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Abstract

This PhD Dissertation collects results of my own work on the topic of continuous

variable (CV) quantum teleportation, which is one of the most important applica-

tions of quantum entanglement, as well as on the understanding, quantification,

detection, and applications of a type of quantum correlations known as Einstein-

Podolsky-Rosen (EPR) steering, for both bipartite and multipartite systems and

with a main focus on CV systems.

For the first results, we examine and compare two fundamentally different telepor-

tation schemes; the well-known continuous variable scheme of Vaidman, Braun-

stein and Kimble, and a recently proposed hybrid scheme by Andersen and Ralph.

We analyse the teleportation of ensembles of arbitrary pure single-mode Gaussian

states using these schemes and compare their performance against classical strate-

gies that utilize no entanglement (benchmarks). Our analysis brings into ques-

tion any advantage due to non-Gaussianity for quantum teleportation of Gaussian

states.

For the second part of the results, we study bipartite EPR-steering. We propose

a novel powerful method to detect steering in quantum systems of any dimension

in a systematic and hierarchical way. Our method includes previous results of the

literature as special cases on one hand, and goes beyond them on the other. We pro-

ceed to the quantification of steering-type correlations, and introduce a measure of

steering for arbitrary bipartite Gaussian states, prove many useful properties, and

provide with an operational interpretation of the proposed measure in terms of

the key rate in one-sided device independent quantum key distribution. Finally,

we show how the Gaussian steering measure gives a lower bound to a more gen-

eral quantifier of which Gaussian states are proven to be extremal. We proceed to

the study of multipartite steering, and derive laws for the distribution of Gaussian



steering among different parties in multipartite Gaussian states. We define an in-

dicator of collective steering-type correlations, which is interpreted operationally

in terms of the guaranteed secret key rate in the multi-party cryptographic task of

quantum secret sharing.

The final results look at the cryptographical task of quantum secret sharing, whose

security has remained unproven almost two decades after its original conception.

By utilizing intuition and ideas from steering, we manage to establish for the first

time an unconditional security proof for CV entanglement-based quantum secret

sharing schemes, and demonstrate their practical feasibility. Our results establish

quantum secret sharing as a viable and practically relevant primitive for quantum

communication technologies.
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Introduction

Canadian Prime Minister Mr Justin Trudeau recently took the opportunity during a public

speech at the Perimeter Institute, Canada, to answer a reporter’s question on what quantum

computing is about, surprising everyone with his knowledge on the subject and bringing a lot

of media attention to a new upcoming quantum era in technologies. Mr Trudeau was there

to announce significant continued funding for quantum information and computing 1. A few

years ago, the company D-Wave built a controversial machine claimed to be a quantum com-

puter that can solve particular problems of interest much faster than any classical machine,

while NASA and Google have already invested in D-Wave’s product. Microsoft and IBM have

invested in their own Quantum Computing departments working towards the implementation of

a universal quantum computer. More interestingly, at this very moment of writing these words,

IBM made their 5-qubit quantum processor freely available to the public, to be accessed by

anyone on-line, giving people the opportunity to program IBM’s mini-quantum computer via

an on-line platform which subsequently implements the written quantum algorithm on one of

IBM’s quantum processors 2. In the United Kingdom the government has invested hundreds

of millions of pounds to support research in the development of quantum technologies 3, while

a billion-euro investment was announced last month by the European Commission to support

a gigantic multi-national quantum technologies project 4. Why all this mobility worldwide?

1https://www.theguardian.com/science/life-and-physics/2016/apr/16/

justin-trudeau-and-quantum-computers
2http://www.forbes.com/sites/alexkonrad/2016/05/04/ibm-put-a-quantum-processor-on-the-cloud/

#6b73f98a3f7f
3http://uknqt.epsrc.ac.uk/
4http://www.nature.com/news/europe-plans-giant-billion-euro-quantum-technologies-project-1.

19796?WT.mc_id=FBK_NatureNews
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1. INTRODUCTION

Let us take a brief look at the history that brought us up to this point of major investments in

quantum technologies.

Quantum theory has contributed immensely to our understanding of the physical world,

and is the cornerstone behind the developments of ground-breaking applications including the

LASER, semi-conductors, and others. Quantum theory was originally conceived to be the the-

ory of the smallest, the unseen, describing how particles of the subatomic world can be at many

places at once (the superposition principle), and how these particles can be “intimately con-

nected” with each other no matter how far apart they are (entaglement), or how the properties of

a particle (like its spin, position or momentum) do not really exist before we actually measure

them. Obviously, it’s the weirdest theory the human kind ever thought of, and one that even

Einstein, one of the greatest theoretical physicists, denied to accept. Miraculously, quantum

theory works wonders in describing our world. So, it’s not the theory that is weird; it’s the uni-

verse itself. However, in the earlier years of quantum theory, it wasn’t technologically possible

to manipulate individual quantum systems and to therefore directly observe all these ‘crazy’

quantum effects, like superposition and entanglement. Supplementing Einstein’s disbeliefs,

some of the founding fathers of quantum theory had trouble believing that we will ever reach a

point of experiment with individual quantum particles. In Schrödinger’s own words [16], “We

never experiment with just one electron or atom or (small) molecule. In thought experiments,

we sometimes assume that we do; this invariably entails ridiculous consequences. In the first

place it is fair to state that we are not experimenting with single particles anymore than we can

raise ichthyosauria in the zoo.”

Although quantum theory is almost 90 years old, it’s been only the past few decades that

major advances in technology allowed us to individually address quantum particles, and actu-

ally observe and manipulate their quantum properties; to bring them in a superposition of states

and to entangle them on demand, which was previously thought impossible. It was soon real-

ized that the preservation of such quantum features, not observed in our classical macroscopic

world, demands complete isolation of the particle from its environment, otherwise the process

of decoherence will destroy any “quantumness”. This is exactly why the macroscopic world

looks nothing like the quantum.

In the 80s and 90s people started to realize that the ability to individually manipulate quan-

tum particles can lead to unimaginable applications. Quantum cryptography was one of the

first applications to be realized; encoding messages in the fragile quantum properties of parti-

cles can actually provides us with an unconditional security and secrecy, that it would simply
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be impossible to achieve with classical means. A potential eavesdropper cannot even “touch”

the particles that carry the secret without destroying their quantum properties, as (s)he acts as

an external environment and unavoidably invokes decoherence to the system. Quantum cryp-

tography is already commercially available for real-world applications by the Swiss company

Id-Quantique 1, while more companies are expected to enter the market soon. The concept

of a quantum computer is yet another big idea that holds a lot of promise for the future. A

quantum computer utilizes quantum properties, like superposition and entanglement, to make

computations and solve many important problems exponentially faster than any classical ma-

chine. A famous, by now, example to illustrate the potential power of quantum computers is

P. Shor’s quantum algorithm which, when implemented with a full-fledged quantum computer,

would break the widely-used RSA cryptosystem in a matter of minutes or hours, when the best

(classical) supercomputer that could ever be built would require as much time as the age of

the universe using the best currently known classical algorithms. Quantum cryptography and

quantum computing are some of the brightest examples quantum technologies have to offer,

among others, with deep implications for the future generations, and this fact explains why

governments and the industry invest more and more into quantum technologies, as reported in

the beginning of this introduction.

At a more fundamental level, all these new technologies require careful understanding of

the basic science they utilize. Quantum systems can be correlated in ways that classical sys-

tems cannot, and it has been widely recognized that these so-called quantum correlations (of

which, entanglement is only a special case) lurk behind the ‘quantum advantages’ of quan-

tum technologies. A careful characterization of quantum correlations in composite quantum

systems has been proven to be a fruitful path in assessing the usefulness of quantum states in

non-classical tasks. In particular, the quantification and detection of various types of quantum

correlations present in quantum states are important research avenues in the field. Providing

with measures of quantum correlations we are able to deal with questions like, “How much of

this quantum property is required to perform a given task?”. This question is of importance

given the presence of noise in all realistic implementations of tasks, which proves detrimental

for large amounts of correlations. In a more practical level, detection techniques are also very

important if we are to experimentally verify that a given quantum state possesses the desired

property we are looking for. These are precisely the kind of questions we deal with in this

thesis, and it’s exactly the intuition acquired from this endeavour that will allow us in the final

1http://www.idquantique.com/
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1. INTRODUCTION

part of the thesis to show how a particular type of quantum correlations, known as steering, can

be utilized in order to prove, for the first time, the unconditional security of a cryptographical

task known as quantum secret sharing.

This PhD Dissertation collects my personal contributions to the understanding, quantifi-

cation, detection, structure, operational interpretation and applications of entanglement and,

particularly, a recently formalized type of quantum correlations known as Einstein-Podolsky-

Rosen steering, with a main focus on continuous variable systems. The results presented in this

thesis have appeared in Refs. [1, 2, 3, 4, 5, 6].

The thesis is organized as follows:

In Part I we introduce the reader to basic concepts that will be utilized later on in the thesis.

In particular, in Chapter 2 we give a short introduction to the very basic concepts of quantum

theory and quantum information. In Chapter 3 we introduce continuous variable systems and

the useful framework of phase-space to study them. In particular, we focus on the important

class of Gaussian states and discuss their structural properties, while we list and provide useful

formulas for a plethora of, frequently utilized, Gaussian states. Finally, in Chapter 4 we make a

brief introduction to the concept of quantum correlations, of which entanglement and steering

are only special cases, in order to give some perspective. We talk about the hierarchy quantum

correlations form and list some of the non-classical tasks each type of quantum correlations are

good for.

In Part II we deal with entanglement and, one of its most important and counter-intuitive

applications, quantum teleportation. In Chapter 5 we introduce the concept of entanglement,

with a main focus on bipartite systems. We discuss about entanglement detection techniques

that will be of use and even inspire us to create novel powerful tools for steering detection in

Part III. We then talk about ways to quantify entanglement, in particular, introduce two entan-

glement measures from the literature that will also be put to good use in Part III. In Chapter 6

we introduce the highly non-classical task of quantum teleportation and describe the protocol

for both qubits and continuous variable states. We then examine and compare two fundamen-

tally different teleportation schemes; the well-known continuous variable scheme of Vaidman,

Braunstein and Kimble (VBK), and a recently proposed hybrid scheme by Andersen and Ralph

(AR). We analyze the teleportation of ensembles of arbitrary pure single-mode Gaussian states
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using these schemes and see how they fare against the optimal measure-and-prepare strategies

the benchmarks. In the VBK case, we allow for non-unit gain tuning and additionally con-

sider a class of nonGaussian resources in order to optimize performance. The results suggest

that the AR scheme may likely be a more suitable candidate for beating the benchmarks in

the teleportation of squeezing, capable of achieving this for moderate resources in comparison

to the VBK scheme. Moreover, our quantification of resources, whereby different protocols

are compared at fixed values of the entanglement entropy or the mean energy of the resource

states, brings into question any advantage due to non-Gaussianity for quantum teleportation of

Gaussian states.

In Part III we deal with a type of quantum correlations known as Einstein-Podolsky-Rosen

steering; or, steering for short. In Chapter 7 we give a brief historical overview on the Einstein-

Podolsky-Rosen paradox and how this led Schrödinger to the concept of steering, which was

only recently properly formalized as a distinct type of quantum correlations, relevant in var-

ious quantum information tasks. In Chapter 8 we first make a short introduction to steering

detection methods, point out problems and gaps in the literature, and propose in return a new

method that provides with a very efficient, systematic and hierarchical way of detecting bi-

partite steering in arbitrary quantum systems of any dimension, including continuous variable

systems, based on moments of observables of the parties involved. Previously known steer-

ing criteria are recovered as special cases of our approach. The proposed method allows us to

derive optimal steering witnesses for arbitrary families of quantum states, and provides a sys-

tematic framework to analytically derive non-linear steering criteria. We also discuss relevant

examples and, in particular, provide an optimal steering witness for a lossy single-photon Bell

state; the witness can be implemented just by linear optics and homodyne detection, and detects

steering with a higher loss tolerance than any other known method. In Chapter 9 We introduce

a computable measure of steering for arbitrary bipartite Gaussian states of continuous variable

systems. For two-mode Gaussian states, the measure reduces to a form of coherent information,

which is proven never to exceed entanglement, and to reduce to it on pure states. We provide an

operational connection between our measure and the key rate in one-sided device-independent

quantum key distribution. We further prove that Peres conjecture holds in its stronger form

within the fully Gaussian regime: namely, steering bound entangled Gaussian states by Gaus-

sian measurements is impossible. In Chapter 10 we generalize the Gaussian steering measure
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1. INTRODUCTION

proposed in Chapter 9 to arbitrary CV states. We further show that Gaussian states are ex-

tremal with respect to the more general measure, minimizing it among all continuous variable

states with fixed second moments. As a byproduct of our analysis, we generalize and relate

well-known steering criteria. Finally an operational interpretation is provided, as the proposed

measure is also shown to quantify a guaranteed key rate in one-sided device independent quan-

tum key distribution. In Chapter 11 we study the structure of multipartite steering. In particular

we derive laws for the distribution of quantum steering among different parties in multipartite

Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the

generalized Coffman-Kundu-Wootters inequality holds quantitatively for the Gaussian steering

measure introduced in Chapter 9. We then define the residual Gaussian steering, stemming

from the monogamy inequality, as an indicator of collective steering-type correlations. For

pure three-mode Gaussian states, the residual acts a quantifier of genuine multipartite steering,

and is interpreted operationally in terms of the guaranteed key rate in the task of secure quan-

tum secret sharing, which we will discuss in detail in the next chapter. Optimal resource states

for the latter protocol are identified, and their possible experimental implementation discussed.

Our results pin down the role of multipartite steering for quantum communication.

In the final Part IV, and final Chapter 12, we introduce the cryptographical task of quantum

secret sharing. Secret sharing is a conventional protocol to distribute a secret message to a

group of parties, who cannot access it individually but need to cooperate in order to decode

it. While several variants of this protocol have been investigated, including realizations using

quantum systems, the security of quantum secret sharing schemes still remains unproven al-

most two decades after their original conception. Here we establish an unconditional security

proof for continuous variable entanglement-based quantum secret sharing schemes, in the limit

of asymptotic keys and for an arbitrary number of players, by utilizing ideas from the recently

developed one-sided device-independent approach to quantum key distribution. We demon-

strate the practical feasibility of our scheme, which can be implemented by Gaussian states and

homodyne measurements, with no need for ideal single-photon sources or quantum memories.

Our results establish quantum secret sharing as a viable and practically relevant primitive for

quantum communication technologies.
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2

Quantum Information basics

In this first chapter we will briefly review some basic concepts of quantum theory and quantum

information that will be utilized later on in the thesis. This introduction will unavoidably be

brief and not thorough. We refer the reader, however, to the excellent textbook by Nielsen and

Chuang [17], a widely used standard reference on the subject, for further details on basic (and,

not so basic) concepts in quantum information.

2.1 Quantum systems: the pure case

Our main focus in this thesis will be to investigate how to utilize quantum systems in order to

perform tasks (like, quantum teleportation and unconditionally secure cryptography) that we

would be unable to perform without their delicate quantum properties. A legitimate question

would then be, what is a quantum system? Our first answer to this question will be quite

mathematical.

Definition 2.1.1. A quantum system is any physical system for the mathematical description
of which (for example, its motion in space, interaction with other systems, etc) one is obliged
to assign to it a normed complex inner product space, known as a Hilbert space Hd of some
dimension d, with the physical state of the considered system being described by a vector (or,
an ensemble of vectors) |ψ〉 ∈ Hd , known as the quantum state, in that Hilbert space.

Before diving into the mathematical details of quantum theory, it’s worthwhile to get some

intuition of how this definition relates to the world around us. It’s instructive to first point

out that in the definition of a quantum system we don’t require from the size of the system

to be “small”. Usually when people hear about quantum mechanics they usually imagine an
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2. QUANTUM INFORMATION BASICS

atom, or a photon, or anything that is very very ..very small. This intuition originates from

the fact that we don’t observe quantum effects in big objects and in our everyday lives, while,

another contributing factor, is that the theory of quantum mechanics is known to have been

conceived to describe atomic and subatomic particles in the first place. Given the advances in

our understanding of quantum theory in recent decades, this intuition turns out to be wrong and

misleading. According to that understanding, big objects do not behave quantum mechanically

because they are never properly isolated from their environment. Although quantum mechanics

was conceived to describe atomic particles, it turned out that, to the best of our knowledge, sys-

tems of in principle any size can behave quantum mechanically under appropriate conditions.

But, the larger the object the harder it is to isolate. Experiments testing the quantum prop-

erties of larger and larger objects are being devised [18], while the current record of ‘largest

object’ to have been brought into a quantum state is a large organic molecule comprised of up

to 810 atoms [19], or in terms of subatomic particles about 5000 protons, 5000 neutrons and

5000 electrons, ..all in a single “particle”. Mesoscopic systems that have being brought into a

quantum state include Bose-Einstein condensates (BECs) [20] and mechanical nano-oscillators

[21, 22], while proving the non-classical nature of such systems can be surprisingly difficult

[23].

Although we cannot be certain that macroscopic objects of our everyday lives can be ever

brought into a quantum state, and thus behave quantum mechanically, according to quantum

theory there exists no fundamental “size”-restriction to systems that can be described as quan-

tum, while all on-going experiments are in favour of these predictions. The ultimate challenge

will be to bring a concious organism into a quantum state and, as far fetched as it may sound,

there have been theoretical proposals that support the feasibility of such experiments [24, 25].

The ability to do so will be a starting point to experimentally address fundamental questions,

such as the role of life and consciousness in quantum mechanics. But this is a story for another

book. What’s important for us is that we got some intuition about what quantum is, and now

we should be ready to dive into the mathematical formulation of quantum theory that will be

of use throughout the thesis.

A quantum state |ψ〉 has unity norm, 〈ψ|ψ〉 = 1, and contains all the information about the

properties of the system that can in principle be available to us. Such vector states are known as

pure states. Pure states describe quantum systems that are either completely isolated, or interact

solely with classical (i.e., not quantum) systems. For example, a state |ψ〉 can describe the state

of an atom when the atom is either perfectly isolated or, if it interacts with a classical system,
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2.1 Quantum systems: the pure case

like the classical electromagnetic field. In both cases, one can assign a hamiltonian operator

Ĥ(t) to the quantum system (time-dependent in general for interacting systems), which governs

the system’s dynamics at all times through the celebrated Schrödinger equation,

Ĥ(t)|ψ(t)〉 = i~∂t|ψ(t)〉. (2.1)

This evolution is unitary and, consequently, the state will remain pure at all times, as can be

seen by explicitly solving (2.1),

|ψ(t)〉 = Û(t)|ψ(0)〉, with, Û(t) = exp

− i
~

t∫
0

dτĤ(τ)

 , (2.2)

with, Û(t)† Û(t) = I. Such isolated quantum systems are called closed.

The most elementary of quantum systems is the qubit, described by a Hilbert space of the

smallest dimension d = 2. The state space of a qubit is spanned by two state vectors, say, |0〉

and |1〉, which form a basis and are orthogonal to each other. A most general pure state |ψ〉 of

a qubit will then be a linear combination of these basis states,

|ψ〉 = a|0〉 + b|1〉, (2.3)

with a, b ∈ C and |a|2 + |b|2 = 1. An example of such a quantum system would be the hydrogen

atom, where the states |0〉, |1〉 represent its ground and first excited states respectively, or a

photon, where the basis states would represent its two polarization states. The number of

systems that can be represented by a quantum state of the very same form is countless, and this

showcases the impressive generality of quantum theory to describe our world.

The linear form of the quantum state |ψ〉 (2.3), expressed as the sum of two distinct states

|0〉 and |1〉, is the celebrated superposition principle, which is a consequence of the linearity

of Schrödinger’s equation (2.1). The interpretation of the superposition principle is highly

non-trivial, as when the system is being measured it’s always found occupying either the state

|0〉 or |1〉 (with probabilities |a|2, |b|2 respectively), never both simultaneously. One the other

hand, if one assumes that before the measurement the system occupied either of the basis states

and we just cannot know which one, one is then lead to wrong physical predictions. The

superposition principle puzzled, and still puzzles, physicists for over a century, and lies at the

core of phenomena like entanglement and Bell-nonlocality that have found various practical

applications in the field of Quantum Information and Foundations.
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2. QUANTUM INFORMATION BASICS

2.1.1 Observables and quantum measurements

The observation of quantum systems is crucial if we are to test the predictions of quantum

theory in the laboratory. The quantum state |ψ〉 captures, as mentioned earlier, “all that can

be said” about the quantum system; but how can one make an observation? How will the

quantum system be affected by an observation? One way is through the so-called projective

measurements, that we explain next. Every observable property of a quantum system is de-

scribed mathematically by an operator, say Â, that is hermitian, Â† = Â, and is known as an

observable. Every observable admits a spectral decomposition,

Â =

d∑
n=1

anP̂n, (2.4)

where an are the possible experimental outcomes of the property Â (e.g., direction of spin,

position in space, etc), while P̂n are projection operators (P̂2
n = P̂n, with

∑
n P̂n = I) each

associated with an outcome an, and n = 1, . . . , d where d is dimension of the Hilbert space.

Now, given a quantum state |ψ〉, a measurement of the observable Â on that state will give a

random outcome an with probability pn = 〈ψ|P̂n|ψ〉, while the initial state of the system will

change as

|ψ〉 → |ψ′〉 =
1
√

pn
P̂n|ψ〉,

being an eigenstate of Â with eigenvalue an. In contrast to classical physics, generally speaking

in the quantum regime one cannot make an observation without disturbing the initial state of the

system, unless the latter is an eigenstate of the measured observable. Therefore, looking at the

general case of arbitrary initial states, in order to measure a property Â of a quantum state |ψ〉,

the experimenter is required to prepare the system in the same initial state |ψ〉 multiple times,

each time making the same measurement and getting random outcomes an with probabilities

pn. In the limit of infinite preparations (or, copies) of the system one can acquire the expectation

value of the desired property,

〈Â〉 ≡
d∑

n=1

pnan = 〈ψ|Â|ψ〉. (2.5)

The presented measurement theory, which constitutes one of the postulates of quantum

mechanics, can be generalized to more general “non-projective” measurements, known in the

literature as POVMs (positive operator-valued measure).
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2.1 Quantum systems: the pure case

General measurements (POVMs) Given a quantum state |ψ〉, a general POVM measure-
ment is described by a set of operators M̂n, each associated with a measurement outcome mn.
A random outcome occurs after the measurement with probability

pn = 〈ψ|M̂†n M̂n|ψ〉, (2.6)

while the initial state changes to,

|ψ〉 → |ψ′〉 =
1
√

pn
M̂n|ψ〉, (2.7)

with the measurement operators satisfying∑
n

M̂†n M̂n = I, (2.8)

which expresses the completion relation,
∑

n pn = 1.

Hilbert space dimension The physical importance of the Hilbert space dimension d is evi-

dent in Eqs. (2.4) and (2.5). When we measure an observable Â of a quantum state |ψ〉 ∈ H,

we will always get at most d different outcomes an (n = 1, . . . , d), each corresponding to an

eigenstate |an〉 of Â, while the set of eigenstates {|an〉} form an orthonormal basis in the Hilbert

space. If our system is a qubit (d = 2), for example, all its observable quantities can have

at most two distinct outcomes. Such an elementary quantum system can be physically imple-

mented by a variety of systems, like the spin states of an electron (spin - up | ↑〉 or down | ↓〉),

or the polarization of a photon (right | 	〉 or left | �〉 circular polarization). Such quantum

systems described by Hilbert spaces of finite dimension d, therefore spanned by a basis {|an〉}

with a discrete and finite number of elements, are called discrete-variable systems. The same

system can be described by a different kind of Hilbert space if we look at different properties.

Take the previous example of an electron whose spin states behave as a qubit, but consider its

position in space, instead, as the observable quantity. Since position is continuous, measuring

it can give us infinitely many and continuous outcomes x ∈ (−∞,+∞), with the eigenstates

{|x〉} of the relevant observable of position, x̂|x〉 = x|x〉, forming an orthonormal basis for the

Hilbert space comprised by infinitely many and continuous elements. The dimension of such

Hilbert spaces is thus infinite (d = ∞) and systems that are described by such spaces are called

continuous-variable systems.
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2.1.2 Description of multiple systems

Up to now we discussed about single quantum systems, that are isolated from other quantum

systems and are consequently described by pure states. However, most interesting phenomena

that we will examine in detail later on in the thesis come about when we have more than one

systems. How can we describe multiple quantum systems with the current formalism? First,

we assign a Hilbert space H to each of the, say N, systems (with, i = 1, . . . ,N). Next, it is a

postulate of quantum mechanics that the Hilbert space of all N systems is the tensor product of

all such Hilbert spaces,

H =

N⊗
j=1

H j. (2.9)

Although Eq. (2.9) is a postulate, it’s straightforward to see that it’s a very natural one

when we consider independent systems as it leads straightforwardly to the law of multiplication

of probabilities of independent events. For ease of demonstration, consider the case of two

independent quantum systems A and B where HAB = HA⊗HB, being described by states |ψ〉A ∈

HA and |φ〉B ∈ HB respectively. According to the tensor product structure, the state of the joint

system AB will be |ψ〉A ⊗ |φ〉B ∈ HAB. Next, assume that we measure separate observables

Â : HA, B̂ : HB on these two independent systems, and get random outcomes an, bm with

corresponding projectors N̂n, M̂m, respectively. In the joint space HAB, the corresponding joint

observable will also have a tensor product form, Â⊗ B̂ : HA⊗HB, with corresponding outcome

an bm and projector N̂n ⊗ M̂m. The probability of observing the joint outcome an bm on the

product state |Ψ〉 ≡ |ψ〉A ⊗ |φ〉B will be, according to the rule (2.16),

p(an, bm) = 〈Ψ |N̂n ⊗ M̂m|Ψ〉 = p(an) · p(bm), (2.10)

retrieving the intuitive product rule for independent events.

However when correlated quantum systems are considered, the tensor product structure

(2.9) leads to very counter-intuitive predictions and phenomena. Consider, again for simplicity,

two (possibly, interacting) quantum systems. Assuming the joint bipartite system is isolated

it can be desribed by a pure bipartite state |ψ〉AB that evolves unitarily under Schrödinger’s

equation,

ĤAB|ψ〉AB = i~∂t|ψ〉AB, (2.11)

where ĤAB is the hamiltonian describing both systems and their mutual interaction. Irrespec-

tively of the exact details of its evolution in time, |ψ〉AB (being a vector in a Hilbert space
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2.2 Quantum systems: the mixed case

HA ⊗HB) can always be expanded to an orthonormal basis in that space. Namely, considering

such a basis {|ψi〉A} ∈ HA and {|φ j〉B} ∈ HB for each individual space, we will have,

|ψ〉AB =
∑
i, j

ci j|ψi〉A ⊗ |φ j〉B. (2.12)

In general, the state (2.12) is not a product state but a superposition of different states for

each system, and is called an entangled state. Entanglement expresses the fact that systems

A and B do not have a well-defined local quantum state independently of each other prior

to measurement, just like a single quantum particle with a spatial wavefunction ψ(x) does

not have a well-defined position before we measure it. We will discuss in more detail about

entanglement in Chapter 5.

In the next section, we will generalize the description of quantum systems, from pure to

mixed states. However, why would such a generalization be required in the first place? Aren’t

pure states general enough? As we shall see, they are not. In the beginning of this chapter, we

postulated that a quantum system -call it, A- isolated from other quantum systems is described

by a pure state that evolves under Schrödinger’s equation. However when system A interacts

with a system B, and the joint bipartite system itself is isolated, they get entangled and their

joint state |ψ〉AB will be a pure state of the form (2.12). Now imagine we prepared this bipartite

state, but in our laboratory only system A is available to us; there is no access to system B

(system B could be a photon that escaped our laboratory). What is the quantum description of

A going to be? Looking at Eq. (2.12) we see that system A does not have a well defined pure

state independently of B. Since B is inaccessible, what one would observe on A is a random

occurrence of each |ψi〉A with some probability
∑
j
|ci j|

2. A more general treatment of quantum

states is required to take into account such, and all possible, situations that involve statistical

mixtures of pure states.

2.2 Quantum systems: the mixed case

We have defined quantum systems in terms of pure states, but not all quantum systems; only

those that are either isolated or interact with effectively classical systems (like, an atom inter-

acting with a classical electromagnetic field). Only in these two cases can a system have a

well-defined pure quantum state at each point in time that evolves according to Schrödinger’s

equation. However, in the real world quantum systems cannot be perfectly isolated; for exam-

ple, two massive particles may be arbitrarily far apart however their gravitational potential is

23
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always non-zero (although, negligibly small for practical purposes). Also, a preparation pro-

cedure of a quantum state in the laboratory always involves other quantum systems interacting

with the system of interest, and consequently there will always be some reminiscent interac-

tion between them. Even if we are keen to preparing a pure state, this reminiscent interaction

will always lead to some mixedness (perhaps, very small). Therefore, any quantum system

unavoidably interacts with other quantum systems (the, so-called, environment); i.e., they are

open quantum systems.

During such interactions, the pure state of the system under consideration evolves non-

unitarily, and changes in a non-deterministic way from a well-defined state |ψ〉 to a statistical

mixture of pure states |ψi〉 with probability pi. In other words, the system behaves like it ran-

domly occupied one of the pure states |ψi〉with probability pi, without us being able to know, in

general, which one. The reason behind this behaviour of open systems is entanglement, as we

discussed at the end of the previous section. The details of the observed mixture {|ψi〉, pi} de-

pends entirely on the particular interaction. Such a quantum “state”, which involves statistical

mixtures of pure states and/or ignorance of the observer about the exact pure state description

of the system in each preparation, is called a mixed state.

Density matrix The most general description of a quantum system (be it, pure or mixed) is
given by an operator ρ̂ (instead of a vector state) with the following properties,

i) ρ̂ ≥ 0, ii) trρ̂ = 1, (2.13)

meaning that its eigenvalues are real, non-negative and sum-up to one. The expectation value
of any observable Â is then given by,

〈Â〉 = tr[Â ρ̂]. (2.14)

The spectral decomposition of a density matrix ρ̂ with respect to its eigenvalues pi and eigen-
states |φi〉, will be, ρ̂ =

∑
i

pi |φi〉〈φi|. A density matrix describes: a) a pure state if the decom-

position has only one non-zero eigenvalue, i.e. ρ̂ = |φ〉〈φ|, satisfying ρ̂2 = ρ̂, b) a mixed state if
otherwise (ρ̂2 , ρ̂). Defining µ = trρ̂2 ≥ 0 as the purity of the state, we then have the following
criterion for how mixed a given state is,

µ = 1 : pure state,

µ < 1 : mixed state.
(2.15)

In the rest of the thesis we will refer to the density matrix as the “quantum state” of the system,

be it pure or mixed.

24



2.2 Quantum systems: the mixed case

A state ρ̂ provides with the complete description for a quantum system, as seen by Eq. (2.14).

The framework of general quantum measurements, described in the case of pure states above,

can be generalized to a state ρ̂ of any mixedness, as seen below.

General measurements (POVMs) Given a quantum state ρ̂, a general POVM measurement
is described by a set of operators M̂n, each associated with a measurement outcome mn. A
random outcome occurs after the measurement with probability

pn = tr
(
M̂nρ̂M̂†n

)
, (2.16)

while the initial state changes to,

ρ̂→ ρ̂′ =
M̂nρ̂M̂†n

tr
(
M̂nρ̂M̂†n

) , (2.17)

with the measurement operators satisfying∑
n

M̂†n M̂n = I, (2.18)

which expresses the completion relation,
∑

n pn = 1 .

We have defined the most general description of quantum states and measurements, and

now we want to consider the description of a quantum system when it is part of a larger system.

For example, consider the bipartite state ρ̂AE : HA ⊗HE where A is the system of interest (e.g.,

an atom) while E is some arbitrary environment (e.g., air molecules). Since A is all that we

have access to, meaning that all the observables we can measure act on the Hilbert space of A

alone, i.e. Â⊗ I : HA⊗HE . In such a scenario, following Rule (2.14) for observable quantities,

the average value of an arbitrary observable on A will be equal to,

〈Â〉 = tr[(Â ⊗ I) ρ̂AE] = tr[Â ρ̂A]. (2.19)

The reduced quantum state ρ̂A = trE(ρ̂AE) : HA satisfies all the bona fide requirements, ρ̂A ≥ 0

and trρ̂A = 1, and offers a complete description of system A (independently of E) while it’s

obtained by taking the partial trace of ρ̂AE over the degrees of freedom of the environment E.

2.2.1 Time evolution

The time evolution of a general state ρ̂ =
∑
i

pi |φi〉〈φi| : H depends entirely on whether the

system is interacting with other quantum systems or not, during the evolution. If not, and
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is isolated, then each state |φi〉 of the statistical mixture will evolve unitarily as usual via

Schrödinger’s equation, i.e. |φi(t)〉 = Û(t)|φi〉. Therefore, a generally mixed state of an iso-

lated system will generally evolve in time as,

ρ̂(t) =
∑

i

pi |φi(t)〉〈φi(t)| = Û(t) ρ̂ Û(t)†. (2.20)

In the most general case, however, the quantum system of interest described by ρ̂A : HA is

only part of a bigger system, interacting with some environment E that we don’t have access

to; like, an ion unavoidably interacting with air molecules. We would like then to know what

is the most general evolution of such open systems. By considering the environment E large

enough, such that systems A and E jointly are isolated from the rest of the universe, we invoke

the postulate of quantum theory that such an isolated quantum system should be described by

a pure state |ψ〉AE that evolves unitarily in time as Û(t)|ψ〉AE , for some evolution operator Û(t).

The reduced state of the system of interest will then evolve as,

ρ̂A(t) = trE
[
Û(t)|ψ〉AE〈ψ|Û(t)†

]
, (2.21)

which is a non-unitary evolution - a characteristic of open quantum systems. The time evolution

presented in Eq. (2.21), although completely general, is not very useful as the exact form of

the evolution operator Û(t) and the initial state |ψ〉AE is almost always unknown.

The measurement process It’s very interesting to note that, under a simple assumption

regarding the interaction between A and E, where E can be thought of as an arbitrary macro-

scopic measuring apparatus, Weinberg very recently showed [26] that an open evolution of

the type (2.21) can describe the non-unitary “collapse” of ρ̂A(t) during a measurement process

(described by projection operators M̂n),

ρ̂A(t → ∞) =
∑

n

M̂nρ̂AM̂n,

with pn = tr(M̂nρ̂AM̂n), a form that was previously postulated (not derived) in Eq. (2.17). The

assumption Weinberg used to derive this result was non-decreasing von Neumann entropy of

ρ̂A(t) for all t. This assumption holds true when A interacts with big enough environments E

so that there is no back flow of information to the system, and therefore the dynamics become

effectively irreversible. In other words, this assumption is a necessary requirement for E to be

viewed as a macroscopic measuring apparatus.
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2.2 Quantum systems: the mixed case

2.2.2 Operational interpretation of the density matrix

The operational interpretation of a mixed density matrix ρ̂A =
∑
i

pi |φi〉〈φi|, as a statistical

mixture of various pure states, is non-trivial: Does the system really occupy one of the pure

states of the mixture, or is it just a mathematical decomposition without physical significance?

To examine this point further let us consider the following maximally mixed state of a single

qubit,

ρ̂A =
I

2
=
| ↑z〉A〈↑z | + | ↓z〉A〈↓z |

2

=
| ↑x〉A〈↑x | + | ↓x〉A〈↓x |

2
,

(2.22)

where we considered two different orthonormal bases, eigenstates of the Pauli operators σ̂z(x)

respectively.

It’s apparent that the same ρ̂A = I/2 can be prepared in various fundamentally different

ways, while providing with the same statistical predictions. For example, we may create such

a state by using an unbiased coin to randomly decide whether to prepare the actual state of the

system to be | ↑z〉A or | ↓z〉A, while erasing the which-state information afterwards. Similarly

for the x-direction. Although fundamentally different, the two preparation procedures lead to

the same statistical predictions. In both cases, and for a given copy of the state, the system

actually occupies one of the pure states of the decomposition (2.22) and we just don’t know

which one.

There is yet another way to prepare such a maximally mixed state, by considering system

A to be entangled with another system, call it E, with their joint state being described by the

so-called singlet state,

|φ+〉AE =
| ↑z〉A| ↑z〉E + | ↓z〉A| ↓z〉E

√
2

, (2.23)

which also gives a maximally mixed reduced state for system A when E is not available and,

therefore, traced-out: ρ̂A = trE |φ
+〉AE〈φ

+| = I/2. Notice that in this scenario and given a single

copy λ of the state (2.23), systems A and E cannot be independently assigned a particular (pure

or mixed) state before measurement. To see why, assume that for each copy λ we could assign

an arbitrary state ρ̂λA(E) : HA(E) to systems A and E respectively. Since the assignment of a

state for the two systems is independent of each other, then for each copy λ their joint “hidden”

state will be a product state; ρ̂λA ⊗ ρ̂
λ
E . Because the particular λ is assumed to be unknown,

each ρ̂λA ⊗ ρ̂
λ
E should appear with some probability pλ and the final (mixed) state that would be
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actually observed is,

ρ̂AE =
∑
λ

pλ ρ̂λA ⊗ ρ̂
λ
E . (2.24)

The state ρ̂AE
sep is known as a separable state because for its preparation no entanglement is

required. Coming back to our original question: Does system A, described and prepared by

ρ̂A = I/2 and |φ+〉AE respectively, occupy a particular state for each given copy of ρ̂A? The

answer will certainly be negative if the density matrix form of (2.23), i.e. ρ̂AE = |φ+〉AE〈φ
+|,

cannot be expressed in the separable form (2.24). And, indeed, this is the case; the maximally

entangled state |φ+〉AE violates the separability condition (2.24). In Part II we will discuss in

more detail about experimental criteria that can infer whether a given quantum state can be

expressed in a separable form (2.24).

Conclusion Given a quantum system A described by a state ρ̂A =
∑
i

pi |φi〉A〈φi|, we cannot

know in general whether the system actually occupies the states |φi〉A of the decomposition, for

a given copy of the state, unless we precisely know how the state ρ̂A was prepared. If system

A is entangled with some arbitrary system E (and, therefore, their state cannot be written in

the separable form (2.24)), then, as we showed above, we can be certain that system A cannot

have occupied any particular state (be it pure, or mixed) independently of system E, before

measurement.
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3

Continuous variable systems: An
introduction

Continuous variable (CV) quantum systems -i.e., systems whose observables can have contin-

uous spectra (see Chapter 2)- play a prominent role in the field of Quantum Information. They

have been recognized as a powerful “analog” alternative to the “digital” qubits for quantum in-

formation processing, and are attractive candidates for the implementation of a wide variety of

non-classical tasks and applications, such as: quantum computation, quantum communication,

quantum cryptography, quantum teleportation and quantum state and channel discrimination.

More details about these tasks, with relevant references, can be found in a recent review on

Gaussian Quantum information by Weedbrook et al. [27], while for all the concepts that will

be discussed in this Chapter one can also consult the following Refs. [27, 28, 29, 30] for

additional details and original references.

3.1 Canonical formalism

The physical implementations of CV quantum systems can vary. Here, we will consider a

particular type of system that is well-suited for quantum communication and cryptographi-

cal applications. A major requirement for an operational quantum communication scheme is

the fast transaction of quantum information, i.e. of information encoded in quantum systems,

among spatially separated parties. A best candidate to store and transmit quantum information

in a fast and reliable manner is the quantized electromagnetic field: a) it has the maximum

possible propagation speed c (the speed of light), while b) its weak interaction with the sur-
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3. CONTINUOUS VARIABLE SYSTEMS: AN INTRODUCTION

rounding environment protects the encoded quantum information from unwanted corruption.

Below we will focus on the mathematical formalism describing the free electromagnetic field,

which also applies to other bosonic systems; like, the collective magnetic moments of atomic

ensembles.

The quantized electromagnetic (or, photonic) field is a bosonic quantum field whose exci-

tations are spin-1 particles known as photons. A characteristic of a given photonic field is the

number of modes it possesses, with different number of photons occupying different modes. A

“mode” is a collective description of photons with a specific well-defined observable property

of the system, like: energy, position, angular momentum, etc. For example, photons with the

same energy ~ωk occupy the same mode-k, while photons that are well-separated in different

spatial regions occupy different spatial modes. The number of modes one can have in virtually

infinite, but in practice we always deal with a finite number of modes, say N. Each mode with a

particular property, say, k, is described by a Fock space Hk. A Fock space is a generalization of

the single-particle Hilbert space to many particles with the total number of particles being al-

lowed to vary. The Hilbert space of an N-mode photonic field will be a tensor product structure

over the Fock spaces of all considered modes,

H =

N⊗
k=1

Hk. (3.1)

An N-mode photonic field can be shown to be described by a very simple Hamiltonian

of N independent harmonic oscillators, with each oscillator describing a mode with particular

energy ~ωk,

Ĥ =

N∑
k=1

Ĥk, with Ĥk = ~ωk

(
â†k âk +

1
2

)
, (3.2)

Here â†k , âk are the creation and annihilation operators of a photon in mode k with energy ~ωk.

Since photons are spin-1 bosons, these operators satisfy bosonic commutation relations,

[âk, â
†

k′] = δk k′ , and [âk, âk′] = [â†k , â
†

k′] = 0, (3.3)

compared to the anti-commutator that would be used in the case of fermions.

The field can be described by yet another set of (dimensionless) operators, the so-called

quadrature field observables, defined as,

q̂k =
âk + â†k
√

2
, p̂k =

âk − â†k
i
√

2
, (3.4)
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where we adopted natural units ~ = 1. These operators are field observables, therefore hermi-

tian, and satisfy the canonical commutation relation,

[q̂k, p̂k′] = i δk k′I. (3.5)

Moreover, expressing the field Hamiltonian Ĥk in terms of these observables, we find the very

familiar form Ĥk = 1
2 (q̂2

k + p̂2
k) that describes a quantum harmonic oscillator with position and

momentum observables denoted as q̂k, p̂k respectively. Due to this intuitive correspondence, the

field observables are sometimes referred to as ‘position’- and ‘momentum’-like quadratures,

but keep in mind that they don’t represent the actual position and momentum of the photons.

Rather, the field quadratures are related to the electric and magnetic field operators of the

photonic field. For more details, see Ref. [29].

