
 
© 2016 Springer Science+Business Media Dordrecht 2016 
 
This version available http://nora.nerc.ac.uk/514663/ 
 
 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  
 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. There may be differences between this and the publisher’s 
version. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
The final publication is available at Springer via 
http://dx.doi.org/10.1007/s10592-016-0884-8 
 
 
 
 
 

  
 
 
Article (refereed) - postprint 
 

 
 

Gray, Alan; Perry, Annika; Cavers, Stephen; Eastwood, Antonia; Biermann, 
Michelle; Darlow, Andrew; Thomas, Vanessa; Lambdon, Phil. 2017. Hybrid 
plants preserve unique genetic variation in the St Helena endemic trees 
Commidendrum rotundifolium DC Roxb. and C. spurium (G.Forst.) DC. 
Conservation Genetics, 18 (1). 241-246. 10.1007/s10592-016-0884-8  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact CEH NORA team at  

noraceh@ceh.ac.uk 

 

 

 
The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/76971435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nora.nerc.ac.uk/514663/
http://nora.nerc.ac.uk/policies.html#access
http://dx.doi.org/10.1007/s10592-016-0884-8
http://nora.nerc.ac.uk/514663/
http://nora.nerc.ac.uk/514663/
http://nora.nerc.ac.uk/514663/
http://dx.doi.org/10.1007/s10592-016-0884-8
mailto:nora@ceh.ac.uk


 

1 

 

Title: Hybrid plants preserve unique genetic variation in the St Helena endemic trees 1 

Commidendrum rotundifolium (Roxb.) DC and C. spurium (G.Forst.) DC. 2 

Alan Gray1, Annika Perry1, Stephen Cavers1, Antonia Eastwood2, Michelle Biermann1, Andrew 3 

Darlow3, Vanessa Thomas3, and Phil Lambdon4  4 

1 NERC Centre for Ecology and Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, 5 

UK 6 

2 The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK 7 

3 Environmental Management Division, Environment and Natural Resources Directorate, St. 8 

Helena Government Scotland, St. Helena STHL IZZ 9 

4 Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB 10 

Corresponding Author: Alan Gray 11 

alangray@ceh.ac.uk 12 

Tel: +44 (0) 131 445 8471 13 

Fax: +44 (0) 131 445 3943 14 

mailto:alangray@ceh.ac.uk


 

 2 

Abstract 15 

The island of St Helena in the South Atlantic Ocean has a rich endemic flora, with 10 endemic 16 

genera and 45 recognised endemic species. However, populations of most endemic species have 17 

undergone dramatic reductions or extinction due to over-exploitation, habitat destruction and 18 

competition from invasive species. Consequently, endemic species are likely to have lost 19 

genetic variation, in some cases to extreme degrees. Here, the entire extant wild populations 20 

and all planted trees in seed orchards, of two critically endangered species in the endemic genus 21 

Commidendrum (Asteraceae), C. rotundifolium and C. spurium, were sampled to assess levels 22 

of genetic variation and inbreeding. Six new microsatellite loci were developed from next-23 

generation sequence data, and a total of 190 samples were genotyped. Some seed orchard trees 24 

contained alleles from both wild C. rotundifolium and C. spurium indicating they could be 25 

hybrids and that some backcrossing may have occurred. Some of these trees were more similar 26 

to C. rotundifolium than C. spurium both genetically and morphologically. Importantly, allelic 27 

variation was detected in the putative hybrids that was not present in wild material. C. 28 

rotundifolium is represented by just two individuals one wild and one planted and C. spurium 29 

by seven, therefore the seed orchard trees comprise an important part of the total remaining 30 

genetic diversity in the genus Commidendrum. 31 

Keywords: allelic variation, genetic conservation, rarity, breeding programme, endemic plants32 
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Introduction 33 

Islands make a disproportionate contribution to global biodiversity as they house distinct 34 

evolutionary lineages of endemic species, and many are biodiversity hotspots (Myers et al. 35 

2000; Emerson & Kolm 2005). Island floras are widely threatened by invasive species, 36 

exploitation, habitat degradation and climate change, the results of which can cause severe 37 

reductions in population sizes (Cronk 1986; Glen et al. 2013; Courchamp et al. 2014). Small 38 

population sizes and fragmentation can reduce genetic diversity, and disrupt gene flow and 39 

inbreeding, with consequential declines in fitness (Ellstrand & Elam 1993). Another risk, for 40 

small plant populations in particular, is hybridisation either through exposure to larger 41 

populations of closely related species (e.g. Hyacinthoides spp. in the UK, see Kohn et al. 42 

