hancock et al. 

(2011) personality traits are also likely to influence trust ratings. It is novel 

to test personality traits together with task complexity levels with respect 

to remote controlled semi-autonomous rescue robots. 

Hypotheses: 

Task complexity is changing during an USAR mission. Task complexity 

influences self-performance ratings and easy tasks foster a better control 

allocation strategy (whether to use manual or auto mode) (Desai, 2012). 

However, previous research did not often vary task complexity (Cesa, 

Farinelli, & Iocchi, 2008; Doroodgar, Ficocelli, Mobedi, & Nejat, 2010; 

Larochelle & Kruijff, 2012), or only one aspect of complexity (Desai.2012). 

This study changed several aspects of task complexity that are relevant to 

USAR missions. If it is possible to understand the influence of task 

complexity, different sets of robot behaviours in different task complexity 

levels, might be able to mediate control allocation strategy, performance, 

workload, trust, and self-confidence. Furthermore, this study will 

investigate if the robot reliability level will interact with task complexity 

regarding trust. For example, a bad performing robot in a less complex task 

might not influence performance or workload, but an unreliable robot in a 

very complex task might. 
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This experiment evaluated the influence of task complexity and robot 

reliability, which establishes the first five hypotheses: 

H1) Task complexity will positively influence trust, subjective workload 

ratings, manual mode usage, and trial times. Task complexity will 

negatively influence performance measures. 

H2) Robot reliability will positively influence trust, performances 

measures, trial times, and negatively influence subjective workload 

ratings and manual mode usage. 

It is suggested that lower robot reliability levels will elicit lower levels of 

trust and performance, as well as increase the subjective workload. Also, 

low robot reliability will increase the manual mode usage and trial times as 

found in previous literature (Desai, 2012). 

Further, it will be investigated if the magnitude of the effect of robot 

reliability is higher than the one of task complexity. Also, the possible effects 

of robot reliability can be compared to other studies, which used real robot 

systems (real-world approaches) to see whether virtual reality approaches 

produce similar results or differ. 

H3) Task complexity will positively influence rated robot performance and 

negatively influence rated self-performance. 

Previous literature showed that higher task complexity reduced the rated 

self-performance (Desai, 2012). 

H4) Robot reliability will influence rated robot performance and rated self-

performance. 

H5) There will be an interaction between task complexity and robot 

reliability regarding trust. 

Further, participant-rated task difficulty was of interest and formed the 

following two hypotheses: 

H6) Participants will rate more complex tasks as being more difficult. 

H7) Participants will rate lower robot reliability as being more difficult. 

Additionally, the influence of personality traits was examined: 



187 

  

H8) Personality scores will correlate with trust, performance, subjective 

workload ratings, and manual mode usage. 

The last hypothesis dealt with the differences between the manual mode 

only and the mixed mode group. This will show whether semi-autonomous 

features, as used in this study, can enhance human-robot team 

performance and reduce operator workload. 

H9) The manual user group will have higher levels of workload and lower 

performance measures than participants who used the semi-

autonomous robot control (mixed mode). 

Furthermore, two trust questionnaires, Muir (1989) and Schaefer (2013), 

were compared in order to select the appropriate trust questionnaire for a 

semi-autonomous robot system interaction and qualitative data was 

collected via interviews after participants performed the trials. Qualitative 

data was gathered to elaborate on quantitative findings and infer 

recommendations for future robot interface designs and behaviours. 

6.3 Methodology 

 Participants 

39 Participants were recruited from the University of Nottingham. Staff and 

students were approached via adverts and contacted via phone or e-mail. 

They were screened to fit the requirements for the study (over 18 years and 

no vulnerable members of the public). After participants completed the 

experiment they were compensated with a £10 Amazon Voucher. 

To determine the required number of participants in order to have enough 

statistical power an a priori analysis with the program G*Power (Faul, 

Erdfelder, Lang, & Buchner, 2007) was performed. The power (1 - β) was 

set at 0.95 and the α level to 0.05 for a medium effect size of 0.5 (Cohen, 

1988). The a priori power analysis indicated that a total sample size of 39 

would be sufficient to detect a significant interaction effect between three 

groups and nine measurements with a correction among repeated measures 

of 0.5. 
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All participants were coded with a participant number (PN) and the data was 

stored under the PN and not under their name. The code links between PN 

and name were stored separately. The study was approved by Faculty of 

Engineering Ethics committee. 

 Experimental design 

The study was designed as a 3 x 3 mixed-subject design. There were three 

participant groups. The between subject conditions were the reliability levels 

of the robot and the within subject conditions were the complexity levels. 

Each of the three tasks lasted about 5-7 minutes and the average study 

time for each participant was approximately 70 minutes. Table 23 shows 

how the independent variables were grouped and how each condition was 

named. All conditions were counterbalanced. 

Independent 

Variables 

Between subject factor 

Group A 

(Reliability A) 

Group B 

(Reliability B) 

Group C 

(Reliability C) 

Within 

subject 

factor 

Low task 

complexity 
Condition 1 Condition 4 Condition 7 

Middle task 

complexity 
Condition 2 Condition 5 Condition 8 

High task 

complexity 
Condition 3 Condition 6 Condition 9 

 

Table 23 - Independent variable table 
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 Robot reliability (between subject factor) 

Three different reliability profiles were used 

to investigate how the performance of the 

robot influenced the overall performance of 

the human-robot team and how it 

influenced the participant’s behaviour. The 

autonomy mode time and location of the 

robot was the basis for the reliability 

profiles. Therefore, all reliability profiles 

were location-linked within the virtual 

environments. A reliability drop lasted for 

45 seconds. The place for the drops was 

fixed for all three environments, which 

ensured that they were comparable. 

Reliability profile A simulated a robot that 

did not make any mistakes. Reliability 

profile B simulated a robot that had one 

reliability drop in the middle of the course 

and missed one target. Reliability profile C 

had two reliability drops during the course 

and missed one target and wrongly identified another target. Figure 76 

shows these profiles. Desai (2012) found that reliability drops immediately 

at the start or end of a scenario can significantly influence trust, therefore 

high reliability phases were incorporated at the beginning and at the end of 

each task. A reliability drop consisted of the robot navigating inaccurately 

(failing to look at certain corners/areas) and missing a target or identifying 

a wrong target. 

 Task complexity (within subject factor) 

As previously mentioned, two of the five factors (goal and input) influencing 

task complexity (P. Liu & Li, 2012) were modified in order to increase 

objective task complexity. Table 24 shows what factors were modified and 

to what extent. 

Figure 76 - Overview of reliability 

profiles 
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Complexity 

level 

Goal/Output Input Secondary 

task 

Low 1. Find casualties Uncluttered 

environment 

Loading task 

Middle 1. Find casualties 

2. Find hazard signs 
Cluttered 

environment 

High 1. Find casualties 

2. Find hazard signs 

3. Find evidence for 

terrorist attack 
(weapons, bombs, 

etc.) 

Highly cluttered 

environment 

 

Table 24 - Task complexity modification overview 

In terms of Goals and Output, the participant was required to find fewer 

types of objects in the low complexity condition compared to the middle 

complexity condition or high complexity condition. This represented a 

change in goal quantity. Uncertainty and less clarity were induced for the 

middle and high task complexity by asking participants to find hazard signs. 

The participants did not know what the hazard signs looked like, and what 

colours they might have (e.g. orange, yellow, red or electricity hazard, 

explosion hazard, bio hazard). Additionally, in the high complexity level, 

redundancy and less clarity were introduced by telling people to look for 

evidence of terrorist attacks, namely bombs and weapons. However, 

participants did not know how the bombs might look and there were no 

weapons present in the environments. With respect to the input of the task, 

the higher the complexity level, the more objects (quantity) were present 

in the environment and the more diverse were the types of objects.  

The following screenshots visualise the different environments that 

corresponded to the respective task complexity (low, middle, and high). 

Figure 77 depicts the low task complexity environment which had between 

20 to 30 objects per room. Most objects were rubble piles, tables and 

computers. Figure 78 shows the middle task complexity environment, which 

had between 40 and 50 objects in each room. Compared to the low 

complexity environment, this environment had additional types of furniture 

and concrete elements in the environment. Figure 79 shows the high task 

complexity environment, which was cluttered with 60 to 70 objects per 
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room. The environment contained even more diverse objects, such as 

wooden pallets, books and shelfs. These differences made the environment 

gradually more cluttered, more difficult to navigate in, and challenging to 

detect targets in. 

 

Figure 77 - Screenshot from the low complexity task 

 

Figure 78 - Screenshot from the middle complexity task 
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Figure 79 - Screenshot from the high complexity task 

 Virtual rescue scenario 

The development of the virtual environment und the underlying 

programming structures are explained in detail in Section 3.5.2. 

Virtual Robot 

The simulated robot had proximity sensors (360 degree) which were 

visualised by a top view map. A front and rear camera were provided. 

Furthermore it had a target identification system which was enabled to find 

specific targets in the simulated environment. The robot could further show 

CO2 and temperature levels. All three trials were performed in a mixed 

mode, which is explained below. 

MIXED MODE 

Mixed mode meant that participants were free to choose between using a 

manual or an autonomy mode. However, the researcher encouraged 

participants to use autonomy mode. 

Manual mode: 

 Participant was in charge of the robot’s movements and target 

identification. 
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 Participant could see the goal navigation points the robot would 

navigate to in the map. 

Autonomy mode: 

 Robot was in control of driving. 

 Target identification was active. 

After 39 participants used the mixed mode an extra 13 participants were 

recruited to use the manual mode only (without seeing the goal navigation 

points) to establish a baseline for the experiment. 

Virtual environment 

Each virtual environment resembled an office complex with one corridor and 

adjacent rooms. Each room contained rubble, desks, chairs, computers, and 

other objects you might find in an office with collapsed structures. In distinct 

places were hidden targets that the participant was required to find. The 

environment varied across the independent variable of task complexity. The 

design of the different complex environments was explained in the Task 

complexity section (6.3.2.2, p.189). The training environment consisted of 

four rooms of different complexities, so that the participants could 

familiarise themselves with all complexity types they will encounter. 

 

 

Targets varied due to complexity level. The low complexity environment 

incorporated three victims, which were not realistically injured, to be found. 

An example of a victim in the environment is shown in Figure 80 (left). In 

the middle complexity of the environment two victims were required to be 

Figure 80 - Example of victim (left), hazard sign (middle), and bomb (right) in the 

environment 
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found and additionally two hazard signs. Such a hazard sign is depicted in 

Figure 80 (middle) as well. During high complexity tasks the participant had 

to find victims, hazards and terrorist indicator, which could be weapons or 

bombs (self-made plastic explosives). Such a bomb is depicted in Figure 80 

(right). 

Interface 

The robot interface showed front view, rear view, proximity map, control 

mode, oxygen levels, temperature and a robot damage map. Depending on 

which mode is active the “AUTO” or “MANUAL” button was highlighted in 

red. The interface is depicted in Figure 81. In addition, the proximity map 

had navigation goal points (NGP). These are orange squares that indicate 

where the will robot drive next. This was used because in the previous study 

participants liked predictability of the robot and were more relaxed when 

the robot was advancing towards an obvious point in the environment. 

 

Figure 81 - Interface of the rescue robot 

 Tasks 

Participants were presented with an Urban Search and Rescue (USAR) 

scenario. The primary task for participants was to find all targets as fast as 
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possible. The following scenario description was read to participants to ease 

them into the simulation: 

“An explosion has occurred in an office complex with an attached 

warehouse. There are reports of survivors inside. The building is concrete 

construction and rescue personnel have identified an entry point for the 

robot. The structure is highly unstable and smaller explosions are occurring 

at irregular intervals. The safety manager and engineers have determined 

that the robot is the only safe option for reconnaissance at this time. Your 

task is to perform a very thorough search of the first three rooms of the 

office building for the targets. Although the robot can navigate the building 

safely and has features which can identify targets, only you can decide 

whether it is a target or not using the cameras on the robot. You will be 

controlling the robot from a safe location outside the office.” 

Furthermore, the participant had to attend to a secondary loading task. The 

secondary task consisted of an extra screen which showed a certain number 

of blue boxes every 25 seconds. The participants had 5 seconds to input the 

correct number of boxes on the keyboard, before the boxes disappeared.  

Participants interacted with the robot via a X-BOX 360 controller. During 

each task participants started using the robot in autonomous mode. The 

participant could decide at any point which mode (manual or autonomy) 

they would like to use. 

 Materials 

A Laptop (Acer Ultrabook TimelineU i5 with 1.7 GHz, 4GB RAM) with an 

external 17” screen for the participant was used. The USAR simulation 

program was created in UNITY, a multi-platform game creation system. The 

participant could interact with the virtual robot via an X-Box 360 controller. 

Paper questionnaires, pens and two digital cameras (Sony DCR-SR58E) 

were also used. The experimental setup is shown in Figure 82. The left 

screen provided a view through the robots’ camera, which is controlled by 

the X-Box controller. The right screen shows the secondary task. The screen 

shows a certain number of blue boxes every 25 seconds. The participants 

had 5 seconds to input the correct number of boxes on the keyboard, before 
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the boxes disappeared. Figure 83 shows a screenshot how the secondary 

task looked like. 

 

Figure 82 - Experimental setup 

 

Figure 83 - Secondary task screenshot 

After giving informed consent (see Appendix K - - Digital Appendix IV, p. 

404, for consent form and study information) participants were asked to 

answer a general questionnaire. The general questionnaire, provided in 

Appendix E (p. 387), consisted of two parts. The first part asked about 

general demographics, use of technology and experience with robots. The 

second part of the general questionnaire compromised a personality test. 

As mentioned in Hancock et al. (2011), personality can influence trust 

ratings. The experiment, reported in this chapter, gathered further empirical 

data to examine the relationship between personality traits and trust 

ratings. The items of the personality questionnaire are based on Goldberg’s 
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Big Five factor structure (Goldberg, 1992) and was shortened and modified 

by ‘IPIP’ (Gow et al., 2005). The shortened 50-item ‘IPIP’ personality 

questionnaire was used because it showed good internal consistency and 

related strongly with the known dimensions of personality (Gow et al., 

2005). The five factors are extraversion, conscientiousness, neuroticism, 

agreeableness and openness. Each ‘Big Five Factor’ corresponds to ten 

questions of the questionnaire. Each factor has a score ranging from low 10 

to high 50 points. Participants answered each item on a five point Likert 

scale with the anchors "Very Inaccurate", "Moderately Inaccurate", "Neither 

Inaccurate nor Accurate", "Moderately Accurate" and "Very Accurate". 

After each task, participants were asked to complete a NASA-Task Load 

Index (NASA-TLX) questionnaire. The NASA TLX is a multi-dimensional scale 

used to obtain subjective workload (Hart & Staveland, 1988). Additionally 

after each task, participants completed two trust questionnaires. The first 

trust questionnaire was from Schaefer (2013), called the human-robot trust 

scale (HRTS) which aims to measure trust perceptions specific to human 

robot interaction. The trust rating delivers a percentage trust score. The 

second trust questionnaire includes the Muir trust questions (Muir, 1989). 

Two trust questionnaires were used for the purpose of comparing the 

results. The aim is to see which of the questionnaires is more sensitive to 

changes in trust regarding semi-autonomous robot systems. An example of 

the post-task questionnaire is provided in the Appendix F (p. 391). The post 

task questionnaire concludes with questions about self-performance, robot 

performance, mode preferences, difficulty/complexity of task, and self-

confidence. 

 Procedure 

Each participant took approximately 70 minutes to complete the 

experiment. The introduction and pre-questionnaire took approx. 15 

minutes, followed by a 10 minute training run with the robot. The three 

conditions each participant had to complete took, including post-task 

questionnaires, approx. 45 minutes. 

Before starting the experiment each participant was briefed about the study 

and its aims, who was conducting the study, and the procedure. After giving 
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informed consent, each participant was requested to complete the general 

questionnaire (age, gender, occupation etc.) and answer a short version of 

the Big-Five personality scale. After this, participants received instructions 

about the task and how to use the robot. In addition, participants were 

encouraged to use autonomy mode during the trials if they were 

comfortable doing so. 

Each participant had a training session on how to navigate the robot in the 

virtual environment and how to mark targets. The training session lasted 

until the participants felt comfortable controlling the robot. The training 

session started in manual mode, so the participant had to learn how to drive 

the robot manually. After a certain level of familiarisation, the researcher 

switched the robot into auto mode and explained how the robot navigates 

and which search strategy it uses. Following this, participants had two 

rooms in the training environment to freely try switching between manual 

and auto mode. 

After the training session the researcher read a scenario (Section 6.3.2.4, 

p. 194) to the participants to ease them into the role of a rescuer. Overall 

the participant had to complete three conditions; each of the three 

conditions had the same procedure; just the complexity of the environment 

changed. Each scenario lasted about 5-7 minutes. The participant and the 

robot had to find all targets in the environment as quickly as possible. 

After each search scenario, participants completed a post-task 

questionnaire which asked about self-performance, robot performance, 

post-task workload, post-task trust, mode preferences, difficulty/complexity 

of task, and self-confidence (see Appendix F, p. 391). Furthermore data 

about completion-time, mode times, and errors were recorded. 

 Measures 

In this section the different measures and their calculation are explained. 

During the scenario each participant encountered six targets, each 

encounter represents an event. Depending on the robot’s and participant’s 

behaviour these events were categorised. The categorisation depended on 

the robot mode they used (auto or manual), whether the robot or the human 
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found the target, and whether the robot or the human were responsible to 

find the target. If the robot was in auto mode it was responsible for finding 

the target but in manual mode the human was responsible. Furthermore 

when the robot missed a target, the human was responsible for correcting 

that mistake. Also, it was important whether the human was aware of the 

robot’s mistake or not. An overview of the events and the corresponding 

category number is provided in Table 25. 

Event 

category 

Mode Robot Human Awareness 

of mistake 

Respon-

sibility 

 Auto Found Acknowledged Yes Robot 

 Auto Missed Found Yes Robot/Hu

man 

 Manual - Found Yes Human 

 Auto False target Acknowledged Yes Robot/Hu

man 

 Auto Missed Missed Yes Robot/Hu

man 

 Manual - Missed Yes Human 

 Auto Missed Missed No Robot/Hu

man 

 Manual - Missed No Human 

 Auto False target Missed Yes Robot/Hu

man 

 Manual Manual/false 

target 

Missed No - 

 

Table 25 - Overview of event categories 

How the performance measures with the aid of these event categories were 

calculated is explained in the next section. 
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 Observed1 performance measure 

The challenge with semi-autonomous remote controlled systems is that 

when participants supervise a robot in auto mode and the robot misses the 

target and the participants miss it as well (and are not aware of the robot’s 

mistake), then the perception of the scenario is different to that intended 

by the researcher. Therefore two performance measures were introduced: 

observed performance and objective performance. The observed 

performance illustrates the actual witnessed performance by the 

participant. The objective performance demonstrates how many targets of 

the maximum possible targets were found. 

Observed robot performance (Equation 1): How many targets the robot 

found in the trial (%) that the human was aware of. Not included are the 

number of targets found in manual mode because these were found by the 

human and not by the robot. N represents the number of times an event 

occurred. 

Event category [N()]

Event category [N()+N()+N()+N()+N()]
 

Equation 1 - Observed robot performance 

Observed human performance (Equation 2): How many targets the human 

found and responded to (%).Not included are the targets found in auto 

mode because these were found by the robot and not by the human. 

Event category [N()+N()+N()]

Event category [N()+N()+N()+N()+N()+N()]
 

Equation 2 - Observed human performance 

Observed team performance (Equation 3): This is the combined observed 

performance of both the robot and the human. Therefore this is the 

percentage of targets found that the human was aware of, whether the 

target was found by the robot or by the human. 

                                       
1 The observed performance refers to the experienced robot performance of the 

participant. 
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Event category [N()+N()+N()+N()]

Event category [N()+N()+N()+N()+N()+N()+N()]
 

Equation 3 - Observed team performance 

 Objective performance measure 

The objective performance measure is independent of the awareness of the 

human and represent the percentage of targets found by the robot the 

human and both of them. 

Objective robot performance (Equation 4): How many targets the robot 

found in the trial (%). 

Event category N()

N (Maximum targets)
 

Equation 4 - Objective robot performance 

Objective human performance (Equation 5): How many targets the human 

found in the entire trial (%). Event category (4) is included, because the 

human needed to acknowledge that the robot marked a false target. They 

did that by switching to manual mode and delete the last marker. However 

sometimes participants did not complete this procedure and just told the 

researcher that this was a mistake by the robot and there was no target; 

this represents event category (9). 

Event category [N()+N()+N()+N()]

N (Maximum targets)
 

Equation 5 - Objective human performance 

Objective team performance (Equation 6): This is the combined objective 

performance of both the robot and the human. In other words it represents 

how many targets were found in the entire trial (%). 

Event category [N()+N()+N()+N()+N()]

N (Maximum targets)
 

Equation 6 - Objective team performance 

Example 
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In order to better understand the concept, the following example in Table 

26 presents a possible scenario with six events. Each event is categorised 

with the previously explained event categories (see Table 25). For the 

explanation of this example the encounter number is labelled A to F. A 

represents the first target encountered in the scenario and F the last target 

encountered. 

 

Table 26 - Example scenario with six events 

First the observed performances are calculated. For all the observed 

performance calculations, the encounter B and F were excluded because the 

human was not aware of these events/mistakes. 

 Observed robot performance: The robot’s responsibilities were the 

encounter A, D and E. The robot managed to successfully fulfil 

encounter A and E and failed in in encounter D, as shown in Table 26. 

Therefore the robots fulfilled 2/3 of its responsibility because it found 

2 of 3 targets, which leads to an observed robot performance value 

of 66.67%. 

 Observed human performance: The responsibilities of the human 

were the encounter C and D. Hence, the human successfully found 

encounter C and D. The participant fulfilled 2/2 of their 

Encounter 

no. 

A B  C  D  E  F  

Event Auto: 

Robot 

found 

Manual: 

missed 

target 

Manual: 

found 

target 

Auto: 

Robot 

miss/ 

human 

found 

Auto: 

Robot 

found 

Auto: 

Robot 

miss/ 

human 

miss 

Event 

category 

      

Respon-

sibility 

R H H R/H R R/H 

Human 

aware-

ness 

Y N Y Y Y N 
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responsibilities, which calculates to an observed human performance 

value of 100%. 

 Observed team performance: The human was aware of the 

encounters A, C, D, and E. All of these encounters were found, either 

by the robot or the human, therefore 4 of 4 targets were found which 

calculates an observed team performance of 100%. 

Objective performance measures take into account all targets present in the 

scenario without any assigned responsibilities. In this example, there were 

six targets (encounters) overall. 

 Objective robot performance: The objective robot performance was 

calculated from the robot’s successful encounters, which in this 

example is the encounter A and E. Therefore the objective robot 

performance is measured against the maximum number of targets 

and the robot found 2 of 6 targets (33.33%). 

 Objective human performance: The objective human performance 

includes only the targets found by the human, which is the encounter 

C and D. Thus the human found 2 out of the 6 possible targets, which 

leads to an objective human performance of 2/6 (33.33%). 

 Objective team performance: The objective team performance 

comprises all successfully found targets divided by the maximum 

number of targets. In the example from Table 26 these are 

encounters A, C, D and E. The team therefore found 4 out of the 6 

targets, which equals an objective team performance of 66.66%. 

In addition to the main task the participants had to attend to a secondary 

task. The calculation of the secondary task performance is explained in the 

next section. 

 Secondary task performance 

The secondary task appeared every 25 seconds. A participant with a short 

trial time encountered fewer secondary tasks and vice versa. Hence, the 

maximum number of secondary task encounters was counted as well as the 

successfully answered encounters. The secondary task performance divides 

the successful encounters by all encounters and delivers the percentage of 

successfully answered secondary task encounters (Equation 7). 
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N (Successfully answered encounters)

N (All secondary task encounters)
 

Equation 7 - Secondary task performance 

 

6.4 Results 

The results are divided into three sections. The first section discusses the 

pre-tests, which examined the correlation between the different trust 

questionnaires and the testing of correlations between the performance 

measures. In the second section the results of the participants who used 

the mixed mode robot are presented. The third section is about the 

differences between manual mode groups and the mixed mode group. The 

result section finishes with the description of the interview data. 

 Pre-test: Trust questionnaires comparison 

(Schaefer/Muir) 

In order to select the appropriate questionnaire to measure trust in the 

subsequent experiments, two trust questionnaires were tested. The Muir 

(1989) questionnaire (see Appendix F, p. 391) has four statements that 

were answered on a 10-point scale from “Not at all” (1) to “Completely” 

(10) and was originally developed to measure trust into automation. The 

Schaefer (2013) trust questionnaire (see Appendix F, p. 391) consists of 40 

questions starting with “What percentage of the time did the robot…” and 

could be answered from 0% to 100% with 10% intervals. 

First the correlation between the two questionnaires was tested followed by 

testing the correlations of each trust questionnaire with the relevant study 

variables (see Figure 84). A Spearman's correlation test was used 

throughout to determine the relationship between the Schaefer trust ratings 

and Muir trust ratings. The trust scores for both questionnaires were not 

normally distributed and showed significant outliers. Therefore, another 

reason for selecting the Spearman correlation test was that it is rank based 

and robust to outliers (Croux & Dehon, 2010). In order to account for 

multiple correlation testing, the alpha value was adjusted to 0.01 to be 
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significant. Very weak correlations with a coefficient below 0.3 were 

excluded and greyed out in the figures. 

There was a very strong, positive monotonic correlation between Schaefer 

and Muir (rs = .81, [.730, .860], N = 117, p < .01). This suggests that the 

much shorter questionnaire from Muir, which entails four questions, showed 

similar data behaviour compared to the much longer 40 item trust 

questionnaire from Schaefer. 

However, the correlation is solely rank based and the questionnaires were 

not similarly correlated to all other measures of the study variables. Trust 

correlations in Figure 84 present the differences between the trust 

questionnaires and the collected data. Both questionnaires were correlated 

with the programmed reliability level, observed robot performance, 

objective robot performance, manual mode time, and robot performance 

rating (see Figure 84) but the magnitude of correlation did differ. Muir’s 

trust questionnaire correlated weakly with rated self confidence in the task. 

The Muir questionnaire seems more sensitive towards the subjective 

measures (rated self-performance and rated self-confidence) than the 

Schaefer trust questionnaire. The Schaefer questionnaire was weakly 

correlated with programmed reliability and objective robot performance. 

Both questionnaires were not correlated with the objective team 

performance (rsS = -.04, N = 117, p > .05; rsM = .04, N = 117, p > .05), 

which means that the questionnaires, as intended, focused more on the 

robot’s performance rather than the end result of the trial. Both 

questionnaires showed that the more targets were found by the robot 

(objective robot performance) the higher was the trust in the robot. Some 

variables are not present, due to their collinearity with the other measures 

taken. 
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Figure 84 – Comparison of correlations with study variables of the Muir trust score and 

Schaefer trust score (weak correlations are greyed out) 

Later analysis showed that robot reliability and task complexity had a 

significant main effect on the Schaefer trust questionnaire. A mixed ANOVA 

(outliers P31 and P33, excluded) with the Muir trust scores showed no 

significant differences, F(2, 68) = .748, p=.748. Although the Muir trust 

scores correlated with the Schaefer trust scores there was no significant 

effect of task complexity or robot reliability on the Muir trust scores. The 

results suggests that the Muir trust questionnaire is not as sensitive as the 

Schaefer trust questionnaire. 

In order to test the independent variables and their effect on trust in more 

detail, the Schaefer trust questionnaire was selected for further use. 
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 Mixed mode results 

The influence of robot reliability and task complexity on trust, workload and 

performance as well as subjective ratings was tested. This section will 

present the results of the participants who used the mixed mode robot 

system. 

In all post-hoc tests no Bonferroni correction was used. Since this small 

scale study has already low levels of observed power, the use of Bonferroni 

(Cabin & Mitchell, 2000) or sequential Bonferroni corrections (Holm, 1979) 

can further substantially reduce the statistical power and increase a Type II 

error (Nakagawa, 2004; Perneger, 1998). All variables were carefully 

selected to avoid performing more tests than necessary. 

Although the programmed reliability was fixed in each condition and not a 

dependent variable, the fact that participants were free to choose between 

manual and auto mode gave a different robot reliability profile for each run 

for each participant. A detailed overview of the programmed values of the 

robot’s reliability can be found in Appendix G (p. 396). This problem was 

also addressed with the observed performance measure (see 6.3.5.1 

Observed performance). 

 Trust 

The influence of robot reliability and task complexity was examined. In order 

to not violate the assumptions of ANOVA the extreme outliers, participants 

19 and 26 were excluded from this analysis. A mixed ANOVA with post hoc 

tests was performed across task complexity and robot reliability. 

