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Total syntheses of alkaloid cis-223B and xenovenine are reported in 3 and 4 steps respectively using a 

two-directional synthesis / triple reductive amination strategy, and their neurotoxic properties assessed. 

 Pyrrolizidine alkaloids (PAs) are widely present in nature. In 

plants they are produced as a defence mechanism against insect 

herbivores, where more than 650 PAs and PA N-oxides have 10 

been isolated from 6000 different species (REF). This class of 

alkaloids is also present in moths, ants and poisonous frogs. The 

occurrence in anuran skin was first reported in 1993 for a 

Bufonid (Melanophryniscus) toad.1 To date, 26 3,5-PAs including 

stereoisomers have been assigned to the class. These compounds 15 

display a broad range of biological activity, including glucosidase 

inhibition and anti-HIV potency, and can also play a necrotic and 

allergic role against living organisms, as they are used as 

chemical defence by batrachians.2 There are cases where the 

same alkaloids have been isolated in myrmicin ants, raising the 20 

hypothesis that the presence of some alkaloids in frogs could be 

caused by their dietary source in this case, illustrated by alkaloid 

cis-223H.1 

 In order to quickly access this class of molecules, we proposed 

a simple bio-inspired approach through a triple reductive 25 

amination. Starting from a triketone, we would form in one step 2 

rings and 3 carbon-nitrogen bonds (Scheme 1). We surmised that 

the folded structure of the bicyclic system would enable us to 

attain the required stereochemistry by thermodynamic control. 
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Scheme 1. Retrosynthetic analysis 35 

 

 Although there is no direct biomimetic proof of the supposed 

synthetic pathway for these pyrrolizidines, we infered a similar 

mechanism to the one observed for alkaloid biosynthesis in ants 

and ladybirds.3 It has been particularly well documented in the 40 

case of coccinelline and precoccinelline.4  

 To explore our bio-inspired triple reductive amination strategy, 

two natural product targets were selected: the symmetrical 

alkaloid cis 223B 1, and non-symmetric (±)-xenovenine 2 

(Scheme 2). We surmised that adaption of our previous methods 45 

in two-directional synthesis5 would be highly suited to the simple 

synthesis of the triketone precursors. 
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Figure 1. Structures of alkaloid cis-223B and xenovenine 60 

 

 Alkaloid cis 223B contains two stereogenic centres. Its central 

planar symmetry provides a meso configuration. 1 Was identified 

by GC-MS for the first time in 1989 in bufonid toads 

Melanophrynzscus stelzneri (Argentina) and the frog Oophaga 65 

pumilio (Panama) but never was isolated.1,6 The first and only 

synthesis of alkaloid cis 223B was reported by our group in 2009: 

the latter was obtained in 7 steps and 43% overall yield.7 A 

synthesis of the trans configuration was later reported by 

Toyooka.8 (±)-Xenovenine was isolated in 1980 from the venom 70 

of the ant species Solenopsis xenoveneum by Jones and co-

workers.9 Structurally, this molecule is formed of a pyrrolizidine 

core with a 3,5-unsymmetrical substitution. Various syntheses of 

2 have been published between 1986 and 2000.10 The biological 

properties of either compound have not been reported. 75 

Results and discussion 

 Using a two-directional approach, our initial synthesis started 

with the acetal protection of diethyl 4-oxopimelate 3 to the diester 

4 (Scheme 2). The latter was then converted to Weinreb diamide 

5. The dialkylation of 5 with butylmagnesium bromide and 80 

subsequent deprotection of the central ketone gave access to the 

key triketone intermediate 7a in 4 linear steps and 39% yield. The 

process was then later streamlined by simply allowing the 

deprotection to occur directly after the alkylation. A further 

development even allowed access to 7a directly from 4, enabling 85 

in one pot: diamide formation, dialkylation and acetal 

deprotection in 25% overall yield. 
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Scheme 2. Synthesis of cyclisation precursors 

 

 To convert the triketone precursors 7a and 7b to the 

corresponding alkaloid cis-223B and the bis C3-analogue 8, 5 

several reductive amination conditions were attempted (Table 1). 

Conditions were optimised for the precursor 7b, with the best 

result obtained with 2 equivalents of sodium cyanoborohydride 

and 1.6 equivalents of ammonium acetate in methanol at 23 °C 

for 14 hours, giving a modest 29% yield of pyrrolizidine 8. These 10 

same conditions gave an improved 40% yield of alkaloid cis-

223B when applied to the reaction of the longer chain triketone 

7a. This increase in yield is likely down to the reduced volatility 

of the pyrrolizidine 1 vs 8. 

 Scheme 3. Synthesis of xenovenine 15 

Having successfully demonstrated our two-directional approach 

for the synthesis of alkaloid cis-223B and chain-shortened 

analogue 8, we next turned our attention to the the possibility of 

accessing non-symmetrical pyrrolizidines. Using a sequential 

Grignard addition strategy to symmetric protected diamide 6, 20 

with addition of the longer chain first, followed by the methyl 

group, we were able to gain access to the non-symmetrical 

triketone 9. The best isolated yield obtained for 9 after 

optimisation was 27% (Scheme 3). Our optimised conditions for 

the triple reductive cyclisation was then successfully applied to 25 

triketone 9, which, upon reaction gave (±)-xenovenine 2 as a 

single diasteroisomer in 24% yield. Jones reported a related triple 

reductive amination in his report of the isolation of xenovenine,11 

which gave a mixture of diastereomers. We were therefore 

particularly pleased to find that our optimised procedure gave the 30 

product as a single diastereomer. 