2009) or where previously geographically-separated close relatives are brought together (e.g. 43 

Trochetiopsis on St Helena, see Cronk 1995). In combination, these threats highlight that 44 

island biodiversity is in urgent need of assessment and conservation before genetic variation is 45 

lost forever. 46 

Hybridization among plants is an important evolutionary mechanism with the origin of 40–47 

80% of angiosperms estimated to involve either hybridisation or changes in ploidy (Stebbins 48 

1950; Stace 1975; Rieseberg et al. 1993; Rhymer & Simberloff 1996). However, 49 

hybridization is a conservation risk for rare and/or endangered species, potentially threatening 50 

their genetic integrity (Levin et al. 1996). Gene flow between related species can compromise 51 

fitness by the wastage of reproductive effort (Levin, Francisco-Ortega et al. 1996). It can also  52 

be a threat where it occurs between differently-adapted populations of a single species by 53 

disrupting co-adapted gene complexes (Rhymer & Simberloff 1996). Of particular concern is 54 

when hybrids display greater fitness than either or both of the parental species (hybrid vigour 55 
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or heterosis) causing competition with the parental species (Rhymer & Simberloff 1996; 56 

Emms & Arnold 1997). Hybridization is more likely where there are limited options for out-57 

breeding (Rhymer & Simberloff 1996; Kothera et al. 2007) or where isolation barriers 58 

between two previously isolated species are broken (Ellstrand & Schierenbeck 2000). On the 59 

other hand, where species have become critically endangered to the extent that only a few 60 

individuals remain, hybridization may be the only means to preserve alleles that would be lost 61 

to extinction (Fant et al. 2010), especially where outbreeding is obligate due to mechanisms 62 

for self-incompatibility. 63 

On St Helena, a small island (122 km2) in the South Atlantic (15° 58'S and 5°43'W, Suppl. 64 

Figure S1a) several endemic species are at risk. The endemic genus Commidendrum DC. 65 

(Asteraceae), the ‘gumwoods’, contains four very closely related species (Eastwood et al. 66 

2004), all severely threatened in the main by introduced species. Hybridisation has also been 67 

found among Commidendrum species (Eastwood 2003), but was not thought to be 68 

widespread. Commidendrum rotundifolium (Roxb.) DC. was classified by IUCN as Extinct in 69 

the Wild until recently as it was rediscovered at the top of a cliff edge (Suppl. Figure S1b) but 70 

remains Critically Endangered and is likely to again be classified as Extinct in the Wild when 71 

this individual dies unless other individuals are discovered. Commidendrum spurium (G. 72 

Forst.) DC. is Critically Endangered with the largest population currently comprising just 73 

seven individuals. The other two species, C. rugosum (Dryand) DC. and C. robustum DC., are 74 

slightly more widespread and have larger populations (approximately 35,000 and 680 75 

individuals respectively). The latter species is almost exclusively confined to a single site but 76 

has been the focus of a successful community woodland restoration project (Figure S1b). The 77 

extremely small sizes of these populations, allied with the self-incompatibility of the species 78 

(Eastwood 2003), places substantial barriers to establishment of self-sustaining populations.  79 
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Until very recently all extant C. rotundifolium were the progeny of one individual tree which 80 

has subsequently died. At least nine trees were established from this individual and grown in a 81 

seed orchard (at Pounceys, Suppl. Figure S1b). In 1998, seedlings were raised from the 82 

Pounceys seed orchard and planted in a second seed orchard at Scotland (Suppl. Figure S1b). 83 

In 2002, more seedlings were raised and planted at a third seed orchard at Barren Ground 84 

(Suppl. Figure S1b). All but one of the original nine progeny at Pounceys have since died, 85 

leaving this individual and the seed orchard stock as the entire surviving C. rotundifolium 86 

population at the time. However, as the seed orchard trees at Scotland and Barren Ground 87 

matured, morphological ambiguity suggested that these may be of hybrid origin. Several C. 88 

spurium trees grew adjacent to the original planting site (Pounceys), and are likely to be the 89 

co-parental species. To inform decisions for the recovery and re-introduction of C. 90 

rotundifolium and C. spurium, it was necessary to establish the hybrid status and levels of 91 

extant genetic diversity in the seed orchards for both species. In this study, we specifically 92 

aimed to: 93 

1. establish the possible hybrid status of seed orchard trees, and 94 

2. identify any pure C. rotundifolium or C spurium plants for subsequent conservation 95 

breeding.  96 
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 Methods 97 

Collection of samples  98 

With the exception of samples of C. spurium taken from the living collection at the Royal 99 

