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Abstract

Background

Neoadjuvant chemotherapy (NAC) is being used as first line treatment in women with

large and locally advanced breast cancers (LLABCs). However, the response to NAC

is difficult to predict. Growing evidence suggests that these patients are

immunosuppressed and that circulating immunosuppressive regulatory cells and

humoral factors affect the response to NAC. We explored the possible role of the in

situ tumour immune milieu in inducing and affecting the responses to NAC, and the

contribution of concomitant systemic circulating regulatory cells.

Methods

Paraffin-embedded breast cancers and ipsilateral axillary lymph nodes (ALNs) from

pre- and post-NAC samples of a cohort of 33 women with LLABCs, 16 of whom had

their blood regulatory cells previously investigated. Various immune cell infiltrations

and expression of cytokines/ biological molecules in the specimens were studied using

appropriate monoclonal antibodies and immunohistochemistry. Statistical analysis

was carried out using non-parametric tests with SPSS version 21.

Results

High levels of pre-NAC tumour-infiltrating lymphocytes (TILs) (p<0.001) and subsets

of CD4⁺T cells (intratumoural, p=0.023; peritumoural, p=0.001), CD8+T cells

(intratumoural, p=0.008; peritumoural, p=0.002) and CD56⁺NK cells (intratumoural,

p=0.001; peritumoural, p<0.001) were significantly associated with a pathological

complete response (pCR). High levels of CD163⁺macrophages were also significantly
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associated with a good pathological response (p=0.004) and pCR (p=0.008). There

was a positive correlation between the CD8:FOXP3 ratio and grade of pathological

response. In multivariate analyses, TILs and peritumoural CD56+NK cells were found

to be independent predictive factors for pCR. There was a significantly high

expression of IL-10 in post-NAC breast specimens with poor responses to NAC

(p<0.001). NAC significantly reduced infiltrating T regulatory cells (Tregs) (p=0.001)

and PD1⁺T cells (p=0.005), as well as expression of IL-4 (p=0.016). There was no

significant difference between the percentages (%) of immune cells present in ALNs

with or without metastases but there was a T helper-2 cytokine polarisation in

metastatic ALNs. Metastatic ALNs with a high % of CD8+T cells (p=0.048) and low

% of FOXP3+Tregs (p=0.019) were significantly associated with an ALN pCR. There

was a significantly positive correlation between circulating and intratumoural

infiltrating Tregs following NAC (p=0.003).

Conclusions

The tumour immune microenvironment is a key factor in achieving a good

pathological response with NAC. Tumour and blood immune parameters may be

clinically useful in identifying women with LLABCs likely to respond to NAC. Our

findings also suggest that the beneficial effects of NAC are mediated via modulation

of anticancer immunity, in particular by reduction of T regulatory cells and

immunosuppressive humoral factors.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 Overview

Despite the rapid improvement in the treatment of cancer and the advancement in the

molecular biology of malignant disease, cancer continues to be a major cause of death.

There are a number of systemic treatments (adjuvant and palliative), such as

chemotherapy, endocrine therapy and targeted therapy, available that improve patient

outcomes. Their efficacy and effectiveness, however, are variable and in many cases

suboptimal. Some of these therapies have serious side effects, preventing their use in

many cancer patients, because of old age and frailty and/or severe co-morbidities. In

addition, resistance may occur during the period of treatment and this may result in

disease progression [1]. As a consequence, the number of deaths per annum from

cancer continues to be high. To date, active research is on-going to find new, less toxic

and more effective treatments.

In the last two decades, the advancement in cancer biology and understanding of

cancer immune surveillance have highlighted the possibility of harnessing and

modulating the host immune system directed against cancer cells [2]. From

observations and experimental findings in a variety of animal tumour models and

clinical trials in man, various immunological processes (innate and adaptive) have

been shown to destroy abnormal or malignant cells [3]. Modulating the immune
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system shows promise as an effective therapeutic modality in cancer treatment, with

the possibility to cure or control disseminated cancer disease.

Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in both the

blood and tumour microenvironment are important cellular mechanisms in modulating

and enhancing tumour growth through their ability to suppress the activation and

proliferation of key anticancer CD4⁺ and CD8⁺ effector T cells [4-8]. This results in

immune tolerance to cancer cells and progressive tumour growth [9]. Tumour-

infiltrating macrophages (TIMs) are another group of immune cells which plays a

crucial role in inhibiting anticancer immune defences via its polarised M2 subset [10].

Similarly, various biological molecules and cytokines produced in the tumour

microenvironment are also important loco-regional factors modulating tumour growth

[11]. CD8⁺ cytotoxic T cells (CTLs), in contrast to suppressor cells, are known to

promote anticancer immune defences, and their cytotoxic properties can destroy

cancer cells; they have a positive correlation with a good prognosis in patients with

malignant disease [12].

To better understand and subsequently overcome these immunosuppressive factors,

many studies have focused on identifying and characterising these various cellular

subsets and their functions in different cancers. In breast cancer, there is evidence that

these immune cells play a crucial role as both prognostic and predictive indicators of

responses to treatment, particularly in locally advanced but non metastatic disease [13-

15]. The recognition of density and distribution of these immune cells has been

achieved by exploiting surface and intracellular markers using specific antibodies
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labelled with reporter dyes or fluorophores [13-15]. A number of experimental

techniques are available to study these cells and cytokines/biological molecules in the

blood, lymphoid compartments and in situ in the cancer tissue.

In cancer tissue, the presence of tumour-infiltrating lymphocytes (TILs) within or

around tumour cell nests has been documented in many solid cancers. Their

composition and function are important for tumourigenesis, progression and metastatic

dissemination [16]. The clinical significance of TILs in breast cancer, in particular the

different lymphocyte subsets, is still controversial and a matter of debate [14]. High

scores of TILs, which can be found on histopathological examination of cancer tissue,

is associated with higher rates of both a good pathological response and pathological

complete response (pCR) after neoadjuvant chemotherapy (NAC), particularly in

breast cancer [17-20]. Many studies suggest a survival benefit in the presence of high

levels of TILs in tumours [12, 21, 22].

It is important to study the different subsets of lymphocytes in TILs because they have

different functions in the tumour microenvironment. A high level of tumour-

infiltrating CD8⁺ T lymphocytes and the high ratio of CD8⁺ T cells: FOXP3⁺

(forkhead box protein 3) Tregs have been shown to be associated with a favourable

prognosis [12, 23]. FOXP3⁺ Tregs is one of the most interesting subset of TILs as they

substantially inhibit the function and generation of effector T cells. Their level in

tumours and tumour-draining lymph nodes is significantly higher than that

documented in peripheral blood [24]. Also, they are positively correlated with disease

stage [24]. Most studies suggest that the presence of FOXP3⁺ Tregs in TILs has a
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negative effect on anticancer immunity, responses to NAC and prognosis [13, 20, 21,

25]. However, there is paradoxical evidence that the presence of high levels of

FOXP3⁺ Tregs in TILs is associated with a more favourable prognosis [26, 27]. Some

studies have shown that tumour-infiltrating FOXP3+ Tregs have no prognostic

significance [28]. All of these factors need to be further carefully investigated.

Possible improvements in outcome from cancer treatment in the future may rely on the

depletion or inhibition of immunosuppressor/regulatory cells and their functions.

Chemotherapeutic agents, apart from having adverse effects due to inhibition of

haematopoietic stem cell proliferation in the bone marrow, have been recognised to

enhance specific anticancer immune responses. Anthracycline and taxane-based

chemotherapy have been shown to have such immune modulating effects [29-31].

Furthermore, low dose metronomic cyclophosphamide, which is currently being used

in many clinical trials of cancer vaccine immunotherapy, has been demonstrated to

inhibit the number and activity of Tregs [32-37].

The effects of NAC, however, in women with large and locally advanced breast

cancers (LLABCs), on different immune cell infiltrates in the tumour

microenvironment are unclear. Also, the production of cytokines/biological molecules

in tumours and tumour-draining axillary lymph nodes (ALNs), has been poorly

documented [13]. In particular, the assessment and comparison of these cellular

profiles prior to and following NAC may provide relevant information regarding

anticancer immune mechanisms.
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From a previous study done in our laboratory in the same cohort of patients, Verma et

al. (2013) had clearly demonstrated the presence of significantly higher levels of

absolute numbers (AbNs) and percentages (%) of circulating (blood) Tregs and a T

helper-1 (Th1) to Th2 polarisation of T lymphocyte production of cytokines in women

with LLABCs, compared with healthy female donors (HFDs). There was a significant

reduction of circulating FOXP3⁺ Tregs after NAC in those women whose breast

tumours demonstrated good pathological responses [15]. These findings suggest

women with LLABCs are immunosuppressed and that NAC is able to modulate

systemic anticancer defences in breast cancer patients in the locally advanced setting.

To complement and better understand the immune-modulating effects of NAC, as well

as the influence of immune cell infiltrates on outcomes of NAC, it is important to

study critically the tumour microenvironment which may provide a better

understanding of the interaction between tumour cells and the host immune responses.

Immune parameters in blood may not necessarily represent the tumour in situ immune

status and activity [38].

Such a study may help to establish the roles played by the in situ tumour immune

milieu in the damage and removal of malignant cells during NAC and the possible

relevance of NAC in reducing Tregs in the tumour microenvironment and tumour-

draining ALNs after treatment. A better understanding of the factors preventing the

generation of immune-mediated tumour cell damage associated with NAC, would help

to devise more beneficial therapeutic strategies with chemotherapy.
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1.2 Breast Cancer: Background

1.2.1 Incidence

Approximately 331,000 new cancer cases were diagnosed in the UK in 2011 (524

cases per 100,000 people, 910 cases per day) and breast cancer was the most common

cancer in women (49,936 new cases in 2011) accounting for 30% of the cancers [39].

Breast cancer is estimated to be diagnosed globally in more than a million women

each year. The rates vary worldwide ranging from 19.3 to 89.9 per 100,000 women.

The incidence of breast cancer is also high in Europe (Belgium, France, Switzerland,

and Italy), North America and in Australia, whilst India, Thailand, China and Africa

have the lowest incidences. The mortality rate from breast cancer has decreased in the

last 20 years but it is still the leading cause of cancer-related death among women. It

was estimated to be between 6 and 29 per 100,000 women. Thus, breast cancer ranks

as the second most common cause of cancer-related death in women and the fifth most

common cause of death overall [40, 41]. The latest age-standardised 5-year and 10-

year survival following diagnosis and treatment for women with breast cancer in

England were 87% and 78%, respectively [39].
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Table 1.1 Cancer Incidences in the United Kingdom (UK) in 2011

All cancers excluding non-melanoma skin cancer

(From Cancer Research UK (2014) [39], reproduced with permission)

Figure 1.1 The 10 most common cancers in females in the UK in 2011

(From Cancer Research UK (2014) [39], reproduced with permission)
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1.2.2 Classification

It is now well recognised that breast cancer is a heterogeneous disease, consisting of

multiple entities associated with distinct histological and biological features, clinical

presentations, responses to therapy and prognosis [42, 43]. The classification of breast

cancer is commonly based on the histological type, the grade of the tumour, the stage

of the tumour and the expression of proteins or genes. Management of patients with

breast cancers depends on a variety of factors including those defining specific

subtypes, as well as clinical staging.

1.2.2.1 Histological grade and tumour types

Histological grading of breast cancer is performed, based on the criteria established by

Elston and Ellis, by a combined evaluation of morphological tubule formation

(glandular differentiation), nuclear pleomorphism and proliferative activity (mitotic

count) [44]. The gene expression profiles and transcriptomic features of breast

tumours have been shown to correlate with histological grade [45]. Currently,

histological grade has been incorporated in validated prognostic algorithms to

determine breast cancer therapy, for example the ‘Nottingham Prognostic Index’ [46-

48] and ‘Adjuvant! Online’ [49]. Low grade (grade 1) breast tumours (well-

differentiated tumours with low mitotic index) are associated with low metastatic

potential and a good prognosis and survival [50]. However, high grade (grade 3)

tumours have been shown to have higher pCR rates in response to NAC [19, 51].

Tumour types of breast adenocarcinomas comprise a diversity of different

morphological and cytological patterns which possess a different prognosis and
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response to treatment. The majority of breast cancers arise from the mammary

parenchymal epithelium, particularly cells of the terminal duct-lobular unit (TDLU). It

was originally believed that distinct histological types of breast cancer arose from distinct

micro-anatomical structures of the normal breast tissue (e.g. ductal carcinoma arose from

ductal epithelium and lobular carcinoma arose from terminal lobules). However, it has

been subsequently demonstrated that the vast majority of invasive breast cancers, and their

in situ precursors, originate from the TDLU regardless of the histological type. The terms

ductal and lobular carcinomas do not imply histogenesis or site of origin within the

mammary ductal system. Instead, these entities are defined based on their discrete

architectural patterns and cytological features [43, 52, 53].

Invasive ductal carcinoma (IDC) not otherwise specified (NOS) /or no special type

(NST) is the most common type accounting for 75% of invasive breast cancers. This

tumour type is a diagnosis of exclusion and consists of adenocarcinomas that fail to

exhibit sufficient characteristics to warrant their classification in one of the special

types. The special types account for up to 25% of all breast cancers. The latest

classification recognises the existence of at least 17 distinct histological special types

(Table 1.2) [43, 54]. Invasive lobular carcinoma (ILC) is one of the special types with

a differing prognosis. The classical lobular, tubulo-lobular and lobular mixed, but not

the solid, subtypes of ILCs are associated with a better prognosis than IDC-NOS.

Tubulo-lobular carcinoma, in particular, has an extremely good prognosis. Tubular,

invasive cribriform and mucinous types possess a very favourable prognosis while

medullary carcinoma/or atypical medullary carcinoma do not have a survival

advantage over IDC-NOS [55].
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Table 1.2 Histological Classification of Malignant Epithelial Tumours of the Breast

Histological Classification of Invasive Epithelial Tumours of the Breast
Invasive ductal carcinoma, not otherwise specified

Mixed type carcinoma
Pleomorphic carcinoma
Carcinoma with osteoclastic giant cells
Carcinoma with choriocarcinomatous features
Carcinoma with melanotic features

Invasive lobular carcinoma
Classical carcinoma
Alveolar carcinoma
Solid carcinoma
Tubulo-lobular carcinoma

Tubular carcinoma
Invasive cribriform carcinoma
Medullary carcinoma
Mucinous carcinoma and other tumours with abundant mucin
Mucinous carcinoma
Cystadenocarcinoma and columnar cell mucinous carcinoma
Signet ring cell carcinoma
Neuroendocrine tumours

Solid neuroendocrine carcinoma
Atypical carcinoid tumour
Small cell / oat cell carcinoma
Large cell neuroendocrine carcinoma

Invasive papillary carcinoma
Invasive micropapillary carcinoma
Apocrine carcinoma
Metaplastic carcinomas

Pure epithelial metaplastic carcinomas
Squamous cell carcinoma
Adenocarcinoma with spindle cell metaplasia
Adenosquamous carcinoma
Mucoepidermoid carcinoma

Mixed epithelial/mesenchymal metaplastic carcinomas
Oncocytic carcinoma
Adenoid cystic carcinoma
Miscellaneous

Data from World Health Organization Classification of Tumours, 2003 [56]
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1.2.2.2 TNM staging

Tumour size has a prognostic significance. Larger tumours have a poorer

outcome/prognosis than smaller lesions [47, 57, 58]. Radiological assessment for

tumour size is stated to be more reliable and precise than clinical evaluation.

Ultrasonography is commonly used for preoperative determination of tumour size

[59]. The presence of loco-regional lymph node metastases is one of the most

important factors affecting the prediction of survival [58]. Axillary nodal metastases

are less frequent in small tumours. It has been estimated that ALN metastases are

found in less than 20% of patients with breast tumours < 10 millimetres (mm) [60].

The TNM staging system was initially proposed in 1954 and subsequently modified

several times [61]. It comprises a clinical determination of tumour size (T), lymph

node stage (N) and the presence of distance metastasis (M). The classification was

developed on the basis of the anatomical extent of the tumour which is closely related

to the treatment outcome [62]. According to TNM staging, breast cancers can be

categorised as early stage breast cancers (stage I and II), locally advanced breast

cancers (stage III) and metastatic breast cancers (stage IV) [57]. A modified TNM

system was formulated by the Union International Cancer Centre (UICC) and the

American Joint Committee on Cancer (AJCC). The seventh edition (latest) was

published in 2010 (Appendix 4). The main purpose of TNM staging is to clinically

characterise patients with a view of determining the treatment algorithm and likely

prognosis. Accurate staging is necessary when comparing the results of different

treatment arms in clinical studies.
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1.2.2.3 Molecular (intrinsic) subtypes

The advance in DNA and RNA analyses and proteomic profiling in breast cancer has

significantly enhanced our knowledge and understanding of the complex molecular

and genetic structures and interactions in breast cancer, leading to new strategies in

diagnosis and treatment in clinical practice.

Currently, at least five major molecular subtypes of breast cancer have been defined,

namely luminal A, luminal B, HER2+ve (human epidermal growth factor receptor 2),

basal-like and normal breast-like subtypes [63]. These subtypes have been associated

with differences in clinical features, response to treatment and prognostic outcome

[64]. The diversity in molecular expression patterns is accompanied by a

corresponding phenotypic diversity in breast tumours. The common biological

markers, such as oestrogen receptor (ER), progesterone receptor, (PR), HER2

amplification and the proliferative activity of the tumour (Ki-67) are being used as

surrogate markers for gene expression analyses. Recently, cytokeratin 5 (CK5) and

epidermal growth factor receptor [EGFR (HER1)] were included to identify basal-like

breast cancer [65, 66]. These markers can be identified by immunohistochemistry

(IHC) and/or in situ hybridisation (ISH) making it possible to study large numbers of

archived breast cancer specimens [67]. However, consensus on molecular subtyping

with IHC or ISH markers as surrogates for gene expression analyses has yet to be

established [68].
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Luminal A and B subtypes

The expression of gene characteristics of luminal epithelial cells (lining the mammary

ducts), including ER cluster, is an important distinction between luminal subtypes and

others (non-luminal subtypes). luminal A breast cancer is the commonest subtype

characterised by the highest expression of ER, oestrogen-regulated protein LIV-1,

hepatocyte nuclear factor 3 alpha (HNF3A), X-box binding protein 1 (XBP1) and

GATA-binding protein 3 (GATA3) [63, 69]. The phenotypic characteristics are the

expression of ER and PR (ER+ve, PR+ve), absence of HER2 over amplification

(HER2-ve), low proliferative Ki-67 index and low histological grade. Luminal

epithelial tumours are relatively chemoresistant having a lower response rate to

chemotherapy. However, patients with luminal A breast cancers have a significantly

better prognosis than other subtypes [70].

The luminal B subtype is distinguished from the luminal A by having a low to

moderate expression of the luminal-specific genes (the ER cluster mentioned above)

and high expression of a novel set of genes such as GGH, LAPTMB4, NSEP1 and

CCNE1. Also, the expression of proliferation genes, such as MKI67 and cyclinB1 has

been found to be increased. Luminal B breast cancers often express EGFR and HER2

[63]. This subtype is phenotypically characterised as being ER+ve, HER2+ve and with

a high level of expression of Ki-67 [71]. The Ki-67 cut off point to distinguish luminal

A and luminal B has not been standardised. There is variability in the assessment of

this marker [72]. Luminal B tumours have a higher histological grade and metastatic

rate, and a worse prognosis than luminal A tumours.
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HER2+ve subtype

HER2+ve breast cancers comprise 15-20% of all breast cancers. They are

characterised by high levels of expression of several genes in the ERBB2 cluster

including ERBB2 (HER2), GRB7 and TRAP100 and absence of genes of the basal-like

cluster [63]. They can show low level of expression of luminal-characteristic genes.