The influence of robot reliability on trust 

A significant main effect of robot reliability was found, F(2, 34) = 3.66, p 

<.05, r = .32. Post-hoc independent sample t-tests demonstrated that the 

significant difference occurred between the Schafer trust scores of high 

reliability (M = 86.99, SD = 8.46) and low reliability (M = 75.91, SD = 

12.84) (t(73) = 4.37, p < .001, r = .46) and between middle reliability and 

low reliability (t(73) = 2.31, p < .001, r = .26) (see Figure 85). Between 

high and middle reliability the p value approached significance (t(70) = 

1.99, p = .05, r = .23). 
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Figure 85 - Schaefer trust scores across robot reliability with 95% confidence intervals 

The influence of task complexity on trust 

A mixed ANOVA showed that there was a significant main effect of task 

complexity on trust, F(2, 68) = 3.50, p < .05, r = .22. Contrasts revealed 

that there was a significant quadratic trend, F(1, 34) = 6.04, p < .05, r = 

.39. This indicates an interaction with another variable and will be discussed 

later in this chapter (Section 6.5.2, p. 242). 

Post hoc paired samples t-tests confirmed that there was a significant 

difference between low task complexity (M = 82.81, SD = 10.06) and 

middle task complexity (M = 79.69, SD = 13.18) (t(36) = 2.93, p < .05, r 

= .44). However, the differences in trust ratings between low complexity (M 

= 82.81) and high complexity (M = 82.26, SD = 12.21) (t(36) = 0.46, p > 

.05) as well as middle complexity (M = 79.69) and high complexity (M = 

82.26) were not statistically significant (t(36) = -1.73, p>.05). 
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Figure 86 - Schaefer trust scores across task complexity with 95% confidence intervals 

As shown in Figure 86 the middle task complexity led people to make a 

lower rating of trust in the robot compared to the low complexity condition. 

However, during the high complexity tasks participants rated the trust 

nearly as high as in the low complexity task. 

The interaction of task complexity and robot reliability on the 

Schaefer trust questionnaire 

A mixed ANOVA revealed there was no interaction effect between robot 

reliability and task complexity on trust, F(4, 68) = 1.76, p > .05). Therefore, 

another variable might have influenced the quadratic data trend of trust 

across task complexity levels. 

 Workload 

Workload was measured after each trial with the NASA TLX. The effect of 

the independent variables is investigated in this section. 

The influence of robot reliability on workload 

The samples were not equally distributed, therefore a pairwise comparison 

with the Mann-Whitney test was used. A significant difference between the 

middle and low reliability levels (U= 512, p < .05, r = -.28) was found. The 

other comparisons were not significant (high to middle) U= 624, p > .05; 

(high to low) U= 599, p > .05.  
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Figure 87 – Workload (NASA TLX) across robot reliability; with 95% confidence intervals 

Participants experienced more subjective workload in the low reliability 

conditions, with a median of 71.87 (SD = 16.37) compared to the middle 

reliability conditions (M = 64.03, SD = 17.37). However, data showed only 

a small effect size of r = -.28. Figure 87 shows a bar chart of the workload 

ratings. A subscale analysis revealed that especially the physical demand 

and the frustration increased with lower robot reliability. 

 

Figure 88 - Significantly different workload (NASA TLX) subscales with 95% confidence 

intervals 

As shown in Figure 88, there was a significant increase in physical demand 

(U = 517.5, p < .05, r = .28) and frustration (U = 491, p < .01, r = .31) 

between the low reliability condition and the middle reliability condition. In 
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addition, there was a significant increase in physical demand (U = 442, p < 

.01, r = .36) and frustration (U = 564.5, p = .05, r = .22) between the low 

reliability condition and the high reliability condition. In general, the lower 

the reliability of the robot the more physical demand and frustration the 

participant experienced. The effect sizes were between small and medium. 

The influence of task complexity on workload 

The Friedman test revealed that there were no significant differences among 

task complexity levels regarding subjective workload ratings (χ2 (2) = .842, 

p > .05). For values see Table 27. A subscale analysis showed no significant 

differences between the conditions. 

Workload ratings across task complexity 

Condition Mean (SD) 

High task complexity 86.05 (17.04) 

Middle task complexity 67.00 (15.32) 

Low task complexity 69.00 (14.74) 

 

Table 27 - Workload ratings across task complexity 

 Performance measures 

 Objective (team) performance 

The objective team performance was the percentage of the targets found 

by both the robot and the participant. The influence of robot reliability and 

task complexity on the objective team performance is illustrated in the 

following paragraphs. 

The influence of robot reliability on objective team performance 

A non-parametric test was used because the data was not normally 

distributed. A pairwise comparison with Mann-Whitney tests (see Figure 89) 

showed significant differences between the high reliability level (M = 97%, 

SD = 9%) and the low reliability level (M = 88%, SD = 12%), U = 471.5, 

p = .001, r = -.39. This difference had a medium effect size. The differences 

between the high (M = 0.97) and middle reliability levels (M = 91%, SD = 

12%) were also significant, but with a small effect size (U = 579.5, p < .05, 

r = -.27). There was no significant difference between middle (M = 91%) 
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and low reliability levels (M = 88%) (U = 650.5, p > .05). The data shows 

a declining trend: the lower the reliability of the robot the lower was the 

overall objective team performance. Teams scored significantly higher in 

the high reliability condition compared to the middle or low reliability 

condition. 

 

Figure 89 - Objective team performance across reliability levels with 95% confidence 

intervals (bootstrapped) 

The influence of task complexity on objective team performance 

The objective team performance changed significantly across task 

complexity. Wilcoxon signed-ranks tests revealed significant differences 

between middle complexity and high complexity (Z = -3.05, p < .05, r = -

0.35), as well as low and high complexity (Z = -2.28, p < .05, r = -.26). 

The larger effect occurred between middle and high complexity (medium 

effect size).There was no significant difference between low and middle 

complexity (Z = -1.02, p > .05). 

Therefore the human-robot teams had a significantly lower performance in 

the high complexity task (M = 88%, SD = 13%) compared to the middle (M 

= 96%, SD = 9%) or low complexity task (M = 93%, SD = 11%) (see Figure 

90). 
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Figure 90 - Objective team performance across complexity levels with 95% confidence 

intervals (bootstrapped) 

 Observed robot performance 

The observed robot performance was the performance of the robot as 

perceived by the participant, for example, the number of targets 

participants thought the robot found. 

The influence of robot reliability on observed robot performance 

A Kruskal-Wallis test showed that there was a highly significant difference 

in observed performance between the different robot reliability levels, χ2(2) 

= 82.336, p < .001, with a mean observed performance of 99% (SD = 4%) 

for high reliability, 81% (SD = 10%) for middle reliability and 61% (SD = 

19%) for low reliability. A Mann-Whitney test revealed that all differences 

were highly significant: high to middle (U = 179, p < .001, r = -.75), middle 

to low (U = 205, p < .001, r = -.65) and high to low (U = 27, p < .001, r = 

-.89). All effects had a large effect size. 
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Figure 91 - Observed robot performance across reliability with 95% confidence intervals 

(bootstrapped) 

Although there was the possibility that the participant could not observe the 

robot’s performance due to using manual mode or missing a target too, 

Figure 91 shows that the observed robot performance declined significantly 

across the reliability levels: the lower the robot reliability, the lower was the 

observed robot performance. 

The influence of task complexity on observed robot performance 

A Friedman test indicated a significant difference across task complexity 

levels (χ2(2) = 17.732, p < .001). A multiple comparison with a Wilcoxon 

signed-rank test showed that there was a significant difference between 

high and low task complexity (Z = -3.086, p < .01, r = -.35) and middle 

and high task complexity (Z = -2.351, p < .05, r = -.27). There was no 

significant difference between low and middle complexity (Z = -1.132, p > 

.05). Figure 92 shows that the lowest observed performance was present 

during low task complexity with a mean of 77% (SD = 26%). The middle 

task complexity had an observed performance mean of 79% (SD = 22%), 
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which is lower than the high task complexity condition with a mean of 86% 

(SD = 15%). 

 

Figure 92 - Observed robot performance across task complexity with 95% confidence 

intervals (bootstrapped) 

 Secondary task performance 

Secondary task performance data did not meet the assumptions of ANOVA, 

therefore non-parametric tests were used for the analysis. There was no 

significant difference found across reliability levels (χ2 (2) = 3.755, p > .05). 

A Friedman test also showed no significant differences of secondary task 

performance across task complexity levels, χ2 (2) = 2.258, p > .05. 

 Manual mode usage 

The amount of time participants spent in manual mode was relatively low 

because participants were encouraged to use auto mode. A percentage 

value of time spent in manual mode was calculated and compared across 

robot reliability and task complexity. 
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The influence of robot reliability on manual mode time 

There was a significant difference between high (M = 12%, SD = 13%) and 

middle robot reliability (M = 19%, SD = 11%), U = 445, p < .05, r = -.36. 

The second significant difference was found between the low (M = 25%, SD 

= 21%) and high reliability (M = 12%), U = 470, p = .01, r = -.33. The 

Mann-Whitney test did not reveal significant differences between the middle 

and low complexity tasks, U = 673, p > .05. 

 

Figure 93 - Manual mode times across robot reliability with 95% confidence intervals 

(bootstrapped) 

Participants used significantly more manual mode when the robot was less 

reliable. This was expected because participants needed to take over 

manual control when the robot made a mistake. Figure 93 shows this trend. 

The influence of task complexity on Manual mode time 

Across complexity levels a Friedman test showed no significantly different 

manual mode times, χ2 (2) = 0.712, p > .05. 

 Trial times 

Trial times are the percentage of time that the participant and the robot 

(the team) needed to complete the scenario compared to the time the robot 

would have taken to complete the scenario in exclusively auto mode 
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The influence of robot reliability on trial times 

A Kruskal-Wallis test showed that the differences between trial times across 

reliability were found to be significant, χ2 (2) = 20.235, p < .001. Post hoc 

tests (Wilcoxon signed-rank tests) determined that differences were 

significant between high robot reliability and middle reliability (Z = -4.227, 

p < .001, r = -.48), and high reliability and low reliability (Z = -3.555, p < 

.001, r = -.40). During high robot reliability participants needed 12% (SD 

= 13%) more time than they would have required in constant auto mode 

(see Figure 94). The trial times were higher for middle (M = 26%, SD = 

18%) and low robot reliability (M = 28%, SD = 23%). This was expected 

since participants needed to intervene in lower reliability conditions with 

manual mode and possibly drive back and correct the robot or check areas 

the robot neglected. 

 

Figure 94 - Trial times across reliability with 95% confidence intervals (bootstrapped) 

The influence of task complexity on trial times 

There were no significant differences of trial times across the task 

complexity levels, χ2 (2) = .384, p > .05. Participants took the same amount 

of time to complete the task regardless of the complexity of the task. 
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 Subjective ratings 

 Rated task difficulty 

Participants were asked to rate “How difficult did you perceive the task?” on 

a scale from 1 (extremely difficult) to 6 (not at all difficult). According to Liu 

and Li (2012) task difficulty focusses on the perception of the difficulty of 

the task by the performer. This will show if the manipulated task complexity 

level (objective task characteristics) were perceived as difficult and if low 

robot reliability is perceived as difficult as well. 

The influence of robot reliability on rated task difficulty 

A Kruskal-Wallis test showed that there were no significant differences in 

rated task difficulty across the robot reliability levels, χ2 (2) = 2.74, p > .05. 

The influence of task complexity on rated task difficulty 

A Friedman test demonstrated that there was a significant difference 

between the rated task difficulty for the conditions, χ2(2) = 9.23, p = .01. 

A pairwise comparisons by using Wilcoxon signed-rank tests revealed that 

the significant effect was between the middle and high task complexity 

condition (Z = -2.287, p < 0.05, r = -.26) but only showed a small effect 

size. The difference between the low and high task complexity conditions 

approached significance with a p-value of 0.051 (see Figure 95 and Table 

28). 
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Figure 95 - Rated task difficulty box plots across complexity, whiskers (min/max) 

Participants perceived the high complexity task (Mdn = 4) as more difficult 

than the middle (Mdn = 3) or low complexity task (Mdn = 3). 

  

1

2

3

4

5

6

Low complexity Middle complexity High complexity

T
a
s
k
 d

if
fi

c
u

lt
y
 r

a
ti

n
g

Task complexity condition

sig.

p = .051



220 

 

Rated task difficulty 

Condition Median (IQR) 

Low complexity 3 (3) 

Middle complexity 3 (2) 

High complexity 4 (2) 

 

Table 28 - Rated task difficulty across complexity 

 Rated robot performance 

The rated robot performance is the performance rating that participants 

gave the robot after the each trial. They were asked to rate the performance 

on a scale from 1 (poor) to 6 (excellent). 

The influence of robot reliability on rated robot performance 

There was a significant difference in rated robot performance between the 

different robot reliability levels, χ2(2) = 16.46, p < .001. Mann-Whitney 

tests found significant differences between high to low robot reliability 

conditions (U = 381, p < .001, r = -.45) and middle and low reliability 

conditions (U = 528.5, p < .05, r = -.28). Between high and low reliability 

the effect size was medium but between middle and low the effect was 

small. The rated robot performance between the high and middle robot 

reliability conditions was not significant. 

The median rating of robot performance was 5 (IQR = 2) in the high 

reliability condition, 5 (IQR = 1) for middle reliability, and 4 (IQR = 1.5) for 

low reliability (see Figure 96 and Table 29). 
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Figure 96 - Rated robot performance box plots across reliability; whiskers (min/max) 

Rated robot performance 

Condition Median (IQR) 

High reliability 5 (2) 

Middle reliability 5 (1) 

Low reliability 4 (1.5) 

 

Table 29 - Rated robot performance across reliability 

As expected, the higher the reliability of the robot, the higher the 

participants rated the robot performance. Interestingly participants did not 

rate the high and middle reliability conditions differently, although the 

objective and observed performance for these conditions were significantly 

different. 

The influence of task complexity on rated robot performance 

According to a Friedman test there was no influence of task complexity on 

rated robot performance, χ2(2) = 5.029, p > .05. 
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 Rated self-performance 

After each trial the participants rated their self-performance on a scale from 

1 (poor) to 6 (excellent). 

The influence of robot reliability on rated self-performance 

There were no significant differences in rated self-performance between the 

different robot reliability levels, χ2(2) = 0.084, p > .05. 

The influence of task complexity on rated self-performance 

A Friedman test showed that there was a significant difference in the rated 

self-performance across different task complexity conditions, χ2(2) = 7.207, 

p < .05. A pairwise comparisons using the Wilcoxon signed-rank test 

demonstrated that the significant effect was between the low task 

complexity condition (Mdn = 5, IQR = 1) and the high task complexity 

condition (Mdn = 4, IQR = 1.5), Z = -2.447, p < .05, r = -.28. However, 

the effect was small. All other pairings were not significant. 

 

Figure 97 - Rated self-performance box plots across complexity; whiskers (min/max) 

  

1

2

3

4

5

6

Low complexity Middle complexity High complexity

R
a
te

d
 s

e
lf

-p
e
r
fo

r
m

a
n

c
e

Task complexity condition

sig.



223 

  

Rated self-performance 

Condition Median (IQR) 

Low complexity 5 (1) 

Middle complexity 4 (2) 

High complexity 4 (1.5) 

 

Table 30 - Rated self-performance across complexity 

Participants rated their performance significantly lower when the task was 

of higher complexity compared to a low complexity task (see Figure 97 and 

Table 30). 

 Personality score correlations 

None of the personality scores of the Big-Five questionnaire (Gow et al., 

2005) were correlated to the main variables. However, gaming experience 

was positively correlated with the objective human performance (rs = .32, 

p < .01) and negatively correlated with the rated task difficulty (rs = -.30, 

p < .01). Gaming experience was weakly correlated with the rated self-

confidence in the task (rs = .28, p < .01). The higher the participant’s 

gaming experience, the better was their human performance, the less 

difficult they rated the task and the higher was their self-confidence in the 

task. Although it seems gaming experience can enhance the performance 

of human-robot teams, it needs to be considered that this is a virtual 

desktop study and the familiarity of virtual environments and gaming 

elements, such as the Xbox gamepad, could explain this correlation. 

 Summary of mixed mode results 

Table 31 provides an overview of the results obtained during the mixed 

mode trials of this study. Each dependent variable and their significant 

results are listed. 
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Dependent 

variable 

Indepen-

dent 

variable 

Signifi-

cance 

Result details (effect size) 

Trust complexity significant* LC > MC (r = .44) 

Trust in the low task complexity 
condition was higher than in the 

middle task complexity condition. 

reliability significant LR < HR (r = .46); LR < MR (r = 

.26) 

Trust in the low reliability 

condition was lower than in the 
high and middle reliability 

conditions. 

Workload complexity no 

significance 

 

reliability significant LR > MR (r = -.28) 

Participants experienced more 

subjective workload in the low 

reliability condition compared to 

the middle reliability conditions. 

Objective 

performance 

complexity significant LC > HC (r = -.26); MC > HC (r = 

-.35) 
Performance levels were higher in 

the low and middle task 

complexity conditions compared 

to the high task complexity 
condition. 

reliability significant LR < HR (r = -.39); MR < HR (r = 
-.27) 

Performance in the high reliability 

condition was higher than in the 

low and middle reliability 

conditions. 

Observed robot 

performance 

complexity significant LC < HC (r = -.35); MC < HC (r = 

-.27) 
Participants perceived the 

observed robot performance in 

the high task complexity condition 

as higher compared to the low 
and middle task complexity 

conditions. 

reliability significant LR < MR (r = -.65); MR < HR (r = 

-.75); LR < HR (r = -.89) 

The observed performance was 

between all conditions 
significantly different. 

Rated task 

difficulty 

complexity significant MC < HC (r = -.26) 

Participants rated the middle task 
complexity as less difficult as the 

high task complexity. 

reliability no 

significance 

 

Manual mode 

usage 

complexity no 

significance 

 

reliability significant LR > HR (r = -.33); MR > HR (r = 

-.48) 
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Participants used less manual 

time in the high robot reliability 

condition compared to the low 
and middle robot reliability 

conditions. 

Trial times complexity no 

significance 

 

reliability significant LR > HR (r = -.40); MR > HR (r = 

-.48) 

Participants needed less time to 

complete the trial in high robot 
reliability conditions compared to 

the low and middle robot 

reliability conditions. 

Rated robot 

performance 

complexity no 

significance 

 

reliability significant LR < HR (r = -.45); LR < MR (r = 

-.28) 

Participants rated the robot 

performance in the low robot 
reliability condition as lower 

compared to the high and middle 

robot reliability conditions. 

Rated self-

performance 

complexity significant LC > HC (r = -.28) 

Participants rated their self-

performance higher during the 
low complex tasks compared to 

the high complex tasks. 

reliability no 

significance 

 

* Result might have been influenced by the observed robot performance. 

 

Table 31 - Summary of mixed mode results 

 Comparison between manual and mixed 

mode results 

The manual operating group (13 participants) used the same virtual 

environments and conditions from the middle reliability conditions as the 

mixed mode group from the previous section (Condition 4, 5, and 6, see 

Table 23, p. 188). Participants used the same experimental setup, process 

and interface. The only difference was that they were not able to use the 

robot in auto mode, instead they were only able to drive and mark targets 

manually. This section compared the mixed mode participants from the 

three reliability conditions from the main study with the 13 participants from 

the manual condition. This is particularly important because the following 

analysis shows at what point a semi-autonomous robot can contribute to a 
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higher performance or at what point it even contributes to a decrease in 

performance. 

 Workload 

Mann-Whitney tests showed that there was no significant difference in 

Workload between the conditions (manual to high reliability, U = 691.5, p 

> .05; manual to middle reliability, U = 585, p = .05; manual to low 

reliability, U = 726, p > .05). Therefore participants did not experience a 

significant difference in workload between manual mode or any of the mixed 

modes (low; U = 725.5, p > .05, middle; U = 583.5, p > .05, high reliability 

robot; U = 691.5, p > .05). 

 Objective team performance 

A between subjects t-test (equal variances not assumed and 1000 samples 

bootstrapped (Field, 2013)) showed a significant difference between the not 

normally distributed datasets of the manual group and the high robot 

reliability group, t(53.14) = -2.97, p < .05, r = .38. 

 

Figure 98 – Comparison of Objective team performance between manual a with 95% 

confidence intervals (bootstrapped) 
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As shown in Figure 98 the manual mode produced a mean of 86% (SD = 

20%) and the high robot reliability with a mean performance of 97% (SD = 

9%). Participants who used the 100% percent reliable robot achieved a 

significant higher (medium effect size) objective performance than the 

participants who had to drive manual mode only. 

In addition the performance was tested by using independent samples t-

tests across the task complexity levels. There were no differences in 

objective team performance between low (93%), middle (96%), or high 

task complexities (88%) compared to the manual performance (86%). 

 Secondary task performance 

An independent samples t-test (equal variances not assumed and 1000 

samples bootstrapped) showed a significant difference between the manual 

group and the low reliability group (t(55.78) = -2.84, p < .05, r = .36) and 

the manual group and the middle reliability group (t(49.8) = -3.06, p < .01, 

r = .40). The manual group had a mean secondary task performance of 

55% (SD = 33%), which was much lower than the mean performance of 

72% (SD = 13%) in the middle reliability and 72% (SD = 16%) in the low 

robot reliability group (see Figure 99). These findings suggest that in middle 

and low robot reliability the participants had the capacity to correctly answer 

more secondary task questions compared to the manual group. 
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Figure 99 - Comparison of secondary task performance between manual and mixed mode 

group with 95% confidence intervals (bootstrapped) 

This was expected, because driving a robot manually and answering 

counting questions on another keyboard is quite challenging. However, it 

seemed that high robot reliability did not allow participants to answer 

significantly more secondary task questions compared to the manual group. 

Which suggests that a high reliability robot might take up nearly as much 

attention as if participants steered the robot manually. 

 Trial times 

Several between subjects t-tests (equal variances not assumed and 1000 

samples bootstrapped) revealed that there was a significant difference 

between the manual robot group and the high robot reliability group, 

t(55.12) = -4.428, p = 0.001, r = .51) with a large effect size. The manual 

group needed 34% (SD = 35%) more time to complete the trial. Compared 

to that the group who used the high reliability robot only needed on average 

12% (SD = 13%) longer. Therefore participants steering the robot manually 

needed significantly longer to complete the task than participants with 

100% reliable robot. The significance is depicted in Figure 100. 
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Figure 100 - Comparison of trial times between manual and mixed mode group with 95% 

confidence intervals (bootstrapped) 

 Rated task difficulty 

Several Mann-Whitney tests tested the high middle and low robot 

complexities against the manual condition. Data showed that there was a 

significant difference between the manual participant group and the low 

robot reliability group, U = 559, p < .05, r = .23). Participants did 

experience a significant higher task difficulty when interacting with a low 

reliability robot (Mdn = 4) compared to driving the robot entirely manual 

with a median of 3 (see Figure 101 and Table 32). But this difference had a 

small effect size. 
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Figure 101 - Rated task difficulty box plots across reliability levels and manual mode, 

whiskers (min/max) 

Rated task difficulty 

Condition Median (IQR) 

Manual 3 (2) 

High 3 (2) 

Middle 3 (3) 

Low 4 (1) 

 

Table 32 - Rated task difficulty table across reliability and manual mode 

 Interviews 

 Mixed mode: Mode switching behaviour 

After a participant performed all three conditions they were questioned 

about their experience in a semi-structured interview. With the aid of a 

theme based content analysis (TBCA) (Neale & Nichols, 2001), the themes 

of the answers are visualised from Figure 102 to Figure 106. The full 

transcript can be found in Appendix K - - Digital Appendix V (p. 404). The 

numbers in squared brackets in the figures and in the text indicate how 

often this theme was mentioned by participants. If a quote is provided the 

participant number and the related robot reliability condition is mentioned 

1

2

3

4

5

6

Manual High reliability Middle reliability Low reliability

R
a
te

d
 t

a
s
k
 d

if
fi

c
u

lt
y

Robot reliability condition

sig.



231 

  

in brackets (LR = low reliability/MR = middle reliability/HR = high 

reliability). The quotes are representative examples of the individual theme 

mentioned. A theme is indicated in the text in italic. 

Condition: Mixed mode
Number of Participants: 39

What made you decide 
to use auto mode?

Less demanding/
relaxing [9]

Predictable navigation/
systematic approach 

[9]

Better/good 
performance/no 

misses [8]

Faster [6]

Trust in auto mode [6]

Still double check/
human supervision [5]

When participant felt 
lost [4]

Other:

 Do secondary task [4]
 If environment is less cluttered [3]
 Mode was encouraged [2]
 When more familiar with task [2]
 Found target [2]
 Less human error [1]
 Auto takes decision away from me [1]
 Not sure when to use manual mode [1]

 

Figure 102 - TBCA of the question as to why participants used auto mode, with item count 

in brackets 

Most participants said that using auto mode made them feel more relaxed 

and the task was less demanding [9]. For example: 

 “I went for auto mode because it required me to do less, […] I didn’t 

have to waste my time controlling through the whole scenario. But I 

could, out of the corner of my eye, make sure it was picking up on 

things.” (P5, MR) 



232 

 

Participants were able to predict the movements and how the robot 

navigated (predictable navigation) [9], which made them stay in auto mode. 

One participant commented: 

 “It moves at a predictable pace, and it does things more or less in 

the same pattern, every time. So you kind of know what it’s doing, 

so yeah, if it misses something you can stop it and do what you need 

to do with it.” (P10, HR) 

Eight participants mentioned that the robot performance in auto mode was 

better [8]. As expected these themes emerged mostly from participants in 

the high reliability condition [5], than in middle [2] or low reliability 

conditions [1]. Others commented that it would be faster, than them having 

to steer the robot [6]: 

 “I saw that the robot was navigating through the rooms, as I would 

expect it to. When it was finding a target, it was detecting it correctly, 

so I didn’t feel the need to tinker with the robot’s correct functioning. 

And I thought I couldn't do better than what it was doing on its own, 

so I would be slower because I would have to use a button to align it 

and then press it; I might even make a mistake and pressing the 

wrong button.” (P16, HR) 

However, across all reliabilities participants mentioned that there was still a 

need to double check what the robot was doing [5]. Four participants used 

auto mode when they got lost and let the robot navigate. 

With respect to the interview data it can be inferred that automatic robot 

features can reduce subjective workload (less demanding/relaxed). 

Predictability was an important factor for using auto mode. Although, some 

participants thought that auto mode was faster and had better performance, 

they still believed that the robot needed human supervision. 
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Condition: Mixed mode
Number of Participants: 39

Robot missed area to 
look at [14]

What made you decide 
to use manual mode?

Double check a 
possible target [12]

Robot misses target 
[8]

Other:

 Faster identified target than robot [2]
 Less trust in auto mode [2]
 Auto did not provide good orientation/

mental model of scene/room [2]
 If possible, manual all the time [2]
 I thought I was faster [2]
 Manual more adequate/more accurate [2]

Get used to controller/
confidence in 

performing in manual 
mode [3]

In  more cluttered 
environments [3]

Small field of view/
unclear image [3]

Auto navigation made 
no sense/not as 

expected [6]

 

Figure 103 - TBCA of the question as to why participants used manual mode, with item 

count in brackets 

Figure 103 depicts the reasons why participants went into manual mode. 

Obviously the participants took over in three main situations: when the 

robot missed an area [14], a participant thought that there was a possible 

target and wanted to double check [12], and when the robot missed a target 

[8]. The following quote underlines this: 

 “[I used] manual when I felt that either, well, in two situations really, 

one when I didn’t think it got into the corners properly enough, and 

the other one when I noticed something of the corner of my eye, that 

it might have missed, […]. When there wasn’t a marker coming up 

any time soon, so it probably haven’t picked up on it, so I just went 

into manual, marked it, go back into auto, keep going.” (P8, MR) 

For some participants [6], the automatic navigation was not predictable and 

the robot did not do what they expected; if that was the case participants 
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drove mostly in manual mode. Most of the participants mentioning that auto 

mode was unpredictable were assigned to the low reliability condition [4], 

rather than to the middle [1] or high condition [1]. The reason for that could 

be the fact that in the low reliability condition the robot only looked into 

corners or to the side infrequently because it was more often in low 

reliability zones. Likewise, only participants in the low reliability condition 

[3] mentioned a small field of view or an unclear image. Some participants 

[3] only used manual mode after they got used to the controller and more 

grew confident in the task. This means that a certain self-confidence is 

necessary to take over robot control. 

The data suggests that if the robot missed areas [14], did not inspect 

objects properly or the participant had to double check [12], the robot 

missed a target completely [8], or lacked predictability (auto navigation 

made no sense) [6], participants used more manual mode.  