Botanic Gardens Edinburgh, all samples were collected on St Helena from wild and seed 100 

orchard populations (Figure 1). A total of 191 individuals were collected including all four 101 

Commidendrum species (C. spurium, C. rotundifolium, C. rugosum and C. robustum) and the 102 

putative hybrid samples from the seed orchards at Scotland and Barren Ground and a few trees 103 

planted at the George Benjamin Arboretum (GBA). Leaf samples were collected into polythene 104 

bags containing silica gel, between 01/06/2010 and 15/07/2010. C. rotundifolium came from 105 

the single planted individual at Pounceys and a wild plant near Botley’s and four seedlings 106 

planted at Drummond Point. Wild C. spurium was collected from the seven individuals at 107 

Mount Vessey and included fresh material of C. spurium was donated by the Royal Botanic 108 

Gardens Edinburgh (RBGE Accession number 20000247E; collected 05/10/2012) from which 109 

initial sequences were generated. Additional material of C. robustum (Peak Dale, Thompsons 110 

Wood, Deep Valley and Millenium Forest) and C. rugosum (Man and Horse, Horse Point and 111 

Blue Point) was also included for comparison.   112 

Laboratory Methods  113 

DNA was extracted from leaf tissue using DNeasy 96 and Mini plant kits (Qiagen), following 114 

manufacturer’s instructions.  115 

To identify microsatellite loci, over 48 million bases of genomic DNA sequence were obtained 116 

from C. spurium by 454 sequencing using a GS FLX (GATC Biotech). The sequence was 117 

searched for 3, 4, 5 and 6 base pair repeat sequences using msatcommander (Rozen & Skaletsky 118 
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2000; Faircloth 2008) and primers were designed for 48 potential marker loci. In all cases an 119 

M13 sequence tag was added to the 5’ end of the forward primer. Potential markers were used 120 

in polymerase chain reaction (PCR) amplification in 8 individuals from the sample set and those 121 

showing consistent amplification and potential for diagnostic purposes were amplified in a 122 

further subset of 28 individuals. Five trinucleotide and one tetranucleotide microsatellite loci 123 

were chosen and the whole set of 191 samples were genotyped.  124 

All microsatellites were amplified using 10 µl PCR reactions, each comprising 1µl of genomic 125 

DNA (diluted from original elution to 1:10), 1.5mM MgCl2, 1 X PCR Buffer, 200 μM each 126 

dNTP, 0.2 μM each primer, 0.2 μM IRD fluorescent labelled M13 primer (700 or 800), 20% 127 

v/v BSA and 1 U Taq DNA polymerase. Reactions were run on a Hybaid MBS thermocycler 128 

using the following protocol for all loci: 5 min at 95 °C, then 10 cycles of 30 sec at 94 °C, 1 129 

min at 57 °C, 30 sec at 72 °C, followed by 22 cycles of 30 sec at 94 °C, 30 sec at 55 °C, 30 sec 130 

at 72 °C, followed by 10 min at 72 °C. PCR products were then separated on an 8% denaturing 131 

polyacrylamide gel (25 cm), and visualised using a LI-COR 4200 IR2 automated genotyper. 132 

PCR products were run out alongside a standard and fragment sizes were scored by eye. 133 

Data Analyses 134 

All summary statistics (number of different alleles; number of effective alleles; observed 135 

heterozygosity; expected heterozygosity; unbiased expected heterozygosity; fixation index) 136 

were calculated using GenAlex (version 6.501) (Peakall & Smouse 2006; Peakall & Smouse 137 

2012). A Principal Coordinate Analysis (PCoA) was also computed based on the pairwise 138 

genetic distance matrix to examine relatedness among samples. Pairwise genetic distance was 139 

estimated among all pairs of samples using the squared distance method for codominant 140 

genotypes as implemented in GenAlEx.  141 
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Results and Discussion  142 