These tumours are highly proliferative, usually high histological grade and related to

p53 mutations [73]. Patients with this subtype have a poor prognosis and short

survival. However, HER2+ve breast cancers are sensitive to chemotherapy [74]. They

demonstrate a higher response rate and pCR, compared with luminal A and B tumours,

in NAC studies. Moreover, the anti-HER2 targeted adjuvant treatment has

substantially improved survival in patients with this subtype [75].

Basal-like and normal breast-like subtypes

The basal-like molecular subtype is characterised by a high level of expression of

KRT5 and KRT17, annexin-8, CX3CL1 and TRIM29 (basal-like cluster) and has a

complete absence of the luminal/ER cluster of genes [63]. High molecular weight

cytokeratin 5 (CK5), CK17, P-cadherin, CD44 and EGFR are present in this subtype

(CK5 and EGFR as basal markers). It accounts for 15% of all breast cancers and

mainly affects younger women [76]. Patients with basal-like breast cancers tend to

have large tumours and lymph node involvement on presentation [77]. The basal-like

tumours have a high rate of p53 mutations, which offers an explanation for their

aggressiveness and poor prognosis. They have a high recurrent rate after treatment

despite having a high response rate to chemotherapy [78]. In addition, breast cancers

with germ-line BRCA1 mutations are found in basal-like subtype [63]. The alterations
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that involve a decrease in the function of the BRCA1, either by mutations or epigenetic

mechanisms, predispose to develop basal-like tumours [77]. BRCA1 is a tumour

suppressor gene responsible for repairing damaged DNA. Its inactivation leads to

genetic instability favouring tumourigenesis. Thousands of DNA molecules are

damaged during cell replication. Inadequate repair leads to the accumulation of errors

and results in cell death (apoptosis). Breast cancers with BRCA1 mutations lack the

ability to appropriately repair damaged DNA. Therapeutic agents inducing DNA

damage such as platinum-based cytotoxic compounds (eg. cisplatin, carboplatin,

oxaliplatin) and inhibitors of poly-ADP-ribose-polymerase (PARP), an enzyme

involved in DNA repair, are optimal for this subgroup of breast cancers (more

dependent on PARP than regular cells) [79]. Basal-like tumours usually lack the

phenotypic expression of ER, PR and HER2, and are referred to as triple negative

breast cancers (TNBCs). It has been reported that basal-like breast cancers account for

56–85% of TNBCs [76].

The remainder of TNBCs, which lack the gene expression profile of the basal-like

tumours, are the normal breast-like subtype (similar to normal mammary stromal cells)

[76]. The normal breast-like subtype of breast cancer has a very similar prognosis to

that of a hormone receptor positive breast cancer [80, 81].
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Table 1.3 Summary of Phenotypic Characteristics of Molecular (Intrinsic) Subtypes

Subtypes Phenotypic Characteristics

Luminal A ER+ve and/or PR+ve, HER2-ve, low Ki-67

Luminal B ER+ ve and/or PR+ve, HER2+ve (or HER2 -ve), high Ki-67

HER2 +ve ER-ve, PR-ve, HER2+ve

Basal-like ER-ve, PR-ve, HER2-ve, CK5+ve, EGFR+ve

Normal breast-like ER-ve, PR-ve, HER2-ve, CK5-ve, EGFR-ve

1.2.3 Breast cancer therapies

A multidisciplinary approach ensures that the breast cancer patient receives the

optimal treatment for that particular cancer. There are a number of treatment

modalities available for breast cancer and the treatment options tend to be

individualised. Curative treatment of breast cancer varies and depends on the types of

tumours and progression of disease (staging) at the time of diagnosis. Treatment of

early breast cancers and operable stage III breast cancers usually starts with surgical

removal of the tumour (lumpectomy or mastectomy) and axillary nodal assessment

followed by additional (adjuvant) treatment. For inoperable and/or LLABCs, primary

treatment may be radiotherapy or NAC prior to surgery. The aim of neoadjuvant

therapy is to downstage the tumour in breast and axilla in order to increase the

likelihood of subsequent effective surgery and, if feasible, carry out breast conserving
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surgery in patients with LLABCs. Loco-regional treatment with surgery ±

radiotherapy is required following NAC. Palliative treatments are reserved for breast

cancers with distant metastases (stage IV) [82, 83].

1.2.3.1 Loco-regional treatment

Breast surgery

Either breast conserving surgery (removal of primary breast tumour with surrounding

normal breast tissue) or total mastectomy (removal of the whole breast) is carried out

in patients with operable/ early breast cancer [84]. Histological assessment of the

resection specimen is necessary to ensure the margins are free of tumour [R0 resection:

a minimal of surgical margin of 1 mm for invasive disease and ≥2 mm for ductal 

carcinoma in situ (DCIS), according to St. Gallen consensus, 2013]. Mastectomy is

normally required for large tumours, multicentric lesions (multiple tumours in

different quadrants of the breast), extensive DCIS and persistent margin-positive

excision cases. However, based on the latest consensus from St. Gallen panel, these

conditions are considered to be only a relative contraindication for breast conserving

surgery (no absolute contraindication). Patient preference also needs to be considered

in deciding surgical options [85, 86].

Axillary surgery

Sentinel lymph node (SLN) biopsy has become the standard treatment for staging the

axilla, replacing the ALN dissection (ALND) for early breast cancers. SLNs are the

first group of lymph nodes which receive lymphatic drainage from the breast and
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tumour. Identification of SLNs with blue dyes and/or radioisotopes (via gamma probe)

during surgery enables SLN isolation and removal. Histologically negative SLNs

[isolated tumour cells (cluster of metastatic tumour cells <0.2 mm) accepted] represent

a tumour-free axilla. No further ALND is required in such cases. Histologically

positive SLNs [macrometastasis (>2 mm)], axillary nodal clearance is usually required

[82, 87]. SLNs with micrometastasis (0.2-2 mm) may indicate a requirement for

adjuvant systemic treatment but is not an indication for axillary clearance [88].

Adjuvant irradiation of the axilla in case of positive SLNs is not an evidence-based

alternative to ALND [86]. The recent results of the American College of Surgeons

Oncology Group Z0011 trial and American Society of Clinical Oncology clinical

practice guideline for patients with minimal SLN involvement (1-2 positive nodes)

suggest no further treatment for axilla in selected cases. This only applies to patients

with small tumour size (T1 or T2) and having a plan to do breast conserving surgery

with postoperative whole breast irradiation (tangential field irradiation) and receiving

adjuvant systemic treatment. The more restrictive criteria include post-menopausal

status, no extra-nodal extension, hormonal receptor positive tumour and ductal

carcinoma cell type [89, 90].

Radiotherapy

Whole breast irradiation after breast conserving surgery and chest wall irradiation after

mastectomy for advanced tumours (clinical T3 and T4) reduce the risk of local

recurrence [91]. It is recommended that, where there is pathological involvement of 4

or more ALNs, postoperative irradiation is delivered to the chest wall, supraclavicular
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area, infraclavicular region and internal mammary nodes (following the NCCN

guideline 2016) [82].

1.2.3.2 Systemic treatment

Chemotherapy

Chemotherapeutic agents destroy both cancer cells and normal cells that are actively

proliferating (e.g. haematopoietic cells, mucosal/epithelial cells). The mechanism of

cell death and damage occurs as a result of the interference of DNA synthesis and

replication during cell division (Table 1.4). Various regimens of cytotoxic agents have

been used as systemic treatments for breast cancer and have both significantly reduced

recurrence and prolonged survival. Adjuvant chemotherapy is given after surgery with

the purpose of destroying occult micrometastases and reducing the risk of future

recurrence. NAC downstages breast tumours and increases the likelihood of achieving

definitive surgery, including breast conserving surgery, as well as dealing with

micrometastases [83]. The responses of breast cancers to NAC can be studied and

monitored. This is crucial for the study of tumour biology and host defences. Palliative

chemotherapy may prolong survival in patients with distant metastases.
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Table 1.4 Summary of Mechanisms of Action of Common Chemotherapeutic Agents

Used in the Treatment of Breast Cancers

Groups Mechanisms Examples

Antimetabolites

Pyrimidine nucleoside analogues that

inhibit thymidylate synthase in order

to disturb RNA and DNA synthesis

5-fluorouracil,

Capecitabine,

Gemcitabine

Inhibit dihydrofolate reductase,

thereby depleting cells of reduced-

folates, which are required for DNA

synthesis

Methotrexate

Alkylating agents

Interfere with the DNA double strands

by forming methyl cross-bridges to

prevent the two DNA strands coming

apart during mitosis

Cyclophosphamide,

Chlorambucil,

Mitomycin C

Anthracylines

Intercalate between base pairs of the

DNA or RNA strands thereby

inhibiting DNA/RNA synthesis and

progression of topoisomerase II

enzymes which control DNA de-

coiling during replication

Adriamycin

(doxorubicin),

Epirubicin

Taxanes
Affect mitotic spindle formation

during mitosis

Paclitaxel,

Docetaxel

Platinum compounds

Form inter- and intra-strand platinum-

DNA crosslinks, thereby inhibiting

DNA replication/transcription

Cisplatin,

Oxaliplatin,

Carboplatin
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Hormonal (endocrine) therapy

Sex-steroid hormones (oestrogen and progesterone) have significant effects on cell

growth, differentiation and function in the breast and other tissues. Approximately,

two third of all breast cancers expresses receptors for these hormones. These receptors

are structurally-related intra-cellular proteins. Upon binding to steroid hormones they

relay their signals leading to downstream gene expression (signal transduction). Such

cancers grow in response to the exposure of these hormones. The mechanism of

hormonal therapy is based on inhibiting the effect of oestrogen/progesterone on

hormone receptor positive tumours (luminal epithelial subtypes) either by blocking ER

on breast cancer cells or lowering oestrogen levels in the body. This form of treatment

can be used as adjuvant therapy to reduce the risk of cancer recurrence after surgery

and as neoadjuvant therapy to downstage locally advanced tumours [1]. Recent

guidelines including the St. Gallen Expert Group consensus suggest that adjuvant

hormonal therapy should be used in all patients with ER+ve/ PR+ve cancers, even if

only 1% of tumour cells are found to be positively stained for ER or PR on IHC

testing [92, 93].

Tamoxifen [selective ER modulator (SERM)] acts as a receptor binding competitor of

oestrogen and blocks its effects (antagonist). It has an established role in both the

prevention and treatment of breast cancers [94]. Fulvestrant [selective ER down-

regulator (SERD)] is another drug that also acts on ERs. Instead of just blocking, it

also eliminates the receptor temporarily. Fulvestrant is more effective than tamoxifen

with 100-fold higher affinity to ER. It is often effective even if the breast cancer is no

longer responding to tamoxifen [95].
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Aromatase inhibitors (e.g. anastrozole, letrozole, exemestane), block the enzyme

involved in oestrogen biosynthesis from androgens (aromatase cytochrome P450 or

oestrogen synthetase) in peripheral tissues outside the ovaries, which is the main

pathway of oestrogen production in post-menopausal women. As a result, oestrogen

levels in the body decrease. They are unable to inhibit the production of oestrogen

from ovaries in pre-menopausal women. Therefore, they are only effective in women

with no ovarian function (post-menopausal women or after ovarian ablation/ bilateral

oophorectomy) [96].

Luteinizing hormone stimulates the ovaries to produce oestrogen. GnRH

(gonadotropin-releasing hormone) [such as luteinizing hormone releasing hormone

(LHRH)] causes ovarian ablation by downregulating its own production in the

hypothalamus through a reversible reaction. As a result, a GnRH agonist is able to

inhibit oestrogen production from the ovaries and is effective in pre-menopausal

women [1, 96]. Megestrol acetate (Megace) is a progesterone-like drug used as a

hormonal treatment in advanced breast cancer, usually for patients whose cancers do

not respond to the other hormonal treatments. Androgens may rarely be considered

after failure from other hormonal treatments.

Targeted therapy

Molecularly targeted therapy is a form of systemic treatment that uses biological

agents to block or interfere with specific targeted molecules needed for carcinogenesis

and tumour growth (rather than by simply interfering with all rapidly replicating cells
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as with chemotherapy). Immunotherapy with monoclonal antibodies (MAbs), small

molecules tyrosine kinase inhibitors and small molecule-drug conjugates are examples

of targeted therapy.

Trastuzumab is a MAb targeted against HER2, which is overexpressed in

approximately 25% of breast cancers (HER2+ve breast cancers). HER2 is one of the

epidermal growth factor receptors on the cell membrane. Upon binding with epidermal

growth factor (EGF), its intracellular domain sends a signal activating several tyrosine

kinase pathways to promote cell growth and proliferation [97, 98]. Trastuzumab

improves progression-free survival (PFS) and overall survival (OS) in women with

metastatic breast cancers [99]. It has also been used to treat early stage breast cancers

and LLABCs with significantly improved disease-free survival (DFS) and OS [100].

The combination of trastuzumab with chemotherapy has been shown to increase the

response rate and OS, compared with trastuzumab alone [101].

Lapatinib, a small molecule tyrosine kinase inhibitor interrupting downstream signal

processes of HER2 and EGFR pathways, is being used in combination therapy (with

capecitabine) for the treatment of patients with advanced metastatic HER2+ve breast

cancer [102]. PARP inhibitors (iniparib, olaparib) in TNBCs, bevacizumab [MAb

against vascular endothelial growth factor (VEGF)] in metastatic HER2-ve breast

cancers and pertuzumab (MAb binding to a domain of the HER2 separately from

trastuzumab, used in combination with docetaxel and trastuzumab) in HER2+ve breast

cancers are all being studied in clinical trials and various regimens have been

approved for breast cancer treatment [79, 103, 104].
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1.2.4 Large and locally advanced breast cancer (LLABC) and neoadjuvant

chemotherapy (NAC)

In spite of the comprehensive understanding of the epidemiology and pathogenesis of

breast cancer and the availability of effective diagnostic tools and well established

screening programmes for breast cancer, a significant number of breast cancer patients

in the UK continue to be diagnosed in the late stages of the disease. This is even more

pronounced in developing countries [13]. Up to 30% of breast cancer patients in the

UK present with LLABCs and the clinical course of patients with LLABCs can vary.

The 5-year survival rate has been reported to range from 50 to 80% [105].

NAC is being used more frequently as a standard first-line treatment in women with

LLABCs and is an option for primary operable disease [106]. The primary aim of

NAC is to downstage the disease and increase the resectability of large/or inoperable

tumours, as well as increasing the likelihood of breast conserving surgery and possibly

to minimise the risk of residual micrometastases. To date, no survival benefit over

adjuvant chemotherapy has been reported in this high-risk group of patients with the

use of NAC. Nevertheless, the responses to NAC are difficult to predict. The variable

responses are observed even in histologically similar breast cancers. Pathological

complete response (pCR) in the breast and/or ALNs after NAC is considered to be a

good prognostic marker and is associated with prolonged survival in most studies

[107-109]. However, pCR is observed in only 10–50% of patients depending on the

NAC regimens used and the type of breast cancer undergoing NAC (17% of luminal

A, 47% of luminal B, 33% of HER2 overexpressing, and 50% of basal-like tumours)

[13, 110]. The National Surgical Adjuvant Breast and Bowel Project (NSABP)

protocol B-27 reported a doubling of pCR rate (13.7% versus 26.1%, p<0.001) with
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additional sequential docetaxel in the NAC regimen containing doxorubicin and

cyclophosphamide in operable breast cancer patients [111, 112].

The response of NAC can be assessed clinically and/or pathologically. Clinical

assessment of response is generally evaluated by clinical measurement of tumour size

or imaging. Tumour size reduction is used as an indicator of clinical response. A

number of guidelines to define tumour response have been proposed. Among these,

the traditionally standard World Health Organization (WHO) criteria [113] and the

criteria validated by the Response Evaluation Criteria in Solid Tumours (RECIST)

Group [revised in 2009 (RECIST version 1.1)] are widely accepted [114, 115].

According to these guidelines, clinical responses of measurable disease can be

classified as a complete response, partial response, stable disease and progressive

disease depending on changes of target lesions following treatment. On the other hand,

pathological assessment of response can be evaluated in the excised surgical

specimens. The grading criteria used to define histopathological responses in breast

cancers have been established [116]. Most criteria define a pCR as the complete

disappearance of invasive tumour, with residual in situ components accepted. The

presence of residual DCIS following NAC has not demonstrated any adverse effects,

in terms of long-term survival [110]. Some guidelines, however, recommend that to be

designated a pCR there must be no invasive or non-invasive (in situ) tumours in both

breast and axillary tissues removed at the time of the surgery [106]. Although the

majority of responses to NAC are similar in all sites of tumour involvement (breast,

axilla), mixed responses (response in the primary breast tumour but no response in the

ALNs and vice versa) are well documented. The achievement of a pCR in both the
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breast and axilla appears to be the most significant predictor of long-term outcome

[110, 117].

Up to 75% of patients with LLABCs do not undergo a pCR with NAC and are thus

subjected to drug toxicities/side effects for apparent little benefit [118]. This may lead

to disease progression and/or failure to obtain a durable loco-regional control of

disease with surgery. Identification of reliable predictive markers associated with a

pCR/good pathological response may enable clinicians to identify patients with

LLABCs with a high or low probability of attaining a good response to treatment.

Unfortunately, currently there are few accurate or reliable predictive markers available

in clinical practice. The identification of factors predicting a pCR is an area of current

interest and active research and a focus for targeting NAC to those patients most likely

to benefit.
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Table 1.5 Previously Reported and Established Clinical and Pathological

Characteristics Related to Pathological Complete Response Following NAC in Breast

Cancer

Predictive Factors Reported Evidence

Age and menopausal

status

A pCR was achieved in 18% of pre-menopausal (aged

<50 years) compared with 37% of post-menopausal

women (aged >50 years) (p=0.007) [119].

Tumour size A pCR was achieved in 50% of tumours < 2 cm, 38% of

tumours 2-4 cm and in 18% of tumours > 5 cm in size

[120].

TNM stage Early stage was more likely to be associated with a pCR

compared with later stage of disease [121, 122]

Histological type Invasive lobular carcinoma (ILC) was less likely to

achieve a pCR compared with invasive ductal carcinoma

(IDC) (3% versus 15%, p < 0.001). However, most ILCs

were ER+ve and had low histological grade [123].

Histological grade High grade (grade III) tumours are more sensitive to

NAC and more likely to achieve a pCR compared with

low grade tumours (grade I) [118, 119, 124]

Hormone receptor status pCR rates were 24% in ER-ve tumours and 8% in

ER+ve tumours, regardless of the NAC regimens used

(p<0.001) [125].

HER2 status There was a higher pCR rate in tumours with HER2

overexpression [74]. The pCR rates increased from 25%

to 67% in combinations of trastuzumab with NAC in

HER2+ve tumours, (p<0.02) [126].