We can group the canonical commutation relations (CCR) of an N-mode field in a conve-

nient and compact way by first defining the vector,

R̂ = (q̂1, p̂1, . . . , q̂N , p̂N)T (3.6)

which allows us to write all CCR among any modes of the field as,

[R̂k, R̂l] = iΩklI, (3.7)

where Ω is the N-mode symplectic form,

Ω =

N⊕
k=1

ω =


ω

. . .

ω

 , with ω =

(
0 1
−1 0

)
. (3.8)

The symplectic form will play a protagonist role in our later discussion on the celebrated Gaus-

sian states and their formalism.

Now let us consider the quantum state description of the field excitations. We start by

finding a set of states that forms an orthonormal basis in the Hilbert space. We know, from

the previous chapter, that the eigenvectors of an observable form a basis that can be used to

express any other quantum state that belongs in the same Hilbert space. The observable we

will consider is the single-mode Hamiltonian operator Ĥk = n̂k + 1
2 of the photonic field,

expressed via the number operator,

n̂k := â†k âk.
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The eigenvectors of n̂k (and, hence, of Ĥk) are known as Fock (or, number) states {|n〉}∞n=0, since

the eigenvalue nk counts the number of photons in the mode k, due to n̂k|n〉 = n|n〉. The set of

number states form a basis in Hk as any state |ψ〉 ∈ Hk can be expressed w.r.t. this basis,

|ψ〉 =

∞∑
n=0

cn |n〉. (3.9)

The state |n〉 is interpreted as having n photons occupying the same mode of frequency k,

while |0〉 denotes the well-known vacuum state occupied by zero photons. The action of the

creation/annihilation operators over these states is well-defined and is actually determined by

the commutation relations (3.3). We have,

âk|0〉 = 0, âk|n〉 =
√

n |n − 1〉, (3.10)

and,

â†k |n〉 =
√

n + 1 |n + 1〉. (3.11)

with n ≥ 0.

3.1.1 How to prepare the vacuum

As described earlier, the vacuum state |0〉 of the electromagnetic field contains zero photons.

Being the ground-state of the electromagnetic field’s Hamiltonian, the vacuum state actually

represents what we call empty space. The first counter-intuitive observation we make here

is that empty space is actually described by a quantum state; therefore, empty space is not

nothing, it’s something. The interaction with the ever-present |0〉 in all of empty space is exactly

the reason why excited atoms -wherever they’re located- always decay. Yet another counter-

intuitive phenomenon is that the vacuum state can be itself expanded in a basis of the eigenstates

{|l〉} of an observable L̂ that does not commute with the Hamiltonian of the electromagnetic

field, [Ĥ, L̂] , 0,

|0〉 =
∑

l

cl |l〉. (3.12)

An example of such an observable L̂ could be the electric field, with its non-zero expectation

value on the vacuum, 〈0|L̂2|0〉 , 0, being well-known as vacuum fluctuations. The expansion

(3.12) implies that the vacuum state is actually a superposition of states |l〉 that they themselves

contain a non-zero average number of photons 〈l|n̂|l〉 , 0, since,

|l〉 = w0|0〉 +
∞∑

n=1

wn |n〉, (3.13)
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with wn , 0 in general.

To understand how counter-intuitive this phenomenon is consider the following preparation

procedure of the vacuum state |0〉: Instead of letting Nature give us the vacuum for free, let us

actually prepare it. We go to our laboratory and prepare separate copies of each of the states

{|l〉}. Since 〈l|n̂|l〉 , 0, every time we’d measure a state |l〉 in the Fock basis {|n〉} the probability

of detecting photons would be non-zero. In other words, our photodetectors would sometimes

click. However, instead of measuring them, we bring all states |l〉 together to interfere with

each other in a way such that the superposed state
∑

l cl |l〉 is formed [31], having the particular

coefficients cl appearing in Eq. (3.12). The final quantum state formed is actually the vacuum

state, due to (3.12), and every time we measure this newly formed state in the Fock basis ..we

will never detect any photon, even though before the interference we would. The photons

completely disappeared; we prepared the vacuum state ...empty space!

The explanation behind this is the wave phenomenon known by the name destructive in-

terference, a phenomenon continuously observed and demonstrated in quantum interference

experiments with diverse quantum systems; from photons, to throwing large molecules onto a

double slit and witnessing an interference pattern at the output. The dark fringes of the pattern

are places where the molecules are never detected, and that’s because the quantum waves at

those places interfere destructively. In complete analogy, all states |n〉 with non-zero number

of photons (n ≥ 1) interfere destructively during the interference of the |l〉 states and only the

vacuum component |0〉 eventually survives. What is also impressive to think about is the con-

ceptual difference between what the destructive interference implies in the case of a double-slit

experiment and what the preparation of the vacuum: In a double-slit experiment the interfer-

ence alters the observed trajectory of the molecules. However, in the preparation of the vacuum

discussed here, the interference alters not the photons’ trajectories, but their objective existence.

Usually we are used to photons (dis)appearing in the presence of other systems, like atoms, that

absorb/emit them, but in this case the phenomenon is genuinely different as we only considered

quantum states of (isolated) photons that overlap. Mind-boggling!

3.2 Phase-space representation

A pure state |ψ〉 of a bosonic quantum field belongs to an infinite dimensional space H =⊗N
k=1 Hk. Even in the simplest examples, we are always left with cumbersome expressions

involving infinite sums over some eigenbasis, like in Eq. (3.9). Generalizing to arbitrary,

33
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mixed in general, states ρ̂ makes the algebra involved even more cumbersome, limiting the

intuition one can get from infinite matrices. There is, yet, another equivalent way to represent

quantum states that can be more didactic and intuitive, and which substantially simplifies the

calculations in many cases of interest.

Every CV quantum state ρ̂ has an equivalent representation in terms of suitable multivariate

functions, such as the characteristic function

χρ(ξ) = tr[ρ̂ D̂(ξ)], (3.14)

where we define the Weyl operator

D̂(ξ) = exp
(
iR̂TΩ ξ

)
, (3.15)

with ξ ∈ R2N . Although this expression still seems hard to deal with, we will see later on in

particular examples that this function actually gets a very simple (and, perhaps, intuitive) form.

We will also see in Chapter 6 that the task of quantum teleportation of CV states has a very

simple description when using the characteristic function formalism.

Via Fourrier transform of the characteristic function, one can get a well-known quasi-

probability distribution, the Wigner function,

Wρ(x) =
1
π2

∫
R2N

χρ(ξ)eiξTΩx d2Nξ. (3.16)

The normalization condition for these functions is,

1 = trρ̂ =

∫
R2N

Wρ(x)d2Nx = χρ(0), (3.17)

while the purity of the state is given by,

µρ = trρ̂2 = (2π)N
∫
R2N

[Wρ(x)]2d2Nx =

∫
R2N
|χρ(ξ)|2d2Nξ. (3.18)

The Wigner function can be given yet another form, sometimes easier to use, in terms of the

eigenstates |x〉 of the position-like quadrature operators {q̂ j},

Wρ(q,p) =
1
πN

∫
RN
〈q + x|ρ̂|q − x〉 e2ix·p dNx, (3.19)

with q̂ j|x〉 = x|x〉 for j = 1, . . . ,N, and x,p ∈ RN . The Wigner function can be used to calculate

the average values of symmetrized observables. For example,

〈R̂kR̂l + R̂lR̂k〉 = 2
∫
R2N

RkRl Wρ(q,p) dNq dNp, (3.20)
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where R̂ = (q̂1, p̂1, . . . , q̂N , p̂N)T. Formula (3.20) will come in handy later on in the thesis,

allowing us to compute all second-order moments that fully define a Gaussian state.

Finally, the Wigner function enjoys a nice operational interpretation as its marginal integral

over all variables qi except qN ,

〈qN |ρ̂|qN〉 =

∫
R2N−1

Wρ(q1, p1, . . . , qN , pN) dq1 · · · dqN−1 dp1 · · · dpN , (3.21)

gives the correct probability of observing measurement outcome qN when measuring the quadra-

ture q̂N . Similar considerations hold for the other quadratures. Properties (3.17),(3.20) and

(3.21) resemble the Wigner function to a probability distribution. However, the Wigner func-

tion can take negative values in contrast to a bona fide probability distribution, therefore the

name: quasi-probability distribution.

3.3 Gaussian states

Gaussian states constitute versatile resources for quantum communication protocols with bosonic

CV systems [27, 32, 33, 34, 35], while they naturally occur as ground or thermal equilibrium

states of any physical quantum system in the ‘small-oscillations’ limit [36, 37]. Moreover,

some optical transformations such as those associated with beam splitters and phase shifters,

as well as noisy evolutions leading to loss or amplification of quantum states, are naturally

Gaussian: i.e., they map Gaussian states into Gaussian states. Gaussian states are furthermore

particularly easy to prepare and control in a range of experimental set-ups including primarily

quantum optics, trapped ions, atomic ensembles, optomechanics, as well as networks inter-

facing these diverse technologies [35]. From the mathematical perspective, Gaussian states

are technically accessible, since they are completely described by a finite number of degrees

of freedom only (first and second moments of the canonical mode operators) as we will see

below, despite their infinite-dimensional support.

3.3.1 Structural properties

The set of Gaussian states is, by definition, the set of states with Gaussian characteristic func-

tion χ and quasi-probability distribution W on the multimode quantum phase space. The gen-

eral form of such multivariate N-mode Gaussian functions is,

f (x) = C exp
(
−

1
2

xTAx + bTx
)
, (3.22)
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where x = (x1, . . . , xN)T, b = (b1, . . . , bN)T, and A is an N × N positive-definite matrix. The

most relevant quantities that characterize these distributions are the statistical moments of the

quantum state ρ̂, and Gaussian distributions specifically are uniquely defined solely by the first

and second moments.

The first moments of an N-mode state are defined by the displacement vector,

x̄ := 〈R̂〉ρ = tr
(
R̂ ρ̂

)
, (3.23)

where R̂ = (q̂1, p̂1, . . . , q̂N , p̂N)T. The second moments of the state form the so-called covari-

ance matrix (CM) σ =
(
σi j

)
of the state,

σi j = 〈R̂iR̂ j + R̂ jR̂i〉ρ − 2〈R̂i〉ρ〈R̂ j〉ρ. (3.24)

Since Gaussian states are uniquely defined by their x̄ and σ, i.e. ρ̂G = ρ̂(x̄,σ), we can ex-

press their corresponding Gaussian characteristic and Wigner functions solely in terms of these

quantities,

χρ(ξ) = e−
1
4 ξ

TΩσΩTξ−i(Ωx̄)Tξ, (3.25)

Wρ(x) =
1
πN

1
det(σ)

e−(x−x̄)Tσ−1(x−x̄), (3.26)

with ξ, x ∈ R2N .

The covariance matrix σ is a 2N × 2N, real and symmetric matrix, while for every physical

state ρ̂ (Gaussian, or not) the corresponding σ must satisfy the bona fide condition [38, 39]

σ + iΩ ≥ 0. (3.27)

For a single mode, this condition (3.27) is equivalent to an uncertainty relation by Dodonov,

Kurmyshev and Man’ko [40] imposed on the canonical operators, and is a stronger version of

Heisenberg’s uncertainty relation. One can easily see this, by considering a single mode CM,

σ =

(
σqq σqp

σqp σpp

)
,

the bona fide condition (3.27) on the 2×2 matrix is equivalent to the positivity of its determinant

det (σ + iΩ) ≥ 0, which in turn gives the generalized uncertainty relation [40],

σqqσpp − σ
2
qp ≥ 1. (3.28)
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Realizing that the CM’s diagonal elements are nothing but twice the variances of the canonical

operators,

σqq = 2V(q̂), with V(q̂) ≡ 〈q̂2〉ρ − 〈q̂〉2ρ, (3.29)

(similarly for momentum) we immediately see that when σqp = 0 we recover precisely Heisen-

berg’s uncertainty principle, V(q̂)V( p̂) ≥ 1
4 .

Gaussian states can also be pure or mixed, and the purity µρ of a state is determined very

conveniently solely by its CM,

µρ = trρ2 =
1

√
detσ

, (3.30)

implying,

detσ =

{
+1 ⇒ pure

> 1 ⇒ mixed.
(3.31)

3.3.2 Examples of Gaussian states and Gaussian unitaries

Now that we have laid out the general formalism let us present some important classes of

Gaussian states together with the corresponding Gaussian unitary operations that can prepare

them.

3.3.2.1 Coherent states and displacements

Let us go back in our discussion at the beginning of this chapter, Eq. (3.10), where we intro-

duced the annihilation operator â and defined through it the vacuum state of the field, â|0〉 = 0.

The operator â is important in its own right as the eigenstates of this operator are the infamous

coherent states,

â|α〉 = a|α〉, (3.32)

with α ∈ C being the coherent amplitude. A single mode coherent state |α〉 describes, ideally, a

laser beam of some particular frequency and, hence, is so widely used in laboratory experiments

of such diversity that it’s impossible to overestimate its importance. Although quite “classical”

in nature, coherent states also constitute the basic ingredient of the unconditionally secure CV

quantum key distribution [41].

A coherent state |α〉 can be generated by acting with the Weyl operator (3.15) on the vac-

uum, an operation known as displacement,

D̂(α)|0〉 = |α〉. (3.33)
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In terms of the Fock basis the coherent state can be expressed as

|α〉 = e
1
2 |α|

2
∞∑

n=1

αn

√
n!
|n〉, (3.34)

which may seem rather complex, but not any more if one studies its Wigner function which

takes a rather simple Gaussian form,

Wα(q, p) =
1
π

exp
[
−(q − qα)2 − (p − pα)2

]
, (3.35)

with qα, pα representing the real and imaginary part of the complex coherent amplitude α; i.e.,

α = qα + ipα. The first and second moments, which fully define a coherent state, also have a

simple form,

x̄ =
√

2
(

qa

pa

)
, σ = I. (3.36)

Given a coherent state |α〉 one can retrieve the vacuum state by letting the amplitude go to

zero α → 0 with a corresponding Wigner function W0(q, p), from Eq. (3.35). Based on the

moments (3.36), it’s interesting to note that the amplitude α determines only the first moments

of the state with the CM being completely independent. A special characteristic of coherent

states is that they are minimum uncertainty states saturating Heisenberg’s uncertainty principle

V(q̂)V( p̂) = 1
4 . This is the minimum variance which is reachable symmetrically by position

and momentum, and it is also known as vacuum noise or quantum shot-noise.

The single-mode Weyl operator (3.15),

D̂(α) = exp
(
α â† − α∗â

)
, (3.37)

is a Gaussian unitary operator, satisfying D̂†(α)D̂(α) = I and D̂†(α) = D̂(−α), that preserves

the Gaussianity of the states it acts on. For example, the vacuum state |0〉 is a Gaussian state

and by acting on it with D̂(α) we preserve its Gaussianity by obtaining another Gaussian state,

the coherent state |α〉. The Weyl operator is also known as the displacement operator: Acting

on a random state ρ̂ with the Gaussian unitary D̂(α), and employing the Heisenberg picture

(where the unitaries act on the observables instead of the quantum states), we find the following

transformations,

â→ â + α, R̂→ R̂ + dα, (3.38)

where R̂ = (q̂, p̂)T and x̄α =
√

2 (qα, pα)T. Therefore, in the phase-space picture, the ef-

fect of the Weyl operator is to displace the state around but without changing its form and
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characteristics. A coherent state is then nothing but a vacuum state displaced in phase space,

having the same characteristics with |0〉 except of an increased mean photon number (energy),

〈|α|n̂|α〉 = |α|2.

3.3.2.2 Thermal states

An important class of Gaussian states are the so-called thermal states. Bosonic thermal states

are defined as the ones maximizing the von Neumann entropy,

S = −tr
(
ρ̂ log ρ̂

)
, (3.39)

for a fixed energy (or, mean number of photons), n̄ ≡ 〈n̂〉ρ ≥ 0. Their representation in the

Fock basis reads,

ρ̂th(n̄) =

∞∑
n=0

n̄n

(n̄ + 1)n+1 |n〉〈n|. (3.40)

Such states have a Gaussian Wigner function, zero first moments and a very simple covariance

matrix that completely defines these states,

σ = (2n̄ + 1)I. (3.41)

3.3.2.3 Single-mode squeezing and squeezed states

Squeezed states are an important class of photonic states that are widely used in quantum

information tasks to achieve performances that are classically unattainable. Squeezed states

have the characteristic that they contain only an even number of photons, and are physically

created by pumping a non-linear crystal with a bright laser.

Mathematically, the so-called squeezed vacuum states are obtained by acting with the

single-mode squeezing operator,

Ŝ (ζ) = exp
[
1
2

(
ζâ† 2 − ζ∗â2

)]
, where ζ = reiθ, (3.42)

on the vacuum state,

|ζ〉 ≡ Ŝ (ζ)|0〉 =
1

√
cosh r

∞∑
n=0

√
(2n)!
n!

ei n θ

2n tanhn r |2n〉. (3.43)

The parameter r is known as the squeezing degree of the state. High squeezing degree is one

of the most desirable resources in CV quantum information as it improves the performance of
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non-classical tasks (e.g. in quantum cryptographical applications or quantum computing) that

utilize such states. The squeezing phase θ determines which quadrature will be (anti-)squeezed

while the squeezing degree r determines by how much. The Wigner function of this state for a

phase θ = 0 (a choice that basically allows for p to be squeezed) has, again, a Gaussian form,

Wr(q, p) =
1
π

exp
(
−∆2q2 −

p2

∆2

)
, (3.44)

with ∆ = exp(−r). For ∆ = 1 (or, r = 0) one obtains the Wigner function of the symmetric

vacuum state with both position and momenta having the same uncertainty. For ∆ < 1 (or,

r > 0), however, one of the quadrature variances (momentum p) is squeezed below the quan-

tum shot-noise, while the other (position q) is anti-squeezed above it. In the limit of infinite

squeezing r → ∞, |r〉 tends to an (unphysical) exact eigenstate of the momentum operator p̂,

having a well-defined momentum.

In experimental papers squeezing is often measured in deciBels, defined in a way such that

a squeezing degree r corresponds to,

# dB = 10 log10

[
e2r

]
. (3.45)

Finally, single-mode squeezed states are completely characterized by zero first moments

and covariance matrix equal to,

σ =

(
cosh(2r) + cos(θ) sinh(2r) sin(θ) sinh(2r)

sin(θ) sinh(2r) cosh(2r) − cos(θ) sinh(2r)

)
, (3.46)

where we indeed verify, given our previous discussion for θ = 0, that the variance of momentum

is squeezed below the quantum shot-noise limit; V( p̂) = 1
2 e−2r < 1

2 , for r > 0.

3.3.2.4 Coherent squeezed states

The most general single-mode pure Gaussian state can be obtained by acting simultaneously

with the displacement and squeezing operators on the vacuum state,

|ψα,ζ〉 = D̂(α)Ŝ (ζ)|0〉, (3.47)

and is, hence, completely described by two complex numbers α = qα + i pα and ζ = reiθ. The

first and second moments of this state are,

d =
√

2
(

qa

pa

)
, (3.48)

σ =

(
cosh(2r) + cos(θ) sinh(2r) sin(θ) sinh(2r)

sin(θ) sinh(2r) cosh(2r) − cos(θ) sinh(2r)

)
. (3.49)
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3.3.2.5 Two-mode squeezing and squeezed states

A very important class of states are the two-mode squeezed states, with each mode (say, A

and B) being spatially separated from the other while both having approximately well-defined

energy (or, frequency). Such a state can be created either by appropriately pumping a non-linear

crystal which generates pairs of photons in two different modes, or, by separately creating two

single-mode squeezed states and passing them jointly through a beam-splitter. In both cases,

the result is the bipartite state

|r〉AB = Ŝ AB(r)|0, 0〉AB, (3.50)

where |0, 0〉AB ≡ |0〉A ⊗ |0〉B denotes the vacuums for the different modes A and B. We also

introduced the two-mode squeezing operator

Ŝ AB(r) = exp
[
r
(
â†b̂† − âb̂

)]
, (3.51)

which is unitary, r is squeezing degree, and â(†), b̂(†) are the creation/annihilation operators for

the modes A, B respectively. The Fock basis representation of the state is,

|r〉AB =
√

1 − tanh2 r
∞∑

n=0

tanhn r |n〉A|n〉B. (3.52)

This is a Gaussian state with vanishing first moments and a covariance matrix

σAB =


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 . (3.53)

The usefulness of the two-mode squeezed state lies in the strong correlations among the

modes. In the limit of infinite squeezing the state approaches asymptotically the Einstein-

Podolsky-Rosen state

|ψ〉EPR ∼ δ(q̂A − q̂B) δ( p̂A + p̂B), (3.54)

with the positions and momenta of the modes being perfectly correlated and anti-correlated

respectively. The EPR state (3.54) was utilized by Einstein, Podolsky and Rosen to (wrongly)

argue that quantum mechanics is incomplete. We will discuss in more detail about this issue,

which is known as the EPR paradox, in Chapter 7.
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3.3.3 Symplectic formalism

When dealing with Gaussian states, an important class of operations are the so-called Gaussian

unitaries. These are unitary operations that preserve both the purity and the Gaussianity of

the state. We have already encountered examples of Gaussian unitaries, like the Weyl (or,

displacement) operator D̂(α) (3.15) and the squeezing operator Ŝ (ζ) (3.42), and there are plenty

of more interesting examples of such unitaries that are routinely utilized both in theory and

experiment, like beam splitters and phase shifters. Let us denote an arbitrary Gaussian unitary

as ÛG. The way ÛG acts on the state space is to map a Gaussian state ρ̂x̄,σ onto another

Gaussian state ρ̂x̄′,σ′ of the same purity,

ρ̂x̄,σ −→ ρ̂x̄′,σ′ = ÛG ρ̂x̄,σ Û†G. (3.55)

Given the mathematical convenience of dealing with Gaussian states using their first and

second moments, instead of their quantum states, we would like to find how a unitary ÛG

transforms the moments themselves. Unitary transformations on a Hilbert space are mapped to

real symplectic transformations on the first and second moments as,

ρ̂x̄′,σ′ = ÛGρ̂x̄,σÛ†G −→
{

x̄′ = S x̄ + d
σ′ = SσST,

(3.56)

where d ∈ R2N , and S is a square 2N × 2N real matrix. The pair (d,S) represents the Gaussian

unitary operation in the space of first and second moments, while S is known as a symplectic

matrix. This simple transformation rule holds, however, only for Gaussian unitary transfor-

mations which are defined as those unitary operators whose exponents are, at most, quadratic

in the mode operators. In any other case, the unitary would be non-Gaussian. The set of all

symplectic matrices belong to the so-called symplectic group Sp(2N,R), defined as

Sp(2N,R) =
{
S : SΩST = Ω

}
, (3.57)

where Ω is the symplectic form defined in Eq. (3.8).

3.3.3.1 Examples

Let us study some important examples of Gaussian unitaries with their corresponding symplec-

tic matrices.
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Phase shift. A single-mode rotation in phase space by an angle φ/2 is known as phase shift,

and is represented by the unitary operation

Û(φ) = exp
(
iφâ†â

)
. (3.58)

It’s corresponding symplectic matrix reads,

S(φ) =

 cos
(
φ
2

)
− sin

(
φ
2

)
sin

(
φ
2

)
cos

(
φ
2

)  . (3.59)

Beam splitter. A most common unitary operation is the ideal (phase-free) beam splitter, which

takes as input two modes A and B and coherently combines them such that the output modes

are,

ÛA,B(φ) :
{

â −→ â cos φ + b̂ sin φ
b̂ −→ â sin φ − b̂ cos φ.

(3.60)

A beam splitter with transmissivity τ corresponds to a rotation of φ = arccos
√
τ . In particular,

a balanced 50 : 50 beam splitter having τ = 1/2, corresponds to φ = π/4. The symplectic

matrix that describes the ideal beam splitter is,

SA,B(τ) =


√
τ 0

√
1 − τ 0

0
√
τ 0

√
1 − τ

√
1 − τ 0 −

√
τ 0

0
√

1 − τ 0 −
√
τ

 . (3.61)

Single-mode squeezing. The squeezing operator that was introduced in Eq. (3.42),

Ŝ (ζ) = exp
[
1
2

(
ζâ† 2 − ζ∗â2

)]
, where ζ = reiθ, (3.62)

has the following symplectic representation,

S(r, θ) =

(
cosh(r) + cos(θ) sinh(r) sin(θ) sinh(r)

sin(θ) sinh(r) cosh(r) − cos(θ) sinh(r)

)
. (3.63)

Two-mode squeezing by beam splitting single-mode squeezed states. As we mentioned pre-

viously, a two-mode squeezed state |r〉AB can be prepared by passing two independent single-

mode squeezed states through a balanced 50 : 50 beam splitter (see Fig. 3.1). Now that we
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Figure 3.1: The preparation procedure of a two-mode squeezed state is pictorially demonstrated,
by sending position- and momentum-squeezed states through a balanced 50:50 beam splitter. For
the mathematical description of the process, see text. (From G. Adesso’s tutorial lecture in Paraty
Summer School, Brazil, 2013)

have introduced all the relevant mathematical machinery that describe such a process, let us

see how to get the CM of a two-mode squeezed state (3.53) by such an operation.

We start with two single-mode squeezed states, with mode A being squeezed in the p-

quadrature while mode B in the q-quadrature. Their individual CMs will be,

σA(r) =

(
e2r 0
0 e−2r

)
, σB(r) =

(
e−2r 0

0 e2r

)
, (3.64)

with their joint product state being described by the CM,

σAB(r) = σA(r) ⊕ σB(r).

Next, the 50 : 50 beam splitter, with transmissivity τ = 1/2, acts on the joint state σAB(r) via

the symplectic matrix SA,B(τ) Eq. (3.61), and through the transformation rule Eq. (3.56),

giving the desired output state

σ′AB(r) = SA,B(1/2)σAB(r) ST
A,B(1/2)

=


cosh(2r) 0 sinh(2r) 0

0 cosh(2r) 0 − sinh(2r)
sinh(2r) 0 cosh(2r) 0

0 − sinh(2r) 0 cosh(2r)

 ,
(3.65)
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which is precisely the CM of the two-mode squeezed state derived in Eq. (3.53).

3.3.4 Standard forms

An N-mode Gaussian state ρ̂ has, in general, arbitrary first moments x̄ and covariance matrix

σ, with all the matrix elements of the latter being in general non-zero. In other words, the form

of (x̄,σ) is in general ‘non-standard’ and complicated, and the point of this section is to show

that a simpler standard form exists for arbitrary Gaussian states.

Let us first discuss the context behind such a simplification: given a state with moments

(x̄,σ), why would one alter it to get a different form (even though, simpler) of the state? In

the field of quantum information, when we study N-mode states we implicitly assume that

these states will be used for some non-classical protocol that involves distribution of each

mode of the state to different users (as, for example, happens in quantum communication and

cryptographical applications). In such scenarios, if we can alter the state giving it a simpler

form, then as long as the new simpler state performs equally well (not worse) in the considered

task then we can only benefit from such a simplification. The state can be altered by the N users

(each holding a different mode) by applying local operations and classical communication

(LOCC), and in particular Gaussian unitary local operations. The class of LOCC operations

are known not to increase the amount of entanglement in a quantum state.

Given this context, standard forms have been derived in the literature for general N-mode

Gaussian states that can be attained by starting from an arbitrary Gaussian state and then use

suitable Gaussian unitary LOCC. For details, see Refs [42, 43, 44]. In the following, we only

report the results for general two-mode and pure three-mode states that will be utilized later on

in the thesis.

Two modes [45] The expression of the two-mode CMσAB in terms of the three 2×2 matrices

A,B,C, that will be useful in the following, takes the form

σAB =

(
A C
CT B

)
. (3.66)

For any two-mode CM σAB there is a local symplectic operation S = S1 ⊕ S2 which brings σ

in the standard form σ̄AB

σ̄AB =


a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

 . (3.67)
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The covariances a, b, c1 and c2 are determined by the four local symplectic invariants (i.e.,

invariants under local unitary operations) σAB = (ab− c2
1)(ab− c2

2), det A = a2, det B = b2, and

det C = c1c2. The standard form corresponding to any CM is unique (up to a common sign flip

in c1 and c2).

Three modes [46] The general form of a three-mode CM σ is given in terms of the 2 × 2

matrices αi, ei j (for, i, j = 1, 2, 3),

σ =

 α1 e12 e13
eT

12 α2 e23
eT

13 eT
23 α3

 . (3.68)

For any pure three-mode CM σ (i.e., states with detσ = 1) there is a local symplectic operation

S = S1 ⊕ S2 ⊕ S3 which brings σ in the standard form σsf

σsf =



a1 0 e+
12 0 e+

13 0
0 a1 0 e−12 0 e−13

e+
12 0 a2 0 e+

23 0
0 e−12 0 a2 0 e−23

e+
13 0 e+

23 0 a3 0
0 e−13 0 e−23 0 a3


, (3.69)

where the symplectic invariants ai =
√

detαi = µ−1
i are related to the purities of the reduced

CMs αi, and

e±i j ≡
([

(ai − a j)2 − (ak − 1)2
] [

(ai − a j)2 − (ak + 1)2
]
±√[

(ai + a j)2 − (ak − 1)2
] [

(ai + a j)2 − (ak + 1)2
] )1/2

/
(
4
√

aia j
)
.

(3.70)

3.3.5 Homodyne measurements

The importance of quadrature measurements in the description of bosonic CV systems cannot

be overstated, and especially in the case of Gaussian states where the first and second moments

of the quadratures are enough to fully characterize them. Homodyne measurement is a simple

technique that allows us to measure the desired quadratures q̂ and p̂ of a single-mode.

Let us assume that a is the mode the quadratures of which, q̂ and p̂ we’d like to measure.

We implement the scheme considered in Fig. 3.2, where we consider a balanced 50 : 50

beam splitter with the inputs modes being a, aLO and the output modes b1, b2, with aLO being
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input  α 

input  αLO 

BS 

ΔI 

Figure 3.2: Homodyne measurement

an auxiliary field, to be described below, that will help us with the measurement. We then

measure the intensity difference ∆I of the two output modes, using photocurrent detectors,

∆I = 〈b̂†1b̂1 − b̂†2b̂2〉 = 〈â†âLO + â†LOâ〉, (3.71)

where we ∆I it w.r.t. the input modes by using the quadrature transformation rule Eq. (3.60) for

a balanced beam splitter. We then assume that the field mode aLO is a strong local oscillator, i.e.

a bright coherent state |αLO〉 with a large photon number. It’s therefore reasonable to describe

this oscillator with the complex number αLO, and therefore replace the operators âLO, â
†

LO with

the complex amplitudes αLO, α
∗
LO of the now “classical” field,

∆I = 〈â†αLO + α∗LOâ〉. (3.72)

By introducing the phase ζ of the local oscillator, αLO = |αLO|eiζ , fixing it to the values ζ = 0

and π
2 it allows us to measure the desired quadratures p̂ and q̂ respectively,

ζ = 0 : ∆I =
√

2 |αLO| 〈 p̂〉 (3.73)

ζ =
π

2
: ∆I =

√
2 |αLO| 〈q̂〉. (3.74)
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4

The pyramid of quantum correlations

The advent of quantum information theory together with the technological advancements that

allowed us to address and manipulate individual quantum systems, has put a solid foundations

for the rise of a second quantum revolution that is expected to provide us with immense appli-

cations never thought possible before. In the previous century, a first quantum revolution gave

rise to ground-breaking technologies like the LASER, semi-conductors, solar panels, etc. Such

novel applications although made possible by a better understanding of quantum theory, they

didn’t really make use of genuine quantum effects, such as entanglement and superposition.

The anticipated applications of the second quantum revolution, including quantum comput-

ing and quantum simulations to quantum communications and metrological applications, draw

their power particularly from such genuinely quantum properties. An important and timely

question that was asked is,

What are the quantum properties that provide with a quantum advantage?

A particularly fruitful way to deal with this question is to focus, for reasons to become clear

shortly, at the achievable correlations among different subsystems. Considering for simplicity

a bipartite system A and B, the term correlation, in general, is defined by the set of joint prob-

ability distributions of simultaneous measurements x, y performed on each of the subsystems

A, B respectively, with corresponding outcomes X,Y; i.e., {P(X,Y |x, y)}. In the case of quan-

tum systems, measurement operators can be assigned (projectors or, more generally, POVMs),

giving

P(X,Y |x, y) = tr
[(

N̂X ⊗ M̂Y
)
ρ̂AB

]
. (4.1)
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Strength 

Figure 4.1: Hierarchy of correlations in composite quantum systems

In general, correlations among composite quantum states, of the type (4.1), are known as quan-

tum correlations. How is this relevant to the question posed above? If one looks at some of

the first and most important proposed applications in quantum information theory, like Shor’s

quantum algorithm [47] that can break the RSA cryptosystem exponentially faster than any

classical algorithm, or Ekert’s quantum cryptographic protocol [48] that provides with uncon-

ditional secrecy in communications; they all rely on entanglement. Entanglement is a particular

type of strong quantum correlations with highly non-classical features. Due to this connection

between entanglement and novel applications in the early years of quantum information the-

ory, theoretical and experimental attention was mainly focused on developing and preserving

entanglement among different subsystems. It was once thought that entanglement is the only

kind of non-classical correlations featured in quantum systems; i.e., unentangled states were

though to be useless in terms of providing some quantum advantage in a given task.

It was soon realized, however, that entanglement is just part of a larger zoo of different

types of quantum correlations, which we depict in Fig. 4.1 in the form of a pyramid. Just for

illustration purposes, we can imagine the area of the pyramid to indicate the set of all quantum

states in all of Hilbert space, with each particular point representing a distinct quantum state

(without meaning to imply that the actual geometry of the Hilbert space is a pyramid). Each

type of correlation forms a triangle in the pyramid, and a point that falls into the triangle

features the particular property. Obviously, the bigger the triangle of a property the more states

it includes with that property. The arrow on the right side of the pyramid indicates the strength

of the correlations, which increases as we climb the pyramid upwards.
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At the bottom of the pyramid, having the least strength of all, distinctly lie the set of states

featuring solely classical correlations also achievable by effectively classical systems. This

part of Hilbert space is actually negligibly small [49], and undoubtedly constitutes the “non-

interesting” part of Hilbert space.

The first level in the pyramid, contains all those states that feature discord [50]. Discordant

states constitute almost the whole Hilbert space [49], and most importantly this most elemen-

tary type of quantum correlations features non-classical behaviour, yet they don’t necessarily

contain any entanglement. This realization came as a surprise in the community, when evi-

dence arose that discord might be the key resource behind the speed-up of a particular quantum

algorithm, known as DQC1 [51]. Although up to this day there has been no consensus regard-

ing the clear operational link between discord and a speed-up, discordant has been shown to

be useful in various non-classical tasks in quantum information and communication, including:

local broadcasting, entanglement distribution, quantum state merging, remote state preparation,

quantum cryptography, quantum locking, quantum metrology, and lastly state discrimination

and quantum illumination. For details regarding such applications see Ref. [50, 52, 53].

The second level represents the more correlated entangled states [54], and as is seen, en-

tangled states necessarily contain discord. This type of correlations is a case of study in the

present thesis, together with one of the most important non-classical applications that entan-

glement allows for; quantum teleportation. For more details, see Part II.

The third level contains even stronger correlations, known as steering. As shown in Fig.

4.1, steerable states necessarily feature both entanglement and discord. Steering was recently

formalized by Wiseman et al. [12] as a novel type of quantum correlations, intimately related to

the infamous Einstein-Podolsky-Rosen paradox [55], and has found various interesting appli-

cations in tasks with the advantage that no characterization is made for some of the parties (i.e.,

unknown Hilbert space). Examples of tasks that are implemented in such a one-sided device

independent fashion are: entanglement certification, randomness generation, sub-channel dis-

crimination, self-testing, quantum key distribution and quantum secret sharing. See Ref. [56]

for a recent review on some of these topics. Steering-type correlations in bipartite and multi-

partite systems will be exhaustively studied in Part III.

The final level in the pyramid contains the strongest type of quantum correlations allowed

by the laws of quantum mechanics, known as Bell-nonlocality [57, 58]. Bell-nonlocality is

admittedly the most non-classical feature of quantum theory and its mere existence has shaken

our perceptions about how the world works in a fundamental level. Nonlocal states also feature
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all the weaker types of correlations. Therefore, besides the optimal performance of nonlo-

cal states in all the aforementioned tasks, Bell-nonlocality allows for the implementation of

tasks that make no characterization of any of the parties involved, i.e. in a device-independent

manner. Examples of such tasks are: entanglement certification, randomness generation and

quantum key distribution. For a recent review on nonlocality see Ref. [59], while only very re-

cently three different experimental groups demonstrated the first loophole-free Bell inequality

violations in Refs [60, 61, 62].

4.1 If nonlocality is best, why bother ’bout the rest?

Nonlocal correlations are seen to sit at the top of the pyramid representing the strongest type of

all quantum correlations, and therefore, by definition, quantum states with nonlocal correlations

perform best in all non-classical tasks we individually listed for each of the weaker types of

correlations. Why do we then consider all these different types of correlations and don’t simply

prepare the ultimate resource, nonlocality, straight away?

One reason is noise. Any real-world implementation of a task is unavoidably noisy and,

consequently, subject to decoherence. The effect of decoherence can be seen as climbing down

the pyramid, as it gradually destroys the quantum correlations in the state. Therefore, it’s

usually hard to create a pure maximally entangled state with nonlocal correlations, and it would

be great to know if we can implement the same task with a weaker type of correlations.

Another important reason is insufficient experimental equipment. In some cases, the quan-

tum states with the “perfect correlations” that are optimal for the given task cannot be effi-

ciently prepared in the laboratory with today’s technology. Quantum key distribution (QKD)

with qubit systems is a task that falls exactly into this category. It’s known, for example, that

the optimal states for QKD are ideal single photon states which give very high secret key rates.

However, there currently exist no single photon sources that can produce ideal single photon

states. Moreover, if sending single-photon states is one thing, then measuring them is another.

A perfect measurement of such a state requires perfect single-photon detectors. The current

efficiency, however, of such detectors is not very high although progress has being made.

Moreover, in the case of continuous variable systems, in order to observe nonlocal correla-

tions one is obliged to either prepare a non-Gaussian state or to perform so-called non-Gaussian

measurements on a Gaussian state. Even if the entanglement of the state tends to infinity, non-

locality cannot be manifested unless there exists an element of non-Gaussianity (either in the
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state, or in the measurement, or in both). Although, Gaussian state and Gaussian measurements

(like, quadrature measurements) are routinely prepared/performed in quantum optics laborato-

ries around the world, creating non-Gaussianities is experimentally demanding which implies

that nonlocality is a scarce resource when it comes to continuous variable systems. How-

ever, although Gaussian states and measurements cannot produce nonlocal correlations, they

can produce steering-type correlations, and as the entanglement of the state increases, steer-

ing increases as well unboundendly. This implies the following remarkable realization: We

can perform a task that requires steering, like one-sided device independent QKD, arbitrarily

well even if we don’t have access to nonlocal correlations. This is a demonstration that differ-

ent types of quantum correlations can, under particular constraints, be regarded as completely

independent resources.
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Part II

Entanglement and applications
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5

Quantum entanglement

In this chapter we will introduce the concept of entanglement, and describe particular entan-

glement detection and quantification techniques that will be put to use in Part III, with the

main focus being continuous variable (CV) states. We will then introduce the task of quantum

teleportation, and present novel results on the topic which were published in Physical Review

A [1]. In particular, we will critically examine how efficiently current teleportation schemes

can teleport general pure Gaussian states, and how such schemes perform against prepare &

measure strategies that make use of no entanglement.

5.1 Introduction

It’s no secret that quantum theory has been puzzling physicists, since its birth in the early

years of the 20th century, due to its seemingly total departure from the classical world. Quan-

tum theory predicted phenomena, like: the superposition principle, Bohr’s complementarity,

Heisenberg’s uncertainty principle and the quantization of radiation. But what is it exactly that

makes the quantum stranger than the classical? This question was hotly debated by the found-

ing fathers of quantum theory, and the answer is not clear. The superposition principle already

existed in classical wave mechanics as waves can be superposed. Also, Bohr’s complemen-

tarity and Heisenberg’s uncertainty principle also have a counterpart in classical waves and in

particular in the trade-off between the knowledge of the position of a wave and its wavelength.

The quantization of radiation, which Planck was forced to postulate in an ‘act of desperation’

to explain the intensity profile of the black-body radiation, although non-existent in classical
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physics it can at least be mimicked -energy can be coarse-grained classically. What is it then

that makes quantum theory so special?

Schrödinger found the answer to be, entanglement; it’s the one quantum phenomenon that

has absolutely no classical counterpart and cannot even be mimicked by classical systems. As

we already briefly discussed in Chapter 2, entanglement is a consequence of the superposition

principle when applied to multiple systems. The reason it’s so counter-intuitive and presents a

radical departure from classical physics can be summarized as follows:

α) When two (or, more) quantum systems are entangled, they are no longer independent from

one another and behave like a single inseparable quantum system. This phenomenon is ex-

pressed by the fact that the most complete description we can have for a composite quantum

system, fundamentally contains no (or, less) information about its parts. In other words, we can

perfectly know the quantum state of the composite system, but be completely uncertain for the

quantum state of the subsystems. This is a strikingly non-classical phenomenon: In classical

physics, almost by definition, a complete knowledge of the whole directly implies complete

knowledge of the parts. Surprisingly, in the quantum realm ..the whole can be less uncertain

than either of its parts.

β) The utterly non-classical phenomenon described in α) may still be refuted by some as an

incompleteness of quantum theory. In fact this is exactly how Einstein, Podolsky and Rosen

reacted to the puzzling phenomenon of entanglement in their infamous EPR paper, to be dis-

cussed in Part III, arguing in favour of the theory’s incompleteness. After all, if quantum theory

is an incomplete theory why should we care about the catchphrase “the whole can be less un-

certain than either of its parts”? A more complete theory, if existed, could actually provide

with the (missing) description of the parts after all. Although this is a valid point, John Bell

managed to raise the level of the discussion about the incompleteness of quantum theory from

a philosophical level to an experimentally testable one. He realized that entanglement predicts

so strong correlations among independent and spatially separated quantum systems that cannot

be explained by any theory that describe the subsystems as independent, and without invok-

ing nonlocality (i.e., an instantaneous ‘action-at-a-distance” between the subsystems). This

phenomenon has been termed Bell-nonlocality and is the epitome of quantum weirdness (see,

Fig. 4.1).
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5.2 Entanglement detection

Besides any philosophical debates, it has become clear in the recent years that entangle-

ment is a new quantum resource for tasks which can not be performed by means of classi-

cal resources. Entanglement is the resource that enables universal quantum computers which

can solve some important classes of problems exponentially faster than any classical machine.

