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TECHNICAL NOTE

Transcriptomic SNP discovery for custom 
genotyping arrays: impacts of sequence data, 
SNP calling method and genotyping technology 
on the probability of validation success
Emily Humble1,2* , Michael A. S. Thorne2, Jaume Forcada2 and Joseph I. Hoffman1

Abstract 

Background: Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the 
number of ‘putative’ SNPs discovered from a sequence resource may not provide a reliable indication of the number 
that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors 
such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the 
SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other 
factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic 
fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA 
and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called 
from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discov-
ered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina 
Infinium iSelect HD and Affymetrix Axiom arrays.

Results: Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concord-
ance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one 
method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we 
could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were 
SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also 
consistently better for Affymetrix Axiom arrays.

Conclusions: Our results suggest that focusing on SNPs called by more than one method could potentially improve 
validation outcomes. They also highlight possible differences between alternative genotyping technologies that 
could be explored in future studies of non-model organisms.

Keywords: Transcriptome, Roche 454 sequencing, Illumina HiSeq sequencing, Single nucleotide polymorphism, 
Validation success, Marine mammal, Antarctic fur seal, Arctocephalus gazella
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Background
High throughput sequencing and cost efficient genotyp-
ing technologies are revolutionising the study of wild 
organisms [1]. For example, many thousands of single 

nucleotide polymorphisms (SNPs) can now be genotyped 
in virtually any organism [2, 3]. Although individually less 
informative than multi-allelic markers, SNPs are appeal-
ing because they can be genotyped rapidly, in large num-
bers and with minimal error [4, 5]. Consequently, SNP 
datasets are being generated for an increasing number of 
wild animal populations, allowing researchers to address a 
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variety of outstanding questions in evolutionary biology, 
conservation genetics and wildlife management [6–8].

In non-model species, SNPs are often mined from 
transcriptome assemblies, as these are smaller and sim-
pler to generate than genomes. Nevertheless, there are a 
variety of alternative methods available for read mapping 
and variant discovery and it is not always straightforward 
to know which of these to use. Relatively few systematic 
comparisons of the available programs have been carried 
out and most have mainly been based on genomic data 
from humans [9, 10]. These studies suggest that in some 
cases the concordance between different methods can be 
poor [11, 12], yet it is still the norm to call SNPs with a 
single method [13–15]. By drawing upon vast numbers of 
previously known SNPs, human studies have also evalu-
ated the relative success of different methods at discover-
ing known variants [16]. However, less attention has been 
paid to non-model organisms, partly because for many 
species, SNPs are being discovered for the first time.

SNP discovery can facilitate multiple genotyping 
approaches. Genotyping by sequencing approaches such 
as RAD, ddRAD and 2bRAD [17–19] allow simultaneous 
SNP discovery and genotyping. These approaches enable 
studies to scale up to much larger sample sizes of indi-
viduals and loci than what was possible with traditional 
markers such as microsatellites. However, large amounts 
of high quality DNA are required, library preparation 
can be costly and labour intensive, and downstream 
analyses are not straightforward [20]. High density SNP 
arrays, or ‘SNP chips’, have thus become increasingly 
popular for large-scale studies, as they are relatively 
cheap per sample, technically more straightforward, 
allow selected SNPs to be consistently genotyped across 
the majority of individuals, and enable candidate genes 
to be targeted [21, 22]. However, careful selection of 
SNPs is necessary as not all ‘putative’ SNPs will be suit-
able for genotyping. For example, SNPs must have suf-
ficient flanking sequence that is compatible with a given 
genotyping technology. The two most widely used array 
platforms, Illumina Infinium iSelect HD [23] and Affy-
metrix Axiom [24], implement distinctive hybridization 
technologies and require probes of different lengths. 
Moreover, recent studies suggest that the genomic con-
text of a SNP can have a significant impact on validation 
success [25, 26], defined as the propensity of a given SNP 
to be polymorphic and reliably scored in a sample of 
individuals. For example, transcripts representing paral-
ogous genes can result in SNP probe sequences that map 
many times to a genome, whilst probe sequences inad-
vertently spanning intron–exon boundaries will result 
in failure of the probe to bind to the genomic DNA [25, 
27–29]. By mapping SNP flanking sequences to refer-
ence genomes, both of these issues have been shown to 

have a significant impact on validation success [25, 26, 
30–32].