Proliferation index Ki-67 Tumours with high cell proliferation expressed high Ki-

67 and responded well to NAC [127]. However, there is

no consensus view on association with pCR [118].

Molecular subtype The pCR rate was 45% in basal-like and HER2+ve

subtypes and 6% in the luminal epithelial subtypes

[128].
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1.2.5 Chemotherapy resistance

Despite the significant improvement in systemic treatments for breast cancer,

resistance to chemotherapeutic agents continues to pose an obstacle to beneficial

treatment outcomes. The emergence of resistant phenotypes of breast cancer, the

frequent occurrence of multi-drug resistance (MDR), renders many chemotherapeutic

agents ineffective in controlling and/or destroying the cancer cells. Chemotherapy

resistance can be intrinsic (present before treatment) or acquired, occurring during

treatment by various therapy-induced adaptive responses. Breast cancer is

heterogeneous. Drug resistance, therefore, can also arise by positive selection of a

drug-resistant tumour subpopulation. Data, largely from in vitro laboratory-based

studies in breast cancer cell lines, have identified several mechanisms responsible for

clinical drug resistance. The best known mechanism of cellular resistance (classical

MDR: drug efflux mechanism) is the adenosine tri-phosphate (ATP)-binding cassette

(ABC) family of proteins including P-glycoprotein (P-gp), the multidrug resistance-

associated protein (MRP1) and breast cancer resistance protein (BCRP). These

proteins are responsible for translocating a variety of compounds across cell

membranes by using energy from ATP hydrolysis. The energy released by hydrolysis

results in a conformational change in the configuration of the transmembrane protein

and subsequently a decrease in the intracellular retention of drugs. Overexpression of

these transport proteins, particularly P-gp, has been linked to clinical drug resistance

[129-131].

Contrary to the classical MDR, atypical MDR phenotypes do not overexpress P-gp or

other transport proteins, and are unaltered in their ability to accumulate drugs. The

reduction of catalytic activity or nuclear localization efficiency of topoisomerase IIα 
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(an essential nuclear enzyme for cell division, which catalyses the breakage and re-

joining of double-stranded DNA including relaxing DNA supercoils, actively

participates in the lethal action of cytotoxic drugs) has been documented to be one of

the mechanisms of MDR phenotypes [132, 133].

Resistance to microtubule disrupting agents (taxanes, vinca families), through

alteration of β-tubulin isotypes, overexpression of β-III tubulin (TUBB3), changes in 

microtubule-associated proteins and post-translational modifications of tubulin, has

been identified [134]. Breast cancer stem cells (CSCs) with the capability of limitless

proliferation, characterised by cellular surface expressions of CD44 and lack of CD24,

are recognised to have low rates of cell division and exhibit chemotherapy and

radiation resistance. This is possibly mediated by expressing anti-apoptotic proteins,

MDR proteins and possessing efficient DNA repair mechanisms [135]. The over-

activation of the phosphoinositol 3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian

target of rapamycin (mTOR) pathway (regulating cell proliferation, cell growth and

survival) has been identified in breast cancer and associated with resistance to

chemotherapeutic and hormonal agents [136].

Furthermore, resistance to trastuzumab (targeted therapy) by heightened signalling

through other EGFR family members, alternative splicing of the extracellular domain,

activation of the PI3K pathway with subsequent constitutive activation, and loss of

expression or function of the tumour suppressor gene phosphatase and tensin

homologue (PTEN) has been proposed [137].
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Combination of low dose chemotherapeutic agents, as well as combining

chemotherapy with other therapeutic modalities, may not only decrease the toxicity of

conventional chemotherapy, but also up-regulate the efficacy of anticancer therapies.

Giving chemotherapy in this manner has several potential advantages, including

inhibiting the onset of mutation-dependent mechanisms of acquired drug resistance

and increasing the efficacy and durability of combinatorial therapeutic modalities

[138]. As the understanding of the mechanisms of drug resistance increases, the ability

to specifically select appropriate drugs or drug combinations to the specified

phenotype of the breast cancer will become more realistic and therapeutically more

beneficial.

1.3 Immune System: Background

1.3.1 Human immune system

The human immune system consists of cellular and humoral components, which are

essential for the host in providing protection against invading pathogens, as well as the

recognition and elimination of damaged/malignant transformed cells. The cellular

component comprises various leukocyte subsets. Antibodies, cytokines and the

complement system make up key elements of the humoral component.

The leukocytes (white blood cells including lymphocytes), erythrocytes (red blood

cells) and thrombocytes (platelets), are derived from the same progenitor cells

(haematopoietic stem cells) in the bone marrow. Haematopoiesis is a continuous
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process which replenishes all the different blood cells from senescent loss. Two

common specific progenitors, which are the common myeloid and the common

lymphoid progenitor cells, arise from pluripotent stem cells. The myeloid lineage

develops and fully differentiates in the bone marrow to become erythrocytes,

thrombocytes, mast cells, granulocytes (neutrophils, eosinophils and basophils),

monocytes, macrophages and dendritic cells (DCs). The lymphoid lineage gives rise to

lymphocytes, which are distinguished by their sites of maturation and differentiation.

B lymphocytes develop and mature in the bone marrow while T lymphocytes and

natural killer (NK) cells do so in the thymus.

The immune system can be functionally classified into the innate and adaptive

immune components. Innate immunity is made up of structural cellular-epithelial

barriers (skin, mucosa), soluble components (complement system proteins, cytokines,

chemokines, acute-phase proteins) and specific innate cell subsets (monocytes,

macrophages, neutrophils, DCs, NK cells, platelets). The innate immune subsets

possess germ line-encoded surface receptors called pattern recognition receptors

(PRRs). Toll-like receptors (TLRs), nucleotide-biding domain (NOD)-like receptors

(NLRs) and retinoic-acid-inducible gene 1 receptors (RLRs) are examples of PRRs.

These receptors recognise broad classes of pathogen molecular structures [pathogen-

associated molecular patterns (PAMPs)] to trigger an immediate response. PRRs also

recognise products (danger signals) of damaged, injured or stressed host cells [danger

(or damage)-associated molecular patterns (DAMPs)]. Heat shock protein (HSPs),

S100 proteins, DNA, high mobility group box protein 1 (HMGB1) are examples of

DAMPs. Innate immunity, therefore, is rapidly initiated to eliminate the pathogen. On

the other hand, the adaptive immune system uses a large repertoire of receptors
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encoded by rearranging genes to recognise a variety of specific pathogen molecular

structures. Unlike innate immunity, adaptive immunity exhibits the property of

immunological memory for previously encountered pathogens which confers a long-

lasting immunity. However, the small number of specific B and T lymphocytes for the

particular pathogen/antigen must undergo a period of clonal expansion and become

effector cells [B cells (plasma cells) producing antibodies, cytotoxic T cells (CTLs), T

helper (Th) cells] to specifically remove the targeted pathogens. This results in a delay

in the generation of an adaptive immune response. Thus, the immediate and early

immune responses are mediated by innate immunity, whereas the late and specific

responses are induced and mediated by adaptive immunity. Innate and adaptive

immunity interact in a synergistic manner resulting in the removal of pathogens. Cells

and cytokines of the activated innate immunity make an important contribution (via

signals) to optimal activation of adaptive immunity. DCs, as antigen presenting cells

(APCs), play a key bridging role and in facilitating the immune response to pathogens.

The key functions of cellular and soluble components have been summarised in Tables

1.6 and 1.7.

The lymphoid organs consist of lymphoid structures organised into specific anatomical

and functional compartments with lymphocytes and other immune cell subsets. They

are classified as primary/central lymphoid organs (where lymphocytes develop from

common lymphoid progenitor cells), and secondary/peripheral lymphoid organs

(where the naïve T and B lymphocytes induce the adaptive immune response). The

bone marrow and the thymus are considered to be primary/central lymphoid organs.

Within the secondary/peripheral lymphoid organs, a series of distinct compartments

can be distinguished. The peripheral lymph nodes and spleen respond to antigens that
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have entered the tissues and travelled via the lymphatics or entered into the blood

stream. The mucosal immune system [mucosal-associated lymphoid tissues

(MALTs)], including the gut-associated lymphoid tissues (GALTs) and specialized

structures called Peyer’s patches, responds to pathogens entering the mucosal barriers

in the intestines. In each of these compartments, specially adapted responses to

pathogens are generated by a particular set of lymphoid tissues with discrete functions.

Thus, naïve lymphocytes are constantly circulating between the blood and secondary

lymphoid organs until they encounter their specific antigens and become activated

[139-141].
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Table 1.6 Components and Functions of the Innate Immune System

Cellular Components Main Functions

Epithelial integrity Physical barrier

Neutrophil Phagocytosis, killing of bacteria

Basophil Killing of parasites, release of histamine

Eosinophil Killing of antibody-coated parasites

Mast cell Release of histamine

Natural killer (NK) cell Killing of virus-infected cells and malignant-

transformed/damaged cells

Macrophage Phagocytosis, killing of bacteria, antigen

presentation

Dendritic cell (DC) Phagocytosis, killing of bacteria, antigen

presentation

Soluble (Humoral) Components Main Functions

Complement system Opsonisation, killing of antibody-coated

pathogens (classical pathway), chemotaxis

Cytokines Induce, enhance or inhibit cellular responses

Chemokines Act as a chemoattractant to direct the migration

of cells, recruit monocytes, neutrophils and

other immune effector cells from the blood to

sites of infection or tissue damage

Acute-phase proteins Destroy or inhibit growth of microbes, affect

coagulation, recruit immune cells to

inflammatory sites, downregulate inflammation
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Table 1.7 Components and Functions of the Adaptive Immune System

Cellular Components Main Functions

Dendritic cell (DC) Potent antigen presenting cell (APC)

T helper (Th) cells Modify immune responses:

 Th1 cells activate macrophages, CTLs

and NK cells

 Th2 cells activate B cells, provide

immunological memory

 Th17 cells mediate inflammation and

autoimmunity through the CTL

responses in cancer and autoimmune

diseases

Cytotoxic T lymphocyte (CTL) Specific killing of virus-infected cells and

malignant-transformed cells (induce apoptosis),

provide immunological memory

T regulatory cells (Tregs) Inhibit the generation of CTL responses and

downgrade activated T lymphocytes, prevent

autoimmunity by inhibiting self-reactive CTLs

B lymphocyte/plasma cell Production and release of antibodies, induction

of immunological memory

Soluble (Humoral) Components Main Functions

Antibodies Opsonisation, neutralization and complement

activation

Cytokines Induce, enhance or inhibit cellular responses
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1.3.2 Carcinogenesis and cancer immune surveillance

Carcinogenesis is a multi-stage process and has been traditionally divided into

initiation, promotion and progression. Initiation (induction) begins with DNA damage

in a normal cell which is exposed to chemical, physical or microbial (mostly viral)

carcinogens. If the damage is not properly repaired, the alteration of DNA may cause

genetic mutations. The majority of DNA alterations are irrelevant and totally innocent

in terms of cancer risk. On the other hand, damage of critical genes can be lethal

causing immediate cell death. Infrequently, the mutations occur on proto-oncogenes

(activating; e.g. EGFR, Ras and c-Myc) and tumour suppressor genes (inactivating;

e.g. p53, BRCA1, BRCA2 and PTEN). These mutations result in increased cellular

proliferation and reduced cell death, and subsequently initiating an immortal cell.

Promotion is a process of clonal expansion of an initiated cell. This results in the

formation of pre-neoplastic lesions such as nodules, polyps or papillomas. The

progression stage is characterised by the transformation of a pre-neoplastic lesion into

a malignant tumour (invades surrounding tissues and metastasises) [142-144].

A series of mutations and/or epigenetic changes are required to transform a normal

cell into a malignant cell and a subsequent tumour. The limitless proliferation is

accomplished by a mechanism of preserving/lengthening telomeres which

progressively shorten with cell divisions. Telomeres form a molecular cap (DNA

repeats) protecting the ends of chromosomes against degradation and preventing their

end-to-end fusion [145]. Telomerase reverse transcriptase (TERT) is the catalytic

subunit of human telomerase which synthesises telomeric DNA repeats [146]. More

than 90% of malignant tumours express telomerase. Malignant tumours also possess

the ability to survive due to autonomous sufficiency of growth promoting signals,
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insensitivity to anti-growth inhibitory molecules and resistance to apoptosis [147].

Tumours are unable to develop beyond the size of 1-2 mm in diameter without

angiogenesis. Growing tumours need new blood vessels that can support their

metabolic demands [144]. In order to invade the surrounding tissues, malignant cells

need to lose their adhesion molecules that keep them attached to each other and

adjacent epithelial cells (e.g. loss of E-cadherin) and to produce enzymes that enable

dissolving the elements of the basement membrane and extracellular matrix [plasmin,

matrix metalloproteinases (MMPs)] [148]. The acquisition of new blood vessels also

provides a route for escape of malignant cells from the primary site. The alteration of

adhesion molecules enables interaction between circulating malignant cells and

endothelial cells facilitating extravasation (blood, lymphatic), dissemination and

metastasis formation. However, only a very small subset of tumour cells can proceed

through each step of this process. It is estimated that less than 0.01% of circulating

tumour cells will ultimately form metastatic colonies [149].

A crucial protective mechanism against cancer is the activity of the immune system.

Both innate and adaptive immunity participate in antitumour mechanisms. The

immune system plays a key role in preventing, detecting and eliminating malignant/

transformed cells. There is growing evidence to suggest that this happens via many

mechanisms. Firstly, the immune system can protect against virus-induced cancers by

eliminating viral infections. Secondly, the immune system can eliminate pathogens

and resolve the pathogen-induced inflammation which may predispose to

carcinogenesis. Lastly, the immune system can specifically identify, recognise and

destroy malignantly transformed cells. The last mechanism is defined as ‘cancer

immune surveillance’ [150].
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The stressed/damaged cancer cells release specific molecules/danger signals leading to

activation of innate immunity. The cancer cells usually express various tumour-

associated antigens (TAAs) (non-self antigens) which can be detected by immune cells

leading to the generation of specific adaptive anticancer immune responses and

elimination of these cells. The specific adaptive anticancer immunity needs to be

effectively monitored and controlled in order to prevent untoward normal tissue

damage and the development of acquired autoimmunity. To develop specific effector

T cells (Th, CTLs), tumours with their unique TAAs are sampled, internalised and

processed by APCs (DCs, macrophages; activated via PRRs). APCs, then, present the

antigenic peptides of TAAs in linkage with major histocompatibility complex (MHC)

molecules (MHC class I or class II) to naïve CD8+ or CD4+ T cells, respectively via T

cell receptors (TCRs). This process is referred as signal 1. The subsequent activation

of effector T cells requires a second signal called ‘costimulatory’. It is the interaction

between the B7 family ligands on APCs and the CD28 family receptors on T cells

(e.g. CD80/86 on DCs interacts with CD28 on T cells). In order to progress into an

effective anticancer response, costimulatory interactions need to be reinforced by the

crucial signals from APCs (third signal/signal 3). Danger signals are released by

stressed cancer cells and interact with PRRs on APCs. Signal 3 released from activated

APCs can influence the type(s) of T cell response(s) (Th1, Th2, Th17, Tregs or CTLs)

elicited. Interleukin-12 (IL-12)/ interferon gamma (IFN-γ) produced by activated 

APCs can drive naïve T cells towards a Th1 phenotype and favour CD8+ CTL

induction. On the other hand, IL-4 can induce naïve T cells to a Th2 phenotype

(Figures 1.2a and 1.2b) [141, 150-152].
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Figure 1.2a Signals for priming and proliferating of the effector T cells

Figure 1.2b The host’s innate and adaptive immunity interacting with tumour-associated antigen (TAA)

leading to multiple pathways targeting of tumour cells

(Adapted from Aloysius et al. (2011) [150], reproduced with permission)
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Examples from mice and man include the increased incidence of certain malignancies

in athymic nude mice (genetically immunosuppressed rodents with a greatly reduced

number of T cells) and in immunosuppressed human recipients of organ

transplantation. Furthermore, this can also be found frequently in patients with inborn

or acquired defects in the immune system [144]. Specific immune defects

subsequently being associated with certain malignancies (both solid cancers and

lymphomas) have been widely demonstrated in animal models with transgenic

(knockout) mice, including carcinogen-induced tumours. To date, a number of specific

defined immunodeficiency mice have been investigated for their susceptibilities to

carcinogens. For example, Trail-/-mice [mice strain with defect in tumour necrosis

factor (TNF) -related apoptosis-inducing ligand-(TRAIL) gene] and SCID mice (severe

combined immune deficiency strain with defects in both T and B cells) are very

susceptible to developing tumours with the chemical carcinogen methylcholanthrene

(MCA) [153, 154]. In addition, several cytokine-deficient mice also develop

spontaneous malignancies. The study in mice with granulocyte-macrophage colony

stimulating factor (GM-CSF) and IFN-γ deficiencies showed susceptibility to 

developing cancer [155]. In human tumours, a variable degree of tumour-infiltrating

inflammatory cells can be found and this has been correlated with prognosis. This is

discussed in more detail in the next section (Tumour Microenvironment).

Despite the activity of anticancer defences involved in cancer immune surveillance,

some malignant transformed cells can escape and proliferate (immunoediting). There

are several possible mechanisms to promote cancer survival and growth: reduced

immunogenicity by either modulation of the binding of tumour peptides to MHC

molecules or binding of TCRs to MHC-peptide complexes [156]; inactivated or
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suppressed immune system via secretion of immunosuppressive mediators/ molecules

including nitric oxide (NO), transforming growth factor beta (TGF-β) and interleukin-

10 (IL-10) [157]; as well as generation/ recruitment of immune-inhibitory cells such as

Tregs [8], MDSCs and macrophages (M2s) into the tumour microenvironment [158].

1.3.3 Immune editing

Immunoediting consists of three phases occurring either independently or sequentially.

Firstly, ‘elimination’, the immune system functions as an extrinsic tumour suppressor.

Secondly, ‘equilibrium’, tumour cells survive but are held in check by the immune

system. Thirdly, ‘escape’, tumour cell variants with either reduced immunogenicity or

the capacity to attenuate immune responses grow into clinically apparent cancers

[159].

The elimination phase of cancer immunoediting is described as cancer immune

surveillance. In this phase, the immune system detects and eliminates tumour cells.

The elimination phase can be incomplete, where only a portion of tumour cells are

eliminated. In this case, a temporary state of equilibrium can then develop between the

immune system and the developing tumour. During this period, tumour cells can either

remain dormant or continue to grow very slowly. The accumulating changes (such as

DNA mutations or changes in gene expression) can modulate the expression of TAAs

and release of stress-induced signals. As this process continues, the immune system

exerts a selective pressure by eliminating susceptible tumour clones, where possible.

The pressure exerted by the immune system during this phase is sufficient to control

tumour progression, but eventually, if the immune response still fails to completely
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eliminate the tumour, the process results in the selection of tumour cell variants that

are able to resist, avoid, or suppress the anticancer immune response, leading to the

escape phase. During the escape phase, the immune system is no longer able to control

or contain the tumour growth. This results in the emergence of progressively growing

tumours which are resistant to host defences and therapy (Figure 1.3). These phases

have been termed the 3 Es of cancer immunoediting [150, 160, 161].