Entanglement is also an a necessary resource in quantum communication, quantum key dis-

tribution and other cryptographical applications, as well as in quantum metrology [63] where

entangled probes are utilized to achieve unprecedented accuracy in parameter estimation. An-

other most important application of entanglement is quantum teleportation, a task that allows

us to “teleport” arbitrary quantum states to distant unknown locations without physically send-

ing the system. See Refs [64, 65] for more details on the applications of entanglement. Given

the importance of entanglement not only for the foundations of quantum theory but also for the

development of new quantum technologies, it is a pre-requisite that for entanglement to be any

useful one should be able to detect it and quantify it. Is a quantum state entangled or not, and

if yes how much entanglement does it possess? We will briefly examine these questions in the

next sections.

5.2 Entanglement detection

Entanglement, or non-separability, is the particular feature of composite quantum states that

does not allow for an independent local description of the parts; in other words, it is impossible

to assign particular (even though, unknown) quantum states to the subsystems when they are

part of an entangled state. If such an assignment is possible, the state is called separable which

is the opposite of entangled (or, non-separable). For the following, let us focus to arbitrary bi-

partite states ρ̂AB and, hence, bipartite entanglement. Below we give the definition of separable

states, therefore defining entangled states as those that are not separable.

Definition 5.2.1. A bipartite quantum state ρ̂AB : HA ⊗HB is called separable if there exists
an assignment of states ρ̂λA : HA and ρ̂λB : HB, and probabilities pλ, such that the bipartite state
can be written in the form,

ρ̂AB =
∑
λ

pλ ρ̂λA ⊗ ρ̂
λ
B, with,

∑
λ

pλ = 1. (5.1)

In the special case of pure states this definition collapses to the product state, |ψ〉AB = |χ〉A ⊗

|φ〉B.
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States of the form (5.1) are called separable because they can be created without the use of

any entanglement, and just by local operations and classical communication (LOCC) between

Alice (for, A) and Bob (for, B). In particular, Alice and Bob collaboratively choose a particular

λ, with probability pλ, and for that choice they prepare the product state ρ̂λA ⊗ ρ̂
λ
B. Forgetting

the “which-λ” information leads to a state of the separable form (5.1).

Given a state ρ̂AB, how can we tell if it is entangled? Below we examine various ways to

detect entanglement.

5.2.1 Entanglement Witnesses

Imagine an experiment taking place in a laboratory where a pair of particles is produced in

an unknown bipartite quantum state by, say, some physical process. How can we tell whether

the produced state is entangled? Here, is where the entanglement witnesses join the scene. In

simple words, an entanglement witness is an observable which we can measure. By measur-

ing its mean value with respect to the unknown quantum state we can infer about the state’s

entanglement as follows:

Definition 5.2.2. We call an observable Ŵ an entanglement witness if
• Tr

[
Ŵρ̂S

]
≥ 0 - for all separable states ρ̂S ,

• Tr
[
Ŵρ̂E

]
< 0 - for at least one entangled state ρ̂E .

In order to easier understand this concept, let us work out a specific example.

Example Consider two spin- 1
2 particles coupled by a Heisenberg interaction Ĥ = −J~σA~σB

where J is the coupling strength and ~σ denotes the Pauli matrices of particles A and B respec-

tively. It’s easy to see that for any separable state of the form (5.1), the absolute average energy

of the system is bounded from above as,∣∣∣∣〈Ĥ
〉

S

∣∣∣∣ = J

∣∣∣∣∣∣∣∑
λ

pλ
〈
~σA

〉
λ

〈
~σB

〉
λ

∣∣∣∣∣∣∣ ≤ J
∑
λ

pλ
∣∣∣〈~σA

〉
λ

〈
~σB

〉
λ

∣∣∣ ≤ J, (5.2)

where we used,
∣∣∣〈~σA

〉
λ

〈
~σB

〉
λ

∣∣∣ ≤ 1. However, consider that the two particles are in the singlet

state ∣∣∣ψ−〉AB =
1
√

2

(
|↑z〉A|↓z〉B − |↓z〉A|↑z〉B

)
,

which is a maximally entangled state. For this state, the average energy of the system obviously

exceeds the previous bound, 〈
Ĥ

〉
ψ−

= AB
〈
ψ−

∣∣∣ Ĥ
∣∣∣ψ−〉AB = 3J. (5.3)
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5.2 Entanglement detection

This fact constitutes the Hamiltonian Ĥ = −J~σA~σB an entanglement witness, which can be

measured in the lab and reveal entanglement without us knowing the quantum state of the

particles.

Some of the important problems that have concerned the literature over the years are the

construction of entanglement witnesses and their optimality. Regarding the latter, a witness W1

is considered to be finer than W2, if it detects all the entangled states that W2 does. Conse-

quently, it’s natural to try and find procedures that give the optimal witness, i.e. the one such

that no other witness can outperform. Such an investigation was carried out, for example, by

Lewenstein et. al. in [66]. In Part III we will utilize the concept of witnesses to detect quantum

steering, a form of quantum correlations that is stronger than plain entanglement.

5.2.2 The Peres-Horodecki PPT criterion

One of the most important separability criteria, the Positive Partial Transposition (PPT) crite-

rion, was first developed by A. Peres [67] and has found immense uses both for discrete and

continuous variable systems. The key idea behind this criterion is that any bipartite state of

the separable form (5.1) remains a valid quantum state if we consider the operation of partial

transposition on ρ̂AB (say, w.r.t. system B), i.e. ρ̂TB
AB, defined as the total transposition of any of

the subsystems,

ρ̂TB
AB =

∑
λ

pλρ̂λA ⊗ (ρ̂λB)T. (5.4)

On a given basis, the total transposition of an operator is defined as,

B 〈n| (ρ̂λB)T|m〉B = B 〈m| ρ̂λB|n〉B. (5.5)

It’s straightforward to see that a totally transposed density matrix (ρ̂λB)T also represents a

physical state, as it remains a positive semi-definite operator with unit trace: (ρ̂λB)T ≥ 0 and

tr(ρ̂λB)T = 1 . We conclude that ρ̂TB
AB should have non-negative eigenvalues for any separable

state ρ̂AB. However, if a given state ρ̂AB is entangled some of the eigenvalues of the partial

transposed ρ̂TB
AB could be negative.

The PPT criterion All separable states ρ̂AB remain positive under partial transposition,

ρ̂TB
AB ≥ 0.
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The PPT criterion gives a necessary condition for separability, but not always sufficient.

Few months after the publication of Peres’ result, the Horodecki family proved [68] that the

PPT criterion is actually necessary and sufficient for separability in the case of discrete variable

systems of dimensions 2 × 2 and 2 × 3. In the case of continuous variable systems, the PPT

criterion was proven by Simon [69] to also be necessary and sufficient for two-mode Gaussian

states, and was extended by Werner and Wolf to 1 × N-mode states [70]. We will examine

Simon’s formulation in the next section. It suffices to say that these contributions made PPT a

very powerful and simple criterion.

Finally, for Hilbert space dimensions other than 2 × 2(3) for DV systems, and than 1 × N-

mode Gaussian states for CV systems, there exist PPT entangled states, i.e. entangled states

whose partial transpose has only positive eigenvalues, whose entanglement is undetectable by

the PPT criterion. This type of entanglement is known as bound entanglement [71]. In Chapter

9, we will show that bound entangled Gaussian states cannot provide with stronger correlations

the steering-type when only Gaussian measurements are considered.

5.2.2.1 Application to Gaussian states

With increasing Hilbert space dimension, any separability criterion can be expected to be more

and more difficult to implement in practice. The PPT criterion itself was seen to be most

effective for the smallest Hilbert space dimensions 2 × 2 and 2 × 3, while failing to detect all

the existing entanglement of higher dimensional states. One would thus expect that in the limit

of infinite dimension, describing CV systems, the PPT criterion would be useless. Contrary

to expectations, Simon proved in Ref. [45] that PPT becomes a necessary and sufficient for

separability for two-mode Gaussian states, and even extended later on to 1 × N-modes by

Werner and Wolf [70]. It seems, therefore, that PPT is more effective in CV than in DV systems.

Central to Simon’s idea was the realization that the partial transpose operation acquires,

in the continuous case, a beautiful geometric interpretation as mirror reflection in the Wigner

phase space,

ρ̂ −→ ρ̂T ⇐⇒ W(q, p) −→ W(q,−p). (5.6)

Any physical Gaussian state ρ̂AB with CM σAB satisfies the bona fide condition (3.27),

σAB + iΩA ⊕ΩB ≥ 0. (5.7)
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If ρ̂AB is separable, then ρ̂TB
AB should be a physical state with CM σ̃AB (obtained from ρ̂TB

AB

by, p̂B → −p̂B) satisfying the corresponding bona fide condition, which can equivalently be

expressed in terms of the original CM σAB as

σAB + i (−ΩA) ⊕ΩB ≥ 0. (5.8)

Ineq. (5.8) is Simon’s separability criterion which is an application of the Peres-Horodecki

PTT criterion in phase space. This condition is satisfied by all separable states, whether multi-

mode or (non-)Gaussian. In the particular case of 1 × N-mode Gaussian states the condition

becomes necessary and sufficient for separability, and therefore detects all the entanglement

of such states. In the more general case of M × N-modes (with both N,M > 1) there exist

Gaussian entangled states that do satisfy (5.8), therefore being bound entangled. For the sake

of completeness, let us mention another important second-order entanglement criterion due to

Dual et al. [72], which was derived independently of the Peres-Horodecki criterion but has

been shown to be necessary and sufficient only for two-mode Gaussian states.

5.2.3 Shchukin and Vogel’s higher order criteria

So far, our discussion on second-order separability criteria for bipartite continuous variables

systems has focused on Simon’s and Duan et al.’s separability criteria, which are of second-

order, as they contain moments of quadratures only up to second order; i.e., 〈q̂n p̂m〉with n+m ≤

2. Second-order criteria are important mainly due to their simple experimental implementation

and their sufficiency for the important class of 1 × N Gaussian states.

However, Gaussian states constitute only a tiny (although, important) fraction of the most

general states living in the Hilbert space, with some of the more exotic ones also being of

great importance for experiments and technological applications. For such cases where the

second-order criteria are useless, higher-order criteria were derived that can be more efficient

in entanglement detection. Shchukin and Vogel [73] developed a method based on moments

of quadratures to systematically derive entanglement criteria of arbitrary order. Their method

forms a hierarchy of criteria, meaning that the next criterion in the hierarchy is always better

than, or equal to, the previous one. Interestingly, the method’s generality is showcased by

the fact that it contains other entanglement criteria, independently derived in the literature, as

special cases; including Simon’s and Duan et al.’s criteria [69, 72]. Let us examine in a bit

more detail the method of Shchukin and Vogel, as it will be our main inspiration in Chapter 8.2

where we will introduce a similar in spirit hierarchy of criteria for steering detection.
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The idea of Shchukin and Vogel is also based on the partial transposition which preserves

the positivity of separable states. Consider an arbitrary (generally, not hermitian) operator

f̂ : HA ⊗HB and from it construct the observable f̂ † f̂ , which is hermitian. It’s straightforward

then to see that the average value of any such observable is non-negative for any physical state

ρ̂AB ≥ 0,

〈 f̂ † f̂ 〉ρAB = tr[ f̂ † f̂ ρ̂AB] =
∑

n

pn‖ f̂ |pn〉AB‖
2
≥ 0, ∀ f̂ , (5.9)

where ρ̂AB|pn〉AB = pn|pn〉AB. Employing the PPT criterion, any separable state ρ̂AB satisfies

tr[ f̂ † f̂ ρ̂TB
AB] ≥ 0, ∀ f̂ , (5.10)

since ρ̂TB
AB ≥ 0. Eq. (5.10) can only be violated by entangled states and thus forms the basis of

the hierarchy. Now, the most general form of an arbitrary operator f̂ is

f̂ =

∞∑
n,m,k,l=0

cnkml â†nâmb̂†kb̂l, (5.11)

where â(†), b̂(†) are annihilation(creation) operators for modes A and B respectively, while

cnmkl = A 〈n| ⊗ B 〈k| f̂ |m〉A ⊗ |l〉B ≡ AB 〈nk| f̂ |ml〉AB. (5.12)

Substituting (5.11) back to (5.10), we get

tr[ f̂ † f̂ ρ̂TB
AB] =

∞∑
n,k,...,s=0

c∗pqrs cnmkl Mpqrs,nmkl ≥ 0, ∀ f̂ , (5.13)

with,

Mpqrs,nmkl = 〈â†qâpâ†nâmb̂†sb̂rb̂†kb̂l〉
ρ

TB
AB

= 〈â†qâpâ†nâmb̂†lb̂kb̂†rb̂s〉ρAB . (5.14)

It’s useful then to consider the criterion (5.13)) in its matrix form,

c ·M · c† ≥ 0, ∀c ∈ C, (5.15)

is equivalent to the hermitian matrix M being positive semi-definite; M ≥ 0. A hermitian

matrix M is known to be positive semi-definite iff all its principal minors are non-negative

[74]. The matrix elements of M are defined as,

Mi j =
〈
â†qâpâ†nâmb̂†lb̂kb̂†rb̂s

〉
, (5.16)
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where i = (n,m, k, l), j = (p, q, r, s) is the ith row and jth column respectively, and we use the

following numbering rule for the multi-indices,

i < j ⇔
{

|i| < | j| or
|i| = | j| and i <′ j,

(5.17)

where we defined |i| = n + m + k + l and i <′ j means that the first non-zero difference

r − k, s − l, p − n, q − m is positive.

Example Let us calculate a fourth-order criterion already derived in [73]. Deleting all lines

and columns of the infinite matrix M except i, j = 1, 5, 12, we get the following principal minor

S which must be non-negative for all separable states,

S =

∣∣∣∣∣∣∣∣∣
M11 M15 M1,12
M51 M55 M5,12

M12,1 M12,5 M12,12

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 〈b̂†〉 〈âb̂†〉
〈b̂〉 〈b̂†b̂〉 〈â b̂†b̂〉
〈â†b̂〉 〈â†b̂†b̂〉 〈â†â b̂†b̂〉

∣∣∣∣∣∣∣∣∣ ≥ 0. (5.18)

Applying the criterion S on the following entangled coherent state,

|ψ〉AB = N (α, β)
(
|α, β〉AB − |−α,−β〉AB

)
, (5.19)

where |α〉A, |β〉B are coherent states, we find,

S = −|α|2|β|4
coth

(
|α|2 + |β|2

)
sinh2

(
|α|2 + |β|2

) < 0, ∀α, β , 0, (5.20)

detecting entanglement in the state for all non-zero amplitudes α, β, when the second order

criterion of Simon fail to detect entanglement for any value of the amplitudes. Finally, Simon’s

second-order criterion is seen to correspond to the following principal minor of M,

ISimon =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 〈â〉 〈â†〉 〈b̂†〉 〈b̂〉
〈â†〉 〈â†â〉 〈â†2〉 〈â† b̂†〉 〈â†b̂〉
〈â〉 〈â2〉 〈ââ†〉 〈â b̂†〉 〈â b̂〉
〈b̂〉 〈â b̂〉 〈â†b̂〉 〈b̂†b̂〉 〈b̂2〉

〈b̂†〉 〈â b̂†〉 〈â†b̂†〉 〈b̂†2〉 〈b̂b̂†〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0, (5.21)

which, for states in standard form (3.67), can be shown to be equivalent to Eq. (5.8),

σAB + i (−ΩA) ⊕ΩB ≥ 0. (5.22)
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5.3 Entanglement quantification

We have now come to one of the most important topics in quantum information, namely that

of entanglement measures. The question that we want to explore is,

Can entanglement be quantified?

It’s not even clear that such a question has a meaning after all. A state can surely be either

entangled or separable, but in what sense may we say that one state is more entangled than the

other? As for an example, consider the following entangled states; the maximally entangled

singlet

|ψ−〉AB =
1
√

2
(|10〉AB − |01〉AB) , (5.23)

and a non-maximally entangled state,

|Ψ〉AB =
√

(1 − ε) |10〉AB +
√
ε |01〉AB, with ε << 1. (5.24)

They are both entangled, for every ε, so why should we consider |Ψ〉AB to be less entangled

than
∣∣∣ψ−〉AB? Intuitively it would make sense to make such a distinction, as for ε −→ 0 the

correlations of the state |Ψ〉AB ≈ |1〉A ⊗ |0〉B are very close to those of a product (or, separable)

state [75]. This is geometric argument shows that the “distance” of an entangled state from

the set of separable states seems to provide a meaningful way to quantify entanglement. Also,

we could consider tasks in quantum information for which entanglement is a resource, with

separable states being useless, and argue that for such tasks the state |Ψ〉AB would be perform

much worse than the singlet, as it’s very close to a separable state.

We gave two simple example of two popular approaches in entanglement quantification:

the axiomatic and the operational approach. The operational approach was initiated by Ben-

nett et al. [76, 77] and it’s based on how efficient an entangled state is for a given quantum

information task of which entanglement is a necessary resource. Examples of such tasks are:

the teleportation of quantum states, device-independent quantum key distribution, quantum

secret sharing, quantum super-dense coding etc. In such tasks, Bell states, like the singlet

(5.23), perform with maximum efficiency and for that reason they are called maximally en-

tangled states. Entangled states like (5.24) or, more generally, entangled mixed states, do not

perform as well due to their weaker correlations. For example, such non-maximally entangled

states cannot perfectly teleport a quantum state, and cannot maximally violate Bell inequalities

giving a reduced communication rate in quantum cryptography.
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The realization that Bell states, like the singlet, provide with maximum performance in

quantum information tasks, is the key ingredient for the operational quantification of entan-

glement in general states. As we have discussed, quantum entanglement cannot be created

by LOCC; the latter can only conserve the entanglement or destroy it. The idea is then to

use LOCC to convert a given bipartite quantum state ρ̂ to a common currency, e.g. a singlet

state that operates best in quantum information tasks. The amount of entanglement present in

ρ̂AB would then be expressed by the number of singlets one can extract from the state. One

can have an implicit ordering in the amount of entanglement two different states ρ̂1 and ρ̂2 may

have, by comparing the number of singlets one can extract from them. Examples of operational

entanglement measures include:

Entanglement of distillation [77] It’s defined as the ratio of the maximum number kmax of

singlets that can be extracted from n → ∞ copies of some bipartite state ρ̂AB via the optimal

LOCC procedure, to the number of copies n,

ED (ρ̂AB) = lim
n→∞

kmax

n
= sup

LOCC
lim
n→∞

k
n
, (5.25)

where supLOCC denotes the maximization over all possible LOCC protocols that can achieve

the desired distillation. The larger the ED (ρ̂AB) the more singlets can be distilled from ρ̂⊗n
AB,

and therefore the more entangled ρ̂AB is considered to be. When ρ̂AB is pure, ED (ρ̂AB) is equal

to the entropy of entanglement defined as the von Neumann entropy S (ρ̂A) of the reduced state

of either the subsystems,

ED (ρ̂AB) = S (ρ̂A) = S (ρ̂B) , (5.26)

where, S (ρ̂) = −tr[ρ̂ log ρ̂]. The distillable entanglement vanishes for bound entangled states.

Entanglement cost [77] It’s defined as the ratio of the least number kmin of singlets required

to form n copies of the given state ρ̂AB by using the optimal LOCC procedure, to the number

of copies n,

EC (ρ̂AB) = lim
n→∞

kmin

n
= inf

LOCC
lim
n→∞

k
n
, (5.27)

where infLOCC denotes the minimization over all possible LOCC protocols. Similarly, the

larger the EC (ρ̂AB) the more singlets are required to form ρ̂⊗n
AB, hence the more entangled ρ̂AB is

considered to be. This entanglement measure is also important in an operational sense, but, as

the entanglement of distillation, it’s very difficult to calculate due to the required optimization
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over all LOCC protocols. In the case of pure states the equality between the two entanglement

measures can be shown, ED (ρ̂AB) = EC (ρ̂AB) = S (ρ̂A).

This is by no means an exhaustive list of the operational entanglement measures that can be

found in the literature, and the reader is referred to the comprehensive review of Ref. [78] on

the entanglement measures.

The axiomatic approach in entanglement quantification was initiated by Vedral et al. [75],

and the idea is that any function of the quantum state that satisfies some basic intuitive postu-

lates could be regarded as an entanglement measure. The most important of the postulates are:

i) Monotonicity under LOCC. As entanglement cannot be deterministically created by local

operations and communication, consequently no entanglement measure should increase by

LOCC. If we denote as Λ the map of an LOCC operation on the state, any entanglement mea-

sure E[ρ̂AB] should satisfy

E
[
Λ (ρ̂AB)

]
≤ E

[
ρ̂AB

]
. (5.28)

ii) Vanishing on separable states. By definition, separable states have no entanglement, hence

any entanglement measure should equal a minimum constant C for all separable states,

E
[
ρ̂sep

]
= C, ∀ρ̂sep, (5.29)

where it’s natural to set C = 0.

A well-known entanglement measure belonging in this category is the relative entropy of en-

tanglement [54], which utilizes a geometric distance in Hilbert space to measure the ‘distance’

of the state of interest to the set of separable states.

These two are the most basic postulates that all entanglement measures should satisfy.

Additional postulates may be introduced, and for a more detailed overview see [54, 78]. Next,

we will briefly analyse two entanglement measures, the negativity and the Gaussian Rényi-2

entropy, that will be of use to use in Chapter 9.

5.3.1 Negativity

The entanglement cost and the entanglement of distillation, that we previously discussed,

though very important, are very difficult to be calculated analytically, due to the minimiza-

tion/maximization condition over all LOCC operations. So, practically ED and EF as given by

(5.25) and (5.27), respectively, are just formal expressions. The importance of having practical

and computable entanglement measures led Vidal and Werner et al. to introduce the negativity
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measure [79][80] (although, historically, this quantity was first used by Życzkowski et al. [81],

and proven to be an entanglement monotone for the first time by Kim et al. [79]), which falls

in the category of the axiomatic entanglement measures.

The negativity measure is based on the Peres-Horodecki PPT criterion; if a bipartite state

ρ̂ is entangled then the partially transposed state ρ̂TB may have negative eigenvalues, which we

denote as {λi}. The negativity is then defined as,

N (ρ) =

∣∣∣∣∣∣∣∑i

λi

∣∣∣∣∣∣∣ , with λi < 0. (5.30)

This expression is intuitive as the more entangled the state is, the further away it should be

from a separable state (whose λi = 0, ∀i), and therefore the larger the |λi| and, hence, the N (ρ),

would be. This measure is practical as the eigenvalues λi are easily calculable. Negativity can

be shown to satisfy various desirable properties:

Properties of Negativity

• N (ρ) is an entanglement monotone, i.e. it does not increase under LOCC,

N
(
Λ

[
ρ
])
≤ N (ρ) , (5.31)

where Λ[·] denotes an LOCC operation.

• N (ρ) vanishes for all separable states; N
(
ρsep

)
= 0, ∀ρsep.

• N (ρ) provides an explicit lower bound on how close ρ can be taken, by means of LOCC,

to the maximally entangled state
∣∣∣ϕ+〉 in terms of the singlet geometric distance.

• N (ρ) provides an upper bound to teleportation capacity, i.e. the ability of ρ to faithfully

teleport a quantum state.

• N (ρ) provides an upper bound to the entanglement of distillation ED, i.e.

ED (ρ) ≤ EN (ρ) , (5.32)

where the quantity

EN (ρ) ≡ log (1 + 2N (ρ)) , (5.33)

is known as logarithmic negativity.
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We see, that, negativity satisfies all the basic postulates that the axiomatic approach of entan-

glement measures imposes [75]. Moreover, it also has an operational meaning as it bounds the

teleportation capacity and distillation rate. It’s worth noting however that the negativity can

vanish on some entangled states, namely bound entangled states.

5.3.2 Gaussian Renyi-2 entanglement

A particularly useful entanglement measure for CV states is the Gaussian Rényi-2 entangle-

ment entropy [82]. This measure is based on the concept of Rényi-α entropies, as its name

signifies, which are defined as

Sα(ρ̂) = (1 − α)−1 ln tr
(
ρ̂α

)
, (5.34)

where 0 < α < ∞. The Rényi−α entropies are a family of additive entropies, whose interpreta-

tion is linked to thermodynamical quantities, and in particular related to derivatives of the free

energy w.r.t. temperature [83]. Also, Rényi−α entropies have found applications on diverse

topics such as the study of channel capacities [84, 85], work value of information [86, 87] and

the entanglement spectra in many-body systems [88]. Any of the Rényi−α entropies (5.34)

when applied on bipartite pure states ρ̂AB, and in particular on the reduced state ρ̂A of one of

the subsystems (say, A), can be shown to be entanglement monotones, for any α. As a special

case, in the limit α → 1 Eq. (5.34) reduces to the von-Neumann entropy, which is indeed an

entanglement monotone for bipartite pure states.

The entanglement measure we will consider here is based on the Rényi-2 entropy, for α = 2

in Eq. (5.34),

S2(ρ̂) = − ln tr(ρ̂2), (5.35)

evaluated as said on the reduced state of one of the subsystems, proven to be an entanglement

monotone for pure states. Considering arbitrary n-mode Gaussian states with CM σ, by using

Eq. (3.30) we can express the Rényi-2 entropy in terms of the state’s CM,

S2(ρ̂) =
1
2

ln(detσ), (5.36)

ranging from zero, for pure states (detσ = 1) and growing unboundedly with increasing mixed-

ness of the state.
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The Gaussian Rényi-2 entanglement monotone is then defined over all states, pure or

mixed, by extending the Rényi-2 entropy via a Gaussian convex-roof procedure,

E(ρ̂AB) = inf
{pi,|ψi〉}

∑
i

pi S2 (trB|ψi〉AB〈ψi|) , (5.37)

where the minimization is over all Gaussian decompositions {pi, |ψi〉AB} of the state ρ̂AB; i.e.,

ρ̂AB =
∑

i pi|ψi〉AB〈ψi|. Intuitively, the involved optimization, dubbed Gaussian convex-roof,

searches for all those possible ensembles of Gaussian states that can prepare our desired state

ρ̂AB with the least possible entanglement.

In Ref. [82] this entanglement measure was proven to satisfy a monogamy inequality for

all n-mode Gaussian states ρ̂A1A2...An ,

E(ρ̂A1:A2...An) −
n∑

j=2

E(ρ̂A1:A j) ≥ 0, (5.38)

where each A j comprises of a single mode only, which poses fundamental restrictions on the

distribution of entanglement among the modes.
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6

Quantum teleportation

Quantum teleportation [7, 8, 10] is a remarkable application of quantum entanglement and a

cornerstone of quantum information, simple enough to be taught in introductory-level quantum

information courses, yet important enough to maintain a position at the forefront of contem-

porary research. In practical terms, teleportation is an indispensable tool for the transmission

of quantum information. This stands as one of the pillars of a networked system, along with

storage and processing. Schemes such as quantum repeaters [89] - pivotal for quantum commu-

nication over large distances - quantum gate teleportation [90] and measurement-based com-

puting [91], all derive from the basic scheme of quantum teleportation. In the past two decades

there has been significant experimental progress in the field of teleportation, on a variety of

different systems [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,

109, 110, 111]. An important class of these are continuous variable systems, which range from

atomic ensembles to optical modes and beyond [112, 113].

6.1 Teleportation tutorial

In this section we will present the task of quantum teleportation in its archetypical form uti-

lizing qubit systems [10] . Imagine two spatially separated parties, Alice and Bob. Alice is

given an unknown quantum state |ψ〉 (e.g., could be the output of her quantum computer) and

she wants to send it to Bob. What are their options?

Option (A): Physical transportation Why not do the obvious? Alice physically sends the

quantum state to Bob through a quantum channel. This option would be viable only if the

73



6. QUANTUM TELEPORTATION

physical system described by |ψ〉 is a photon due to its fast transmission. The drawback of

this approach comes under the name of decoherence. An actual physical transportation of the

quantum state through a lossy quantum channel, will unavoidably corrupt it due to the added

noise. As a result, Bob will receive a noisy state. As the losses in fibres increase exponentially

with the distance of the parties, we can safely conclude that this is not a viable option.

Option (B): Measure & Prepare Alice measures her single copy of |ψ〉 to get some infor-

mation about which state it is, and she communicates the result to Bob. Bob then attempts to

prepare Alice’s unknown state based on the knowledge of her measurement. Such schemes

are known as Measure & Prepare schemes and do not utilize any shared entanglement. The

basic problem with this approach is that Alice has just a single copy of the state, therefore

state tomography is not possible and the exact form of |ψ〉 cannot be known. Moreover, if |ψ〉

was a completely random state from the Hilbert space then a single measurement can give no

information and this method would be useless. However, in most cases the input state is not

completely random but belongs in an “alphabet”, i.e. a known set of states {|ψi〉, pi} with |ψi〉

being given randomly to Alice with probability pi. In such more restrictive scenarios, M&P

strategies can partially reconstruct the unknown state, while they perform better the smaller the

alphabet. In the next section, we will examine the performance of such schemes in more detail.

For now it suffices to say that option (B) is in general inferior to the option we will discuss

next.

Option (C): Teleport it! Let us now examine a more exotic and efficient way to send quantum

states to distant parties which utilizes the magical property of entanglement. Before proceeding

with the actual protocol, let us make some necessary remarks. A vital assumption of any tele-

portation scheme is that Alice and Bob, before attempting to implement the protocol, already

share a known entangled pair of qubits described by the maximally entangled state,∣∣∣φ+〉
AB =

1
√

2
(|00〉AB + |11〉AB) . (6.1)

This entangled pair has nothing to do with the unknown state Alice wants to send to Bob; it

could have been distributed to Alice and Bob in the past (perhaps, years ago) and was stored

in their quantum memories (assuming such quantum memories were available). However, one

may argue that the physical distribution of these entangled states to Alice and Bob are subject to

decoherence, just like Option (A). What’s the difference then? The difference is that there exist
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Figure 6.1: The setup for quantum teleportation is depicted. Alice and Bob, separated by an -in
principle- arbitrarily large distance, share an entangled pair of qubits A and B (e.g. photons). Alice
wants to teleport the unknown quantum state of her qubit C, to Bob’s qubit B, by taking advantage
of the shared entanglement.

schemes, known as quantum repeaters [89], that in principle can allow for known maximally

entangled states to travel over long distances maintaining an arbitrarily high fidelity by utilizing

error correction in intermediate nodes during their travel. On the other hand, Option (A) is not

feasible, since there exist no similar scheme able to faithfully deliver an arbitrary unknown

state over long distances. Let us now proceed with the teleportation protocol [10]:

Alice wants to send to Bob the unknown qubit state

|ψ〉C = a |0〉 + b |1〉 , (6.2)

where the amplitudes a, b are unknown. To accomplish that, she will utilize the shared entan-

glement with Bob as a resource to perform the teleportation protocol. The situation is depicted

in Fig. 6.1.

6.1.1 Ideal qubit quantum teleportation

Let us examine the teleportation protocol for qubits in more detail:

Step 1 - Initial condition The initial joint quantum state of the three qubits involved is

|ψ〉C ⊗
∣∣∣ϕ+〉

AB =
(
a|0〉C + b|1〉C

)
⊗

1
√

2
(|00〉AB + |11〉AB)

=
1
√

2

(
a|000〉CAB + a|011〉CAB + b|100〉CAB + b|111〉CAB

)
.

(6.3)
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Step 2 - Joint measurement Alice makes a joint measurement on her qubits C and A, in the

so-called Bell basis comprised of the following states,

∣∣∣ψ±〉CA =
1
√

2

(
|01〉CA ± |10〉CA

)
(6.4)∣∣∣ϕ±〉CA =

1
√

2

(
|00〉CA ± |11〉CA

)
. (6.5)

In order to show how Alice’s Bell measurement will affect the joint state (6.3), let us re-express

the joint quantum state of qubits ABC w.r.t. that basis,

|ψ〉C ⊗
∣∣∣ϕ+〉

AB =
1
2

∣∣∣ϕ+〉
CA ⊗ |ψ〉B +

1
2

∣∣∣ψ+〉
CA ⊗

(
σ̂x|ψ〉B

)
+

1
2

∣∣∣ψ−〉CA ⊗
(
−iσ̂y|ψ〉B

)
+

1
2

∣∣∣ϕ−〉CA ⊗
(
σ̂z|ψ〉B

)
.

(6.6)

When Alice performs the measurement on the basis
{∣∣∣ϕ±〉CA,

∣∣∣ψ±〉CA

}
, she will acquire one of

four possible outcomes. As can be easily seen from (6.5), if Alice’s result is
∣∣∣ϕ+〉

CA, then Bob’s

qubit will be in the exact state |ψ〉B = a|0〉B + b|1〉B Alice wanted to teleport! For the rest of the

results,
∣∣∣ϕ−〉CA,

∣∣∣ψ±〉CA Bob’s state is almost what Alice wanted to teleport.

Step 3 - Classical communication In order for Bob to acquire the exact state, Alice classi-

calyy communicate to him the result of her measurement: ϕ+, ϕ−, ψ−, or ψ+.

Step 4 - Conditional operation Bob performs one of the following operations on his qubit

B conditioned on Alice’s measurement outcome,

ϕ+ : I︸︷︷︸ ·|ψ〉B = |ψ〉B (6.7)

ψ+ : σ̂x︸︷︷︸ · (σ̂x|ψ〉B
)

= |ψ〉B (6.8)

ψ− : σ̂y︸︷︷︸ · (σ̂y|ψ〉B
)

= |ψ〉B (6.9)

ϕ− : σ̂z︸︷︷︸ · (σ̂z|ψ〉B
)

= |ψ〉B. (6.10)

After Bob applying the required local operation the exact unknown state |ψ〉 is acquired. Tele-

portation successful!
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6.1.2 Ideal CV quantum teleportation

The first proposal for a CV quantum teleportation was due to Vaidman [7], who considered

the ideal case in which Alice and Bob share a CV maximally entangled state, with perfect

correlations, to teleport an arbitrary single-mode CV state. Notice that when we deal with CV

systems maximal entanglement is physically unattainable, in sharp contrast to DV systems,

as it requires infinite energy. However, considering maximal entanglement as a limiting case

that can be asymptotically attained by a finitely entangled state, Vaidman’s proposal is very

useful in providing us intuition on how CV teleportation works. The results of Vaidman were

generalized later on to finite entangled states by Braunstein and Kimble [8].

It is most convenient to demonstrate Vaidman’s CV teleportation protocol in the Heisenberg

picture:

Step 1 - Initial condition Alice and Bob initially share two modes A and B of a maximally

entangled EPR state, which can be attained by a two-mode squeezed state Eq. (3.53) in the

limit of infinite squeezing, r → ∞. The quadratures of the two modes are correlated such that

q̂A − q̂B = p̂A + p̂B = 0. (6.11)

Alice’s goal is to teleport to Bob an unknown input state described by an input mode with

quadratures q̂in, p̂in

Step 2 - Joint measurement Alice then performs a joint measurement on the input mode and

her entangled mode A. In particular, this joint measurement will actually be a so-called Bell

measurement, comprised by subsequent operations:

(2a) Beam splitter mixing Alice mixes the two modes with a balanced 50 : 50 beam

splitter, obtaining output modes “ + ” and “ − ” with corresponding quadratures,

q̂± = (q̂A ± q̂in)/
√

2 , p̂± = ( p̂A ± p̂in)/
√

2 . (6.12)

(2b) Homodyne detection Alice makes a homodyne measurement (see Sec. 3.3.5, for

details) the output quadratures q̂− and p̂+, which is the mathematical equivalent of applying the
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projectors |q〉−〈q| and |p〉+〈p| respectively. Denoting her outcomes as (q−, p+), her measure-

ment causes q̂− → q− and p̂+ → p+, therefore from Eq. (6.12) the quadratures of her mode A

can be expressed as,

q̂A = q̂in +
√

2 q− , p̂A = −p̂in +
√

2 p+. (6.13)

Due to the perfect correlations that Bob shares with Alice, as seen in Eq. (6.11), Bob’s quadra-

tures are instantaneously projected as

q̂B = q̂in +
√

2 q− , p̂B = p̂in −
√

2 p+. (6.14)

Step 3 - Classical communication Up to this point, Bob is correlated to Alice’s unknown

input state, as seen in Eq. (6.14). However, he cannot retrieve Alice’s state because of the

unknown amplitudes (q−, p+) that are also involved in the correlations. Alice, therefore, clas-

sically communicates to Bob this pair of numbers (q−, p+).

Step 4 - Conditional displacement Bob uses the classical information (q−, p+) to perform

a conditional displacement on his own mode B, which is the final step of the teleportation

process,

q̂B −→ q̂′B = q̂B −
√

2 q− = q̂in ,

p̂B −→ p̂′B = p̂B +
√

2 p+ = p̂in.
(6.15)

Teleportation successful! As is seen in Eq. (6.15), Bob’s final quadratures are equal to the

ones of Alice’s unknown input mode. This is equivalent as saying, that Bob’s final state ρ̂B is

the same as the input unknown state of Alice ρ̂in.

6.2 Teleportation of Gaussian states

Now that we got familiar with the archetypical ideal protocols for quantum teleportation both

for DV and CV systems, let us move on to the teleportation of CV states with finite entan-

glement. In particular, in this section we examine and compare two fundamentally different

teleportation schemes for CV states; the well-known continuous variable scheme of Vaidman,

Braunstein and Kimble (VBK), and a recently proposed hybrid scheme by Andersen and Ralph

(AR). We analyze the teleportation of ensembles of arbitrary pure single-mode Gaussian states

using these schemes and see how they fare against the optimal measure-and-prepare strategies

– the benchmarks.
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One product of the focus on quantum teleportation has been the development of teleporta-

tion benchmarks [114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124]. Put crudely, these

benchmarks determine how good a teleportation-like procedure must be such that it could have

been performed only with a shared entangled resource. Due to the relative difficulty of creating

and maintaining long distance entanglement, these benchmarks are of practical interest as well

as theoretical. For Gaussian states, which compose some of our most practical and popular con-

tinuous variable resources (as well as including the set of all ‘classical’ optical states [120]),

general benchmarks for quantum teleportation have only very recently been derived [117].

To clarify further, it is necessary to first decompose a quantum teleportation system into its

essential components and procedures as in Fig. 6.2. We initialize the system by providing the

state to be teleported (input) and a “resource state”. Subsequently, Alice performs a joint mea-

surement on the input and her part of the resource state and communicates the result to Bob,

who performs a local operation on his state conditioned upon this measurement. The resource

state, or set of resource states, which carries the entanglement shared between the two systems

is what we consider to be the quantum part of the protocol. The classical communication con-

ducted after Alice’s measurement is by comparison very cheap, and thus we consider classical

resources to be free, as is customary in quantum information resource theory.

To measure how ‘good’ a teleportation is, for input and output states |ψ〉in and ρ̂out respec-

tively, we use the fidelity

F = in 〈ψ| ρ̂out|ψ〉in, (6.16)

for which F = 1 indicates a perfect teleportation [125, 126]. A benchmark determines how

large the average fidelity over a set of input states needs to be before it can be said with certainty

that entanglement was necessary for the protocol used; that is, benchmarks set the limit on what

a strategy can achieve using only local operations and classical communication. In a sense, we

might say that a quantum teleportation procedure is not truly quantum unless it surpasses the

optimal classical strategy in this regard: given some results from an unknown procedure, we

can only definitively say that some entanglement was used if they exceed the benchmark.

Subsequently we employ benchmarks recently derived by Chiribella and Adesso [117] in

order to assess different teleportation schemes for general sets of single-mode Gaussian state

inputs. High-fidelity teleportation of Gaussian states is one essential ingredient for future real-

izations of quantum communication networks interfacing light and matter [127, 128, 129], yet

no effective scheme has been devised so far (to the best of our knowledge) to teleport effectively

ensembles of squeezed states with limited resources.
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We analyze the original single-mode Gaussian-state teleportation scheme, derived by Vaid-

man [7], and Braunstein and Kimble [8] (VBK), in which a two-mode-squeezed vacuum state

is used as the resource, and contrast this with a scheme recently introduced by Andersen and

Ralph [9] (AR), where the quantum resource consists of N two-qubit Bell states.

We find that the VBK teleportation is actually inferior to the AR teleportation within a

particular realistic and important parameter range. This persists even when improvements to

the VBK scheme are considered, such as gain tuning [130] and the possible introduction of

sources of non-Gaussianity into the scheme. For a small amount of ‘resources’ (to be quanti-

fied precisely in the following), the AR teleportation beats the VBK scheme in all considered

variations, although in the presence of larger amounts of resources the advantage of the AR

scheme fades away. Notably, the VBK scheme requires in excess of 10 dB of squeezing to

exceed the benchmarks for teleportation of squeezed vacuum states without gain-tuning [117].

This value is teetering on the edge of the highest squeezing ever achieved in current optical

experiments [131, 132], rendering untuned VBK teleportation incapable of beating the bench-

marks even with state-of-the-art technology. Our analysis indicates that AR teleportation may

provide a more viable candidate for this purpose. There is, however, an important catch. A

crucial difference between the two protocols is that the AR scheme is probabilistic, while the

original VBK protocol is deterministic, or ‘unconditional’ [94]. We dedicate ample discussion

in the subsequent sections to address this point fairly.

6.3 Continuous variable quantum teleportation schemes

6.3.1 Vaidman-Braunstein-Kimble teleportation protocol

As before, we are considering two distant parties, Alice and Bob, who share a two-mode con-

tinuous variable entangled state ρ̂AB (resource) of modes A and B respectively, where Alice

wants to teleport an unknown quantum state ρ̂in to Bob. The protocol Alice is going to use is a

refined version of Vaidman’s protocol (as described in Sec. 6.1.2) by Braunstein and Kimble,

depicted in Fig. 6.3, which utilizes finitely entangled shared states ρ̂AB and therefore manages

only an approximate teleportation. The VBK protocol utilizes the same four steps described in

Sec. 6.1.2, with a small modification in Step 4. In particular, for Vaidman’s ideal protocol it’s

optimal for Bob to make a conditional displacement as in Eq. (6.15). However, for finite shared

correlations, this displacement is no longer optimal and the refined VBK protocol allows for a
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Figure 6.2: A conceptual diagram for a general teleportation scheme. The leftmost (blue) ellipse
indicates the input state and the double cone (red) denotes the resource. The results of (1) a joint
measurement, performed by Alice, are (2) classically communicated (CC) to Bob, who performs
(3) a local operation conditioned on the measurement result of Alice, in order to recreate the input
state using his part of the resource.

so-called gain factor g [130] in Bob’s conditional displacements,

q̂B −→ q̂′B = q̂B − g
√

2 q−,

p̂B −→ p̂′B = p̂B + g
√

2 p+.
(6.17)

that is chosen suitably, depending on the shared state ρ̂AB in order to optimize the teleportation

fidelity. As suspected, in the limit of infinite entanglement the optimal gain factor reduces to

g→ 1, however the optimal value is g , 1 in general.