Biological evaluation 

 PAs are known to be toxic to humans and other mammals12 as 

well as insects.13 Most studies have focussed on PAs isolated 

from plants, and information about animal derived PAs is limited. 35 

The main toxic activity of plant PAs appears to be hepatotoxicity, 

caused indirectly by pyrrole metabolites.11 Other alkaloids 

isolated from anurans are known to display neurotoxic activity by 

interacting directly with specific ion channels within the nervous 

system. One recognised target is the nicotinic acetylcholine 40 

receptor.14 Binding studies have shown that twelve of thirteen 

plant PAs tested do not bind competitively to neuronal-nAChR,15 

Table 1. Optimisation of triple reductive amination of triketones 

 

 

 

Entry Solvent Reagents/eq Temp/ 

Time 

Produc

t 

Yield 

(%) 

1 MeOH NaBH3CN 2.0 

NH4OAc 1.6 

KOH 0.2 

RT 
14h 

8 13% 

2 MeOH NaBH3CN 2.0 

NH4OAc 1.6 

RT 

14h 

8 traces 

3 MeOH NaBH3CN 2.0 

NH4Cl 1.6 

RT 

14h 

8 29% 

4 THF NaBH(OAc)3 

3.0 

NH4OAc 5.0 

Cat. acetic acid 

60 °C 

1h 

8 25% 

5 EtOH NH3/EtOH 5.0 

Ti(OEt)4 2.5 

NaBH4 1.5 

RT 
14h 

8 7% 

6 HCO2H H2NCHO 12.0 170 °C 

4h 
8 - 

7 MeOH NaBH3CN 2.0 

NH4OAc 1.6 

RT 

14h 
1 40% 

8 MeOH Et3SiH 2.0 

NH4OAc 1.6 

RT 

14h 

8 - 
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but a number of PAs isolated from anuran skin display high 

affinity for Torpedo muscle-type nAChR.16 Spiropyrrolizidines 

are non-competitive antagonists of nAChR which display 

selectivity for neuronal over muscle-type receptors.17  Here we 

show inhibition of acetylcholine induced nAChR currents by cis-5 

223B and (±)-xenovenine using patch-clamp of TE671 cells 

expressing human muscle-type nAChR.18 The results shown in 

Figure 1 demonstrates clear, concentration dependent inhibition 

of the steady state current by both cis-223B and (±)-xenovenine, 

with IC50 values of 120µM and 43.2µM respectively. Both 10 

compounds clearly inhibit the nicotinic acetylcholine response at 

high concentrations but the IC50 values generated are modest 

when compared with other alkaloids isolated from anuran skin. 

Spiropyrrolizidines are known to show selectivity for neuronal 

over muscle-type nAChR,16 and it is possible that this is also true 15 

of these compounds. Further investigation into the selectivity of 

these compounds for neuronal-nAChR and different sub-types 

thereof would reveal their potential as therapeutic leads for 

nAChR abberations such as slow channel myasthenic syndrome. 

Figure 1. Inhibition of ACh (10µM) induced currents in TE671 cells 20 

expressing human muscle-type nAChR by a) cis 223B and b) (±) 

xenovenine at Vh -75mV. Typical traces showing ACh elicited currents 

(left) and when co-applied with pyrollizidines (100µM)(centre). Vertical 

bars represent 200pA and horizontal bars show 1s perfusion period. 

Concentration/inhibition plots fitted with non-linear regression curves. 25 

The current at 1s after onset (the point at which antagonism is greatest) 

was normalised against the preceding ACh only response at the same time 

point. Values represent mean ± SEM for 5-12 cells. 

Conclusions 

In conclusion we have applied a bio-inspired cascade reductive 30 

amination methodology to the synthesis of alkaloid cis-223B 1 (3 

steps, 10% yield) and C3-analogue 8 (3 steps, 8% yield).  This 

method was further developed to access unsymmetrical 

pyrrolizidine alkaloids, demonstrated by the diastereoselective 

synthesis of (±)-xenovenine 2 in 4 steps and 5% overall yield. 35 

Despite the relatively modest overall yields (partially due to 

volatility of the products), these synthetic pathways remain by far 

the shortest syntheses described for 1 and 2, and demonstrate the 

overall effectiveness of the combined two-directional synthesis / 

tandem reaction strategy.19 The overall strategy should be 40 

applicable to a wide range of 3,5-disubstituted pyrrolizidines. 

Furthermore, electrophysiology assays performed on nAChR 

from human muscle cells enabled us to determine the IC50s of 

both natural products, confirming for the first time the suspected 

neurotoxic properties of these natural products. 45 
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