Figure 1.3 Cancer immunoediting is considered a process composed of 3 phases: elimination, or cancer

immune surveillance; equilibrium, a phase of tumour dormancy where tumour cells and host defences

enter into a dynamic equilibrium that keeps tumour expansion in check; and escape, where tumour cells

emerge that display either reduced immunogenicitiy, resistance to chemotherapy or engage a large

number of possible immunosuppressive mechanisms to attenuate the anticancer immune response.

(Adapted from Aloysius et al. (2011) [150], reproduced with permission)
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1.3.4 Immune-mediated tumour cell death enhanced by chemotherapy

During normal cellular turnover, cell injury or infection, damaged or dead cells are

exposed to the immune system. The immune system discriminates between different

forms of cell death to correctly eliminate pathogens and promote healing while

avoiding responses to self-antigens, which can result in autoimmunity (defined as

tolerogenic or silent or non-immunogenic cell death). On the other hand, cell death

(cancer cells) induced by treatment with certain chemotherapeutic agents (including

radiotherapy) is required to generate an effective anticancer immune response. This

later form of cell death is referred as immunogenic cell death (triggers immune

response) [162].

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-

immunogenic. Immunogenic cancer cell death involves changes in the composition

and architecture of the cell surface, as well as the release of soluble mediators and

signals. Such signals operate on a series of receptors expressed by DCs to stimulate

the presentation of TAAs to naïve T cells. Immunogenic cancer cell death can be

induced by some chemotherapeutic agents and constitutes a prominent pathway for the

activation of the anticancer immunity. This in turn modifies the responses of

chemotherapy in inducing damage and removal of tumour cells through enhancing

‘immune-mediated tumour cell death’ (through activated CD8⁺ CTLs). Moreover, this

type of cancer cell death also helps to establish the long-term beneficial outcome of

anticancer therapies [163].
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Most chemotherapeutic agents act through direct induction of tumour cell death by

either apoptosis or necrosis and have temporary suppressive effects on the innate and

adaptive immune systems, as well as inhibition of haematopoiesis [31]. However,

some drugs and regimens may enhance specific aspects of anticancer immunity.

Chemotherapy can induce cancer cell stress and/or damage resulting in the release of

immunogenic TAAs, as well as ‘danger’ signals. These can activate antigen presenting

DCs and other innate cells to release pro-inflammatory cytokines and eventually

inducing specific anticancer cell-mediated immune responses [164].

Certain chemotherapeutic drugs by damaging cancer cells can produce a variety of

tumour antigens (e.g. fragmented cellular proteins or peptides). Several prominent

features of immunogenic cell death after cytotoxic chemotherapy, such as

translocation of calreticulin (CRT), secretion of HMGB1 protein, and release of ATP

by dying tumour cells have been identified. Doxorubicin induces rapid translocation of

the endoplasmic reticulum resident protein CRT to tumour cell surfaces facilitating

phagocytosis by DCs. HMGB1 protein released from the nucleus into the surroundings

of dying tumour cells acts on TLR4 on DCs to initiate efficient antigen processing and

presentation (TLR4-Myd88-signalling pathway). The release of ATP by dying tumour

cells acts on purinergic P2RX7 receptors on DCs and triggers the NOD-like receptor

family pyrin domain containing- protein 3 [NLRP3 (also called NALP3 or

cryopyrin)]-dependent caspase-1 activation complex (inflammasome) allowing for the

secretion of IL-1β. Caspase-1 activated by the NLRP3 inflammasome is required for 

the proteolytic maturation of pro IL-1β and, hence, IL-1β secretion in response to 

purinergic P2RX7 receptor agonists. This ultimately leads to IL-1β-dependent adaptive 

immunity. Cyclophosphamide has been also reported to cause CRT translocation and
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HMGB1 protein release in some types of tumours [165-167]. The following

chemotherapeutic compounds, which were used as NAC in the primary treatment of

LLABCs in this study, have been documented to have immuno-modulatory effects.

1.3.4.1 Cyclophosphamide

Cyclophosphamide is a nitrogen mustard alkylating agent which displays cytotoxicity

against actively DNA-replicating cells. Cyclophosphamide is an inactive pro-drug that

requires activation by the hepatic cytochrome P-450 enzyme system to form the active

metabolite 4-hydroxycyclophosphamide, which is in equilibrium with its tautomer

aldophosphamide. These two intermediate metabolites rapidly diffuse out of hepatic

cells into the circulation and are subsequently taken up by other cells, including cancer

cells. Within cells, aldophosphamide degrades to form the cytotoxic phosphoramide

mustard, which produces the interstrand DNA methyl cross-bridges preventing the two

DNA strands coming apart in mitosis. The selective toxicity on tumour cells occurs

because the concentration of the enzymes converting aldophosphamide into the

cytotoxic metabolite is higher in tumour cells than in normal cells. Differential cellular

expression of aldehyde dehydrogenase has an effect on the anticancer therapeutic

index and immunosuppressive properties of cyclophosphamide [35, 168].

Cyclophosphamide is one of the most successful and widely used drugs for the

treatment of haematological and solid malignancies, as well as for the treatment of

different autoimmune disorders and, therefore, is commonly considered an

immunosuppressive drug. However, evidence exists that cyclophosphamide may have

immune-stimulatory effects. Recent studies have linked the immune-stimulating effect
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of cyclophosphamide to the selective inhibition and depletion of CD4⁺CD25⁺ Tregs in

humans with malignant tumours [169]. Moreover, these effects are also documented

with CD8⁺ Tregs [35]. Recently, oral administration of low dose metronomic

cyclophosphamide has been used in many clinical trials of cancer vaccine

immunotherapy and has been demonstrated to inhibit both the number and activity of

Tregs [32-37]. A recent study, however, from Sevko et al. (2013) revealed that low-

dose cyclophosphamide enhanced accumulation of CD11b⁺Gr1⁺ MDSCs, which

exhibited elevated suppressive activity and NO production, as well as inhibition of T

cell proliferation in the ret transgenic murine melanoma model [170, 171]. Examples

of other chemotherapeutic agents with immuno-modulatory effects, which were used

in this study, are described below.

1.3.4.2 Anthracyclines

Anthracyclines can kill tumour cells by mechanisms involving DNA intercalation and

inhibition of DNA replication. From experiments in mice models, Maccubbin et al.

(1990) were the first to demonstrate that doxorubicin was an effective immune

modulator capable of boosting CD8⁺ CTL responses [172]. A number of following

studies, particularly in mice mammary tumour models, demonstrated that treatment

with doxorubicin (alone or in combination with other chemotherapeutic agents)

enhanced tumour antigen–specific proliferation of CD8⁺ T cells and promoted tumour

infiltration of activated, IFN-γ producing CD8⁺ T cells [173]. Furthermore, a recent in

vitro study by Park et al. (2009) showed the effects of doxorubicin on increased

antigen-specific CD4⁺ Th1 immune responses by inducing expression of CD40 ligand

and 4-1BB (co-stimulator molecules) on the surface of CD4⁺ T cells [31].
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1.3.4.3 Taxanes

Taxanes can induce tumour cell death by disrupting intracellular microtubule networks

during cell division. Members of the taxane family, including docetaxel and paclitaxel,

have been used in a variety of malignancies including breast cancer. In a murine study

with 4T1-Neu mammary tumour-bearing mice, docetaxel has been demonstrated to

suppress MDSCs and selectively enhance CTL response in vivo [174]. In advanced

breast cancer patients, single-agent paclitaxel or docetaxel showed an increase in

serum levels of IFN-γ, IL-2, IL-6 and GM-CSF and enhancement of circulating NK 

and lymphokine-activated killer (LAK) cell activity. Moreover, these immune

stimulatory effects of docetaxel are more pronounced than those of paclitaxel [29, 30].

Primary (neoadjuvant) treatment with trastuzumab plus docetaxel in patients with

HER2+ve breast cancer has been documented to be associated with significantly

increased numbers of tumour-infiltrating NK cells and increased expression of

Granzyme B [175]. However, therapeutic concentration of paclitaxel and docetaxel

have been shown to effectively inhibit NK cell-mediated killing of different NK cell

lines in vitro [176].

1.3.4.4 Capecitabine

Capecitabine is an orally-administered chemotherapeutic pro-drug that is

enzymatically converted to 5-fluorouracil (5-FU) in the body. It is a pyrimidine

analogue (known as anti-metabolites) which irreversibly inhibits thymidylate synthase.

This enzyme is necessary for nucleoside (thymidine, pyrimidine) synthesis during

DNA replication [177]. Beyond its direct cytotoxic effect on cancer cells, 5-FU is able

to specifically reduce the number of MDSCs in the tumour microenvironment by

triggering apoptosis. Data from an in vivo murine study showed 5-FU (including
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another anti-metabolites: Gemcitabine) was able to mediate MDSC depletion, increase

IFN-γ production by CD8+ CTLs in the tumour bed and promote T cell-dependent

anticancer immunity [178]. These findings have suggested that 5-FU possesses

immuno-modulatory effects that rely on elimination of MDSCs. In man, however, the

combination of capecitabine and gemcitabine in patients with advanced pancreatic

carcinoma showed no consistent reduction of MDSCs [179]. 5-FU has also been

reported to increase the expression of TAAs on the cell surface of cancer cells and

enhance antibody-dependent cell-mediated cytotoxicity (ADCC) [177].

1.3.5 Immune checkpoints

Regulation and activation of T lymphocytes depend on signalling by the TCR and by

co-signalling receptors that deliver stimulatory or inhibitory signals. The amplitude

and quality of the T cell immune response are controlled by the equilibrium between

co-stimulatory and co-inhibitory signals, called ‘immune checkpoint’. The generation

and maintenance of adaptive immune responses are controlled by co-stimulatory (also,

signal 2 in priming effector T cells) and co-inhibitory signalling through T cell co-

receptors. These co-receptors mostly belong to the immunoglobulin (Ig)-like

superfamily or the tumour necrosis factor receptor (TNFR) superfamily [180]. Co-

stimulatory receptors including CD28 and inducible T cell co-stimulator (ICOS) are

members of the immunoglobulin-like superfamily, while OX40, CD27, 4-1BB, CD30,

glucocorticoid-induced TNFR-related protein (GITR) and herpes virus entry mediator

(HVEM) are members of the TNFR superfamily. Cytotoxic T lymphocyte associated

antigen 4 (CTLA-4), programmed death 1 (PD1), lymphocyte activation gene 3

[LAG3 (CD223) interact/bind with MHC class II molecules] and B and T lymphocyte

attenuator (BTLA), on the other hand, are the established co-inhibitory receptors and
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members of the Ig-like superfamily [181-183]. Upon interaction with their B7 family

ligands, signalling through these receptors regulates T cell responses.

The regulatory mechanisms of immune checkpoints act to limit T cell responses

following T cell activation on exposure to antigen (e.g. up-regulation of CTLA-4 on

activated T cells). Following chronic exposure to antigen and on-going inflammatory

responses in tissues/cancer, PD1 receptors on activated T cells can be induced by

inflamed tissues or tumour cells [e.g. increased expression of programmed death

ligand 1 (PDL1; B7-H1), B7-H3 or B7x (B7-H4) on tumour cells] [184]. These

mechanisms induce tumour tolerance and escape from the anticancer responses of the

immune system.

MAbs have revolutionised the treatment of certain cancers. The mechanisms of action

vary, but can be broadly classified as direct (blockade or stimulation of function,

targeting local delivery of conjugated therapeutic agents such as cytotoxic drugs or

radioisotopes) and indirect mode of action. The indirect mode is mediated by the

immune system [complement-dependent cytotoxicity or antibody-dependent cellular

cytotoxicity (ADCC)] including interfering with the function of co-stimulatory and co-

inhibitory pathways on effector T cells. Currently, stimulating [stimulatory antibodies

to 4-1BB (CD137), OX40 (CD134) and GITR] or blocking [checkpoint blockade:

CTLA-4 (CD152), LAG3, PD1 (CD279) and PDL1 (CD274)] MAbs are being

investigated extensively for their abilities to enhance T cell numbers, function and

maintenance of immunological memory via modulation of co-stimulation or co-

inhibition (Table 1.8) [181, 185, 186].
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Table 1.8 Developments of Monoclonal Antibodies Targeting Immune Checkpoint

Pathways

Target Biological

Function

Monoclonal

Antibody

Development

CTLA-4 Co-inhibitory

receptor

Ipilimumab,

tremelimumab

Approved for advanced metastatic

melanoma, phase II and III trials for

different cancers [187, 188]

PD1 Co-inhibitory

receptor

Nivolumab

(MDX-1106),

pembrolizumab

Approved for advanced metastatic

melanoma and squamous non-small

cell lung cancer, phase II and III

trials for different cancers [188-190]

PDL1 Inhibitory ligand Atezolizumab

(MPDL3280A)

Phase I trial in different cancers

[191]

LAG3 Co-inhibitory

receptor on T cells,

DC activator

(causing increased

antigen presentation)

IMP321

(a recombinant

soluble LAG-3Ig

fusion protein)

Phase I and II trials in different

cancers including breast cancer,

adjuvant for cancer vaccines [192,

193]

B7-H3 Inhibitory ligand, its

receptors have not

been identified

MGA271 Phase I trial in different cancers

(MacroGenics®)

B7-H4 Inhibitory ligand, its

receptors have not

been identified

A recombinant

human B7-H4

Preclinical development [194]

OX40 Co-stimulatory

receptor

MAb agonist Preclinical development [195]

GITR Co-stimulatory

receptor

MAb agonist Preclinical development [196]
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1.3.6 Immunotherapy in cancer

Accumulating evidence suggests a possible role of the immune system in the treatment

of cancers. A positive correlation between tumour infiltrating lymphocytes (TILs) and

T cells and patients survival has been observed [197, 198]. Spontaneous tumour-

specific T cell responses occur in patients with premalignant lesions [199] and

malignant tumours [200]. However, tumours have also established several different

strategies to escape immune surveillance such as loss of TAA expression, MHC down

regulation, expression of Fas ligand (FasL) (induces apoptosis in activated T cells),

secretion of VEGF and immunosuppressive cytokines (e.g. IL-10 or TGF-β). Other 

mechanisms include the generation of Tregs and MDSCs, as well as alternative

activation of macrophages (M2) [159].

The induction of an effective tumour-specific immunity will disrupt the tumour

tolerance and generate anticancer immunity. To achieve this, a variety of strategies in

both preclinical models and clinical trials are continuingly being investigated. The

identification of TAAs in human cancers has encouraged the development of cancer

vaccines (whole tumour cells, antigenic tumour peptides or DNA vaccination) as well

as adoptive T cell therapy and DC-based therapy. These are anticipated to induce both

therapeutic T cell immunity (tumour-specific effector T cells) and protective T cell

immunity (tumour-specific memory T cells) [201].

MAb therapy is one of the most successful forms of immunotherapy, and is used in

treating a wide range of cancers. Specific cell surface receptors/antigens are common
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targets for MAb therapy. Once bound to the target, MAbs can induce ADCC, activate

the complement system or prevent a receptor from interacting with its ligand.

The examples of immunotherapy which have been used clinically in some types of

advanced cancers, are sipuleucel-T (autologous generated active T cell

immunotherapy) in metastatic castration-refractory prostate cancer [202, 203],

trastuzumab (MAb blocking HER2) in HER2+ve breast cancer [204], bevacizumab

(MAb to inhibit angiogenesis by blocking VEGF) in metastatic colorectal cancer and

metastatic HER2-ve breast cancers [104, 205], cetuximab and panitumumab (MAbs

against EGFR) in KRAS wild type metastatic colorectal cancer [206]. Also, MAbs

directed against the immune checkpoints in co-inhibitor pathways. A variety of

immune-therapeutic agents have emerged from the laboratory setting into clinical

practice. These have been shown to be relatively safe and with acceptable side effects

[207, 208].

1.4 Tumour Microenvironment

Tumours grow within a complex network of epithelial cells, blood vessels, lymphatic

channels, cytokines and chemokines, as well as infiltrating immune cells. Different

types of tumour-infiltrating immune cells have different effects on tumour

progression. These effects can vary amongst different cancer types [209]. The possible

effects of the local immune milieu on clinical outcome have important implications for

the identification of prognostic biomarkers that predict response to chemotherapy. The
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effect of the host immune response on tumour progression, recurrence and metastasis

has come from analyses of the in situ immune components. Immune cell infiltrations

are heterogeneous among cancer types and vary from patient to patient. T lymphocytes

(including various subsets of CD4+ and CD8+ T cells: Th1, Th2 and Th17 cells, naïve

and memory T cells, Tregs and CTLs), macrophages, neutrophils, DCs, NK cells,

MDSCs and B lymphocytes can all be found in the tumour microenvironment. It has

been estimated that T lymphocytes constitute 75% of the lymphocyte infiltrates, B

lymphocytes less than 20% and NK/ NKT cells constitute fewer than 5% [210]. These

immune cells can be located in the core of the tumour (intratumoural), or in the

invasive margin/ surrounding stroma (peritumoural). The analysis of the density,

distribution and functional orientation of the different immune cell populations in

tumours has allowed the identification of components of the local immune milieu that

are beneficial to anticancer immunity and cancer treatments.

1.4.1 Immune cell infiltrations

1.4.1.1 Tumour-infiltrating lymphocytes (TILs)

There is a small number of lymphocytes, resembling mucosa-associated lymphoid

tissue (MALT), observed in normal breast tissue [211]. By contrast, prominent

numbers of lymphocytes are commonly found within the tumour cell nests and in the

peritumoural stroma in breast cancer tissue, and are believed to reflect a defensive

immune response by the host against the cancer [17, 18, 26]. The state of pregnancy

(associated low host immunity) affects the level of TILs. Significantly lower levels of

TILs were found in breast tumours diagnosed during pregnancy [212]. The majority of

TILs in solid tumours are CD3⁺ T cells. CD3⁺ T cells can be classified into CD4⁺ T
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helper cells, including Th1, Th2 and Th17 subtypes based on their cytokine profiles,

CD4⁺ Tregs and CD8⁺ CTLs. These lymphocytes take part in tumourigenesis,

progression and metastatic spread/ or regression of disease as their roles can be both

promotional and suppressive via cellular interactions and various cytokine productions

in the tumour microenvironment. The adoptive cell therapy with cultured autologous

TILs has shown a promising result in metastatic melanoma and is undergoing further

clinical evaluation [213]. The clinical significance of TILs in breast cancer is still

controversial. Some studies have documented that TILs (CD4⁺ and CD8⁺ T cells) were

associated with unfavourable tumour features such as high tumour grade, ER-ve status

and HER2/neu overexpression as well as metastatically involved ALNs [214]. Droeser

et al. (2012) showed, in a survival analysis, that the numbers of TILs did not represent

a major prognostic indicator in ductal and lobular breast cancer [14]. In contrast, most

studies have shown that increased numbers of TILs in breast cancer (ductal

carcinomas) was associated with a better prognosis and better pathological responses

after NAC [17-19]. These contrary findings may be the result of the different types of

lymphocyte subsets present within the TILs, particularly infiltrating Tregs. It is

necessary, therefore, to define more precisely the different subsets of lymphocyte in

TILs in order to evaluate their significance in anticancer immune responses and likely

impact on immune-mediated tumour cell death during NAC.

1.4.1.2 CD8⁺ and CD4⁺ T cells

CD8⁺ T cells (effector, memory) are important subset of T lymphocytes documented

in TILs. They represent CTLs which are crucial components of tumour-specific

cellular adaptive immunity. CD8⁺ CTLs can interact with and destroy tumour cells
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presenting with TAAs in conjunction with MHC class I proteins on their surface [215].