An opportunity to quantify the extent of overlap 
between different SNP discovery methods and to explore 
the consequences for validation success is provided by 
a study of Antarctic fur seals (Arctocephalus gazella). A 
transcriptome assembly based on Roche 454 sequencing 
is already available for this species, from which two SNP 
datasets were generated using NEWBLER and SWAP454 
respectively [33, 34]. Here, we supplement this transcrip-
tome with short read Illumina sequencing, allowing a 
comparison of SNP discovery methods tailored to differ-
ent types of sequence data. We also recently developed 
a predictive modeling framework to determine the likeli-
hood of validation success by accounting for a variety of 
variables, from compatibility of the probe sequences with 
a given assay chemistry, through in silico features such 
as depth of coverage and minor allele frequency (MAF), 
to aspects of the genomic context [26]. This framework 
provides a basis by which we can evaluate the likely vali-
dation outcomes of the SNPs discovered by different 
methods.

In this study, we first generated a ‘hybrid’ fur seal tran-
scriptome from the 454 and Illumina data. We then 
mapped the Illumina reads to the hybrid transcriptome 
using BWA and BOWTIE2 before calling SNPs from each 
alignment with GATK. The two sets of resulting SNPs 
were then compared with the two sets of SNPs previously 
mined from the 454 transcriptome using NEWBLER and 
SWAP454 respectively. This allowed a direct comparison 
of a total of four methods for calling SNPs from two types 
of sequence data. Finally, we used predictive modeling 
to assess the suitability of the resulting SNPs for both an 
Affymetrix Axiom and an Illumina Infinium iSelect HD 
array. We hypothesized that SNPs with a high probability 
of validation success would be enriched for those called 
by more than one method. Due to the higher depth of 
coverage provided by Illumina relative to 454 sequencing, 
we also expected SNPs called from the former to have 
higher validation success probabilities. We provide an 
annotated workflow within the R programming language 
[35] for implementing the SNP filtering and assessment 
steps presented here (Additional file 1).

Results
Sequencing, assembly and annotation
To improve upon the existing 454 transcriptome, which 
comprises 23,096 contigs of mean length 971 bp, we con-
ducted an additional round of Illumina sequencing (see 
‘Methods’ section for details). This generated a total of 
17,894,042 101  bp paired-end reads (submitted to the 
sequence read archive, http://www.ncbi.nlm.nih.gov/sra; 
Study Accession SRP071273), which were assembled de 

http://www.ncbi.nlm.nih.gov/sra
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novo to generate 26,266 contigs of mean length 904 bp. 
Blasting these contigs to the 454 backbone, we found that 
15,520 (59.0 %) successfully mapped at an e-value thresh-
old of 1e−10. After annotating the unmapped contigs, 
around 50 % were removed, either due to a lack of homol-
ogy to known sequences or because the top BLAST hit 
revealed similarity to known bacterial or viral sequences. 
Most of the remaining 5452 annotated contigs showed 
sequence similarity to the Weddell seal (Leptonychotes 
weddellii) and the walrus (Odobenus rosmarus) and were 
thus concatenated to the original 454 transcriptome. 
This yielded a ‘hybrid transcriptome’ comprising a total 
of 28,548 contigs (Fig.  1, http://www.goo.gl/vj8VjD). To 
investigate homology to the dog (Canis familiaris), we 
mapped these contigs to the most recent and complete 
build of the dog transcriptome. 23,587 (82.6 %) of the seal 
contigs mapped to 35,724 (64.7 %) of the dog transcripts, 
suggesting that a reasonably large proportion of the fur 
seal transcriptome has been captured.