A follow-up question asked participants if they thought auto mode was 

useful. 92% of the 39 participants thought auto mode was useful only 8% 

said no. 

 Mixed mode: The use of robot navigation goal 

points 

This question explored what people thought about the map feature that 

showed the navigation goal points (NGP), which the robot used to navigate 

through the environment. The robot drove from point to point, at each point 

it had a look around. Figure 104 shows the map from the interface with the 

NGPs in orange (squares). 
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Figure 104 - Top view map from the robot interface with navigation goal points (orange 

squares) 

Participants were asked whether they used the NGPs, if they were useful 

and for what reasons they were used (see Figure 105). 

Condition: Mixed mode
Number of Participants: 39

What did you think 
about the robot’s 

navigation goal points 
on the map?

No stopping point = 
indicated it would miss 
area = use manual [16]

Helps predict robot 
movements [15]

Less use of goal points, 
more focus on map [4]

They are more distraction; 
less concentration on robot 

[1]

Trust robot more [1]

Need to get used to it 
[2]

Pool attention to 
sweep points/more 
secondary task [2]

Followed them in 
manual [3]

 

Figure 105 - TBCA of the question as to how participants used NGPs, with item count in 

brackets 

Most participants [16] used the points to see whether they had to use 

manual mode, because for a longer period of time there was no NGP where 
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the robot would look around (No stopping point = indicated it would miss 

area = use manual). For example, participant 5 explained: 

 “It was good to know where the robot would stop and have a look 

around because if I looked on the map and there was an area where 

was no stopping point, I would switch back to manual and have a 

look around myself, just to make sure.” (P5, MR) 

Additionally, the NGPs provided the ability to predict the robot’s movements 

[15]. Other participants were more focussed on the map [4] rather than the 

NGPs. 

Two participants paid attention only when the robot was at a NGP in order 

to score more highly on the secondary task (pool attention to sweep 

points/more secondary task). One participant had the opinion that the 

points were more a distraction than helpful. 

Overall, this map feature, seemed to be very useful for participants to 

predict the robot’s behaviour and support participant’s work, as well as 

foster better mode switching behaviour. 

 Manual mode group: Trust ratings 

Since the manually operated robot had no decision making capabilities or 

any other automatic features (no target identification or automatic 

navigation), the participants in manual mode were asked what influenced 

them to give certain trust ratings. The indicator ‘M’ after participant 

numbers indicates ‘manual’ group participant. 

Figure 106 shows that most [7] of the 13 participants mentioned that the 

trust they rated was more about their own performance rather than in the 

robot, for example one participant responded with: 

 “[…] I just think, sort of like, actually controlling it, it is sort of is you, 

[…]. You look through his eyes sort of thing. [...], it is how much you 

trust yourself a little bit.” (P13M) 

 “Based on whether I found a target.” (P7M) 
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Same ratings: Robot 
has no decision 

making/is depending 
[on me] [2]

Condition: Manual mode
Number of Participants: 13

What influenced you to 
judge the trust in the 

robot as you did?

Trust was about my 
own performance in 
spotting targets [7]

Same ratings: acted 
consistently [1]

Trust depends on how I 
feel about the task [1]

Trust depends whether 
the robot does what I 

expect it to do [4]

Trust depends on how 
much the robot could 

cope with/
malfunctions [4]

Lower trust: Get 
familiar with system 

[3]

Trust is associated 
with the robot's 
performance [1]

Trust depends on ease 
of use and field of view 

[2]

 

Figure 106 - TBCA of the question why participants gave different trust ratings, with item 

count in brackets 

Another influencing factor of trust was how much the robot could cope with 

the environment and not malfunction [4]: 

 “I think I just trusted it a bit more and when it flagged around things 

[driving around obstacles] and see how much it could cope with [the 

environment], how much it went up and down.” (P3M) 

 “I guess depending on the obstacles on the way, I would say the 

tighter spaces, where it couldn’t get through or it got stuck, I trusted 

[the robot] less.” (P12M) 

If the robot acted as the participants expected it to do [4], their trust was 

higher. For example one participant said: 

 “Because it acted consistently, so it didn’t change my expectation of 

what I can expect from it.” (P9M) 
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Three participants mentioned that their trust was lower because they were 

not yet familiar with the system (lower trust: get familiar with system). 

Summarising the points made above, trust ratings in the manual group 

depended mainly on the subjective self-performance of the participant, 

since they were in charge of finding all targets and rated the trust according 

to how many targets they found. Further, the mechanical 

capabilities/reliabilities and the predictability were relevant in the rating of 

trust. It seems that the trust ratings towards robots with less autonomous 

behaviour reflected the trust of the participants’ own ability more, compared 

to autonomous robots with decision making capabilities. 

 Manual mode: Robot support 

The following list represents what type of support, features and sensors of 

the robot participants would have wished to have: 

 Target identification [6] 

 Grabber for rubble or bomb disposal [5] 

 Move camera independently from driving direction [4] 

 Show possible moving grid [3] 

 Torch [3] 

 Gas detection [2] 

 Heat map [2] 

 Save image/screenshot [1] 

 Second supervisor [1] 

 Show covered areas [1] 

 Flying [1] 

 Fire extinguisher [1] 

 Wider field of vision [1] 

Most participants wished for support in the target identification: 

 “You know the camera, I think it can target people’s faces 

automatically, and target it automatically, and give me some alarm 

saying this might be a target. This can be easier I think, because I 

need to do multi-task, then if it can help me to do something, than 
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can make the whole process more efficient, maybe I won’t miss these 

targets.” (P10M) 

Furthermore they would have liked to have some sort of grabber in order to 

remove rubble or diffuse a bomb. 

Four of the 13 participants in manual mode wished to be able to move the 

camera independently from the robot’s driving direction. For example: 

 “I would have liked to look up and down […]” (P1M) 

 “So you could move and look into a different way.” (P3M) 

 “Vision could move independently from the direction of the robot, that 

way you can sweep the area faster because you can just like go 

straight but take a good look 360 [degree], all around the room.” 

(P9M) 

In order to navigate better in manual mode, participants suggested that the 

robot could show where it is able to drive or which areas were already 

covered. Other features mentioned were better robot light (torch), gas 

detection and a view of a heat map to locate targets easier. 

6.5 Discussion 

This study investigated the effects of task complexity and robot reliability 

on trust, workload, operator’s perception of the robot, and team 

performance in the context of semi-autonomous Urban Search and Rescue 

robots. Qualitative interview data was collected to describe thoughts and 

behaviours of robot operators. Furthermore, in terms of their benefits for 

the rescue mission, remote semi-autonomous robot control was compared 

to exclusively remote manual robot control. 

The discussion is divided into six parts, the first part is looking into the 

influence of robot reliability and the second part is concerned with the 

influence of task complexity. This is followed by a discussion about 

personality scores and rated task difficulty. The fourth part discusses the 

comparison with the manual operating user group. After that, the findings 

from the interviews are reviewed. The discussion will conclude with study 

limitations and future work required to advance this topic. 
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 The influence of robot reliability on 

independent variables 

Three different reliability profiles were used to investigate how the 

performance of the robot would influence the independent variables of this 

experiment. A reliability drop consisted of the robot navigating inaccurately 

(failing to look at certain corners/areas) and missing a target or identifying 

a wrong target. In high reliability the robot did not miss any of the targets. 

During middle robot reliability the machine had one reliability drop and 

missed a single target. The low reliability level consisted of two reliability 

drops and subsequently the robot made two errors. 

The first two hypothesis stated that the robot reliability will influence trust, 

performances measures, subjective workload ratings, manual mode usage, 

and trial times. Additionally, the third hypothesis asked their influence on 

rated robot performance and rated self-performance. 

There was a clear trend between high and low robot reliability levels. The 

less reliable the robot was the lower were the trust ratings. Although 

participants might have been unaware of some robot mistakes, which can 

lead to insignificant results among trust (Chien & Lewis, 2012), observed 

robot performance measures (observed performance refers to the 

experienced robot performance of the participant) showed a significant 

difference between all reliability levels. The positive influence of reliability 

on trust was expected, since robot performance is the main influencing 

factor on trust (e. g. Desai et al., 2012; Hancock, Billings, Schaefer, et al., 

2011). Yet, this proves that the use of simulated rescue robot scenarios 

developed in UNITY can produce similar results compared to real-robot 

systems (e.g. Desai et al., 2012). This was also demonstrated by Robinette 

et al. (2015) who used a UNITY simulation to investigate the effects of robot 

performance on automation usage. 

Regarding performance, the lower the reliability of the robot the lower was 

the objective team performance. Objective team performance was 

increased by six percent between middle and high robot reliability but the 

increase in performance between low and middle reliability was not 

significant. These results show that a good, or very good, working robot can 
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enhance the performance of a USAR mission but differences between lower 

reliability levels (between 62% and 78% robot reliability) did not show a 

significant increase in performance. These results are similar to de Visser 

and Parasuraman (2011) who found that imperfect automation had a 

performance benefit if the reliability was over 70%. In addition they found 

that it can have some benefits even if reliability is as low as 30%. However, 

the study presented in this chapter did not show how badly performing robot 

systems might influence the mission performance. 

Between the middle reliability and low reliability condition workload 

increased significantly. Already 1999 Endsley and Kaber found that higher 

levels of automation produce lower workload ratings but this study showed 

that failures in automation (requires manual correction) can cause this 

benefit to vanish. This might have been influenced by the higher levels of 

workload due to more manual operation. It is known that using manual 

mode (teleoperation) produces higher levels of workload (see also Chen & 

Terrence, 2009). Therefore, a very good robot that made no mistakes was 

rated as similarly demanding as a robot that made one mistake. This finding 

is different to Desai (2012), where workload was significantly lower for the 

100% reliable robot compared to situations where the robot made one 

reliability drop. That low and middle reliability workload was not significantly 

different could also be due to the characteristics of a vigilance task, where 

too high levels of sustained attention (supervising the robot) induce 

hypostress and result in high levels of subjective workload (cf. Bainbridge, 

1983; Warm, Parasuraman, & Matthews, 2008). This could have been the 

case for the situation where the robot made no mistakes and participants 

did not need to interfere/take over manual control. Data was unlikely 

influenced by the secondary task, as suspected by de Visser and 

Parasuraman (2011) who claimed that during performing the main task, if 

workload dropped, participants might have used this extra capacity to 

perform the secondary task or use different strategies to allocate attention. 

Because the secondary task performance in the manual condition was not 

significantly different to the secondary task performance in the high robot 

reliability condition. Which supports the notion of high levels of sustained 

attention during high robot reliability conditions. 
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As mentioned previously, during low reliability participants used manual 

mode the most. This was a significant increase compared to the high robot 

reliability condition. However, this was expected because the robot in low 

reliability made more mistakes and therefore the participant needed to take 

over control more often to correct the mistakes. It is unclear if this 

continuous increase in manual mode usage (from high to low robot 

reliability) can be attributed to the decrease of trust levels. A more detailed 

analysis of mode switching behaviour and strategies would be necessary to 

investigate this matter further. A similar pattern was observed for the trial 

times, the more manual mode was used, the more time participants needed 

to complete the task. These findings are in agreement with Desai (2012). 

After each trial participants had to rate how well the robot performed. The 

measure was a validation variable in order to check whether participants 

perceived a low or high robot performance induced by changing reliability 

levels. The rated robot performance showed a significant decrease from high 

to low robot reliability. This was expected and validates that the participants 

actually experienced the different reliability levels. However, there was no 

significant differences in the participants rated self-performance. This is 

different to the findings of Desai (2012) who found a significant decrease in 

rated self-performance between 100% reliability and a robot who had one 

reliability drop. But Desai also had significantly different rated levels of self-

performance due to the length of interaction. Perhaps the time of interaction 

in this study was too little to show any effects of robot reliability on rated 

self-performance. 

In conclusion, data showed that robot reliability influenced trust, workload, 

performance, manual mode usage, and trial times. 

 The influence of task complexity on 

independent variables 

Task complexity was influenced by changing the required quantity and types 

of targets as well as the quantity and difficulty of the search environment. 

Low task complexity only required to find casualties in a fairly uncluttered 

environment. Middle task complexity consisted of finding casualties and 

hazard signs in a medium cluttered environment. The high task complexity 
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level introduced a third type of target to find: evidence for terrorist attacks. 

This target introduced uncertainty because it could be a weapon or a self-

made explosive device, whose appearance is unknown. In addition the high 

task complexity environment was the most cluttered and obstacle rich 

environment in this study. 

It was hypothesised that task complexity will influence trust, performances 

measures, subjective workload ratings, manual mode usage, and trial 

times. And indeed, participants rated the robot on lower complex tasks as 

more trustworthy than middle complex tasks. But participants also rated 

low and high complexity tasks as similarly trustworthy. This shape of the 

data was not expected and might have been influenced by other variables. 

An explanation for these unexpected trust ratings could be that the 

observed robot performance was significantly higher in high complexity 

conditions compared to low and middle complexity and showed a constant 

increase from low to high complexity. Therefore the highest perceived 

performance of the robot was during high task complexity. This could 

explain the high trust ratings in the high task complexity condition. 

Consequently, it is important to collect data of the observed robot 

performance (what the participant actually witnessed) and the objective 

team performance (how many % of all targets were found). While the 

observed robot performance increased with increasing task complexity, the 

actual objective team performance showed a different picture and 

decreased from low to high complexity. The fact that participants failed to 

see a robot’s mistakes because they missed them too, led them believe that 

the robot was more reliable and they perceived the robot’s performance as 

higher. During the experiments of Rovira et al. (2007) and Chien and Lewis 

(2012) it was suspected that because of the absence of alarms system 

failures were not detected and hence participants could not easily 

discriminate between low and high system reliability. 

Nevertheless, the human-robot team performance (objective team 

performance) was significantly declining between low and high complexity 

and middle and high complexity. Therefore, teams performed worse when 

the task was highly complex. This is in agreement with recent literature. 

When Desai (2012) changed task complexity it showed that the more 
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complex tasks were, the worse was the performance with the semi-

autonomous robot system. There was no significant performance difference 

between low and middle complexity. It could be that the difference between 

low and middle task complexity was not big enough to produce significant 

differences. Because the same pattern is shown in rated task difficulty 

where participants did not perceive a difference in task difficulty between 

low and middle complex tasks. 

There were no significant differences across task complexity in terms of 

workload, secondary task performance, manual time or trial times. This 

means that participants, no matter how complex the task was, had similar 

levels of workload, secondary task performance, and they also needed the 

same time to complete the task, and used the similar amount of manual 

mode usage. 

In addition the second hypothesis stated that task complexity will influence 

rated self-performance and rated robot performance. Rated self-

performance varied significantly between low and high task complexity. The 

more complex a task was, the lower they rated their own performance. This 

is in accordance with Desai’s (2012) experiment where he changed task 

complexity. But the rated robot performance showed no significant 

differences across the complexity levels, which is also in accordance with 

the studies from Desai (2012). This data indicates that participants did not 

think the robots performance declined when a task got more complex, which 

might be the effect of the perceived performance, which increased with 

complexity level. Participants attributed the decrease in performance to 

themselves by rating their own performance worse during high task 

complexity. 

In hypothesis H5 it was hypothesised that task complexity and robot 

reliability will interact regarding trust. However data showed that there was 

no significant interaction effect. 
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 Personality scores and rated task difficulty 

It was further hypothesised that personality scores will correlate with trust, 

performance, subjective workload ratings, and manual mode usage. This 

was not the case. None of the Big-Five personality factors correlated with 

any of the data. Still, a significant correlation was found with respect to the 

gaming experience of participants. If participants were experienced in 

gaming they tended to have better performances and they rated the tasks 

less difficult as well as claimed to have a higher self-confidence in the task. 

It needs to be noted that this was a virtual desktop study and the search 

environment was very similar to a gaming environment (e.g. computer 

screen, Xbox controller, etc.). The similarity could have caused this 

significant correlation. For a real rescue scenario the skills of gamers might 

only partly support their interaction with the robot. 

The seventh and eighth hypothesis declared that participants will rate more 

complex tasks more difficult and rate lower robot reliability more difficult as 

well. That participants will rate more complex tasks as more difficult could 

not be proven in this study. Although Liu and Li (2012) said that a complex 

task does not need to be difficult (but it is likely that it is), participants 

perceived the high complexity task as more difficult than the middle or low 

complexity task. But there was no significant difference between low and 

middle task complexity. Since objective team performance, observed robot 

performance and rated self-performance were not significant between low 

and middle complexity conditions it is comprehensible that rated task 

difficulty did not vary either. This fact is strengthening the suggestion that 

the independent variable was not strong enough to elicit significant 

differences between low and middle complexity. In terms of the hypothesis 

that participants will rate lower robot reliability as more difficult, participants 

did not indicate that the task was more difficult when the robot was 

unreliable. Therefore an additional task component, in this case steering the 

robot manually, made the task maybe more complex but not necessarily 

more difficult.  
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 Combined discussion 

The results showed that, next to robot reliability, task complexity is an 

important influencing factor on the number of targets found. Figure 107 

qualitatively visualises the results of this experiment. 

 

Figure 107 - Qualitative overview of research results of study III; positive influences are 

indicated with (+), negative influences indicated with (-) 

Robot reliability positively influenced the number of targets found and the 

observed robot performance. It also influenced trust, however, there is 

evidence that if an operator does not notice a robot mistake they will rate 

their trust in the robot differently than intended by the researcher. 

Therefore, the observed robot performance, which is dependent on the 

robot reliability is the determining factor on trust. The higher the robot’s 

reliability the less time was needed to complete the scenario and the less 

participants used manual mode. However, this is very much dependent on 

the level of performance. Low or very low robot reliability can have an 

adverse effect on time taken, workload, and targets found. Also, the 

relationship between robot reliability and workload was inconclusive. 

Participants experienced more subjective workload in the low reliability 
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condition compared to the middle reliability condition. There was no 

significant difference compared to the high reliability condition. 

Task complexity negatively influenced the number of targets found and the 

rated self-performance of the participants. The higher the task complexity, 

the higher was the perceived task difficulty. In general, task complexity and 

robot reliability seem to be independent concepts regarding trust, targets 

found, and time taken. However, it needs to be noticed that in real rescue 

scenarios the task complexity of the environment is likely to influence the 

reliability of the robot. 

 Comparison between manual and mixed 

mode groups 

The last hypothesis compared 13 participants, who steered the robot during 

the entire trial manually, with the mixed-mode groups (low, middle, high 

reliability). It was expected that the workload for a manually controlled 

robot is higher than supervising an autonomous robot. However, no 

significant difference was found. This is contradicting to the findings from 

Chen and Terrence (2009) who found that remote controlling robots induced 

higher workload levels than automated systems. In addition Endsley and 

Kaber (1999) found that, in terms of automated systems, that a higher level 

of automation induces substantially lower subjective workload. A reason for 

this differences in findings could be the different types of task. Secondly, 

that if participants had low levels of workload they engaged more into the 

secondary task performance and may have balanced out their subjective 

cognitive workload levels. 

The hypothesis also stated that performance measures will be lower when 

participants exclusively used manual mode. This could only be proven 

partially. There was no significant difference in objective performance 

between the manual group and both, the middle reliability robot and low 

reliability robot group. Nevertheless, there was a significant increase in 

performance when participants used the high reliability robot. Therefore 

only the use of a 100% reliable robot resulted in significantly increased 

performance. Also Desai (2012) showed that 100% reliable robots in semi-

autonomous systems have significantly higher levels of performance than 
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robots with automation faults, unfortunately he did not compare these 

results to manual operation. Not many HRI experiments compare 

automated robot systems additionally to exclusively manual performance. 

De Visser and Parasuraman (2011) compared a reconnaissance mission with 

two robots (UAV and UGV) during manual, static automation and adaptive 

automation conditions. Nonetheless they were not able to show any 

differences between these conditions in terms of performance (detection 

performance). The study results and previous literature can question if 

automation really can enhance human-robot team performance in terms of 

semi-autonomous rescue robots, because 100% reliable systems are not 

possible to develop in the near future. 

A similar picture gave the distribution of trial times. The 100% reliable robot 

condition was significantly faster in completing the trials compared to the 

manual group. There was no significant difference in completion time 

between the manual and the middle and low reliability robot condition. 

Therefore only a perfect robot could help to achieve the task faster than in 

manual operation. 

The secondary task performance showed that participants had significantly 

more capacity to answer the secondary task in the low and middle robot 

reliability conditions compared to the manual group. This was expected 

since they needed to drive the robot manually which demanded their hands 

constantly on the controller rather than on the keyboard to answer the 

secondary task. 

Although workload showed no differences between manual and mixed mode 

groups, participants did experience a significant higher task difficulty when 

interacting with a low reliability robot compared to driving the robot entirely 

manually. Therefore one can suspect that unreliable robots might be able 

to reverse the beneficial effects of automation. As the other results showed, 

merely a 100% reliable robot did provide a benefit in terms of performance 

measures. 
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 Qualitative data analysis regarding auto and 

manual mode usage, robot features, and trust 

After completing the experiment participants took part in a semi-structured 

interview. People were asked why they used a certain robot mode (auto or 

manual), used certain robot features, and rated the trust as they did. 

At the beginning of the interview participants in the mixed mode group were 

asked why they used auto mode. Their main reasons were that auto mode 

was less demanding and relaxed them. Furthermore the robot was 

predictable and followed a systematic approach. Another reason for using 

auto mode was that participants felt that the robot did a good job and 

performed well. 

Participants were also asked if they used the navigation goal points (NGPs) 

of the robot. Most participants used the points to see whether there was a 

stopping point where the robot would turn any time soon, or if they had to 

take over manual control in order to not miss looking in all the corners. 

Participants liked that the NGPs made the robot’s movements more 

predictable and they even followed them in the manual mode. Future robot 

systems should be able to visualise such an aid in order to help the operator 

to predict the robot actions. Predictability emerged time and again to be a 

very important factor for trust and collaboration. Kruijff et al. (2014, p. 12) 

claimed: “And before we can even talk of common ground, of collaboration, 

one of the most fundamental lessons we have learnt recently is that this all 

stands and falls with that robot’s autonomous behavior being transparent.”  

The 13 manual mode-only participants were asked what influenced them to 

give certain trust ratings. Most participants said that they rated their own 

performance rather than the robot’s performance. Further, participants said 

that trust in the robot depended on how much it was able to cope with the 

environment they were steering it in. Also, participants claimed that their 

trust in the robot depended on whether the robot did what they expect it to 

do. This shows that trust has no fixed parameters. Trust in manual operated 

machines focussed on technical reliability and trust in robots with 

automation features focusses on the decision making capabilities. This is 

important for the decision which trust questionnaire is more appropriate to 
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use and whether trust is measured in the technology or in the artificial 

intelligence of the robot. 

The main features or sensors participants wished for in order to support the 

search task were a target identification system and a grabber to remove 

rubble or diffuse a bomb. For some participants it was very important to be 

able to move the camera independently from the driving direction to have 

a better field of view and situation awareness. Other ideas were to show 

where the robot might be able to drive (e.g. possible moving grid) and show 

areas that have already been covered. 

When the manual mode-only group was asked about their feelings towards 

an auto mode of the robot, nearly half of the participants said that human 

supervision was still required. Additionally, it would very much depend on 

the capabilities of the robot. However, participants thought that automation 

would require less workload but manual mode would still be safer. It seems 

that participants liked to be in control and did not want to give it away easily 

depending on their own confidence in performing the task. Especially 

professional rescue personnel are highly qualified and taking away control 

from them might be much more difficult and maybe not wanted at all. 

 Limitations and future work 

Programmed reliability level was diluted by the fact that some participants 

did not perceive certain mistakes of the robot and therefore their impression 

of the robot was different than desired by the independent variable, which 

changed the participants’ ratings accordingly. That is why this study 

developed a measure (observed robot performance) that will take this into 

account. The effect was especially visible between the task complexity 

conditions where with the increase of task complexity the observed robot 

performance increased, too. This could have also led to the fact that trust 

ratings, objective performance, rated task difficulty had a u-shaped data 

trend and influenced the correlations and violated linear based statistical 

models. This might be the reason why some correlations were solely weak 

or moderate and why the independent variable interaction was not 

significant. It is advisable to test task complexity and minimise the 
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difference between intended robot performances and observed robot 

performances to eliminate other influences on the dependent variables. 

Although an a priori power analysis showed that 39 participants are 

sufficient, more participants might have shown more significant result, since 

a clear reoccurring data trend was visible. Especially the number of 

participants in the comparison between the manual and mixed mode with 

each group consisting of 13 participants (26 in total) was insufficient to 

obtain significant results. This data was not included in the a priori power 

analysis. 

Furthermore, the participants tested were university students, staff and 

from the general public. The target group, which are firefighters, have a 

different self-confidence in the task at hand. They are highly trained in these 

type of tasks and might have different attitudes and interaction behaviours. 

Because self-confidence is an important factor regarding trust when working 

together with a robot that is capable of autonomous behaviour (Chen & 

Terrence, 2009; see Lee & Moray, 1994). 

It needs to be considered that the main performance measure in this study 

was the number of targets found. The rated robot performance was 

moderately correlated with the objective robot performance, which suggests 

that not only the total numbers of targets found influenced the rated robot 

performance. It may be that other variables such as the robots movements 

or the robot search strategy influenced rated robot performance as well. 

Also, trust was weakly correlated to the objective robot performance. 

Although performance is the main influencing factor of trust, there are other 

components of a robot’s performance that are important. 

Future studies might determine which performance shaping factors are 

important when interacting with a semi-autonomous rescue robot system. 

Further, in future experiments with different designs the measure of the 

observed robot performance might be useful to distinguish between 

objective and observed performance. Finally, in this experiment the robot 

performance was generally quite high, it would be of interest to test robot 

performances that are very low, or even a robot with no success at all, in 
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order to see to what extend that is influencing the human-robot team 

performance and the behaviour of the participant. 

6.6 Conclusion 

Urban Search and Rescue missions are highly demanding and dangerous for 

rescuers. They have to deal with unpredictable and very complex tasks and 

environments under constant time pressure. Their work is greatly 

performance oriented, because peoples’ lives depend on it. Reconnaissance 

robots can help with rescue tasks and can give support in finding victims in 

areas which are too dangerous or inaccessible for rescue personnel. 

This study aimed to determine the effects of task complexity and robot 

reliability on trust, workload, operator perception, and performance. The 

study also investigated the manual mode usage and gathered qualitative 

interview data to shed light on thoughts, preferences, and behaviours of 

robot operators. Furthermore the utilisation of autonomous robot features 

were compared to exclusively manual operated (remote controlled) 

conditions in terms of their benefits for the rescue mission. In addition, a 

semi-autonomous performance measure was developed. 

As expected and reported in previous literature, the higher the robot 

reliability was, the higher was the trust in the robot and the higher was the 

human-robot team performance. This demonstrated that virtual rescue 

scenarios are a valid method to examine human-robot teams. A very 

unreliable robot induced higher levels of subjective workload compared to 

a more reliable robot. The robot performance was the most influencing 

factor on trust. Especially the strong correlation of the subjectively rated 

robot performance with the trust scores underlines this result. 

With respect to task complexity it can be concluded that task complexity did 

influence trust ratings and performance but it did not influence the 

subjective workload ratings. Highly complex tasks resulted in a drop in the 

performance of the human-robot teams compared to other task 

complexities. However, these results were diluted by the fact the observed 

robot performance was significantly higher in high task complexity 

conditions. 
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Most interesting was the comparison between the operator group who used 

the robot exclusively in manual mode and the operator group who utilised 

the autonomous robot features (semi-autonomous/mixed mode). Only the 

100% reliable robot was able to yield significant higher performance levels 

and less task completion time compared to the manual group. These results 

illustrated that unreliable robot systems did not show benefits for the overall 

task performance. It needs to be taken into account that 100% reliable 

robot systems are unlikely to exist and therefore the use of low reliable 

robot systems is fruitless. 

It does not mean that every autonomous feature will be futile but it is of 

utmost importance to keep in mind the performance outcomes. The most 

viable variable in rescue missions is the mission performance. Many studies 

neglect to prove that the semi-autonomous/autonomous robot systems 

under examination provide real benefits compared to pure tele operation. 

Only if we can achieve an improvement in performance we can consider 

autonomous features as meaningful and future-oriented for Urban Search 

and Rescue. 