Bob’s output ρ̂out after the completion of the teleportation process is directly related to

the entangled state ρ̂AB and the input state ρ̂in. This relation has a simple expression in the

characteristic function representation [133, 134],

χout (α) = Tr
[
D̂out (−α) ρ̂out

]
= χin (gα) χAB

(
gα∗, α

)
,

(6.18)

where g is the gain factor of the protocol [130], D̂k (α) = exp[αâ†k − α
∗âk] is the displacement

operator acting on the mode k with annihilation operator âk, and

χin (α) = Tr
[
D̂in (−α) ρ̂in

]
, (6.19)

χAB (α1, α2) = Tr
[
D̂A (−α1) D̂B (−α2) ρ̂AB

]
, (6.20)
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Figure 6.3: A schematic for the VBK teleportation scheme [7, 8]. The shared resource state is a
two-mode entangled state.

are the characteristic functions of the input state and the two-mode entangled states respec-

tively. The fidelity F [114] can be computed by the above formalism with a formula, which for

pure input states takes the form

FVBK = in 〈ψ| ρ̂out|ψ〉in

=
1
π

∫
d2α χin (α) χout (−α).

(6.21)

By using Eq. (6.18) we can express the fidelity solely w.r.t. the characteristic functions of the

input and resource states,

FVBK =
1
π

∫
d2α χin (α) χin (−gα) χAB

(
−gα∗,−α

)
. (6.22)

For resource states ρ̂AB with finite entanglement, one has F < 1 strictly. Thus, a major contrast

of this protocol with teleportation of finite-dimensional systems is that, even in principle, a

perfect fidelity cannot be achieved. Even worse, in practice, large amounts of entanglement

cannot be achieved. In an attempt to overcome this difficulty, a new teleportation scheme has

been recently proposed, which we will examine next.

6.3.2 Andersen-Ralph teleportation protocol

The idea of the Andersen and Ralph (AR) scheme [9], illustrated in Fig. 6.4, is to remove the

need for a single resource state with large entanglement, replacing it by multiple ones with

lesser entanglement. This is done by splitting the input state using an N-splitter network to
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create N identical modes (preferably with a vanishing probability of having more than one

mean photon per mode). In the coherent state basis this global beam-splitter transformation of

the input state takes the following form,∫
d2α 〈α | ψ〉in |α〉 →

∫
d2α 〈α | ψ〉in

∣∣∣∣∣∣ α
√

N

〉⊗N

, (6.23)

The N split inputs are then truncated into states of the form c0|0〉 + c1|1〉 and can be separately

teleported using N maximally entangled two-qubit Bell states:

|φ〉AB =
1
√

2
(|10〉AB + |01〉AB) , (6.24)

where |0〉 and |1〉 are the vacuum and one-photon states respectively. At the output, the N

teleported modes are recombined in a similar beam-splitter network to produce the final output

multiphoton state, which takes the form [9]

|Ψ〉out =
1√

Psuc(|ψin〉)

N∑
k=0

〈k | ψ〉in

(
N
k

)
k!
Nk |k〉out, (6.25)

where the input-state dependent normalization constant Psuc(|ψin〉) is defined as

Psuc(|ψin〉) =

N∑
k=0

∣∣∣〈k | ψ〉in∣∣∣2 (
N
k

)2 k!2

N2k . (6.26)

The quality of the teleportation process will be quantified by the fidelity, which is found to be

FAR =
∣∣∣in〈ψ | Ψ〉out

∣∣∣2 =
1

Psuc(|ψin〉)

∣∣∣∣∣∣∣
N∑

k=0

(
N
k

)
k!
Nk

∣∣∣〈k | ψ〉in∣∣∣2
∣∣∣∣∣∣∣
2

. (6.27)

In principle, this protocol allows large amounts of shared entanglement to be exploited by

dividing it amongst the N single-photon teleporters, removing the need for large two-mode

squeezing as in the VBK protocol. However, the protocol is intrinsically probabilistic, in that

occasionally no output will be registered, for two reasons. The first is the truncation procedure:

if large photon-number terms exist with significant probability in the state |ψ〉in then project-

ing onto the {|0〉〈0|, |1〉〈1|} sector of the Fock space may have only a small chance of success.

Secondly, to recombine the N teleported modes, we demand all the photons to exit only one

port, i.e. we wish to measure |0〉 in each of the detectors of Fig. 6.4, while in any other case

the protocol fails. The overall probability of success of the AR scheme is none other than the

aforementioned normalization factor Psuc(|ψin〉), Eq. (6.26). Finally, notice that probabilistic

teleportation is acceptable for tasks such as entanglement distillation and quantum cryptog-

raphy, the situation is clearly different for quantum communication where the input quantum

information must be fully preserved.
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Figure 6.4: A schematic for the AR teleportation scheme [9]. The shared resources are N two-qubit
Bell states. Each teleporter is a typical qubit teleporter as originally introduced in [10]. The dark
solid rectangles at the (bottom-left and top-right) corners indicate mirrors, and the other striped
ones indicate beam splitters.

6.3.3 Teleportation benchmarks

Benchmarks provide a fidelity threshold F̄c, corresponding to the maximum average fidelity

that can be achieved by classical measure and prepare schemes, without the two parties sharing

any entangled resources, see e.g. [114]. We consider in general probabilistic measure and

prepare strategies, according to which we restrict our output to when we have a successful

measurement and entirely discard and ignore the outputs for when we do not. Expressing this

mathematically, we have [117, 135]

F̄c =
∑
x∈X

∑
y∈Ysuc

p(x|suc)
〈ψx|Π̂y|ψx〉∑

y′∈Ysuc〈ψx|Π̂y′ |ψx〉
〈ψx|ρ̂y|ψx〉 (6.28)

Here, our measurement consists of the positive-operator-valued-measure elements {Π̂y} and we

discard all output results when y < Ysuc where Ysuc constitutes the set of what we consider to

be favourable outcomes. Additionally, p(x|suc) denotes the probability that, given a successful

outcome, the input state was |ψx〉 and finally, the term 〈ψx|ρ̂y|ψx〉 represents the corresponding

fidelity where we prepare the state ρ̂y conditioned on an output y.

To derive benchmarks, it is necessary to define a prior probability distribution (henceforth

prior), from which the input states to be teleported are drawn. This is also a realistic require-

ment (rather than always choosing a flat prior) since in a laboratory setting, constraints imposed

by the apparatus, such as on the energy of producible states, will automatically impose a some-

how nontrivial prior.
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Estimating the best classical strategy is a hard problem, and only partial results were known

for specific classes of input states (e.g. coherent states [120]). The general benchmark for

teleporting arbitrary pure single-mode Gaussian states was only recently derived by Chiribella

and Adesso [117]; the authors calculated the classical fidelity threshold for two classes of input

single-mode states, namely undisplaced squeezed states, and general (displaced squeezed) pure

Gaussian states.

6.3.3.1 Benchmark for arbitrary squeezed vacuum states

We consider an input ensemble containing squeezed states, introduced in Sec. 3.3.2.3,

|ξ〉 = Ŝ (ξ) |0〉 , (6.29)

where Ŝ (ξ) = exp[− ξ2 â†2 +
ξ∗

2 â2] is the single-mode squeezing operator and ξ = s eiϕ is an

arbitrary complex squeezing parameter. A state with complex squeezing ξ is drawn from the

input ensemble according to the prior

pS
β (s, ϕ) =

1
2π

β sinh s

(cosh s)β+1 , (6.30)

where β−1 adjusts the width of the squeezing distribution, while the phase ϕ is uniformly dis-

tributed, yielding the 1
2π prefactor. For a given β, the classical fidelity threshold is found to be,

F̄S
c (β) =

1 + β

2 + β
. (6.31)

We see that even when Alice is completely ignorant about the squeezing of the state drawn,

i.e. when β → 0, the fidelity achieved without any entanglement is 1
2 [117]. This is analogous

to the benchmark for non-squeezed, coherent input states with totally unknown displacement

[120].

6.3.3.2 Benchmark for general displaced squeezed Gaussian states

A general pure, single-mode Gaussian state can be represented as a displaced squeezed state,

as introduced in Sec. 3.3.2.4,

|α, ξ〉 = D̂ (α) Ŝ (ξ) |0〉 , (6.32)
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where D̂ (α) is the displacement operator and Ŝ (ξ) the squeezing operator defined above. A

state, with displacement amplitude α and complex squeezing ξ, is drawn from the input ensem-

ble according to the probability distribution,

pG
λ,β (α, s, ϕ) =

λβ

2π2

sinh s

(cosh s)β+2 e−λ|α|
2+λRe(e−iϕα2) tanh s, (6.33)

where β−1, λ−1 adjust the widths of the squeezing and displacement distributions, respectively.

Note that this distribution correctly reproduces the probability distribution (6.30) for squeezed-

only states,
∫

d2α pG
λ,β

(α, s, ϕ) = pS
β

(s, ϕ) . For given β, λ, the classical fidelity threshold for

this ensemble is found to be,

F̄G
c (λ, β) =

(
1 + λ

2 + λ

) (
1 + β

2 + β

)
. (6.34)

When Alice is completely ignorant of both the displacement and the squeezing of the state

drawn, i.e. λ→ 0 and β→ 0, the best achievable fidelity without use of any entanglement is 1
4

[117].

6.4 Comparison of the teleportation protocols: Quantifying re-
sources

A vital topic to tackle for the understanding of this chapter, and to facilitate fair comparison

of teleportation schemes in general, is how to quantify resources. For a quantum teleportation

scheme, it is customary to consider the resource to be the entangled state shared. We have

then some freedom on what property of the resource state to choose for quantification and

comparison. For our purposes, we choose two quantifiers as resources: the mean energy and the

entanglement degree of the shared entangled state, and we perform independent comparisons

of different schemes for given values of each.

Henceforth, entanglement is synonymous with entropy of entanglement, defined for a pure

resource state ρ̂AB = |φ〉AB〈φ| as the von Neumann entropy,

S (ρ̂A) = −Tr
[
ρ̂Alog2ρ̂A

]
, (6.35)

of the reduced state ρ̂A = Tr(ρ̂AB). Additionally, energy is defined by the total mean photon

number in the modes A and B,

Eφ =
〈
â†AâA

〉
+

〈
â†BâB

〉
, (6.36)
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where âA,B refers to the bosonic annihilation operator for mode A, B respectively.

These quantities are fairly straightforward to employ for comparing deterministic telepor-

tation protocols; however, it is not immediately obvious how to compare probabilistic telepor-

tations with differing success probabilities. In practice, furthermore, the resources truly utilized

in any teleportation experiment are much more complicated than just these two quantities: ev-

erything from the energy used to power the equipment, to the manpower required to build it can

be considered a resource if we wish to be omnicomprehensive in our definitions. While we cer-

tainly shall not explicitly consider these factors, they do implicitly impact in a very significant

way to how we compare probabilistic teleportation schemes.

To this effect, we consider two possible interpretations for how we consider resources. The

first interpretation counts the average resources required to achieve the teleportation of a state:

we refer to this as the naive picture, since it only counts the units of energy or entanglement,

with no other weighting. For example, a two-arm AR scheme with a 50% probability of success

would require 2 runs of 2 ebits and thus use 4 ebits of entanglement per successful teleportation

on average. However, this interpretation is not suitable for practical comparisons: it builds a

false equivalence between, for example, one usage of a 4-arm AR interferometer and two

usages of a 2-arm interferometer. In practice, a 4-arm interferometer would be comparatively

much more costly to assemble. Similarly, 4 ebits in the VBK scheme correspond to 13.7 dB

of entanglement, and the current experimental limit is about 10 dB [131, 132], whereas 2 ebits

correspond to a value of 7.7 dB, which is fairly achievable; in this sense, two uses of a 2 ebit

scheme are not comparable to one use of a 4 ebit scheme, in general, due primarily to the

technological limitations of creating the extra entanglement.

We therefore adopt a pragmatic picture, whereby we attempt to account for the realistic

limitations on teleportation schemes. To do this we first assume that producing the input states

for teleportation is effectively free. As such, nothing important is lost on a failed teleportation

attempt: this assumption is consistent with the formulation of the benchmarks, for which we

freely discard states upon unsuccessful measurement outcomes. Indeed, even for deterministic

schemes, thousands of (normally unaccounted for) independent runs are in practice repeated

in the lab for a given input state, in order to perform state tomography on the output for ex-

perimental determination of the teleportation fidelity. In essence, building a teleportation setup

is costly (in terms of acquiring a certain entanglement source, for instance), while running it

repeatedly is assumed to be cheap in comparison. Furthermore, as we have been assuming

all along, the classical communication required for teleportation is so cheap in comparison to
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entanglement that it can be neglected in our quantitative comparison. For all of the above, in

the pragmatic approach we choose to ultimately ignore the probability of success for a scheme

(or equivalently the number of runs required to achieve a certain fidelity), and merely com-

pare the number of ebits or units of energy (e.g. photons, phonons) utilized in individual runs,

whether successful or not. While a fully objective comparison of different schemes is perhaps

not possible in principle, we believe this approach is fair and sufficient.

With this point of view in mind, it can be shown [135] that a general (possibly probabilistic)

quantum teleportation protocol yields an average fidelity over a certain input ensemble given

by the formula

F̄q =
∑
x∈X

∑
y∈Ysuc

p(x|suc)
〈Ψx,r |Π̂y|Ψx,r〉∑

y′∈Ysuc〈Ψx,r |Π̂y′ |Ψx,r〉
〈ψx|ρ̂y|ψx〉. (6.37)

Note how this only differs from the equation for the classical benchmark (6.28) in that, in the

quantum case, we do not consider a measurement directly upon the input state, but rather upon

the joint state |Ψx,r〉 = |ψx〉 ⊗ |φr〉, where |φr〉 ≡ |φ〉AB refers to the shared resource state.

To summarize, then, we simply define our resources by the value of entanglement (in ebits)

or energy (in units) of |φ〉AB irrespective of any other factor.

6.4.1 Resources for the AR scheme

In the case of the AR scheme, the natural choice for the resource states is given by the max-

imally entangled two-photon Bell states, e.g. |φ〉AB = 1√
2

(|10〉AB + |01〉AB), since with these

states we can achieve perfect teleportation in the {|0〉 , |1〉} subspace [10]. As the von Neumann

entropy of a Bell state amounts to 1 ebit, for an N-arm set up with N Bell states the total entan-

glement resource is given straightforwardly (exploiting additivity of the von Neumann entropy)

by

S AR
(
|φ〉AB〈φ|

⊗N
)

= N ebits. (6.38)

Similarly, the energy of the resource states |φ〉AR〈φ|
⊗N is the sum of energies for each |φ〉AB 〈φ|,

EAR
(
|φ〉AB〈φ|

⊗N
)

= N units. (6.39)

6.4.2 Resources for the VBK scheme

In the VBK scheme we will consider shared entangled states which belong to a general non-

Gaussian class encompassing so-called ‘squeezed Bell-like states’, first studied by Dell’Anno
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et al. [134],

|φS B〉AB = Ŝ AB (ζ)
[
cos δ|0, 0〉AB + eiθ sin δ|1, 1〉AB

]
, (6.40)

where

Ŝ AB (ζ) = exp[−ζâ†Aâ†B + ζ∗âAâB] (6.41)

is the two-mode squeezing operator with complex squeezing ζ = r eiϕ and |n,m〉AB = |n〉A⊗|m〉B
is a two-mode Fock state.

For δ = kπ (k ∈ Z) we get the well-known two-mode squeezed vacuum (TMSV) state,

Ŝ AB (ζ) |0, 0〉AB, (6.42)

with squeezing r, that is, the paradigmatic Gaussian entangled resource state. For other values

of δ, we get non-Gaussian contributions, and we deem it interesting to investigate whether such

non-Gaussianity provides an advantage over the use of conventional TMSV states [134, 136],

under the terms of comparison defined above.

In the characteristic function representation the state |φS B〉AB has the form

χS B (α1, α2) = e−
|ξ1 |

2+|ξ2 |
2

2
[
sin δ cos δ

(
eiθξ∗1ξ

∗
2 + e−iθξ1ξ2

)
+sin2δ

(
1 − |ξ1|

2
) (

1 − |ξ2|
2
)

+ cos2δ
]
, (6.43)

where ξi = αi cosh r + α jeiϕ sinh r, (i, j = 1, 2; i , j).

The entanglement S VBK (r, φ, δ, θ) of squeezed Bell-like states can be expressed as a rather

long formula [134] which we omit here, limiting ourselves to note that it depends nontrivially

on both the complex squeezing ζ and on the non-Gaussian mixing parameter δ and phase θ.

The mean energy of these states has a more concise form,

EVBK (r, ϕ, δ, θ) =
〈
â†AâA

〉
+

〈
â†BâB

〉
= 2sinh2r

(
1 + sin2δ

)
+ 2sin2δ cosh2r − sin 2δ sinh 2r cos (θ − ϕ) .

(6.44)

6.5 Results

For accurate comparison to the benchmarks [117], we must consider states drawn from the

general class of pure Gaussian states |α, ξ〉 of Eq. (6.32) with probabilities given by the same

priors pG
λ,β

(α, s, ϕ) or pS
β (s, ϕ) as used to derive the benchmarks.
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We then find the average fidelity for general input states drawn from a prior characterized

by widths λ−1 and β−1 for a scheme with resources (entanglement or energy) of value N to be

F̄VBK (λ, β, N) =

∫
d2α dϕ ds pG

λ,β (α, s, ϕ)FVBK (α, s, ϕ; N) , (6.45)

for the deterministic VBK scheme, and

F̄AR (λ, β, N) =

∫
d2α dϕ ds pG

λ,β
(α, s, ϕ) Psuc (α, s, ϕ)FAR (α, s, ϕ; N)∫

d2α dϕ ds pG
λ,β

(α, s, ϕ) Psuc (α, s, ϕ)
,

for the probabilistic AR scheme, in accordance with Eq. (6.37).

Both fidelities reduce to the mean fidelity for squeezed-only states upon setting α = 0 and

substituting the appropriate prior pS
β in place of pG

λ,β (or, equivalently, taking the limit λ → ∞

in the formulas above).

6.5.1 Comparison I: Fixed entanglement entropy

We will study three different cases, when

S AR
(
|φ〉AB〈φ|

⊗N
)

= S VBK (r, φ, δ, θ) = 2, 3, and 5 ebits. (6.46)

For the AR scheme, this simply corresponds to considering N = 2, 3 and 5 branches in the N-

splitter, respectively. The teleportation fidelity of a general pure Gaussian input, |ψ〉in = |α, ξ〉,

using Eq. (6.27), is

FAR (α, s, ϕ; N) =
1

Psuc

∣∣∣∣∣∣∣
N∑

k=0

(
N
k

)
k!
Nk |〈k | α, ξ〉|

2

∣∣∣∣∣∣∣
2

, (6.47)

which can then be substituted into Eq. (6.46) to find the mean fidelity.

For the VBK scheme, from Eq. (6.22), we see that the fidelity for teleporting a particular

displaced squeezed state with characteristic function χα,s,ϕ (γ), via a two-mode squeezed Bell-

like shared state, χS B (γA, γB), is given by

FVBK (α, s, ϕ; r, φ, δ, θ; g) =
1
π

∫
d2γ χα,s,ϕ (γ) χα,s,ϕ (−γ) χSB

(
−g γ∗,−γ

)
. (6.48)

This formula can be analytically evaluated for non-unit gain g, but the explicit expression is

too long and cumbersome to be reported here.

Given the dependence of S VBK (r, φ, δ, θ) on four different parameters, there is a manifold

of states associated with any fixed value of entanglement, which can be found by numerically
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solving for each case of N = 2, 3, 5 ebits. The optimal resource and best strategy can then

obtained by optimizing the average fidelity, Eq. (6.45), over the set of resource states with a

given entanglement constraint S = N, and additionally optimizing over the gain 0 ≤ g ≤ 1.

This results in the optimal VBK average fidelity F̄
opt
VBK (λ, β, N) given N ebits of entanglement

available in the form of squeezed Bell-like states.

In what follows, we compare the average fidelities of the two teleportation schemes, F̄AR (λ, β, N)

and F̄
opt
VBK (λ, β, N), as we vary the prior distribution parameters λ and β.

6.5.1.1 Results for squeezed states

We begin by comparing the averaged fidelities F̄AR and F̄VBK as well as the corresponding

benchmark F̄S
c , for the case of teleporting squeezed states with zero displacement.

The first important result is depicted in Fig. 6.5a, where we set the entanglement resource

value at S = N = 2 ebits, for various values of β. The AR scheme manages to always beat the

benchmark for every β, in sharp contrast to the VBK scheme, even for β → 0. In this limit,

which corresponds to completely unknown squeezing, the VBK teleportation scheme achieves

negligible average fidelity, while both the AR scheme and the benchmark tend to finite values,

F̄AR → 0.58 and F̄S
c → 0.5 respectively. Even taking into account gain tuning, the optimized

VBK scheme can just barely surpass the benchmark at large values β, does not look especially

robust against possible experimental deficiencies. A conclusive experimental demonstration of

quantum teleportation of an ensemble of squeezed states (with unknown squeezing) achieving

fidelities superior to what is classically possible has yet to be achieved, and the present results

indicate that the AR scheme may be a more viable candidate for this than the VBK scheme.

The fact that only two branches are needed for such a demonstration, makes the scheme experi-

mentally appealing with current technology. Clearly, the probabilistic nature of the AR scheme

is a major factor behind its enhanced performance; such a scheme is indeed more likely to

reject states which cannot be faithfully transmitted (i.e. high energy input states), and thus it

compares favourably to the benchmark even in the limit β→ 0. The VBK scheme on the other

hand teleports the high energy states with vanishing fidelity, reducing the average fidelity to

zero for very broad ensembles.

As we increase the entanglement entropy of the shared resource states to S = 3 ebits, see

Fig. 6.5b, we find that the AR scheme is still superior, but now the VBK scheme clearly violates

the benchmark for input ensembles of inverse width β ≥ 1.58. For even greater entanglement

of S = 5 ebits, Fig. 6.5c, the VBK scheme manages to attain comparable performances to
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the AR one at large enough β, while the limit β → 0 remains problematic. This level of

shared resources is, however, unrealistic: state-of-the-art technologies achieve 10 dB of optical

squeezing [131, 132] which is equivalent to only 2.77 ebits of entanglement.

Another interesting result has to do with the performance of the squeezed Bell-like resource

states for the VBK scheme. In [134, 136], Dell’Anno et al. showed that, at fixed squeezing

degree r, non-Gaussian squeezed Bell-like states (i.e., with δ , 0) resulted in significant ad-

vantage in the teleportation fidelity of single coherent or squeezed states, compared to just

using the corresponding Gaussian TMSV with the same r (given by δ = 0). The authors thus

concluded that non-Gaussianity in the resource state can significantly improve teleportation

performance.

Our results show, however, that such a conclusion is strongly dependent on the terms of

comparison. When making the comparison at fixed entanglement entropy, rather than at fixed

squeezing degree, we found in all considered cases that, within the general squeezed Bell-like

class, the optimal resource state for teleportation of input ensembles of Gaussian states via

the gain-optimized VBK scheme actually does always reduce to the TMSV. In this respect,

therefore, non-Gaussianity is not advantageous for the considered task. One may contend that

the advantage observed by Dell’Anno et al. was more properly a consequence of the extra

entanglement present in the resource (compared to the TMSV at fixed r) and not traceable

directly to the non-Gaussian nature of the employed states.

6.5.1.2 Results for general displaced squeezed states

We will now discuss the results for the most general set of pure single-mode Gaussian input

states, namely the displaced, squeezed vacuum states. In Fig. 6.6a we report the case of S = 2

ebits of shared entanglement. As in the previous case of squeezed-only states, the AR scheme

beats the benchmark for all values of the parameters β, λ. On the other hand, it no longer

stands so dominant over the VBK scheme; while for small β and large λ the AR scheme is still

superior, as we increase β and reduce λ the optimized VBK scheme manages to achieve the

best fidelity overall. This relates to the well-known result that the VBK scheme is exceptionally

good, by construction, at teleporting displaced states (and in fact, despite being deterministic,

always beats the benchmark for teleporting coherent states [120, 137]). As we increase the

shared entanglement to S = 3 ebits, we see in Fig. 6.6b that the dominance of the AR scheme

gets confined to the region of larger λ and smaller β, while for the instance of even larger
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(a) (b)

(c)

Figure 6.5: Average fidelity of teleportation F̄ for the input set of single-mode squeezed states with
prior pS

β , plotted as a function of the inverse width β, for different amounts of shared entanglement:
(a) S = 2 ebits, (b) S = 3 ebits and (c) S = 5 ebits. The comparison is between the AR scheme
(magenta open squares), the VBK scheme optimized over all squeezed Bell-like resource states
with unit gain (green dashed curve), the gain-tuned VBK scheme optimized over all squeezed
Bell-like resource states, amounting to the gain-tuned VBK scheme using TMSV resource states
(red filled circles), and the benchmark (black solid line).
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(a) (b)

(c)

Figure 6.6: Contour plots of the average teleportation fidelity F̄
opt
VBK for the input set of arbi-

trary displaced squeezed Gaussian states |α, ξ〉 distributed according to the prior pG
λ,β, for the gain-

optimized VBK scheme, as a function of the inverse widths λ, β, at different fixed amounts of
shared entanglement: (a) S = 2 ebits, (b) S = 3 ebits and (c) S = 5 ebits. From top-left to bottom-
right, the three shaded areas in each figure denote, respectively, the region where the VBK scheme
has superior performance compared to both the AR scheme and the benchmark (sea colors), the
region where the VBK scheme is inferior to the AR one but still beats the benchmark (solar colors)
and the region where the VBK protocol yields a fidelity below the benchmark (grayscale colors).
The average fidelity of the AR protocol (not depicted) is found to always beat the benchmark for
every value of the parameters λ, β.
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entanglement, S = 5 ebits of Fig. 6.6a, the VBK protocol wins the comparison in almost the

whole parameter region except for small β.

As in the previous subsection, we found again that non-Gaussianity in the shared squeezed

Bell-like states yields no advantage in the VBK average teleportation fidelity over the conven-

tional use of TMSV resources. Even in the present more general case of displaced squeezed

input states, the fidelity depicted in Fig. 6.6 corresponds in fact to the optimal choice given by

the use of a TMSV resource state.

6.5.2 Comparison II: Fixed mean energy

In this section we will compare the two schemes by constraining the energy of their resource

states, i.e. by keeping fixed the mean photon number at E = N = 2, 3, 5 units, instead of the

entanglement entropy which we considered previously.

As previously observed, the energy used in the AR scheme, EAR
(
|φ〉AB〈φ|

⊗N
)

= N units, is

determined by the number of branches in exactly the same way as the entanglement entropy is:

each branch corresponds to one ebit of entanglement and one unit of energy. Thus the fidelity

of the scheme will still be given by (6.46), and the performance of the scheme is the same as

for the fixed entanglement case.

For the VBK scheme, however, the mean energy has a different dependence on the resource

state parameters; to identify the optimal resources in the manifold of squeezed Bell-like states

with fixed energy, we have thus performed a similar numerical optimization as what done

before for the case of fixed entanglement.

6.5.2.1 Results for squeezed states

The teleportation of squeezed states at fixed energy yielded the same results on the optimality

of the entangled resources |φS B〉AB of the VBK scheme: the optimal resource state turns out

to be the TMSV over the whole parameter range, yielding no non-Gaussian advantage. This

observation enables us to make a neat comparison to the fixed entanglement case. In Fig. 6.7 we

show the dependence of the entanglement entropy on the mean energy, for the optimal TMSV

resource state; the points corresponding to S = 2, 3, 5 ebits are marked explicitly. As we

see, the energies EVBK = 2, 3, 5 units that we consider, correspond to entanglement entropies

1.8 ≤ S ≤ 2.5 ebits for the TMSV state. Hence, the performances of the VBK protocol will be

similar to the ones shown in Figs. 6.5a, 6.5b, which correspond to S = 2, 3 ebits respectively;
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Figure 6.7: The dependence of the entanglement entropy S of the resource states as a function of
their mean energy E, plotted for: (a) the multiple Bell resource states for the AR scheme (dashed
line) and (b) the optimal TMSV resource states for the VBK scheme. For the latter, the points
that correspond to S = 2, 3, 5 ebits are marked with crosses to show explicitly the need for large
energies (notice the log-linear scale).

the VBK scheme is thus expected to be always inferior compared to the AR scheme within this

range of parameters.

We can see from Fig. 6.7 that an entanglement entropy of S = 5 ebits corresponds instead

to the massive mean photon number of about 833 units for the TMSV used in the optimal

VBK scheme. On the other hand, the AR scheme achieves the same entanglement with only 5

photons and this dramatic difference is illustrated in the same figure. In fact, the AR scheme is

so superior when considering energy as the resource, that even if we chose to follow the naive

interpretation described in Sec. 6.4 and counted the photons expended in the failed teleportation

attempts, we would still find that a 5-arm scheme utilizes much less than 833 photons as long

as β > 1, which would yield and endured dominance of the AR scheme over the VBK under

these terms of comparison.

6.5.2.2 Results for general displaced squeezed states

We confirm once more the TMSV to be the optimal resource state for the VBK scheme, under

the fixed energy constraint, when teleporting the general Gaussian set of displaced squeezed

states. Adding this to the previous results, we have shown that under the restrictions of fixed

energy or fixed entanglement, any non-Gaussianity within the class of squeezed Bell-like states
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Figure 6.8: Contour plot of the average teleportation fidelity F̄
opt
VBK for the input set of arbitrary dis-

placed squeezed Gaussian states |α, ξ〉 distributed according to the prior pG
λ,β, for the gain-optimized

VBK scheme, as a function of the inverse widths λ, β, at fixed mean energy of the resource states,
E = 5 units. As in Fig. 6.6, from top-left to bottom-right, the three shaded areas in each figure de-
note, respectively, the region where the VBK scheme has superior performance compared to both
the AR scheme and the benchmark (sea colors), the region where the VBK scheme is inferior to
the AR one but still beats the benchmark (solar colors) and the region where the VBK protocol
yields a fidelity below the benchmark (grayscale colors). The average fidelity of the AR protocol
(not depicted) is found to always beat the benchmark for every value of the parameters λ, β.
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will not give any advantage in the optimized VBK continuous variable teleportation of single-

mode Gaussian states. We discussed above the relation between entanglement and energy for

the optimal TMSV and showed that, for an energy of E = 5 units, its entanglement is about

2.5 ebits smaller than the corresponding entanglement of the resource states used in the AR

scheme at the same energy. Despite this fact however, as we see in Fig. 6.8, the VBK scheme

still manages to beat the AR (and the benchmarks) for small enough values of λ, β. This shows

that the AR scheme is still unable to handle broad distributions, i.e. high energy inputs, when its

number of branches N is not big enough. For smaller energies E = 2, 3 units, the comparative

performance of the schemes is similar to Fig. 6.6a since at these energies the corresponding

entanglement entropy is around 2 ebits for both schemes.

6.6 Discussion and conclusion

We have compared the Vaidman, Braunstein and Kimble (VBK) continuous variable quantum

teleportation protocol [7, 8], to the recently proposed hybrid teleportation protocol of Andersen

and Ralph [9], and to the teleportation benchmarks for general Gaussian states recently derived

by Chiribella and Adesso [117]. We considered two classes of input single-mode ensembles,

comprised of squeezed-only states and arbitrary displaced squeezed states respectively.

For the VBK protocol, non-Gaussian two-mode resources (squeezed Bell-like states [134])

were considered as shared resources and optimizations were performed in order to examine

any possible advantage due to non-Gaussianity of the resources for the average teleportation

fidelity. In [134, 136], it was found that, under fixed squeezing of the resource state, the

presence of non-Gaussianity gave significant advantage for teleportation of displaced squeezed

states. These results generalized previous findings when particular non-Gaussian states such as

photon-subtracted states, which are a subclass of the squeezed Bell-like states, were analyzed

[138, 139, 140, 141].

Motivated by a closer consideration of the resources involved in teleportation protocols, we

adopted different terms of comparison. We compared the performance of the various schemes

either at fixed entanglement entropy, or at fixed mean energy, of the shared resource states.

Under these premises, we found in all considered cases that non-Gaussianity is arguably of

no advantage at all: the optimal resources with a fixed entanglement or energy were consis-

tently found to be conventional Gaussian two-mode squeezed vacuum states when the VBK

teleportation protocol was considered, taking into account gain optimization [130].
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In the case of squeezed input states, we have shown that using only minimal resources, i.e.

just 2 ebits of shared entanglement between the two parties, the AR scheme can successfully

beat the benchmark in teleporting squeezed states while the VBK scheme, even when gain-

optimized, cannot do so in a relevant parameter range. The current technological limitations

prevent us from attaining optical squeezing larger than about 10 dB [131, 132], corresponding

to a maximum of S ≈ 2.77 ebits for the VBK scheme. Even with this maximum amount of

shared entanglement, the VBK scheme is unable to beat the benchmark without gain-tuning

(see Fig. 6.5b) while, when gain-optimized, although it surpasses the benchmark, it still yields

an inferior performance to the one of the AR scheme. The case of the fixed energy condi-

tion was even less favourable for the VBK scheme, since restricting the number of photons in

the two-mode squeezed vacuum to low numbers greatly limits the performance of the scheme.

On the other hand, the AR scheme remains as much efficient for low energies since the en-

tanglement is densely distributed over the entangled photons of the resource states, as seen in

Fig. 6.7.

In the case of general Gaussian input states, we saw that the AR scheme always beats the

benchmark for all values of parameters β, λ of the input ensemble, while the VBK scheme

is the most efficient only in teleporting coherent states (i.e. λ → 0 and large β). For low

resources, e.g. S = 2, 3 ebits, the AR scheme was found to perform best in teleporting broad

ensembles in squeezing because of its sensitivity to the input states, beating on average the

insensitive VBK scheme and the classical benchmark. However, as we reach up to S = 5

ebits of shared entanglement, the gain-optimized VBK scheme completely dominates AR over

almost all the examined region in the teleportation of general Gaussian states except for the

region that corresponds to β → 0. We should note however that this amount of entanglement

is not achievable with current technology.

While the VBK scheme has traditionally been praised for its deterministic nature, which

gained its historic status of an unconditional teleportation protocol (as opposed to the initial

experimental realisations of discrete-variable teleportation [93] which relied heavily on post-

selection), in this case it is this feature which appears to set it at a disadvantage. It may be thus

interesting to consider probabilistic alterations to the VBK scheme to see if some advantage can

be recaptured. Preliminary calculations on simple conditioning strategies, such as discarding

teleportation runs when Alice’s quadrature measurements result in outcomes larger than a set

threshold, show a minimal improvement over the deterministic VBK scheme. It thus appears

that the advantage of the AR scheme does not just stem trivially from its probabilistic nature.
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Regardless, we dedicated considerable attention to the issue of establishing fair conditions for

comparing probabilistic and deterministic schemes for teleportation of an input ensemble; we

expect such a discussion to generate further independent interest in the matter.

Our analysis reveals how hybrid approaches to continuous variable quantum technology

can be particularly promising with limited resources. In the case of teleportation, splitting an

ensemble of Gaussian states into as few as two or three single-photon channels and perform-

ing qubit-like parallel teleportation appears effectively more efficient, even taking into account

properly the nonunit probability of success, than realizing an unconditional continuous variable

teleporter consuming as much entanglement. Interestingly, a complementary hybrid approach

has also very recently been demonstrated by Furusawa and coworkers, who performed deter-

ministic teleportation of a single-photon state by a VBK implementation [142]. Other schemes

for the near-deterministic teleportation of hybrid qubits have also been devised [143]. For a

review on hybrid quantum optical communication see e.g. [144].

We note that the analysis in the present chapter has focused on ideal teleportation regimes.

In a real experiment, both considered schemes will be affected by unavoidable losses and im-

perfections, perhaps the most important ones being the noisy production of the entangled re-

sources. In any realistic implementation, the resource states would indeed be most typically

mixed nonmaximally entangled two-qubit states for the AR case, and two-mode squeezed ther-

mal states for the VBK case. One can then still issue comparisons at fixed entanglement de-

gree (using e.g. the entanglement of formation) or energy, at comparable levels of state purity

mirroring the current experimental facilities. These are expected to lead to the same quali-

tative hierarchy between the two schemes as in the case of pure resource states. Additional

sources of imperfections can be considered, like lossy transmission channels in both schemes,

the non-unit efficiency of the homodyne detection in the VBK scheme, the dark counts and

finite detection efficiency of single-photon detectors during the Bell measurement in the AR

case, etc. In this respect, the efficiency of the Bell measurement in the AR scheme is typically

much lower than the efficiency of homodyne detections in optical implementations of VBK

teleportation. However, this effect is typically absorbed into a lower probability of success for

the AR scheme, without impacting significantly on the teleportation fidelity. Therefore, once

more, we do not expect significant changes in the comparison between the two schemes and

the benchmarks from the point of view of the ensemble fidelity. In short, the analyzed schemes

are expected to be quite robust to common sources of imperfection. Nonetheless, we plan to
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complement the present investigation of the ideal regime with a forthcoming work, where all

such realistic corrections will be taken into account in detail.

To our knowledge, an experiment that verifies unequivocally the use of quantum entangle-

ment during a quantum teleportation protocol, by violating the corresponding fidelity bench-

mark, has yet to be performed for an ensemble of input squeezed Gaussian states with unknown

squeezing (in [110] the input states had unknown displacement but known squeezing). In this

chapter we found that the hybrid AR scheme appears to be a good candidate for such a first

demonstration. With the necessary technology readily available, it would be of great interest

to accomplish such an experiment in the near future. In parallel, we hope this work can stim-

ulate further research into the definition of a possibly refined teleportation protocol tailored to

displaced squeezed input states, able to beat both the benchmarks and the AR scheme stud-

ied here, while being ideally endowed with an improved probability of success under realistic

conditions.
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Part III

Einstein-Podolsky-Rosen steering

103





7

Steering and the EPR paradox

7.1 The Einstein-Podolsky-Rosen paradox

Entanglement is the holy grail of quantum theory, with spectacular implications both for the

foundations of the theory, and for real-world applications; including, quantum- computing,

communication, cryptography, sensing, etc. In the early years of quantum theory and up to

its complete establishment by 1930, however, entanglement still went unnoticed. Einstein,

Podolsky and Rosen (EPR) were the first to recognize the counter intuitive features of entan-

glement, which seemed to involve some sort of “nonlocality” among separated and causally

disconnected systems. In 1935, the EPR trio published a paper on the topic [55] where they

utilized a continuous variable (CV) entangled state of the form (3.54),

|ψ〉EPR ∼ δ(q̂A − q̂B) δ( p̂A + p̂B), (7.1)

to argue -not that entanglement can be useful due to the strong correlations it invokes, but- that

entanglement is proof quantum theory must be incomplete, and the EPR argument has been

known as the EPR paradox. Let us examine their argument in more detail.

The utilized EPR state (7.1) is a (in the limit) maximally entangled CV state, which can

be experimentally prepared by using a two-mode squeezed state (3.53) and taking the limit of

infinite squeezing, r −→ ∞. To have a concrete example in mind, imagine that Alice and Bob

have prepared such a state using the photonic field, both holding modes A and B respectively,

with q̂i, p̂i being their corresponding quadratures which are observables related to the electric

and magnetic field operators of their modes. In this limit, and as depicted in (7.1), |ψ〉EPR

becomes an exact eigenstate of the observables q̂A − q̂B and p̂A + p̂B (corresponding to zero
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eigenvalue), implying that the individual measurement outcomes of Alice and Bob are exactly

(anti-)correlated,

qA = qB , pA = −pB. (7.2)

And here is the ‘paradox’: According to EPR, if quantum theory -and, therefore, the quan-

tum state- were to be a complete description of nature it would imply that the local quantum

state of one party (say, Bob) is independent of the actions of the other distant, and causally

disconnected, party Alice. This notion of independence of causally disconnected systems,

is known in more modern terms as local causality (due to Bell [57, 58]). But according to

Eq. (7.2) something different happens: In particular, if Alice decides to measure the ‘position’

observable q̂A of her mode, Bob’s mode would instantaneously be projected in one of the po-

sition eigenstates {|q〉B} of q̂B, as the “collapsed” state 〈qA|ψ〉EPR : HB of Bob (after Alice’s

measurement) would satisfy

q̂B〈qA|ψ〉EPR = qA〈qA|ψ〉EPR, (7.3)

due to (q̂A− q̂B) |ψ〉EPR = 0. Similarly, if Alice chose to measure p̂A, Bob’s mode would instan-

taneously be projected in one of the momentum eigenstates {|p〉B} of p̂B for Bob. That is, “as

a consequence of two different measurements performed upon the first system, the second sys-

tem may be left in states with two different wavefunctions” [55]. And here comes the paradox,

as, “the two systems no longer interact, [so] no real change can take place in [Bob’s] system

in consequence of anything that may be done to [Alice’s] system.” [55] Therefore, quantum

theory seems to involve an involve an unacceptable “action at a distance”.