Overlap in SNP discovery
The 454 transcriptome was previously mined for SNPs 
using NEWBLER and SWAP454, which identified 14,538 
and 11,155 SNPs respectively [34]. To call SNPs from the 
Illumina data, we mapped the raw Illumina reads to the 
hybrid transcriptome using BWA and BOWTIE2 and 
parsed the resulting alignment files to GATK as described 
in the ‘Methods’ section. This resulted in a total of 18,353 
SNPs from the BWA alignment and 15,109 from the 
BOWTIE2 alignment, of which 14,490 SNPs were called 
by both methods. Pooling SNPs across all four meth-
ods resulted in a dataset of 34,718 unique markers. To 
explore the extent of overlap between the SNP calling 
methods described above we generated a Venn diagram 
(Fig. 2). This shows that 49.1 % of the total 34,718 SNPs 
were called by a single method, 38.3  % were called by 
two methods, 4.6 % by three and 7.0 % by all four. Most 
of the SNPs identified by a single method (76.9 %) were 
called from the 454 transcriptome using NEWBLER or 

Fig. 1 Circular plot showing the hybrid transcriptome assembly. The inner track represents the breakdown of the transcriptome into 454 (purple) 
and Illumina (blue) components. The middle and outer tracks show the depth of coverage of the 454 and Illumina reads plotted on a log scale. 
Transcripts are sorted in order of average Illumina coverage. As we required at least ten fold Illumina coverage of a given nucleotide to call a SNP, 
Illumina coverage of transcripts with less than tenfold average coverage has been truncated zero

http://www.goo.gl/vj8VjD
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SWAP454. The overlap between SNPs discovered from 
the 454 and Illumina data was 13.5 %.

SNP parameter space
The increased depth of coverage provided by Illumina 
sequencing should allow in silico minor allele frequency 
(MAF) to be estimated more accurately than for the 454 
data. We therefore selected the subset of 4679 SNPs that 
were called from both the 454 and Illumina datasets and 
compared their respective parameter spaces. Two obvi-
ous differences emerge between the two datasets (Fig. 3). 
First, average log depth of coverage of the SNPs increases 
substantially, from around 1.2 (corresponding to 16× 
coverage) for the 454 data to 1.7 (corresponding to 50× 
coverage) for the Illumina data. Second, we find a marked 
difference in the respective MAF distributions, which are 
concentrated around 0.4 for the 454 data (Fig.  3a) but 
which are more evenly spread between around 0.2 and 
0.5 for the Illumina data (Fig. 3b).

We also used the same approach to compare all of the 
SNPs called from the 454 data with all of the SNPs called 
from the Illumina data. Again we found marked differ-
ences between the two datasets (Fig. 3). For the 454 data, 
a clear relationship emerged between MAF and depth 
of coverage, SNPs with high MAF mainly being called 

at a relatively low depth of coverage, whereas SNPs with 
low MAF were mainly called at a relatively high depth of 
coverage (Fig. 3c). For the Illumina data, SNPs were pre-
dominantly called at a relatively low depth of coverage 
(Fig. 3d), which is probably a more accurate approxima-
tion of the underlying MAF distribution (see ‘Discussion’ 
section).

SNP filtering and predicted assay success
Although most studies present the total number of 
putative SNPs identified from transcriptome assem-
blies, when developing a custom SNP array it is 
important to consider the likelihood of each SNP suc-
cessfully validating with a given genotyping technol-
ogy. We therefore tested the total set of 34,718 SNPs 
for compatibility with both Illumina Infinium iSelect 
HD and Affymetrix Axiom high density SNP arrays 
(Fig.  4). In order to do this, we extracted the flank-
ing sequences required for Infinium iSelect (121  bp) 
and Affymetrix Axiom (71  bp) probe design from 
the fur seal transcriptome. Complete 121  bp flanking 
sequences could be extracted for 31,192 of the SNPs 
(89.8  %) while the equivalent proportion was slightly 
higher for the 71  bp flanking sequences (n =  32,727, 
94.3 %, Step 1 in Fig. 4). The Illumina and Affymetrix 

Fig. 2 Venn diagram showing the extent of overlap among SNPs called using four different methods (see ‘Methods’ section for details)
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flanking sequences were then evaluated using Illumi-
na’s Assay Design Tool (ADT) and Affymetrix’s SNP 
evaluation pipeline respectively. 26,110 SNPs (86.6 %) 
were assigned ADT scores of ≥0.8 and 24,778 (78.4 %) 
were classified as either ‘recommended’ or ‘neutral’ by 
Affymetrix (Step 2 in Fig. 4).

