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Abstract Recent measurements of the strength of the Atlantic overturning circulation at 26∘N show
a 1 year drop and partial recovery amid a gradual weakening. To examine the extent and impact of the
slowdown on basin wide heat and freshwater transports for 2004–2012, a box model that assimilates
hydrographic and satellite observations is used to estimate heat transport and freshwater convergence as
residuals of the heat and freshwater budgets. Using an independent transport estimate, convergences are
converted to transports, which show a high level of spatial coherence. The similarity between Atlantic heat
transport and the Agulhas Leakage suggests that it is the source of the surface heat transport anomalies.
The freshwater budget in the North Atlantic is dominated by a decrease in freshwater flux. The increasing
salinity during the slowdown supports modeling studies that show that heat, not freshwater, drives trends
in the overturning circulation in a warming climate.

1. Introduction

The meridional transports of heat and freshwater in the Atlantic Ocean are intimately linked to strength of
the Atlantic Meridional Overturning Circulation (AMOC) [Ganachaud and Wunsch, 2003]. The net meridional
property transports are a consequence of the large temperature and salinity differences between the surface
waters flowing northward and the deep water returning southward. Heat converging in the South Atlantic
from both the Indian and Pacific Oceans is transported northward to the high latitudes, where it modifies
the European climate. Freshwater from the Arctic and high-latitude North Atlantic flows southward into the
Southern Ocean. Many climate models predict a future decrease in the AMOC, which would decrease heat
and freshwater transports, with consequences for climate and a possible feedback to further slow the AMOC
[Kirtman et al., 2013; Jackson et al., 2015].

Recent observations from the Rapid Climate Change Programme (RAPID) array at 26.5∘N [Cunningham et al.,
2007] and the associated Meridional Overturning and Heatflux Array (MOCHA) program [Johns et al., 2011]
show a drop and partial recovery in AMOC strength in 2010–2011, with contributions from Ekman and inte-
rior geostrophic transports, as well as a gradual AMOC weakening since 2004, primarily from the interior flow
[McCarthy et al., 2012; Smeed et al., 2014]. The AMOC anomaly produced a large drop in northward heat trans-
port (MHT) and a decrease in southward freshwater transport [McDonagh et al., 2015]. During this period
freshwater input into the Atlantic by melting glaciers and ice sheets has been increasing [Enderlin et al., 2014],
while salinity is also increasing [Rhein et al., 2013].

To examine the impact of the recent slowdown of AMOC at the RAPID array on meridional heat and freshwa-
ter transports throughout the Atlantic basin, we have modified the methodology of a previous study by Kelly
et al. [2014] (hereafter KTL). That study showed that the MHT anomalies are meridionally coherent and sug-
gested a southern source. As the largest contributor to anomalies in the South Atlantic heat budget are the
warm waters of the Agulhas Leakage [Dong et al., 2011], we investigate its role in MHT as suggested by the
modeling studies of Biastoch et al. [2008], Heimbach et al. [2011], Beal et al. [2011], and Biastoch et al. [2015].
Here we retain the heat budget of KTL and replace the mass budget with a freshwater budget in each of four
Atlantic-spanning regions, delineated by the latitude lines: 67∘N, 40∘N, 25∘N, 10∘S, and 35∘S (Figure 1).

2. Methods

Following the KTL methodology, we model here the Atlantic nonseasonal heat and freshwater budgets in
terms of sea level components. Anomalies of ocean steric height can be measured from satellite or from in
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Figure 1. Meridional heat transport anomalies from the box model (blue) at 67∘N, 40∘N, 25∘N, 10∘S, and 35∘S. Latitude
lines delineate the four regions over which budgets were estimated. Red overplotting indicates periods when the
modeled MHT exceeds the estimated error. MHT at 41∘N derived from estimates by Willis [2010] is repeated (yellow)
at 35∘S for comparison. Mean sea surface height from Aviso contoured at intervals of 0.1 m for reference. Units are
petawatts (PW).

situ observations, which should be equivalent as

SSH − OM = TSL + HSL (1)

where the left-hand side is sea surface height (SSH) minus ocean mass (OM) and the right-hand side is ther-
mosteric (TSL) plus halosteric sea level (HSL). The satellite components are derived from radar altimeters
and from the Gravity Recovery and Climate Experiment (GRACE) satellite since 2002, respectively; the in situ
components from hydrographic data, predominantly Argo since 2004.

The heat budget is written in terms of the thermosteric component of sea level 𝜂T as

𝜕𝜂T

𝜕t
=

𝛼Qnet

𝜌0cp
+ UT (2)

where Qnet is the net surface heat flux into the ocean, 𝛼 is the coefficient of thermal expansion, 𝜌0 the density,
and cp the heat capacity of seawater. The residual, the convergence of thermosteric sea level, is denoted UT .
See supporting information S1 on how we estimate 𝛼.