6.7 Chapter summary 

This chapter examined the influence of robot reliability and task complexity 

on trust, workload, and different performance measures. Results showed 

that trust was mainly influenced by the robot reliability. Task complexity did 

influence trust ratings. However, the effect is likely to be diluted by the 

observed performance because the observed robot performance (how 

reliable the robot seems) changed across task complexity which most likely 

influenced the trust ratings. Furthermore, unreliable robots induce higher 

levels of workload and decreased performances. An interesting comparison 

of mixed mode operators (auto and manual operation) and manual 

operators (manual operation only) showed that only the robot with 100% 

reliability could contribute towards significantly higher performances and 

reduced task times compared to the manual operating group. 
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7 Study IV - The influence of robot 

transparency and task complexity 

 

7.1 Chapter overview 

This chapter’s study uses the same virtual environment and robot as the 

previous study. It examines the influence of robot transparency and task 

complexity on workload, performance and trust. The quantitative data of 

the previous study showed that robot transparency is of importance for the 

operator to understand the robots’ states and actions. Transparency levels 

in this chapter consist of two different interfaces with different levels of 

feedback and scenario information. In addition, the study aims to see if the 

results from the previous study can be validated and have the same effects 

on trust, workload, and performance. Interview data examines and 

quantifies which elements of the interface were actually used and why, in 

order to understand the benefit of presenting more or less information for 

higher transparency levels. 

7.2 Introduction 

Despite the fact that robotic agents are becoming increasingly autonomous 

and sophisticated, the human still holds an essential role in autonomous 

systems (Lyons & Havig, 2014). But it can be challenging to operate them 

because new autonomous systems demand new forms of interactions and 

most processes of the system are invisible to the operator. Therefore it is 

crucial to take a human-centred approach and develop robotic team mates 

that are understandable and supporting. The lack of background information 

of the robot’s behaviour/functioning leads operators to trust robots less and 

may lead them to use the autonomous features inefficiently (Stubbs et al., 

2007). It is important that operators gain insight and understanding of the 

robotic agents’ actions in order to calibrate their trust into the system. The 

previous study (Chapter 6) showed that participants positively mentioned 

features that supported them to predict the robot’s actions. Predictability is 
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an integral part of a system’s transparency (Colombi, Lenfestey, Cring, & 

Colombi, 2009; Ososky, Sanders, Jentsch, Hancock, & Chen, 2014). 

Recent literature focussed on transparency because it might also influence 

trust calibration and could enhance situation awareness resulting in an 

improved task performance (Ososky et al., 2014). One can simply put that 

transparency is the provision of more information to the user (Sanders et 

al., 2014). Although, this definition is not sufficient because the term 

transparency includes that the system is supplementing expected outputs, 

reveals how a system works and what it is doing in a format that is 

understandable and intuitive (Ososky et al., 2014; Preece, Rogers, & Sharp, 

2002). For example, proving more information by visualising the running 

source code of the robot is rather confusing than transparent. It may be 

possible to increase transparency by providing more information, even 

though a too high level of feedback can lead to overload and confusion 

(Finomore et al., 2012). According to Chen et al. (2014, p. 2) transparency 

is “the descriptive quality of an interface pertaining to its abilities to afford 

an operator’s comprehension about an intelligent agent’s intent, 

performance, future plans, and reasoning process.”. With this definition it 

is clear that transparency needs to be adjusted to a comprehensible and 

performance increasing level. Also, the adjustment has to be fitted to the 

goals and tasks of the field of application (Lyons & Havig, 2014). 

Ososky et al. (2014) emphasised on the importance of mental models 

because varying mental models can influence the interpretation and 

understanding of the robot. In the rescue domain this is especially 

challenging, since the time for the operator to build a mental model (e.g. 

training time) is very limited. More transparency can support the formation 

of a mental model and foster better human-robot interaction (Ososky et al., 

2014). Noteworthy in this context is that trust is not based on what the 

robot can or cannot do, it is based on what the human perceives it to be 

capable of (Ososky et al., 2014). Which emphasises not to underestimate 

the importance of observed robot performance measures and perceived 

robot performance measures. This paragraph showed how important the 

creation of an appropriate mental model with the aid of transparency is. 
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Similarly to Ososky et al. (2014), Lyons and Havig (2014) were looking to 

foster transparency with regard to shared awareness and intent by 

introducing straightforward implementation approaches. For a shared intent 

they suggest that the robot has to inform the human as to why it functions 

non nominal at the given moment (Why did the robot something different, 

with what goal?). The robot can also show intent by social cues, for example 

with a directed gaze (also see Kwok et al., 2012). Robots may convey good 

intent by communicating with benevolence, which means that they should 

promote the belief that the robot will act in the best interest of the operator. 

As the data from the second (chapter 5) and third study (chapter 6) of this 

thesis suggested, as well as other previous work (Kruijff et al., 2014; 

Seppelt & Lee, 2007; Stanton, Young, & Walker, 2007), operators are 

reluctant to use robotic tools with autonomy because of issues regarding 

the understanding of the robot’s states and actions. Hence, in terms of 

shared awareness Lyons and Havig (2014) stated that they recommend the 

robot should give detailed information about the actions and tasks or task 

steps it is currently doing. In that way the operator knows why the robot is 

doing something and what it will do next.  

Further, according to Lyons and Havig (2014), the system should 

communicate limitations, constraints, and why it is failing (e.g. share the 

reason for the failure). In a study in human-robot teaming in the USAR 

domain lack of transparency of the robot behaviour was suggested as being 

the reason of less autonomy usage by the operator (Kruijff et al., 2014). 

Their findings demanded, exactly as Lyons and Havig (2014) did, for 

transparency of the robot’s state, current and future tasks, behaviour, 

explanation of failing or succeeding, existing knowledge and capabilities. 

Additionally, the second study of this PhD (Chapter 5) found that a reliability 

indication positively influenced visual attention allocation towards the robot. 

Other literature showed that reliability or confidence indication of the robot 

enhanced control allocation strategy (Desai, 2012; L. Wang, Jamieson, & 

Hollands, 2009). Another intriguing finding was made by Dzindolet et al. 

(2003): If the capabilities of an automated system were communicated to 

the operator it positively mediated trust recovery after an error. 
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Consequently, communicating the robot’s confidence and capabilities 

proved to be useful and added to transparency. 

Furthermore, Lyons and Havig (2014) advice that some basic information 

to cultivate transparency should be visible. For example the robot’s health 

status and environmental changes that are or can influence the system’s 

performance (e.g. sensors, gauges). In order to clarify the team status the 

robot could communicate for which task it is responsible and for what tasks 

the human is accountable. This is, for instance, important when the robot 

can have different modes/levels of autonomy or sliding autonomy. 

The qualitative analysis of the previous study, reported in Chapter 6, 

showed that the participants’ situation awareness was often lacking and 

sometimes kept participants from using manual mode, even if this would 

have been the appropriate choice. Chen et al. (2014) developed a situation 

awareness based agent transparency model (SAT). Many of the previous 

suggestions from literature regarding transparency can be incorporated in 

this model. The model was used in this experiment to differentiate between 

the transparency levels. The model consists of three information levels (see 

also Figure 108, p. 262): 

 Level 1 information conveys the current state, goal and process of 

the robot. For example the path of the robot is displayed and a 

green/red light provides the current robot status. 

 Level 2 consists of the information as to why level 1 information is 

like it is. For instance, the robot gives information about resources 

available (battery life) or shows the constraints of the environment 

(why it cannot drive a certain path). 

 Level 3 information gives insight about the projected future status of 

the robot. This information could be a visualisation, in percentages of 

how sure the robot is about the target it identified or a general 

indication of current reliability status. 

Selkowitz et al. (2015) used the SAT model in order to determine the 

influence of transparency on trust, situation awareness and workload. They 

showed that more information transparency allowed operators to calibrate 

their trust better without experiencing more workload, but it did not support 
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their situation awareness. However, Helldin (2014) tested different aspects 

of transparency, such as the visualisation of automation parameters, 

uncertainty, reliability and ability, and found that workload increased with 

parameter detail and decreased with providing automation uncertainty. 

Furthermore different representation styles (text or bar chart) influenced 

trust ratings and performance as well. 

Finally it is critical to understand that transparency is a resource that 

supports trust calibration by matching the user’s expectations to the actual 

robot behaviour (Ososky et al., 2014). Transparency is therefore the key to 

predictability. 

Hypotheses: 

This experiment will investigate how different levels of task complexity in 

combination with two different transparency levels influence trust, workload 

and performance by using virtual rescue scenarios. Previous studies of this 

PhD have shown that task complexity is an important factor to consider in 

search and rescue missions (see Chapter 4 and Chapter 6). The previous 

study (Chapter 6) encountered difficulties to test task complexity and its 

influence on the dependent variables. Therefore this study minimised the 

difference between intended robot performances and observed robot 

performances in order to measure the influence of task complexity on trust, 

workload, and performance. 

H1) Robot transparency influences trust, performance and workload 

ratings. 

H2) Task complexity influences trust, performance and workload ratings. 

Furthermore, it is important to see whether task complexity interacts with 

robot transparency, because workload can increase with transparency detail 

(Helldin, 2014) and further visual demand in searching a complex scene 

might lead to decreased performance levels 

H3) Task complexity interacts with robot transparency to influence trust. 

H4) Task complexity and robot transparency influence subjective ratings 

of participants towards the robot. 
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Furthermore, the events that occurred during the trials were classified and 

their distribution analysed in order to look for differences between the 

experimental conditions. A post-task interview presents qualitative data 

about the participant’s interface preferences and the individual interface 

items used.  

7.3 Methodology 

 Participants 

Thirty participants were recruited via e-mail and posters. The study was 

open to staff, students and the general public. They were screened to fit the 

requirements for the study (over 18 years and no vulnerable members of 

the public). Overall the study took 35 - 45 minutes to complete. Participants 

were reimbursed with a 5 GBP Amazon voucher. The average age of the 12 

female and 18 male participants was 29.27 years (SD = 6.7). All 

participants were assigned a participant number and the data was stored 

under this ID and not under their name. The study was approved by Faculty 

of Engineering Ethics committee. 

 Experimental design 

The study was organised in a 2x2 mixed subject design (see Table 33). 

Robot transparency was the within factor with two levels (low and high). 

The independent between factor was task complexity with two levels (low 

and high). The dependent variables were trust, workload, and performance 

measures, as well as participants’ feelings about themselves and the robot. 

Conditions 

within 

Low transparency 

(LT) 

High transparency 

(HT) 

b
e
tw

e
e
n

 

Low complexity 

(LC) 

LT-LC HT-LC 

High complexity 

(HC) 

LT-HC HT-HC 

 

Table 33 - 2x2 mixed subject design with the variables task complexity and robot 

transparency 
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The differences between low and high transparency/complexity are 

explained in the Virtual rescue scenario. LT-LC, HT-LC, LT-HC, and HT-HC 

are called trials. 

All environments had exactly the same floor plan and possible driving 

routes. This aimed for a better comparison among trials. To avoid that 

participants would get familiar with the route during their two trials 

(changing transparency levels), they had to drive in one trial from start to 

end and in the other from end to start. In addition, the position and type of 

objects/clutter/rubble in the environment changed for each trial. 

 Interface transparency levels 

Standard elements of the display are rear view and main view of the robot. 

The robot also showed if it was in auto or manual mode as well as the 

readings of CO2 and temperature sensors. These elements were in every 

condition present. 

The two different interface transparencies were designed with the guidance 

of the situation awareness based agent transparency model (SAT) (Chen et 

al., 2014). The SAT model has three information levels, as shown in Figure 

108. Each interface will be explained in detail in the next two sections. 
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Figure 108 - Situation awareness-based Agent transparency model (Chen et al., 2014) 

Low transparency interface 

The low transparency interface incorporated Level 1 (L1) situation 

awareness (SA) of the SAT model. The low transparency interface is shown 

in Figure 109. If an element of the display is explained, the element number 

is written in brackets. 

 L1 Purpose/Process: The rescue robot shows the operator what its 

current goal is by displaying the goal it is trying to achieve (1). 

Furthermore, the orange squares, called navigation goal points 

(NGPs), on the map (4) show the intention of the robot by visualising 

where it wants to navigate next. 

 L1 Performance: The current status (2) of the robot is depicted with 

a smiley and a word. The green word “working” and a smiling face 

indicates the system is working properly. A red sad face and the word 

“system failure” indicates a faulty system. Furthermore the battery 

status and the signal strength is displayed (3). 
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High transparency interface 

The high transparency interface incorporated SA Level 1+2+3 of the SAT 

model. The high transparency interface is shown in Figure 110. The SA level 

1 is depicted in the section above. In addition to the low transparency 

interface components (SA Level 1) the high transparency interface 

incorporates the following elements: 

 L1 Process: The process is additionally supported within an enhanced 

map view (5). The map not only shows the NGPs, but also the 

shortest line between the points, so called ‘path lines’. This aims to 

show a proper visualised route through the environment. The robot 

intentions can be seen in the mission log (7) (e.g. as to why the robot 

is turning towards a certain direction). It additionally uses gaze 

(turning camera towards an object) to give away its intent (e.g. 

Coradeschi et al., 2006). 

1 

2 

3 

4 

Figure 109 - Low transparency interface with highlighted display elements 
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 L2 Reasoning process: The robot log depicts the reasoning as to why 

the robot did certain things (e.g. the robot turns towards a door and 

displays: "Door found, save position, continue search"). It also 

provides additional information regarding the mission parameters in 

the mission info box (8). For instance it shows an estimated number 

of targets in the room, number of rooms to search, how long the 

scenario is running, and how much seconds of battery power is left. 

 L3 Projection to future: The robot will show in the mission log (7) in 

which room it is (e.g. Entering room 1) and the mission info box (8) 

shows the estimated number of rooms. The participant can therefore 

estimate how long the scenario might last. 

 L3 Potential limitations: The robot is able to visualise its current 

reliability level (6). It can display how confident the system is in its 

work. With this function it can provide the information about potential 

limitations in its performance. It also gives an indication of 

performance history by depicting in the Mission Info box (8) how 

many targets have been found so far. 
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 Task complexity levels 

Each trial had its own environment. In all environments six targets were 

present. The position of targets was predetermined by the scenario timeline. 

Every participant, when in auto mode, encountered targets and experienced 

robot errors at the same time in all trials. This was pre-programmed 

because timing of errors had an impact on trust (Desai et al., 2013). In the 

following paragraphs the different task complexity levels are explained. 

Low task complexity environment 

Low task complexity utilised 30-40 objects per room. A bird’s eye view 

during development in Figure 111 depicts an example view of a low task 

complexity environment. 

5 

6

7

8 

Figure 110 - High transparency interface with highlighted display elements 
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Figure 111 - Low task complexity (editor view of LT-LC) with waypoints visualised. 

Targets in the low task complexity conditions were victims only. An example 

of such a victim is visualised in Figure 112. 

 

Figure 112 - Example of victim in a low complexity environment 

High task complexity environment 

In a high task complexity condition were between 50 and 60 objects placed 

in each room. A bird’s eye view of a high task complexity condition is shown 

in Figure 113. 
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Figure 113 - High task complexity (editor view of LT-HC) with waypoints visualised. 

During high task complexity participants had to find three different kinds of 

targets: terrorist indicators (weapons/bombs), hazard signs, and victims. 

In Figure 114 examples of these three types are illustrated. 

 

 

 Virtual Rescue scenario 

The Virtual rescue scenario used the same hardware and software as the 

previous chapter (Study III, Chapter 6). The development of the software 

is explained in Section 3.5.2. 

Figure 114 - High task complexity targets (left to right: weapon, hazard sign, victim) 
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Virtual robot 

The simulated robot had proximity sensors (360 degree) which were 

visualised by a top view map. A front and rear camera were provided and 

visualised on the display. The robot’s target identification system was 

enabled to find specific targets in the environment. The robot further had 

CO2 and temperature sensors. All four conditions were performed in a mixed 

mode, which is explained below. 

MIXED MODE 

Mixed mode means that participants were free to choose between using 

manual and autonomy mode. 

Manual mode: 

 Participant is in charge of robot’s movements and target 

identification. 

 Participant can see the goal navigation points the robot would 

navigate to in the map. 

Autonomy mode: 

 Robot is in control of driving. 

 Target identification is active. 

 Materials 

A Laptop with an additional 17” screen was used. The program was created 

in UNITY, a multi-platform game creation system. The participant could 

interact with the virtual robot via a X-Box 360 controller. In addition, paper 

questionnaires and two cameras with tripods were used. 

 Procedure 

Participants were required to give informed consent before starting the 

study (see Appendix K - - Digital Appendix VI, p. 404). They began by 

completing a general questionnaire (see Appendix H, p. 398) which asked 

for demographics and their propensity to trust robots. Next, participants 

had a five minute training session where they learned how to use the robot 
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manually, in auto mode and in mixed mode. Additionally, they received a 

full explanation of the two interfaces. After the training, participants 

performed two trials. Participants were told after each trial how many 

targets they have missed and with that in mind they had to answer the 

post-task questionnaire. The post-task questionnaire (see Appendix I, p. 

400) consisted of the Schaefer trust questionnaire (short), a NASA TLX to 

measure subjective workload, and questions about their performance. 

7.4 Results 

 Trust 

First, propensity to trust regarding robots was measured with the trust 

propensity scale used by Merritt (Merritt, 2011). The six statements could 

be answered on a 5-point Likert-scale ranging from “strongly disagree” to 

“strongly agree”. The participant sample had a median of 3.33 (IQR = 0.29) 

which indicates a very neutral trust propensity towards robots. The trust 

propensity between the groups (low complexity and high complexity) was 

not significantly different. 

Robot trust after the trials was measured with the short version of the 

Schaefer (2013) trust questionnaire (14 items) as shown in Appendix I (p. 

400). The data of participant 23 violated the assumptions of analysis of 

variance by being a significant outlier. Therefore this participant’s data was 

excluded from the dataset. Data was tested with a 2x2 mixed analysis of 

variance test. 

The influence of task complexity on trust 

Data showed that task complexity had no significant main effect on trust, 

F(1, 27) = 2490.65, p > .05 (see Table 34). 

Schaefer (short) trust scores across task complexity 

Condition Mean (SD) [%] 

High task complexity 77.90 (9.60) 

Low task complexity 75.38 (12.12) 

 

Table 34 - Schaefer (short) trust scores across task complexity 
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The influence of robot transparency on trust 

Robot transparency had a highly significant main effect on trust (F(1, 27) = 

15.94, p < .001, r = .61). Low transparency with a mean of 74.46 (SD = 

9.6) was rated lower in trust than the high transparency robot with a mean 

of 80.71 (SD = 8.8). Hence, during high robot transparency participants 

rated the trust in the robot higher than compared to the low transparency 

condition. This is visualised in Figure 115. 

 

Figure 115 - Schaefer (short) trust scores across the two transparency conditions with 95% 

confidence intervals 

The interaction between task complexity and robot transparency 

There was no interaction effect of complexity and transparency regarding 

the trust measure, F(1, 27) = .007, p > .05. 

 Objective performance 

The performance was measured in terms of how many percent of the six 

possible targets were found. 

The influence of task complexity on performance 

A Mann-Whitney test (see Figure 116) revealed that there was a significant 

difference of performance among the complexity levels with a medium effect 

Low transparency High transparency

Mean 74.46 80.71

50

55

60

65

70

75

80

85

90

95

100

T
r
u

s
t 

[
%

]

Transparency level

sig.



271 

  

size (U= 271.5, p < .01, r = -.36). In the lower complexity tasks, 

participants had a significantly higher level of performance (M = 91%, SD 

= 13%) compared to the high complexity task (M =81%, SD = 15%). 

 

Figure 116 - Performance across the two levels of complexity with 95% confidence 

intervals (bootstrapped) 

The influence of robot transparency on performance 

The data (see Table 35) showed that robot transparency had no significant 

effect on performance. The data was tested with a Wilcoxon signed-rank 

test (Z = -1.8, p > .05). 

Objective performance scores across robot transparency 

Condition Mean (SD) [%] 

High robot transparency 82.78 (16.66) 

Low robot transparency 88.33 (11.70) 

 

Table 35 – Objective performance scores across robot transparency 

 Observed robot performance 

The observed robot performance is the performance of the robot the 

participant actually witnessed, for more information about this measure 

please see the previous chapter (Section 6.3.5) In three of the 60 trials 
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conducted (30 participants, each 2 conditions) the robot was not able to 

demonstrate any performance because all targets were found in manual 

mode or were missed entirely by the participant. These cases were excluded 

listwise for statistical tests. Furthermore, data was not normally distributed, 

therefore a Mann-Whitney test was conducted. 

No significant difference between the observed robot performances across 

task complexity levels have been found (U = 302, p > .05). A Wilcoxon 

signed-rank test showed there were no differences across transparency 

levels (Z =-1.24, p > .05), therefore the observed robot performance did 

not vary significantly among conditions (see Table 36). 

Observed performance across conditions 

Condition Mean (SD) [%] 

High task complexity 63.33 (22.37) 

Low task complexity 61.67 (23.31) 

High robot transparency 60.30 (22.80) 

Low robot transparency 64.82 (22.63) 

 

Table 36 - Observed performance across conditions 

 Workload 

Workload was measured with a raw NASA TLX. A 2x2 mixed analysis of 

variance showed that there was no significant differences in workload across 

complexity (F(1, 28) = .276, p >.05) or transparency (F(1, 28) = .01, p 

>.05). In addition, no interaction effect could be found, F(1, 28) = .389, p 

>.05. Therefore it can be assumed that participants did not experience 

significantly different levels of workload between any of the conditions. For 

values see Table 37. 
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Workload ratings across conditions 

Condition Mean (SD) 

High task complexity 54.27 (17.60) 

Low task complexity 51.03 (17.80) 

High robot transparency 52.77 (17.70) 

Low robot transparency 52.53 (17.84) 

 

Table 37 - Workload ratings across conditions 

Subscale analysis showed no significant differences across transparency 

levels but across complexity levels. The performance rating in the NASA TLX 

differed significantly between the low and high complexity condition (U = 

307, p < .05, r = .27). This means that participants perceived themselves 

to be more successful accomplishing the task in the high complexity 

condition compared to the low complexity condition (see Figure 117). This 

pattern was not discovered in the previous study where complexity was 

tested. 

 

Figure 117 - Significant workload (NASA TLX) subscale analysis of performance with 95% 

confidence intervals 

 Subjective ratings 

 Rated task difficulty and complexity 

Participants were asked to rate “How difficult did you perceive the task?” on 

a scale from 1 (not at all difficult) to 6 (very difficult) and “How complex do 
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you rate the task?” with the given explanation: “Complexity means the 

simultaneous occurrence of several task components that influence your 

performance.” on a scale from 1 (not at all complex) to 6 (very complex). 

Mann-Whitney tests indicated that there were no significant differences 

between rated task difficulty (U = 389, p > .05) or rated task complexity 

(U = 445, p > .05) across task complexity levels. Using a Wilcoxon signed-

rank test revealed that there was no significant difference between the robot 

transparency levels regarding the participant’s ratings of task difficulty (Z 

= -1.37, p > .05) or complexity (Z = -1.38, p > .05). For all values please 

refer to Table 38 and Table 39. 

Rated task complexity across conditions 

Condition Median (IQR) 

High task complexity 4 (1) 

Low task complexity 4 (1.75) 

High robot transparency 4 (1) 

Low robot transparency 4 (1.75) 

 

Table 38 - Rated task complexity across conditions 
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Rated task difficulty across conditions 

Condition Median (IQR) 

High task complexity 4 (1) 

Low task complexity 3.5 (2) 

High robot transparency 3 (2) 

Low robot transparency 4 (1) 

 

Table 39 - Rated task difficulty across conditions 

 Rated self-performance 

After each trial the participants rated their self-performance on a scale from 

1 (poor) to 7 (excellent). 

The influence of task complexity on rated self-performance 

A Mann-Whitney test revealed that there was a significant difference of 

rated self-performance among the complexity levels (U= 318, p < .05, r = 

-.26). The lower the complexity of the task, the higher participants rated 

their self-performance, but the size of the effect was small (see Figure 118 

and Table 40). 

 

Figure 118 - Rated self-performance box plots across task complexity; whiskers show 

minimum and maximum values 
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Rated self-performance 

Condition Median (IQR) 

Low task complexity 5 (1.75) 

High task complexity 4.5 (1.75) 

 

Table 40 – Rated self-performance across complexity 

The influence of robot transparency on rated self-performance 

The transparency of the robot did not lead participants to rate their self-

performance significantly different (see Table 41). This was tested with a 

Wilcoxon signed-rank test, Z = -1.7, p > .05. 

Rated self- performance across robot transparency 

Condition Median (IQR) 

High robot transparency 5 (1.75) 

Low robot transparency 5 (1.75) 

 

Table 41 - Rated self- performance across robot transparency 

 Rated robot performance 

The rated robot performance is the performance rating that participants 

gave the robot after the trial. They were asked to rate the performance on 

a scale from 1 (poor) to 7 (excellent). 

Robot performance was programmed to be the same across all conditions. 

There was no statistically significant difference between task complexity (U 

= 411.5, p > .05) or robot transparency conditions (Z = -.155, p > .05) 

regarding the rated robot performance (see Table 42). Therefore 

participants felt that across conditions the robot’s performance did not 

significantly vary. 
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Rated robot performance across conditions 

Condition Median (IQR) 

High task complexity 4.5 (1) 

Low task complexity 5 (1) 

High robot transparency 5 (1) 

Low robot transparency 4.5 (1) 

 

Table 42 - Rated robot performance across conditions 

 Event analysis 

The event analysis examined the distribution of events for each independent 

variable. Each target found/missed represents an event. There were 30 

participants, each with six targets, therefore there were 180 events for each 

condition. But in order to understand the circumstances these events 

occurred, the manual mode usage and the trial time needed analysis. T-

tests showed that there was no significant difference in the use of manual 

mode across complexity (t(58) = 1.45, p > .05) or transparency (t(29) = -

.528, p > .05). On average participants used 37% of the time manual mode. 

Trial time was measured by how long participants needed to complete a 

trial. Trial times showed no significant differences among complexity (U = 

374, p > .05) and transparency levels (Z = -.062, p > .05). Therefore 

participants showed no significant differences in time taken whether they 

had a high or low transparency robot or operated in a high or low complexity 

task. First task complexity is examined followed by robot transparency. 

Event analysis for task complexity 

Since there was a significant decrease in the objective team performance 

across complexity levels, an event analysis was performed to show the 

cause of the mistakes made. 

A chi-square test revealed that the two group distributions are significantly 

different, X2(4, 180) = 11.79, p < .05). Post-hoc tests by using standardised 

residuals/Pearson residuals (Sharpe, 2015) revealed that there was a 

significant difference between the values of “Robot found, human 

acknowledged” (p < 0.05), “Manual mode, human found” (p < 0.001), and 
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“Robot missed, human missed” (p < 0.001). The significance levels were 

adjusted with the Holm-Bonferroni method (Cabin & Mitchell, 2000). 

An overview of the distribution of the 180 events per complexity level (see 

Figure 119) shows that participants allowed the robot to find significantly 

more targets in the high complexity condition (42%) compared to the low 

complexity condition (31%). The instances when the robot missed the 

target and the human found it (error detection), were quite similar (28% in 

low complexity and 26% in high complexity). When the task was less 

complex participants found significantly more targets in manual mode 

(31%) compared to the more complex task (13%). During low task 

complexity participants only chose to use the robot to find 31% of the 

targets (out of 66%). This suggests that participants relied less (under-

reliance) on the system during low task complexity. 

Interestingly, during high complexity tasks significantly more often 

participants missed a target when the robot did. Therefore they were less 

able to detect robot errors during high task complexity (17%) compared to 

the low task complexity (5%). These could be an indication of over-reliance 

during high task complexity. 
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Figure 119 - Event distribution between the two task complexity levels 

Event analysis for robot transparency 

Although participants’ data showed no difference in objective performance 

between the two transparency conditions, data might reveal differences in 

the event distribution. 

A chi-square test was used to identify any differences between the two 

group distributions. Results showed that there was a significant difference, 

X2(4, 180) = 69.65, p < .001). Post-hoc tests by using standardised 

residuals/Pearson residuals (Sharpe, 2015) revealed that there was a 

significant difference between the values of “Robot missed, human found” 

(p < 0.005). The significance levels were adjusted with the Holm-Bonferroni 

method (Cabin & Mitchell, 2000). The distribution of events can be seen in 

Figure 120. 
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Significantly more times the human detected a robot error in the low 

transparency condition (32%) compared to the high transparency condition 

(22%). Therefore more mistakes in error detection were made in the high 

transparency condition (12% “Robot missed, human missed”; not 

significant) compared to the low transparency condition (9%). It was 

expected that the high transparency interface would support the human to 

easier detect low robot reliability and, therefore, detect more robot errors 

in the high transparency condition. This was not the case. The finding 

perhaps suggests that participants’ attention was not appropriately directed 

by the interface to the currently important information (e.g. robot reliability 

indication). Another reason could be that the high transparency interface 

displayed too much information at the same time. 

 

Figure 120 - Event distribution between the two robot transparency levels 
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 Summary of quantitative results 

The table below (Table 43) gives an overview of the quantitative results of 

this experiment. 