Following this, we sought to remove SNPs with an 
undesirable genomic context by mapping their flanking 
sequences to the draft fur seal genome (Step 3 in Fig. 4). 
Blasting the Infinium and Affymetrix SNP sequences 
with an e-value threshold of 1e−12 recovered 24,247 and 
22,368 hits respectively. For these SNPs, we evaluated 

Fig. 3 Variation in SNP minor allele frequency (MAF) and depth of sequence coverage. The upper panels correspond to 4679 SNPs that were called 
from both the 454 and Illumina datasets, with panel a showing the 454 parameter space and b showing the corresponding Illumina parameter 
space. The lower panels correspond to the total number of SNPs called from the 454 and Illumina data (20,426 and 18,971 respectively), with panel  
c showing the 454 parameter space and d showing the corresponding Illumina parameter space
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the probability of successful validation using a predictive 
model incorporating MAF, depth of coverage, ADT/p-
convert score plus values of the predictor variables 

generated from the genome BLAST (see ‘Methods’ sec-
tion for details). Based on the 121 bp Infinium sequences, 
19,773 (81.5  %) SNPs were predicted to successfully 

Fig. 4 Flow diagram showing the number of SNPs remaining after each step of the SNP detection pipeline for both an Illumina Infinium iSelect HD 
array (blue circles) and an Affymetrix Axiom array (purple circles)
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validate with a probability threshold of 0.7. Both the 
number (21,141) and proportion (94.5  %) of equivalent 
Affymetrix sequences were higher. Simply filtering the 
flanking sequences for those that mapped completely and 
uniquely to the reference genome resulted in fewer SNPs 
being retained (11,057 Illumina flanking sequences and 
14,901 Affymetrix flanking sequences, Fig. 4).

We next asked whether the probability of successful 
validation varied according to SNP calling method. Of 
the SNPs called from the 454 data using NEWBLER and 
SWAP454, only 46.8 and 57.0  % respectively were pre-
dicted to successfully validate when using an Illumina 
assay (Table  1). By contrast, 75.7  % of SNPs called by 
GATK from the BOWTIE2 alignment and 72.1  % from 
the BWA alignment were predicted to successfully vali-
date. A similar pattern was obtained when considering 
SNPs that map completely and uniquely to the reference 
genome, as well as for predictive models based on the 
Affymetrix flanking sequences (Table 1).

Finally, we tested whether the probability of successful 
validation varied with the number of methods by which 
a given SNP was called. Table 2 shows that, when using 
an Illumina assay, regardless of whether a predictive 
modeling or simple filtering approach is taken, predicted 

validation success rates are around one-third to two 
times higher for SNPs called by two or more methods, 
with those called by two methods yielding the greatest 
predicted validation success. The same pattern is found 
for the Affymetrix flanking sequences, although the pre-
dicted outcomes are somewhat less dependent on the 
number of methods by which a SNP is called.

Discussion
We used Illumina sequencing to augment an existing 
fur seal transcriptome assembly generated from 454 
sequence data. We then attempted to maximise success-
ful SNP discovery both by exploring the overlap between 
SNPs called using four different methods and by evaluat-
ing predicted validation outcomes. We found that SNPs 
called from the Illumina data were on average more likely 
to successfully validate, as were SNPs called by more than 
one method. Predicted validation outcomes were also 
found to be slightly better for Affymetrix Axiom than 
Illumina Infinium iSelect HD arrays.

The hybrid transcriptome assembly
We de novo assembled the Illumina HiSeq data into con-
tigs and then mapped these to the 454 backbone. Over 
5000 additional contigs were generated that revealed 
homology to walrus and Weddell seal sequences, suggest-
ing that the hybrid assembly is more complete than the 
454 assembly (Fig. 1). To explore this further, we mapped 
the fur seal contigs to the most recent and complete build 
of the dog transcriptome. We found that 82.6  % of the 
contigs mapped to 64.7 % of the dog transcripts. This is 
in contrast to what was previously reported for the 454 
transcriptome, where 62.5  % of seal contigs mapped to 
77  % of dog transcripts  [34]. Therefore, whilst a greater 
proportion of the transcriptome is mapping, a slightly 
smaller fraction of the dog transcriptome is represented. 
This is probably because the mapping was performed 
against a more recent and complete build of the dog 
transcriptome.