The freshwater budget is written in terms of the halosteric component of sea level 𝜂S as

𝜕𝜂S

𝜕t
= 𝛽So(P − E) + US (3)

where So is a reference salinity value, 𝛽 is the coefficient of saline contraction, P is precipitation, E is evapora-
tion, and the difference P − E is the net freshwater flux into the ocean. The residual US is the convergence of
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Table 1. Fields Used in Model

Field Name Sourcea Resolution

Turbulent flux OAFlux WHOI 0.5∘ , daily

Radiative flux SRB/GEWEX NASA/Langley 1∘, monthly

Radiative flux CERES/EBAF NCAR 1∘, monthly

Net heat flux NOCS NOCS 1∘, monthly

Net heat flux ERA Interim NCAR 1∘, monthly

Sea level SSH Aviso 0.25∘ , weekly

Thermosteric sea level EN3 TSL UK Met Office 1∘, monthly

Halosteric sea level EN3 HSL UK Met Office 1∘, monthly

Ocean mass RL05M JPL 100 km, monthly

Precipitation GPCP NASA/GSFC 1∘ , daily

Evaporation OAFlux WHOI 1∘ , daily

Net freshwater flux ERA Interim NCAR 1∘, monthly

River discharge Total Atlantic GRDC annual
aWHOI, Woods Hole Oceanographic Institution; NCAR, National Center for Atmospheric Research; NOCS, National

Oceanography Centre Southampton; JPL, Jet Propulsion Laboratory; GSFC, Goddard Space Flight Center; GRDC,
Geological Research and Development Center.

halosteric sea level, which includes contributions from ice and glacier melt and river discharge as well as from
ocean circulation.

The model is an “unknown control” version of a Kalman filter in which the vertically integrated heat and fresh-
water budgets are forced by surface fluxes and TSL and HSL are assimilated. Although the accuracy of the TSL
and HSL components is limited by the nominal depth to which Argo profiles sample (usually about 2000 m),
a requirement that 𝜂T + 𝜂S match SSH-OM makes an adjustment to allow for deeper anomalies. A running
estimate of model error is used in conjunction with observation error estimates to determine how much
the prediction is adjusted to match the observations. See supporting information S1 for error estimates. The
residuals UT and US are converted into heat transport convergence (HTC) and freshwater convergence (FWC),
which have the more familiar units of petawatts (PW) (1 PW = 1015 W) and sverdrups Sv (1 Sv = 106 m3 s−1),
respectively.

A baseline model run for 1993–2012 was forced by OAFlux turbulent fluxes plus satellite-based radiative
fluxes and Global Precipitation Climatology Project (GPCP) combined with OAFlux evaporation (Table 1). The
model produced temporally smoothed versions of sea level components and estimates of heat and freshwa-
ter convergence. Modeled thermosteric sea level 𝜂T closely tracks SSH-OM, with halosteric sea level 𝜂S making
a smaller contribution (Figure S1).

Transports at each region boundary (Figure 1) were derived by integrating the convergences southward
from the northernmost region and adding a time-varying integration constant. The constant was obtained
by differencing an independent transport estimate and the cumulative convergences at the latitude of the
transport. For the heat budget we derived MHT at 41∘N for 1993–2012 from a regression with the MOC esti-
mates by Willis [2010], based on Argo and SSH (More detail in supporting information S1). The 41∘N MHT is
repeated as a yellow line at 35∘S in Figure 1 for comparison with MHT at 35∘S. Freshwater transport (FWT)
was derived analogously for 2004–2012 from an estimate at the RAPID array at 26.5∘N [McDonagh et al., 2015,
Figure 4].

Additional model runs tested the sensitivity of the model to forcing by ERA interim or by National
Oceanography Centre Southampton (NOCS) net surface heat fluxes (Table 1). MHT estimates from the three
products (Figure 2) have similar interannual variability and a high level of spatial coherence (See supporting
information S1 and Figure S2). Discrepancies are small at 25∘N (Figure 2a), where the constraint to match
the MHT at 41∘N is strong and increase southward reflecting the cumulative differences in flux products
(Figure 2b). Observed MHT trends for 2004–2012 are −0.17 PW/decade at 41∘N increasing to nearly dou-
ble that at the RAPID/MOCHA array (−0.32 PW/decade). At 35∘S the baseline fluxes give a negative trend
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Figure 2. Sensitivity of meridional heat transport estimates to different flux products. Baseline using OAFlux turbulent
plus satellite-based radiative (red), ERA interim (black), and NOCS (blue) for (a) 25∘N and (b) 35∘S. Error bars for baseline
MHT (dashed). Units are petawatts (PW).

twice that of MOCHA (−0.62 PW/decade), the ERA Interim fluxes give a near-zero trend and the NOCS fluxes
give a large positive trend (0.41 PW/decade). Consistency with the negative MHT trends in the observations
motivated the use of the baseline heat fluxes in further analyses.

3. Results and Discussion

Distinctive anomalies in convergences and meridional transports at all latitudes coincided with the
2010–2011 AMOC event. The MHT estimates at 25∘N from all model runs reproduced the MHT minimum
[Johns et al., 2011] (Figures 2a and 3) with discrepancies that are mostly within our error bars. The AMOC min-
imum was also associated with a decrease in southward FWT [McDonagh et al., 2015], with convergence to
the north of 25∘N and divergence to the south. Here we find that positive HTC anomalies occurred in the
10∘S–25∘N region, consistent with a deepening of the thermocline at 75∘W in the RAPID array [McCarthy et al.,
2012], with a small divergence to the north.