Dependent 
variable 

Indepen-
dent 

variable 

Signifi-
cance 

Result details (effect size) 

Trust complexity no 

significance 

 

transparency significant LT < HT (r = .61) 

Trust in the high transparency 

condition was higher than in the 

low transparency condition. 
However, single items on the 

trust questionnaire were 

manipulated. 

Workload complexity no 

significance 

 

transparency no 

significance 

 

Objective 

performance 

complexity significant LC > HC (r = -.36) 

Low complexity tasks yield a 

higher performance than high 

complexity tasks. 

transparency no 

significance 

 

Observed 

robot 
performance 

complexity no 

significance 

Robot reliability was constant. 

transparency no 

significance 

Robot reliability was constant. 

Rated task 

difficulty 

complexity no 

significance 

 

transparency no 

significance 

 

Rated self-

performance 

complexity significant LC > HC (r = -.26) 

Participants rated their 

performance higher in low 
complexity tasks compared to 

high complexity tasks. 

transparency no 

significance 

 

Rated robot 

performance 

complexity no 

significance 

 

transparency no 

significance 

 

Event 
analysis 

complexity significant - Participants allowed the robot 
to find more targets in the high 

complexity conditions. 

- Participants found more 

targets manually in the low 
complexity tasks. 

- In the high task complexity 

conditions participants missed 
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more robot errors than in the 

low task complexity conditions. 

transparency significant Participants detected more robot 

errors in the low transparency 

conditions compared to the high 
transparency conditions. 

 

Table 43 - Summary of quantitative results 

 Post-task interview 

After each trial participants were asked in a semi-structured interview about 

the elements of the interface they have used and questions to determine 

their level of situation awareness. After participants had performed their 

two trials they were asked which interface they preferred. In order to 

analyse the interview data the theme based content analysis (TBCA) from 

Neale & Nichols (2001) was used. 

The number in large brackets shows the number of participants mentioned 

the particular theme (e.g. [8]). Each statement is followed by a selection of 

supporting quotes. At the end of each quote the participant number is 

indicated in brackets, for example (P05). The full transcript and the 

emerging themes are provided in the Appendix K - - Digital Appendix VII 

(p. 404). 

 Preferred interface 

In the semi-structured interview, after completing the two trials, 

participants were asked which of the two interfaces they would prefer to 

use. 30% [9] of the participants preferred the low transparency (LT) 

interface and 70% [21] preferred the high transparency interface (HT), as 

shown in Figure 121. The difference was tested with a Chi Square goodness 

of fit test. The test revealed that there is a significant difference with a 

medium effect size between the values (X2(1, N = 30) = 4.8, p < .05, w = 

.4). Significantly more participants preferred the high transparency 

interface. 
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Figure 121 - Pie chart of the interface preference of the participants 

Furthermore they were asked as to why they preferred a certain interface. 

An overview of the themes is provided in Table 44. The comments from 

participants in each theme are divided into the people who preferred the 

low transparency (LT) interface and the high transparency (HT) interface. 

Numbers and themes in bold are explained in more detail below the table. 

Content themes in the detailed analysis are written in italic. Direct quotes 

will indicate the participant number after the statement (e.g. P08). 

Content themes Count 

People who 
preferred 

LT interface 

People who 
preferred HT 

interface 

All 

HT - too much information 6 3 9 

LT - easier and less to look at 3 1 4 

HT - more information (positive) 0 10 10 

HT - map feature (positive) 1 6 7 

HT - mission info (positive) 0 8 8 

HT - reliability indicator (positive) 0 6 6 

HT - information/robot log (positive) 0 5 5 

HT - information/robot log (negative) 0 1 1 

LT - missing elements 3 1 4 

HT - worry to miss something 1 0 1 

 

Table 44 - TCBA content theme overview of interface preference comments 

 

Low 

transparency

30%

High 

transparency

70%
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Six participants mentioned that the reason for preferring the low 

transparency interface was that the high transparency interface provided 

too much information [6]: 

 “I think I may have preferred the first one [LT] with less on it, so you 

could pay more attention to your surroundings rather than constantly 

checking. It’s useful to have that information, but you don’t always 

need that information.” (P13) 

 “I didn’t check all the information, I just couldn’t check everything at 

the same time.” (P19) 

 “There was quite a lot of concentration involved, you can’t look at 

everything, all at once [...]” (P26) 

Also, three participants mentioned that the low transparency interface was 

easier and there was less to look at [3]: 

 “Because it’s [LT] easier, the information is more essential.” (P01) 

 “The first [LT] I think, it had much less to look at. [...] It [LT] had 

less to concentrate on.” (P05) 

People who preferred the low transparency interface mentioned that they 

still missed some of the elements [3]: 

 Reliability indicator: “I think in terms of saving people’s lives the first 

one [LT] lack the information about reliability.” (P01) 

 Mission info and mission log: “But obviously if it had the log that 

would have been good. [...] Probably what rooms and how many 

victims.” (P05) 

 High transparency map: “But with the second way-pointing-thing. 

[the additional lines between the way points on the map]” (P10) 

Participants who preferred the high transparency interface mostly 

mentioned that they preferred having more information available [10]: 

 “Other than being a gamer I like having as much information, I felt I 

could make better judgement with more information base.” (P04) 

 “There was a lot more information in terms of what we are looking 

for, summaries of what to see and the reliability.” (P11) 
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 “The second one [HT] because it gave me more information. [...] And 

yea, just having more information, kind of made me feel more 

confident.” (P14) 

 “The first one, because even if you have more information it might 

seem a little bit crowded, is always useful to know.” (P16) 

 “I liked the first one because it had more information on it.” (P24) 

Furthermore participants mentioned certain elements in the high 

transparency interface that they found useful to have: 

 The mission info box [8]: e.g. “The estimated targets and the targets 

acquired really useful.” (P28). 

 The high transparency map [6]: e.g. “Also I liked the lines telling me 

where the robot was going. Because then you know, you can form a 

map in your head like how the robot is gonna be moving and where 

you should direct it if you want… at least you know a path. And you 

can just go somewhere and go back to that path.” (P16). 

 Reliability indication [6]: e.g. “[…] the reliability was important 

because then you knew how much effort you have to actually put 

yourself. If it’s high, maybe you don’t have to be aware of 

everything.” (P16). 

 The robot log [5]: e.g. “[During LT] When he went behind objects, 

when you didn’t know what he [the robot] was doing, you didn’t know 

when he’d actually done it or if he was just stopping or if he was just 

glitching or something - when you had the feedback [HT] you know 

oh he’s just determining that that area is clear and now he’s gonna 

move on again. So it’s a lot nicer, having that, that sort of feedback. 

And it felt a lot easier, once I knew, when you know what he’s doing, 

it’s a lot easier to kind of let him do it, I guess.” (P07). However there 

was still a participant who did not like the robot log: “I found useless, 

the report of the robot like what it was doing.” (P28). 

 Interface element analysis 

Participants were asked after each trial which elements of the interface they 

have actively used. This overview does not objectively show which elements 

of the interface were actually used. The participants did mention the 
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interface elements they could remember actively using or remembering 

during the trial. A visualisation of the interface elements can be seen in 

Section 7.3.2.1 (Figure 109, p.263 and Figure 110, p.265). In the next 

paragraphs the descriptive analysis for low and high transparency interfaces 

is discussed. 

Low transparency interface 

The elements that were mentioned most were battery [26], temperature 

[25] and map [24]. The signal indicator was mentioned 11 times. There was 

no great difference between high and low task complexity, as shown in 

Figure 122.  

 

Figure 122 - Number of comments of low transparency interface elements 

However, more participants reported to use the rear mirror during high task 
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Below are examples of participants’ comments: 

 The battery indicator was used to judge the time left before the robot 

ran out: “I looked at the battery but earlier on, I just wanted to get 

a feel for how quickly it was dropping.” (P02), “I used the battery but 

just to make sure I wasn’t running out” (P11), “I started looking at it 

probably 30 seconds into it and I saw that it was dropping so I tried 

to check back with that.” (P18). 

 The temperature gauge was utilised when people saw a fire in the 

environment: “When I heard the fire, I checked the temperature.” 

(P09), “When I heard the fire I started looking at the temperature 

[…] and once I stopped hearing it, I saw it dropped pretty quick, so I 

stopped looking at it.” (P18), “Kept my eye on the temperature when 

there was that fire […].” (P27). 

 The map gave participants orientation: “I used the map to see 

whereabouts I was and the waypoints to get an idea of where I had 

and hadn’t been.” (P03), “And also trying to use the map to see kind 

of the layout of the room to see if the robot missed parts.” (P10), 

“The thing I was using the most actually.” (P28). But there was also 

a participant who thought that the map was confusing: “And the map, 

I did use but I found more confusing so I sort of had to keep looking 

which direction I was actually going.” (P07). 

Participants were briefed upfront that they should make sure that they do 

not run out of battery and that they take care not to overheat the robot 

(e.g. driving too near to a fire). This might have led participants to use these 

elements more than the others. The map was the only orientation aid next 

to the main view and participants used it to navigate through the 

environment or to check where they were. The signal was only used when 

participants experienced lag of the robot (e.g. “Looked at the signal cause 

it actually got jerky at one point, it lagged.” P24). 

High transparency interface 

As depicted in Figure 123, participants mentioned most the active utilisation 

of the map [24], the battery [20], the reliability indication [20], and the 
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temperature [20]. Also the participants said that they actively used the 

robot log [16] and mission info [13]. 

 

Figure 123 - Number of comments of high transparency interface elements 

Examples why participants used some of the interface elements are outlined 

below. 

 Map made the robot more predictable and helped participants when 

driving manually: “ […] and the route again [map], like where I will 

see where the robot [is] going and why the robot could have a view 

of this area based on this route, things like that. I kind of predicting 

where the robot is going to scan this area.” (P01), “The lines [lines 

between the waypoints], I found them very useful, in the plan 

location [top view map], because you know in which part of your path 

are. While with the points, especially in the last test [LT], found very 

difficult when I was turning [manually] to reallocate again. So the 

lines are very useful for that.” (P08), “I used the map to make sure 
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when there was lines connecting the vantage point [way points] and 

I used the map to make sure we were searching the whole room and 

going from one room to another.” (P17). 

 Battery was used but infrequently: “Just to be aware, I need to finish 

before the time runs out.” (P16), “Probably didn’t look at the battery 

that much cause I knew how much I had used the last time so unless 

I was running in circles I thought it would be ok so I didn’t really look 

at that until the end.” (P27). 

 Temperature was used when participants heard or saw a fire: “The 

temperature, I made sure we didn’t get too close to the fire.” (P11), 

“I still used the temperature […] any time I heard fire.” (P18), “I 

looked at the temperature when I went near to the fire. But I had it 

on auto and I knew it wouldn’t drive itself into the fire.” (P24). 

 The current reliability indication of low, middle and high gave 

participants an idea of the robots performance and helped them to 

make decision whether to use auto or manual or search the 

environment more thorough: “I used the reliability thing, so when it 

got to medium I was keeping more of an eye out and when it was 

low and I couldn’t really see anything I took control myself.” (P02), 

“I really used the reliability a lot! When it was low I would go to 

manual and only switch back to automatic when it went high again.” 

(P12), “Yes because if the reliability was low I would attempt to use 

the manual one if it was high I knew I could rely on the automatic 

one.” (P28). However, it was not entirely clear to all the participants 

why the reliability level changed: “Oh I did look at that [reliability 

indication], towards the beginning but I didn’t really know why 

sometimes it was low and sometimes it was high, but it was.” (P06), 

“I used that a little bit. I saw that it went low but then I didn’t know 

why […] so I kind of took note of that and tried to look harder and 

see if it was missing something.” (P19). Showing the explanation of 

the low reliability in the robot log might help to clarify the robot 

current reliability level. 

 Participants thought the robot log was useful and gave them 

reassurance: “I checked the log quite a lot, because sometimes like 

when he saw a door and he said ‘I’m saving the position of the door’, 
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I remember where the door is but I’m going on. Then when he turned 

around and said ‘check behind objects and area clear’ […]” (P09), 

“The bit where it told me (indicates mid-bottom) the room I had done, 

the log, I relaxed a bit when it said everything had been cleared. I 

checked if it said that while one high reliability. If it’d been low I would 

have gone back.” (P11), “I was looking at the robot-log quite a lot, 

cause that was quite useful. It was useful cause it would give you 

kind of ok there has been a couple of people in here, just found the 

door, here it’s blocked, can’t go that way […] that was quite useful.” 

(P13), “Just to make sure my passage is not blocked or what’s going 

on. Just checking and making sure everything is going correctly.” 

(P17). There were also a comment that the log as being not useful 

[1] or understandable [1]: “Because I felt the readouts weren’t as 

useful.” (P04). “The log, but I struggled with it at first because I 

thought it would start at the most recent thing would be on the top - 

so I was trying to figure that out for a part of the time. So I used it a 

little bit but then decided that it does not help me because it’s like of 

a past tense thing.” (P18). Two participants totally forgot to look at 

it [2] (e.g. “I don’t think I looked at the log at all.” P10). 

 The mission info was mainly used to look at how many targets they 

have found so far and how much targets were estimated to be in the 

scenario: “Particularly when I got to the third room, I could see that 

I was in the estimated range of targets, so I wasn’t worrying that I 

might have missed loads. Cause I knew it was probably going to be 

between 5 and 8 targets and I had 6.” (P01), “I used the number of 

victims that had been tagged and the expected number.” (P03), “To 

keep an eye on how many targets I found.” (P12), “I looked at how 

many targets were found.” (P15), “I looked at targets [targets found] 

definitely. I looked at the potential targets.” (P24), “I did look at the 

how many targets found” (P27). 

Again, participants were instructed beforehand to take care that they do not 

run out of battery and not overheat the robot. This might have led 

participants to use these elements more than the others. The map helped 

participants to predict the robots behaviour in greater detail and also helped 
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as a guide when using manual mode. In the low transparency interface 

condition more participants mentioned to use the rear mirror when they 

were in the high task complexity condition. The temperature gauge was 

mainly used on demand, for example if participants heard or saw a fire. The 

current robot reliability level of low, middle and high supported participants 

to make decision whether to use auto or manual mode to search the 

environment more thoroughly. Participants were reassured and better 

informed by reading the robot log. The mission info box was, for the most 

part, used to see the number of targets found and the estimated number of 

targets in the scenario. 

 Situation awareness 

Participant were asked after each trial through how many rooms they think 

they drove, how many targets they think they found and how much battery 

they think was left at the end of the run. This aimed to capture an indication 

of how aware participants were of the situation regarding the Level 2 of the 

SAT model. 

The average of the percentage deviations of the answers was calculated. 

For example 31% of the battery was left and the participant answered 25%, 

this makes a percentage deviation of 6%. The same calculation was done 

for the number of targets and rooms. The three percentage deviation were 

averaged across the transparency levels. Pearson residuals (Sharpe, 2015) 

showed that there was a significant difference between the percentage 

deviation of the low transparency interface and the high transparency 

interface (p < 0.05). 
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Figure 124 - Situation awareness: percentage deviation across robot transparency levels 

As shown in Figure 124, significantly higher deviations from the correct 

answer were recorded for participants with the low transparency interface 

(M = 15%), compared to the high transparency interface (M = 9%). This 

means that participants who used the high transparency interface had a 

greater level of situation awareness than participants using the low 

transparency interface. However, room numbers were displayed in the high 

transparency interface, this could have biased the measurement. 

There was no significant difference in situation awareness between high and 

low task complexity (p > 0.05). 
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7.5 Discussion 

The aim of the study was to find out whether robot transparency and task 

complexity can influence trust, subjective ratings and workload in order to 

produce higher levels of human-robot team performance. 

The first hypothesis stated that robot transparency would influence trust, 

performance and subjective workload. The interface transparency of the 

robot, which gave participants different levels of information about the 

environment, robot status, and robot intent, did not lead the human-robot 

teams to a higher level of performance. These findings are in agreement 

with Ososky et al. (2014). Further, there was no change in perceived 

workload between the conditions. 

Trust changed across transparency levels; the lower the transparency, the 

lower the trust score. This is in accordance with Selkowitz et al. (2015) who 

found that trust was increasing between SAT level 1 and SAT level 1+2 

(more information displayed). They also found that there was no significant 

change in workload during their conditions. That the workload did not vary 

can mean that the interface was not too overwhelming for the participants. 

But interviews suggested that participants might just neglected certain 

items on the interface. 

However, the only great variations in answering the trust questionnaire 

were among the items “Provide feedback”, “Provide appropriate 

information”, and “Communicate with people” (see Appendix J, p. 403). The 

research question led to the fact that single items on the trust scale were 

manipulated, which changed the outcome significantly, and therefore these 

findings needs to be treated with caution. 

The event analysis showed that significantly more often participants 

detected a robot error in the low transparency condition compared to the 

high transparency condition. This was not expected but suggests that the 

interface did not appropriately support the participants. It seemed that 

participants had over-trust in high complexity tasks and under-trust in low 

complexity tasks. Another reason might be that the high transparency 

interface was overcrowded and participants spent more recourses on 
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dealing with the robot, in this case the interface, rather than searching the 

environment for targets. This was also suggested by Chien and Lewis (2012) 

who reported a raised rate of unmarked victims when the robot was in high 

reliability. 

The second hypothesis declared that task complexity influences trust, 

performance and workload. In agreement with the previous study, the 

objective performance (number of victims found) was significantly different 

between task complexity levels, as was the rated self-performance. In the 

low complexity tasks the objective performance and the rated self-

performance were higher than in the high complexity task. Since the 

performance of the robot was the same in all the conditions, the decrease 

in team performance was attributed to the participant. An event analysis 

showed that the decrease in performance was mainly due to the fact that 

the participants failed to see the robot mistakes and therefore missed the 

targets. This might be due to an over-reliance on the system and 

miscalibrated trust levels as suggested by Parasuraman and Riley (1997) 

and others (Atoyan, Duquet, & Robert, 2006; de Vries, Midden, & Bouwhuis, 

2003; Lee & See, 2004). Data also suggests that participants under relied 

on the robot in low complexity conditions. 

Whatsoever, task complexity had no influence on trust or workload ratings. 

This is in agreement with Desai’s (2012) findings, where changing the 

complexity of the robot environment showed no significant influence on 

trust or workload. On the contrary Adams, Bruyn, Houde, & Angelopoulos 

(2003) theorised that trust will decrease with higher task complexity, but 

the theory could not be confirmed by this experiment. In addition, there 

was no interaction between task complexity and robot transparency on 

trust. 

Further it was investigated if task complexity and robot transparency 

influence subjective ratings. The rated robot performance was not 

significantly different across the experimental conditions, this was expected 

since all trials used robots that were programmed to have the same level of 

performance. In addition, task complexity and task difficulty were not rated 
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significantly different across any of the conditions. This was not expected 

since the task complexity was one of the independent variables. 

As expected, the situation awareness questions showed that participants 

had a better awareness of the battery status, the number of rooms they 

had searched and the number of victims they had found in the high 

transparency conditions. Furthermore, participants preferred the high 

transparency interface. However, participants also mentioned that the 

interface displayed too much information at the same time. Participants 

actively used most the battery indicator, temperature gauge and the map 

in the low transparency interface. In the high transparency interface they 

mentioned most the map, the battery indicator, the reliability indication and 

the temperature gauge. A list of six interface design recommendations was 

compiled and is listed below.  

 Recommendations for future interface 

designs 

 An essential element in the interface is the map. The map should 

provide a visible path with navigation points and the direction they 

came from and they will go to. Best would be to visualise where the 

robot had already been (e.g. grey out the already driven path lines). 

 A robot confidence level or reliability indication can help to adjust the 

expectations of the operator and help making the decision to use auto 

or manual mode. Explaining in a short and clear manner the reason 

for the reliability level might give some participants a better 

understanding of the robots’ situation. 

 Battery time needs to be in an observable format (e.g. progress bar), 

rather than in numbers (e.g. time in seconds) because participants 

used the progress bar more than the indication of time remaining. 

 The target count (how many targets have been found) in the mission 

info box was very valuable for participants to keep track of the 

progress. 

 Many participants argued that the high transparency interface had 

too much to look at. Providing information on demand might be 

trade-off. For example temperature can just be shown when there is 
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actually too high temperature present, rather than having to check it 

at all times. Another information than can be optional is the reason 

for a reliability drop or the robot log. 

 There is a need for a customisable interface. Operators should be able 

to choose the information they want to see or need to complete the 

task. 

 Combined discussion 

A visualisation of the results of this experiment are shown in Figure 125. 

Robot transparency positively influenced trust, but the participant’s 

detection of robot errors declined in high robot transparency. Similarly, high 

task complexity led participants detect less robot errors. The higher task 

complexity was, the lower was the rated self-performance and the objective 

team performance (targets found). The reliance on the robot also changed 

with task complexity: the lower the task complexity, the more participants 

found targets in manual mode. Vice versa, the higher the complexity of the 

task, the more participants relied on the robot to find the targets. 

Furthermore, higher robot transparency fostered the situation awareness of 

the participants. 

 

Figure 125 - Qualitative overview of research results of study IV; positive influences are 

indicated with (+), negative influences indicated with (-) 
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Since the robot reliability was in all conditions programmed to be constant 

it is not surprising that the differences for observed robot performance and 

rated robot performance are not significant. 

 Limitations and future work 

The interface in this study was using the visual channel excessively, because 

using too many audio cues can be challenging for rescuers in a loud rescue 

environment with wearing ear protection. The reason why some participants 

simply neglected elements of the interface might have been caused by an 

overload of the visual channel. Other interfaces should try to use more 

channels but keep in mind the environmental circumstances of rescue 

personnel. 

Trust varied significantly between the experimental conditions. This was 

expected because the only great variations in answering the trust 

questionnaire were among the items “Provide feedback”, “Provide 

appropriate information”, and “Communicate with people” (see Appendix J, 

p. 403). The research question led to the fact that single items on the trust 

scale were manipulated, which changed the outcome significantly, and 

therefore this finding needs to be treated with caution. In order to measure 

trust more reliably trust games or hypothetical questions, such as “If there 

was an emergency right now, would you use the robot?” could support the 

trust measurement and make it more accurate. 

As Lyons and Havig (2014) stated, task specific information needed for 

transparency varies greatly among domains, therefore is it challenging to 

compare SAT levels across different domains and robotic systems. This can 

explain why some transparency results differ from other literature. 

In regard to the subjective ratings participants did not rate any of the trials 

as significantly different with respect to task difficulty and task complexity. 

In the previous study participants rated the high complexity task as 

significantly more difficult than the low complexity task. A possible 

explanation for the difference might be the influence of the different robot 

performances from the previous study and the influence of the robot’s 

transparency in this study. 
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Furthermore there was an increase in situation awareness when participants 

used the high transparency interface. This disagrees with Selkowitz et al. 

(2015) who claimed that increased agent transparency did not support 

operator situation awareness. The reason for this could be that Selkowitz et 

al. (2015) encountered in some situation awareness questions ceiling 

effects or that the measure in this study was biased, because participants 

were asked to look for the items that were asked in situation awareness 

questionnaire. 

This and the previous study showed that trust in the robot was not 

influenced by the task complexity. Nevertheless, participants did not rate 

any difference between the conditions regarding task complexity or task 

difficulty. This suggests that the robot and its interface might have a larger 

influence on the rated task complexity than the environment itself. 

Interestingly rated task difficulty did vary in the previous study. This was 

not expected since, in both studies, the low and high task complexity levels 

had the same architecture and characteristics. Further investigation is 

necessary to determine which variables influence the perceived difficulty of 

a task. 

Furthermore, using verbal protocol technique during a real task scenario 

with a robot and an operator might shed light on the information that is 

needed at certain times in a rescue mission. 

7.6 Conclusion 

Transparency is a mean to support trust calibration and predictability of an 

autonomous robotic agent. However, producing the right transparency at 

the right time is a challenging issue. Although this experiment examined 

two levels of interface transparency of a virtual remote controlled robot, 

there was no influence of transparency on subjective workload or 

performance. But transparency did influence trust ratings. Participants had 

more trust in the robot when the robot provided more transparency. 

However, only one questionnaire of robot trust was used after each of the 

conditions. Different measures of trust would give a better picture of trust 

levels between the conditions. Furthermore, more investigation is needed 

in terms of the rescue robot interfaces and the required amount and type 
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of information. There is also the possibility to adopt the method of displaying 

information on demand. 

Task complexity only influenced the objective performance (percentage of 

victims found): the lower the complexity of the task, the higher the team 

performance. Since robot performance was programmed to be constant 

participants were accountable for the decline in performance: they failed to 

detect robot misses and therefore missed targets entirely. Transparency did 

not mediate the decline in the performance. 

Data also suggest that low task complexity fosters under-reliance and high 

task complexity over-reliance on the robot. 

7.7 Chapter summary 

This chapter presented a study that analysed the influence of task 

complexity and robot transparency on trust, workload and performance. The 

study demonstrated that trust was influenced by the robot’s transparency. 

The high transparency interface was rated as more trustworthy compared 

to the low transparency interface. As discovered in the previous study, 

increased task complexity did influence the human-robot team performance 

negatively. Workload did not change across any of the conditions. 

Participants preferred the high transparency interface. However, 

participants also mentioned that the interface displayed too much 

information at the same time. A list of six interface design recommendations 

was compiled. As expected, the situation awareness questions showed that 

participants had a better awareness of the battery status, the number of 

rooms they had searched and the number of victims they had found in the 

high transparency conditions. 
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8 General Discussion 

 

8.1 Chapter overview 

The summary of research findings and the review of aims from the research 

conducted are discussed in this chapter. Recommendations are made for 

robot implementation and design. Furthermore, this chapter addresses 

several discussion points about trust and collaboration in human-robot 

teams and it highlights the limitations of the research. 

8.2 Introduction 

The studies in this thesis investigated several aspects of human-robot 

collaboration and trust within the context of Urban Search and Rescue 

missions. The idea is to develop robot systems with autonomous features 

that can support rescuers during their missions by making the rescue work 

safer and enhancing human-robot team performance. One aspect that 

seems to play a major role within human-robot interaction literature is trust. 

The literature review showed that appropriate levels of trust in human-robot 

teams is the key factor for determining automation usage (Lee & See, 

2004), minimising misuse of the system (Parasuraman & Riley, 1997), 

improving safety and productivity in teams (Hoff & Bashir, 2014), and 

accepting robot-generated information (Freedy & de Visser, 2007). 

So far the literature has concentrated mostly on trust in automation (M. S. 

Cohen et al., 1998; R. R. Hoffman, Johnson, Bradshaw, & Underbrink, 2013; 

Muir & Moray, 1996; Muir, 1994; Ross et al., 2007; L. Wang et al., 2009). 

Recent advances in robotics has led to further research in human-robot 

teams (Gao et al., 2012; Groom & Nass, 2007; Harriott, Buford, Zhang, & 

Adams, 2012; G. Hoffman & Breazeal, 2007). With respect to semi-

autonomous robot systems, literature looked at autonomy levels (Chien & 

Lewis, 2012; Larochelle, Kruijff, & Van Diggelen, 2013b), feedback types 

(Desai et al., 2013; Jung & Lee, 2013; Kaniarasu et al., 2013), varying robot 

reliability (Chen & Terrence, 2009; Chien & Lewis, 2012; Desai et al., 2012), 

and system transparency (T. B. Chen et al., 2014; Helldin, 2014; Lyons & 
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Havig, 2014; Ososky et al., 2014; Sanders et al., 2014; Selkowitz et al., 

2015). This thesis took up recent research and further investigated factors 

influencing human-robot teams: robot reliability, robot feedback, robot 

transparency, and task complexity. 

Furthermore, this thesis contributed knowledge in terms of gathering 

information on the work carried out by Urban Search and Rescue personnel 

in the U.K. and the equipment which they currently use along with detailed 

qualitative analyses of participants interacting with autonomous and semi-

autonomous robot systems. Previous research did not investigate tasks, 

processes, and behaviours of British Urban Search and Rescue teams. 

A new approach for measuring performance in semi-autonomous robot 

systems was developed. During the course of the studies new influencing 

variables relating to semi-autonomous performance measures emerged: it 

was possible that participants did not perceive certain robot mistakes, and 

their observed robot performance differentiated from the intended 

performance programmed by the researcher. In order to acknowledge the 

actual witnessed performance of a robot by the participant a new measure 

of ‘observed robot performance’ was introduced. Section 6.3.5 (p. 198) 

details the calculation and application of this measure. 

The findings from Chapters 4 to 7 show that autonomous robot features 

have the potential to support operators and help them to make better 

choices of function allocation (e.g. letting the robot drive or operate it 

manually). However, the reliability of the robot strongly influenced whether 

the system was beneficial to the overall human-robot team performance. 