SNP discovery
The greater depth of coverage and improved representa-
tion of fur seal transcripts provided by Illumina sequenc-
ing provides the opportunity both to increase the total 
pool of SNPs discovered and to cross-check SNPs called 
from the 454 and Illumina data. In this study, we com-
pared four different methods for mining SNPs from two 
different types of sequence data. Specifically, 454 data 
were mined for SNPs using NEWBLER and SWAP454, 
whilst GATK was used to mine SNPs from both a BWA 
and a BOWTIE2 Illumina read alignment. We found 
poor concordance between the SNPs discovered by all 
four methods, with only 51.0 % of SNPs being discovered 

Table 1 Proportion of  SNPs from  each discovery method 
predicted to  successfully validate on  both an Illumina 
Infinium and  an Affymetrix Axiom array using predictive 
modeling and simple filtering approaches

Discovery 
method

Predicted validation success (%)

Infinium Axiom

Predictive Filtering Predictive Filtering

BOWTIE2 75.7 45.6 83.3 61.7

BWA 72.1 39.7 78.5 54.6

NEWBLER 46.8 27.3 48.9 35.5

SWAP454 57.0 34.6 61.8 45.9

Table 2 Proportion of  those SNPs shared by  one, two, 
three and  four calling methods predicted to  successfully 
validate on  both an Illumina Infinium and  an Affymetrix 
Axiom array using using predictive modeling and  simple 
filtering approaches

Share Predicted validation success (%)

Infinium Axiom

Predictive Filtering Predictive Filtering

One 66.8 30.7 91.7 57.0

Two 92.9 57.2 96.7 72.6

Three 89.3 52.5 93.2 68.0

Four 89.9 54.0 93.3 68.2
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by two or more methods. This is consistent with previ-
ous studies, mostly based on genomic data from humans, 
which have also found relatively little overlap between 
SNPs called by different tools [12, 16] although few of 
these studies attempted to explore validation outcomes 
as we have done here.

There are several potential explanations for the limited 
overlap between SNPs called from the 454 and Illumina 
datasets. First, the hybrid transcriptome contains around 
5000 contigs that are only represented by Illumina 
sequences and from which any called SNPs will there-
fore be unique. However, these only account for 5.7 % of 
the total number of Illumina-specific SNPs, suggesting 
that the majority are located within contigs that are also 
represented by 454 data. Thus, it seems likely that Illu-
mina sequencing allowed many more SNPs to be called 
from the same contigs by virtue of the increased depth of 
coverage provided. This is supported by two lines of evi-
dence. First, the median depth of coverage of SNPs called 
from the Illumina data was 28, whereas the equivalent 
was only 16 for the 454 data. Second, we observed a shift 
towards SNPs with relatively low minor allele frequen-
cies being called from the Illumina data, suggesting that 
greater depth of coverage facilitates the discovery of such 
polymorphisms.

A second reason for the limited overlap could be 
that the 454 transcriptome includes both skin and nec-
ropsy samples whereas for the current round of Illumina 
sequencing we were only able to use remaining cDNA 
from the skin samples. Thus, the 454-specific SNPs were 
called from both the skin and necropsy parts of the tran-
scriptome, whereas the Illumina-specific SNPs were only 
called from the skin part. Indeed, for both BWA and 
BOWTIE2 alignments, not all of the 454 transcriptome 
was mapped to by the Illumina reads (Fig.  1); around 
40 % was left with insufficient Illumina sequence cover-
age for SNP calling, presumably because it represented 
necropsy-specific transcripts. Another possibility is that 
not all of the SNPs called from the 454 data may be gen-
uine. In support of this, only 25.6  % of the 454-specific 
SNPs were called by both NEWBLER and SWAP454, 
suggesting that the two programs differ considerably in 
their outputs even for the same sequence resource.