Atlantic-wide trends in the heat and freshwater transports coincided with the decline in AMOC over the Argo
period, 2004–2012. To determine the role of the Agulhas Leakage (AL) in negative MHT trends, monthly
net volume transport anomalies were estimated as in Le Bars et al. [2014] using along-track SSH (Figure 4a).
Monthly net transports (westward flow minus eastward flow) from the coast to the South Atlantic Current

Figure 3. Modeled and observed MHT anomalies at RAPID line. Baseline run MHT estimate at 25∘N (red) and estimates
from MOCHA at 26.5∘N (black). Error bars for model (dashed).
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Figure 4. MHT and Agulhas Leakage. (a) SSH map and altimeter tracks and (b) schematic of net leakage across an
altimeter track. (c) Baseline MHT (blue) at 35∘S and inferred Agulhas Leakage heat transport (red).

Figure 5. Trends in freshwater budget for 2004–2012. Trends in freshwater transport (arrows) and convergence
(FWC, dots) across the boundaries and within four regions, respectively. Trends in FWC are negligible except
in the two northernmost regions. Units are Sv/decade with scale in insert.
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Extension (Figure 4b) were low-pass filtered to remove seasonal anomalies and converted to heat transport
estimates using a coefficient of 0.05 PW/Sv, a value derived from Atlantic XBT transects near 35∘S by Dong
et al. [2009].

The net heat transport (Figure 4c, red line) is similar in magnitude and phase to our MHT estimate (blue line)
in the post-Argo period (2004–2012). The correlation between AL and MHT for 1993–2012 is 0.4 with zero
lag at 35∘S, decreasing northward but significant at 95% for all latitudes, suggesting that the AL is supplying
the Atlantic MHT anomalies. The lack of a lag in MHT between latitudes suggests an adjustment of the cir-
culation by Kelvin waves, as opposed to a slower advective response [Biastoch et al., 2008; Zhang, 2010]. This
adjustment may be seen in the heaving of the ocean thermocline at the RAPID array, and this mechanism
is supported by a recent study of historical hydrographic data, which showed that heat transport conver-
gence is usually associated with the sinking of the thermocline, particularly in the subtropical gyres [Häkkinen
et al., 2015].

Southward FWT decreases at all latitudes during 2004–2012, consistent with a slowdown of the AMOC. FWT
trends for the baseline run are about 0.24 Sv/decade at 25∘N, 10∘S, and 35∘S (Figure 5); that is, southward FWT
is weakening. A sustained trend of more than 0.2 Sv/decade would reverse the sign of the FWT to northward
at 35∘S, where the mean has been estimated as southward at 0.2 Sv [Weijer et al., 1999].

The trend toward less southward FWT is smaller in the North Atlantic, giving rise to increasing FWC
(0.15 Sv/decade) for 40∘N–67∘N (Figure 5). Similar FWT trends were found using ERA Interim freshwater
flux (Table 1; see supporting information S1 and Figure S3a), but the FWT trends are more spatially uniform
so there is less convergence. The relatively small trends in freshwater contributions from the Greenland Ice
Sheet of 0.008 Sv/decade (26 Gta per year [Enderlin et al., 2014]) and from river discharge (1993–2009) of
0.01 Sv/decade suggest that the FWC trend is primarily from the change in ocean circulation. The increase
in FWC north of 40∘N (Figure S1b, black line) from 2004–2012 is not sufficient to create a freshwater
anomaly there, owing to a pre-existing positive salinity anomaly and to a decrease in surface freshwater flux
(Figure S3b, red line) beginning in about 1994 [Boyer et al., 2007]. Therefore, in this period for which we have
detailed observations, the slowdown of the AMOC is apparently not caused by a freshwater anomaly in the
North Atlantic.

4. Conclusions

A box model of the Atlantic heat and freshwater budgets during a period of slowdown of the AMOC yields esti-
mates of meridional heat and freshwater transport. The analysis is enabled by improvements in surface forcing
fields and in observations of ocean properties; results are remarkably robust with respect to the choice of sur-
face forcing products. During the AMOC slowdown (2004–2012) northward transport of heat and southward
transport of freshwater decrease with a high degree of spatial coherence throughout the Atlantic.

The similarities in timing and magnitude between Atlantic MHT and the Agulhas Leakage suggest that the
AMOC slowdown extends into the Agulhas Current system and that the AL is the source of the decade-long
heat transport decrease, consistent with the modeling results of Biastoch et al. [2015] for longer time scales.

The trend toward weaker freshwater transport, 0.24 Sv/decade, is sufficiently large and coherent to reverse
the mean southward freshwater transport at 35∘S. Weaker trends in the North Atlantic result in freshwater
convergence there; however, salinity remains high because freshwater flux is decreasing. The coincidence
of high salinity and a slowdown of the AMOC supports recent modeling studies that suggest that heat, not
freshwater, drives anomalies in the strength of the AMOC in a warming ocean [Gregory et al., 2005; Weaver
et al., 2007].
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