This suggests that there are circumstances when a robot’s aid is not 

appropriate and has the potential to decrease performance levels. In 

addition, the supervision of the robot can take up more attention than the 

search task itself (Chien & Lewis, 2012), which should not be intended, since 

the main objective is to find as many casualties as possible rather than 

accurately supervising the robot’s work. 
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8.3 Discussion of research findings 

Figure 126 summarises the key research findings of the individual studies 

and the corresponding objectives that were discussed at the beginning of 

this thesis (Section 1.5, p. 7). The arrows in the figure visualise how the 

information flow and studies influenced each other. Between the first two 

studies and the last two studies was a longer development phase of the 

virtual reality game environment as well as the programming of the robot 

behaviour. 
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Figure 126 - Overview of objectives and 

key research findings  
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The next section discusses each aim and objective in detail regarding the 

results obtained during this doctoral research. 

A visualisation of the findings is shown in Figure 127. The black arrows 

indicate the findings from the studies conducted in this PhD (see Sections 

5.5.2, 6.5.4, and 7.5.2). The orange arrows show that the connections have 

been verified by other literature. Dotted lines indicate discussion points that 

are explained in the next paragraphs. Green arrows visualise findings from 

the literature. 

Some concepts incorporate different factors and were combined under an 

umbrella term. Appropriate control allocation is dependent on the detection 

of robot errors, the amount of manual mode usage, the participant’s reliance 

and the allocation of attention towards the robot. There are more factors 

that influence appropriate control allocation, but they were not part of this 

research. Mission performance in this work was mostly determined by the 

time taken to complete the task and how many targets were found. 

 

Figure 127 - Summary of research findings; black arrows indicate findings from the studies 

of this PhD; orange arrows indicate verification of research findings by other literature; 

green arrows indicate other findings from literature; positive influences are indicated with 

(+), negative influences are indicated with (-). 
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Research findings (black and orange arrows) 

Some of the research findings of this PhD were confirmed by other 

literature. The influence of task complexity (task difficulty) on rated self-

performance was also revealed by the HARRT model from Desai (2012). He 

found that the more complex a task is, the lower participants rate their own 

performance. He also found that manual mode usage produced high levels 

of workload. 

Larochelle et al. (2013a) found, that if the expectations of participants about 

the robot performance (robot reliability) were not met, they changed to 

manual control (manual mode usage). In the literature robot reliability is 

named as a direct influencing factor on trust (Chen & Terrence, 2009; Chien 

& Lewis, 2012). However, it needs to be considered that the robot reliability 

is the objective measure of the robot’s performance, but the actual influence 

of trust is from the observed robot performance (what performance the 

participant actually noticed). This was also stated by Ososky et al. (2014) 

who mentioned that trust is not based on what the robot can or cannot do, 

it is based on what the human perceives it to be capable of. 

As found in this PhD research, robot transparency influenced trust. Likewise 

other authors noted that the lack of background information for a shared 

understanding, leads operators to trust robots less or have miscalibrated 

trust levels (Ososky et al., 2014; Stubbs et al., 2007). Chen et al. (2014) 

found that system transparency provides a better situation awareness for 

participants, which is in agreement with this work. 

Further literature findings (green arrows) 

Authors also found other connections among the variables shown in Figure 

127. All connections that emerged from the literature are indicated with 

green arrows in order to show the big picture. Desai (2012) showed that 

task complexity and confidence feedback (reliability indication) influenced 

the entire concept of control allocation strategy (appropriate control 

allocation) and of the overall mission performance and not only the number 

of targets found. Desai (2012) also claimed that the higher the workload, 

the less appropriate is the control allocation strategy and the lower is the 
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mission performance level. Other literature also mentioned that the 

appropriateness of control allocation in a human-robot team determines the 

mission performance (Desai, 2012; Groom & Nass, 2007). 

A variety of authors proposed that appropriate levels of trust lead to 

appropriate control allocation (Beer et al., 2014; Lee, 2008; Muir & Moray, 

1996; Yagoda, 2011). Finomore et al. (2012) suggested that too much 

information provided by an inappropriate level of transparency can lead to 

increased levels of workload. 

The following section will provide a review of the aims that were outlined at 

the beginning of this thesis. 

8.4 Review of aims 

The overall aim of this PhD was to understand how robot behaviour and 

interface design can be applied to utilise the benefits of robot autonomy and 

inform future human-robot collaborative systems. The individual aims were 

originally described in the introduction (Section 1.5, p. 7). The 

achievements of each of the aims are discussed below. 

 Aim I: Develop a background understanding of the USAR domain and 

their work as well as describing the real world application of USAR in 

order to provide recommendations for the implementations of robots 

in British USAR teams. 

An autoethnographic study was completed over two weeks by attending the 

USAR technician course at the Fire Service College in the UK. The method 

of an autoethnographic study had not yet been reported in the literature in 

this application domain. 

The data collected produced background knowledge of the domain and gave 

insights into the work of rescuers. Rescue workers are professional 

firefighters who are trained in dealing with stressful situations which include 

high physical and psychological demands. The main tasks of USAR 

technicians are to extricate casualties out of danger with the help of 

technical equipment, dogs and by shoring, lifting, moving, or breaking and 

breaching through obstacles (e.g. rubble, concrete, etc.). The technical 
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equipment which they currently use consists of cameras (SnakeEye and 

SearchCam), acoustic and seismic life detectors, and gas monitors. 

The recommendation of this research is to implement the robot within an 

existing USAR technician specialist’s team as an additional rescue tool. 

Robot handling can be part of the special skill sets of USAR technicians and 

not every member needs to be trained in it. Establishing a new robot 

operator position outside the team is not recommended due to an additional 

source of information for the sector commander and additional management 

of people directly operating at the incident site, as well as higher personnel 

costs. To be able to use all the benefits of the technology the entire 

command chain has to be briefed about the robot and its capabilities in 

order to work efficiently and effectively on site. Communicating the robot’s 

capabilities can also foster better mental models (Fischer, 2014). Knowing 

what the robot is capable of was also desired by participants (see Study II, 

Chapter 5). In another study operators interacting with a multi-robot 

system wanted reference materials of what the robot is capable of (Rule & 

Forlizzi, 2012). 

For a fast deployable robot, it is proposed that the robot is stored in the 

modules provided for USAR operations (Module 1 First Strike alongside 

technical search equipment). That infers that the robot is packable and able 

to be stored easily and safe (see also Booysen & Mathew, 2014). 

It is debatable whether the robot should have autonomous capabilities. To 

ease the acceptance and foster the use of a robot within the fire service, a 

step wise approach from manually operated systems towards robot 

collaboration (robots with automation) is advisable. The robot can be 

potentially used during all stages of rescue (provided it is intrinsically safe, 

terrain fit and lightweight). That means that right from the start, the robot 

can be deployed in dangerous zones in order to perform first valuable 

reconnaissance missions. However, the main deployment stage would be 

the exploration of voids and spaces, where humans are not able to enter. 

Adoption of the system might be very much dependent on the type and 

performance of the system. The technicians must be reassured that the 

robot is just another tool and not something that replaces them; it is a tool 
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that is there to make their work safer and potentially more effective. The 

attitude of the USAR technicians of the first study (Chapter 4) towards 

robots was neutral. Rescuers were more positive towards situations and 

interactions with robots in general, compared to the social influence of 

robots and emotions in interactions with robots. 

The experiences of the researcher and relevant literature informed all 

subsequent studies in terms of the design of the scenario (robot sensors, 

contextual information, minimum amount of training required) and the task 

performed by the participants (varying task complexity, stress inducing 

elements, realistic search operation). 

 Aim II: Improve understanding of underpinning cognitive concepts, 

thoughts and behaviours of participants while interacting with 

different autonomous and semi-autonomous robots, in order to 

inform future robot behaviour and interface design as well as the 

subsequent studies of this PhD. 

The second study (Chapter 5) revealed a variety of recommendations about 

robot features and behaviour, such as illustrating the importance of visual 

cues about robot running processes and the influence of robot 

speed/movement on human attention. In general, qualitative data 

presented in this thesis (Sections 5.4.5 and 6.5.6) suggests that a higher 

degree of robot transparency is necessary for the operator to understand 

the robot’s actions and anticipate its next steps. This is in agreement with 

recent literature (Boyce et al., 2015; Kruijff et al., 2014; Larochelle et al., 

2013a). For details of recommendations that emerged from the 

retrospective verbal protocol please see the list of recommendations 

provided in a later chapter (see 8.6 Recommendations for robot behaviour 

and interface design). Retrospective verbal protocols had not previously 

been used in conjunction with autonomously operating robots. 

Furthermore, the interaction with an autonomous robot revealed that 

participants associated trust with the robot’s performance, reliability and 

consistency. The result is in accordance with other researchers who 

investigated trust factors in human-robot teams (Hancock et al., 2011; 

Park, Jenkins, & Jiang, 2008). In another study (Chapter 6) participants 
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operated the robot entirely manually and they associated trust with their 

own performance rather than the robot’s performance. Trust in the robot 

depended on how much the robot was able to cope with the environment 

they were steering it in. This shows that trust does not have fixed 

parameters. Trust in manually operated machines focussed on technical 

reliability, and trust in robots with autonomous features seems to focus on 

their decision making capabilities and associated performance (cf. Chapter 

5, Section 5.4.6.3). This is important for the decision as to which trust 

questionnaire is more appropriate to use and whether trust in the 

technology or in the artificial intelligence is measured. 

When interacting with entirely autonomous robots (Chapter 5) which 

provided different amounts of feedback (e.g. reporting the reason for the 

current robot state), participants favoured the robot with more feedback 

and perceived the robot as more competent, malfunctioning less and as 

communicating more clearly. When participants interacted with a semi-

autonomous robot (participants were free to choose between using manual 

or auto mode) their main reasons for using auto mode were that auto mode 

was less demanding and relaxed them (Chapter 6). In addition, they 

reported that they used auto mode because they felt that the robot did a 

good job, performed well and that the robot was predictable because the 

robot followed a systematic approach. 

In terms of semi-autonomous robot interaction, participants preferred a 

more transparent interface (Chapter 7) that provided more information 

about the robot’s current state, explained the robot’s current state, and 

predicted future states. Although participants did not experience increased 

workload when interacting with the higher transparency interface, they were 

concerned that the interface displayed too much information 

simultaneously. Participants neglected some of the interface elements to 

keep up with the information displayed. This suggests that some information 

should be displayed on demand. 
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 Aim III: Investigate how robot and environmental characteristics, 

influence user cognition, behaviour and performance. 

The literature review (Chapter 2) revealed that trust plays a major role in 

human-robot interaction. When people interact with automated or semi-

autonomous systems their subjective trust in these systems can predict and 

influence the allocation of functions within the human-automation system 

(Muir & Moray, 1996). An appropriate level of trust is key to the usage of 

automated systems (Lee & See, 2004), whereby an inappropriate level of 

trust can lead to misuse or disuse of the system. For example, errors can 

occur due to over-trusting or under-trusting the system and eventually the 

potential benefits of the automated system can be lost (Parasuraman & 

Riley, 1997). This appropriate level of trust is also key to improving safety 

and productivity (Hoff & Bashir, 2014). 

Different concepts and measurements of trust were under examination. 

Most trust literature can be found in the interpersonal trust research and 

trust in automation domains. Some of the concepts show similarities to the 

new area of human-robot trust. Major factors across several trust concepts 

are human traits (e.g. self-confidence), previous experience, and 

dispositional trust. Another characteristic that emerged was that trust 

transforms over time and is therefore dynamic. 

It is important not to neglect the technology acceptance model. The main 

factors associated with accepting technology are the perceived ease of use 

and the perceived usefulness. To date, only little evidence is available that 

rescue robots are beneficial in real world emergency scenarios (Matsuno et 

al., 2014; Steinbauer et al., 2014). It seems that in order to create an 

intention to use robots, the robot primarily needs to demonstrate usefulness 

in the field and be perceived as easy to use. 

Different measures of trust are discussed in the literature. Most 

questionnaires aim at certain types of technology (e.g. automation or 

physical systems) or types of robots (e.g. co-located or remote). After 

identifying two of the questionnaires appropriate for semi-autonomous 

remote controlled robot systems, they were compared against each other. 

This revealed that the Schaefer (2013) trust questionnaire was more 
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sensitive towards changes in trust than the Muir (1989) questionnaire. 

Thus, the Schafer (2013) questionnaire was selected to be used in 

subsequent studies. 

This research examined robot and environmental characteristics such as 

robot feedback, robot reliability, robot transparency, and task complexity in 

order to understand their influence on trust, workload and performance. The 

findings of the studies conducted to address Aim III are discussed below. 

A new measurement for semi-autonomous robot systems: 

There was a discrepancy between the intended robot reliability which the 

researcher programmed and the actual robot performance that the 

participants witnessed. This could be due to participants failing to see a 

robot’s mistakes and believing that the robot was reliable. Therefore, they 

perceived the robot as more reliable than intended. To overcome this 

shortfall a new measure was proposed: observed robot performance. This 

observed robot performance measures how the participant perceived the 

robot’s performance by counting the number of witnessed robot’s positive 

and negative actions. Later this was compared to the intended robot 

performance for a more accurate data analysis. 

Robot feedback: 

More detailed robot feedback (providing a reason for the current robot 

state) from an autonomous robot (Chapter 5) did not influence trust, 

workload or performance (objective team performance). However, there 

was also a large learning effect present, which could have been the reason 

for not finding any significant differences. 

Task complexity: 

In terms of semi-autonomous robot systems, task complexity (number and 

type of targets and amount of obstacles in the environment) influenced trust 

only in the third study (Chapter 6) and not in the fourth study (Chapter 7). 

In the third study participants rated the robot in less complexity tasks as 

more trustworthy than in middle complexity tasks. This could have been 

influenced by the observed robot performance (the performance of the robot 
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that the participant witnessed) because participants observed the robot’s 

performance in high task complexity as being better than the low task 

complexity robot performance. The different perceived performances could 

have influenced the trust ratings, since performance is one of the main 

influencing factors on trust (Hancock, Billings, Schaefer, et al., 2011). 

Therefore, observed robot performance should be recorded (e.g. video 

recording or observation) during experiments because participants failed to 

see a robot’s mistakes because they missed them too, they believed that 

the robot was more reliable and perceived the robot’s performance as higher 

than intended by the researcher. The same issue occurred during the 

experiments of Rovira et al. (2007) and Chien and Lewis (2012). They 

suspected that because of the absence of alarms, system failures were not 

detected and hence participants could not easily discriminate between low 

and high robot performance. 

Both, the third and fourth study showed that performance declined when 

the task was more complex. A more detailed analysis of the fourth study 

showed that the decrease in performance was mainly due to the fact that 

the participants failed to see the robot’s mistakes and therefore missed the 

targets. This might be due to an over-reliance on the system or 

miscalibrated trust levels as suggested by Parasuraman and Riley (1997) 

and others (de Vries et al., 2003; Lee & See, 2004). 

At the same time, data suggested that during low task complexity, 

participants under-relied on the robot. In addition, task complexity had no 

influence on subjective workload in both studies (study III (Chapter 6) and 

study IV (Chapter 7)). 

Robot reliability: 

In the third study robot reliability was varied across three conditions and 

data showed that the less reliable the robot, the lower the trust ratings. This 

influence of reliability on trust was expected, since robot performance is the 

main influencing factor on trust (Desai et al., 2012; e. g. Hancock, Billings, 

Schaefer, et al., 2011). With regard to reliability and objective team 

performance, the objective team performance did not increase continuously 
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between low and high robot reliability conditions. Compared with entirely 

manual operation, data showed that a good, or very good, working robot 

can enhance the performance of a USAR mission but differences between 

lower reliability levels (between 62% and 78% robot reliability) did not show 

a significant increase in performance. These results are similar to de Visser 

and Parasuraman (2011) who found that imperfect automation had a 

performance benefit if the reliability was over 70%. In study III (Chapter 6) 

only the high reliability robot was able to significantly increase the 

performance and decrease the time required for the scenario, compared to 

the manually operated robot. That suggests, unless the deployed robot has 

very high success rates or reliability, the utilisation of automated robots 

features in USAR might not be beneficial for the overall mission 

performance. 

The subjective workload with respect to varied robot reliability levels only 

increased between the middle reliability and low reliability condition. A lack 

of significant difference between workload between high and middle/low 

reliability workload conditions could also be due to the characteristics of a 

vigilance task, where very high levels of sustained attention (supervising 

the robot in high robot reliability and not interfering with the system) 

induces hypostress and results in high levels of subjective workload (cf. 

Bainbridge, 1983; Warm et al., 2008). 

Robot transparency: 

The fourth study (Study IV, Chapter 7) examined the influence of interface 

transparency. The interface transparency of the robot, did not lead the 

human-robot teams to higher levels of performance. These findings are in 

agreement with Ososky et al. (2014). 

However, trust changed across transparency levels: the lower the 

transparency, the lower the trust score. This is in accordance with Selkowitz 

et al. (2015) who found that trust increased between levels of transparency 

(more information displayed). They also found that there was no significant 

change in workload during their conditions. Similarly, the fourth study of 

this thesis found that there was no change in perceived workload between 

the transparency levels. 
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Interviews showed that participants neglected certain items on the 

interface. Further, the event analysis showed that participants detected a 

robot error significantly more often in the low transparency condition 

compared to the high transparency condition. This was not expected but 

suggests that the interface did not appropriately guide participant’s 

attention. Another reason might be that the high transparency interface was 

overcrowded and participants spent more resources on dealing with the 

robot, in this case the interface, rather than searching the environment for 

targets. This was also suggested by Chien and Lewis (2012) who reported 

a raised rate of unmarked victims when the robot was in high reliability 

mode. This stresses the importance of appropriate system transparency and 

interface design. 

The next section describes the recommendations that emerged from this 

thesis. 

8.5 Review of novel contributions 

The proposed novel contributions from the beginning of this thesis can be 

found in Section 1.6. This section will review the contributions in detail. The 

PhD addressed a variety of gaps in the literature and aimed to add the 

following novel contributions to the body of research knowledge: 

Only limited data about USAR processes, equipment and command 

structures are openly available to the public (HM Government, 2008; “The 

Personal Qualities and Attributes [Website],” 2014), detailed information 

about rescue work is still missing. Study I (Chapter 4) addressed this deficit 

and provided an original contribution to knowledge by giving insight into the 

organisational structures, rescue processes, and currently used equipment 

of the USAR rescue personnel in the U.K. and linking the findings to robot 

requirements. 

Retrospective verbal protocols had not previously been used in conjunction 

with autonomously operating robots. Study II (Chapter 5) used this 

verbalised thought method, collected extensive qualitative insight, and a list 

with interface and robot behaviour recommendations was compiled which 

provides another original contribution to knowledge. This thesis could also 
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show that giving explanatory information in addition to a robot’s confidence 

feedback did not further increase workload. 

Many authors concentrated on autonomous machines and robots (Hoff & 

Bashir, 2014; Merritt, 2011). However, a complex task such as Urban 

Search and Rescue still needs the operator in the loop and requires 

operators to take over certain aspects of the search tasks (e.g. identifying 

casualties) (Virk et al., 2008). In this case semi-autonomous robots are 

required. This thesis proposed a new semi-autonomous robot team measure 

(observed robot performance) that can help identify the source of influences 

on trust and control allocation (Section 6.3.5.1, p. 200). 

Search and rescue teams encounter unpredictable environments (Y. Liu & 

Nejat, 2013) that can be highly complex. Investigation of task complexity 

relevant to USAR missions is of importance to design useable robot systems 

(Desai et al., 2013) but received limited attention in previous research. 

Study III (Chapter 6) and study IV (Chapter 7) investigated the effects of 

task complexity in virtual USAR missions. This thesis showed that USAR 

relevant task complexity is of importance and influenced performance and 

control allocation. In general, task complexity had no influence on workload, 

but less complex tasks produced higher performance levels and rated self-

performance levels (Chapter 6 and Chapter 7). Interestingly, according to 

study IV (Chapter 7) task complexity influenced the control allocation 

strategy of participants significantly. Participants allowed the robot to find 

more targets in the high complexity conditions and missed more robot 

errors than in the low task complexity conditions. Participants found more 

targets in manual mode during low complexity tasks. Although trust in the 

robot was affected by task complexity it can be assumed that participants 

in study III were influenced by the performance of the robot they observed 

rather than the actual programmed robot performance (which was the same 

across task complexity levels). Therefore, this thesis demonstrated that 

robot performance has a stronger influence on trust and performance than 

task complexity. 

In addition, Study III (Chapter 6) showed that autonomous robot features 

only benefit the human-robot team performance when the robot’s reliability 
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exceeds approximately 60% - 70%. Therefore, autonomous features do not 

provide necessarily elevation from workload and enhance mission 

performance. This finding is of importance for future research and an advice 

to compare semi-autonomous human-robot team performances more often 

to manual achievable performances to better show the actual benefits 

autonomy can or cannot provide in human-robot teams. However, robots 

still provide the ability to access areas that are too dangerous or 

unreachable for humans.  

Furthermore, transparency is an emerging concept that aims to enhance 

human-robot team performance and was worth further investigation (Boyce 

et al., 2015; Lyons, 2013). Study IV (Chapter 7) investigated the effects of 

robot transparency in semi-autonomous human-robot teams in a virtual 

USAR scenario. Robot transparency did influence trust ratings but it did not 

influence the human-robot team performance. It was discovered that 

participants might use too much attention on supervising the robot (and the 

provided information) rather than searching the environment for targets. 

An indication for this could be that participants detected more robot errors 

in the low transparency conditions compared to the high transparency 

conditions. 

In human-robot interaction several trust questionnaires exist (Jian et al., 

2000; Muir, 1989; Schaefer, 2013; Yagoda & Gillan, 2012) but so far 

literature did not compare these questionnaires with each other regarding 

their usage in remote controlled semi-autonomous robot systems. This PhD 

investigated the difference between the Muir (1989) trust scale and the 

Schaefer (2013) trust questionnaire and found that the Schafer 

questionnaire is more sensitive to changes in trust but the Muir 

questionnaire is faster to administer. 

This PhD contributed a comprehensive list of recommendations for robot 

features, behaviours and interface design. Moreover, data suggests that the 

virtual reality approach of study III and IV (Chapter 6 and Chapter 7) 

produces similar results to real robot systems (Desai, 2012; Kaniarasu & 

Steinfeld, 2014; Larochelle et al., 2013a) and seems to be a valid method 

to investigate semi-autonomous remote controlled robot systems (also see 
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Chien & Lewis, 2012; Gao et al., 2013; Horsch et al., 2013; Robinette et 

al., 2015). 

8.6 Recommendations for robot behaviour 

and interface design 

The recommendations presented in this section emerged during the 

development and execution of the experiments. It needs to be considered 

that in three of the four studies participants were not experts and that some 

recommendations need to be validated (e.g. focus groups, interviews, etc.) 

with data gathered from rescuers that have experiences working in the field. 

The recommendations are divided into organisational, robot physical, robot 

functional, and robot interface recommendations. 

Organisational key points 

Robots are replaceable, humans and animals are not. The key advantage of 

USAR robots is that they can be deployed in dangerous areas that humans 

and animals cannot access. Robots can be used right from the first phase 

of search and rescue as well as in the following stages (for the stages of 

rescue see: Section 4.4.1.2.1 Search management, p. 98). It is advisable 

to implement a robot within the skill set of a USAR technician. These 

rescuers already have experience with technology and may be likely to 

accept a robotic system. Therefore, a robot could be implemented at the 

standard USAR operational level and can be part of the USAR Module 1 (First 

Strike), where the technical search equipment is also stored.  

Although there is a need to understand a robot’s behaviour and functions 

(or even internal states), training should be short and easy to understand. 

For a robot to be successfully implemented and accepted within the USAR 

community, it needs to be fast and easy to deploy and demonstrate 

usefulness. In order to do that, there needs to be a clear understanding of 

what the robot can and cannot do. This knowledge should be known along 

the entire command chain to avoid misunderstandings. Another important 

point is the distribution of information gathered by the robot. Data should 

be readily available for the command centre (e.g. pictures/videos of possible 

explosive devices) without the need to bring a memory device from the 
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emergency scene to the relevant person in command. The robot needs to 

become an integrated part of the rescue apparatus. 

Physical and functional robot requirements 

Perhaps most critical is the easy deployment (packable/wearable) and the 

size of the robot: small enough to be able to access voids and big enough 

to not fall between rubble. To have a robot that is universally deployable it 

needs to be intrinsically safe and resistant against water, heat, and dust. 

The obvious feature necessary to do reconnaissance for USAR is a camera. 

The camera picture should be big and undistorted. There needs to be a 

trade-off between data volume and video feed quality. Furthermore, sound 

can be useful for communicating with trapped casualties (e.g. Survivor 

buddy in Murphy et al. 2011) or to gather more information of the 

environment (e.g. sounds that indicate trapped casualties). For some 

participants (non-experts) it was very important to be able to move the 

camera independently from the driving direction to have a better field of 

view and situation awareness. 

Sound can also be helpful to navigate the robot. Motors will sound different 

when they are exposed to higher friction. The following additional features 

are useful to rescue workers: air quality sensors, infrared sensors, 3D 

scanning/automatic mapping of the environment, small grabber. 

The robot’s operator control unit needs to be controllable by rescuers who 

are wearing personal protective equipment. Software features that can 

support rescuers most can be automatic navigation over irregular terrain 

including path planning and collision avoidance as well as the identification 

of explosive devices and casualties. 

It may not be possible for a robot to have all of the features described 

above, but all of the features are necessary at some point. Having a robot 

that is only made for one task (e.g. capturing video data) might not be as 

useful as a robot system that is able to be configurable to the needs of the 

mission at hand (e.g. attach air quality sensors or infrared camera). A 

modular robot system can be a huge advantage in search and rescue due 
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to the unpredictable environments that rescuers and their equipment may 

have to face. 

Interface and robot behaviour recommendations 

When designing an interface for search and rescue robots it needs to be 

taken into account that operators may be sleep deprived, exhausted and 

under constant stress. Due to the nature of their physical and psychological 

state, the display should be uncluttered, clear and big. The list provided 

below describes possible interface elements that derived from this thesis: 

 Forward facing camera and backward facing camera view. 

 Continuously visualising the status of the robot. 

 Battery time, air quality, and temperature needs to be in an 

observable format (e.g. relative indication with a progress bar), 

rather than in numbers (e.g. absolute information such as time in 

seconds) because participants (non-experts) used the progress bar 

more than the indication of time remaining or numbers. 

 An essential element in the interface is the map. The map should 

provide a visible path with navigation points and the direction they 

came from and where they will go to, which supports the 

predictability of the robot. It would be best to visualise where the 

robot had already been (e.g. grey out the already driven path lines, 

overlay visited areas, etc.). The robot could also provide information 

about where it might be able to drive to (e.g. possible moving grid). 

 The target count (how many targets have been found) in the mission 

information box was very valuable for participants to keep track of 

the progress. 

 Top view pictogram of the robot can make it easier to indicate the 

position/part of a technical fault. 

 A robot’s confidence level or reliability indication can help to adjust 

the expectations of the operator and help make an informed decision 

whether to use auto or manual mode. Explaining in a short and clear 

manner the reason for the reliability level might give some 

participants a better understanding of the robot’s situation. 
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Giving a starting message, so that operators can familiarise themselves with 

the robot’s voice and the level of loudness can be useful. There is also a 

need for a customisable interface. Operators should be able to choose the 

information they want/need to see to complete a certain task. However, it 

needs to be established which elements need to be mandatory. High 

transparency interfaces can have too many elements to look at. Providing 

information on demand might be a trade-off. For example, temperature can 

just be shown when the temperature is too high, rather than having to check 

it at all times. 

Another feature of the robot that would support rescuers is a system that is 

able to identify explosive devices and casualties. During this thesis the robot 

was able to have such a feature and the following recommendations were 

made by participants (Chapter 5): 

 Visualising the process of target identification of the robot can help 

the operator to understand what the robot is doing. This could 

incorporate a visual overlay and a loading bar as well as the 

information if the robot tries to get another angle/view upon the 

target. 

 It would also be useful if operators (if they already identified the 

object) can abort the identification and declare that it is a target/no 

target to save time. 

 It seems that a more detailed explanation of the robot’s victim 

identification process is necessary. This missing information could be 

provided during training: a representation of the decision making of 

the robot and the mechanism of identifying targets (iteration of 

planes, points, heat pattern, etc.) could be beneficial.  

Autonomous robot behaviour also can influence an operator’s choices and 

actions. Robot movements have an influence on attention allocation, not 

only what the robot sees, but also how fast or slow it moves. Below is a list 

of recommendations about robot navigation and movement: 

 Even though the robot might be autonomous it should be possible to 

slow down or speed up its autonomous driving speed to be adaptable 

to different skilled operators and different environments. 
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 If the robot turns towards new areas, a surround view of this new 

area would provide the operators with a higher level of situation 

awareness. 