Regardless of the differences between SNPs called 
from the 454 and Illumina data, it is noteworthy that we 
also found some degree of overlap. Almost 5000 SNPs 
in total were called from what are essentially independ-
ent sequence datasets. For this reason, we consider these 
SNPs more likely to be genuine, consistent with the find-
ing that SNPs called by more than one method are more 
likely to be suitable for use in a high density SNP array 
(see below). Direct comparison of SNPs called from the 
454 and Illumina data also revealed marked differences 

in their MAF distributions, the former being dominated 
by SNPs with a MAF of around 0.4 while the latter show 
a more even MAF distribution. While we cannot yet say 
which of these is the most accurate portrayal of the true 
underlying distribution, we suspect that the Illumina data 
are closer to the mark because, at least in theory, greater 
depth of coverage should allow in silico allele frequency 
distributions to be estimated more accurately. This find-
ing could thus explain why studies often find no asso-
ciation between in silico and realised allele frequencies 
[36–38].

Exploring validation success
SNP discovery is an important goal of many studies and 
features prominently in many publications describing 
transcriptomes [39–41]. However, the resulting SNPs 
may not provide a reliable indication of the number that 
are likely to successfully validate with a given genotyp-
ing technology. For this it is necessary to account for 
variables such as (i) the proportion of SNPs for which 
complete flanking sequences can be extracted; (ii) com-
patibility of the SNP flanking sequences with the cho-
sen assay chemistry; (iii) variation in the likelihood of a 
SNP being genuine with MAF and depth of coverage; and 
(iv) aspects of the genomic context including sequence 
uniqueness and proximity to intron–exon boundaries. 
We therefore incorporated the above factors into the pre-
dictive framework of Humble et  al. [26] to evaluate the 
probability of each SNP successfully validating on both 
Illumina Infinium iSelect HD and Affymetrix Axiom 
genotyping arrays. A number of patterns emerged. 
First, the proportion of SNPs for which complete flank-
ing sequences could be extracted was lower for Illumina 
than Affymetrix (86.8 versus 91.0 % respectively) reflect-
ing Illumina’s requirement for substantially longer flank-
ing sequences (121 versus 71  bp respectively) for probe 
design. Second, a larger proportion of SNPs was deemed 
suitable for assay design based on Illumina ADT scores 
than Affymetrix p-convert scores (86.6 versus 78.4  % 
respectively). This pattern is reflected in the proportion 
of SNPs predicted to successfully validate with each tech-
nology, which was over ten percent higher for Affym-
etrix (94.5 %) than Illumina (81.5 %). Although Illumina 
require longer flanking sequences for assay design, the 
probes themselves are only 60  bp long (plus a one base 
terminal SNP site). Therefore, the difference in predicted 
validation rates seems unlikely to be related to probe 
length. Instead, it could be possible that Affymetrix’s 
evaluation pipeline is more stringent, potentially in this 
case because it utilized the fur seal genome to determine 
strand specificity. Regardless of the exact reasons, our 
findings suggest that under certain circumstances Affy-
metrix Axiom genotyping arrays might be preferable in 
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some respects to Illumina Infinium iSelect HD arrays, 
particularly when genotyping non-model organisms with 
SNPs that have not been experimentally validated in 
advance.

We also tested whether the probability of successful val-
idation varied according to the method by which a given 
SNP was called. Above and beyond the pattern described 
above, we found that SNPs called only from the 454 data 
(using either NEWBLER or SWAP454) were less likely 
on average to successfully validate than SNPs called only 
from the Illumina data (using BOWTIE2 or BWA in com-
bination with GATK). This suggests that a larger propor-
tion of SNPs called from the 454 data may be spurious, in 
line with the lower depth of coverage of the 454 data, the 
fact that only around a quarter of these SNPs were called 
by both NEWBLER and SWAP454, and the limited over-
lap between SNPs called from the 454 and Illumina data. 
This finding would also be consistent with our previous 
work on fur seals in which we experimentally validated 
a panel of putative SNPs derived from the 454 transcrip-
tome using Illumina’s GoldenGate assay [37]. This study 
found a positive relationship between in silico MAF and 
validation success, which suggests that some of the assays 
may have been designed from paralogous loci.

Finally, we found that the probability of successful vali-
dation was greater for SNPs detected using more than 
one method than for SNPs flagged by a single method. 
The highest overall validation success rate was obtained 
for SNPs called by two methods while a marginal reduc-
tion was found for SNPs called by three or four methods. 
To explore this further, we calculated the proportion 
of the total number of SNPs called by each of the four 
methods separately for SNPs called by one, two, three 
or four methods respectively. We found that the peak in 
validation success corresponding to SNPs called by two 
methods can be explained by a greater proportion of 
those SNPs having been called by GATK after mapping 
with either BOWTIE2 or BWA (Additional file 1: Figure 
S1). By contrast, SNPs called by three or four methods 
were more likely to have been called by NEWBLER or 
SWAP454. As previously discussed, the latter may be of 
lower average quality and therefore appear to contribute 
towards a slight deterioration in predicted validation suc-
cess rates for SNPs called by three and four methods.