Across all species, very little variation was evident in marker screening, and only 6 loci had any 143 

variation, probably due to the extremely small population sizes and inbred nature of the extant 144 

trees. Although several loci were monomorphic within species, loci were retained on the basis 145 

that they showed polymorphism either within or among species. It was not possible to determine 146 

whether monomorphism at a locus was due to null alleles or homozygosity, but as we had 147 

completely sampled all plants of the extant populations, these markers were nevertheless useful 148 

for species resolution, and to indicate gene pool variation (comparing species with putative 149 

hybrids).  150 

Overall, levels of genetic variation within and among species were very low, with mean 151 

numbers of alleles per locus, Na =  1 - 2.5 (Table 1), especially for C. rotundifolium (Na = 1). 152 

Seed orchard plants had slightly higher levels of variation (Na = 2.5) than wild populations, 153 

except for C. rugosum where sample size was small. One allele was present in some of the 154 

hybrids that was not found in any of the extant parent plants (Locus 6, allele 162, Supplementary 155 

Table S1). Most samples shared the majority of alleles with C. spurium, but a few samples had 156 

more allelles in common with C. rotundifolium (one sample shared 75%, Supplementary Table 157 

S2, and displayed leaf morphology closer to C. rotundifolium). The first 3 axes of the PCoA 158 

explained over 80% of the variation in the data (Figure 2). All of the seed orchard samples from 159 

Barren Ground, Scotland and GBA had alleles found in both C. rotundifolium and C. spurium 160 

supporting their putative hybrid origin (Figure 2). The distribution of hybrid samples on axes 1 161 

& 2, range from being close to a putative parents or somewhat intermediate between the two, 162 

suggesting both first generation hybrids and hybrid-parent backcrossed progeny may be present 163 

(Figure 2).  164 
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The data indicated a very low level of genetic diversity in these threatened species as expected 165 

from the extremely small extant population sizes. They also support the suspected hybrid origin 166 

of the seed orchard plants, as had been suggested by previous studies (Eastwood 2003). Level 167 

of heterozygosity in the putative hybrid samples were higher than expected (Ho = 0.77, He = 168 

0.51, mean F = -0.52, Table 1), possibly indicative of combination of gene pools as would occur 169 

in hybridisation. None of the seed orchard plants were pure C. rotundifolium or C. spurium but 170 

alleles were discovered in some of the hybrids that were not present in any of the wild or wild 171 

derived individuals. These alleles may be derived from now-extinct C. rotundifolium or C. 172 

spurium parent populations. The hybrid plants may therefore represent a repository of genetic 173 

variation, which merits careful conservation on St Helena given the extremely limited genetic 174 

variation present in both C. rotundifolium and C. spurium in the wild. This potential repository 175 

is significant due to the self-incompatibility system in both species, which results in limited 176 

seed production from mating between closely-related individuals.  177 

Conservation Implications 178 

The genus Commidendrum is endemic to St Helena and is a unique part of global plant diversity. 179 

All species in the genus currently face extinction, being threatened by invasive species, 180 

exploitation, habitat degradation and climate change. A further difficulty is effective 181 

propagation due to self-incompatibility mechanisms. For species such as these, hybrid plants 182 

may represent a valuable source of variation that would otherwise be lost via extinction (Fant 183 

et al. 2010). In C. rotundifolium and C. spurium, reproductive success is dependent on mate 184 

availability for cross-pollination success and the limited genetic diversity in extant populations 185 

of C. rotundifolium and C. spurium will undoubtedly impede the recovery programme. Our 186 

results show that seed orchard trees contain variation not found in the wider population; these 187 
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trees should therefore be considered a resource for a controlled breeding programme or genetic 188 

rescue (Whiteley et al. 2015). To support this work, as well as continuing to develop the record 189 

of their unique genetic variation through wider genomic sequencing, additional studies of inter-190 

fertility and propagation are urgently required for the Commidendrum species. However, any 191 

moves to implement genetic rescue or hybrid breeding should take careful account of the ethical 192 

questions that arise when dealing with highly threatened species. We recommend that the 193 

natural populations are maintained 'as is' but that other mixed putative hybrid populations 194 

should be established. In such threatened populations we suggest that the conservation of 195 

Commidendrum should focus on all genetic diversity and this is as much of a priority as 196 

conserving taxonomic species. 197 
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 260 
Figure 1: (a) Map showing general locality of St Helena in the south Atlantic Ocean with 261 

Ascension Island to the north west and Tristan da Cunha to the south. (b) Location of sites on 262 

St Helena mentioned in the main manuscript: BG - Barren Ground, BP - Blue Point, B - 263 

Botley's, DV - Deep Valley, DP - Drummond Point, GBA - George Benjamin Arboretum 264 