 Navigation goal points which indicate where the robot will drive next 

was liked by operators. They were able to predict the robot’s 

movements and they even followed the navigation goal points in 

manual mode. 

Participants were more likely to trust the robot’s judgement when they were 

uncertain about a target. This could lead to over-trust in the robot. It could 

help to contribute to the human’s decision making process by providing a 

percentage of accuracy (how sure the robot was that it identified/did not 

identify a target) or a general reliability indication. It can allow the operator 

to make an informed decision about further actions. In general, feedback 

indicating low reliability made participants pay more attention to the robot 

and a high reliability indications led participants to be more relaxed and 

allocate more time to other tasks. 

In addition, predictability and transparency emerged time and again to be 

a very important factor for trust and human-robot collaboration. Before 

developers and researchers can think of collaborative teams consisting of 

humans and robots, operators must be able to understand and predict the 

robot’s autonomy (Kruijff et al., 2014, p. 12). 

8.7 Personal reflection on trust, human-

robot collaboration, and the use of 

autonomous features 

The review of literature highlighted that the meaning of trust as a concept 

is very unstandardised, flexible, and difficult to define (Mcknight & 

Chervany, 1996). Furthermore, trust is not easy to measure. Is trust 

perhaps a synonym for usage or reliance? I rely on my team, because I 

trust them. Is the word trust misused? We may not intentionally misuse the 

word trust, but sometimes factors might not be interpreted properly. I 

believe that trust is a very personal concept: some will ride a rollercoaster, 

others won’t because they do not trust it. We need to focus on what we 
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really want to know: we want to know if the technology helps to improve 

our job performance and make work safer and whether the technology is 

used appropriately to take advantage of all possible benefits. So far 

evidence is sparse that trust influences performance or workload at a 

significant level. 

Although trust is not yet easy to capture it is not impossible with further 

research. For example Chapter 7 showed that there could be difficulties in 

determining if trust or something else was measured. However, is it worth 

putting effort into determining factors of trust, which change from 

technology to technology, from situation to situation, and from person to 

person? Trust is a good start (and an important concept) to find factors that 

influence our reliance and usage of a supporting robotic technology (Lee & 

See, 2004). However, research success may be limited by only looking at 

trust and its associated factors. Especially by not knowing if these trust 

factors belong to everyone’s individual trust concept (Merritt & Ilgen, 2008). 

There are additional factors which should be considered, such as 

acceptance, expectations, perceived usefulness, usability, experience, etc. 

(Davis, 1986; Komatsu & Yamada, 2011; Larochelle et al., 2013a). We need 

to examine the bigger picture if we want to influence the variables that 

matter, such as performance and workload. So we have to consider trust 

and other technology relevant factors, to find a way to enhance human-

robot collaboration. This is just a gentle warning that the word trust might 

be over-used and sometimes misused as a general construct that aims to 

predict the vast facets of human-robot interaction. 

Another question that needs reflection is, if semi-automation in Urban 

Search and Rescue is useful? Today, remote controlled robots are not 

robust, versatile and useful enough to be an integral part of a search and 

rescue team. As research has shown (Chapter 7; Visser and Parasuraman, 

2011) only robots that show a certain level of performance can actually 

contribute to a higher overall performance. On the one hand, currently there 

are no such semi-autonomous systems that can be used in real-life 

situations that show high levels of performance (Mioch et al., 2012). On the 

other hand, there is still a huge advantage of using a robot instead of a 
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person or an animal in inaccessible and/or dangerous zones. At the current 

level of technology it is not useful to introduce high levels of automation. 

There are other situations where automation can be useful. Less supervision 

may be required for multiple robots or even swarms that gather information 

autonomously. For example, a drone can be sent to fly over the incident 

site and capture aerial view pictures autonomously. On the contrary, semi-

autonomous ground robots still need a huge amount of supervision. We 

need to consider which tasks the human needs to do that the robot cannot. 

Chien and Lewis (2012) suggested that the overall performance can decline 

if the robot takes too much of the operator’s attention away from the main 

task (e.g. searching for casualties). This means that robot autonomy is not 

appropriate in all situations. The supervision of the robot can take up more 

attention than the search task itself, which should not be intended, since 

the main objective is to find as many casualties as possible, rather than 

accurately supervising the robot’s work. 

The benefit of having autonomous robot features, such as reduced risk of 

errors and decreased risk for the rescuer, has to outweigh possible 

performance deficits. If that is not the case, the robot should be operated 

manually. This also ensures that the operator can gain a higher level of 

situation awareness. Furthermore, professional rescue personnel are highly 

qualified and it seems that taking away control from them (e.g. the control 

over the robot) might be difficult and maybe not desired at all (Virk et al., 

2008). 

I think, in terms of implementation of robots in the search and rescue 

services, robotic agents can only be successfully implemented in stages. 

Rescuers see their equipment as tools and not as team mates (see Chapter 

4). Transitional concepts need to be researched. One possibility could be a 

stepwise introduction to the technology and automation. First, introducing 

an entirely manually remote controlled robot. Next, introducing features 

that only support but do not take any decision or control away from the 

operator (e.g. warnings about missed corners and/or targets). One 

recommendation is to gradually introduce automation with increased 

operator experience. But most important of all, the robot needs to prove its 
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usefulness in the field, if this does not happen, it is futile to start any further 

attempts of implementing any kinds of robots into Urban Search and Rescue 

teams. 

8.8 Limitations of research 

There were several limitations to this research. In three of the four studies 

the participants were not experts (rescuers) but students and staff from the 

university. With respect to trust and control allocation (manual and auto), 

rescuers might react differently when it comes to take over control because 

their experience may influence their self-confidence in the task, which is 

known to influence automation usage (Lee & Moray, 1994). Rescuers are 

highly trained in these types of tasks and might have different attitudes and 

interaction behaviours. It is of great importance to always include rescuers 

in the development of rescue robots. Also, the experiments just simulated 

a rescue scenario. Real-world scenarios are much more stressful and 

emotionally loaded. This can influence workload levels which can have an 

effect on control allocation and performance. 

Although a power analysis was conducted, the number of participants was 

in some cases insufficient to produce significant results, especially when 

comparing the auto and manual group (13 participants in each group). 

Another limitation was the amount of training participants received. In 

Study II the learning effect was a clear confounding variable and might have 

influenced the insignificant outcome of the study. In addition, depending on 

the participants’ experience with computer games their training effect 

varied greatly. Therefore, gaming experience of rescuers needs to be 

recorded to better interpret the result of studies. 

The theme based content analyses undertaken throughout this thesis was 

subject to the interpretation of the researcher. Analysis required inside 

knowledge of the studies and having watched the participant’s recording 

and experienced the actual situation in which participants answered or 

talked through the verbal protocol (e.g. being the interviewer and taking 

notes for each participant). Original quotes are provided in the Appendix, 

such that the reader or other researchers can make their own analysis. 
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The intended reliability level of the robot was diluted by the fact that some 

participants did not perceive certain mistakes of the robot and therefore 

their impression of the robot was different, which changed the participants’ 

ratings accordingly. To overcome this shortfall an additional performance 

measure was developed: observed robot performance. This is the 

performance that the participant actually perceived during the trial. 

With respect to further limitations, the measurements of trust and 

performance need to be mentioned. Performance was measured throughout 

as the number of victims found. However, it may be that other variables 

such as the robot’s movements or the robot search strategy also influenced 

the observed and rated robot performance. Trust was measured in Study II 

with a single question, in study III and IV the Schaefer (2013) trust 

questionnaire was used. This needs to be considered how trust and 

performance was measured when comparing experimental results. 

Further, trust varied significantly between the experimental conditions in 

study IV, where the amount of feedback and in general the transparency of 

the interface was varied. The only great variations in answering the trust 

questionnaire were among the items “Provide feedback”, “Provide 

appropriate information”, and “Communicate with people” (see Appendix J, 

p. 403). Changing transparency levels led to the manipulation of single 

items on the trust scale, which changed the outcome significantly. 

Therefore, in Chapter 7 the trust result needs to be treated with caution. If 

a different trust questionnaire had been used the results might have been 

greatly different. In order to measure trust more reliably, trust games or 

hypothetical questions, such as, “If there was an emergency right now, 

would you use the robot?” could support the trust measurement and 

increase its accuracy. 

The robot interface in study IV (Chapter 7) relied mainly on the visual 

channel, because using too many audio cues can be challenging for rescuers 

in a loud rescue environment. The reason why some participants simply 

neglected elements of the interface might have been caused by this 

overload of the visual channel. Other interfaces should try to use more 

channels but keep in mind the environmental circumstances rescuers have 
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to work in. Still, there is room to enhance the experience of operators to 

support them in their dangerous missions and make their work safer. 

8.9 Chapter summary 

The chapter discussed the key findings of this research and reviewed the 

aims of this thesis. A list of recommendations for robot implementation, 

design and behaviour was provided. Discussion was also made on the issue 

of trust and collaboration in human-robot teams and whether it is useful to 

further pursue the investigation of trust. The main limitations of this thesis, 

such as insufficient number of participants and confounding variables, were 

stated. 
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9 Conclusion and future work 

 

9.1 Chapter overview 

The chapter provides the main conclusions of this thesis in a short 

concluding statement. Furthermore, possible future work in the area of trust 

and human-robot collaboration research is outlined. 

9.2 Concluding statement 

The biggest advantage of using a robot in Urban Search and Rescue (USAR) 

is that rescuers can remain in a safe place while the robot can run 

reconnaissance missions in inaccessible or dangerous places. However 

steering a robot through a rescue environment and looking through “the 

eyes of robot” into environments that are far from ordered and easy to 

recognise, in addition, to the emotional and physical stresses associated 

with rescue work, make this task very demanding. The first study produced 

a valuable insight into the work of Urban Search and Rescue technicians in 

the U.K. which can be used by researchers considering how to support their 

work. 

The overall aim of this PhD was to understand how robot behaviour and 

interface design can be applied to utilise the benefits of robot autonomy and 

inform future human-robot collaborative systems. This was investigated 

with the use of a search and rescue scenario, where a robot and a human 

work together to find targets at an emergency site. 

USAR is a performance-oriented task which uses remote controlled robots 

to collect information about the surroundings. In order to test different robot 

behaviours and interfaces the influence of robot feedback, robot reliability, 

robot transparency, and task complexity on trust, workload, and 

performance was examined, the factors of importance analysed in this work 

derived from the literature review. By far the most influencing factor on 

trust, workload, and performance was robot reliability. A semi-autonomous 

unreliable robot would not support the work of rescuers, it might even make 

it worse. A robot needs to have a minimum of approximately 60% to 70% 
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correct performance to be useful and performance enhancing. Primarily, 

technology needs to prove itself to be useful. Rescuers see the robot as a 

tool and not as a team mate. 

Rescue environments and task demands are unpredictable and vary greatly. 

This thesis showed that more complex rescue tasks did not influence the 

trust in the robot or the subjective workload of operators. However, a more 

complex task decreased the performance of the human-robot team. The 

decrease in performance was due to the operators failing to see the robot’s 

mistakes. Detailed analysis suggests that low complexity tasks foster under-

reliance and high complexity task over-reliance on the robot. However, 

there is a possibility of a paradox: the more autonomy and supervision 

demand a robot needs, the less attention is left for the operator to do their 

task (e.g. search for victims in the environment). A trade-off between these 

two demands needs to be found to optimise the synergy between human 

and robot. 

This work also investigated robot transparency. There was no effect of 

transparency on performance or workload. Transparency was preferred by 

operators and trust increased with transparency. However, the validity of 

this measure is in question due to the selected method of measuring trust. 

Although participants stated that the additional information provided by the 

interface was useful, some participants also said that the robot system 

displayed too much information and distracted them. This suggests that a 

balance between providing information and hiding information is needed. 

Where this trade-off lies needs to be determined from domain to domain 

and from robot to robot. Interfaces should provide operators with the 

potential to customise the interface elements to a certain extent. This may 

be especially useful if the robot is modular and can be equipped with 

different sensors that are important for the task in question. In addition, a 

variety of robots can only be used in certain situations (e.g. only for testing 

if a person is dead or alive). Rescuers are not willing to invest in a robot 

that cannot be used on a daily-basis (Steinbauer et al., 2014). This barrier 

might be decreased with a modular, robust, and quickly deployable robot 

system. 
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Robot technology can be useful, but robots which cannot live up to 

operators’ expectations, have no clear defined capabilities, have features 

that require too much supervision, and have low performance levels, will 

not be accepted or used in the Fire and Rescue Service and will not be a 

collaborative partner. In conclusion, the interface and robot behaviour can 

be designed to benefit human-robot teams. Robot confidence feedback can 

steer the operator’s attention where needed; robot transparency can 

support better situation awareness, and a consistent robot behaviour can 

contribute to both better predictability and high levels of trust. 

9.3 Future work 

The findings presented in this thesis suggest to provide the operator with 

higher levels of robot transparency. However, too much information 

distracts and confuses the operator. Which key information needs to be 

visible at what time is a future research area that can be explored in focus 

groups or experiments with rescuers. The aim is to design interfaces which 

improve the operator’s understanding of the robot’s status and actions, but 

at the same time not overwhelm the operator with unnecessary information. 

Furthermore, transparency did not lead to higher levels of performance 

(Chapter 7). If transparency can provide benefits for understanding robot 

failures or recover faster from errors needs to be investigated in future 

research. 

Further, the experimental work in this thesis showed that trust in the robot 

was not influenced by task complexity. Nevertheless, participants did not 

rate the different task complexity levels as more or less difficult/complex. 

This suggests that the robot and its interface might have a larger influence 

on the rated task complexity than the environment itself. Further 

investigation is necessary to determine which variables influence the 

perceived difficulty of a remote robot control task. 

Also new questions about the measurement of performance and trust 

emerged. Future studies might be able to determine which performance 

shaping factors are important when interacting with a semi-autonomous 

rescue robot system. If it is possible to identify these factors, robot 

performance can be measured in more detail and would show a better 
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correlation with the operator’s rated robot performance. Furthermore, the 

responsible factors that cause a decreased perceived performance can be 

identified and positively modified. 

In general, future experiments should use the proposed observed robot 

performance measure (Section 6.3.5, p. 198) to distinguish between 

objective and observed performances for a better understanding of human 

ratings, behaviours, and human-robot team performance. 

In the experiments the robot performance was generally quite high; it would 

be of interest to test robot performances that are very low, or even a robot 

with no success at all, in order to see to what extent the human-robot team 

performance and the behaviour of the participant is influenced. 

For the implementation of robots in the search and rescue service, 

transitional concepts need to be researched. It is recommended that 

technology is implemented in small steps because the robot needs to be 

perceived as useful and not overwhelming or even defective. 

9.4 Chapter summary 

Research into trust, workload and performance in human-robot teams in 

the Urban Search and Rescue context has been conducted. This was realised 

by using autoethnographic and virtual reality approaches. The research 

findings showed that technology needs to prove itself to be useful and have 

a certain level of performance to be accepted, used and provide 

performance enhancement. A variety of recommendations and guidance for 

future research were given. 
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Appendix A - Study I: General 

Questionnaire 

Human-Robot Collaboration 

General questionnaire 

 

1. What is your gender? Please tick the appropriate circle. 

 

O  Female O  Male 

 

2. What age are you? 

 

_______ years 

 

3. What is your occupational title? 

 

___________________________________________________ 

If you are a researcher/student, please state your area of 

research/course of study. 

___________________________________________________ 

 

4. How frequently are you using a computer? 

 

O everyday O 1-2 times a 

week 

O 1-2 times a 

    month 

O less than  

    once a 

month 

 

5. Do you play computer games, app games or console games? 

 



363 

  

O  Yes O  No 

 

If Yes, please state the frequency of playing computer games, app 

games or console games. 

O everyday O 1-2 times a 

week 

O 1-2 times a 

    month 

O less than 

   once a 

month 

Please state the type (PC, app or console) and name of the games 

you are playing. 

___________________________________________________

___________________________________________________

___________________________________________________

_______________ 

 

6. Do you have experience with robots? 
 

O  Yes O  No 

 

If Yes, please state occasion and name of the robot. 

___________________________________________________

___________________________________________________

___________________________________________________

_______________ 

 

Please rate the following statements about robots by ticking the 

appropriate circle. 
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In general… 

I would feel uneasy if I was given a job where I had to use robots. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

1. The word "robot" means nothing to me.  

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

2. I would feel nervous operating a robot in front of other people. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

3. I would hate the idea that robots or artificial intelligences were making 

judgements about things. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

4. I would feel very nervous just standing in front of a robot. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

5. I would feel paranoid talking with a robot. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

6. I would feel uneasy if robots really had emotions. 
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O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

7. Something bad might happen if robots developed into living beings. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

8. I feel that if I depend on robots too much, something bad might happen. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

9. I am concerned that robots would be a bad influence on children. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

10. I feel that in the future society will be dominated by robots. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

11. I feel that in the future, robots will be commonplace in society. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

12. I would feel relaxed talking with robots. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

13. If robots had emotions, I would be able to make friends with them. 
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O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

14. I feel that I could make friends with robots. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

15. I feel comforted being with robots that have emotions. 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

16. I feel comfortable being with robots. 

o 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

Thank you very much for taking part in my study. Please hand this 

questionnaire back to the researcher. 

 

Personality questions 

(This was an online questionnaire and the system provided space behind 

each item to select one of the answers) 

How I am in general? The following section lists a number of characteristics 

that may or may not apply to you. For example, do you agree that you are 

someone who likes to spend time with others? Please indicate the extent to 

which you agree or disagree with that statement. 

 1=disagree strongly 

 2=disagree a little 

 3=neutral 
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 4=agree a little 

 5=agree strongly 

I am someone who… 

...tends to find fault with others 

...does a thorough job 

...can be somewhat careless 

...is relaxed, handles stress well 

...is a reliable worker 

...tends to be disorganized 

...worries a lot 

...is generally trusting 

...tends to be lazy  

...perseveres until the task is finished 

...does things efficiently 

...remains calm in tense situations 

...makes plans and follows through with them 

…likes to cooperate with others 

...trust in things other people say 
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Appendix B - Study II: General 

questionnaire 

Human-Robot Collaboration 

- General Questionnaire - 

 

7. What is your gender? Please tick the appropriate circle. 
 

O  Female O  Male 

 

8. What age are you? 

 

_______ years 

 

9. What is your occupational title? 
 

___________________________________________________

__ 

If you are a researcher/student, please state your area of 

research/course of study. 

___________________________________________________

__ 

 

10.How frequently are you using a computer? 

 

O everyday O 1-2 times a 

week 

O 1-2 times a 

    month 

O less than  

    once a 

month 
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11.Do you play computer games, app games or console games? 

 

O  Yes O  No 

 

If Yes, please state the frequency of playing computer games, app 

games or console games. 

O everyday O 1-2 times a 

week 

O 1-2 times a 

    month 

O less than 

   once a 

month 

Please state the type (PC, app or console) and name of the games 

you are playing. 

___________________________________________________

___________________________________________________

___________________________________________________

_______________ 

 

12.Do you have experience with robots? 

 

O  Yes O  No 

 

If Yes, please state occasion and name of the robot. 

___________________________________________________

___________________________________________________

___________________________________________________

_______________ 

 

Please rate the following statements about robots by ticking the 

appropriate circle. 
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Personality questions 

(This was an online questionnaire and the system provided space behind 

each item to select one of the answers) 

How I am in general? The following section lists a number of characteristics 

that may or may not apply to you. For example, do you agree that you are 

someone who likes to spend time with others? Please indicate the extent to 

which you agree or disagree with that statement. 

 1=disagree strongly 

 2=disagree a little 

 3=neutral 

 4=agree a little 

 5=agree strongly 

I am someone who… 

...tends to find fault with others 

...does a thorough job 

...can be somewhat careless 

...is relaxed, handles stress well 

...is a reliable worker 

...tends to be disorganized 

...worries a lot 

...is generally trusting 

...tends to be lazy  

...perseveres until the task is finished 

...does things efficiently 

...remains calm in tense situations 

...makes plans and follows through with them 

…likes to cooperate with others 

...trust in things other people say 
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Appendix C - Study II: Post-task 

questionnaire 

Post-task Questionnaire 

 

Please rate the task according to these scales by circling the appropriate 

vertical line. Thank you. 

Mental Demand – How mentally demanding was this task? 

 
Physical Demand – How physically demanding was this task? 

 
Temporal Demand – How hurried or rushed was the pace of this task? 

 
Performance – How successful were you in accomplishing what you were 

asked to do? 

 
Effort – How hard did you have to work to accomplish your level of 

performance? 

 
Frustration – How insecure, discouraged, irritated, stressed and annoyed 

were you? 

 
Enjoyment – How pleased, entertained, satisfied and happy were you? 

 
Engagement – How involved, thrilled or immersed were you? 
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Human-Robot Collaboration 

- Robot perception - 

 

Do you think the amount of information given to you by the robot was 

appropriate? 

Too little  

1 

 

2 

 

3 

 

4 

 

5 

Too much 

Do you think information given to you by the robot was detailed enough? 

Not detailed 

enough 

 

1 

 

2 

 

3 

 

4 

 

5 

Too detailed 

Do you think the information given to you by the robot was helpful? 

Not at all helpful  

1 

 

2 

 

3 

 

4 

 

5 

Very helpful 

To what extent did the robot contribute to the success of the task 
performance? Please tick the appropriate circle. 

O  10% O  20% O  30% O  40% O  50% 

O  60% O  70% O  80% O  90% O  100% 

 

Please indicate to what extent you agree/disagree with the following 

statements. 

Our team accomplished the task efficiently. 
Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I felt I was working with an intelligent being. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

The robot was very competent. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I can trust the robot. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I would like to operate this robot again. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I think the robot malfunctioned. 
Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I am wary of the robot. 
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Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I am confident in the robot. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

The robot is dependable. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

The robot is reliable. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

I felt competent operating the robot. 

Strongly disagree  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 Strongly agree 

7 

How familiar are you with the robot? 

Not familiar at all  

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 very familiar 

10 

 

In your opinion, the way the robot communicated was: 

Confusing  

1 

 

2 

 

3 

 

4 

 

5 

Clear 

Inconsistent  

1 

 

2 

 

3 

 

4 

 

5 

Consistent 

Hard to 

understand 

 

1 

 

2 

 

3 

 

4 

 

5 

Easy to 

understand 

Unfriendly  

1 

 

2 

 

3 

 

4 

 

5 

Friendly 

Unnatural  

1 

 

2 

 

3 

 

4 

 

5 

Natural 

Machinelike  

1 

 

2 

 

3 

 

4 

 

5 

Humanlike 

 

Thank you. 
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Appendix D - Study II: RVP analysis; 

in-between events 

1. Event: In-between events 

These events occurred independent from the robot’s actions (e.g. finding a 

target, indicating reliability, etc.) and were recorded throughout the 

scenario. 

1.1. Attention allocation 

Attention allocation means the attention participants allocated towards the 

robot or the secondary task. Participants were free to choose to do a 

secondary task which involved to count boxes on the screen and press the 

appropriate number on the keyboard. Their incentive to actually do the task 

was that they could gain points for each correct answer. Therefore, 

participants used different strategies of allocating their time between the 

robot and the secondary task. From the retrospective verbal protocol the 

comments were collected and categorised under different themes (see Table 

45). 

Event In between events: Attention allocation 

Theme Task switching [152] 

Sub-

theme 

From R to secondary [89] From secondary to R [63] 

Raw 

data 

theme 

• Space/clear area in front 

[21] 

• R focus/advancing towards 
obvious point [10] 

• R is slow/not turning [9] 

• R succeeded [9] 

• More experience [7] 
• Clear environment [6] 

• Illuminated areas [3] 

• Just panning, no focus [6] 

• P identified target [5] 

• More trust [3] 
• Low workload [4] 

• R got stuck [4] 

• P presumes no targets at start 

[1] 
• objects only on boxes/in-

between boxes free time [1] 

• Cluttered/complex 

environment [10] 

• R moves/turns to new area 
[14] 

• Bad picture quality [10] 

• Less trust in R [6] 

• R focusses on sth. [4] 
• Lower light [6] 

• R too fast [2] 

• R stopped/slowed down [6] 

• Too much secondary task/might 

miss something [1] 
• Difficult secondary task [1] 

• P anticipated important area [1] 

• Waiting for R to identify target  

[1] 
• Two missed [1] 
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Table 45 - TBCA overview of sub-event: Attention allocation (robot/secondary task) 

When participants mentioned they switched between the tasks they could 

either do it away from the robot or towards the secondary task [89] or the 

other way round [63]. 

Task switching – From robot to secondary task [89] 

They mostly switched from the robot to the secondary task when they could 

see a clear and wide area in front of the robot [21]: 

 “Again familiarise with, looking at the scene, see there is nothing there, 

switching back to the secondary task.” (P14; Parker) 

 “[…] I guess I waited for the wide open, [to start secondary task] 

[hesitation sound] yeah there we go. I am playing the game [secondary 

task]. So I just wanted to see what was round the corner I guess and 

make sure it is still like wide open, so definitely I was trusting the robot 

in wide open areas, when visibility was high and both I could see that is 

nothing there.” (P16; Roy) 

  “[…], there is now objects here, and you can probably hear me, blitzing 

a lot at the secondary task, because nothing new is coming into view.” 

(P10; Parker) 

This goes hand in hand with the statements which commented that they 

were switching to the secondary task when the robot was advancing towards 

an obvious point [10]: 

 “[…] it was clearly visible that the robot is advancing on this particular 

position, so unless something popped up in front of it, […], I can just, 

just leave it to it – whatever it is doing.” (P02; Parker) 

 “[…] it’s obviously when he is travelling to a place, then there are not 

gonna be any items of importance. That was the time to get clicking.” 

(P04; Roy) 

It also showed that the more familiar and experienced participants felt the 

more they switched to the secondary task [7]. This is in agreement with the 

finding that the second performed task had significantly higher performance 

scores (cf. 5.4.2.1 Performance, p.134): 
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 “[…].So the more I probably, the more experienced I get with it the more 

am I try the other task [secondary], but it’s still, I didn’t want to miss a 

thing on the other one [robot].” (P24; Roy) 

 “Yeah I am doing the secondary task at this point quite, it’s maybe down 

to getting comfortable with the task as much as anything else. I doubt I 

was entirely consistent throughout, you get more comfortable with doing 

something here.” (P10; Roy) 

Interestingly, as soon as some participants identified a target (not yet the 

robot) [5] they were doing the secondary task and at the same time waiting 

that the robot identified/not identifies the target: 

 “So as soon I picked something up, I thought: Okay it’s not 

incorrectly identified that and then have a go at that [secondary 

task].” (P17; Parker) 

 “When I knew what it [target] was, I clicked [secondary task].” (P01; 

Roy) 

Generally, participants switched to the secondary task when the picture was 

clear and not cluttered [21]. Experience with the task led to more secondary 

task performance. 

Task switching – From secondary task to robot [63] 

The most stated reason for switching back towards the robot was the robot 

moving/turning towards a new area [14]: 

 “You can hear me clicking some questions as it going straight forward 

again, fairly slowly and then as it begins to turn, I go back [supervising 

the robot].” (P09; Parker) 

 “Again wide space, [hesitation sound], starts to pivot – that’s when I 

look.” (P02; Roy) 

Also, cluttered and complex environments [10] made participants switch 

back to the robot: 

 “I paid attention every time he might change camera angles. Like 

another field of view. And then he moved slow.” (P05; Parker). 
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 “Again we are going to a bit more of a busier area here, so I have stopped 

doing the secondary task and the reliability is high, so.” (P14; Roy) 

 “Here I am waiting because it’s like the corner so I am not doing anything 

on the secondary task. And there is a lot of stuff here, so I am thinking: 

ok.” (P23; Roy) 

Another theme that came up when switching back to the robot was bad 

picture quality [10] (bad video stream): 

 “[hesitation sound] and I was struggling make out, [hesitation sound], 

images and things, so I really really really slowed down on the secondary 

task quite quickly and virtually neglected it, I did a bit but not very 

much.” (P12; Roy). 

 “Yes there so again, poor picture quality, certainty warrant more 

attention at this point.” (P10; Parker) 

Also when the robot slowed down, stopped or behaved uncharacteristically 

[6] participants allocated their attention to it: 

 “Because it slowed down, I went back to look at it [robot]. And then what 

it looked at, - I didn’t feel it was one of those [required objects to find].” 