Despite the above, a general tendency for SNPs called 
by more than one method to be more likely to success-
fully validate makes good sense because the more meth-
ods that are used to call a given SNP, the more robust that 
SNP should be to the peculiarities of any single computer 
program. Thus, we would advocate the use of more than 
one SNP calling method as a means of identifying the 
most robust SNPs, particularly when resources are lim-
ited and a high rate of validation success is an important 

outcome. Overall, our results also highlight how Illumina 
sequencing is preferable for SNP discovery given the sub-
stantially greater depth of coverage that it provides.

Conclusions
We used Illumina sequencing to improve upon an exist-
ing fur seal transcriptome assembly. We then attempted 
to maximise successful SNP discovery both by explor-
ing the overlap between SNPs called using four differ-
ent methods and by evaluating predicted validation 
outcomes. We found that SNPs called from the Illumina 
data had higher likelihoods of successful validation, as 
did SNPs called by more than one method. Predicted 
validation outcomes were also found to be consistently 
better for Affymetrix Axiom than Illumina Infinium iSe-
lect HD arrays. One possible means of exploring the rela-
tive merits of these two genotyping technologies would 
be to genotype a set of individuals and SNPs using both 
technologies.

Methods
Initial transcriptome
This study partly builds upon a previously published fur 
seal transcriptome assembly. This was constructed using 
454 sequence reads generated from two different cDNA 
libraries, one comprising skin samples from 12 individu-
als [33] and the other comprising necropsy samples from 
nine individuals [34]. Assembly of these data using NEW-
BLER generated a total of 23,096 contigs [34], which we 
refer to as the ‘454 transcriptome’.

Library preparation and Illumina sequencing
Using RNA from the same 12 individuals used for the 
skin transcriptome, we generated cDNA libraries using 
Illumina’s TruSeq® Stranded protocol. Briefly, poly-A 
containing mRNA molecules were purified from the 
pooled total RNA using oligo-dT beads. The mRNA was 
subsequently fragmented and reverse transcribed into 
cDNA with strand specificity. Adaptors and a single ‘A’ 
base were attached to each fragment before purificiation 
and PCR enrichment in order to generate the final cDNA 
library. This was sequenced on one lane of an Illumina 
HiSeq 2000.

Sequence assembly
Raw sequencing reads with a Phred quality score of less 
than 20 were removed and primer and adaptor sequences 
were trimmed prior to assembly. Cleaned reads were 
assembled together using SOAPdenovo. After running a 
range of kmer sizes to determine the optimal k value for 
contig length and number, the kmer run of 23 was cho-
sen. Only transcripts of length greater than 500 bp were 
retained in the final assembly.
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Mapping and sequence annotation
All newly generated Illumina contigs were mapped to the 
previously assembled 454 transcriptome using blastn in 
BLAST at an e-value threshold of 1e−10. Contigs that did 
not result in a significant BLAST match were annotated 
using the non-redundant sequence database at an e-value 
threshold of 1e−10. Transcripts with putative gene products 
of bacterial and viral origin were removed whilst all remain-
ing annotated contigs were concatenated to the 454 tran-
scriptome, which we refer to as the ‘hybrid transcriptome’. 
To determine the completeness of the improved transcrip-
tome, we mapped the assembled fur seal contigs against 
the most recent set of annotated dog transcripts [http://
www.ncbi.nih.gov/genomes/Canis_familiaris/RNA/] using 
blastn in BLAST at an e-value threshold of 1e−10.