After TAA recognition and adequate co-stimulation from DCs, CD8⁺ CTLs become

activated. They subsequently produce cytotoxins, cytokines and apoptotic signals

lethal to the TAA harbouring cells. Cytotoxins are stored in lytic granules within the

naïve CD8⁺ T cells. Once activated these cells release the contents of the granules by

calcium-mediated exocytosis. Cytotoxic proteins lyse the target cells [perforins

polymerise in target cell membranes to form trans-membrane pores; granzymes (serine

proteases) are released through the pores and lyse intracellular cellular structures].

Activated CD8⁺ CTLs also express FasL, which induces target cell apoptosis by

activating the caspase cascade. Several cytokines are released by activated CD8⁺ CTLs

including IFN-γ [216-218]. 

Many studies have shown that tumour-infiltrating CD8⁺ T lymphocytes (and

CD45RO⁺ memory T cells) have anticancer activity providing a favourable effect on

prognosis in many solid cancers (colorectal, ovarian, oesophageal, renal, lung and

pancreatic tumours) [22, 209, 219, 220]. However, there are relatively few published

studies in this area in breast cancer. One study has shown that the presence of tumour-

infiltrating CD8⁺ T cells correlated with lymph node involvement by tumour and

unfavourable prognosis in early breast cancer [214]. In contrast, Mahmoud et al.

(2011) analysed the impact of the level of tumour-infiltrating CD8⁺ CTLs on

prognosis in a large series (1,334 breast cancers) of patients with long-term follow up.

CD8⁺ T cells were counted in three locations in each specimen (in tumour nests-

intratumoural, in stroma adjacent to tumour cells and in stroma distant to tumour

cells). The total number was determined by the sum of the counts of these three
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locations. Higher total infiltrating CD8⁺ T lymphocyte counts were independently

associated with longer breast cancer-specific survival, using multivariate analysis

[219]. The association between infiltrating CD8+ T cells and favourable prognosis has

been subsequently confirmed in basal-like breast cancer subtype with a large series of

3,403 breast cancer patients including 496 TNBCs by Liu el al. (2012) [221]. A much

larger series of patients involving 12,439 breast cancer patients studied by Ali et al.

(2014) confirmed infiltrating CD8+ T cells (both intratumoural and stromal) were

associated with a significant reduction in the relative risk of death from disease in

HER2+ve (both ER+ve and ER-ve) subtypes [222]. These studies with large cohorts

of patients, however, were investigated using the tissue microarray (TMA) technique

which may not well represent the heterogeneity in tumours.

The significance of CD4⁺ T effector cells within tumours is not well studied and has

produced contradictory results in terms of clinical outcome. Tumour-infiltrating CD4⁺

T cells consist of Th1, Th2, Th17, follicular helper T, naïve and memory T cells, as

well as Tregs [210]. The contribution of tumour-infiltrating CD4⁺ T cells to local

immune milieu depends on their polarisation and cytokine expression. The differential

effects of Th cell populations may be due to their plasticity, dependency on the tumour

microenvironment and on the cancer type. Th1 cells are strongly associated with good

clinical outcome for most solid cancers. On the other hand, Th2 cells, through the

activation of B cells or through the production of the immunosuppressive IL‑10,

appear to be associated with aggressive tumours [209]. The analysis of the Th17

population has also yielded contradictory results amongst cancer types. CXCL13

[chemokine (C-X-C motif) ligand 13; also known as B lymphocyte chemoattractant]-
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producing CD4⁺ follicular helper T cells infiltrates, principally located in tertiary

lymphoid structure (TLS) germinal centres, are an important constituent of TLS in

tumours and may link with favourable prognosis in various cancers including breast

cancer [210]. The chemokine receptor CXCR5 expressed by B cells and follicular

helper T cells is required for migration and responsiveness to CXCL13 to form

follicles. CD4+ T cells that express CXCR5 can migrate in response to CXCL13 and

relocate to follicles [223]. In breast cancer, Droeser et al (2012) found that a high level

of tumour-infiltrating CD4⁺ T cells was significantly associated with high tumour

grade and ER-ve status but was not an important prognostic indicator for survival [14].

Garcia-Martinez et al. (2014) documented that a high level of tumour-infiltrating

CD4⁺ T cells was the main factor responsible for a higher pCR rate with NAC [224].

1.4.1.3 Regulatory T cells (Tregs)

Regulatory T cells are a subset of CD4⁺ T cells, which co-express CD25 (the alpha

chain of the IL-2 receptor) and the forkhead family transcription factor FOXP3. Tregs

play important roles in the control of autoimmunity and maintenance of

transplantation tolerance [225]. Mutation of the FOXP3 gene causes the scurfy

phenotype in mice and the IPEX syndrome (immune dysfunction, polyendocrinopathy,

enteropathy, X-linked syndrome) in humans [226]. Tregs are able to suppress a large

number of distinct target cell types including CD4⁺ and CD8⁺ T cells, NK cells, NKT

cells and DCs [8, 227]. From in vitro studies, a number of suppressive mechanisms of

Tregs have been proposed: the secretion of TGF-β and IL-10, which down-regulate 

anticancer immune responses; the suppression of antigen presentation or decreased co-

stimulation of APCs; cytokine-mediated deprivation of the effector cells by
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competition with effector T cells for IL-2 consumption; suppression of the CD4⁺ Th

cell function and the generation of tumour specific CD8⁺ CTLs [8, 227]. Although

multiple mechanisms for Tregs suppression have been shown in vitro, it is unclear

whether the same or different mechanisms are used by Tregs in vivo [227]. Increased

levels of Tregs have been documented in blood, lymph nodes, and infiltrating the

tumour microenvironment in breast cancer as well as other solid cancers [228]. Their

suppressive functions on anticancer immune responses may influence not only

immune surveillance and tumour escape but also the outcome of conventional breast

cancer treatment such as NAC. In most varieties of human cancers, a high level of

infiltrating FOXP3⁺ T lymphocytes is associated with an unfavourable clinical

prognosis [229-234] (shown in Table 1.9). However, studies in colorectal cancer and

also head and neck cancer have documented the opposite findings, namely that high

levels of infiltrating FOXP3⁺ T lymphocytes can be associated with an improved

prognosis. Ladoire et al. (2011) suggested that this could be linked to their capacities

to suppress tumour-promoting inflammatory immune responses generated by

infectious stimuli from bacterial translocation through the gut mucosal barrier and also

to suppress Th17 cells [27].

Tregs which naturally develop in the thymus are called natural Tregs (nTregs). New

knowledge supports the existence of sub-populations of Tregs which may be generated

peripherally from naïve CD4⁺ T cells. The term induced or adaptive (iTregs) has been

applied to this subgroup of Tregs. Even though the mechanisms to generate iTregs are

still unclear, some evidence suggests that the immunosuppressive cytokines such as

IL-10 and TGF-β present in the microenvironment may be the major contributors to 
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this inhibitory effect. The majority of tumour-infiltrating Tregs is more likely to be

nTregs and express stable FOXP3. In contrast, FOXP3 expression on iTregs is

somewhat unstable and may be lost. To date, many studies have attempted to explore

the role of iTregs versus nTregs in tumour immunobiology and their phenotypic

characteristics which may provide a useful strategy to deplete them and enhance

anticancer immune defences [235]. Neuropilin-1(Nrp-1), a type-1 transmembrane

protein is one of the molecules which have been studied (in mouse models) as a

potential marker to identify the composition of iTregs (low level of Nrp-1 expression)

in tumour-infiltrating Tregs [236]. Although their differential expression has not been

clearly assigned to either iTregs or nTregs, CCR4 (C-C chemokine receptor type 4),

PD1 and CTLA-4 have been shown to be highly expressed on tumour-infiltrating

Tregs and are potential targets for treatment for cancers enriched in Tregs expressing

such phenotypes [237].

Table 1.9 The Association of High Levels of Tumour-infiltrating FOXP3⁺ Tregs and

Unfavourable Prognosis in Various Cancers

Cancers N Stage P value References

Breast carcinoma
183 +
214

Invasive P= 0.0001 (DMFS) Merlo et al. [234]

Breast carcinoma 309
Invasive: 237

Non-invasive (DCIS): 62
Normal breast: 10

P = 0.04 (RFS) Bates et al. [229]

Non-small cell lung
carcinoma

64 Stage I P = 0.05–0.007 (DSS)
Petersen et al.
[230]

Hepatocellular carcinoma 302 Non-metastatic P = 0.006 (OS) Gao et al. [232]

Renal-cell carcinoma 125 Stage I-IV P = 0.017 (OS) Li et al. [233]

Pancreatic carcinoma 198 Stage I-IV P= 0.0001 (OS) Hiraoka et al. [231]

N: Number of patients analysed; RFS: Relapse-free survival; DSS: Disease-specific survival; OS:

Overall survival; DMFS: Distant metastases-free survival
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Cytotoxic T lymphocyte-associated antigen 4

CTLA-4 (cytotoxic T lymphocyte-associated antigen 4; CD28 homologue; CD152) is

a co-inhibitory immune checkpoint molecule that negatively regulates T cell

activation. It is a type 1 transmembrane glycoprotein of the immunoglobulin

superfamily interacting with the B7-1 (CD80)/ B7-2 (CD86) ligand-binding sites via

its extracellular domain and the cytoplasmic tail. Notably, most CTLA-4 molecules

are intracellular residing in vesicles close to the microtubule organizing center

(MTOC). Only a small pool is expressed on the cell surface in a dynamic way. Its

distribution and intracellular trafficking are regulated through the cytoplasmic tail of

CTLA-4. At the molecular/ protein level, it shares some similarities to and competes

with CD28 which up-regulates T cell activation in the context of TCR-dependent

signaling [238, 239]. CTLA-4 which is expressed on the surface of Tregs, has been

documented to play a crucial role in anticancer immune responses by inhibiting the

interaction of the CD28 ligand on T lymphocytes with the CD80/86 receptors on DCs,

IL-2 production, IL-2 receptor expression, and cell cycle progression of activated T

cells [240]. As a result of this, the activation of DCs and the generation of specific

CD8⁺ CTLs are decreased. CTLA-4 is produced and mobilized from the internal side

of the cell membrane, then bound to either one of the co-stimulatory molecules, CD80

and CD86 on DCs. Thus, CTLA-4 expression switches the activated T cell into a

suppressed T cell. Clinically, targeting CTLA-4 with MAb against CTLA-4 (anti-

CTLA-4: ipilimumab and tremelimumab) has been used in the treatment of metastatic

melanoma showing an improvement in overall survival [187, 241]. In a recent study of

the effect of CTLA-4 in breast cancer, the level of CTLA-4 expression in breast cancer

tissue was higher than in normal breast tissue (weakly positive or negative expression

of CTLA-4 in control group of normal breast tissue) [242]. Also, higher mRNA levels
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of CTLA-4 in breast cancer tissue were associated with worse prognostic features

[242, 243]. Moreover, the spontaneous expression of CD3⁺CTLA-4⁺ T lymphocytes in

peripheral blood of breast cancer patients was also significantly higher than that of

healthy donors [15, 242, 243].

FOXP3 expression in breast cancer cells

The expression of FOXP3 is not only found in Tregs, but has also been documented in

some human tumour cells (e.g. lung, colon and breast cancers, and melanoma) with

the possibility of providing immunosuppressive mechanisms, as occurs with Tregs

[244]. The biological function of FOXP3 in tumour cells and its significance currently

remains unclear. Most studies have shown detrimental effects on anticancer immune

responses, resulting in tumour escape from immune surveillance [25, 245]. Ladoire et

al. (2011), by contrast, revealed a positive outcome for high levels of FOXP3

expression in a subgroup of breast cancer patients with HER2 overexpression after

NAC [246]. This effect may be a result of FOXP3 acting as a transcriptional repressor

of SKP2 (S-phase kinase-associated protein 2) and HER2, two breast cancer

oncogenes [246]. Our study is designed to provide more information in this

controversial area.

1.4.1.4 Natural killer cells (NK cells)

NK cells are morphologically defined as large granular lymphocytes, comprising 10-

15% of all circulating lymphocytes; they are also found in peripheral tissues. NK cells

are an important part of innate immunity and responsible for rapidly eliminating
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virally-infected cells, as well as tumour cells, without prior sensitisation and priming.

Their main functions are cytotoxicity and cytokine production [247].

Activation of NK cells is controlled by the balance between the stimulation of their

cell surface activating [KARs: killer activating receptors, including NKG2D (natural-

killer group 2, member D)] and inhibitory receptors (KIRs: killer cell

immunoglobulin-like receptors and LIRs: leukocyte immunoglobulin-like receptors).

KARs recognise and bind to certain molecules only expressed on abnormal or stressed

cells (pathogen or cell stress-induced ligands) to induce ‘killing signals’. On the other

hand, KIRs detect the level of MHC class I molecules on the surface of target cells and

provide inhibitory signals. Upon sufficient binding of KIRs to MHC class I molecules,

the killing signal is overridden by inhibitory signals to prevent the killing of normal

cells (self-tolerance). In contrast, if KIRs are not engaged with a sufficient number of

MHC class I molecules, the activating/killing signals override the inhibitory signals

from KIRs (missing-self), resulting in NK cell activation and killing of target cells

[248-250].

NK cells are able to extravasate and infiltrate into tissues where infected, stressed,

damaged, transformed or malignant cells are located [247, 251]. By their cytotoxic

activities, they can recognise and eliminate target cells without prior sensitisation by

sensing loss of self-MHC class I molecules [252]. When NK cells encounter the target

cells their cytoplasmic granules, which contain granzyme B and perforin, are released.

Perforin causes transmembrane pore formation and endosomal disruption. Granzyme

B enters the target cells via the pores and mediates apoptosis. The expression of FasL
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and TRAIL are also recognised as other mechanisms for NK cells to induce target cell

apoptosis. Low affinity Fc receptors known as CD16 are also found on the surface of

NK cells. Binding to the Fc (fragment, crystallisable) region of IgG antibodies on

opsonized infected cells also activates the NK cell resulting in ADCC [218, 253, 254].

CD56 expression is commonly used to identify human NK cells and to characterise the

NK cell population into two subsets which are different in their functional properties.

A low density-expression of CD56 (CD56dim) subset, which comprises around 90% of

NK cells, possesses potent cytotoxic activity but produces low levels of pro-

inflammatory cytokines (such as IFN-γ, TNF-α, GM-CSF and IL-3). In contrast, a 

minor subset which expresses CD56bright and the IL-2 receptor alpha chain (IL-

2Rα⁄CD25), has poor cytotoxic function but produces high levels of cytokines [251].

The ability to kill cancer cells makes NK cells a promising target of cancer

immunotherapy. Stimulation of endogenous NK cells with cytokines (IL-2 or IFNs) or

adoptive transfer of in vitro-activated autologous NK cells is ongoing in clinical trials

[255].

In the tumour microenvironment, NK cells extravasate from blood and migrate

through the extracellular space, using a number of MMPs. They infiltrate into and

around tumour nests where they can interact with other immune cells and tumour

cells. NK cells may function as potent regulators of T cell responses and interact with

APCs as a bridge between the innate and adaptive immune system [255]. Their

cytotoxic activities which need direct target-cell contact can lysis tumour cells without

MHC recognition. The density and distribution of NK cells within the tumour
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microenvironment have been shown to be significant prognostic factors in various

cancers (colorectal carcinoma, oesophageal squamous cell carcinoma, gastric

carcinoma, squamous cell lung cancer) [256-259]. There is lack of data about

infiltrating NK cells in LLABCs and particularly in the NAC setting.

1.4.1.5 Myeloid-derived suppressor cells (MDSCs)

The majority of solid tumours are infiltrated by diverse leukocyte subsets, including

both myeloid- and lymphoid-lineage cells. Their profile and activation status vary

depending on the tissue/organ milieu, as well as the stage of the malignancy. The

majority of these infiltrations include Tregs, MDSCs and M2 TIMs. These cells may

collectively or alone enable cancer cells to escape anticancer immunity.

MDSCs are immunosuppressive immature myeloid cells which have been found to be

elevated in most patients with cancers and in mice tumour models. They are a

heterogeneous population of myeloid cells with suppressive activities and contain the

precursors of granulocytes, macrophages and DCs. In mouse models, MDSCs are

defined as CD11b⁺ Gr1⁺ cells with immunosuppressive function. Graded

measurements of Gr1 expression allow the differentiation of CD11b⁺Gr1high (CD11b⁺

Ly6G⁺Ly6Clow) granulocytic MDSCs that are CD49d negative, and CD11b⁺ Gr1low

(CD11b⁺Ly6G-Ly6Chigh) monocytic MDSCs that are CD49d positive. Expression of

the IL-4R alpha-chain (CD124), the monocytic marker CD115, low levels of the

macrophage marker F4/80, and the stimulatory receptor CD40 have also been

suggested as markers for MDSCs, though they are not unique and mostly lack

relevance for identifying the suppressive population. In humans, phenotypic
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characterization of MDSCs is even more difficult. A great number of MDSC

phenotypes have been described in many different human diseases. Most of them are

malignancies involving solid tumours. Some of these overlap at least partially, while

others are mutually exclusive [260].

MDSCs can employ a wide range of suppressive mechanisms, which depend on their

granulocytic or monocytic subtype and often appear to involve more than one

mechanism. Besides overexpression of arginase 1 (Arg1) and inducible NO synthase

(iNOS) which can deplete L-arginine in the tumour milieu and generate NO,

respectively, suppressive mechanisms of human MDSCs involve production of

suppressive cytokines, such as IL-10 and TGF-β [260]. The CD49d positive subset of 

MDSCs (monocytic) strongly suppresses arginine-specific T cell proliferation in an

NO-dependent mechanism whereas the CD49d negative subset of MDSCs

(granulocytic) is relatively weaker in this suppressive mechanism, when compared

with the CD49d positive subset of MDSCs (monocytic). Together with tumour-

infiltrating macrophages (TIMs), MDSCs have been found to be involved in the

polarisation of naïve CD4⁺ T cells toward IL-17⁺ T cells (represented by Th17

secretion) [261]. MDSCs are important obstacle for naturally occurring or

therapeutically-induced anticancer immunity; their therapeutic targeting and

elimination is a highly attractive option. However, specific identification in the tumour

microenvironment along with selective depletion of these cells is difficult due to a lack

of unique markers. Therefore, to date, only rather unspecific approaches are available

[178].
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1.4.1.6 Tumour-infiltrating macrophages (TIMs)

In humans, macrophages are differentiated cells of the mononuclear phagocytic

lineage characterised by the expression of CD68, CD163, CD16 (Fc receptor), CD312

and CD115 (colony stimulating factor-1 receptor; CSF-1R) markers. Macrophage

differentiation, growth and chemotaxis are regulated by several growth factors,

including CSF-1, GM-CSF, IL-3, and chemokines such as CCL2 [chemokine (C-C

motif) ligand 2] [262]. All solid tumours recruit macrophages into their

microenvironment [also known as tumour-associated macrophages (TAMs)]. It has

been shown that breast carcinomas contain a substantial number of macrophages

[263]. Originally it was thought that these cells induced the rejection of the

immunologically ‘foreign’ cancer as macrophages can kill tumour cells in vitro.