(P02; Parker) 

 “Here it seemed to kind of freeze or didn’t seem to be doing much. That 

why I stopped [secondary task] for a few seconds and then got back to 

the task. Because the speed it was taking seemed to be kind of 

uncharacteristic for what is doing for.” (P02; Roy) 

 “Here, when it stopped I stop [secondary task]. When it slows down you 

can’t hear me click. Oh because I thought: Why did he stopped?” (P08; 

Parker) 

It can be assumed that the robot’s movements have a huge influence on 

attention allocation. Not only what the robot sees, also how fast or slow it 

moves. As expected, busy or cluttered environments with potential targets 

and bad picture quality led participants to watch the robot more. Other 

literature reported that if a robot worked too slow the trust towards the 

robot decreased (Robinette et al., 2015). 
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The next three themes in the attention allocation event are flicking between 

tasks [8], no switching [22], and distractions [9] (see Table 46). 

Event In between events: Attention allocation 

Theme Flicking between 

tasks [8] 

No switching (stay 

with R) [22] 

Distractions [9] 

Sub-
theme 

General [8] General [22] General [9] 

Raw 

data 

theme 

• General mentioning 

[3] 

• Bad picture 
quality [1] 

• R slowed down 

[3] 

• make sure [1] 

• Unfamiliar with 

task [6] 

• Bad picture 
quality [5] 

• Less trust in R 

[4] 

• R more important 
[2] 

• Forgot secondary 

task [3] 

• Unsure about low 
or high reliability 

area [1] 

• no attention for two 

tasks [1] 

• secondary task 

mistake [4] 

• Checking target 
list [2] 

• Switching 

between tasks [1] 

• Bad picture quality 
[1] 

• Unknown object [1] 

 

Table 46 - TBCA overview of sub-event: Attention allocation (switching) 

Flicking between tasks [8] 

Additionally a few participants reported that they were flicking between the 

tasks [8], the reasons were similar to the listed above: Bad picture quality 

[1], Robot was slow/slowed down [3] or just making sure the robot does 

the right thing [1]. 

No task switching (stay with robot) [22] 

Three participants totally forgot about the secondary task. Other reasons 

for not switching and staying on the robot (mostly at the beginning of the 

task) were that participants felt unfamiliar with the task [6]: 

 “At this stage I was just trying to allocate as much attention as I could. 

Because I didn't know, what I am gonna be coming up against.” (P08; 

Roy; 00:01) 

 “I wanted to the secondary task again, but I was thinking: It is a new 

robot. I need to familiarise myself with its competence before I 

concentrate on that [secondary task].” (P17; Parker; 00:01) 
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 “I didn't look at the other task, because I had to get my eye in.” (P07; 

Parker; 01:09) 

The bad picture quality [5]: 

 “I gave it a high level of attention, to know what was going on. The 

picture quality coming in and out as well, I didn't feel I could stop looking 

at it. And I don't think at any point through the whole exercise I felt that 

I could stop looking at it, may I should stop looking at it.” (P06; Parker; 

04:32) 

 “So [hesitation sound]  again it's just-I don't know- the image I think 

flickers a lot or moves a lot, and I found it very, - I was really really 

concentrating, really hard on this […].” (P12; Roy; 02:03) 

Low trust in the robot [4]: 

 “The same as before I didn't even try to look at the secondary task, at 

all. I still feel that, as that why could trust, - or felt I should trust the 

robot enough to pick it up.” (P06, Roy) 

 “No, I just literally started I think towards the end but [hesitation sound] 

I was thinking I actually [unclear] was wrong and I didn't want to miss 

anything.” (P13; Roy) 

To sum up the main reasons for not switching were when people felt 

unfamiliar with the task, experienced bad picture quality, had less trust in 

the robot or they forgot about the secondary task. 

Distractions [9] 

It distracted participants when they made a mistake at the secondary task 

[4]. As soon as the secondary task feedback became red (false answer), 

participants were looking back to the secondary task and were distracted 

from supervising the robot. Other distractions were checking the target 

against the target list [2] or switching too much between tasks [1]. 

1.2. Robot/Interface characteristics 

Participants stated positive, neutral and negative comments about the 

robot’s characteristics and the interface, as shown in Table 47. 
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Event In-between events: Robot/Interface characteristics 

Theme Positive [14] Neutral [15] Negative [13] 

Sub-

theme 

General [14] General 

[3] 

Questions [12] General [13] 

Raw 

data 

theme 

• More 

feedback [2] 

• Good distance 
to objects [3] 

• Good speed 

[2] 

• 
Understandable 

search strategy 

of R [2] 

• R's speed 
adjusts to 

environment [1] 

• P likes 

humanoid voice 

[1] 
• 360 degree 

view [1] 

• R looks 

thoroughly [1] 
• Accurate 

reliability 

assessment [1] 

• R faster 

[1] 

• R 
stopped to 

look at 

objects [1] 

• R gave 
less 

information 

[1] 

• Can the camera 

turn? Or the 

whole robot? [1] 
• Can R identify 

targets while 

moving? [1] 

• Does it identify 
when it pans? [1] 

• What are the 

dimensions of 

R? [4] 
• What does the 

R feedback 

means to me? [1] 

• Where the 

delay come from? 
[1] 

• Does the robot 

try to identify 

when stopped?  
[1] 

• How much is 

the reliability 

affected? [1] 
• Does it need to 

get close to 

identify? [1] 

• No feedback 

at the 

beginning [3] 
• R too fast [3] 

• No building 

plan [1] 

• R can't access 
where humans 

could [1] 

• R speed does 

not adjust to 
environment [1] 

• No robot sound 

[1] 

• No feedback 

while R stopped 
[1] 

• too close to 

objects = light is 

in the way [1] 
• Too much 

feedback [1] 

 

Table 47 - TBCA overview of sub-event: Robot interface characteristics (positive, neutral, 

negative) 

Positive [14] 

The additional feedback from Parker was positive [2]. 

 “It was giving me a lot more information this time. I thought it was a lot 

better, I liked being more informed and finding out why was it thought 

that it was in low identification. It gave me an understanding how I have 

to look harder. So when it was low lighting, I knew I have to kind of 

really [unclear: crouch] forward [towards screen] and yeah I thought 

the higher amount of information was much better. I almost maybe trust 

it more, I think.” (P08; Parker) 

 “Yeah but it gave more information. So I was happy with that.” (P19; 

Parker) 
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Further the robot had a good distance to objects [3], good speed [2] and 

an understandable/comprehensible search strategy [2]. 

Neutral [15] 

Of importance in the neutral theme were the questions people 

asked/inferred about the robot. These questions can give an insight to what 

is missing regarding information flow between robot and operator. 

Some questions that the participants asked or inferred were about the 

physical dimensions of the robot [4]: 

 “I was just thinking here: Is it getting stuck or is it gonna crashing into 

something […].” (P21; Roy) 

 “At this point I also thought if the robot could squeeze under a gap that 

small, and I thought that is a bit of a stupid. Unless it's collapsible.” 

(P20; Roy) 

The current study setup did not allow the participant to see the robot before 

performing the tasks, because the robot design should not influence the 

recorded data. 

The robot’s process of identifying a target was questioned in many different 

ways, it seems that a more detailed explanation is necessary: 

 Yeah it had two errors there. Yes so I guess it was [hesitation sound] 

yeah it needs to get close to the objects in order to pick it up. I assume. 

(P15; Parker); Does it need to get close to identify? 

This missing information could be provided during training: A representation 

of the decision making process of the robot and the mechanism of 

identifying targets (iteration of planes, points, heat pattern, etc.) could be 

beneficial.  

Negative [13] 

Overall a huge negative factor for participants was that they had to wait for 

the robot to identify a target. This issue was not directly stated as a negative 

trait of the robot but became visible when looking at the previous analysed 

events and how often participants mentioned that they had to wait [31+]. 
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Three participants criticised not having any feedback at the beginning: 

 “So here I couldn't really hear anything from the robot for a while, so I 

was wondering if the mic, headset was still working. […].” (P16; Roy) 

 “To begin with, I was a little bit, [hesitation sound], confused, because 

I thought, I didn't know whether I was having to speak about everything, 

or whether the robot was gonna tell me straight away whether it found 

anything, […] that was why I didn’t know it was gonna tell me it found 

something, so I was getting as bit anxious.” (P13; Roy) 

 “I was a little bit worried, because I didn't know whether this was gonna 

talk to me or not. So I was a little, I wanted it to talk to me. I want it to 

say: Okay I am off. You know something like that.” (P07; Parker) 

This is similar to the comments of “1st target found” (see 5.4.5.1.7), where 

it was useful for the participants to know that the system works and they 

could familiarise with the voice. 

Again, it is important to provide continuously the status of the robot and 

giving a starting message, so that people hear the voice and know the robot 

works properly. In addition, the robot motor sound could positively 

contribute to the overall understanding of the robots state. For instance, 

when we are driving a car uphill the motor needs more power and will sound 

differently, the same could be applied to the robot, if the robot drives over 

rubble (not obviously visible for the operator) and is therefore 

uncharacteristic slow, the operator can hear a changed motor sound and 

can more easily infer that the surface might be challenging for the robot. 

In some cases the robot was too fast for the participants [3]. Even though 

the robot is autonomous it should be possible to slow it down to be 

adaptable to different skilled operators. 

Ideas [13] 

Ideas for improvements mentioned by the participants is shown in Table 48. 

Event In-between events: Robot/Interface characteristics 

Theme Ideas [13] 

Sub-

theme 

Camera and 

Movement [5] 

Screen/Display [4] General [4] 
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Raw 

data 

theme 

• R speed adjust to 

P skills [1] 

• Camera not fixed 
on R better [1] 

• Get surround 

view [3] 

• Screen feedback 

of reliability [1] 

• Showing 
reliability bars on 

screen constantly 

[1] 

• Indicate 
percentage of how 

sure R is about 

target [1] 

• Diagram of robot 
indicating status 

[1] 

• Feedback if there 

is no target [1] 

• Command: Go 
back/check error 

[1] 

• more 

chatty/human [1] 
• Explanation what 

R is telling [1] 

 

Table 48 - TBCA overview of sub-event: Robot interface characteristics (participant ideas) 

Participants’ ideas that could improve the usability and behaviour of the 

robot were collected in this theme. The presented ideas incorporated giving 

feedback if there is no target [1], a command to go back/check again [1], 

a more chatty human voice [1], and an explanation of what the robot is 

actually telling the operator [1]: 

 “I did think that it might be good, it might update you on other things, 

like you were just waiting for it to go around and find something, before 

it spoke to you. So it didn't say anything when it saw something that you 

saw, okay is that important. It is not what it is looking for but shouldn’t 

it say something, is where.” (P18; Parker); feedback if there is no target 

 “[…] I felt it should be more: Oh look, - more chatty, more human I 

guess. Because that [the robot] was talking in such a way [succinct and 

standardised procedure protocol] I felt inhibited to do that [talking 

natural towards robot].” (P07; Roy); more chatty human 

 “So better understanding on what it is telling me, would be needed.” 

(P24; Parker); explanation of what the robot is telling the operator 

Regarding the camera and robot movement participants’ whished that they 

would be provided with a surround view [3] of the area when entering a 

new section: 

 “[Hesitation sound], I think if I were operating it, as I say, I would have 

stopped in various positions and if the robot was the right size I would 

have done a 180 (shows 180 grad circle with hands). To get every 

surface as it were.” (P09; Parker) 
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 “But it would have been, if I would have been in control, like to turn left 

now, because I wanna see if there is something left.” (P03; Parker) 

 “[…] I would have liked it, so it was going through this path and there 

things in both sides, eventually turned on this side [right] the robot that 

I was thinking that I would like if it had stopped at this point and make 

a whole turn, because I was thinking: Okay I haven’t seen any on this 

wall. And I was wondering if it’s gonna turn around that way or is it 

gonna go straight.” (P23; Parker) 

Other ideas consisted of adjusting the robots speed to the operator’s skills: 

 “[…] once you got into it after like three or four minutes, it was 

probably a bit slow. Once I skilled up. It could have probably gone a 

bit quicker. […]. So it was almost like, [hesitation sound], I lost a 

little bit of focus, I guess, or I could have done, if he would have gone 

on much longer on that speed.” P07; Roy) 

And a rotatable camera (camera not fixed on R better) [1]: 

 (“Yeah and the camera only is pointing forwards. The robot is looking 

forwards, I figured, if I would have a separate camera I could have 

turned otherwise.” P03; Parker). 

With respect to the screen/display participants were not sure if they were 

still in low or high reliability areas, which inferred visible feedback (status) 

of reliability [1]: 

 “There was one point where it said, yeah, I think it was here, where 

it said: reliability high, where I thought: Does that mean that through 

this period reliability has been low? Because I thought it only been in 

that little bit in the beginning, where it going into the shading, and I 

was like: Oh okay. I thought it was light before this.” (P18; Parker) 

Moreover, showing reliability bars on screen constantly (e.g. light, heat, 

accessibility and overall reliability) [1]: 

 “[..] but I find it quite helpful, to have a thing of lighting levels [draw 

bar on interface], there is a bar and I don’t know, [hesitation sound] 

the thing about heat affecting the sensors at one point, so you could 
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have that. And then be able to look at that and say okay well the 

overall reliability is high, because everything else is high. [Hesitation 

sound]. While it was good for the robot to say things, cause that 

meant that they bring it to my attention better, rather than just 

having a bar or something that would flash up. It also meant that, I 

only knew stuff when it chose to tell me. So if I was just driving along, 

and I was curious about darkness and what is the reliability level? It 

wouldn’t... It only tell me when it changed. And I had to remember 

what the last change was.” (P03; Parker) 

The same participant also whished a percentage value of how sure the robot 

is about a target [1]: 

 “[…] I felt like we were kind of competing, like the robot was trying 

to see stuff and I tried to see stuff, when there was two people 

competing at it. And I felt like collaborating if the robot would kind of 

say, here is something I am 20% sure it is a person. Here is 

something I am 60% sure, and then I can kind of filter that in that 

way the robot can spot stuff and I can seeing the robot flanks. And I 

don’t know how much was this one? 20%? And 20% is a low enough 

threshold that it would capture stuff that I see and it doesn’t.” (P03; 

Parker) 

Another beneficial statement was made by this participant about the 

visualisation (diagram) of the robots status [1]: 

 “[..] And it might get stuck and you didn’t know why. And that might 

take both time and a very complicated vocabulary for the robot to 

say that rear left tire was experiencing lower than usual traction, - 

whatever. Whereas you can just see a little diagram, tyre, tyre, 

tyre... low traction [drawing robot shape in screen corner]. Could be 

like that. And that’s the problem [pointing and drawing in the air].” 

(P03; Parker) 

Recapping these ideas the movement of the robot should be adjustable by 

the operator. If the robot turns towards new areas a surround view should 

be given to the operator. If possible, the reliability (low or high) should be 
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visualised on the screen, as well as the light levels, heat levels and 

accessibility levels (e.g. bars in percent). Furthermore, if the robot identifies 

a target it could also provide a percentage of how sure it is about the 

identification. If there is no target the robot would indicate that, too. 

Another feature could be a top view of the robot indicating any faults and 

the specific location of the fault. 
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Appendix E - Study III: General 

questionnaire 

Virtual Robot Rescue Study 

- General Questionnaire - 

 

13.What is your gender? Please tick the appropriate circle. 

 

O  Female O  Male 

 

14.What age are you? 
 

_______ years 

 

15.What is your occupational title? 

 

_____________________________________________________ 

If you are a researcher/student, please state your area of research/course 

of study. 

_____________________________________________________ 

 

16.How frequently are you using a computer? 

 

O daily O more than once    

   a week 

O more than  

   once a month 

O less than  

   once a month 

O never 

 

17.Do you play computer games? 
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O daily O more than once    

   a week 

O more than  

   once a month 

O less than  

   once a month 

O never 

If applicable, please state the type and name of the games you are 

playing most frequent. 

________________________________________________________

________________________________________________________

________________________________________________________ 

 

18.Do you have experience with robots? 
 

O  Yes O  No 

 

If Yes, please state occasion and name of the robot. 

________________________________________________________

________________________________________________________

________________________________________________________ 

 

In general… I would say that I trust robots 

O 

Strongly 

disagree 

O 

Disagree 

 

O 

Undecided 

 

O 

Agree 

 

O 

Strongly 

agree 

 

Personality test 

 

How Accurately Can You Describe Yourself? 

Describe yourself as you generally are now, not as you wish to be in the 

future. Describe yourself as you honestly see yourself, in relation to other 

people you know of roughly your same age. So that you can describe 

yourself in an honest manner, your responses will be kept in absolute 
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confidence. Indicate for each statement whether it is “Very Inaccurate”, 

“Moderately Inaccurate”, “Neither Accurate/Nor Inaccurate”, “Moderately 

Accurate”, or “Very Accurate” as a description of you. Please rate the 

following 50 items. 

Participants could tick a circle behind each of the questions indicating how 

accurate the statement describes themselves. The questions asked were: 

1. I am the life of the party. 

2. Feel little concern for others. 

3. I am always prepared. 

4. Get stressed out easily. 

5. Have a rich vocabulary. 

6. Don't talk a lot. 

7. I am interested in people. 

8. Leave my belongings around. 

9. I am relaxed most of the time. 

10. Have difficulty understanding abstract ideas. 

11. Feel comfortable around people. 

12. Insult people. 

13. Pay attention to details. 

14. Worry about things. 

15. Have a vivid imagination. 

16. Keep in the background. 

17. Sympathize with others' feelings. 

18. Make a mess of things. 

19. Seldom feel blue. 

20. I am not interested in abstract ideas. 

21. Start conversations. 

22. I am not interested in other people's problems. 

23. Get chores done right away. 

24. I am easily disturbed. 

25. Have excellent ideas. 

26. Have little to say. 

27. Have a soft heart. 

28. Often forget to put things back in their proper place. 
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29. Get upset easily. 

30. Do not have a good imagination. 

31. Talk to a lot of different people at parties. 

32. I am not really interested in others. 

33. Like order. 

34. Change my mood a lot. 

35. I am quick to understand things. 

36. Don't like to draw attention to myself. 

37. Take time out for others. 

38. Shirk my duties. 

39. Have frequent mood swings. 

40. Use difficult words. 

41. Don't mind being the center of attention. 

42. Feel others' emotions. 

43. Follow a schedule. 

44. Get irritated easily. 

45. Spend time reflecting on things. 

46. I am quiet around strangers. 

47. Make people feel at ease. 

48. I am exacting in my work. 

49. Often feel blue. 

50. I am full of ideas. 
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Appendix F - Study III: Post-task 

questionnaire 

Virtual Robot Rescue Study 

- Post-task Questionnaire - 

 

Please rate the task according to these scales by circling the appropriate 

vertical line. Here is an example: 

Mental Demand – How mentally demanding was this task? 

 

Physical Demand – How physically demanding was this task? 

 

Temporal Demand – How hurried or rushed was the pace of this task? 

 

Performance – How successful were you in accomplishing what you were 

asked to do? 

 

Effort – How hard did you have to work to accomplish your level of 

performance? 

 

Frustration – How insecure, discouraged, irritated, stressed and annoyed 

were you? 
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Enjoyment – How pleased, entertained, satisfied and happy were you? 

 

Engagement – How involved, thrilled or immersed were you? 

 

 

1. Please rate your performance for the last scenario and tick the 

appropriate circle. 

Poor 

1 

O 

2 

O 

3 

O 

4 

O 

5 

O 

Excellent 

6 

O 

Please explain your answer: 

______________________________________________________

______________________________________________________

______________________________________________________

_______________ 

 

2. Please rate the robot’s overall performance for the last scenario. 

Poor 

1 

O 

2 

O 

3 

O 

4 

O 

5 

O 

Excellent 

6 

O 

Please explain your answer: 

______________________________________________________

______________________________________________________

______________________________________________________

_______________ 

 

3. Which mode would you prefer to use? 

O Manual mode O Auto mode O No preference 

 

4. Please indicate which mode had the better performance? 
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O Manual mode O Auto mode O No preference 

 

5. How difficult did you perceive the task? 

Extremely 

difficult 

O O O O O 

Not at all 

difficult 

O 

 

6. How complex do you rate the task? 

(Complexity means the simultaneous occurrence of several task 

components that influence your performance.) 

Extremely 

complex 

O O O O O 

Not at all 

complex 

O 

 

7. How confident were you in performing the task? 

Extremely 

confident 

O O O O O 

Not at all 

confident 

O 

 

 

Trust questionnaire for Human robot interaction (Schaefer, 2013) 

 

Please tick the appropriate percentage value. If you think something is not 

applicable select N/A. 

Participants could answer the statements in 10% intervals from 0% to 

100% or tick not applicable (N/A). 

What % of the time did this robot… 

1. Act consistently 

2. Protect people 

3. Act as part of the team 

4. Function successfully 

5. Malfunction 
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6. Clearly communicate 

7. Require frequent maintenance 

8. Openly communicate 

9. Have errors 

10. Perform a task better than a novice human user 

11. Know the difference between friend and foe 

12. Provide Feedback 

13. Possess adequate decision- making capability 

14. Warn people of potential risks in the environment 

15. Meet the needs of the mission 

16. Provide appropriate information 

17. Communicate with people 

18. Work best with a team 

19. Keep classified information secure 

20. Perform exactly as instructed 

21. Make sensible decisions 

22. Work in close proximity with people 

23. Tell the truth 

24. Perform many functions at one time 

25. Follow directions 

26. Considered part of the team 

What % of the time was this robot… 

27. Responsible 

28. Supportive 

29. Incompetent 

30. Dependable 

31. Friendly 

32. Reliable 

33. Pleasant 

34. Unresponsive 

35. Autonomous 

36. Predictable 

37. Conscious 

38. Lifelike 

39. A good teammate 



395 

  

40. Led astray by unexpected changes in the environment 

 

The Muir (1989) trust questionnaire 

 

Please select a value from 1 to 10 regarding the following questions. 

 Not 

at all 

1 2 3 4 5 6 7 8 9 

Com-

pletely 

10 

To what extent can 

the system’s 

behaviour be 

predicted from 

moment to 

moment? 

O O O O O O O O O O 

To what extent can 

you count on the 

system to do its 

job? 

O O O O O O O O O O 

How confident are 

you that the 

system will be able 

to cope with all 

situations in the 

future? 

O O O O O O O O O O 

Overall how much 

do you trust the 

system? 

O O O O O O O O O O 
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Appendix G - Study III: Programmed 

robot reliability 

Programmed reliability across reliability levels 

For a better understanding Figure 128 will illustrate the programmed robot 

reliabilities across the conditions. The values represent the ratio between 

the programmed number of targets missed and the programmed number of 

targets found. The high complexity values are slightly higher for middle and 

low reliability due to the different number of targets present in the trial. In 

the high reliability conditions the robot is programmed not to make any 

mistakes. In the middle robot reliability condition the robot is programmed 

to make one mistake and be unreliable for a certain amount of time, which 

is visible by not inspecting all required areas during the low reliability time 

as shown in the reliability profiles in Figure 128, p. 396. During low reliability 

the robot will have two low reliability sections and makes in each of them a 

mistake. 

 

Figure 128 - Overview of the programmed reliability levels of the robot 

Programmed reliabilities across task complexity 

Figure 129 gives an overview of the task complexity conditions and the 

related mean programmed robot performance. Unfortunately due to the 

High reliability Middle reliability Low reliability

Low complexity 1.00 0.75 0.60

Middle complexity 1.00 0.75 0.60

High complexity 1.00 0.83 0.67

Mean 1.00 0.78 0.62

0.00

0.20

0.40

0.60

0.80

1.00

Programmed robot reliability

Low complexity Middle complexity High complexity Mean
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different number of targets the high complexity condition’s mean of 83% is 

5% higher than the low or middle complexity means. This needs to be taken 

into account when interpreting results across the task complexity levels. 

 

Figure 129 - Overview of programmed robot reliability levels across task complexity 

Although the programmed reliability is fixed in each condition and not a 

dependent variable, the fact that participants are free to choose between 

manual and auto mode gives a different reliability for each run for each 

participant. 

  

Low complexity Middle complexity High complexity

High reliability 1.00 1.00 1.00

Middle reliability 0.75 0.75 0.83

Low reliability 0.60 0.60 0.67

Mean 0.78 0.78 0.83

0.00

0.20

0.40

0.60

0.80

1.00

Programmed robot reliability

High reliability Middle reliability Low reliability Mean
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Appendix H - Study IV: General 

questionnaire 

Virtual Robot Rescue Study 2 

- General Questionnaire - 

 

19.What is your gender? Please tick the appropriate circle. 

O  Female O  Male 

20.What age are you? 

_______ years 

21.What is your occupational title? 

_____________________________________________________ 

If you are a researcher/student, please state your area of research/course 

of study. 

_____________________________________________________ 

22.Do you have prior experience with robots? (E.g. took part in one of the 
previous robot studies, worked with robots, etc.) 

_____________________________________________________ 

_____________________________________________________ 
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Please read the following statements and tick the appropriate circle. 

Trust propensity 

scale 
Strong

ly 

disagr

ee 

   

Strong

ly 

agree 

1. I usually trust robots 

until there is a reason 

not to. 

O 

1 

O 

2 

O 

3 

O 

4 

O 

5 

2. For the most part, I 

distrust robots. 

O 

1 

O 

2 

O 

3 

O 

4 

O 

5 

3. In general, I would 

rely on a robot to assist 

me. 

O 

1 

O 

2 

O 

3 

O 

4 

O 

5 

4. My tendency to trust 

robots is high. 

O 

1 

O 

2 

O 

3 

O 

4 

O 

5 

5. It is easy for me to 

trust robots to do their 

job. 

O 

1 

O 

2 

O 

3 

O 

4 

O 

5 

6. I am likely to trust a 

robot even when I have 

little knowledge about 

it. 

O 

1 

O 

2 

O 

3 

O 

4 

O 

5 
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Appendix I - Study IV: Post-task 

questionnaire 

Virtual Robot Rescue Study 2 

- Post-task Questionnaire – Condition: ……. 

 

Please rate the task according to these scales by circling the appropriate 

vertical line. Here is an example: 

 

Mental Demand – How mentally demanding was this task? 

 

Physical Demand – How physically demanding was this task? 

 

Temporal Demand – How hurried or rushed was the pace of this task? 

 

Performance – How successful were you in accomplishing what you were 

asked to do? 

 

Effort – How hard did you have to work to accomplish your level of 

performance? 

 

Frustration – How insecure, discouraged, irritated, stressed and annoyed 

were you? 
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Please rate the following statements with respect to the scenario you just 

performed. 

8. How complex do you rate the task? 

(Complexity means the simultaneous occurrence of several task 

components that influence your performance.) 

Not at all 

complex 

O O O O O 

Very 

complex 

O 

 

 

9. How difficult did you perceive the task? 

Not at all 

difficult 

O O O O O 

Very 

difficult 

O 

 

10.Please rate your performance for the last scenario and tick the 

appropriate circle. 

Poor 

1 

O 

2 

O 

3 

O 

4 

O 

5 

O 

6 

O 

Excellent 

7 

O 

 

11.Please rate the robot’s overall performance for the last scenario. 

Poor 

1 

O 

2 

O 

3 

O 

4 

O 

5 

O 

6 

O 

Excellent 

7 

O 

 

12.How confident were you in performing the task? 

Not at all 

confident O O O O 

Very 

confident 
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O O 

 

Trust questionnaire – short (Schaefer, 2013) 

 

Please tick the appropriate percentage value. 

Participants could answer the statements in 10% intervals from 0% to 

100% or tick not applicable (N/A). 

What % of the time did/was this robot… 

1. Act consistently 

2. Function successfully 

3. Malfunction 

4. Have errors 

5. Provide Feedback 

6. Meet the needs of the mission 

7. Provide appropriate information 

8. Communicate with people 

9. Follow directions 

10. Dependable 

11. Reliable 

12. Unresponsive 

13. Predictable 

14. Perform exactly as instructed 
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Appendix J - Study IV: Analysis of 

trust questionnaire 

 

 

Figure 130 - Detail analysis of short trust questionnaire (* indicates the biggest changes 

between conditions) 
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Appendix K - Digital Appendix 

Instructions: 

1. To access the Digital Appendix, please click on the following link: 

https://www.dropbox.com/sh/8y1cy1kid7hhl4v/AAC1AIuZXV6Sy96-

buZ-QWlda?dl=0  

2. Password for sensitive datasets needs to be requested via e-mail: 

Katharina.Gabrecht@nottingham.ac.uk 

3. If there are any problems accessing the data, please write to the e-

mail above. 

.. 

https://www.dropbox.com/sh/8y1cy1kid7hhl4v/AAC1AIuZXV6Sy96-buZ-QWlda?dl=0
https://www.dropbox.com/sh/8y1cy1kid7hhl4v/AAC1AIuZXV6Sy96-buZ-QWlda?dl=0
mailto:Katharina.Gabrecht@nottingham.ac.uk