(Casons), HP - Horse Point, LF - Longwood Farm (Picolo), MH - Man and Horse,  MF - 265 

Millennium Forest, MV - Mount Vessey, PD - Peak Dale, P – Pounceys, S – Scotland, and 266 

TW - Thompsons Wood.267 
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Figure 268 

2: Axes 1 and 2 (a) and axes 1 and 3 (b) from a principal co-ordinates analysis based on genetic 269 

distance estimated using 6 microsatellite loci. The percentage of variation explained by these 270 

axes was: axis 1 - 47.26 %, axis 2 - 19.26 %, and axis 3 - 15.04 %, cumulative variation – 81.56 271 

%.  272 
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Table 1: Summary genetic diversity statistics for the four Commidendrum species and 273 

putative hybrids. Number of genotypes; Na - No. of Different Alleles; Ne - No. of Effective 274 

Alleles; Ho - Observed Heterozygosity; He - Expected Heterozygosity; uHe - Unbiased 275 

Expected Heterozygosity; F - Fixation Index.  276 
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Samples 

No. 

genotypes Locus N Na Ne Ho He uHe F 

Seed Orchard 18 6 151 3.00 2.64 0.77 0.62 0.62 -0.25 

  11 151 3.00 1.99 0.90 0.50 0.50 -0.81 

  19 151 2.00 1.98 0.79 0.49 0.50 -0.59 

  36 151 2.00 2.00 0.79 0.50 0.50 -0.59 

  42 151 3.00 1.98 0.87 0.49 0.50 -0.77 

  43 151 2.00 1.85 0.50 0.46 0.46 -0.10 

   Mean 2.50 2.07 0.77 0.51 0.51 -0.52 

   SE 0.22 0.11 0.06 0.02 0.02 0.12 

C. robustum 4 6 0 0.00 0.00 0.00 0.00 0.00   

  11 17 2.00 1.99 0.94 0.50 0.51 -0.89 

  19 18 1.00 1.00 0.00 0.00 0.00 #N/A 

  36 19 2.00 1.87 0.32 0.47 0.48 0.32 

  42 19 2.00 1.82 0.68 0.45 0.46 -0.52 

  43 19 1.00 1.00 0.00 0.00 0.00 #N/A 

   Mean 1.33 1.28 0.32 0.24 0.24 -0.36 

   SE 0.33 0.31 0.17 0.11 0.11 0.25 

C. rotundifolium 1 6 6 1.00 1.00 0.00 0.00 0.00 #N/A 

  11 6 1.00 1.00 0.00 0.00 0.00 #N/A 

  19 6 1.00 1.00 0.00 0.00 0.00 #N/A 

  36 6 1.00 1.00 0.00 0.00 0.00 #N/A 

  42 6 1.00 1.00 0.00 0.00 0.00 #N/A 

  43 6 1.00 1.00 0.00 0.00 0.00 #N/A 

   Mean 1.00 1.00 0.00 0.00 0.00  

   SE 0.00 0.00 0.00 0.00 0.00 0.00 

C. rugosum 6 6 0 0.00 0.00 0.00 0.00 0.00   

  11 7 4.00 2.51 0.57 0.60 0.65 0.05 

  19 4 2.00 1.60 0.50 0.38 0.43 -0.33 

  36 4 2.00 1.60 0.00 0.38 0.43 1.00 

  42 7 3.00 2.65 0.86 0.62 0.67 -0.38 

  43 5 1.00 1.00 0.00 0.00 0.00 #N/A 

   Mean 2.00 1.56 0.32 0.33 0.36 0.09 

   SE 0.58 0.40 0.15 0.11 0.12 0.26 

C. spurium 1 6 8 1.00 1.00 0.00 0.00 0.00 #N/A 

  11 8 2.00 2.00 1.00 0.50 0.53 -1.00 

  19 8 1.00 1.00 0.00 0.00 0.00 #N/A 

  36 8 1.00 1.00 0.00 0.00 0.00 #N/A 

  42 8 2.00 2.00 1.00 0.50 0.53 -1.00 

  43 8 1.00 1.00 0.00 0.00 0.00 #N/A 

   Mean 1.33 1.33 0.33 0.17 0.18 -1.00 

   SE 0.21 0.21 0.21 0.11 0.11 0.00 

Across all loci and species   Mean 1.63 1.45 0.35 0.25 0.26 -0.39 

   SE 0.17 0.12 0.07 0.05 0.05 0.10 
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