However, recent clinical and experimental evidence indicates that in most cases, TIMs

play a major role in initiation, progression and metastatic dissemination of malignant

tumours. Some experimental evidence for the causal relationship between

macrophages and poor prognostic features comes from mouse models of breast cancer

in which genetic ablation of macrophages resulted in attenuation of tumour

progression and generation of metastases [158]. Based on their immunological

responses, in the tumour microenvironment TIMs can be classified into two main

polarised phenotypes. The classically activated M1 macrophages are characterised by

the expression of NOS2 as well as many pro-inflammatory cytokines (e.g. IL-1β, IL-6, 

IL-12, IL-23 and TNF-α). This phenotype has been reported to have a high 

tumouricidal capacity and enhanced anticancer immunity. On the other hand, the

alternatively activated M2 macrophages (express the scavenger receptor CD163 as a

cellular marker) have immune regulatory/ inhibitory functions. Many of the factors,

produced by M2 macrophages, result in stimulation of tumour growth and tumour
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progression [via enhanced activity of EGF, fibroblast growth factor 1 (FGF-1) and

TGF-β], angiogenesis (induced by VEGF) and matrix remodelling (by MMPs) [264].  

CD163 is a haemoglobin scavenger receptor only expressed on the cell surface of

monocytes/macrophages with an alternatively activated (M2) phenotype. It plays a

crucial role in dampening the inflammatory response and in scavenging components of

damaged cells. CD163-mediated endocytosis of haptoglobin-haemoglobin complexes

(from haemolysis of red blood cells) leads to lysosomal degradation of the ligand

protein. CD163 directly induces intracellular signalling leading to secretion of anti-

inflammatory cytokines. Moreover, CD163-mediated delivery of haemoglobin to

macrophages may fuel an anti-inflammatory response because haeme metabolites have

potent anti-inflammatory effects [265].

Classically activated (M1) macrophages, following exposure to IFN-γ, have 

antitumour activity and elicit tissue destructive reactions. In response to IL-4 or IL-13

(involved in Th2-type responses), macrophages undergo alternative (M2) activation

[266]. In most tumours, the majority of TIMs have been documented to have a M2-

like phenotype which is oriented towards promoting tumour growth, remodelling

tissues, promoting angiogenesis and suppressing adaptive immunity [267]. A meta-

analysis, produced by Bingle et al. (2002), showed that the increased TIMs

density/level in the tumour microenvironment was associated with poor prognosis in

more than 80% of solid cancers [268]. This review showed that in breast cancer (335

breast cancer cases from four studies) there was a significant correlation with poor

prognosis for both RFS and OS and also there was an association with angiogenesis,
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high tumour grade, tumour necrosis and large tumour size [268-271]. Tsutsui et al.

(2005) demonstrated a significant positive correlation between TIMs and VEGF

expression in breast tumours [272]. However, the large study with 1,322 breast

tumours of Mahmoud et al. (2012) was unable to find a relationship between TIMs

and prognosis [273]. TIM Infiltrates in the microenvironment may be important in

mediating responses to chemotherapy. There is a paucity of data regarding TIMs and

response to primary chemotherapy in breast cancer. One study has documented that a

high number of TIMs was significantly associated with a pCR in LLABCs receiving

NAC [274].

Therapeutic approaches focusing on TIMs which include blockade of macrophage

recruitment into tumours, suppression of TIM survival, re-polarisation towards an M1-

like phenotype and MAbs to enhance antitumour activities of TIMs, are on-going

investigations [275].

1.4.1.7 Dendritic cells (DCs)

DCs are special subsets of leukocytes derived from haematopoietic progenitor cells.

They function as potent APCs capable of initiating and directing adaptive immune

responses. Various types of DCs have been recognised and categorised according to

their morphological characteristics, functions and in situ residence. The two main

types are myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). In peripheral tissues,

immature DCs come in contact with, engulf/ phagocytose foreign antigens and

pathogens, and degrade these into small molecules and peptides. DCs migrate to

regional lymph nodes where the peptides/small molecules are presented by DCs
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(linked to MHC molecules) to both memory and naïve T cells. Antigens bound with

MHC class I molecules are recognised via TCRs on CD8⁺ T lymphocytes whereas

CD4⁺ T cells recognise and interact with peptides linked with MHC class II molecules.

Following this process, DCs become activated and mature. Simultaneously, DCs up-

regulate the expression of co-stimulatory molecules such as CD80 (B7-1) and CD86

(B7-2) on their cell surface to enhance the ability of T cell activation (co-stimulator

pathway). Mature DCs also synthesise high levels of IL-12 which enhance both innate

(NK cells) and adaptive (B and T cells) immunity [276].

In breast cancer, evidence suggests that DCs in the tumour microenvironment are

absent or only present in a very low number and are poorly activated [277-279].

Moreover, dysfunctional DCs (switched-off) were also identified in tumour-draining

regional ALNs and in the peripheral circulation in patients with operable breast cancer

[280].

There are a number of specific markers which have been used to identify DCs

according to their subtypes, level of activation and maturation. CD1a molecules,

which are expressed on DCs during the antigen capture and processing phases, have

been widely used as a general marker for putative DCs [281-283]. High levels of DCs

(CD1a⁺ or S100 protein⁺) in the tumour microenvironment have been associated with

a better clinical outcome and survival in gastric, thyroid, lung and colorectal

carcinomas [284-287]. Coventry et al (2003) also demonstrated a higher 5-year

survival rate in a group of patients with breast cancer with high levels of tumour-

infiltrating CD1a⁺ DCs but this did not reach statistical significance (p=0.331) [281].
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To date, there is no data on the significance and effect of tumour-infiltrating DCs on

the responses to NAC and vice versa in women with LLABCs.

1.4.1.8 Programmed death 1 (PD1) and its ligands

Similar to CTLA-4, PD1 (CD279) is a transmembrane immunoglobulin receptor and a

member of the CD28 family. PD1, expressed on activated T cells, follicular helper T

cells (CXCR5+) and Tregs, consists of a single extracellular IgV domain, a

transmembrane region and a cytoplasmic domain (receptor tyrosine-based switch

motif) [223, 288]. When interacting with its ligands [programmed death ligand 1

(PDL1 or B7 homologue1 or CD274) and programmed death ligand 2 (PDL2 or B7-

DC or CD273)] in a co-inhibitory pathway, it dampens down activated T cells and T

cell responses (cytotoxic activity, proliferation, and cytokine production) and depletes

T cells in the tissue/ tumour microenvironments. Contrary to the action of CTLA-4

which inhibits the early stage of T cell activation, the PD/ PDL pathway is necessary

to maintain peripheral T cell tolerance in tissues and is crucial for preventing

autoimmunity and maintaining T cell homeostasis [289]. The PD1 pathway is one of

the immune checkpoints which cancers cells appear to exploit and thereby escape from

anticancer immune defences [290].

In the microenvironment PDL1, which is normally expressed on various types of

lymphoid cells and non-lymphoid tissues (pancreatic islet cells, smooth muscle cells,

endothelial cells in the heart and liver, epithelial cells in the cornea, colon and skin,

and trophoblasts in the placenta), has been documented to have a high expression in

most solid tumours (lung, ovary and colon and melanoma). It has been shown to be
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correlated with poor survival, high tumour grade, large tumour size, metastatic spread,

a high recurrence rate, and fewer tumour-infiltrating CD8⁺ T cells [190, 291, 292]. In

breast cancer, however, high levels of PDL1 expression and in situ PDL1 mRNA

levels have been documented to be associated with increased TILs and improved RFS,

as well as increased pCR rates following NAC [293-295]. PDL1 has been found to be

expressed in 20% of TNBCs, and basal breast cancer cell lines constitutively

expressed the highest levels of PDL1 in response to IFN-γ [296, 297]. High levels of 

tumour-infiltrating PD1⁺ cells in operable breast cancers have been shown to have a

significant correlation with a shorter survival [298]. In univariate survival analyses,

the presence of PD1⁺ cells was associated with a significantly worse OS [Hazard ratio

(HR) = 2.736, p<0.001]. In subgroup analysis, the prognostic significance of tumour-

infiltrating PD1⁺ cells was observed in patients with luminal B and in basal-like

subtypes [299]. Flow cytometric studies demonstrated that, in breast tumours, PD1 is

expressed primarily on CD4⁺ TILs [300].

The strategy of blocking the interaction between PD1 and its ligand by using MAbs

targeting PD1 (MDX-1106) or PDL1 have been studied in early phase clinical trials. It

has been shown to have a promising efficacy in advanced metastatic melanoma and

NSCLC, with low rates of drug-related adverse events [189, 190].

1.4.1.9 Tumour-associated neutrophils (TANs)

Polymorphonuclear leukocytes (PMNs or neutrophils) are the most common white

blood cells found in blood. Their primary roles are to defend the host from invading

pathogens and also to assist in wound healing. These cells possess a number of toxic
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substances such as reactive oxygen species (ROS) and proteinases [serine proteinases

including neutrophil elastase (NE), cathepsin G (CG) and proteinase-3 (PR3); MMPs

including neutrophil collagenase (MMP-8) and gelatinase B (MMP-9)] to combat

invading foreign microorganisms [301, 302]. These substances, in addition, are

capable of modifying tumour growth and invasiveness [303].

In the tumour microenvironment, PMNs are recruited, in response to chemotactic

stimuli from macrophages or tumour cells, to sites of tumourigenesis where they

attempt to kill foreign tumour cells using the same toxic substances as those which kill

bacteria. Unlike the alternative phenotype M1/ M2 macrophages, neutrophil activation

states are likely to follow a linear progression. Naive circulating PMNs do not release

large amounts of oxygen radicals and proteinases when they enter the tumour

microenvironment. Mildly or moderately activated PMNs (recently described as N2

TANs) do release moderate concentrations of these toxic substances with detrimental

effects on the host’s defences and resultant promotion of tumour growth. Nevertheless,

PMNs can be induced to a highly activated state (recently described as N1) releasing

high levels of these substances with tumouricidal or cytotoxic activities [303, 304].

TANs, therefore, possess a potentially valuable anticancer role provided their

activation can be manipulated and properly controlled. The therapeutic potential of

highly activated PMNs (N1), however, may come with major consequence to

neighbouring host tissues. Sepsis, acute lung injuries (ALI) and acute respiratory

distress syndrome (ARDS) are conditions associated with the presence of highly

activated PMNs (N1) [305].
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The presence of tumour-infiltrating PMNs, which are defined as CD66b⁺ cells, has

been documented to be an independent predictor of mortality in renal cell carcinoma.

This latter study showed that the 5-year RFS rate decreased from 87%, in the absence

of tumour-infiltrating PMNs, to 53% in the presence of infiltrating PMNs [306]. The

significant association of increased numbers of infiltrating PMNs with a poorer

outcome was also documented in bronchoalveolar cell carcinoma [307]. In

hepatocellular carcinoma, increased intratumoural PMNs (but not peritumoural PMNs)

were significantly associated with decreased DFS and OS [308].

In breast cancer, an increased pre-treatment circulating neutrophil to lymphocyte ratio

(NLR), which may be a marker of systemic cancer-related inflammation, has been

shown to be associated with poor DFS [309, 310]. The level of neutrophil elastase

(NE) in breast cancer tissue has been correlated with poor clinical outcomes in many

studies [311-313]. There is a dearth of data on the significance of tumour-infiltrating

PMNs in LLABCs and the effects NAC on these infiltrating cells.

1.4.2 Cytokines and biological molecules

Cytokines are small proteins [about 5-25 kilo-dalton (kDa)] which are produced and

released by a broad range of cells (including innate and adaptive immune cells, as well

as endothelial cells, fibroblasts, and various stromal cells) and are involved in cell

signalling and responses to various stimuli. Cytokines induce responses through

binding to specific receptors. The nomenclature of cytokines is based on their cellular

sources. Cytokines can be classified as monokines (e.g. IL-1, TNF-α) which are 

produced primarily by monocytes and macrophages, and lymphokines produced by
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lymphocytes. The term interleukin (IL) is preferred for the cytokines which are

secreted by a number of different leukocytes and act on other leukocytes. The vast

majority of ILs is produced by Th cells. Another common classification is on the basis

of their biological functions/responses which are pro- and anti-inflammatory cytokines

depending on their effects on immune cells (Table 1.10), as well as type 1 (enhance

cellular immune responses; e.g. IL-2, IFN-γ, TNF-α) and type 2 (anti-inflammatory, 

favour antibody/humoral responses; e.g. TGF-β, IL-4, IL-10) cytokines. The majority 

of cytokines include ILs, growth hormone, IFNs (α, β, γ) and TNFs (α, β). Cytokine 

synthesis may be initiated by a gene transcription as a result of cellular activation and

controlled by RNA processing and by post-translational mechanisms. Cytokine

secretion is a brief, self-limited event and the actions are often pleiotropic and

redundant. Some cytokines may have the same functional effects [314, 315].
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Table 1.10 Lists of the Common Cytokines and their Functions

Cytokines Major Sources Main Targets Functions

IL-1β Macrophages, 

DCs

APCs, T cells, B

cells

Pro-inflammatory; promotes activation,

co-stimulation, secretion of other

cytokines, secretion of acute-phase

proteins; pyrogenic

IL-2 Th1 cells T cells, B cells,

NK cells,

macrophages

Proliferation; enhancement of

cytotoxicity, IFN-γ secretion and 

antibody production

IL-4 Th2 cells, mast

cells

T cells, B cells,

monocytes,

macrophages

Proliferation and differentiation of Th2;

promotes IgG and IgE production;

inhibits cell-mediated immunity

IL-5 Th2 cells, mast

cells

Eosinophils, B

cells

Proliferation and activation of Th2;

maturation of eosinophils

IL-6 Macrophages,

monocytes,

Th2 cells,

fibroblasts

B cells, T cells,

thymocytes,

myeloid cells,

osteoclasts

A multi-functional cytokine regulator of

immune responses; involved in B cell

differentiation; induction of acute phase

proteins; induction of IL-2 and IL-2

receptor expression; proliferation and

differentiation of T cells

IL-10 Th2 cells,

Tregs, DCs,

macrophages

Macrophages, T

cells, DCs, B

cells

Immune suppression; decreases antigen

presentation and MHC class II

expression of DCs; down- regulates

Th1, Th2, and Th17 responses

IL-12 Macrophages,

DCs, B cells

T cells, NK cells Differentiation and proliferation;

promotes Th1 and cytotoxicity

IL-17 Th17 cells Epithelial cell,

endothelial cells,

fibroblasts

Induces stromal cells to produce pro-

inflammatory and haematopoietic

cytokines, enhances the surface

expression of intracellular adhesion

molecule 1 (ICAM1) in fibroblasts

TNF-α Macrophages, 

monocytes, NK

cells, mast cells

Neutrophils,

macrophages,

monocytes,

endothelial cells

Pro-inflammatory; promotes activation

and production of acute-phase proteins

IFN-γ Th1 cells, NK 

cells, CD8⁺ T

cells

Macrophages, NK

cells, T cells

Promotes activation of APCs and cell-

mediated immunity; increased MHC

class I and II expression on APCs;

antiviral and anticancer activity

TGF-β Tregs, DCs, 

macrophages,

All leukocyte

populations

Regulatory; inhibits growth and

activation; Treg maintenance
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1.4.2.1 T helper-1 (Th1) and T helper-2 (Th2) cytokines

Cytotoxic lymphocytes, including NK cells and tumour-specific CTLs, eliminate

tumour cells in a MHC-dependent manner. NK cells kill tumour cells that are missing

“self” markers of MHC class I molecules whereas tumour-specific CTLs destroy

tumour cells presenting with TAAs in conjunction with MHC class I molecules [316].

Furthermore, Th1 cells and their secreted cytokines such as IL-2 and IFN-γ, play a 

crucial role in the generation of CTL-mediated anticancer immune responses and

subsequent regression of tumours [164, 316]. NK cells also serve as a source of IFN-γ 

at an early stage in tumour development, further enhancing anticancer immunity by

assisting effective priming of Th1 cells and CTLs [316]. Tumour and immune

suppressor cells, however, implement diverse strategies against the generation and

action of CTLs and Th1 cells. Tregs, as well as tumour cells, produce cytokines to

modulate cytotoxic lymphocytes. In this case, IL-4, IL-10 and TGF-β have been well 

documented to play a major role as immunosuppressive cytokines [8]. IL-4 and IL-10

(Th2 cytokines) function as down-modulators of Th1 generation. IL-10 is also known

to decrease the expression of MHC molecules on tumour cells and to reduce the

capacity of DCs to generate antigen-specific Th1 cells. Tumour microenvironments

enriched with IL-10 can effectively recruit Tregs into the tumour sites. Lastly, excess

TGF-β derived from tumour cells vigorously down-regulates the proliferation of 

tumouricidal lymphocytes, especially Th1 cells and induces the generation of

peripheral FOXP3⁺ Tregs from naïve T cells [8, 164, 316].

In cancer tissues, the expression of IL-4, IL-10 and TGF-β can be identified on the cell 

membrane and in the cytoplasm of tumour cells by IHC. Cancer cells produce and

secret IL-4, IL-10, TGF-β and VEGF and have been documented as one of the tumour 
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escape mechanisms [144, 317]. Llanes-Fernandez et al. (2006) studied IL-10

expression in the tumour microenvironment in 27 breast cancer patients and found that

23 out of 27 breast cancer samples exhibited a strong expression of IL-10. They also

proposed the association between IL-10, Bcl-2 and Bax, and the inverse association of

IL-10 with p53 [318]. In addition, from the recent study of Liu et al. (2013), strong

expression of IL-10 in ductal and lobular breast cancer tissues was seen in 80.34%

(94/117) of cases. They also suggested that IL-10 expression was correlated with the

high B7-H3 (a member of the B7-family) expression in human breast cancer tissues

and contributed to tumour immune evasion and tumour progression. This expression

appeared to be correlated with the ability of B7-H3 to promote IL-10 secretion [319].

However, there is evidence that pro-inflammatory cytokines such as IL-1, IL-2 and

IFN-γ are also found expressed by cancer cells [320-326]. 

1.4.2.2 Interleukin-17 (IL-17)

IL-17 was originally found to be produced from a subset of CD4⁺ effector T

lymphocytes and was IL-23 dependent, thus, differing from the Th1 and Th2 lineages.

Although it plays a crucial role in inflammation and autoimmune disease, there is

relatively little data regarding its role in anticancer immunity [327]. Moreover, the

data available is somewhat conflicting. Some murine studies reported that IL-17

supported tumour growth and promoted angiogenesis [328, 329]. Other studies have

suggested it may enhance anticancer defences by increased generation of specific

CTLs [330]. In vitro invasion assays have shown that IL-17 promoted invasiveness of

breast cancer cell lines [331].
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In females with breast cancer, the expression of IL-17 can be found in TILs (Th-17),

cancer cells and CD68⁺ TIMs [14, 331, 332]. The number of Th17 cells (IL-17⁺ TILs)

in breast cancer tissue is higher than that documented in normal breast tissue. In

addition, high levels of this expression have been shown to be associated with

improved prognosis and reduction of metastases [332]. It has been reported also to

predict better survival in oesophageal and gastric cancers [333, 334]. Conversely, its

association with poor prognosis have been reported in colorectal, lung and

hepatocellular carcinoma [335-337].