SNP discovery
To mine SNPs from the hybrid transcriptome, we gener-
ated two bam files by mapping the raw Illumina paired-
end reads to the hybrid transcriptome using both BWA 
and BOWTIE2 with the default parameters. Each mapping 
file was then parsed to GATK for SNP detection using the 
UnifiedGenotyper tool (-stand_call_conf 30, -stand_emit_
conf 10). Each set of SNP calls was then hard-filtered using 
GATK’s VariantFiltration tool based on the following cri-
teria: fisher strand bias <30, quality by depth >2, unfiltered 
read depth  ≥10, read mapping quality  ≥40. SNPs con-
sequently flagged with anything other than ‘PASS’ were 
removed from the datasets. We also removed SNPs if read 
support for the minor allele was less than three.

In order to determine the extent of overlap between 
SNPs called by different methods, we revisited two sets 
of SNPs called from the 454 transcriptome using NEW-
BLER and SWAP454 respectively [33, 34]. A small num-
ber of SNPs within these datasets were duplicated or had 
an alternative allele frequency of one. These were there-
fore removed, leaving a total of 14,536 NEWBLER SNPs 
and 11,135 SWAP454 SNPs.

SNP filtering and predicted assay success
We generated a global list of SNPs representing all of 
those called from (i) the 454 transcriptome using NEW-
BLER and SWAP454 and (ii) the hybrid transcriptome 
using BWA and BOWTIE2 in combination with GATK. 
We then implemented the steps outlined below to obtain 
subsets of SNPs suitable for designing Illumina Infinium 
iSelect HD and Affymetrix Axiom SNP assays respec-
tively. Firstly, we used the BEDTOOLS command getfasta 
to extract the 121 bp SNP flanking sequences required for 
Illumina assays and the 71 bp flanking sequences required 
for Affymetrix assays. Loci with insufficient flanking 
sequence were discarded, as were a small number of 

SNPs that did not match the corresponding base in the 
genome sequence. The suitability of the resulting flanking 
sequences for each assay’s hybridization technology was 
then determined by generating Illumina Assay Design 
Tool (ADT) scores for the 121 bp SNP flanking sequences 
and Affymetrix p-convert scores for the 71 bp SNP flank-
ing sequences. These were obtained from both Illumina 
and Affymetrix directly. SNPs assigned an ADT score 
of <0.8 were discarded from the Infinium dataset. For the 
Affymetrix dataset, SNPs with forward and/or reverse 
sequences designated ‘not recommended’ or ‘not possi-
ble’ were discarded.

For each SNP, we recorded the depth of coverage, minor 
allele frequency (MAF), ADT score (for Illumina assays) or 
p-convert score (for Affymetrix assays). We then mapped 
the corresponding Illumina and Affymetrix flanking 
sequences to the Antarctic fur seal reference genome [26] 
using blastn in BLAST with an e-value threshold of 1e−12. 
From this, we determined the alignment length of the top 
blast hit (a full and continuous mapping indicates that a 
SNP and its flanking sequences lie fully within an exon) 
and the total number of mappings (a proxy for sequence 
uniqueness).

Given the above information, we used two approaches 
to identify SNPs with high likelihoods of validation suc-
cess for each SNP. First we simply filtered for SNPs whose 
flanking sequences match completely and uniquely to the 
genome, as these two characteristics have been shown 
to have a major affect on validation success [26]. Sec-
ond, we used a predictive modeling approach based on 
the outcome of a pilot assay in which 144 putative fur 
seal SNPs were genotyped in 480 individuals [37]. Here, 
the known genotyping outcomes were used together 
with the genomic characteristics of the 144 SNP flanking 
sequences to construct a model of SNP validation suc-
cess using k-fold cross validation. This approach splits the 
144 observations into k =  5 non-overlapping subsets of 
approximately equal size, uses one subset as a validation 
sample and the remaining four subsets as training data 
in order to generate the best predictive model. This best 
model was then used to output the probability of each 
SNP successfully validating given values of the predictor 
variables using the predict function in the bestglm pack-
age in R [26]. A given SNP was predicted to validate suc-
cessfully if its associated probability value was above 0.7.

Additional file

Additional file 1: Figure S1. SNPs called by one, two, three or four 
methods, broken down by calling method, averaged across technology 
and filtering approach.

http://www.ncbi.nih.gov/genomes/Canis_familiaris/RNA/
http://www.ncbi.nih.gov/genomes/Canis_familiaris/RNA/
http://dx.doi.org/10.1186/s13104-016-2209-x
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