For these reasons, the EPR trio concluded that the quantum state cannot be describing re-

ality, and quantum theory must be incomplete. Their hope and intuition was that a complete

theory of nature would necessarily satisfy the notion of local causality, without featuring any

unacceptable “action at a distance”. Although the EPR argument is correct in its formulation

, the premises on which it was structured on (i.e., local causality) turned out not to be. About

30 years after the EPR paper, Bell realized that the EPR intuition can actually be formulated

mathematically and independently of any underlying theory (whether that is quantum theory,

or any other more ‘complete’ local hidden variable theory). First, Bell showed that the con-

cept of local causality is equivalent to a local hidden variable (LHV) theory. Then Bell proved

his famous theorem, that the correlations between distant and causally disconnected systems,

as predicted by any LHV theory -respecting the concept of local causality- are always bounded

in strength and should necessarily satisfy the so-called Bell inequalities [57, 58]. Quantum
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theory turns out to violate Bell’s inequalities and this phenomenon is dubbed Bell-nonlocality

[145]. But let’s forget about quantum theory for now, according to EPR it could be incomplete

anyway; what about nature itself? Can real physical systems violate Bell’s inequalities and,

thus, the intuitive concept of local causality? The answer is yes. Aspect et al. were the first

to demonstrate a Bell inequality violation using pairs of polarized entangled photons [146],

and very recently three experiments took place demonstrating the first-ever loophole-free Bell

inequality violations [60, 61, 62]. Funnily enough, although Bell-nonlocality has been estab-

lished as a physical phenomenon both experimentally and theoretically, the EPR state (7.1)

cannot violate any Bell inequality when quadrature measurements are performed, which was

exactly the setting considered in the original EPR argument. The reason is that the probabilities

created by Gaussian states and Gaussian measurements always admit a local hidden variable

model which by definition satisfies all Bell inequalities. For all bipartite pure states, however,

there always exist measurements for both parties that can demonstrate Bell-nonlocality, and in

the case of pure Gaussian states (like, the EPR state) non-Gaussian measurements are required

for such a demonstration.

7.1.1 Aftermath of EPR: Quantum steering

In the aftermath of the EPR paper, Schrödinger [16] was the first introduce the words “entan-

glement” and “steering” to describe this spooky “action at a distance” presented in the EPR

argument. The word “steering” comes into the picture, as Alice is seen to remotely steer Bob’s

state to an eigenstate of position or momentum (as seen above) depending on the observable

she chooses to measure.

Schrödinger was the one to actually introduce the quantum state (or, wavefunction) ψ to

describe atoms, and he did believe that it offers a complete description of nature, in contrast to

EPR. However, just like the EPR trio, Schrödinger himself could not accept this spooky action

at a distance and, to solve this paradox, he suggested (wrongly) that the quantum mechanical

description of delocalized entangled systems must be incorrect [16, 147]. In particular, for a

pure entangled state like Eq. (7.1), Schrödinger argued that Bob’s system can be “steered or

piloted into one or the other type of state at [Alices] mercy in spite of [her] having no access

to it”, and referred to it as a ‘paradox’ since if such states existed then local causality must be

violated.

The conclusion of Schrödinger was, therefore, that Bob’s system must have a definite state,

even if it is completely unknown, so that “steering” would never be witnessed experimentally.
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We call the model Schrödinger had in mind, a local hidden state (LHS) model for Bob. We

summarize Schrödinger’s view on the EPR paradox in the following definition,

Definition 7.1.1. We say that the EPR paradox exists between two parties Alice and Bob, only
if steering from Alice to Bob can be demonstrated and, in turn, steering can be demonstrated
only if there is no LHS model for Bob that can explain the observed correlations. Equivalently
for the reverse situation, where Bob steers Alice.

Schrödinger never rigorously defined the concept of a local hidden state model for Bob,

and therefore the assumption of the existence of such a model could not be put to experimental

test. A precise formulation of a LHS model and steering will be given in Sec. 7.2. Finally,

notice that demonstration of Bell-nonlocality already refutes the concept of a LHS model, as

we will see later on. Despite the fact that Bell-nonlocality has already settled the issue, we will

insist in formulating Schrödinger’s concept of steering as it will lead us to recognize a new type

of quantum correlations, that are useful not only for an (experimentally) easier demonstration

of the EPR paradox, but also for the implementation of novel practical applications.

7.1.2 Reid’s criterion

The first attempt to create an experimental criterion to demonstrate the EPR paradox, in a

continuous variable setting, was made in the 1980s by Margaret Reid [11]. The importance of

Reid’s idea is that it allows for the possibility to observe the EPR paradox with realistic finitely

entangled CV states that are available in the laboratory; remember that the actual EPR state

(3.54), with its perfect correlations, is un-physical since it requires infinite energy.

Reid considered a scenario where Alice and Bob share a pair of two spatially separated

particles described by a bipartite state ρ̂AB, which is assumed to feature correlated ‘positions’

and anti-correlated ‘momenta’ of the two particles. The difference with the EPR scenario is

that the correlations are not assumed to be perfect, like

QA = QB , PA = −PB. (7.4)

Reid distinguished three assumptions that EPR made to arrive at their paradox:

Assumption # 1: They assume quantum mechanics predicts correctly at least the results of the

experiment.

Assumption # 2: “If without in any way disturbing the system, we can predict with certainty

the value of a physical quantity, then there exists an element of physical reality corresponding
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to this quantity.” [55]

Assumption # 3: They assume there is “no action at a distance”.

Reid then showed that based on these three assumptions we can derive an experimental criterion

that should always be satisfied if all three assumptions are true, and violated only if any of these

assumptions does not hold (hence, arriving at the EPR paradox). Thus, let’s go into more detail

on Reid’s idea:

If Alice chose to measure the position q̂A of her own particle A, she would be able to predict

Bob’s position QB with a good enough precision. Assuming Alice would obtain some arbitrary

outcome QA, let’s quantify the precision of the inference of Bob’s QB by the conditional vari-

ance,

∆2(QB|QA) = 〈Q2
B〉QA − 〈QB〉

2
QA
, (7.5)

which is evaluated on the conditional probability distribution P(QB|QA). If Alice and Bob

shared the EPR state, then Alice would make a perfect prediction ∆2(QB|QA) → 0. According

now to assumption # 3, since there is no action at a distance Alice’s prediction for the posi-

tion QB of particle B is made without disturbing the particle B. Also, due to assumption #

2, the predicted position QB must have had a definite pre-determined value inside the range

determined by ∆2(QB|QA)) independently of Alice’s measurement. If, instead, Alice chose to

measure the momentum p̂A, then, by similar reasoning, the predicted position PB must have

had a definite pre-determined value inside the range determined by ∆2(PB|PA)) independently

of Alice’s measurement. To sum up, we have established that given a shared copy of the state

ρ̂AB, under the assumptions # 2 and # 3 the distribution of the “real” value of Bob’s position

and momentum -regardless of what observable Alice measures on her particle- must follow the

distributions ∆2(QB|QA) and ∆2(PB|PA), respectively. According now to assumption # 1, since

the quantum mechanical formalism holds true, the best possible inference of Bob’s position

and momentum that is allowed by any quantum state, must respect Heisenberg’s uncertainty

principle (HUP). Therefore, the distributions of the “real” values of QB and PB must satisfy

∆2(QB|QA) ∆2(PB|PA) ≥
1
4
. (7.6)

This criterion is conditioned on some arbitrary outcomes QA, PA of Alice. For convenience,

we take the average of each of the variances over all outcomes, defining the minimum inferred

variance

∆2
minQB =

∫
dQA p(QA) ∆2(QB|QA), (7.7)
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and similarly for ∆2
minPB. Since the minimum inferred variances are larger or equal to the

conditional variances, their product should also satisfy HUP

∆2
minQB∆2

minPB ≥
1
4
. (7.8)

Ineq. (7.8) is known as Reid’s criterion, which is a direct consequence of the three as-

sumptions made by EPR, and should always be satisfied if all three assumptions are valid. A

violation of Reid’s criterion demonstrates the EPR paradox and forces us to negate at least one

of the assumptions. The EPR state (3.54) with its perfect correlations, maximally violates this

criterion since it predicts, ∆2
minQB∆2

minPB = 0. However, as we pointed out in the beginning

of this section, this criterion also allows us to demonstrate the EPR paradox even when the

correlations between modes A and B are not perfect.

Interestingly, Reid’s criterion will be shown in Chapter 8 to be equivalent to the concept

of quantum steering to be defined in the next section. Also, in Chapter 9 we will exhaustively

study the violation of (7.8) by general Gaussian states. Last but not least, due to the afore-

mentioned connection with steering-type correlations, Reid’s criterion has found important

applications in one-sided device independent quantum cryptography.

7.2 Steering as a quantum information task

A precise formulation of Schrödinger’s concept of steering was put forward very recently by

Wiseman, Jones and Doherty [12], who defined steering according to a task, also relevant from

a quantum information perspective. The task of steering involves two parties, Alice and Bob,

and the goal in this task is the demonstration by Alice that she can remotely ‘steer’ Bob’s local

state by implementing different measurements on her own system. Bob, on the other hand, just

like Schrödinger himself, is sceptical about ‘steering’ due to its seemingly non-local nature,

and he believes that there must exist some fixed local hidden state ρ̂λ : HB (where, λ is a

particular copy of the state) that can explain the observed correlations without requiring any

“spooky action at a distance” from Alice. Bob does trust that his own system is described by

a known Hilbert space HB (e.g., the spin- 1
2 degrees of freedom of an electron), and that his

own measurements are well-described by the axioms of quantum theory, but he doesn’t make

any assumption about Alice’s system or measurements. In other words, Bob requires a clear

demonstration of steering on his trusted quantum system, without assuming anything about
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7.2 Steering as a quantum information task

Alice. Given this qualitative description of the task, we will proceed by rigorously defining the

steering task, together with the formulation of local hidden state models.

We start by defining the scenario in which quantum steering is discussed:

Consider a situation where Alice and Bob share an unknown quantum state ρ̂AB : HA ⊗HB

where, as discussed above, the Hilbert space HA of Alice (and, thus, her system and mea-

surements) is completely unknown, whereas HB of Bob is known . Alice performs n different

measurements on her subsystem, labelled by x = 1, . . . , n, each having outcomes a ∈ λ(x),

where λ(x) is the set of outcomes corresponding to the measurement x (could be a discrete,

or continuous, set). Upon choosing measurement x and getting outcome a, Alice announces

to Bob her the pair (a, x), and the state of Bob’s subsystem is transformed into the conditional

state ρ̂a|x with probability p(a|x).

In the steering scenario, where nothing is assumed about Alice’s system and measurements,

the only available information for Bob to determine whether Alice can steer his system or not,

is the collection of post-measured states and conditional probabilities
{
ρ̂a|x, p(a|x)

}
a,x. This

information can be compactly summarized by the so-called assemblage
{
σ̂a|x

}
a,x, a set that

contains all the (unnormalized) quantum states σ̂a|x = p(a|x) ρ̂a|x, with its norm giving the

conditional probability p(a|x) = trσ̂a|x. The question then becomes: Given the assemblage,

how can we determine whether Alice can steer Bob’s system? Below we provide two equivalent

ways to answer this question.

7.2.1 Steering as the impossibility of a local hidden state model

According to Wiseman et al.’s definition of quantum steering, and in accordance to Schrödinger’s

arguments, Bob can be convinced that Alice remotely steered his system only if there exists no

local hidden state (LHS) model that can reproduce his observed assemblage
{
σ̂a|x

}
a,x. There-

fore, let us see below what kind of assemblages a LHS model can reproduce.

According to a LHS model, at a given run of the protocol, source sends a definite (but

arbitrary, and unknown) quantum state ρ̂λ to Bob, while the corresponding ‘hidden’ variable λ

that determines Bob’s ‘hidden’ state is assumed to be known by Alice. This is equivalent to

saying that, for a given run, Alice knows what state ρ̂λ was given to Bob, while no assumptions

are made about Alice’s system and announced measurements. Given the information λ, and

given her measurement choice x, announces outcome a with probability p(a|x, λ). It’s further

assumed that the variable λ is drawn according to some distribution q(λ). Therefore, given a
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7. STEERING AND THE EPR PARADOX

particular λ and announced pair (a, x), Bob’s unnormalized conditional state, at a given run,

will be

σ̂a|x,λ = qλ p(a|x, λ) ρ̂λ,

where qλ p(a|x, λ) = tr[σ̂a|x,λ] is the probability that Alice announces (a, x) given λ. Since

Bob has no access to the variable λ summation over λ must take place, with his final observed

assemblage being

σ̂a|x =
∑
λ

qλ p(a|x, λ) ρ̂λ, (7.9)

with the normalization p(a|x) = tr[σ̂a|x].

An assemblage σ̂a|x that admits a decomposition of the form (7.9) can be reproduced by a

LHS model, and thus called unsteerable as steering cannot be demonstrated. On the contrary, if

there exist no distribution qλ, stochastic map p(a|x, λ), and states ρ̂λ, such that Bob’s observed

assemblage σ̂a|x be brought in the form (7.9) ∀ x, a, then steering has been demonstrated, as no

LHS model can reproduce the correlations, and the assemblage is called steerable.

Steerability of bipartite states Quantum steering is defined solely in terms of Bob’s assem-

blage without any reference to the actual bipartite state ρ̂AB. A natural question would then be:

Given a bipartite state ρ̂AB, how can we infer whether it can be used to demonstrate steering

from Alice to Bob? Considering a set of measurement operators {M̂a|x}a for Alice, and for the

given ρ̂AB, Bob’s assemblage will simply be

σ̂a|x = trA
[(

M̂a|x ⊗ IB
)
· ρ̂AB

]
, (7.10)

where
∑

a M̂a|x = I and M̂a|x ≥ 0, ∀ x, a. Then, ρ̂AB is called steerable from A to B if it can

give rise to a steerable assemblage (7.10) for the considered measurements, or unsteerable if it

gives rise to an unsteerable assemblage for the given measurements. Notice also that whether

steering is demonstrated or not strongly depends on the choice of measurements, and a topic of

great interest is to prove whether a given state ρ̂AB is unsteerable for any choice (and number)

of measurements; a trivial example of such a state is the product state.

7.2.2 Steering as a one-sided device independent entanglement detection

The original definition of steering given by Wiseman et al. [12] is described in Sec. 7.2.1,

with the LHS models playing a protagonist role. In this section we will give an alternative but

equivalent definition, that may be more intuitive to the reader.
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7.2 Steering as a quantum information task

Let us forget about steering for a moment, and imagine, again, a scenario where Alice and

Bob share a bipartite state ρ̂AB. The question we want to deal with now is: Is ρ̂AB entangled?

As we have seen in previous parts of the thesis, where we talked about entanglement, ρ̂AB will

be entangled if it does not admit the following separable decomposition

ρ̂AB =
∑
λ

qλ ρ̂λA ⊗ ρ̂
λ
B. (7.11)

However, Eq. (7.11) is equivalent to Bob’s assemblage admitting the following form,

σ̂a|x = trA
[(

M̂a|x ⊗ IB
)
· ρ̂AB

]
=

∑
λ

qλ p(a|x, ρ̂λA) ρ̂λB
(7.12)

for all possible measurements M̂a|x, where p(a|x, ρ̂λA) = tr[M̂a|x ρ̂
λ
A]. Notice that in Eq. (7.12)

we simply substituted the separable form of Eq. (7.11). Notice that we are still talking about

entanglement detection; even though we introduced the assemblage, which we first encountered

in the concept of steering, detecting entanglement using Eq. (7.12) is equivalent as detecting

entanglement using Eq. (7.11). Steering comes into the picture when we introduce the one-

sided device independent (1sDI) framework.

One-sided device independent framework In plain entanglement detection there is always

a crucial assumption, that both Hilbert spaces HA(B) are exactly known; this is what allows us to

work conveniently with the bipartite density matrix ρ̂AB and never deal with the, undoubtedly,

“uglier” assemblage. This assumption implies, however, that both parties trust their devices,

meaning, for example, that Alice (and Bob) can safely assign a mathematical measurement op-

erator M̂a|x acting on her known Hilbert space HA, to describe the action of her device on her

subsystem. If such an assumption is met, then Alice can describe her measurement results us-

ing the rules of quantum theory, e.g. p(a|x, ρ̂λA) = tr[M̂a|x ρ̂
λ
A], where this distribution is strongly

constrained by the dimension of HA and has to obey quantum uncertainty relations.

However, imagine a scenario where Alice’s measuring devices cannot be trusted, and no as-

sumptions can be made on how the device acts on the system. Such a scenario is quite common

and relevant in quantum cryptography, where the devices of a party may have been hacked by

an eavesdropper. Or, imagine a different but equivalent scenario, where Alice herself cannot

be trusted (independently of her devices) and may be lying to Bob about her obtained mea-

surements. In both such cases, the Hilbert space of Alice and the measurement operators that
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describe her devices (or, her actions) are completely unknown. Can we still proceed with the

entanglement detection? The answer is yes, but we can no longer use the bipartite density

matrix (7.11) for that purpose as before, as no assumption can be made on Alice (and the dis-

cussion starts to remind us of steering!). Since Eqs. (7.11) and (7.12) are equivalent, it’s most

convenient to work with Bob’s assemblage. Looking at (7.12), we see that the only place where

Alice’s (unknown) Hilbert space is involved is via the probability p(a|x, ρ̂λA). As we said before,

such a probability is in general constrained by the particular Hilbert space the measurement op-

erators act on. However, since HA is unknown, we will generalize this distribution to one that

is independent of HA and, hence, obeys no quantum mechanical constraints. Symbolically, this

is expressed by

p(a|x, ρ̂λA) −→ p(a|x, λ), (7.13)

where the classical variable λ just expresses the fact that the new distribution is unconstrained.

It’s then clear that Alice and Bob will have detected entanglement in their shared state ρ̂AB,

even though Alice is not trusted, if Bob’s assemblage cannot be expressed as,

σ̂a|x =
∑
λ

qλ p(a|x, λ) ρ̂λ, (7.14)

which is precisely the form of an unsteerable assemblage (7.9). This proves the equivalence

between steering and 1s-DI entanglement detection, as steering from Alice to Bob implies

detection of entanglement when no assumptions are made about Alice’s measurements, and

vice versa.

7.3 Entanglement < Steering < Bell-nonlocality

Entanglement, steering, and nonlocality, are all different types of quantum correlations fea-

tured among quantum systems. We have already encountered about the pyramid of quantum

correlations in Section 4, which reveals a hierarchy among all these types of correlations. In

this section we will discuss about how steering fits in-between entanglement and nonlocality.

Entanglement Let us start with entanglement, and lead our way through towards steering

and nonlocality. A bipartite quantum state ρ̂AB is entangled if and only if it does not admit a

separable decomposition of the form

ρ̂AB =
∑
λ

pλ ρ̂λA ⊗ ρ̂
λ
B. (7.15)
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It’s instructive to translate this condition into an equivalent one that involves joint probability

distributions of observed outcomes. Assuming Alice and Bob make measurements labelled by

x and y, respectively, with corresponding outcomes a and b, by using the separable form (7.15)

in

p(a, b|x, y) = tr
[(

M̂a|x ⊗ N̂b|y
)
ρ̂AB

]
, (7.16)

we arrive at the equivalent expression for separability

p(a, b|x, y) =
∑
λ

pλ p(a|x; ρ̂λA) p(b|y; ρ̂λB), ∀x, y, a, b, (7.17)

which will be the main object of our focus.

Before we proceed, let us show how we can prove the equivalence (7.15) ⇔ (7.17)? The

implication ρ̂AB ⇒ {p(a, b|x, y)}x,y,a,b has already been proved via Eq. (7.16). To prove the

reverse, i.e. ρ̂AB ⇐ {p(a, b|x, y)}x,y,a,b, one considers the fact that there exist tomographically

complete set of measurements x, y, that allows for the faithful reconstruction of the density

matrix ρ̂AB from the observed probability distributions {p(a, b|x, y; ρ̂AB)}x,y,a,b. This proves the

desired equivalence.

Steering Considering now “A → B” steering, where Alice demonstrates steering of Bob’s

state, we have shown that a bipartite state ρ̂AB is unsteerable (i.e., cannot be used to demonstrate

“A→ B” steering) if Bob’s assemblage is of the unsteerable form,

σ̂a|x =
∑
λ

qλ p(a|x, λ) ρ̂λB, ∀a, x. (7.18)

Using similar arguments as above, we can show that this condition is equivalent to,

p(a, b|x, y) =
∑
λ

pλ p(a|x, λ) p(b|y; ρ̂λB), ∀x, y, a, b, (7.19)

where, p(a, b|x, y) = tr[N̂b|y σ̂a|x]. Comparing the two expressions Eqs. (7.17) and (7.19) we

spot the only difference is the generalization

p(a|x; ρ̂λA) −→ p(a|x, λ),

from a distribution that depends, and thus is constrained by, Alice’s Hilbert space HA, to an

arbitrary distribution p(a|x, λ) that is independent of HA and thus obeys no quantum mechanical

restrictions. In other words, the unsteerability condition (7.19) is independent of Alice’s Hilbert
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space as it makes no assumptions about this space. This implies that the unsteerability condition

(7.19) is harder to violate than the separability condition (7.17). Therefore, a bipartite state

ρ̂AB may violate the separability condition but not the unsteerability one, as it would require

even stronger correlations. We conclude that steering a form of quantum correlations stronger

than plain entanglement, and the demonstration of “A → B” steering allows for entanglement

detection between Alice and Bob when no assumptions are made about Alice’s side, i.e. in a

one-sided device independent manner.

Bell-nonlocality A bipartite state ρ̂AB is called Bell-nonlocal if its correlations cannot be

explained by a separable model of the form (7.17), but with complete independence of both

Alice’s and Bob’s Hilbert spaces,

p(a, b|x, y) =
∑
λ

pλ p(a|x, λ) p(b|y; λ), ∀x, y, a, b, (7.20)

where we made the generalization,

p(a|x; ρ̂λA) −→ p(a|x, λ), p(b|y; ρ̂λB) −→ p(b|y, λ). (7.21)

Since both p(a|x, λ) and p(b|y, λ) are arbitrary probability distributions that obey no quantum

mechanical constraints, even stronger quantum correlations are required in order to violate the

local decomposition (7.20), compared to the separability (7.17) and the unsteerability (7.19)

conditions. Observation of Bell-nonlocal correlations in a bipartite quantum state implies, due

to (7.21), entanglement detection between Alice and Bob in a completely device independent

manner, i.e. without having made any assumptions about both Alice’s and Bob’s measuring de-

vices and quantum systems. The mere existence of such strong correlations in physical systems

gave rise to a whole new sub-field of cryptography known as, device-independent quantum key

distribution. In this task, observation of nonlocal correlations allows Alice and Bob to com-

municate securely without having to worry about their equipment be possibly hacked by an

eavesdropper.

In conclusion, we have proved the desired hierarchical order where steering stands in-between

entanglement and nonlocality,

entanglement ≤ steering ≤ nonlocality. (7.22)

In the case of pure states, the equal signs “=” hold in both sides of (7.22).
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Steering detection

Up to now, we defined the steering-type correlations to be those that do not admit a local hidden

state model. We then showed that steering is equivalent to detecting entanglement but in a one-

sided device independent manner, where one of the subsystems is not characterized. Detecting

steerability of quantum states is essential to assess their suitability for quantum information

protocols with partially trusted devices. In this chapter we will introduce various steering

detection methods. In Section 8.1 we will first make a brief literature review on the various

approaches on steering detection, and show that Reid’s criterion on the EPR paradox is actually

a steering criterion, confirming the intuition that the concept of steering faithfully describes the

EPR paradox.

In Section 8.2 we point out an important gap in the literature regarding steering detection

of high dimensional and CV systems, and propose a new method to deal with this problem,

which is based on a work published in Physical Review Letters [4]. In particular, we provide a

hierarchy of sufficient conditions for the steerability of bipartite quantum states of any dimen-

sion, including continuous variable states. Previously known steering criteria are recovered

as special cases of our approach. The proposed method allows us to derive optimal steering

witnesses for arbitrary families of quantum states, and provides a systematic framework to

analytically derive non-linear steering criteria. We also discuss relevant examples and, in par-

ticular, provide an optimal steering witness for a lossy single-photon Bell state; the witness

can be implemented just by linear optics and homodyne detection, and detects steering with a

higher loss tolerance than any other known method.
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8.1 Analytical methods: Multiplicative variance criteria

Steering criteria are defined as any criteria that are sufficient to demonstrate steering experi-

mentally. The theory of steering criteria was developed for the first time by E. Cavalcanti et

al. [148], who identified two main types of EPR-steering criteria: the multiplicative variance

criteria that are based on product uncertainty relations involving variances of observables, and

the additive convex criteria, based on uncertainty relations which are sums of convex functions.

Here we will only review the first type of multiplicative variance criteria, and our purpose is

two-fold: First, we want to demonstrate that Reid’s criterion (7.8) on the EPR paradox is ac-

tually a special case of a steering criterion. Second, we want to show that the derivation of

steering criteria using the methods demonstrated in Ref. [148] can be very cumbersome, and

that it’s not at all straightforward to derive new (and better) steering criteria at will. This will

motivate us for Section 8.2 where we propose a new method to overcome these difficulties and

derive arbitrary steering criteria in a hierarchical and very systematic way.

For the derivation of multiplicative variance steering criteria below, we follow Ref. [148].

We consider a situation where Alice tries to infer the outcomes of Bobs measurements through

measurements on her subsystem. We denote by Best(A) Alices estimate of the value of Bobs

measurement b as a function of the outcomes of her measurement a. As in Sec. II D, the

average inference variance of B given estimate Best(A) is defined by

∆2
inf B = 〈[B − Best(A)]2〉 =

∑
A,B

P(A, B)(B − Best(A))2. (8.1)

For a given A, the optimal estimator Best(A) that minimizes Eq. (8.1) is just the mean 〈B〉A

of the conditional probability distribution P(B|A), i.e., Best(A) = 〈B〉A. Using this optimal

estimator, we denote the minimum (or optimal) inference variance of B by measurement of a

as

∆2
minB =

∑
A,B

P(A, B)(B − 〈B〉A)2

=
∑

A

P(A)
∑

B

P(B|A)(B − 〈B〉A)2

=
∑

A

P(A)∆2(B|A),

(8.2)

where ∆2(B|A) is the variance of B as calculated from P(B|A). Notice that ∆2
minB as defined

in Eq. (8.2) is exactly the quantity (7.7) that we used in the proof of Reid’s criterion. As
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explained above,

∆2
inf B ≥ ∆2

minB (8.3)

for all choices of the estimator Best(A). This minimum is optimal, but not always experimen-

tally accessible in experiments since it requires one to be able to measure conditional probabil-

ity distributions which is non-trivial especially if the measurement outcomes are continuous.

We assume that the statistics of experimental outcomes of Alice and Bob can be described

by a “A→ B” LHS model (7.19), which we write here more conveniently as,

P(A, B) =
∑
λ

P(λ)P(A|λ)PQ(B|λ), (8.4)

where for notational simplicity we omit the measurement choices a, b. We also denote with

the “Q” subscript in PQ(B|λ) the fact that it’s a quantum probability distribution constrained

by Bob’s Hilbert space, while P(A|λ) is an arbitrary unconstrained distribution. Assuming this

model, the conditional probability of B given A is

P(B|A) =
∑
λ

P(λ)P(A|λ)
P(A)

PQ(B|λ) =
∑
λ

P(λ|A)PQ(B|λ). (8.5)

We will now use a known result that if a probability distribution has a convex decomposition

of the type P(x) =
∑

y P(y)P(x|y), then the variance ∆2x over the distribution P(x) cannot be

smaller than the average of the variances over the component distributions P(x|y), i.e., ∆2x ≥∑
y P(y)∆2(x|y). Therefore, by Eq. (8.5), the variance ∆2(B|A) satisfies

∆2(B|A) ≥
∑
λ

P(λ|A)∆2
Q(B|λ), (8.6)

where ∆2
Q(B|λ) is the variance of PQ(B|λ). Using this result, we can derive a bound for ∆2

minB

in Eq. (8.2),

∆2
minB ≥

∑
A,λ

P(A, λ)∆2
Q(B|λ) =

∑
λ

P(λ)∆2
Q(B|λ). (8.7)

Suppose that Bob’s set of measurements is comprised by three observables {b̂1, b̂2, b̂3}, which

satisfy the commutation relation [b̂1, b̂2] = ib̂3, and with corresponding outcomes B1, B2, B3.

The outcomes must then satisfy the Schrödinger-Robertson uncertainty relation,

∆Q(B1|ρ̂)∆Q(B2|ρ̂) ≥
1
2

∣∣∣〈B3〉ρ
∣∣∣ , (8.8)

where ∆Q(Bi|ρ̂) and 〈Bi〉ρ are the standard deviation and the average of Bi in the quantum state

ρ̂i, respectively.
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We will now use this uncertainty relation together with the Cauchy-Schwarz (CS) inequal-

ity to obtain the desired steering criterion. The CS inequality states that, for two vectors

u and υ, |u||υ| ≥ |u · υ|. Now, define u =
[√

P(λ1) ∆Q(B1|λ1),
√

P(λ2) ∆Q(B1|λ2), . . .
]

and

υ =
[√

P(λ1) ∆Q(B2|λ1),
√

P(λ2) ∆Q(B2|λ2), . . .
]
. Then by Eq. (8.7)

∆minB1 =

√
∆2

minB1 ≥ |u|, (8.9)

∆minB2 =

√
∆2

minB2 ≥ |υ|. (8.10)

Using Eq. (8.9), the CS inequality, and the uncertainty relation (8.8), we obtain

∆minB1∆minB2 ≥ |u||υ| ≥ |u · υ| =
∑
λ

P(λ)∆Q(B1|λ)∆Q(B2|λ)

≥
1
2

∑
λ

P(λ) |〈B3〉λ| ,
(8.11)

where we denoted with 〈B〉λ the expectation value of B calculated from PQ(B|λ). Using again

Eq. (8.5) and the fact that f (x) = |x| is a convex function (which means that it satisfies∑
x P(x)|x| ≥

∣∣∣∑x P(x)x
∣∣∣, we obtain a bound for the last term,∑
λ

P(λ) |〈B3〉λ| =
∑
A3,λ

P(A3, λ) |〈B3〉λ|

≥
∑
A3

P(A3)

∣∣∣∣∣∣∣∑
λ

P(λ|A3)〈B3〉λ

∣∣∣∣∣∣∣
=

∑
A3

P(A3)〈B3〉A3 ≡ |〈B3〉|inf .

(8.12)

Using now Eq. (8.3), together with Eqs. (8.11) and (8.12), we obtain the following steering

criterion

∆inf B1∆inf B2 ≥
1
2
|〈B3〉|inf . (8.13)

Ineq. (8.13) represents a whole family of multiplicative variance steering criteria, as the ob-

servables b̂i for Bob are left arbitrary. As we showed, this inequality stems directly from the

LHS model (7.19), and an experimental violation implies the failure of such models to explain

the measured correlations, demonstrating steering from Alice to Bob. As a side note, notice

that the choices of measurement a1, a2, a3 used by Alice to infer the values of the correspond-

ing measurements b̂1, b̂2, b̂3 of Bob are arbitrary in this derivation, since we have complete

independence from Alice’s Hilbert space. For this reason, the specific quantum observables âi

played no role in the derivation. In an experimental situation, one would be advised to choose,
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of course, those âi which can maximize the violation of Eq. (8.13). Finally, notice the long and

cumbersome derivation of steering criteria using such methods. Imagine a situation where this

type of criteria cannot detect any steering for a given quantum state, how would we proceed

then? Would we attempt another lengthy derivation of some other family of steering criteria,

hoping they will be more effective in steering detection? Obviously, such a strategy is not effi-

cient and is certainly not practical. Our own proposal to be introduced in Section 8.2 will offer

for the first time such a practical and systematic way for steering detection.

8.1.1 Connection to Reid’s criterion

In the above, Bob’s observables were left arbitrary. To make the connection with Reid’s crite-

rion, let us choose b̂1 = q̂B, b̂2 = p̂B and b̂1 = i I, since [q̂B, p̂B] = i I. Substituting in Eq. (8.13)

we obtain

∆infQB ∆infPB ≥
1
2
, (8.14)

which is precisely Reid’s criterion (7.8). This provides a formal proof that Reid’s criterion

on the EPR paradox is a special case of steering, since it’s a direct consequence of a LHS

model. This also confirms the claim that the concept of steering captures the essence of the

EPR paradox.

8.2 A hierarchy of steering criteria based on moments for all bi-
partite quantum systems

Compared to well-studied entanglement and nonlocality, relatively little progress has been

achieved about steering detection. A handful of criteria exist [148, 149, 150, 151, 152, 153,

154, 155], which are however tailored to specific measurement scenarios; i.e., a non-violation

would render these criteria useless for the particular situation. An example of such a crite-

rion was examined in Section 8.1. Only very recently some constructive steering criteria were

introduced, which give an experimenter the freedom to choose the measurements involved,

and allow for an improvement of the detection by performing additional measurements until

a violation is observed [156, 157, 158, 159]. These criteria are based on the useful methods

of semidefinite programming [160], and the downside in this case is that, so far, they could

only be applied to discrete variable (DV) systems with not too high dimension, due to com-

putational limitations. It is then clear that there exists still a gap that needs to be filled about
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steering detection, regarding higher dimensional DV systems and general continuous variable

(CV) systems.

In this chapter, following our work in Ref. [4], we propose a hierarchy of steering criteria

that is directly applicable to bipartite quantum systems of any dimension, including the case

of infinite-dimensional systems. Our method avoids the dimension problem by utilizing mo-

ments of observables instead of dealing with conditional states, at variance with previous DV

proposals. A systematic framework is provided for deriving non-linear steering inequalities in

an analytical manner. To the best of our knowledge, our proposed method is the first instance

of a hierarchical family of criteria for quantum steering that is valid for any dimension, and

shares some similarity in spirit and structure with the hierarchy of moments by Shchukin and

Vogel [161] for CV entanglement detection, and with the Navascués-Pironio-Acı́n hierarchy

[162] for the characterization of nonlocal quantum correlations. We show that our approach

provides optimal moment-based linear steering witnesses for any chosen states and measure-

ments on both parties, including CV ones. Furthermore, various previously proposed steering

criteria are retrieved as special cases of our unifying approach, while new non-linear criteria

are derived. Finally, we consider several examples of both DV and CV states, and show that

our technique allows to beat the current state-of-the-art in steering detection of a lossy single-

photon entangled state with quadrature measurements [155].

8.2.1 Preliminaries

We consider the entanglement certification task in which two distant parties, Alice and Bob,

each holding one half of a quantum state ρAB of a bipartite system (described by a Hilbert space

HA ⊗ HB, where HA,HB denote the Hilbert spaces of Alice and Bob respectively), want to

verify that they share entanglement. Additionally to this, we impose the constraint that Alice’s

system is unknown (i.e., unknown HA), and her measurement devices cannot be trusted. This

implies that the measurement outcomes Alice announces cannot be assumed to originate from

a particular observable on some quantum state of known dimension. The usual entanglement

criteria in this case are inapplicable and we need to consider steering criteria to identify any

nonseparability between the untrusted Alice and the trusted Bob [12].

In this scenario, Alice performs one out of n unknown measurements (often called ‘inputs’)

on her half of ρAB, labelled by x = 1, . . . , n, and with probability p(a|x) gets some outcome a.

In principle, Alice’s measurements are arbitrary, but one can restrict the analysis to projec-

tive measurements without losing generality, because the ancilla needed for a non-projective
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measurement can always be moved to the definition of the local state on Alice’s side. Alice

announces the corresponding pair (a, x) to Bob, who then tomographically reconstructs his

conditional local (unnormalized) state σB
a|x which is of arbitrary, but known, dimension. Bob’s

states are defined so that tr(σB
a|x) = p(a|x). For all possible pairs (a, x), Bob thus obtains the set

{σB
a|x}, called an ‘assemblage’ [156]. From the assemblage alone, they should judge whether

entanglement was present between their shared systems. We refer to this procedure as a steer-

ing test.

More precisely, based on the observed assemblage, they must determine whether there

exists a separable model, i.e., a separable state ρ̄AB =
∑
λ qλ ρA

λ ⊗ρ
B
λ on H?

A ⊗HB, and measure-

ments {Ma|x}x for Alice, that reproduce Bob’s assemblage if we allowed for arbitrary Hilbert

spaces H?
A on Alice. If such a model does not exist, then the shared state must be entangled.

A steering test using a separable state ρ̄AB, and measurements {Ma|x}x associated to each input,

necessarily leads to the following form for Bob’s conditional (unnormalized) states,

σ̄B
a|x = trA[

(
Ma|x ⊗ IB

)
ρ̄AB] =

∑
λ

qλ p(a|x, λ) ρB
λ , ∀a, x, (8.15)

where p(a|x, λ) = tr[Ma|x ρ
A
λ ] and p(a|x) = tr[σ̄B

a|x]. Assemblages of the form (8.15) are called

unsteerable [12]. One can also prove that, given any unsteerable assemblage, there always

exist a separable state and projective measurements for Alice that reproduce it. Furthermore

Alice’s measurements can be assumed to come from mutually commuting observables [163].

Intuitively, this follows from the fact that a separable model is ‘classical’ on Alice’s side. There-

fore, unsteerability is equivalent to the existence of such a separable model.

Our approach is based upon the fact that Bob’s conditional states, σB
a|x, on which the steer-

ing test is based, are in general hard to obtain experimentally when the set of outcomes is large,

or even continuous, as Bob would need to do tomography for every pair (a, x). To circumvent

this problem we instead consider the more accessible correlations

〈Aςx ⊗ Bτy〉 =
∑
a,b

aς bτ P(a, b|x, By) =
∑

a

aςtr
[
σa|xBτy

]
, (8.16)

between the unknown observables Ax =
∑

a aMa|x (with x = 1, . . . , n) measured by Alice,

and some known observables By on HB (with y = 1, . . . m) measured by Bob, with outcomes

(eigenvalues) b. In Eq. (8.16), ς, τ ≥ 0 are integer powers, and P(a, b|x, By) is the observed

joint probability distribution. In what follows we will show how to derive tests for steering,

based solely upon the observed correlations {〈Aςx ⊗ Bτy〉}.
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8.2.2 Moment matrices

The main tool we will use is a moment matrix, defined as a k × k matrix Γ with elements

Γi j = 〈S †i S j〉 , (8.17)

where i, j = 1, . . . , k, and each operator S i is some (as-yet unspecified) product of operators

for Alice and Bob. As a simple example, if Bob’s system is a qubit, one could choose the

set S = {I ⊗ I, A1 ⊗ X, A2 ⊗ Y, A3 ⊗ Z} where Bob’s observables X,Y,Z denote the three Pauli

operators.

We first remark that such a moment matrix, when constructed from physical observables

on quantum states, is always positive semidefinite, i.e. Γ ≥ 0. This follows immediately, since

for any vector v, with elements vi,∑
i j

v∗i 〈S
†

i S j〉v j =

〈∑
i

v∗i S †i


∑

j

S jv j


〉
≥ 0.

The second crucial property is that if the underlying operators satisfy any algebraic properties,

then the moment matrix inherits additional structure in the form of linear constraints. For

example, if two (hermitian) operators commute, [S i, S j] = 0, then the corresponding elements

of the moment matrix are necessarily equal, Γi j = 〈S †i S j〉 = 〈S †jS i〉 = Γ ji. As a second

example, if S †i S j = iS k and S 1 = I, then Γi j = 〈S †i S j〉 = i〈I†S k〉 = iΓ1k. In the next section we

show that these properties allow us to construct a steering test based upon moment matrices.

8.2.3 Novel detection method based on the moment matrix

Consider a steering test defined by a set of observed correlations (8.16) and take any set of

operators S involving some unknown operators on Alice’s untrusted side and known operators

on Bob’s trusted side. Now consider the unknown moment matrix Γ associate to S defined as

in Eq. (8.17). Some of its matrix elements however are known as they correspond directly to

observable data in the steering scenario: these include moments of the form (8.16), and mo-

ments of the form 〈Aςx ⊗ B〉, with B an arbitrary operator in Bob’s trusted operators algebra

[164, 165]. All the other elements are not directly available, since they involve products of

Alice’s unknown operators [166], and are treated as arbitrary (complex, in general) free param-

eters.

Our main goal is to check whether the observed data could be obtained or not by measure-

ments on a separable state. On the level of the moment matrix, assuming that the observables
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Ai commute imposes some extra linear constraints between the elements of Γ, as discussed

above. Additionally, we can also impose other constraints on Γ given the knowledge of Bob’s

operators. The idea of our method then relies on searching for values for the free parameters

of the constrained Γ that make it positive semidefinite. If no such values are found, then the

data are incompatible with a model relying on commuting observables on Alice’s side, and

consequently no separable state could give rise to it.

More formally, let R denote a particular simultaneous assignment of values to all inde-

pendent free parameters, and let ΓR denote the moment matrix for commuting measurement

operators on Alice’s side dependent on such an assignment. Then, steering is witnessed from

ΓR if the latter cannot be made positive semidefinite for any possible assignment R of the free

parameters, i.e.,

ΓR � 0, ∀R ⇒ {〈Aςx ⊗ Bτy〉} demonstrates steering. (8.18)

As anticipated, Eq. (8.18) is the central result of this Letter.

The proposed method for investigating steerability through moments of observables shows

many advantages. First, it is valid for bipartite quantum systems of any dimension, be it

discrete, continuous or even hybrid since everywhere Bob’s Hilbert space was assumed ar-

bitrary, while Alice was allowed for an arbitrary (discrete or continuous) set of outcomes.

Second, the condition (8.18) serves as an infinite hierarchy of criteria; one may start with a

small set of selected operators {S i}, that are chosen at will, and can gradually increase this

set by adding more moments to improve steering detection. In particular, the operators {S i}

can be chosen from the set S of all strings (products) of operators of Alice’s (unknown) ob-

servables, Ax and Bob’s (known) observables By. This infinite set can naturally be parti-

tioned into subsets S(k) containing all strings of a given length k. For example, with only

two operators on each side, S(0) = {I ⊗ I}, S(1) = {A1 ⊗ I, A2 ⊗ I, I ⊗ B1, I ⊗ B2}, S(2) =

{A1A2 ⊗ I, A2A1 ⊗ I, A1 ⊗ B1, A1 ⊗ B2, A2 ⊗ B1, A2 ⊗ B2, I ⊗ B1B2, I ⊗ B2B1}, etc. Third, check-

ing whether there is any assignment of unknown parameters which makes a matrix positive

semidefinite subject to linear constraints is an instance of a semidefinite program (SDP) which

can be efficiently solved for many cases of interest. Moreover, the duality theory of SDPs

allows us to extract linear inequalities which act as witnesses for steering.
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8.2.4 Examples

In the following we consider various families of quantum states, and show that the proposed

hierarchy generalizes and includes known steering criteria as special cases.