1.4.2.3 Interferon gamma (IFN-γ) 

IFN-γ is a type II interferon and is defined as a primary cytokine of Th1 lymphocytes 

(secretion of large amounts of IFN-γ is the defining feature of Th1 lymphocytes). Its 

molecular structure and binding receptor are unrelated and different from Type I

interferons (IFN-α, IFN-β and IFN-ω). Mostly, IFN-γ is produced by NK cells, CD4⁺

Th1 cells and CD8⁺ CTLs. However, recent data have suggested that B cells, NK T

cells, and APCs can also secrete IFN-γ [338, 339]. The IFN-γ production is positively 

controlled by IL-12 and IL-18 while IL-4, IL-10, TGF-β and glucocorticoids are 

negative regulators. Apart from antiviral function, IFN-γ has immunoregulatory and 

immunomodulatory properties and promotes the anticancer immune response. IFN-γ is 

capable of activating macrophages and APCs, promotes NK cell activities, assists in

the development of a Th1-type response and suppresses Th2 cell differentiation.

Moreover, IFN-γ up-regulates the expression of MHC molecules (both class I and II) 

on APCs which increase the potential for T cell recognition of presented foreign/

tumour peptides, thus promoting the induction of adaptive cell-mediated immunity

[339-341].
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1.4.2.4 Transforming growth factor beta (TGF-β) 

TGF-β is able to suppress tumours at the early stages of carcinogenesis. However, at 

the later stages, during tumour development, TGF-β exerts an oncogenic activity by 

promoting growth, invasiveness and metastases. TGF-β ligands and their receptors are 

expressed in normal cells, lymphocytes, and also in tumour cells. In both normal and

malignant cells, with the exception of fibroblasts, TGF-β is a potent inhibitor of cell 

proliferation including CTLs [342]. It can also promote cell differentiation and induce

apoptosis. These activities are responsible for its immunosuppression. Unfortunately,

during the later stages of tumour development, tumour cells escape from TGF-β-

mediated growth arrest due to inducing mutations of genes encoding TGF-β receptors 

or signalling pathway proteins. At this later stage, tumour cells become refractory to

TGF-β, but it still exerts immunosuppressive activity interfering with 

immunosurveillance. Thus, it can facilitate tumour progression and dissemination

[144].

1.4.2.5 Vascular endothelial growth factor (VEGF)

VEGF is a primary stimulant for tumour angiogenesis, which is important for tumour

growth and formation of metastases. When tumours reach a size of about 0.2–2.0 mm

in diameter, they become hypoxic and limited in size in the absence of an appropriate

vascular bed. In order to increase further in size, the tumour needs to develop a blood

supply that can support its metabolic requirements. In addition, the new blood vessels

can also provide an escape route by which cells can leave the primary tumour to

disseminate and form metastases [144]. The major mechanism for driving

angiogenesis results from the increased production of VEGF following up-regulation

of the hypoxia-inducible transcription factor. VEGF binds and activates via VEGF
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receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) [343]. Elevated levels of

VEGF in tumour cells correlate with increased lymph node metastases, HER2

overexpression and a worse prognosis in breast cancer [344]. To date, anti-VEGF

therapy has been widely used and approved for the treatment of metastatic HER2

negative breast cancer. Serum levels of VEGF and soluble VEGF receptors appear to

be potential biomarkers of responses in advanced breast cancer patients treated with

metronomic cyclophosphamide [345]. Furthermore, cyclophosphamide and

capecitabine have been shown to be able to significantly reduce serum VEGF in

patients with metastatic breast cancer [346]. However, to date, there is no data on

VEGF expression in the tumour microenvironment of breast cancer with NAC,

particularly in relationship to pCR and cellular immune parameters.

1.4.2.6 Indoleamine 2, 3-dioxygenase (IDO)

One of the important mechanisms that enables tumour cells to escape from anticancer

immune defences and induces immune tolerance is that involving IDO. The expression

of this molecule has been found in several human cells, including activated DCs,

macrophages, endothelial cells, fibroblasts and MDSCs [347]. IDO is the rate-limiting

catalytic enzyme of tryptophan degradation through the kynurenine pathway. This

enzyme causes both the depletion of the essential amino acid L-tryptophan which is

necessary for the function of T cells and the increased production of tryptophan

metabolites which are immunosuppressive. These downstream tryptophan metabolites

can suppress T cell proliferation and cause T cell apoptosis in vitro.[348]. In addition,

IDO can affect NK cell functions [349]. Data from in vitro studies has indicated that

IDO expression by DCs can promote the differentiation of naïve CD4⁺ T cells into

Tregs [350].
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IDO⁺ cells have been observed by IHC in tumour and tumour-draining lymph nodes in

melanoma and breast cancer, as well as other cancers [351]. The expression of IDO by

tumour cells has been shown to correlate with a poor clinical prognosis in ovarian,

endometrial and colon carcinomas [352-354]. Studies in patients with malignant

melanoma, IDO expression in sentinel lymph nodes was associated with a markedly

worse clinical prognosis [355, 356].

In studies with breast cancer, serum IDO metabolism determined by tryptophan/

kynurenine ratio has been proposed as a prognostic indicator in patients with recurrent

breast cancer [357]. The overexpression of IDO in the tumour microenvironment has

been shown to have a significant positive correlation with extensive nodal metastases

and levels of infiltrating Tregs [358]. However, the DFS rate in patients with IDO

overexpression was not significantly lower than that in patients with negative or low

expression of IDO [359].

Up-regulated expression of IDO (IDO hyperactivity) leads to tumour progression by

suppressing T cell immunity and inducing anticancer immune tolerance, hence

targeting IDO may be a potential novel anticancer therapy. To date, IDO inhibition

with 1-methyl-D-tryptophan (1-MDT) has been studied in early clinical trials [360].

Moreover, cyclooxygenase (COX)-2 inhibitors have been shown to down-regulate

IDO expression at tumour sites in animal tumour models [361].
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1.4.2.7 Prostaglandins (PGs)

PGs are a catalysed product of arachidonic acid. The activity of COX enzymes is

coupled to several terminal synthases which produce the different PGs. The major PGs

produced are the PGE2, PGD2, PGF2α and PGI2 by their respective synthases and are 

present in normal tissues/organs [362]. Two COX isoforms are identified including the

COX-1 and COX-2. COX-1 is constitutively expressed in several tissues and is

essential in maintaining various homeostatic conditions whilst COX-2 is an inducible

enzyme which is up-regulated in association with inflammation [363].

In a range of solid cancers (e.g. lung, prostate, bladder and colon) with a prominent

immune cell infiltration, there is often associated with enhanced expression of COX-2

and increased production of PGE2. COX-2 expression and PGE2 production are

detected in both the tumour cells and immune cells (MDSCs and TIMs), and are

increased in the tumour microenvironment [364, 365]. PGE2 is involved in various

biological processes which result in anticancer immune dysfunction, in particular by

inducing the generation of MDSCs. It inhibits the differentiation and activation of

bone marrow-derived APCs, reduces NK cell cytotoxicity and suppresses T cell

function (inhibiting CD4+ T cell survival and generation of CD8+ CTLs) [366, 367].

Moreover, inhibition of the Th1 cytokine production and stimulation of the Th2 and

Th17 cytokine productions have been demonstrated [368, 369]. PGE2 up-regulates

FOXP3 expression in Tregs and enhances in vitro Treg activity [370]. It also up-

regulates Arg1 in MDSCs and TIMs. Arg1 is important in inducing MDSC-mediated

immune suppression. PGE2 promotes the entry and accumulation of MDSCs into the

tumour microenvironment [371]. The overexpression of the COX-2 enzyme in breast

cancer is associated with a poor prognosis [372]. COX-2 inhibitors have been used to
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reduce PGE2 production and inhibit the expansion of MDSCs in vivo [367, 373]. As

PGE2 is a lipid rather than a protein, PGE2 present in the tissues (paraffin-embedded)

is difficult to be measured using IHC technique and may lose during tissue process and

washing with detergent-contained solutions. The thesis, therefore, did not document

the level of PGE2 in the microenvironment of LLABCs.

1.4.3 Cancer stem cells (CSCs) in breast tumours

It has been shown that breast cancer, as well as other malignant tumours, contains a

small distinct subset of cells called cancer stem cells (CSCs). This subset is

responsible for tumour initiation and possesses the ability of self-renewal, a high

proliferative rate and production of multiple differentiated progenies. CSCs are

resistant to both chemotherapy and radiotherapy and may be responsible for poor

outcome and recurrence after treatment [374-376]. In the tumour microenvironment of

breast cancer, CSCs can be identified as they strongly express the adhesion molecule

CD44 and very low levels of the adhesion molecule CD24 [377, 378]. However, in the

study using immunohistochemical double staining to detect CD44⁺ CD24-/low breast

cancer cells, no significant correlation was demonstrated between the high percentage

of CD44⁺ CD24-/low cells and tumour progression or OS [378].

CD24 is a small, heavily glycosylated cell surface protein which is considered to play

a crucial role in tumour metastasis through P-selectin. It has been shown to have a

higher expression in DCIS and invasive breast cancer than in normal breast tissue, and

positively correlated with tumour grade [379].
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CD44 is a transmembrane glycoprotein receptor for the extracellular matrix

hyaluronan. The interaction between extracellular matrix hyaluronic acid and CD44

influences adhesion, migration and invasion of many cancers. Increased CD44

expression has been demonstrated to have an association with a poor prognosis in

breast cancer, as well as other cancers [380, 381].

1.4.4 Tumour-infiltrating lymphocytes (TILs) and pathological responses to

neoadjuvant chemotherapy (NAC) in breast cancer

Neoadjuvant administration of primary chemotherapy provides an opportunity for a

relatively rapid assessment of the therapeutic efficacy of a given drug regimen. This

clinical setting allows the evaluation of the predictive role of biomarkers including

TILs and also enables an assessment of the dynamic changes of biomarkers before and

after therapy [300]. The administration of NAC to patients with breast cancer results in

the activation of systemic immunity as characterised by increased numbers of

circulating CD4⁺ and CD8⁺ T lymphocytes [382] and decreased numbers of circulating

Tregs [15].

There is little data on the significance of TILs and their subsets to the contributions to

the pathological responses elicited with NAC in breast cancer. Demaria et al. (2001)

evaluated the extent/ degree of lymphocytic infiltration in the primary tumour and the

presence of TILs (defined as lymphocytes present within tumour cell nests) using

H&E (haematoxylin and eosin)-stained histological sections from pre-treatment

biopsies and post-treatment surgical specimens of 25 breast cancer patients who had

received neoadjuvant paclitaxel. They found that an increased level of TILs in post-
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treatment specimens correlated with clinical responses (partial and complete clinical

response) [383]. This was the first study to demonstrate the relevance of TILs in the

neoadjuvant setting. Tumours which showed a response to NAC had increased levels

of TILs, when compared with pre-treatment TIL estimations. Unfortunately, only 1 out

of the 25 patients achieved a pCR and the level of TILs in the pCR specimen was

difficult to evaluate. Within the scar tissue at the primary tumour site of a pCR, the

levels of TILs and other immune cells need to be carefully evaluated.

In the larger study of Denkert et al. (2010), the core biopsies of 1,058 breast cancer

patients from two cohort studies (the GeparDuo and GeparTrio) were examined. The

study showed a significant and independent prediction of pCR rates from the high

levels of TILs presenting in the pre-treatment biopsies. High levels of TILs were

associated with pCR rates of 41.7 and 40.0%, compared with 2.8 and 7.2%,

respectively, in the absence of TILs [19]. These results provide strong evidence for the

relevance of TILs from a large set of more than 1,000 breast cancer patients.

Yamaguchi et al. (2012) studied histomorphology and biomarkers to predict pCR after

NAC in various stages of breast cancer (TNM stage I-IV). They found that high levels

of TILs, high histological grade, negative hormone receptor status and HER2

overexpression in tumours were significantly associated with a pCR. Among these

predictors, high level of TILs was the best independent predictor for a pCR (p<0.0001)

[17]. Ono et al. (2012) was the first to document the association between high levels of

TILs and high pCR rates in TNBCs [18]. Furthermore, this association was

subsequently validated in HER2-ve breast cancer by Issa-Nummer et al. (2013) [384].

In an analysis of breast cancer subgroups from the study of Loi et al. (2013), increased

levels of TILs were associated with a better prognosis in ALN positive, ER-ve and
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HER2-ve subgroups of breast cancers regardless of NAC drugs and regimens used

[385]. High levels of TILs, particularly in the stroma, have been documented to be an

independent prognostic factor for improved DFS and OS in TNBCs by Adams et al.

(2014). Their study involved 481 patients with TNBCs [386]. The relevance of TILs

present after NAC has been further demonstrated by Dieci et al. (2014) [387]. In this

study, high levels of TILs present in both the stroma and intratumourally in the

residual tumour tissue after NAC in TNBCs were significantly associated with a better

DFS and OS. However, these studies did not define the subsets of TILs, in particular

the interaction of FOXP3⁺ Tregs and CD8⁺ T lymphocytes.

Hornychova et al. (2008) characterised the TIL subsets using IHC in pre-NAC

biopsies and post-NAC resection specimens from 73 patients (10 patients with a pCR;

63 patients with no pCR) undergoing NAC containing doxorubicin and paclitaxel.

They found that higher levels of CD3⁺ TILs and CD83⁺ DCs were significantly

associated with a pCR. In tumours with no pCR, an increase in the mean and maximal

numbers of CD3⁺ TILs, CD56⁺ TILs and DCs (characterised as CD83⁺, CD1a⁺ or

S100⁺ cells) and a decrease in the number of CD68⁺ monocytes, and lower VEGF

expression were observed in the residual tumours after NAC [388]. West et al. (2011)

showed that high levels of CD3+ TILs in breast cancer correlated with prolonged DFS

and better pCR rates following anthracycline-based chemotherapy in ER-ve breast

cancers [389]. Ladoire et al. (2008; 2011) studied FOXP3⁺ Tregs and CD8⁺ T cells.

He and his colleagues established a correlation between the rates of pCR and the levels

of FOXP3⁺ Tregs and CD8⁺ T cells in different stages of breast cancer using various

regimens of NAC. A pCR was associated with the disappearance of FOXP3⁺ Tregs in
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post-NAC surgical specimens whilst the level of CD8⁺ T lymphocytes remained

unchanged. High levels of CD8⁺ and low levels of FOXP3⁺ TILs post-NAC were

associated with improved long-term clinical outcomes. The CD8⁺ TIL: FOXP3⁺ TIL

ratio was the significant prognostic parameter in multivariate analysis [390, 391]. A

high level of infiltrating CD8+ T cells was significantly predictive of a pCR, was also

documented in another study by Nabholtz et al. (2014) with a cohort of 47 patients

with TNBCs [392]. Seo et al. (2013) demonstrated a positive correlation between the

levels of infiltrating CD4+ T cells and pCR rates. In addition, the levels of infiltrating

CD8+ T cells and FOXP3+ T cells were also positively correlated with pCR rates in

this study [393]. These findings were consistent with the findings documented by Lee

et al. (2013) [394].

Aruga et al. (2009) compared the levels of FOXP3⁺ TILs between pre- and post-NAC

samples. The median value of FOXP3⁺ Treg counts was 16.3 cells/high-power field

(HPF) for pre-NAC tumour biopsies, but only 6.6 cells/ HPF for post-NAC surgical

specimens. Failure of breast cancers to respond to NAC was found to be significant in

patients with high FOXP3⁺ Treg counts. The patients with low FOXP3⁺ Treg counts in

both specimens (pre- and post-NAC) had a better prognosis [395]. Oda et al. (2012)

found that the presence of infiltrating FOXP3⁺ Tregs and CD8⁺ T cells but not IL-17⁺

T cells in breast cancers before NAC was significantly associated with higher pCR

rates than breast cancers lacking these infiltrating cells [396]. Liu et al. (2012) studied

the relevance of peritumoural and intratumoural FOXP3⁺ TILs before and after NAC.

They reported that the peritumoural FOXP3⁺ Tregs were sensitive to NAC and

decreased peritumoural FOXP3⁺ Tregs after NAC was associated with a pCR.
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Moreover, intratumoral FOXP3⁺ Tregs after NAC was an independent prognostic

predictor (both OS and PFS) [397]. Cimino-Mathews et al. (2013) compared TILs in

primary breast tumours and distant metastatic tumours in 15 breast cancer patients.

The levels of CD4⁺, CD8⁺ and FOXP3⁺ TILs were significantly lower in metastatic

lesions, in particular brain metastases, compared with primary breast lesions. These

TIL subsets were higher in TNBCs, compared with luminal tumours. Remarkably, a

CD8⁺ TIL: FOXP3⁺ TIL ratio of ≥3 in primary breast tumours but not in metastases 

was associated with a better prognosis [398]. Demir et al. (2013) showed a significant

correlation between low levels of infiltrating FOXP3⁺ Tregs after NAC and high pCR

rates. This significant correlation was found in both the breast and ALNs [13] (Table

1.11).

Recently, Garcia-Martinez et al. (2014) analysed pre- and post-NAC TIL subsets

(CD3⁺, CD4⁺, CD8⁺, CD20⁺ and FOXP3⁺) and CD68⁺ monocytes in tumour

specimens using TMAs in a series of 121 breast cancer patients (TNM stage II and III)

treated with NAC containing taxanes and anthracyclines plus concomitant trastuzumab

(if tumours overexpressed HER2). They found that a group of tumours (labelled as

cluster B in their study) characterised by low CD8⁺, high CD4⁺ and high CD20⁺ TILs

and high CD68⁺ monocyte infiltrations was significantly associated with a pCR (pCR

rate 58% in cluster B versus 7% in non-cluster B). Moreover, they proposed that a

higher infiltration by CD4⁺ TILs was the main factor for the occurrence of a pCR and

that NAC induced an inversion of the CD4⁺ TILs: CD8⁺ TILs ratio. NAC produced a

significant decrease of CD4⁺ and CD20⁺ TILs and CD68⁺ monocytes. CD8⁺ TILs, in

contrast, were significantly increased after NAC while FOXP3⁺ TILs remained
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unchanged [224]. The TMA technique used in this study, however, may produce

different results from a standard whole tissue section. TMAs focus on a much smaller

area of a specimen and appear to be less reliable for documenting immune cell

infiltrates in cancer tissue (the disadvantages of TMAs are discussed in the next

chapter).
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Table 1.11 Previous Studies on Tumour-infiltrating Lymphocytes and Subsets in

Patients with Breast Cancers Undergoing Neoadjuvant Chemotherapy

Studies N Stages Overall PCR NAC Regimen Biomarkers Results

Demaria et al.

(2001)
25 T2 or greater 1 out of 25

Paclitaxel (200 mg/m
2
) every 2

weeks x 4 cycles
TILs

Persistence of TILs after

NAC correlated with

cl inical response

Hornychova et

al. (2008)
73 AJCC stage II, III 10 out of 73 Doxorubicin and paclitaxel

CD3, CD56,

CD83, CD1a,

S100, CD68

CD3⁺ TILs and CD83⁺ DCs 

significantly associated

with a pCR

Ladoire et al .

(2008)
56 T1-4, N0-3, M0 21.4%

Anthracycline-based: n=25

Anthracycline and taxane: n=11

Trastuzumab and taxane: n=20

CD3, CD8,

FOXP3

Poor prognostic factors

correlated with higher

FOXP3
+

Tregs before NAC,

higher pCR after NAC

correlated with absence

of FOXP3⁺ Tregs and high 

levels of CD8⁺ T cells

Aruga et al.