8.2.4.1 2 × 2 Werner states

Consider the class of discrete variable two-qubit Werner states [167],

ρAB(w) = w |ψ−〉AB〈ψ
−| +

(1 − w)
4

IAB, (8.19)

where |ψ−〉AB = 1√
2

(|01〉AB − |10〉AB) is the singlet. To check their steerability, we construct

the moment matrix (8.17) defined by the previously mentioned set of observables S = {I ⊗

I, A1 ⊗ X, A2 ⊗ Y, A3 ⊗ Z} for Alice and Bob:

ΓR =


1 〈A1 ⊗ X〉 〈A2 ⊗ Y〉 〈A3 ⊗ Z〉

〈A1 ⊗ X〉 〈A2
1 ⊗ X2〉 〈A1A2 ⊗ XY〉 〈A1A3 ⊗ XZ〉

〈A2 ⊗ Y〉 〈A2A1 ⊗ YX〉 〈A2
2 ⊗ Y2〉 〈A2A3 ⊗ YZ〉

〈A3 ⊗ Z〉 〈A3A1 ⊗ ZX〉 〈A3A2 ⊗ ZY〉 〈A2
3 ⊗ Z2〉

 . (8.20)

Consider the statistics of Alice’s unknown measurements A1, A2, A3 to originate from spin-

measurements X,Y,Z, respectively, on her share of ρAB. We observe that 〈Ak
1 ⊗ B〉 = 〈Xk ⊗

B〉ρAB(w), for k = 1, 2 and arbitrary B, and similarly for the observable elements that contain

Ak
2 and Ak

3. Furthermore, the commutativity requirement on Alice’s side, together with the

algebra of operators on Bob’s side (e.g. 〈A1A2 ⊗ XY〉 = −〈A2A1 ⊗ YX〉), reduces the number

of independent free parameters to three. One can then numerically check the positivity of the

moment matrix and find that ΓR � 0, ∀R, for all w > wmin = 1/
√

3 , which is known to be

the threshold value for steering when Alice has exactly three inputs [148], as is the case here.

The dual of the SDP gives the following optimal steering witness, for this family of states and

measurements,

〈A1 ⊗ X〉 + 〈A2 ⊗ Y〉 + 〈A3 ⊗ Z〉 ≥ −
√

3 , (8.21)

which is violated by all Werner states with w > 1/
√

3 , while satisfied by all unsteerable states

[163]. The steering criterion (8.21) was derived independently elsewhere [148], and we have

shown that it is only a special case of our general approach.

Non-linear criteria can also be derived and, remarkably, in an analytical manner. A her-

mitian matrix is known to be positive semidefinite iff all its principal minors are non-negative
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[74]. Since ΓR is by definition hermitian, ΓR ≥ 0 implies detΓR ≥ 0, that can be shown to be

satisfied by all unsteerable assemblages iff [163]

〈A1 ⊗ X〉2 + 〈A2 ⊗ Y〉2 + 〈A3 ⊗ Z〉2 ≤ 1. (8.22)

When applied to ρAB(w), steering detection is achieved for w down to the known threshold

value wmin = 1/
√

3 . Moreover, based on the positivity of the principal minors of (8.20), other

non-linear criteria can be derived with two (instead of three) dichotomic measurements per site

[163].

8.2.4.2 Two-mode Gaussian states

Let us consider two-mode Gaussian states ρG
AB, introduced in Sec. 3.3, with a covariance

matrix in the so-called standard form (3.67)

σ̄AB =

(
Ā C̄
C̄T B̄

)
, (8.23)

where Ā = diag(a, a) and B̄ = diag(b, b) are the marginal covariance matrices of Alice and Bob

and C̄ = diag(c1, c2) contains their correlations.

We proceed by investigating the steerability of Gaussian states in standard form (which im-

plies the steerability of any non-Gaussian state with the same second moments thereof) using

the following set of quadrature observables, S = {A1 ⊗ I, A2 ⊗ I, I ⊗ qB, I ⊗ pB}, while we con-

sider Alice’s unknown measurements A1, A2 to originate from measurement of the quadratures

qA, pA respectively. The corresponding moment matrix Γ (8.17) for Gaussian states in standard

form becomes,

ΓR =
1
16


a R c1 0
R a 0 c2
c1 0 b i
0 c2 −i b

 , (8.24)

with R = 〈A1A2〉 being the only unobservable free (real) parameter with commutativity im-

posed. We can proceed analytically, by remarking that if ρG
AB were nonsteerable then there

would exist R such that ΓR ≥ 0 which implies detΓR ≥ 0. The latter, is equivalent to

det σ̄AB − det Ā ≥ R2(det B̄ − 1) ≥ 0, where for the second inequality we used the prop-

erty det B̄ ≥ 1 that all physical states must satisfy [28]. Therefore, all unsteerable assemblages

necessarily satisfy det σ̄AB − det Ā ≥ 0, while a violation would signal steering since there

127



8. STEERING DETECTION

exist no R able to make detΓR non-negative and consequently ΓR positive semidefinite. The

steering condition det σ̄AB − det Ā ≥ 0 derived here can be shown to be satisfied iff [12? ],

σ̄AB + i(0A ⊕ΩB) ≥ 0, (8.25)

which is precisely Wiseman et al.’s necessary and sufficient criterion for the steerability of

Gaussian states under Alice’s Gaussian measurements [12, 149]. Therefore, yet another crite-

rion turns out to be a special case of our approach and this time in the CV regime. It is worth

remarking that the derivation of (8.25) presented here made no assumptions about either Al-

ice’s uncharacterized system or the Gaussianity of Bob’s subsystem (also, see [3] ), in contrast

to [12].

8.2.4.3 Lossy N00N states

Consider now the following class of lossy non-Gaussian CV bipartite quantum states,

ρ(N)
AB = (1 − η) |00〉AB〈00| + η |N00N〉AB〈N00N |, (8.26)

where |N00N〉AB = 1√
2

(|N0〉AB − |0N〉AB) is the well-known N00N state useful in quantum

metrology [168], whose imperfect preparation is modelled through a mixing with the vacuum

with probability η. For later use, let us define position and momentum observables for each

party A(B), given N, as [169]

q(N)
A(B) =

1
√

2
(a†N

A(B) + aN
A(B)), p(N)

A(B) =
i
√

2

(
a†N

A(B) − aN
A(B)

)
,

satisfying [q(N)
A(B), p(N)

A(B)] = i, with [aA(B), a
†

A(B)] = 1.

For N = 1, Eq. (8.26) describes an entangled state produced by splitting a single pho-

ton (generated with probability η) at a 50-50 beam splitter. This state is of theoretical [170,

171] and experimental interest [172, 173], and it is very desirable to have an experimentally

friendly criterion that allows one to certify some form of nonlocality in its correlations. To our

knowledge, the current best steering detection for ρ(1)
AB using only quadrature measurements is

achieved by a non-linear steering inequality proposed by Jones and Wiseman [155], which can

detect steering down to η ≥ 0.77 in the limit of Alice having an infinite number of inputs, while

both Alice and Bob bin their outcomes (i.e. for a given outcome x, a value is assigned 0 if

x < 0, and 1 if x ≥ 0). For comparison, recently proposed entropic steering criteria [150],

employing (unbinned) quadrature measurements for both parties, can be seen to detect steering
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for a weaker η ≥ 0.94, while all criteria that involve moments of quadratures up to second order

fail to detect any steering at all [11, 12, 148]. We will show that our moment matrix approach

outperforms all the previous methods for these states.

To make the comparison fair, we also consider that Alice only performs two quadrature

measurements, but allow Bob to measure arbitrary local operators, see Appendix for discus-

sion. To test for steering we use

S = {I ⊗ I, A0 ⊗ qB, A0 ⊗ pB, A1 ⊗ qB, A1 ⊗ pB, A2
0 ⊗ I, A

2
1 ⊗ I, I ⊗ q2

B, I ⊗ qB pB, I ⊗ pBqB, I ⊗ p2
B},

with the observable data calculated assuming Alice’s unknown measurements A1, A2 are the

quadratures qA, pA respectively. Here, qA(B),pA(B) correspond to q(N)
A(B),p

(N)
A(B) defined above, with

N = 1. The set S defines an 11× 11 moment matrix Γ (8.17), with two inputs A1, A2 associated

to Alice. Following the steps of the detection method, with the observable elements of Γ

computed from the state ρ(1)
AB [165], we employ SDP to efficiently check (8.18), and manage to

detect steering for all η down to the critical value

η ≥
2
3
≡ ηc, (8.27)

which is lower than what previous methods can achieve. The dual of the SDP gives us the

optimal linear steering inequality for ρ(1)
AB, reported in the Appendix, that is violated for all

η ≥ 2
3 and satisfied by all unsteerable assemblages. The proposed witness involves for Bob

local moments of quadratures up to fourth order and can be efficiently measured by homodyne

detection and linear optics [174, 175], therefore demonstrating the experimental feasibility of

our proposal.

For any given N > 1, we can consider the same set S, with corresponding observables

q(N)
A(B), p(N)

A(B). We have tested our method up to N = 6 and observed a steering detection down to

η ≥ η(N)
c , with η(N)

c .
2
3 (e.g., η(6)

c ≈ 0.61 for N = 6). We conjecture that steering be detectable

with our method for all N, although larger values could not be tested due to computational

limitations. We should note however that for N > 1 the observables q(N)
A(B), p(N)

A(B) correspond to

non-Gaussian measurements that are hard to implement experimentally. On the other hand, for

N > 1 the feasible quadrature measurements qA(B) and pA(B) could not detect steering in the

states of Eq. (8.26) for any η and for the given set S considered above.
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8.2.5 Discussion and conclusion

We proposed an infinite hierarchy of sufficient conditions for bipartite steering applicable to all

quantum systems. Other previously known steering criteria were shown to be special cases of

our approach, both in the discrete and continuous variable regimes. An optimal witness for an

inperfect single-photon entangled state was obtained, which was shown to be more reluctant to

losses than previous proposals, and experimentally accessible with linear optics and homodyne

detection. In the light of a recently proved equivalence between steering and joint measurability

[176, 177, 178], the hierarchy proposed here can also be used to test whether a set of Alice’s

inputs is not jointly measurable. An interesting future direction would be to extend the present

method to multipartite steering detection, in a quantum network scenario with some trusted and

some untrusted parties [179, 180, 181].
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Quantification of Gaussian bipartite
steering

Several experiments have been already performed, demonstrating steering and its asymmetry

[182, 183, 184, 185, 186, 187, 188, 189, 190], and a number of recent studies have been devoted

to improve our understanding of quantum steerability, ranging from the development of better

criteria to detect steerable states [148, 150, 151, 191, 192], to the analysis of the distribution of

steering among multiple parties [180, 193, 194, 195]. However unlike entanglement, for which

a variety of operationally-motivated measures exist [64, 196], there is still a surprisingly scarce

literature addressing the fundamental question of quantifying how steerable a given quantum

state is [157, 158, 197].

In this chapter we present a novel comprehensive quantitative investigation of steerability

in the archetypical setting of bipartite continuous variable systems, for which the very notion

of EPR steering was originally debated and analyzed [11, 55]. We focus on a fully Gaussian

scenario: namely, we consider generally mixed multimode bipartite Gaussian states, that con-

stitute a distinctive corner of the infinite-dimensional Hilbert space [27, 28, 198], and study

their steerability under Gaussian measurements [199, 200]. By analyzing the degree of vio-

lation of a necessary and sufficient criterion for Gaussian steerability [12, 149], we obtain a

computable measure of Gaussian steering, and we investigate its properties. In the special case

of two-mode Gaussian states, we characterize the maximum allowed steering asymmetry, we

connect the measure operationally to the key rate of one-sided device-independent QKD [201],

and we show that the Gaussian steering degree is upper bounded by the Gaussian Rényi-2

entanglement [202], with equality on pure states. Finally, we prove in general that (multi-
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mode) bound entangled Gaussian states cannot be steered by Gaussian measurements, a result

of relevance in view of the recent debate about a conjecture by Peres and its recently proposed

strengthening by Pusey [156, 203, 204, 205]. The results of this chapter have been published

in Physical Review Letters [2].

9.1 Preliminaries

We focus on a fully Gaussian scenario (see Sec 3.3, for details), where ρAB is a Gaussian state

described by the CM

σAB =

(
A C
CT B

)
, (9.1)

and Alice’s measurement set MA is also Gaussian (i.e., mapping Gaussian states into Gaus-

sian states). A Gaussian measurement [200], which is generally implemented via symplectic

transformations followed by balanced homodyne detection, can be described by a positive op-

erator with a CM TRA , satisfying TRA + iΩA ≥ 0. Every time Alice makes a measurement

RA and gets an outcome rA, Bob’s conditioned state ρrA |RA
B is Gaussian with a CM given by

BRA = B − C
(
TRA + A

)−1
CT, independent of Alice’s outcome.

It can be shown [12] that a general (n + m)-mode Gaussian state ρAB is A→ B steerable by

Alice’s Gaussian measurements iff the condition

σAB + i (0A ⊕ΩB) ≥ 0, (9.2)

is violated. Writing this in matrix form, using (3.66), the nonsteerability inequality (9.2) is

equivalent to two simultaneous conditions: (i) A > 0, and (ii) MB
σ + iΩB ≥ 0, where

MB
σ = B − CTA−1C (9.3)

is the Schur complement of A in the CM σAB. Condition (i) is always verified since A is

a physical CM. Therefore, σAB is A → B steerable iff the symmetric and positive definite

2m × 2m matrix MB
σ is not a bona fide CM, i.e., if condition (ii) is violated [12, 149]. By

Williamson’s theorem [206], MB
σ can be diagonalized by a symplectic transformation SB such

that SBMB
σST

B = diag{ν̄B
1 , ν̄

B
1 , . . . , ν̄

B
m, ν̄

B
m}, where {ν̄B

j } are the symplectic eigenvalues of MB
σ,

which can be determined by m local symplectic invariants [207]; alternatively, they can be

computed as the orthogonal eigenvalues of the matrix |iΩBMB
σ|. The nonsteerability condition

(9.2) is thus equivalent to ν̄B
j ≥ 1 for all j = 1, . . . ,m.
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9.2 Gaussan steering measure

We then propose to quantify how much a a bipartite (m + n)-mode Gaussian state with CM σAB

is steerable (by Gaussian measurements on Alice’s side) via the following quantity

GA→B(σAB) := max
{
0, −

∑
j:ν̄B

j <1

ln(ν̄B
j )
}
. (9.4)

This quantity, hereby defined as Gaussian A→ B steerability, is invariant under local unitaries

(symplectic operations at the CM level), it vanishes iff the state described by σAB is nonsteer-

able by Gaussian measurements, and it generally quantifies the amount by which the condition

(9.2) fails to be fulfilled. Clearly, a corresponding measure of Gaussian B → A steerability

can be obtained by swapping the roles of A and B, resulting in an expression like (9.4), in

which the symplectic eigenvalues of the 2n× 2n Schur complement of B, MA
σ = A−C B−1CT,

appear instead. We highlight the formal similarity with the formula for the logarithmic nega-

tivity [64, 196, 208, 209] —an entanglement measure we reviewed in Sec. 5.3.1 which quan-

tifies how much the positivity of the partial transpose condition for separability is violated

[69, 70, 210, 211]—for Gaussian states; in the latter case, however, the symplectic eigenvalues

of the partially transposed CM are considered [196, 198, 208, 212].

The proposed measure of steering is easily computable for bipartite Gaussian states of an

arbitrary number of modes. When the steered party, e.g. Bob in Eq. (9.4), has one mode only

(m = 1), the Gaussian steerability acquires a particularly simple form. Indeed, in such a case,

MB
σ has a single symplectic eigenvalue, ν̄B =

√
det MB

σ ; recalling that, by definition of Schur

complement, detσAB = det A det MB
σ, we have

GA→B(σAB) = max
{
0, 1

2 ln det A
detσAB

}
= max

{
0, S(A) − S(σAB)

}
,

(9.5)

where we have introduced the Rényi-2 entropy S, which for a Gaussian state with CM σ

reads S(σ) = 1
2 ln(detσ) [202]. For more details on the Gaussian Rényi-2 entropy, also see

Sec. 5.3.2.

9.2.1 Properties

Interestingly, the quantity S(A) − S(σAB) ≡ IA〈B can be seen as a form of quantum coherent

information [213], but with Rényi-2 entropies replacing the conventional von Neumann en-

tropies. Thanks to this connection, we can now prove some valuable properties of the Gaussian

steering measure (9.5) for (n + 1)-mode Gaussian states, namely:
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(a) GA→B is convex;

(b) GA→B is monotonically decreasing under quantum operations on the (untrusted) steering

party Alice, and under local Gaussian operations on the (trusted) steer party Bob;

(c) GA→B is additive, i.e., GA→B(σAB ⊕ τAB) = GA→B(σAB) + GA→B(τAB);

(d) GA→B(σAB) = E(σp
AB) for σp

AB pure, and

(e) GA→B(σAB) ≤ E(σAB) for σAB mixed, where E denotes the Gaussian Rényi-2 measure

of entanglement [202]. The proof of (a) follows from the concavity of the Rényi-2 entropy.

The proof of the first part of (b) follows from the fact that the Gaussian Rényi-2 coherent

information IA〈B obeys the data processing inequality (which in turn is a consequence of the

strong subadditivity of the Rényi-2 entropy S for Gaussian states) [202, 213], IA′〈B ≤ IA〈B if A′

is obtained from A by the action of a Gaussian quantum channel. The proof of the second part

of (b) is lengthier and is reported in the Appendix. Property (c) follows from straightforward

linear algebra and the additivity of the logarithm. The proof of (d) is immediate, as for pure

states S(σp
AB) = 0 and E(σp

AB) = S(A). Property (e) needs to be proven when GA→B > 0,

in which case GA→B = IA〈B. We recall from Sec. 5.3.2 that the Rényi-2 entanglement of a

bipartite Gaussian state ρAB is defined via a Gaussian convex roof procedure [198, 202],

E(ρAB) = inf
{pi, |ψi〉}

∑
i

piS(TrB |ψi〉 〈ψi|),

where the pure states {|ψi〉} are Gaussian; let us denote by {p′i , |ψ
′
i〉} the optimal decomposition

of ρAB which minimizes the Rényi-2 entanglement. We have then

E(ρAB) =
∑

i

p′iS
(
TrB |ψ

′
i〉 〈ψ

′
i |
)

=
∑

i

p′iI
A〈B

(
|ψ′i〉 〈ψ

′
i |
)

≥ IA〈B

∑
i

p′i |ψ
′
i〉 〈ψ

′
i |

 = IA〈B(ρAB)

= GA→B(ρAB),

(9.6)

where we used, in order, properties (d) and (a). Remarkably, properties (d) and (e) demonstrate

that our measure of Gaussian steering respects the hierarchy of quantum correlations [12].

In the light of the recently developed resource theory of steering [214] properties (a) and (b)

should be satisfied by any proper measure of steering, while properties (c) and (d) should be

satisfied by any quantifier that respects the hierarchy of quantum correlations.

In the following, we specialize our attention onto the paradigmatic case of two-mode Gaus-

sian states (n = m = 1), for which the degree of steering in both ways can be easily mea-

sured according to our definition: GA→B(σAB) = max{0, S(A) − S(σAB)} and GB→A(σAB) =
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Figure 9.1: Classification of separability and Gaussian steerability of two-mode Gaussian states
with marginal purities µA and µB and global purity µ = (µAµB)/η, here plotted for η = 1

2 . By
Gaussian measurements, states above the dashed line are A → B steerable and states to the right
of the dotted line are B → A steerable. An overlay of the symmetrized degree of steerability
G↔ ≡ max{GA→B, GB→A} is depicted in the region of entangled states. See text for further details
on the various regions and their boundaries.

max{0, S(B) − S(σAB)}. Qualification and quantification of steering in two-mode Gaussian

states thus reduces entirely to an interplay between the global purity µ = 1/
√

detσAB and the

two marginal purities µA(B) = 1/
√

det A(B) . Introducing the ratio η = (µAµB)/µ, all physical

two-mode Gaussian states live in the region η0 ≤ η ≤ 1 where η0 = µAµB + |µA − µB| [212].

States with ηs ≤ η ≤ 1 where ηs = µA + µB − µAµB are necessarily separable, states with

ηe ≤ η < ηs where ηe =

√
µ2

A + µ2
B − µ

2
Aµ

2
B can be entangled or separable (coexistence region),

while states with η0 ≤ η < ηe are necessarily entangled [212]. Within the latter region, states

with η ≥ {µA, µB} are nonsteerable; states with η < µB are A → B steerable; states with η < µA

are B → A steerable. This allows us to classify the separability and steerability (by Gaussian

measurements) of all two-mode Gaussian states in the (µA, µB, η) space, completing the pro-

gramme advanced a decade ago in [212, 215]. A cross-section of this insightful classification

for η = 1
2 is visualized in Fig. 9.1.

We have seen in general how steering can never exceed entanglement for Gaussian states

(with one steered mode). It is interesting to investigate how small GA→B can also be for a given

Rényi-2 entanglement E, on arbitrary two-mode Gaussian states. To address this question we

exploit the local-unitary-invariance of GA→B, and consider without loss of generality its evalu-
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Figure 9.2: Plots of (a) Gaussian steerability versus Gaussian Rényi-2 entanglement and (b) A→ B
versus B → A Gaussian steerability, for two-mode Gaussian states. Physically allowed states fill
the shaded (green) regions. Pure states σp

AB sit on the upper (dashed) boundary in panel (a); the
lower (solid) boundaries in both plots accommodate extremal states σx

AB, while swapping A and B
in them one obtains states σx

BA which fill the upper boundary in (b).

ation on CMs (3.66) in standard form (3.67), characterized by A = diag(a, a), B = diag(b, b),

C = diag(c1, c2). We can then perform a constrained minimization of GA→B at fixed E, over

the covariances a, b, c1, c2, subject to the bona fide condition (3.27). We find that the extremal

states sit on the boundary η = η0, and have a CM σx
AB specified by

b = a − 1 + a/s, c1 = −c2 =
√

(a − 1)(s + 1)(a/s) ,

with a ≥ s ≥ 0, in the limit a → ∞. For these extremal states, GA→B(σx
AB) = ln(s) and

E(σx
AB) = ln(2s + 1). Analogous results hold for GB→A. For all two-mode Gaussian states with

a given E, the steering measures thus admit an upper and a lower bound [see Fig. 9.2(a)],

max
{
0, ln

[ 1
2 (eE − 1)

]}
≤

{
GA→B, GB→A} ≤ E, (9.7)

where the leftmost inequality is saturated on the extremal states σx
AB, and the rightmost one on

pure (two-mode squeezed) states σp
AB, specified by b = a, c1 = −c2 =

√
a2 − 1 . This entails,

in particular, that all two-mode Gaussian states with E > ln 3 ≈ 1.1 are necessarily steerable in

both ways; for highly entangled states, E � 0, the Gaussian steering measure (in either way)

remains bounded between E and E − ln 2.

The asymmetry of steering in the Gaussian setting has been experimentally demonstrated in

[184, 216]. Clearly, GA→B , GB→A in general, but how asymmetric can steerability be, at most,

on two-mode Gaussian states? By maximizing the difference |GB→A − GA→B| on standard form
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9.2 Gaussan steering measure

CMs, we find quite intriguingly that the states endowed with maximum steering asymmetry are

exactly the ones with CM σx
AB defined above, for which GA→B = ln(s) and GB→A = ln(s + 1).

For all two-mode Gaussian states, one has then

max{0, ln[exp(GA→B) − 1]} ≤ GB→A ≤ ln[exp(GA→B) + 1]. (9.8)

This entails that the steering asymmetry |GB→A − GA→B| can never exceed ln 2, it is maximal

when the state is nonsteerable in one way, and it decreases with increasing steerability in either

way [see Fig. 9.2(b)].

9.2.2 Operational interpretation

We now investigate operational interpretations for the proposed steering quantifier(s) for two-

mode Gaussian states. We observe from [12, 149] that our measures, evaluated on standard

form CMs, are monotonic functions of the product of the (minimum) conditional variances

associated to local homodyne detections, which appear in the seminal Reid criterion (7.8) for

the EPR paradox [11] described in Chapter 7, namely,

4 VQA |QBVPA |PB = det MA
σ = detσAB/ det B, (9.9)

and,

4 VQB|QAVPB|PA = det MB
σ = detσAB/ det A; (9.10)

this renders GA→B and GB→A directly accessible experimentally. Notice a slight change of

notation ∆2
minQB ↔ VQB|QA compared to Reid’s criterion Eq. (7.8), in order to make clear

the kind of measurement the steering party (here, Alice) performs. Similarly for the other

variances.

We can then show that these measures find important applications for the task of one-sided

device-independent QKD [217], which has been recently extended to continuous variables

[201]. Considering the relevant entanglement-based protocol [218], let a two-mode entangled

Gaussian state with CM σAB in standard form be shared between Alice and Bob, who want

to establish a secret key. By performing homodyne detections on their modes, and a direct

reconciliation scheme (where Alice sends corrections to Bob), they can achieve a secret key

rate [201]

K ≥ max
{
0, ln

( 1
e
√

VQA |QBVpA |pB

)}
. (9.11)
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This bound can be readily expressed in terms of the B → A Gaussian steerability of σAB,

yielding

K ≥ max{0, GB→A(σAB) + ln 2 − 1}. (9.12)

In the case of a reverse reconciliation protocol, the corresponding key rate (9.12) would involve

GA→B rather than GB→A. Therefore, the degree of Gaussian steerability defined here nicely

quantifies the guaranteed key rate achievable within a practical one-sided device independent

QKD setting, realizable with current optical technology [184, 201].

9.3 No-go theorem: steering bound entangled states

Finally, we address the more fundamental question of steerability of bound entangled Gaussian

states. Peres conjectured that states whose entanglement cannot be distilled, i.e., bound entan-

gled states [64], cannot violate any Bell inequality [203]. Recently, Pusey proposed a stronger

conjecture, namely that bound entangled states cannot even display EPR steering [156]. Sur-

prisingly, both conjectures have been now disproven, by identifying steerable [204] and non-

local [205] bound entangled qudit states. However, the question stayed open for continuous

variable systems, and we settle it in the Gaussian case. Let σAB be the CM of a general bound

entangled (n + m)-mode Gaussian state. Any such state obeys the bona fide condition (3.27)

σAB + i ΩA ⊕ΩB ≥ 0,

as well as Simon’s condition (5.8)

σAB + i (−ΩA) ⊕ΩB ≥ 0,

which amounts to positivity under partial transposition [70] (see, Sec. 5.2.2.1 for details).

Adding the two matrix inequalities together, one obtains (twice) the nonsteerability condition

(9.2). This remarkably simple proof yields a general no-go result: steering bound entangled

Gaussian states by Gaussian measurements is impossible; i.e., the Peres-Pusey conjecture holds

in a fully Gaussian scenario.

However, we only discussed about the effect of Gaussian measurements on Gaussian states,

and the no-go theorem we proved is also constrained into that fully-Gaussian framework. A

good question would then be, whether non-Gaussian measurements can steer a state that is un-

steerable by Gaussian measurements and thus satisfies Eq. (9.2). Up to very recently it wasn’t

known whether Gaussian measurements are optimal for steering Gaussian states. They sure are
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optimal in the case of entanglement, but are completely useless in the case of nonlocality, and

as we discussed in Chapter 4, steering hierarchically falls in-between entanglement and non-

locality. It was finally shown in Refs. [216, 219], by constructing explicit examples of states

and measurements, that Gaussian states are not optimal for steering; i.e., there exist Gaus-

sian states that are unsteerable by Gaussian measurements, but are steerable if non-Gaussian

measurements are considered.

9.4 Discussion and conclusion

In conclusion, we presented an intuitive and computable quantification of EPR steering [12] for

bipartite Gaussian states under Gaussian measurements. We linked our measure to the key rate

of one-sided device-independent QKD [201] and proved hierarchical relationships with entan-

glement. This work delivers substantial advances for the characterization of EPR steering and

provides an important addition to the established framework of Gaussian quantum information

theory [27, 28, 198]. In principle, our approach might be applied as well to general states:

Namely, for a (non-Gaussian) bipartite state ρAB, one can define an indicator of steerability by

Gaussian measurements as in Eq. (9.4), with σAB denoting the CM of the second moments of

ρAB. This can be connected, in general, to the degree of violation of linear variance criteria for

EPR steering [3, 11, 148, 149, 220]. In Chapter 10 we will show how to make such a gener-

alization to non-Gaussian states. Notice however that a bipartite (non-)Gaussian state ρAB can

still be steerable even if its GA→B vanishes. In particular, Gaussian states that are unsteerable by

Gaussian measurements have recently been shown to be steerable by non-Gaussian measure-

ments. Also, non-Gaussian states may possess EPR correlations only detectable via nonlinear

criteria involving higher order moments [4, 148, 150]; for example, a two-qubit pure Bell state

is clearly steerable but its CM fails to violate (9.2) (see Sec. 8.2.4.3).

The interplay between EPR steering [12], ‘obesity’ of steering ellipsoids [221], and other

forms of asymmetric nonclassical correlations such as discord [50, 222, 223, 224], is worthy

of further investigation. In Chapter 11 we generalize our analysis to multipartite settings [180],

in order to derive quantitative monogamy inequalities for steering [194], complementing the

existing ones for Gaussian entanglement [198, 202, 225] presented in Sec. 5.3.2.
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10

Steering measure for arbitrary
two-mode CV states

In this Chapter we present an accessible approach to the quantitative estimation of steerability

for arbitrary bipartite two-mode continuous variable states and Gaussian (quadrature) mea-

surements. These results will generalize the Gaussian steering measure introduced in Chapter

9, whose validity was restricted strictly to the Gaussian framework, to arbitrary states in the

case of two modes. We examine recent experimental criteria for steering [148], the so-called

EPR-Reid variance criteria whose applicability extends to all (Gaussian and non-Gaussian)

states, and analyze their maximal violation by optimal local quadrature observables for Alice

and Bob, in order to capture the largest possible departure from a local hidden state model

description of the correlations,

P(A, B|a, b) =
∑
λ

P(λ)P(A|a, λ)PQ(B|, bρλ). (10.1)

Hence we define (in Section 10.1) a suitable measure of steering for an arbitrary two-mode

state, and we prove that it admits an analytically computable lower bound that captures the

degree of steerability of the given state by Gaussian measurements. The lower bound coin-

cides with the Gaussian steering measure introduced in Chapter 9 [2], whose usefulness is here

generalized from the Gaussian domain to arbitrary states. We prove Gaussian states to be in

fact extremal [226], as they are minimally steerable among all states with the same covariance

matrix, according to the measure proposed in this chapter. As a corollary of our analysis, we

show (in Section 10.2) that a necessary and sufficient condition for steerability of Gaussian

states under Gaussian measurements obtained by Wiseman et al. based on covariance matrices
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[12, 149], remains valid as a sufficient steering criterion for arbitrary non-Gaussian states, and

amounts to Reid’s criterion [11, 220] when optimal Gaussian local observables are chosen for

the latter. We conclude (in Section 10.3) with a summary of our results and an outlook of

currently open questions motivated by the present analysis. This chapter is based on our work

Ref. [3] published by the journal JOSA B.

10.1 A steering measure for two-mode states based on quadrature
measurements

In general [227], a measure of steering should quantify how much the correlations of a quantum

state depart from the expression in Eq. (10.1). Since a manifestation of these correlations

can be observed by the violation of suitable EPR-steering criteria, one can get a quantitative

estimation of the degree of steerability in a given state by evaluating the maximum violation of

a chosen steering criterion as revealed by optimal measurements. One expects that the higher

the violation (i.e., the amount of correlations), the more useful the state will be in tasks that use

quantum steering as a resource.

In this chapter we consider an arbitrary state ρ̂AB of a two-mode continuous variable sys-

tem. The relevant steering criteria to our work will be exactly the multiplicative variance EPR-

steering criteria [148] we studied in Sec. 8.1, tailored to the scenario where they correspond

to Reid’s criterion [11]. We consider Reid’s scenario here, where Bob measures two canon-

ically conjugate observables on his subsystem, q̂B, p̂B with corresponding outcomes QB, PB,

and Alice tries to guess Bob’s outcomes based on the outcomes of measurements on her own

subsystem. As we showed in Sec. 8.1, following [148, 220], considering this scenario a bi-

partite state ρ̂AB shared by Alice and Bob is steerable by Alice, i.e. “A → B” steerable, if the

condition

∆2
minQB ∆2

minPB ≥
1
4
, (10.2)

on the inference variances of Bob, is violated. For the relevant definitions and notation we refer

the reader back to the relevant sections 7.1.2 and 8.1.

Notice that the criterion (10.2) is independent of Alice’s and Bob’s first moments, since

displacements of the form QA(B) → QA(B) + dA(B) leave the inference variances (of both posi-

tion and momentum) invariant as can be easily seen from the definition (8.1). Therefore, first

moments will be assumed to be zero in the rest of the chapter without any loss of generality.
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We remark that the EPR-steering criterion (10.2) is applicable to arbitrary states and is

valid without any assumption on the Hilbert space of Alice’s subsystem, as Bob just needs to

identify two distinctly labelled measurements performed by Alice [148]. However, in order

to keep our analysis accessible, we will further assume that Alice’s allowed measurements

are restricted to be quadrature ones, i.e., projections on the eigenbasis of (generally rotated)

canonically conjugate operators q̂θA and p̂θA, such that [q̂θA, p̂θA] = i in natural units. Although

quadrature measurements are not general and not necessarily optimal to detect steerability in

all states, they are convenient from a theoretical point of view and can be reliably implemented

in laboratory by means of homodyne detections.

One immediately sees that the product of variances in (10.2) is not invariant under local

unitary operations (apart from displacements) by Alice and Bob, thus a state might be detected

as more or less steerable if some local change of basis is implemented. In order to capture

steerability in an invariant way, one can consider the maximum violation of (10.2) that a quan-

tum state ρ̂AB can exhibit, by minimizing the product ∆2
minQB ∆2

minPB over all local unitaries

Ulocal = UA ⊗ UB for A and B applied to the state.

We then propose to quantify the “A → B” steerability of an arbitrary two-mode CV state

ρ̂AB detectable by quadrature measurements, via the measure

SA→B (ρ̂AB) = max
{

0, −
1
2

ln 4F
}
, (10.3)

where

F = min
{Ulocal}

∆2
minQB ∆2

minPB. (10.4)

The measure naturally quantifies the amount of violation of an optimized multiplicative vari-

ance EPR-steering criterion of the form (10.2) for an arbitrary state ρ̂AB. As one would expect

from any proper quantifier of quantum correlations, the measure enjoys local unitary invariance

by definition, and it vanishes for all states which are not “A → B” steerable. Also, the reason

for the choice of this particular functional form w.r.t. the product of the inference variances is

to, as we show later, reduce to the previously proposed Gaussian steering measure G (10.12)

when only second moments are considered.

Calculating SA→B in an analytical manner for an arbitrary state is still a difficult task. In

general, given a quantum state, the minimization in F involves both Gaussian and non-Gaussian

local unitaries for Alice and Bob, which correspond to violations of (10.2) by Gaussian and

non-Gaussian quadrature measurements, respectively. It is possible, though, to obtain a com-

putable lower bound to SA→B if one constrains the optimization to Gaussian unitaries only. The
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lower bound, presented in the next subsection, will then provide a quantitative indication of the

“A → B” steerability of ρ̂AB that can be demonstrated by Gaussian measurements on Alice’s

subsystem.

10.1.1 Lower bound

To obtain a lower bound for the steering measure SA→B (ρ̂AB) in terms of second moments, we

will show that, for arbitrary states ρ̂AB with corresponding CM σAB, the product of inference

variances ∆2
infQB ∆2

infPB, acquires its minimum value when σAB is in the standard form (3.67)

σ̄AB =

(
Ā C̄
C̄T B̄

)
, (10.5)

where Ā = diag (a, a), B̄ = diag (b, b), and C̄ = diag (c1, c2). Let us begin by considering

a steerable ρ̂AB that violates (10.2), so that SA→B (ρ̂AB) > 0. We use the fact that ∆2
infQB ≥

∆2
minQB, when a linear estimator Qest (QA) = gqQA + dq is used in its definition (8.1); after

minimizing the inference variance over the real numbers gq, dq and considering vanishing first

moments without any loss of generality, we find ∆2
infQB = 〈Q2

B〉−〈QBQA〉
2/〈Q2

A〉 [220]. Similar

considerations hold for the inference variance of momentum, where an estimator of the form

Pest (PA) = gpPA + dp will give ∆2
infPB = 〈P2

B〉 − 〈PBPA〉
2/〈P2

A〉 after optimizing over the real

numbers gp, dp.

Since a linear estimator is optimal for inferring the variance in the case of Gaussian states

[11, 220], but not anymore in the general case, the inequality ∆2
infQB∆2

infPB ≥ ∆2
minQB∆2

minPB

will be true for all states (with equality on Gaussian states). Hence, F in (10.3) can be upper

bounded as follows,

F = min
{UG}∪{UnG}

∆2
minQB∆2

minPB

≤ min
{UG}∪{UnG}

∆2
infQB∆2

infPB

≤ min
{UG}

∆2
infQB∆2

infPB,

(10.6)

where we have decomposed the set of local unitaries {Ulocal} into Gaussian {UG} and non-

Gaussian {UnG} ones. The product of inference variances in (10.6) is intended as evaluated

from the optimal linear estimator as detailed above [220], namely

∆2
infQB∆2

infPB =

〈Q2
B〉 −

〈QBQA〉
2

〈Q2
A〉

 × 〈P2
B〉 −

〈PBPA〉
2

〈P2
A〉

 , (10.7)
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Since an upper bound on F will give us the desired lower bound on SA→B, what remains is to

compute this upper bound, i.e., the rightmost quantity in (10.6), which only depends on the

CM elements of the state.

Local Gaussian unitaries (that do not give rise to displacements) acting on states ρ̂AB, trans-

late on the level of CMs as local symplectic transformations Slocal = SA ⊕ SB, acting by con-

gruence: σAB 7→ SlocalσABST
local [28, 228]. In order to compute min{Slocal} ∆

2
infQB∆2

infPB we can,

with no loss of generality, consider a CM σ̄AB in standard form, apply an arbitrary local sym-

plectic operation Slocal to it, then evaluate ∆2
infQB ∆2

infPB on the transformed CM Slocalσ̄ABST
local,

and finally minimize this quantity over all possible matrices SA(B). To perform the minimization

we parametrize the matrix elements of SA(B) in the following convenient way,

SA(B) =

 1
(1−uA(B)vA(B))wA(B)

vA(B)

(1−uA(B)vA(B))wA(B)

uA(B)wA(B) wA(B)

 (10.8)

where the symplectic condition SA(B)ΩA(B)ST
A(B) = ΩA(B) has been taken into account and the

real variables uA(B), vA(B),wA(B) are now independent of each other. Performing the (uncon-

strained) minimization over the variables uA(B), vA(B) we were able to obtain analytically the

global minimum of the product (10.7) with respect to Gaussian observables,

4 min
{UG}

[
∆2

infQB ∆2
infPB

]
= det MB

σ, (10.9)

which also constitutes the upper bound for F in (10.6). Here the local symplectic invariant

det MB
σ =

(
b −

c2
1

a

) (
b −

c2
2

a

)
is the determinant of the Schur complement of Ā in σ̄AB, first

defined in Eq. (9.3) for any two-mode CM,

MB
σ = B − CTA−1C . (10.10)

The minimum (A.12) can be obtained from every state using the following parameters that

determine the local symplectic operations (10.8),

(uA, vA, uB, vB) =

(
c1vB
c2
,
−ab+c2

1
ab−c2

2

c2vB
c1
,
−ab+c2

1
ab−c2

2
vB, vB

)
,

∀ vB,wA(B). It is evident from (A.12) that the minimum product of inference variances (10.7)

is achieved, in particular, when evaluated for a standard form CM σ̄AB.

Substituting 4F ≤ det MB
σ in (10.3), a lower bound for the proposed steering measure of an

arbitrary two-mode state ρ̂AB is obtained,

SA→B (ρ̂AB) ≥ GA→B (σAB) , (10.11)
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where we recognize the Gaussian steering measure introduced in Chapter 9,

GA→B (σAB) = max
{

0,−
1
2

ln det MB
σ

}
. (10.12)

The lower bound GA→B solely depends on local symplectic invariant quantities that uniquely

specify the CM of the state. As is known [212], these invariant quantities can be expressed

back with respect to the original elements of the CM which one can measure in laboratory,

e.g. via homodyne tomography [229]. Henceforth, the lower bound that we obtained is both

analytically computable and, also, experimentally accessible in a routinely fashion for any

(Gaussian or non-Gaussian) state, since only moments up to second order are involved.

In the following we discuss some useful properties that the steering measure SA→B and

its lower bound GA→B satisfy, and show how these results can be used to link and generalize

existing steering criteria.

10.1.2 Properties

In Chapter 9 we introduced a measure of EPR-steering for multi-mode bipartite Gaussian states

that dealt with the problem of “how much a Gaussian state can be steered by Gaussian mea-

surements”. This measure GA→B was defined as the amount of violation of the following crite-

rion by Wiseman et al. [12, 149],

σAB + i (0A ⊕ΩB) ≥ 0. (10.13)

Violation of (10.13) gives a necessary and sufficient condition for “A → B” steerability of

Gaussian states by Gaussian measurements. We recall from the original papers [12, 149], where

the details can be found, that for two modes the condition (10.13) is violated iff det MB
σ < 1,

hence equivalently iff GA→B (σAB) > 0, where the Gaussian steering measure is defined in

(10.12). In a two-mode continuous variable system, a non-zero value of Gaussian steering

GA→B > 0 detected on a CM σAB, which implies a non-zero value of the more general measure

SA→B > 0 due to (10.11), constitutes therefore not only a necessary and sufficient condition for

the steerability by Gaussian measurements of the Gaussian state ρ̂G
AB defined by σAB, but also a

sufficient condition for the steerability of all (non-Gaussian) states ρ̂AB with the same CM σAB.

While SA→B is hard to study in complete generality, its lower bound GA→B, however, was

shown in Sec. 9.2.1 to satisfy a plethora of valuable properties. The present chapter, thus, vali-

dates all the already established properties of GA→B as an indicator of steerability by Gaussian

measurements, and extends them to arbitrary states.
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Interestingly, Ineq. (10.11) suggests that by accessing only the second moments of an

arbitrary state, one will not overestimate its steerability according to our measure. We can make

this observation rigorous by showing that the steering quantifier SA→B satisfies an important

extremality property as formalized in [226]. Namely, the Gaussian state ρ̂G
AB defined by its CM

σAB minimizes SA→B among all states ρ̂AB with the same CM σAB. This follows by recalling

that the value of the Reid product (10.7), which appears in (10.6), is independent from the

(Gaussian versus non-Gaussian) nature of the state, and that linear inference estimators are

globally optimal for Gaussian states as mentioned above [220]. This entails that the middle

term in (10.6) can be recast as

min
{UG}∪{UnG}

(∆2
infQB∆2

infPB)ρ̂AB

= min
{UG}∪{UnG}

(∆2
infQB∆2

infPB)ρ̂G
AB

= min
{UG}∪{UnG}

(∆2
minQB∆2

minPB)ρ̂G
AB

= F(ρ̂G
AB) ,

(10.14)

where, for the sake of clarity, we have explicitly indicated the states on which the variances

are calculated: ρ̂AB denotes an arbitrary two-mode state, and ρ̂G
AB corresponds to the reference

Gaussian state with the same CM.

Therefore, combining Eqs. (10.3), (10.6), (10.11), and (10.14), we can write the following

chain of inequalities for the “A→ B” steerability of an arbitrary two-mode state ρ̂AB,

SA→B (ρ̂AB) ≥ SA→B
(
ρ̂G

AB

)
≥ GA→B (σAB) . (10.15)

The leftmost inequality in (10.15) embodies the desired extremality property [226] for our

steering measure. This is very relevant in a typical experimental situation, where the exact

nature of the state ρ̂AB is mostly unknown to the experimentalist. Then, thanks to (10.15) we

rest assured that, by assuming a Gaussian nature of the state under scrutiny, the experimentalist

will never overestimate the EPR-steering correlations between Alice and Bob as quantified by

the measure defined in (10.3).

Finally, coming to operational interpretations for our proposed steering quantifier SA→B,

we show that it is connected to the figure of merit of one-sided device independent quantum

key distribution [201], that is, the secret key rate. In the conventional entanglement-based

quantum cryptography protocol [218], Alice and Bob share an arbitrary two-mode state ρ̂AB,

and want to establish a secret key given that Alice does not trust her devices. By performing

147



10. STEERING MEASURE FOR ARBITRARY TWO-MODE CV STATES

local measurements (typically homodyne detections) on their modes, and a direct reconciliation

scheme (where Bob sends corrections to Alice) they can achieve the secret key rate [201]

K ≥ max

0, ln

 1

e
√

∆2
infQB∆2

infPB


 . (10.16)

Notice that the secret key rate depends on the expression in (10.7), which is not unitarily

invariant. Therefore, it can be optimized over local unitary operations. In the case where

∆2
infQB∆2

infPB takes its minimum value for the given shared ρ̂AB, the lower bound on the corre-

spondingly optimal key rate Kopt can be readily expressed in terms of the “A→ B” steerability

measure, yielding

Kopt ≥ max
{
0, SA→B (ρ̂AB) + ln 2 − 1

}
. (10.17)

Thus, SA→B quantifies a guaranteed key rate for any given state. If a reverse reconciliation

protocol is used (in which Alice sends corrections to Bob) the quantifier SB→A of the inverse

steering direction enters (10.17) instead. Thus, one sees that the asymmetric nature of steering

correlations can play a decisive role in communication protocols that rely on them as resources.

In the cryptographic scenario discussed, if the shared state ρ̂AB is only one-way steerable, say

A→ B, then a reverse reconciliation protocol that relies on SB→A is not possible. A looser lower

bound to the key rate (10.17) can also be expressed in terms of GA→B by using (10.11), in case

one wants to study the advantage that Gaussian steering alone gives for the key distribution, or

one just wants to get an estimate.

10.2 Reid, Wiseman, and a stronger steering test

Finally, we discuss the implications of our work on existing EPR-steering criteria [11, 12]. The

second order EPR-steering criteria by Reid (10.2) and Wiseman et al. (10.13), are perhaps the

most well-known ones for continuous variable systems. Although a comparison between them

has been issued before in a special case (two-mode Gaussian states in standard form) [149],

they appear to exhibit quite distinct features in general [148]. On one hand, Wiseman et al.’s

criterion (10.13), defined only in the Gaussian domain, is invariant under local symplectics and

provides a necessary and sufficient condition for steerability of Gaussian states under Gaussian

measurements. On the other hand, Reid’s criterion (10.2) is applicable to all states but is not

invariant under local symplectics and as a result it cannot always detect steerability even on

a Gaussian state. As an illustrative example, we show in Fig. 10.1 the performance of the
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Figure 10.1: We illustrate the performance of Reid’s [11] and Wiseman et al.’s [12] EPR-steering
criteria for the steering detection of a pure two-mode squeezed state with squeezing r (see Sec.
3.3.2.5, for details on these states) , with CM transformed from the standard form by the applica-
tion of a local symplectic transformation parameterized as in (10.8), with uA(B) = vA(B)/(1 + v2

A(B)),
wA(B) = 1 + v2

A(B) (in the plot, we choose vA = 0.16 and vB = 0.19). The criteria are represented by
their figures of merit, namely the product of conditional variances (dashed blue line) for Reid’s cri-
terion (10.2) and the determinant det MB (solid orange line) for Wiseman et al.’s criterion (10.13).
The two-mode squeezed state is steerable for all r > 0, but the aforementioned criteria detect this
steerability only when their respective parameters give a value smaller than unity (straight black
line). As one can see, we have det MB < 1 for all r > 0 and independently of any local rota-
tions, while Reid’s criterion detects steerability only for a small range of squeezing degrees and is
highly affected by local rotations. If the state is sufficiently rotated out of the standard form, the
unoptimized Reid’s criterion will not be able to detect any steering at all.

two criteria for steering detection in a pure two-mode squeezed state, locally rotated out of

its standard form. One can clearly see that Wiseman et al.’s criterion is superior to the non-

optimized Reid’s one, which fails to detect steering in the regimes of very low or very high

squeezing [230].

However, it was previously argued [148] that Wiseman et al.’s stronger condition could

not qualify as a general steering test, and could not be used in an experimental scenario where

sources of non-Gaussianity may be present, since the derivation of the criterion and its valid-

ity were limited strictly to the Gaussian domain, while general EPR-steering tests should be

defined for all states and measurements. The exact connection established by (A.12) between

Wiseman et al.’s figure of merit, det MB
σ, and Reid’s product of inference variances (10.7),
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makes us realize now that the two criteria are just two sides of the same coin; i.e., Wiseman et

al.’s criterion represents the best performance of Reid’s criterion when optimal Gaussian ob-

servables are used for the latter. As a byproduct of this connection, we have thus upgraded the

validity of Wiseman et al.’s criterion to arbitrary two-mode continuous variable states. Namely,

our results imply that a violation of (10.13) on any state ρ̂AB with CM σAB is sufficient to cer-

tify its “A → B” steerability, as detectable in laboratory by optimal quadrature measurements.

This condition can be thus regarded, to the best of our current knowledge, as the strongest ex-

perimentally friendly EPR-steering test for arbitrary two-mode states involving moments up to

second order.

10.3 Discussion and conclusion

We introduced a quantifier of EPR-steering for arbitrary bipartite two-mode continuous-variable

states, that can be estimated both experimentally and theoretically in an analytical manner.

Gaussian states were found to be extremal with respect to our measure, minimizing it among

all continuous variable states with fixed second moments [226]. By further restricting to Gaus-

sian measurements, we obtained a computable lower bound for any (Gaussian or non-Gaussian)

two-mode state, that was shown to satisfy a plethora of good properties [2]. The measure pro-

posed in this chapter is seen to quantify a guaranteed key rate of one-sided device independent

quantum key distribution protocols [201]. Finally, this work generalizes and sheds new light

on existing steering criteria based on quadrature measurements [11, 12].

Nevertheless many questions still remain, complementing the ones posed previously in [2].

To begin with, it would be worthwhile to extend the results presented here to multi-mode states

and see whether a connection similar to Eq. (A.12) still holds. We also leave for further re-

search the possibility that our quantifier (or its lower bound) may enter in other figures of merit

for protocols that consume steering as a resource, like the tasks of secure quantum teleportation

and teleamplification of Gaussian states [194, 231] or entanglement-assisted Gaussian subchan-

nel discrimination with one-way measurements [157]. Moreover, the proved connection of the

measure with entropic quantities in the purely Gaussian scenario could be an instance of a

more general property that we believe is worth investigating, possibly making the link with the

degree of violation of more powerful (nonlinear) entropic steering tests [150, 151].
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Multipartite steering, monogamy and
cryptographical applications

We derive laws for the distribution of quantum steering among different parties in multipartite

Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the

generalized Coffman-Kundu-Wootters inequality holds quantitatively for a recently introduced

measure of Gaussian steering. We then define the residual Gaussian steering, stemming from

the monogamy inequality, as an indicator of collective steering-type correlations. For pure

three-mode Gaussian states, the residual acts a quantifier of genuine multipartite steering, and

is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum

secret sharing. Optimal resource states for the latter protocol are identified, and their possible

experimental implementation discussed. Our results pin down the role of multipartite steering

for quantum communication. This chapter is based on our work Ref. [5] which is currently

under peer review.

11.1 Preliminaries

With the imminent debacle of Moore’s law, and the constant need for faster and more reliable

processing of information, quantum technologies are set to radically change the landscape of

modern communication and computation. A successful and secure quantum network relies on

quantum correlations distributed and shared over many sites [127]. Different kinds of multipar-

tite quantum correlations have been considered as valuable resources for various applications in

quantum communication tasks. Multipartite entanglement [232, 233, 234, 235, 236, 237, 238]
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and multipartite Bell nonlocality [239, 240, 241, 242] are two well known instances and have

received extensive attention in recent developments of quantum information theory, as well as

in other branches of modern physics. There has been substantial experimental progress in engi-

neering and detection of both such correlations, by using e.g. photons [243, 244, 245, 246, 247],

ions [248], or continuous variable (CV) systems [249, 250, 251, 252]. However, as an inter-

mediate type of quantum correlation between entanglement and Bell nonlocality, multipartite

quantum steering [253, 254] still defies a complete understanding. In consideration of the in-

trinsic relevance of the notion of steering to the foundational core of quantum mechanics, it has

become a worthwhile objective to deeply explore the characteristics of multipartite steering

distributed over many parties, and to establish what usefulness to multiuser quantum commu-

nication protocols can such a resource provide, where bare entanglement is not enough and

Bell nonlocality may not be accessible.

The concept of quantum steering was originally introduced by Schrödinger [255] to de-

scribe the “spooky action-at-a-distance” effect noted in the Einstein-Podolsky-Rosen (EPR)

paradox [55, 220, 256], whereby local measurements performed on one party apparently adjust

(steer) the state of another distant party. Recently identified as a distinct type of nonlocality

[12, 149], quantum steering is thus a directional form of quantum correlations, characterized

by its inherent asymmetry between the parties [2, 4, 257, 258, 259, 260, 261]. Additionally,

steering allows verification of entanglement, without assumptions of the full trust of reliabil-

ity of equipment at all of the nodes of a communication network [148]. Steering is then a

natural resource for one-sided device-independent quantum key distribution [201, 262]. For

bipartite systems, a comprehensive quantitative investigation of quantum steering has been re-

cently proposed [3, 263, 264, 265] and tested in several systems [189, 216, 266, 267, 268,

269? ]. Comparatively little is known about steering in multipartite scenarios. For instance,

Refs. [180, 270, 271] derived criteria to detect genuine multipartite steering, and Ref. [272]

presented some limitations on joint quantum steering in tripartite systems.

Here we extend our studies of bipartite steering presented in Chapters 9 and 10, and we

focus on steerability of multipartite Gaussian states of CV systems by Gaussian measure-

ments, a physical scenario which is of primary relevance for experimental implementations

[27, 198, 273]. In order to investigate the shareability of Gaussian steering from a quanti-

tative perspective [2], we establish monogamy relations imposing constraints on the degree

of bipartite EPR steering that can be shared among N-mode CV systems in Gaussian states,
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in analogy with the Coffman-Kundu-Wootters (CKW) monogamy inequality for entangle-

ment [236, 237, 274, 275, 276, 277]. We further propose an indicator of collective steering-

type correlations, the residual Gaussian steering (RGS), stemming from the laws of steer-

ing monogamy, that is shown to act as a quantifier of genuine multipartite steering for pure

three-mode Gaussian states. Finally, we show how the RGS acquires an operational interpre-

tation in the context of a partially device-independent quantum secret sharing (QSS) protocol

[6, 13, 169]. Specifically, taking into account arbitrary eavesdropping and potential cheating

strategies of some of the parties [6], the achievable key rate of the protocol is shown to admit

tight lower and upper bounds which are simple linear functions of the RGS. This in turn allows

us to characterize optimal resources for CV QSS in terms of their multipartite steering degree.

11.2 Monogamy of Gaussian steering

A fundamental property of entanglement, that has profound applications in quantum communi-

cation, is known as monogamy [278]. Any two quantum systems that are maximally entangled

with each other, cannot be entangled (or, even, classically correlated) with any other third

system. Therefore, entanglement cannot be freely shared among different parties. In their

seminal paper [274], CKW derived a monogamy inequality that quantitatively describes this

phenomenon for any finite entanglement shared among arbitrary three-qubit states ρ

C2
A:(BC) (ρ) ≥ C2

A:B (ρ) + C2
A:C (ρ) , (11.1)

where C2
A:(BC) (ρ) is the squared concurrence, quantifying the amount of bipartite entanglement

across the bipartition A : (BC). Osborne and Verstraete later generalized the CKW monogamy

inequality to n qubits [276]. For CV systems, however, both the quantification and the study of

the distribution of entanglement constitute in general a considerably harder problem. Remark-

ably, if one focuses on the theoretically and practically relevant class of Gaussian states, vari-

ous results similar to the qubit case have been derived, using different entanglement measures

[198, 236, 237, 275, 277, 279]. Of particular interest to us will be the fact that the Gaussian

Rényi-2 entanglement monotone EA:B (ρAB) introduced in Sec. 5.3.2, which quantifies entan-

glement of bipartite Gaussian states ρAB, has been shown to obey a CKW-type monogamy

inequality (5.38) for all m-mode Gaussian states ρA1...Am with covariance matrix (CM) σA1...Am

[277],

EAk:(A1,...,Ak−1,Ak+1,...,Am)
(
σA1...Am

)
−

∑
j,k

EAk:A j

(
σA1...Am

)
≥ 0, (11.2)
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where each A j comprises one mode only.

Quantum steering is a type of correlation that allows for entanglement certification in a

multi-mode bipartite state ρAB even when one of the parties’ devices, say Bob’s, are com-

pletely uncharacterized (untrusted). In this case, we say that Bob can steer Alice’s local state

[12, 149]. Keeping our focus on Gaussian states and measurements [2], the question, thus,

naturally arises: is steering monogamous? Intuitively one would expect that there should exist

limitations on the distribution of steering-type correlations, since steering is only a stronger

form of the already monogamous entanglement. A partial answer to this question was re-

cently given by Reid [272], who showed that, under restrictions to measurements and detection

criteria involving up to second order moments, if a single-mode party A can be steered by a

single-mode party B then no other single-mode party C can simultaneously steer A. This was

recently generalized to the case of parties B and C comprising an arbitrary number of modes

[280].

In the following we provide general quantitative limitations to the distribution of Gaussian

steering among many parties, complementing the previous qualitative analysis. For our pur-

poses, we will focus on the Gaussian steering measure introduced in Chapter 9, GB→A (σAB),

which quantifies how much party B can steer party A in a Gaussian state with CM σAB by

Gaussian measurements. In particular, we now show that the Gaussian steering measure G is

monogamous, hence satisfies a CKW-type monogamy inequality in direct analogy with en-

tanglement. Consider an arbitrary (pure or mixed) m-mode Gaussian state ρA1...Am with CM

σA1...Am , where each party A j comprises a single mode (n j = 1, ∀ j = 1, . . . ,m). Then, the

following inequalities hold, ∀ k = 1, . . . ,m:

G(A1,...,Ak−1,Ak+1,...,Am)→Ak (σA1...Am) −
∑
j,k

GA j→Ak (σA1...Am) ≥ 0, (11.3)

GAk→(A1,...,Ak−1,Ak+1,...,Am)(σA1...Am) −
∑
j,k

GAk→A j(σA1...Am) ≥ 0. (11.4)

For pure states with CM σ
pure
A1...Am

, the proof is straightforward. Namely, recall from [2] that

the leftmost terms of (11.3), (11.4) and (11.2) all coincide on pure states. On the other hand,

for the marginal states of any two modes i and j one has EAi:A j

(
σ

pure
A1...Am

)
≥ GAi→A j

(
σ

pure
A1...Am

)
[2]. Inequalities (11.3) and (11.4) then follow readily from the monogamy inequality (11.2) for

Gaussian entanglement. The above inequalities are extended to mixed states in Appendix F.

The monogamy inequalities just derived impose additional restrictions to the distribution

of Gaussian steering among multiple parties, on top of the ones given in Refs. [272, 280].
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Figure 11.1: Residual tripartite Gaussian steering GA:B:C for pure three-mode Gaussian states with
CM σpure

ABC (a) with fixed a = 2 (local variance of subsystem A), and (b) generated by three squeezed
vacuum fields at −3 dB injected in two beamsplitters with reflectivities R and R′ (see inset), setting
R′ = 1/2 to obtain b = c; the permutationally invariant GHZ-like state (a = b = c) is obtained at
R = 1/3.

To analyze these restrictions in more detail, let us focus on a tripartite scenario, in which the

monogamy inequalities take the simpler form,

G(AB)→C (σABC) − GA→C (σABC) − GB→C (σABC) ≥ 0, (11.5)

GC→(AB) (σABC) − GC→A (σABC) − GC→B (σABC) ≥ 0. (11.6)

As in the original CKW inequality, these inequalities enjoy a very appealing interpretation: the

degree of steering (by Gaussian measurements) exhibited by the state when all three parties

are considered (i.e., G(AB)→C > 0, or, GC→(AB) > 0) can be larger that the sum of the degrees

of steering exhibited by the individual pairs. On a more extreme level, there exist quantum

states where parties A and B cannot individually steer party C, i.e., GA→C = GB→C = 0, but

collectively they can, i.e., G(AB)→C > 0. We will see the importance of this type of correlations

later when we discuss applications to the task quantum secret sharing.

The residuals of the subtractions in (11.5), (11.6) quantify steering-type correlations that

correspond to a collective property of the three parties, not reducible to the properties of the

individual pairs. We proceed by investigating this quantitatively in a mode-invariant way. In

analogy with what done for entanglement [236, 237, 277], we can calculate the residuals from

the monogamy inequalities (11.5) or (11.6) and minimise them over all mode permutations.

It turns out that, in the paradigmatic case of pure three-mode Gaussian states with CM σ
pure
ABC
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(m = 3), we obtain the same quantity from either (11.5) or (11.6) (despite the individual in-

equalities being different, the minimum residual is found invariant under the steering direction

and obviously invariant by construction under mode permutations). Explicitly, the RGS for

three-mode pure Gaussian states with CM σ
pure
ABC is defined as

GA:B:C
(
σ

pure
ABC

)
= min


G(BC)→A − GB→A − GC→A

G(AC)→B − GA→B − GC→B

G(AB)→C − GA→C − GB→C

 (11.7a)

= min


GA→(BC) − GA→B − GA→C

GB→(AC) − GB→A − GB→C

GC→(AB) − GC→A − GC→B

 (11.7b)

= ln
[
min

{
bc
a
,

ac
b
,

ab
c

}]
, (11.7c)

where a =
√

detσA , b =
√

detσB , and c =
√

detσC are local symplectic invariants (with

|b − c| + 1 ≤ a ≤ b + c − 1), fully determining the CM σ
pure
ABC in standard form [237, 277]. For

details on the standard form of pure three mode Gaussian states, see Eq. (3.69) of Sec. 3.3.4.

Notice that a slightly different notation is used in Sec. 3.3.4 to facilitate the details of the

standard form in more compact formulas, and the following correspondence among notations

may be used: a↔ a1, b↔ a2, c↔ a3.

The RGS GA:B:C is a monotone under Gaussian local operations and classical communica-

tion, as can be proven analogously to the case of the residual entanglement of Gaussian states

[2, 3, 236, 237, 277]. Furthermore, finding a non-zero value of the RGS certifies genuine tri-

partite steering, as defined by He and Reid [180], since a sufficient requirement to violate the

corresponding biseparable model for pure states is the demonstration of steering in all direc-

tions (BC) → A, (AC) → B and (AB) → C. We can then regard the RGS as a meaningful

quantitative indicator of genuine tripartite steering for pure three-mode Gaussian states under

Gaussian measurements.

In Fig. 11.1(a) we plot the RGS as a function of b and c for a given a. An elementary anal-

ysis reveals that the RGS GA:B:C is maximized on bisymmetric states with b = c ≥ a, i.e., when

the states are steerable across any global split of the three modes and also B ↔ C steerable,

but no other steering exists between any two parties. In this case, the genuine tripartite steering

GA:B:C reduces to the collective steering G(BC)→A = GA→(BC) = ln a. This quantitative analy-

sis completes the existing picture of quantum correlations in pure three-mode Gaussian states,

together with the cases of tripartite Bell nonlocality in terms of maximum violation of the

Svetlichny inequality [242] and genuine tripartite entanglement in terms of Gaussian Rényi-2
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entanglement [242]. Bisymmetric states maximize all three forms of nonclassical correlations;

compare e.g. our Fig. 11.1(a) with Fig. 1(a)–(b) in [242].

Figure 11.1(b) presents the RGS measure for Gaussian states generated by three squeezed

vacuum fields (one in momentum, two in position) with experimentally feasible squeezing

parameter r = 0.345 (i.e., 3 dB of squeezing) [250, 281, 282] injected at two beamsplitters

with reflectivities R and R′ as depicted in the inset of Fig. 11.1(b), setting R′ = 1/2 so that

a =
√

1 + 2R(1 − R)(cosh 4r − 1) , (11.8)

b = c =
√

[1 + R2 − (R2 − 1) cosh 4r]/2 . (11.9)

When R = 1/3, one can generate a permutationally invariant Greenberger-Horne-Zeilinger

(GHZ)-like state with a = b = c [233]. As one might expect, the latter states maximize the

RGS in this case.

For mixed states, the definition of the tripartite steering indicator GA:B:C
(
σmixed

ABC

)
is not

unique anymore, since the two residuals (11.7a) and (11.7b), arising respectively from the two

monogamy inequalities (11.3) and (11.4) having opposite steering direction, are not equal in

general. One may adopt either quantity depending on the specific setting for which steering is

being analyzed, i.e. whether two parties are aiming to steer the remaining one, or the other way

around, respectively.

11.3 Operational connections to quantum secret sharing

Secret sharing [283, 284] is a conventional cryptographic protocol in which a dealer (Alice)

wants to share a secret with two players, Bob and Charlie, but with one condition: Bob and

Charlie should be unable to individually access the secret (which may involve highly confiden-

tial information) and their collaboration would be required in order to prevent wrongdoings.

Any classical implementation of this task, however, is fundamentally insecure and vulnerable

to eavesdropping.

QSS schemes [169, 285] have been proposed to securely accomplish this task, by exploiting

multipartite entanglement to secure and split the secret among the players in a single go. Only

very recently, however, was an unconditional security proof provided for entanglement-based

QSS protocols by us [6]. We will study in detail the proposed protocol and its security proof

in Part IV, but for now let’s just point to the main results. In our scheme, the goal of the dealer

is to establish a secret key with a joint degree of freedom of the players. The players can
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only retrieve Alice’s key and decode the secret by collaborating and communicating to each

other their local measurements to form the joint variable. The security of these schemes stems

from the utilized partially device-independent setting, treating the dealer as a trusted party

with characterized devices, and the (potentially, dishonest) players as untrusted parties whose

measuring devices are described as black boxes. Given this intrinsically asymmetric separation

of roles, one would expect that multipartite steering be closely related to the security figure of

merit of QSS. Here we prove such a connection quantitatively.

To start with, let us assume that the dealer, Alice, and the players, Bob and Charlie, all

perform homodyne measurements of the quadratures q̂i, p̂i with outcomes Qi, Pi, with i =

A, B,C, on the shared tripartite state. Following [6], a guaranteed (asymptotic) secret key rate

for the QSS protocol (extracted from the correlations of Alice’s momentum detection PA and

a joint variable P̄ for Bob and Charlie) to provide security against external eavesdropping is

given by

KA→{B,C}
E ≥ − ln

(
e
√

VPA |P̄VQA |Q̄

)
, (11.10)

while the key rate providing unconditional security against both eavesdropping and dishonest

actions of the players is

KA→{B,C}
full ≥ − ln

(
e
√

VPA |P̄ ·max{VQA |QC ,VQA |QB}

)
. (11.11)

Here, VPA |P̄ =
∫

dP̄ p(P̄)
(
〈P2

A〉P̄ − 〈PA〉
2
P̄

)
is the minimum inference variance of Alice’s mo-

mentum outcome given the players’ joint outcome P̄, and similarly for the other variances.

A tripartite shared state ρABC whose correlations result in nonzero values of the right-hand

sides of either (12.5) or (12.10) can be regarded a useful resource for secure QSS against the

corresponding threats discussed above.

We focus on pure three-mode Gaussian states with CM σ
pure
ABC in standard form, fully speci-

fied by the local invariants a, b, c as before. Our first observation is that KE is directly quantified

by the collective steering,

G(BC)→A
(
σ

pure
ABC

)
= max

{
0,

1
2

ln
detσBC

detσABC

}
. (11.12)

For the considered class of states, one has indeed

detσABC

detσBC
= 4VPA |P̄VXA |X̄ = 1/a2,
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Figure 11.2: Mode-invariant secure QSS key rate versus RGS for 105 pure three-mode Gaussian
states (dots); see text for details on the lines.

where the joint variables were chosen to have the linear form X̄ = gXXB + hXXC and P̄ =

gPPB + hPPC , with the real constants gX(P), hX(P) optimized as to minimize the inferred vari-

ances VXA |X̄ ,VPA |P̄; see also [2, 201]. Putting everything together, we get:

KA→{B,C}
E (σpure

ABC) ≥ max
{
0, G(BC)→A

(
σ

pure
ABC

)
− ln

e
2

}
. (11.13)

We can now define a mode-invariant QSS key rate bound KA:B:C
full that takes into account

eavesdropping and potential dishonesty of the players, by minimizing the right-hand side of

Eq. (12.10) over the choice of the dealer, i.e., over permutations of A, B, and C. A nonzero value

of the figure of merit KA:B:C
full (σABC) on a tripartite Gaussian state with CM σABC guarantees

the usefulness of the state for unconditionally secure QSS, for at least one assignment of the

roles. For pure three-mode Gaussian states, the mode-invariant key rate KA:B:C
full (σpure

ABC) can

be evaluated explicitly (although its lengthy expression is omitted here) and analyzed in the

physical space of the parameters a, b, c. We find that KA:B:C
full (σpure

ABC) admits exact linear upper

and lower bounds as a function of the RGS GA:B:C(σpure
ABC), for all states with standard form CM

σ
pure
ABC:

GA:B:C(σpure
ABC)

2
− ln

e
2
≤ KA:B:C

full (σpure
ABC) ≤ GA:B:C(σpure

ABC) − ln
e
2
. (11.14)

The bounds are illustrated in Fig. 11.2 together with a numerical exploration of 105 ran-

domly generated pure three-mode Gaussian states. Remarkably, the bounds are tight, and

families of states saturating them can be readily provided. Specifically, the lower (dotted blue)

boundary is spanned by states with a ≥ 1, b = c = (a + 1)/2; conversely, the upper (solid
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black) boundary is spanned by states with a ≥ 1, b = c → ∞. While these cases are clearly

extremal, GHZ-like states (dashed red), specified by a = b = c and producible as discussed

in Fig. 11.1(b), nearly maximize the QSS key rate at fixed RGS, thus arising as convenient

practical resources for the considered task, independently of the distribution of trust. Indeed,

a squeezing level of 4.315 dB, referring to the scheme of Fig. 11.1(b), is required to ensure

a nonzero key rate using these states. This is well within the current experimental feasibility,

since up to 10 dB of squeezing has been demonstrated [281, 282]. In general, by imposing non-

negativity of the lower bound in (11.14), we find that KA:B:C
full (σpure

ABC) > 0 for all pure three-mode

Gaussian states with RGS GA:B:C(σpure
ABC) > 2 ln(e/2) ≈ 0.614. Our analysis reveals that partially

device-independent QSS is empowered by multipartite steering, yielding a direct operational

interpretation for the RGS in terms of the guaranteed key rate of the protocol.

11.4 Discussion and conclusions

We showed that a recently proposed measure of quantum steering under Gaussian measure-

ments [2, 3] obeys a CKW-type monogamy inequality for all Gaussian states of an arbitrary

number of modes. Notice that the monogamy extends in fact to arbitrary (pure) non-Gaussian

states under Gaussian measurements, as it is established solely at the level of covariance matri-

ces. Notice however that resorting to non-Gaussian measurements can lead to extra steerability

even for Gaussian states [216, 286], and might allow circumventing some monogamy con-

straints [272, 280].

In the case of pure three-mode Gaussian states, we argued that the residual steering emerg-

ing from the laws of monogamy can act as a quantifier of genuine tripartite steering. The latter

measure is endowed with an operational interpretation, as it was shown to provide tight bounds

on the mode-invariant key rate of a partially device-independent QSS protocol, whose uncondi-

tional security has been very recently investigated [6] and will be presented in detail in Part IV.

Our study, combined with [6], provides practical recipes demonstrating that an implementation

of QSS secure against eavesdropping and potentially dishonest players is feasible with current

technology using tripartite Gaussian states and Gaussian measurements 1.

1In the recent experiment of Ref. [254] the principles of partially device-independent QSS were presented, but
our present analysis allow us to conclude that the achieved level of steering was not sufficient to obtain a key rate
above the unconditional security threshold in that case.
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11.4 Discussion and conclusions

This work realizes important progress for the characterization and the utilization of mul-

tipartite quantum correlations to fuel upcoming secure quantum communication technologies,

without the need for trust on all the involved parties.
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12

Quantum secret sharing

In this Chapter we take advantage of our understanding of steering-type quantum correlations

obtained in Part III, and apply this understanding and intuition to a cryptographical application

in quantum communications, known as, quantum secret sharing. Obviously, the need for se-

crecy and security is essential in communications. Secret sharing is a conventional protocol to

distribute a secret message to a group of parties who cannot access it individually but need to

cooperate in order to decode it. While several variants of this protocol have been investigated,

including realizations using quantum systems, the security of quantum secret sharing schemes

still remains unproven almost two decades after their original conception. Here we establish an

unconditional security proof for continuous variable entanglement-based quantum secret shar-

ing schemes, in the limit of asymptotic keys and for an arbitrary number of players, by utilizing

ideas from the recently developed one-sided device-independent approach to quantum key dis-

tribution. We demonstrate the practical feasibility of our scheme, which can be implemented

by Gaussian states and homodyne measurements, with no need for ideal single-photon sources

or quantum memories. Our results establish quantum secret sharing as a viable and practically

relevant primitive for quantum communication technologies. This chapter is based on our work

Ref. [6] which is currently under peer review.

12.1 Introduction

Secret sharing [283] is a task where a dealer sends a secret S to n (possibly, dishonest) players

in a way such that the cooperation of a minimum of k ≤ n players is required to decode the

secret; i.e., k − 1 players should be unable to decode it even if they collaborated. Protocols that
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accomplish this task are known as (k, n)-threshold schemes. The need for such a task appears

naturally in a variety of situations, from children’s games and online chats, to banking, industry,

and military security: the secret message cannot be entrusted to any individual, but coordinated

action is required for it to be decrypted in order to prevent wrongdoings.

For the classical implementation of the simplest (2, 2)-threshold scheme, Alice, the dealer,

encodes her secret into a binary string S and adds to it a random string R of the same length,

resulting into the coded cypher C = S ⊕ R, where “⊕” denotes addition modulo 2. She then

sends R and C respectively to the players Bob and Charlie. While the individual parts R and

C carry no information about the secret, only by collaboration the players can recover S by

adding their strings together: R ⊕ C = S . General (k, n)-threshold classical schemes are a bit

more involved. Such classical secret sharing protocols, however, face the same problem as

any other classical key distribution protocol: eavesdropping. An eavesdropper, Eve, or even a

dishonest player, can in principle intercept the transmission and copy the parts sent from the

dealer to the players, thus accessing the secret.

An obvious way to proceed would be for Alice to first employ standard two-party quantum

key distribution (QKD) protocols [287], to establish separate secure secret keys with Bob and

Charlie, then implement the classical procedure to split the secret S into parts R and C, and use

the obtained secret keys to securely transmit these parts to each player. The advantage of this

protocol, which we may call parallel-QKD (pQKD), is that it exploits unconditional security

offered by the well-studied two-party QKD against eavesdropping and, very importantly, that it

can be unconditionally secure against any possible dishonest actions of the players. However,

pQKD is demanding in terms of resources since for a general (k, n) scenario it requires the im-

plementation of n distinct QKD protocols plus the implementation of the classical procedure

to split the secret [283]. Therefore, as the number of players n increases, pQKD becomes less

efficient. The question then is whether we can do better, and the answer lies in what has been

known in the literature as quantum secret sharing [169] (QSS), which allows for the imple-

mentation of a (k, n)-threshold scheme with just a single protocol, regardless of the number of

players n. Unfortunately, as we shall see below, there exists no provably secure QSS scheme

at the moment that enjoys the unconditional security of pQKD against both eavesdropping and

dishonesty.

Hillery, Bužek, and Berthiaume [169] (HBB, for short) proposed the first (2,2)- and (3,3)-

threshold QSS schemes that use multipartite entanglement to split the classical secret, and
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protect it from eavesdropping and dishonest players in a single go. Various other entanglement-

based (HBB-type) schemes have been proposed [285, 288, 289, 290, 291, 292, 293, 294], some

being more economic in terms of the required multipartite entanglement [295, 296], while

others allowing for more general (k, n)-threshold schemes [13, 297, 298, 299, 300]. A few

experimental demonstrations have also been reported [296, 301, 302, 303, 304]. The secu-

rity of all current schemes, however, is limited to, either, plain external eavesdropping under

the unrealistic assumption of honest players, or, limited type of attacks by eavesdroppers and

dishonest participants but for the unrealistic case of the parties sharing a pure maximally entan-

gled state. Furthermore, all such schemes are vulnerable to the participant attack and cheating

[285, 305, 306], and no method is currently known to deal with such attacks and conspiracies

in general, not even in the ideal case of pure shared states.

Zhang, Li, and Man [307] proposed the first (n,n)-threshold scheme that required no entan-

glement and was claimed to be unconditionally secure, posing a serious alternative to pQKD.

Although the scheme unrealistically required perfect single photon sources and quantum mem-

ories (rendering it impractical for today’s technology), it was later shown to be vulnerable to

various participant attacks [308, 309]. In the same category of entanglement-free QSS schemes,

Schmid et al. proposed a protocol based on a single photon [310]; although originally claimed

to be unconditionally secure, this scheme was also shown to be vulnerable to the participant

attack [311, 312, 313]. Alterations of these schemes can be devised to deal with particular

attacks (e.g., see [308, 309, 311, 312]), however there currently exists no rigorous method to

deal with arbitrary participant attacks and conspiracies (a fact also remarked in [313]).

To sum up, almost two decades after the original conception of QSS, none of the existing

QSS schemes (with or without entanglement) has been proven to be unconditionally secure

against the cheating of dishonest players. Any practical implementation of secure secret sharing

is therefore necessarily resorted to the conventional pQKD, while QSS schemes have only

served up to now as a theoretical curiosity.

In this Chapter, we consider a continuous variable version of an HBB-type scheme, and

provide conditions on the extracted secret key rate for the secret to be unconditionally secure

against both external eavesdropping and arbitrary cheating strategies of dishonest participants,

in the limit of asymptotic keys, independently of the shared state, and for arbitrary (k, n)-

threshold schemes. The central idea in our approach, to rigorously deal with arbitrary cheating

strategies, is to treat the measurements announced by the players as an input/output of a black

box (i.e., uncharacterized measuring device), in the same way (possibly, hacked) measuring
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devices are treated in device-independent QKD [314]. In practice, this translates into making

no assumption about the origin of the players’ (possibly, faked) announced measurements,

in contrast to all previous QSS approaches that considered the players’ actions as trusted, and

suffered as a consequence from cheating strategies. The dealer, on the other hand, is considered

to be a trusted party with trusted devices, which is a natural assumption for this task. It is

interesting to note that in device-independent QKD it is the devices that are not trusted, while

in the task of secret sharing the players themselves are not trusted, independently of their

devices. Therefore the framework we are proposing, of making no assumptions about the

players’ measurements, seems very natural for the task of QSS, as very recently discussed in

[180, 254]. To prove security against general attacks of an eavesdropper and/or of dishonest

players, we make a sharp connection with, and extend all the tools of, the recently developed

one-sided DI-QKD (1sDI-QKD) [315], but for continuous variable systems [201], which has

been shown to be unconditionally secure in the limit of asymptotic keys.

12.2 The protocol

For ease of illustration, we first focus on the (2, 2)-threshold scheme. The dealer Alice prepares

a 3-mode continuous variable entangled state, keeps one mode and sends the other modes to the

possibly dishonest players, Bob and Charlie, through individual unknown quantum channels.

Alice, who is the trusted party with characterized devices, is assumed to perform on her system

homodyne measurements of the two canonically conjugate quadratures,

q̂A =
1
√

2
(â + â†), p̂A =

−i
√

2
(â − â†),

with corresponding outcomes QA, PA, satisfying [q̂A, p̂A] = i I (in natural units with ~ = 1).

Bob and Charlie, considered to be untrusted and with uncharacterized devices (black boxes),

are allowed for two unspecified measurements each, denoted by the labels qB(C), pB(C) with cor-

responding outcomes QB(C), PB(C). Nothing is assumed about the true origin of these (possibly,

faked) measurements.

In our protocol, Alice’s goal is to establish a unique secret key, not with Bob’s or Charlie’s

individual measurements (as in standard two-party QKD), but with a collective (non-local)

degree of freedom for Bob and Charlie, say Q̄, that strongly correlates with one of Alice’s

quadratures, say QA, and can be accessed only when the players communicate their local mea-

surements, i.e., collaborate. For example, if the three parties shared a maximally entangled
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state and their outcomes were perfectly correlated as QA ' −QB + QC , one would choose

Q̄ = −QB + QC as that collective degree of freedom.

In the next step of the protocol, after receiving their copy, all three parties randomly choose

a local measurement qi or pi and measure their copies, getting outcomes Qi, Pi respectively,

with i = A, B,C. Alice then sends an additional copy to Bob and Charlie and the procedure

is repeated until they have a sufficiently long list of correlated data (raw key). The parties

then proceed with the standard procedures of standard two-party quantum key distribution

as described in Ref. [316]. First is the classical post-processing step of sifting, where all

parties announce and compare their measurement choices for every single copy of the shared

states, and keep only the data originating from correlated measurements (depending on the

shared state). The remaining data represent the sifted key, while the final secret key will be

extracted from the QA and Q̄ measurement outcomes. After the sifting, all parties proceed

to the parameter estimation stage, where by revealing the outcomes of a random sample of

measurements they can upper bound Eve’s information, allowing them to estimate the size of

the secret key (see below). If the latter is non-zero they can proceed to direct reconciliation

where Alice publicly sends error-correction instructions to Bob and Charlie (to be applied on

Q̄) whose purpose is to make the joint outcomes Q̄ identical to hers (although still correlated to

Eve). Finally, Alice applies privacy amplification on her sifted key to completely decorrelate

any possible eavesdropper. In particular, she randomly chooses a two-universal hash function

h which she applies on her sifted key, resulting in a shorter secret key (shorter by an amount

estimated in the parameter estimation stage) that is completely decorrelated by any possible

eavesdropper. She then publicly announces her choice of the function h to Bob and Charlie.

After all these steps, Alice’s final string represents the secret key that she uses to encode her

secret message, which then sends to the players through a public (authenticated) channel. Bob

and Charlie, however, in order to acquire the secret key and decode Alice’s secret, have to

collaborate and communicate to each other their local outcomes, in order to form the joint

outcomes Q̄ which are the ones correlated to Alice’s key. Only then can they apply Alice’s

error correction instructions plus the hash function h on their string to transform it exactly into

Alice’s secret key and decode her message.
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12.3 Security proof (1): Eavesdropping

Let us first study security against eavesdropping, following the work of Walk et al. [201].

Neglecting detector and reconciliation efficiencies, the direct reconciliation asymptotic secret

key rate is known to be lower bounded by the Devetak-Winter formula [201, 317],

K ≥ I(QA : Q̄) − χ(QA : E), (12.1)

where I(QA : Q̄) = H(QA) − H(QA|Q̄) is the classical mutual information between Alice’s

variable XA and the joint variable Q̄, with H(Q) = −
∫

dQp(Q) log p(Q) being the Shannon

entropy for a variable Q with probability distribution p(Q), and

χ(QA : E) = S (E) −
∫

dQA p(QA) S (ρQA
E ), (12.2)

being the Holevo bound [318], which represents the maximum possible knowledge an eaves-

dropper can get on the key. The term S (E) = −tr(ρE log ρE) is the von Neumann entropy of

Eve’s reduced state ρE , whereas ρQA
E denotes Eve’s state conditioned on Alice’s measurement

of q̂A with outcome QA. A positive value of the right-hand side of (12.1) implies security of

the key against collective attacks of the eavesdropper, and by virtue of Ref. [319] also against

general coherent attacks (as collective attacks are proved asymptotically optimal).

Defining the conditional von Neumann entropy S (QA|E) = H(QA)+
∫

dQA p(QA) S (ρQA
E )−

S (E), and the conditional Shannon entropy H(QA|QB) =
∫

dQB p(QB)H(QA|qB = QB), with

H(QA|qB = QB) = −
∫

dQA p(QA|QB) log p(QA|QB), one can recast the key rate (12.1) as a

balance of conditional entropies,

K ≥ S (QA|E) − H(QA|Q̄). (12.3)

We can now use known entropic uncertainty relations that provide a lower bound to Eve’s

uncertainty [320, 321, 322, 323],

S (QA|E) + S (PA|BC) ≥ log 2π, (12.4)

for the derivation of which Alice’s canonical commutation relations have been assumed, while

Eve is assumed to purify the state shared by Alice, Bob and Charlie, i.e., ρABC = trE(|ΨABCE〉〈ΨABCE |).

Substituting the uncertainty relation (12.4) back into (12.3) and recalling that S (PA|BC) ≤

S (PA|P̄) = H(PA|P̄) (since measurements cannot decrease the entropy), where P̄ is a joint

variable for Bob and Charlie optimally correlated with Alice’s momentum PA, we get K ≥
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log 2π − H(QA|Q̄) − H(PA|P̄), i.e., a bound on the key rate (hence, on Eve’s maximal knowl-

edge on the key QA) using only conditional Shannon entropies, that can be estimated using

the announced measurement outcomes during the parameter estimation stage. To make the

bound even more accessible, we would like to express it in terms only of second moments

instead of dealing with conditional probability distributions. We use the fact that the Shan-

non entropy of an arbitrary probability distribution is maximised for a Gaussian distribution

of the same variance. In other words, H(QA|Q̄) ≤ HG(QA|Q̄) = log
√

2πeVQA |Q̄ , where

VQA |Q̄ =
∫

dQ̄p(Q̄)
(
〈Q2

A〉Q̄ − 〈QA〉
2
Q̄

)
is the minimum inference variance of Alice’s position

outcome when the joint outcome Q̄ is known. Similarly for H(PA|P). The final key rate is then

bounded as follows,

K ≥ − log
(
e
√

VQA |Q̄VPA |P̄

)
. (12.5)

We see that a nonzero key rate (secure against eavesdropping) can be achieved when EA|BC ≡

VQA |Q̄VPA |P̄ < e−2.

12.4 Security proof (2): Conditions against dishonesty

Suppose now that Bob is a dishonest player. His goal would be to guess Alice’s key (hence,

access the secret) using solely his own local measurements, entirely bypassing the required

collaboration with Charlie. Notice here that xB, pB are his announced measurements which he

may have faked, therefore we cannot rely on these to assess Bob’s knowledge on the key. A

most general cheating strategy for Bob would be: first, to secretly intercept Charlie’s mode

during its transmission using general coherent attacks to increase his knowledge on Alice’s

key; second, to lie about his measurements. A positive key rate in (12.5) does not guarantee

security against such general participant attacks and cheating.

Here we derive additional conditions on the key rate so that Bob cannot cheat or access the

secret by himself. Our key observation is to go back to the Devetak-Winter formula (12.1) and

treat Bob as an eavesdropper, together with Eve, meaning that in the Holevo bound χ(QA : E)

(that expresses the knowledge of party E on the key QA) we will include Bob himself, as,

K ≥ I(QA : Q̄) − χ(QA : EB), (12.6)

where EB refers to the unknown joint quantum state of Eve (the eavesdropper, as considered

previously) and Bob. A positive key rate in (12.6) would imply security of Alice’s key against

joint general attacks by Bob and Eve on Charlie’s system. Also, Bob and Eve’s maximum
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knowledge of the key, χ(QA : EB), can be upper bounded (as seen below) using Alice and

Charlie’s measurements, independently of Bob’s (possibly, faked) announced measurements,

therefore providing security against Bob’s cheating. The uncertainty relation that we will use

to bound Bob and Eve’s knowledge will be a slightly modified version of (12.4),

S (QA|EB) + S (PA|C) ≥ log 2π. (12.7)

Following similar steps as previously, we end up with the following bound on the key rate,

K ≥ − log
(
e
√

VQA |Q̄VPA |PC

)
. (12.8)

Notice that the key rate bound in (12.8) is smaller than the one in (12.5) that did not take

dishonesty into account, due to VPA |P̄ ≤ VPA |PC , which is expected since the eavesdroppers’

knowledge on the key is increased by including Bob together with Eve.

To intuitively understand why this condition prohibits any cheating from Bob, we recall

first that the key is generated solely by the QA, Q̄ outcomes. By examination of the uncertainty

relation Eq. (12.7), taking into account that log
√

2πeVPA |PC ≥ S (PA|C), we see that the

better Charlie can estimate Alice’s momentum (i.e., small S (PA|C)) the larger Bob and Eve’s

ignorance should be on the key elements QA. The previous condition (12.5), not accounting

for participant dishonesty, only demanded small enough S (PA|BC), which can be true even if

S (PA|C) is arbitrarily large, thus allowing Bob to acquire good knowledge of the key (i.e, small

S (QA|EB)), as seen by Eq. (12.7).

We can also account for Charlie’s dishonesty in an exactly analogous manner (just replace

B↔ C above), leading us to

K ≥ − log
(
e
√

VQA |Q̄VPA |PB

)
. (12.9)

Putting everything together, the final bound on the asymptotic key rate to provide uncon-

ditional security against general attacks of an eavesdropper, and against arbitrary (individual)

cheating methods of both Bob and Charlie, which include the announcement of faked mea-

surements and general attacks of Bob on Charlie’s system and of Charlie on Bob’s system, is:

K ≥ I(QA : Q̄) −max{χ(QA : EB), χ(QA : EC)}

≥ − log
(
e
√

VQA |Q̄ ·max{VPA |PC ,VPA |PB}

)
,

(12.10)

172



12.5 Discussion and extensions

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4
K

(b
it

s/
st

at
e)

σ (=e-r)

A

B C
ΩBC = +1

TT

Figure 12.1: The QSS secure key rate K, Eq. (12.10), is plotted against the squeezing r of a
3-mode noisy Gaussian cluster state, obtained from a pure state [13] ÛABÛBC |r〉A|r〉B|r〉C , with
Ûi j = exp

(
Ωi jq̂iq̂ j

)
, after Bob’s and Charlie’s modes undergo individual pure-loss channels, each

modelled by a beam-splitter with transmissivity T and zero excess noise (see inset). From top
to bottom, the curves correspond to T = 1, 0.95, 0.9, 0.85. All parties are assumed to be per-
forming homodyne measurements of q̂i, p̂i, with i = A, B,C. The current experimentally accessible
squeezing is limited to r . 1.15 (10dB), or σ & 0.32 [14, 15], in which regime a nonzero K is still
guaranteed for sufficiently large T , demonstrating the feasibility of our scheme.

which is the minimum of the bounds (12.8),(12.9). A positive key rate (12.10) remarkably

provides security against all kinds of attacks that existing QSS protocols suffered from (e.g.,

fake announced measurements [285], Trojan horse attacks [308], etc.), for the sole reason that

the players Bob and Charlie are not assumed to be performing trusted quantum operations but

are treated as black boxes, in contrast to all previous schemes.

12.5 Discussion and extensions

In Fig. 12.1 we demonstrate the feasibility of the protocol in a concrete realization, where the

key rate (12.10) is plotted against the squeezing degree of a noisy tripartite entangled cluster

state. Notice that the same key rate can also be achieved by an equivalent protocol that solely

requires bipartite entanglement (that would represent the so-called prepare-and-measure coun-

terpart to the presented protocol, borrowing a QKD terminology), thus further reducing the

technological requirements for the state preparation.
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Finally, we show how to generalize the secret key rate bound (12.10) to any (k, n)-threshold

QSS scheme. To start with, let us denote the n players as B1, B2, . . . , Bn. A (k, n)-threshold

scheme has two requirements: First, no collaboration of any k − 1 players should be able to

access the secret. We incorporate this requirement into Eq. (12.10) by considering all possible

combinations of k−1 out of n players, the total number of which equals the binomial coefficient(
n

k−1

)
, as potential collaborative eavesdroppers, and choosing the maximum Holevo information

over all collaborations to attain the maximum possible knowledge on the key by any of these

groups. Second, any collaboration of k players should be able to decode the message. Let

us attribute a joint variable Q̄i to each k-player collaboration correlated to Alice’s QA, with

i = 1, . . . ,
(
n
k

)
. This second requirement translates to Alice sending as much error-correction

information as needed, such that even the k-player collaboration least correlated to Alice (i.e.,

with smallest I(QA : Q̄i)) can access Alice’s key. Taking the above into account, the key rate

of the protocol will be,

K ≥ min{I(QA : Q̄1), . . . , I(QA : Q̄( n
k ))}

−max{χ(QA : ES 1), . . . , χ(QA : ES ( n
k−1))},

(12.11)

where S i denotes a particular sequence of k−1 players, e.g., S 1 = B1 · · · Bk−1. A positive value

of the right-hand side of Eq. (12.11) guarantees unconditional security of our QSS protocol

against eavesdropping and arbitrary collaborative cheating strategies of any group of k − 1

potentially dishonest players.

12.6 Discussion and conclusions

We presented a practically feasible entanglement-based continuous variable QSS protocol, and

derived sufficient conditions for the protocol’s secret key rate to provide, for the first time,

unconditional security of the dealer’s classical secret against general attacks of an eavesdropper

and arbitrary cheating strategies, conspiracies and attacks of the (possibly, dishonest) players,

for all (k, n)-threshold schemes, and in the limit of asymptotic keys.

In our approach, we identified the most physically relevant framework for QSS to be the

one-sided device-independent (1sDI) setting, treating the dealer as a trusted party with char-

acterized devices and the players’ devices as black boxes. The natural separation of roles

between dealer and players renders QSS a well-suited task for the 1sDI setting, more than

two-party QKD itself [324]. Incidentally, while the resource behind 1sDI-QKD is known to
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be (bipartite) steering [12], a quantum correlation stronger than plain entanglement [64] and

weaker than Bell-nonlocality [59], one could suspect a similar connection in the present mul-

tiuser scenario. In an accompanying work, we show indeed that multipartite steering [180] is

the resource behind secure QSS, thus providing an operational interpretation for a multipartite

steering measure.

Our work opens many avenues for further exploration. The presented security proof can

be extended from asymptotic to finite keys [325], suitable for practical applications, and also

to discrete variable systems, used in the original QSS definition [169]. Moreover, although

we provided sufficient security conditions for all (k, n)-threshold schemes, the identification

of optimal families of states maximizing the key rate for each scheme is left open. Finally,

our results pave the way for an unconditionally secure experimental demonstration of QSS,

enabling its use in upcoming quantum communication networks.
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Conclusion and perspectives

In this thesis we studied various aspects of quantum information, ranging from quantum tele-

portation, which is an important application of entanglement, to Einstein-Podolsky-Rosen

steering-type quantum correlations and the cryptographical task of quantum secret sharing. A

summary of the results presented in the thesis can be found in the abstract and, in more detail,

in the introduction, while many open questions regarding each research topic can be found in

the “Discussion and conclusion” section of each chapter. For these reasons we will not repeat

these here, but we will instead additionally provide further insight on each topic.

Quantum teleportation is a well-studied topic from a theoretical point of view, while the

number of experimental demonstrations have increased immensely over the years. Quantum

teleportation has been achieved in laboratories around the world utilizing various systems and

technologies, including photonic qubits, nuclear magnetic resonance, optical modes, atomic en-

sembles, trapped atoms, and solid state systems. Impressive performances have been achieved

in terms of teleportation distance, with satellite-based implementations forthcoming. Details

on the aforementioned experimental implementations of quantum teleportation, with corre-

sponding references, can be found in a recent review article by Pirandola et al. [326]. From

a theoretical viewpoint, it would be desirable to design novel quantum information protocols

for which quantum teleportation can be a useful resource, as well as to propose more efficient

teleportation schemes. It would be fair to say, however, that given the fair amount of theoretical

research on the topic, it is the advances in technology that are mostly anticipated in the future

(like, achieving better entanglement distribution, and in larger amounts) in order to boost the

practical feasibility and performance of quantum teleportation.

Einstein-Podolsky-Rosen steering is a relatively new research topic in quantum informa-

tion, and many useful results have been produced during the past few years, including novel
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detection and quantification techniques some of which were presented in this thesis. Bipar-

tite steering, in particular, has been well-studied and has already been recognized as a useful

resource in a variety of quantum information tasks: from quantum key distribution to sub-

channel discrimination and secure teleportation. Multipartite steering, on the other hand, lacks

sufficient understanding and there is no general consensus even in its definition. In particular,

clashes in the definition of genuine multipartite steering exist in the literature, detection tech-

niques have yet to be developed for continuous variable systems, while quantum information

tasks for which multipartite steering acts as a useful resource are not known; excempting the

multi-party cryptographical task of quantum secret sharing which was proven by us to be fueled

by multipartite steering-type quantum correlations.

Quantum secret sharing is an important cryptographical task that has been studied consid-

erably over the years. The advances reported in this thesis, regarding the obtained uncondi-

tional security proof, constitute in our opinion our most original and important contribution

as it initiates potential future applications. Potential avenues for further theoretical research

are reported in Chapter 12. In practical terms however, similarly to quantum teleportation, the

efficient implementation of entanglement-based quantum secret sharing requires considerable

technological advances and improvements in the quality of quantum communication networks.

An important milestone is especially the experimental implementation of quantum repeater

schemes which will allow large amounts of entanglement (hence, large amounts of steering) to

be distributed over large distances.
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Appendix A

Monotonicity of Gaussian steering
under local Gaussian operations of the
trusted party

In Chapter 9 we reported on a property of the proposed Gaussian steering quantifier being

monotonic under local Gaussian operation of the trusted party, Bob. Below we provide the

corresponding proof.

Proof A local Gaussian operation for Bob acts as a completely positive (CP) map on the

bipartite quantum state ρAB, transforming the covariance matrix (CM) σAB as,

σAB =

(
A C
CT B

)
−→ σ′AB =

(
A CST

SCT SBST + G

)
. (A.1)

To prove the desired monotonicity

GA→B (σAB) ≥ GA→B
(
σ′AB

)
, (A.2)

we will instead prove the equivalent statement involving the corresponding Schur complements

det MB ≤ det M′
B. (A.3)
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We assume that the initial CM is in standard form as usual, with A = diag (a, a), B = diag (b, b),

C = diag (c1, c2). The M′
B corresponding to the new CM takes the form,

M′
B = B′ − C′TA−1C′ = SBST + G −

1
a

C′TC′

= SBST + G −
1
a

S
(
c2

1 0
0 c2

2

)
ST = S

b − c2
1

a 0

0 b −
c2

2
a

 ST + G

= SMBST + G.

(A.4)

Substituting the matrix elements of S =

(
s11 s12
s21 s22

)
and G =

(
g11 g12
g12 g22

)
we get,

M′
B =

(
s2

11VX + s2
12VP + g11 s11s21VX + s22s12VP + g12

s11s21VX + s22s12VP + g12 s2
22VP + s2

21VX + g22

)
≡

(
α + g11 γ + g12
γ + g12 β + g22,

)
(A.5)

where i have denoted: VX = b −
c2

1
a , VP = b −

c2
2

a and α = s2
11VX + s2

12VP, β = s2
22VP + s2

21VX ,

γ = s11s21VX + s22s12VP. Thus the determinant that we want to minimize acquires the simple

form,

det M′
B = (α + g11)(β + g22) − (γ + g12)2. (A.6)

The goal now is to minimize (A.6) over all parameters of Bob’s operation, thus showing that

there exists no local Gaussian operation for Bob that can make det M′
B smaller than det MB,

proving (A.3). However, the matrix elements of G andS that correspond to CP maps must

satisfy the conditions [27]

g11 ≥ 0, g22 ≥ 0, g11g22 − (1 − det S)2 ≥ g2
12. (A.7)

We see from (A.6) that M′
B will be minimum when g12 will acquire it’s maximum value in

(A.7), and also its sign should be the same with that of γ in (A.6). Thus, we will have

det M′
B =(α + g11)(β + g22) −

(√
g11g22 − (1 − det S)2 + |γ|

)2
(A.8)

Minimizing (A.8) over g11, g22,

∂ det M′
B

∂g11

∣∣∣∣∣∣
g?11

= 0,
∂ det M′

B

∂g22

∣∣∣∣∣∣
g?22

= 0, (A.9)

we find that (see Eq. (38)-(40) of Fiurasek) the optimum G is

G? =
|1 − det S|√
αβ − γ2

(
α γ

γ β

)
, (A.10)
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while the minimized determinant gets the form,

det M′
B =

(
|1 − det S| +

√
αβ − γ2

)2

. (A.11)

Next step is to minimize this quantity over the elements si j. By substituting the definitions

of α, β, γ and considering the three separate cases (i) det S ≥ 1, (ii) det S = 1, (iii) det S ≤ 1,

we can perform analytically the minimizations without doing any more assumptions, and find

that the global minimum (in all cases) is

det M′
B ≥ det MB, (A.12)

thus concluding the proof.

It’s interesting to note that the present calculation is very similar to a calculation by Fiurášek

in Ref. [327], where he also optimized over local Gaussian operation but for improving the

fidelity of continuous variable teleportation. More specifically, our Eq. (A.6) exactly corre-

sponds to his Eq. (35) in Ref. [327].
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Appendix B

Proof of the equivalence between
unsteerability and the existence of a
separable model

In the proof that follows we assume Bob’s Hilbert space to be arbitrary (continuous or discrete

variable), while for simplicity we assume discrete outcomes for Alice. The generalization of

the proof to continuous outcomes will be immediate as we shall see.

First, we recall that Bob’s assemblage
{
σB

a|x

}
, is unsteerable by Alice’s inputs x = 1, ..., n

(with corresponding outcomes ax = 1, ..., dx) iff it can be expressed as,

σB
a|x =

∑
λ

qλp(a|x, λ) ρλ, ∀x, a. (B.1)

The first part of the proof amounts to expressing (B.1) in a suitable form in terms of determin-

istic functions (i.e. the Kronecker delta function) that will prove very helpful. The basic tool

we utilize is the following identity,

p(a|x, λ) =
∑
ax

δa,ax p(ax|x, λ), (B.2)

for a particular input x, while δi, j is the Kronecker delta. By inserting in (B.2) the identities,∑
ai p(ai|i, λ) = 1, for every input i , x, we get,

p(a|x, λ) =
∑

a1...an

δa,ax p(a1|1, λ) · · · p(an|n, λ), (B.3)
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where the summation over ax is implicitly included. Substituting (B.3) back in the assemblage

(B.1) we get the desired expression,

σB
a|x =

∑
a1...an

δa,axωa1...an , (B.4)

where the unnormalized positive semidefinite operators ωa1...an ≥ 0 correspond to,

ωa1...an =
∑
λ

qλp(a1|1, λ) · · · p(an|n, λ) ρλ. (B.5)

In the second part of the proof, we will show that one can always define a separable model

ρ̄AB for Alice and Bob, and appropriate measurement operators for Alice, that can reproduce

an arbitrary unsteerable assemblage (B.4). Consider each input x of Alice, with outcomes

ax = 1, ..., dx, to correspond to a fictitious observable (hermitian operator) Ax such that,

Ax|ax〉A = ax|ax〉A. (B.6)

where the same outcomes ax = 1, ..., dx correspond to its real eigenvalues with |a1〉A, ..., |an〉Abeing

the corresponding eigenvectors. When Alice announces to Bob a pair (a, x), i.e. measured in-

put x and got outcome a, it will be considered equivalent as if she measured the observable

Ax and got the eigenvalue a as an outcome (with corresponding eigenvector |a〉). Note that

such a correspondence x ↔ Ax can always be made, since the announced outcomes ax always

correspond to eigenvalues of some observable.

Next, assume that all the defined observables {A1, ..., An} mutually commute,

[Ax, Ax′] = 0, ∀x , x′, (B.7)

and, therefore, a joint basis exists that diagonalizes all Ax, ∀x, simultaneously. We will show

that these commuting observables can reproduce the statistics of any unsteerable assemblage

by acting on a suitable separable state. Let us denote the vectors of this basis as {|a1 · · · an〉},

which sum to unity,
∑

a1...an |a1 · · · an〉A〈a1 · · · an| = 1, and are orthonormal, i.e.,

〈a′1...a
′
N |a1...aN〉 = δa1,a′1 · · · δaN ,a′N . (B.8)

Due to the simultaneous diagonalization of every observable, it holds, Ax|a1 · · · an〉A = ax|a1 · · · an〉A,

∀ax, x.

If ρAB is the shared state between Alice and Bob, when Alice measures input x ↔ Ax and

announces output a, Bob’s (unnormalized) state conditioned on the pair (x, a), will be,

σB
a|x = TrA[(Ma|x ⊗ 1B)ρAB], (B.9)
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where we defined the projectors onto the eigenstates of Ax with eigenvalue a,

Ma|x =
∑

a1...aN

δa,ax |a1 · · · aN〉A〈a1 · · · aN |, (B.10)

satisfying, M2
a|x = Ma|x and

∑
a Ma|x = 1, ∀ x. Notice the summation over the outcomes of the

unannounced inputs, which is due to the inaccessibility of these degrees of freedom to Bob.

Using the spectral decomposition of each Ax, we also get an expression for the observables,

i.e.,

Ax =

dx∑
a=1

a Ma|x. (B.11)

Now we will show the desired result that if ρAB is the following separable state,

ρ̄AB =
∑

a1,...,an

|a1, . . . , an〉A〈a1, . . . , an| ⊗ ωa1...an (B.12)

Bob’s conditional state (B.9) will correspond to the unsteerable assemblage (B.4) if Alice mea-

sures the commuting observables defined in (B.11). We have,

σ̄B
a|x = TrA[(Ma|x ⊗ 1B)ρ̄AB]

=
∑

a1...aN

∑
a′1...a

′
N

δa,a′x |〈a
′
1...a

′
N |a1...aN〉|

2ωa1...aN

=
∑

a1...aN

δa,axωa1...aN ,

(B.13)

matching exactly (B.4), where we used the orthonormality of the states (B.8) and the property

δ2
i, j = δi, j of the Kronecker delta.

The generalization of the proof from discrete to continuous outcomes for Alice is straight-

forward, by replacing all summations with integrals,
∑
ax

→

∞∫
−∞

dax and the Kronecker delta

with the Dirac delta function, δa,ax → δ(a−ax), which is a common practice when dealing with

continuous Hilbert spaces.
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Appendix C

SDP, Dual and Optimal steering
witnesses

First, we will show that the problem (8.18) can be expressed as an SDP [160, 328], and then

derive its corresponding dual problem that will lead us to the optimal steering witnesses.

Consider a square N × N (moment) matrix Γ with arbitrary elements Γi j. Whether such a

matrix is positive semidefinite, i.e. Γ ≥ 0, is equivalent to whether its smallest eigenvalue, λ?,

is non-negative, i.e. λ? ≥ 0. The steering detection method outlined in the detection method

boils down to finding the maximized λ? (name it, λmax
? ) over all possible (complex, in general)

values of the moment matrix’s elements {Γi j} satisfying at the same time two types of con-

straints:

(a) All the observable elements of Γ are constrained to be equal to the observable values from

the steering test [165].

(b) Linear relations between the unobservable elements, imposed by the commutativity con-

straint of Alice’s operators and the utilization of Bob’s operator algebra.

The semidefinite program corresponding to the problem described takes the following stan-

dard form [160],

λmax
? = max

λ,{Γi j}
λ

subject to Γ − λ 1 ≥ 0

Tr [ΓAi] = bi, i = 1, ..., k

Tr
[
ΓC j

]
= 0, j = 1, ..., l

(C.1)

known as the primal problem, the output of which will be λmax
? . The first constraint in (C.1)
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guarantees that the output of the SDP will be equal to the smallest eigenvalue of the given Γ.

The second and third constraints correspond to the constraints (a) and (b) respectively, with

suitably chosen matrices Ai and C j depending on the particular Γ, while k and l correspond

to the total number of observable elements and linear relations respectively. The values bi are

the ones obtained from the steering test, as explained in [165]. Concluding, steering will be

witnessed from the SDP (C.1) if λmax
? < 0.

To obtain the dual of the SDP (C.1), the solution of which will give us an upper bound on

the quantity of interest λmax
? , we start by writing the Lagrangian of this problem [328],

L = λ + tr[ Z · (Γ − λ 1) ]+

+

k∑
i=1

µ∗i (bi − tr[Γ · Ai]) +

l∑
j=1

ν∗j
(
0 − tr[Γ ·C j]

)
=

k∑
i=1

µ∗i bi + λ (1 − trZ) + tr

Γ ·
Z − k∑

i=1

µ∗i Ai −

l∑
j=1

ν∗jC j




(C.2)

where the N × N hermitian matrix Z and the complex variables {µi} and {ν j} are the dual

variables to the first, second and third (sets of) constraints in (C.1) respectively. If we consider

the maximized value max
λ,{Γ}i j

L over the primal variables λ, {Γ}i j, it’s straightforward to see from

(C.2) that, max
λ,{Γ}i j

L ≥ λmax
? +tr[ Z ·(Γ−λmax

? I) ]. Therefore choosing Z ≥ 0, and since Γ−λmax
? I ≥

0 due to the first constraint in (C.1), we find the following bound,

max
λ,{Γi j}

L ≥ λmax
? , (C.3)

Our goal is to use max
λ,{Γi j}

L to get a good estimate for the figure of merit λmax
? , and in order for

the bound (C.3) not to be trivial (i.e. equal to infinity), L should be bounded from above. We

see that this occurs trivially if we set as constraints for the dual variables,

tr Z = 1 (C.4)

Z =

k∑
i=1

µ∗i Ai +

l∑
j=1

ν∗jC j, (C.5)

in addition to Z ≥ 0. Imposing these constraints on L, the Lagrangian (C.2) optimized over the

primal variables takes the simple form,

max
λ,{Γi j}

L =

k∑
i=1

µ∗i bi ≥ λ
max
? . (C.6)
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Therefore we are lead to an alternative approach to bound the desired quantity λmax
? , by min-

imizing the left-hand side over the dual variables, for given {bi}, leading us to the following

dual problem,

β? = min
{µi},{ν j},{Zi j}

k∑
i=1

µ∗i bi

subject to Z ≥ 0

trZ = 1,

Z =

k∑
i=1

µ∗i Ai +

l∑
j=1

ν∗jC j.

(C.7)

The output of the dual (C.7), β?, is the tightest upper bound to the figure of merit λmax
?

(C.6) since optimal coefficients {µ̄i} are found for the given observable values {bi}. A negative

value, β? < 0, is a sufficient condition for steerability, since it would imply that λmax
? < 0,

while a non-negative value β? ≥ 0 is obtained for all unsteerable assemblages. Also, note that

mere knowledge of the dual matrix Z (output of (C.7)) and the moment matrix Γ is enough to

find β? since, tr [ΓZ] = b?, due to the second and third constraints in (C.1). To generalize this

witness to any system, and therefore to arbitrary observations, consider arbitrary observable

values {b̄i} , {bi} but keep the same coefficients {µ̄i} as before. The following linear inequality,

or steering witness,
k∑

i=1

µ̄∗i b̄i ≥ 0, (C.8)

is satisfied by all unsteerable assemblages while a violation signals steering detection. For

the particular {bi} the violation of (C.8) is maximal since the coefficients {µ̄i} are optimal for

these particular values and non-optimal for any other, and therefore we refer to (C.8) as the

optimal steering witness for the values {b̄i} = {bi}, obtained by particular measurements and

assemblages.

Finally, it is easy to verify that the primal problem is strictly feasible – i.e. there exists a Γ

satisfying all the equality constraints which is strictly positive definite. As such, strong duality

holds for the primal and dual SDP problems, such that the optimal value of the primal λmax
? and

the optimal value of the dual β? are equal.
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Appendix D

Analytical derivation of non-linear
steering criteria

Consider the moment matrix ΓR (8.20) obtained by the set of measurements, S = {I ⊗ I, A1 ⊗

X, A2 ⊗ Y, A3 ⊗ Z}, where the statistics of Alice’s unknown measurements A1, A2, A3 also origi-

nate from “spin”-measurements X,Y,Z. In the following derivation, only the algebra of Alice’s

and Bob’s observables will matter independently of their shared state ρAB. Applying the steps

of the Detection method, i.e. commutativity and the operator algebra on Bob’s side, the matrix

(8.20) can be seen to get the simple form,

ΓR =


1 〈A1 ⊗ X〉 〈A2 ⊗ Y〉 〈A3 ⊗ Z〉

〈A1 ⊗ X〉 1 i R1 i R2
〈A2 ⊗ Y〉 −i R1 1 i R3
〈A3 ⊗ Z〉 −i R2 −i R3 1

 , (D.1)

where the three free parameters Ri are real, and equal to, R1 = 〈A1A2⊗Z〉, R2 = 〈A2A3⊗X〉, and

R3 = −〈A1A3 ⊗ Y〉. Notice that the diagonal observable terms are equal to unity independently

of the shared state, due to the fact that the Pauli operators, and the observables of Alice, take

values ±1, and therefore square to the identity.

As explained in the main text, the necessary condition for unsteerability ΓR ≥ 0 implies

the following conditions for its principal minors,

detΓR = 1− 〈A1 ⊗ X〉2 − 〈A2 ⊗ Y〉2 − 〈A3 ⊗ Z〉2 + f (R1,R2,R3) ≥ 0, (D.2)
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and,

det P2 = 1 − 〈A2 ⊗ Y〉2 − 〈A3 ⊗ Z〉2 − R2
3 ≥ 0, (D.3)

det P3 = 1 − 〈A1 ⊗ X〉2 − 〈A3 ⊗ Z〉2 − R2
2 ≥ 0, (D.4)

det P4 = 1 − 〈A1 ⊗ X〉2 − 〈A2 ⊗ Y〉2 − R2
1 ≥ 0, (D.5)

with,

f (R1,R2,R3) = (R3 〈A1 ⊗ X〉 − R2 〈A2 ⊗ Y〉 + R1 〈A3 ⊗ Z〉)2 − R2
1 − R2

2 − R2
3, (D.6)

where the matrix Pi is obtained by ΓR by deleting its i-th row and column. Each of the condi-

tions (D.3)-(D.5) leads to a steering criterion. For example,

det P2 ≥ 0 ⇒ 1 − 〈A2 ⊗ Y〉2 − 〈A3 ⊗ Z〉2 ≥ R2
3 ≥ 0, (D.7)

and similarly for (D.4),(D.5). A violation of the last inequality in (D.7) signals steering since

there exist no assignment for the free parameters Ri that can make (D.7) non-negative. When

applied to the family of Werner states these criteria can be seen to detect steering for w > 1√
2

,

which is a weaker detection than what the optimal witness (8.21) and the stronger non-linear

criterion (8.22) can achieve. This is of course to be expected, since the former criteria only

involve two measurement settings per site.

The stronger non-linear criterion (8.22), based on three measurement settings, can be de-

rived from (D.2), where the contribution of the free parameters is grouped in the function

f (R1,R2,R3). Our goal is to provide an upper bound for this function, say f ≤ fmax, and

therefore limit its capability of making (D.2) positive for any given measurements. As a sim-

ple example of the logic behind, the analogous function in (D.3) would be −R2
3 and is upper

bounded by zero, as seen in the steering criterion (D.7). The maximum of f (R1,R2,R3) can be

seen to correspond to the following values for R1,R2,

∂R1 f = 0
∣∣∣
R1=R?1

⇒ R?1 = R3
〈A1 ⊗ X〉 〈A3 ⊗ Z〉

det P2 + R2
3

(D.8)

∂R2 f = 0
∣∣∣
R2=R?2

⇒ R?2 = −R3
〈A1 ⊗ X〉 〈A2 ⊗ Y〉

det P2 + R2
3

. (D.9)

Therefore,

f (R1,R2,R3) ≤ f
(
R?1 ,R

?
2 ,R3

)
= −R2

3
1 − 〈A1 ⊗ X〉2 − 〈A2 ⊗ Y〉2 − 〈A3 ⊗ Z〉2

det P2 + R2
3

.
(D.10)
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We employ this bound in (D.2) and find that unsteerability of Bob’s assemblage implies,

detΓR ≥ 0 ⇒

1 − 〈A1 ⊗ X〉2 − 〈A2 ⊗ Y〉2 − 〈A3 ⊗ Z〉2 + f
(
R?1 ,R

?
2 ,R3

)
≥ 0

⇔
(
1 − 〈A1 ⊗ X〉2 − 〈A2 ⊗ Y〉2 − 〈A3 ⊗ Z〉2

) det P2

det P2 + R2
3

≥ 0

(D.11)

Unsteerable assemblages necessarily satisfy det P2 ≥ 0 (see (D.3)), and therefore the last in-

equality of (D.11) implies the desired non-linear criterion (8.22),

〈A1 ⊗ X〉2 + 〈A2 ⊗ Y〉2 + 〈A3 ⊗ Z〉2 ≤ 1. (D.12)

Notice that for the expressions (D.8), (D.9) we have assumed, |〈A2 ⊗ Y〉| < 1 and |〈A3 ⊗ Z〉| < 1.

The cases where equality is attained in either (or both) inequalities should be treated separately,

and it’s straightforward to see that in every single case the same condition (D.12) is always

obtained. Therefore, the validity of (D.12) extends to the whole range of possible experimental

outcomes.
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Appendix E

Optimal Witness for Lossy Single
Photon state

In this appendix we provide the optimal steering witness which certifies the steerability of the

noisy single photon state. As described in the main text, we used the 11 × 11 moment matrix

defined by the set of operators S = {I ⊗ I, A0 ⊗ qB, A0 ⊗ pB, A1 ⊗ qB, A1 ⊗ pB, A2
0 ⊗ I, A

2
1 ⊗

I, I ⊗ q2
B, I ⊗ qB pB, I ⊗ pBqB, I ⊗ p2

B}. First, note that moments of the form 〈Ak
x ⊗ B〉 appearing

in the moment matrix, with B an arbitrary string of length 2 or more, are expected in general

to be hard to measure experimentally. In the following we therefore assume these terms to be

unobservable (and therefore treat them as free parameters in the moment matrix), and apply

only the operator algebra of Bob to place linear relations between them. On the other hand,

local moments of the form 〈I⊗B〉 can be measured efficiently by Bob, for example by estimating

his local Wigner function or by using a linear optics scheme proposed by Shchukin and Vogel

[174], and therefore we keep these moments as observable. The freedom that the method gives

us to keep only those measurements that can be efficiently performed as observable, highlights

the flexibility of our approach to maintain experimental feasibility. Our ultimate goal is to

provide an experimentally-friendly optimal steering witness.

The code was implemented using cvx for matlab [329], with the optimal inequality ex-

tracted by solving the primal (C.1) and dual (C.7) problems. The optimal inequality (C.8) for
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E. OPTIMAL WITNESS FOR LOSSY SINGLE PHOTON STATE

the noisy single photon state with η = 0.67 is given by

β = 8.1657− (〈A0 ⊗ qB〉+ 〈A1 ⊗ pB〉) + 0.2508 (〈A0 ⊗ q3
B〉+ 〈A1 ⊗ p3

B〉)− 0.3110 (〈A2
0〉+ 〈A

2
1〉)

+0.3205 (〈A2
0⊗q2

B〉+〈A
2
1⊗ p2

B〉)+0.3020 (〈A2
0⊗ p2

B〉+〈A
2
1⊗q2

B〉)−0.0001 (〈A3
0⊗qB〉+〈A3

1⊗ pB〉)

+ 7.7217 (〈q4
B〉 + 〈p

4
B〉) + 15.5451 〈q2

B p2
B〉 − 31.0941 (〈q2

B〉 + 〈p
2
B〉) − 31.0903i 〈qB pB〉 ≥ 0,

(E.1)

satisified by all unsteerable assemblages, with the state numerically achieving the violation

β = −8.88×10−4, which is (in magnitude) far above the numerical precision. Smaller values of

η still show a violation, with numerical evidence suggesting all η > 2/3 demonstrate steering.

The maximum violation of the inequality is βmax = −0.1556, achieved for η = 1.

Let us now comment on the experimental feasibility for the estimation of the witness (E.1).

Most of the terms in Eq. (E.1) can be efficiently measured by performing homodyne detection.

The term that provides some extra difficulty in its measurement is the local fourth-order mo-

ment 〈q2
B p2

B〉 of Bob. As mentioned before, for the estimation of this term Bob could implement

tomography on his local state, which doesn’t require conditioning on Alice’s outcomes. A more

efficient approach that avoids tomography would be to use a scheme proposed by Shchukin and

Vogel [174], based on linear optics, that was designed to measure such local moments. A sim-

ilar scheme was recently implemented by Avenhaus et al. [175], who managed to accurately

measure moments of a single-mode up to eighth order. Therefore, we can safely conclude that

the proposed steering witness (E.1) can be efficiently measured in the laboratory.

Finally, let us note that the only terms which appear in the inequality are those which were

considered observable in the moment matrix. However, observable terms of the form 〈Ak
x ⊗ B〉,

which are experimentally demanding, were considered unobservable, and as one would expect

steering detection weakens due to such relaxation. If on the other hand we consider all these

experimentally demanding terms to be observable, we find the same critical noise η > 2/3, with

only the magnitude of the violation increasing (and the inequality containing the additional

observable terms absent in (E.1)).
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Appendix F

Proof of Gaussian steering monogamy
inequalities for mixed states

Here we will prove the monogamy inequalities (11.3) and (11.4) for the Gaussian steering G,

introduced in Chapter 11, of arbitrary mixed m-mode states with CM σA1...Am . The two cases,

respectively one-mode steered party, and one-mode steering party, will be proven separately,

yet both will exploit recent results from [280].

F.1 Gaussian steering monogamy (11.3) for one steered mode

Theorem 1. Given a m-mode CM σA1...Am , with each A j comprising one mode, the Gaussian

steering measure for one-mode steered party is monogamous:

G(A1,...,Ak−1,Ak+1,...,Am)→Ak (σA1...Am) −
∑
j,k

GA j→Ak (σA1...Am) ≥ 0. (F.1)

Proof. First of all we notice that it suffices to prove the inequality for tripartite states as in

(11.5),

G(AB)→C (σABC) − GA→C (σABC) − GB→C (σABC) ≥ 0, (F.2)

with C being a single mode and A, B being subsystems comprising arbitrary number of modes.

One can then apply iteratively this inequality to obtain the corresponding m-partite one (F.1).

Explicitly, assuming (F.2) holds, one can start by identifying A ≡ A1, B ≡ (A2, . . . , Ak−1, Ak+1, . . . , Am),
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F. PROOF OF GAUSSIAN STEERING MONOGAMY INEQUALITIES FOR MIXED
STATES

and C = Ak, to get:

G((A1)(A2...,Ak−1,Ak+1,...,Am))→Ak (σA1...Am)

≥ G(A1)→Ak (σA1...Am) + G(A2...,Ak−1,Ak+1,...,Am)→Ak (σA1...Am)
...

≥
∑
j,k

GA j→Ak (σA1...Am) .

We are thus left to prove the inequality (F.2) for a (nA + nB + nC)-mode CM with nC = 1. To

do so, recall that from [272, 280] it is impossible for A and B to simultaneously steer the one-

mode party C, that is, GA→C (σABC) > 0 implies GB→C (σABC) = 0 (and vice versa). Therefore,

the monogamy relation (F.2) reduces to G(AB)→C (σABC) − GA→C (σABC) ≥ 0 (or the analogous

expression with swapped A ↔ B), which holds true because the Gaussian steering measure

(for one-mode steered party C) is monotonically nonincreasing under local Gaussian quantum

operations on the steering party (AB) [2], which include discarding subsystem B (or A). This

proves Eq. (11.3) in the main text for any m-mode mixed-state CM σA1...Am . �

F.2 Gaussian steering monogamy (11.4) for one steering mode

Theorem 2. Given a m-mode CM σA1...Am , with each A j comprising one mode, the Gaussian

steering measure for one-mode steering party is monogamous:

GAk→(A1,...,Ak−1,Ak+1,...,Am)(σA1...Am) −
∑
j,k

GAk→A j(σA1...Am) ≥ 0. (F.3)

Proof. In this case we have to recall the explicit expression of the Gaussian steering measure

[2], defined for a bipartite (nA + nB)-mode state with CM σAB as

GA→B(σAB) =

 0, ν̄AB\A
j ≥ 1 ∀ j = 1, . . . , nB ;

−
∑

j:ν̄AB\A
j <1 ln

(
ν̄AB\A

j

)
, otherwise, (F.4)

where
{
ν̄AB\A

j
}nB

j=1 denote the symplectic eigenvalues of the Schur complement σ̄AB\A of σA in

σAB. By definition of the Schur complement, and observing that σ̄AB\A > 0 for any valid CM
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F.2 Gaussian steering monogamy (11.4) for one steering mode

σAB, notice that we can write:

√
detσAB

detσA
=

√
det σ̄AB\A

=

nB∏
j=1

ν̄AB\A
j =


∏

j:ν̄AB\A
j <1

ν̄AB\A
j




∏
j:ν̄AB\A

j ≥1

ν̄AB\A
j


≥


∏

j:ν̄AB\A
j <1

ν̄AB\A
j

 .
(F.5)

Applying (− ln) to both sides and recalling Eq. (F.4) we get, for any CMσAB with GA→B(σAB) >

0, the bound

GA→B(σAB) ≥
1
2

[M(σA) −M(σAB)] = −
1
2
IB|A(σAB) , (F.6)

where M(σ) = ln detσ is the log-determinant of the CM σ [280], and the inequality (F.6) is

tight when nB = 1 [2]. We have further identified IB|A(σAB) = M(σAB) −M(σA) as the con-

ditional log-determinant, a quantity which — in analogy to the standard conditional quantum

entropy — is concave on the set of CMs [280] and subadditive with respect to the conditioned

subsystems, i.e.,

IBC|A(σABC) ≤ IB|A(σABC) + IC|A(σABC) . (F.7)

Notice that the latter property is simply equivalent to the strong subadditivity for the log-

determinant of the CM σABC , M(σAB) + M(σAC) −M(σA) −M(σABC) ≥ 0, established in

[277, 280].

To prove (F.3), we first observe that it is sufficient to consider without loss of generality the

case in which the multimode term GAk→(A1,...,Ak−1,Ak+1,...,Am) is nonzero (otherwise the inequality

is trivial) and all the pairwise terms GAk→A j in the sum are also nonzero. Obviously, this will

imply (F.3) even if some of the latter terms vanish, as there will be less to subtract in such

cases.

Applying then Eq. (F.6) to the leftmost term in (F.3), and using repeatedly the negation of
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(F.7), i.e. the superadditivity of the negative of the conditional log-determinant, we get

GAk→(A1,...,Ak−1,Ak+1,...,Am)(σA1...Am)

≥
1
2

[
M(σA1,...,Ak−1,Ak+1,...,Am) −M(σA1...Am)

]
= −

1
2
I(A1,...,Ak−1,Ak+1,...,Am)|Ak (σA1,...,Am)

≥ −
1
2

∑
j,k

IA j |Ak (σA1...Am)

=
∑
j,k

GAk→A j(σA1...Am) ,

where in the last step we used again Eq. (F.6) which holds with equality on each of the two-

mode terms involving Ak and any A j, provided GAk→A j(σA1...Am) > 0 as per assumption. This

concludes the proof of Eq. (11.4) in the main text for any m-mode mixed-state CM σA1...Am . �
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