(2009)
93 T1-4, N0-3, M0 No data

Anthracycline and

cyclophosphamide
FOXP3

Clinically non-responders

and poor OS significantly

associated with patients

with high FOXP3⁺ cells 

counts in tumours

Denkert et al.

(2010)

Total: 1,058

GeparDuo: 218

GeparTrio:840

GeparDuo: T2-3, N0-2,

M0 GeparTrio: T2-4,

N0-3, M0

GeparDuo: 12.8%

GeparTrio 17%

Doxorubicin/cyclophosphamide

fol lowed by docetaxel or

docetaxel plus doxorubicin

TILs

High TILs: pCR rates 42%

and 40% versus 3% and

7% for low TILs

Ladoire et al .

(2011)

111 HER2+ve

51 HER2-ve
AJCC stage I-IIIa

30% in HER2+ve

17% in HER2-ve

Trastuzumab–docetaxel: n=63

Anthracycline-based: n=99
CD8, FOXP3

High CD8/FOXP3 ratio

associated with improved

RFS,OS and pCR

West et al.

(2011)
255 ER-ve AJCC stage I-III 43.2%

Anthracycl ine-based and non

anthracycl ine-based (CMF)

TILs, CD3

(TMAs)

TILs associated with a

pCR, High CD3⁺ infiltrates 

correlated with DFS in

anthracycline group

Oda et al.

(2012)
180 AJCC stage II, III

31.3% in presence of

FOXP3⁺infiltrates

12 cycles of

Weekly paclitaxel followed by 4

cycles of FEC (fluorouracil,

epirubicin, and

cyclophosphamide)

CD8, FOXP3,

IL17

The presence of FOXP3⁺ 

and CD8⁺ infiltrates but 

not IL17⁺ infiltrates 

before NAC associated

with high pCR rate

Liu et al.

(2012)
132 AJCC stage I-III 15.9%

Anthracycline- and/or

taxane-based chemotherapy
FOXP3

Decreased peritumoural

Tregs after NAC

associated with pCR,

while intratumoural Tregs

after NAC was an

independent prognostic

predictor for OS

Yamaguchi et

al. (2012)

16 (pCR)

52 (non-pCR)
AJCC stage I-IV 16 out of 68

Anthracycline- and/or

taxane-based chemotherapy
TILs

The best predictor for

pCR: high TILs (p<0.0001)

Ono et al.

(2012)

474 total

102 TNBCs
AJCC stage II, III 32% in TNBCs

Anthracycline- and/or

taxane-based chemotherapy
TILs

TNBCs associated with

high level of TILs, TILs

correlated with a pCR in

TNBCs

Loi et al.

(2013)

2,009 node-

positive from

BIG 2-98 trial

Node-positive (N1-3) No data
Anthracycline- and/or

taxane-based chemotherapy
TILs

Increasing TILs

associated with better

prognosis in node-

positive, ER-ve, HER2-ve

subtypes

Demir et al.

(2013)
101 Locally advanced stage

12.9% for breast

tumours, 14.8% for

axillary metastatic

tumours, 4.9% for

both breast and

axillary tumours

Various regimens FOXP3

Lower FOXP3⁺ Tregs after 

NAC correlated with

higher pCR rates for

breast (p=0.001), breast

and axi lla (p=0.05)

Seo et al.

(2013)
153 AJCC stage II-III 13.1%

Anthracycline- and/or

taxane-based chemotherapy

CD4, CD8,

FOXP3

Levels of CD4⁺, CD8⁺ and 

&K yWϯЀ�d/>Ɛ�ƉŽƐŝƟǀ ĞůǇ�

correlated with a pCR
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N: Number of patients; pCR: Pathological complete response; RFS: Relapse-free survival; OS: Overall

survival; AJCC: American Joint Committee on Cancer; TMAs; Tissue microarrays

Lee et al .

(2013)
175 AJCC stage I-III 11%

Anthracycline- and/or

taxane-based chemotherapy

TILs, CD3,

CD8, FOXP3

Levels of TILs, CD3⁺, CD8⁺ 

and FOXP3⁺ cells 

positively correlated with

a pCR

Issa-Nummer

et al. (2013)
313 HER-ve AJCC stage I-III 20.1%

Anthracycline- and/or

taxane-based chemotherapy
TILs

High TILs (LPBC)

associated with a PCR

(P<0.001), Stromal TILs

and LPBC were

independent predictors

for pCR

Dieci et al.

(2014)

278 TNBCs with

non-pCR
AJCC stage I-III None

Anthracycline- and/or

taxane-based chemotherapy
TILs

High TILs in residual

disease after NAC: better

5 years OS (p=0.0017)

Adams et al.

(2014)
481 TNBCs AJCC stage I-III No data

Anthracycline- and/or

taxane-based chemotherapy
TILs

Stromal TILs correlated

with improved DFS and

OS in TNBCs

Nabholtz et al.

(2014)
47 TNBCs AJCC stage II-III 46.8%

Anthracycline-taxane-based

chemotherapy plus anti-EGFR

antibody (panitumumab)

CD8
High level of CD8

+
TILs

was predictive of pCR in

TNBCs

Garcia-

Martinez et al.

(2014)

121 AJCC stage II, III
58% in cluster B,

7% in cluster A, C

Taxanes and anthracyclines plus

concomitant trastuzumab

(if HER2+ve)

CD3, CD4,

CD8, CD20,

CD68, FOXP3

(TMAs)

Low CD8⁺, high CD4⁺, high 

CD20⁺ and high CD68⁺ 

infiltrations (cluster B)

significantly associated

with a pCR
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1.5 Hypothesis and Objectives

1.5.1 Hypothesis

The microenvironment in tumours and tumour-draining ALNs in women with

LLABCs contains various innate and adaptive immune cell infiltrates and expression

of specific cytokines/ biological molecules, and from these the response to NAC can

be predicted.

1.5.2 Objectives

(i) To critically analyse the immune microenvironment in breast tumours and tumour-

draining ALNs and its association with the response to NAC.

(ii) To ascertain the immunosuppressive status in situ in the breast tumours and

tumour-involved ALNs and its effect on preventing a good pathological response to

NAC.

(iii) To document the immune-modulatory effects (cellular, humoral) and related

immune-mediated tumour cell death of an NAC regimen (doxorubicin,

cyclophosphamide, docetaxel and capecitabine) in the breast tumour and ALN

microenvironment following NAC.

(iv) To determine whether the systemic immunosuppressed state (high levels of

circulating Tregs) and response to NAC in patients with LLABCs, is mirror-imaged in

the immune microenvironment in the breast tumours.
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CHAPTER 2: MATERIALS AND METHODS

2.1 Patients and Specimens

Paraffin-embedded breast cancer and lymph node specimens from 33 women with

LLABCs (>3 cm, T3-4, N0-2, M0) were used in the study. Twenty of the 33 women

with LLABCs had additional pre-NAC biopsy specimens of metastatic tumours from

ipsilateral ALNs. Sixteen of the 33 women with LLABCs had blood levels of FOXP3⁺

Tregs and CTLA4⁺ Tregs (pre- and post-NAC) on file from a previous study (Verma

et al, 2013). The specimens were from patients enrolled in a study of NAC (between

2008 and 2011) [110]. Diagnosis of breast cancer was established by histological

assessment of image-guided core needle biopsies of breast tumours and, where

appropriate, tumour-involved ipsilateral ALNs. Patients were clinically evaluated in a

multidisciplinary setting and tumours were staged according to the TNM classification.

Mammography and ultrasonography were used to determine the presence, nature, and

size of the primary breast tumours, as well as to determine the presence of metastases

in loco-regional lymph nodes. The NAC trial evaluated the effect of the addition of

capecitabine (X) to docetaxel (T) preceded by adriamycin (doxorubicin: A) and

cyclophosphamide (C). After two cycles of AC patients were assessed by magnetic

resonance mammography (MRM), compared against pre-NAC MRM, and classified

as clinical responders or non-responders. All patients received either 4 courses of AC

followed by 4 courses of T ± X or 2 courses of AC followed by 6 courses of T ± X, as

per the trial protocol. All patients underwent surgery (wide local excision or

mastectomy and axillary surgery) 4 weeks after the last course of NAC.
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Pathological responses in the breast and ALNs were assessed in the excised surgical

specimens after NAC. Pre-NAC assessment was done on core biopsies (breast and

ALNs), obtained prior to commencement of NAC. Established and previously

published grading criteria (Table 2.1a Miller/Payne grading system) were used to

define histopathological responses in the breast (grades 5 to 1). Good pathological

responses were graded 5 [pathological complete response (pCR), no residual invasive

disease] and 4 (90% loss of invasive disease). Poor pathological responses were

graded 3 (30-90% loss of invasive disease), 2 (<30% loss of invasive disease) and 1

(no loss of tumour cells) [116, 399, 400]. Pathological responses in metastatic tumours

in ALNs were defined as pCR (grade 3) and non pCR (grade 2 and grade 1) (Table

2.1b). Histopathological sections of post-treatment breast tumours and ALNs were

graded blindly by an experienced breast pathologist. The histopathological findings

were discussed at a multidisciplinary meeting. If there was uncertainty a review was

carried out by a second breast pathologist and a consensus decision reached.

117 patients were enrolled into the NAC trial, 112 were randomised of which 110

patients were evaluated. It was not possible to analyse the immune parameters in the

microenvironment of tumours and tumour-draining ALNs for all of the patients due to

the large number of patients enrolled in the study, the amount of time required to carry

out the assays and the substantial costings involved. However, the number of patients

used (33 patients) was considered to be appropriate and also significant following a

sample size calculation with a probability of p≤0.05, with a power of 80%. These 33 

patient cases included a cohort of 16 patients with previously studied blood Treg

levels. An additional 17 cases were randomly selected to ensure a comparable

distribution of pathological responses (pCR versus non pCR) in the groups compared.
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The study was given approval by the Leicestershire, Northamptonshire & Rutland

Research Ethics Committee 1: Reference Number 07/H0406/260; Favourable Opinion

24/01/2008. All patients enrolled in the study gave informed consent to participate in

and to publish the results of the study. The study Registration is ISRCTN00407556.
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Table 2.1a Miller and Payne Grading System to Assess Response of Breast Cancers to

Primary Chemotherapy [400]

Grades Description

Grade 1 No change or some alteration to individual malignant cells but no

reduction in overall cellularity.

Grade 2 A minor loss of tumour cells but overall cellularity still high; up

to 30% loss.

Grade 3 Between an estimated 30% and 90% reduction in tumour cells.

Grade 4 A marked disappearance of tumour cells such that only small

clusters or widely dispersed individual cells remain; more than

90% loss of tumour cells.

Grade 5 No malignant cells identifiable in sections from the site of the

tumour (pCR); only vascular fibroelastotic stroma remains.

However, ductal carcinoma in situ (DCIS) may be present.

Table 2.1b Grading System to Assess Response of Metastatic Tumours in Axillary

Lymph Nodes to Primary Chemotherapy [110]

Grades Description

Grade 1 No pathological response (NR): metastatic tumour deposits

remain with no evidence of fibrosis

Grade 2 Partial pathological response (PR): residual metastatic tumour

deposits remain with evidence of fibrosis

Grade 3 Complete disappearance (pCR) of metastatic tumour deposits
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2.1.1 Inclusion and exclusion criteria for patients with large and locally advanced

breast cancers (LLABCs)

Women over 18 and under 75 years, able to sign an informed consent and with

histologically proven LLABCs (≥3 cm or T3-4, N0-2, M0) were invited to participate 

in the NAC trial. Patients who had a poor WHO performance status [Eastern

Cooperative Oncology Group (ECOG) score >2] [401], prior chemotherapy or

radiotherapy (except for basal cell carcinoma), significant cardiac dysfunction, insulin

dependent diabetes, pregnancy or lactation, inadequate organ function (laboratory

tests) and/or inability to complete the quality of life (QoL) questionnaires, were

excluded.

2.1.2 Trial design and chemotherapy regimen

After the diagnosis was established, patients underwent a chest radiograph and liver

ultrasonography or computerised tomography of thorax and abdomen, bone

scintigraphy, electrocardiography, echocardiography and a MRM prior to commencing

treatment. The QoL was assessed using validated questionnaires. Prior to each cycle,

and after NAC, the Hospital Anxiety and Depression Scale, Mood Rating Scale and

Treatment Side-Effects Questionnaires were completed. Before cycles 1, 5 and after

completion of NAC, a Patient Satisfaction Questionnaire and the Functional

Assessment of Cancer Therapy with Taxane modules were completed. Patient

enrolment, randomisation, treatment and assessment are outlined in the CONSORT

diagram (Figure 2.1). Randomisation was carried out according to the MRM findings

after 2 courses of NAC, using permuted blocks. Treatment allocation was determined

using sealed sequential envelopes from Responder and Non-responder containers.
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Patients received 3 weekly intravenous A (60mg/m2) and C (600mg/m2) for two

cycles. Responders were randomised into Group A or B. Both groups received 2

further 3 weekly intravenous AC followed by 4 cycles of intravenous T (100mg/m2)

every 3 weeks (Group A) or 4 cycles of intravenous T (75mg/m2) and oral X

(2,000mg/m2/day) for 14 days every 3 weeks (Group B). Non-responders were

randomised into Group C and D. Group C received 6 cycles of intravenous T

(100mg/m2) every 3 weeks. Group D received 6 cycles of intravenous T (75mg/m2)

and oral X (2000mg/m2/day) for 14 days every 3 weeks. Ondansetron and

dexamethasone were prescribed during and after each cycle. All patients received

lenograstim (263μg/day) subcutaneously, days 2-6 after each cycle from cycle 3 

onwards. If febrile neutropenia occurred with cycle one, lenograstim was given from

cycle 2 onwards.

Breast conserving surgery or mastectomy, according to surgical advice or patient

preference, and either ALN sampling (at least 4 nodes) or axillary clearance (pre-NAC

involved ALNs) was performed approximately 4 weeks following NAC. After

definitive surgery adjuvant hormonal therapy was administered in all patients with

ER/PR+ve tumours and trastuzumab was given to patients with tumours

overexpressing HER2. Adjuvant radiotherapy was administered to the breast following

breast conservation. Chest wall irradiation following mastectomy was given if the

patient was deemed at risk of local recurrence. If lymph node sampling established

metastatic involvement, the axilla and supraclavicular region were irradiated.
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Figure 2.1 CONSORT diagram: Of the 112 patients randomised, 77 (69%) were responders [assessed

by magnetic resonance mammography (MRM) after 2 cycles of AC] and were randomised to group A

(38) or B (39); 35 (31%) were non-responders and were randomised to group C (19) or D (16). A:

doxorubicin; C: cyclophosphamide; T: docetaxel; X: capecitabine; MMG: mammogram; USS:

ultrasound scan

Data from the NAC trial [110]
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2.1.3 Patient data and clinico-pathological characteristics

All the patients’ clinical and pathological data were anonymised. The patients’ age,

weight, height and menopausal status were documented. The patients were classified

as <50 or ≥50 years of age. Body mass index (BMI), derived from body weight 

(kilograms) divided by the square of the body height (metres), was used to delineate

obesity (≤30: non-obese, >30: obese). Pre-menopausal state was defined as being <55 

years of age with normal menstrual cycles. Patients aged >50 years with no

spontaneous menses for at least one year/ or age ≤50 years with no spontaneous 

menses within the past 2 years/ or women who had bilateral oophorectomy prior to the

diagnosis of breast cancer was defined as post-menopausal. Clinical nodal status,

tumour size, tumour type and histological grade were obtained. Tumours were

phenotypically characterised for hormonal receptor status using Allred scoring system

(score ≥ 3 for positive, < 3 for negative) [402]. HER2 overexpression was determined 

by an IHC score of 3+ and/or a FISH (fluorescence in situ hybridisation) ratio ≥2. 

The level of circulating blood CD4⁺ CD25⁺ FOXP3⁺ Tregs and CD4⁺ CD25⁺ CTLA-

4⁺ Tregs [absolute number (AbN) and percentage (%)] before commencing the NAC

and following 8 cycles of NAC in 16 corresponding patients were obtained from a

previous study [15]. The blood data were obtained using whole blood for AbNs and

peripheral blood mononuclear cells (PBMCs) for % using fluorescence-labelled MAbs

and flow cytometry (Beckmann Coulter FC 500 and MoFlow XDP) analyses.
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2.2 Immunohistochemistry (IHC)

IHC is a powerful tool for obtaining more information than the routine morphological

assessment of tissue specimens. The IHC technique is used to study specific cellular

markers defining cellular/tissue phenotypes as well as the presence of interesting

proteins/molecules in the tissue specimens. This information can provide important

diagnostic, prognostic and predictive values related to disease status and normal

biology. The application of enzyme-labelled antibodies to study formalin-fixed tissue

specimens provides a ready and important dimension to the assessment of tumour

biology.

2.2.1 Antibody structure and class

Antibodies are a group of proteins called immunoglobulins (Igs) which are produced

by B lymphocytes in response to stimulation by antigens and which react specifically

with those antigens. They are formed in the blood and tissues of normal individuals. Ig

consists of five major classes (IgG, IgA, IgM, IgD and IgE). Each antibody has two

identical heavy chains and light chains. The heavy chains vary in antigenic and

structural properties and define the classes of Ig. IgG is the most frequently used in

IHC. IgG structure comprises of two monovalent antigen-binding fragment (Fab) and

one crystalline fragment (Fc). IgG molecules can be further divided into variable

domains and constant domains. Variable domains of heavy and light chains form the

antigen-binding site (paratope) which specifically recognises the antigenic

determinant (epitope) of an antigen [403].
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MAbs generated by a single B cell clone (usually by an in vitro culture of a hybridoma

cell line) or by molecular engineering, are a homogeneous population of Ig which is

directed against a single epitope. Every MAb molecule is identical, with a unique

specificity and affinity. Unlike MAbs, polyclonal antibodies (antiserum) are

heterogeneous consisting of a mixture of antibodies directed against several epitopes

of the same antigen. Polyclonal antibodies are harvested from the blood of animals

immunised with a known antigen. Due to their ability to detect multiple epitopes on an

antigen, polyclonal antibodies are more robust than MAbs, when used on routinely

processed specimens, and independent from an effect of epitope retrieval [404].

Recognising multiple epitopes, however, increases the likelihood for cross reactivity

with other antigens/proteins. A lot to lot inconsistency is also a disadvantage of

polyclonal antibodies.

2.2.2 Antibody affinity and titre (dilution)

The functional affinity (measure of the binding strength between an antibody-binding

site and antigenic determinant) of antibodies can be defined by the total time required

to saturate all available antibody binding sites with antigens (reach equilibrium).

Antibodies with a low affinity will need a longer time to reach a plateau of maximal

staining intensity. While the time required defines the functional affinity, the

concentration of antigen needed to saturate the antibody delineates intrinsic affinity.

An antibody with a higher intrinsic affinity needs a lower concentration of antigen to

reach equilibrium. Affinity also refers to the strength of the antigen-antibody binding

(immune complex). In IHC, antigen-antibody reactions are reversible and may

dissociate during the process of washing. A lower temperature reduces the

dissociation of an immune complex.
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The optimal antibody titre is the highest antibody dilution which provides a maximum

of specific staining intensity with the least non-specific background staining under

each assay condition. An optimal dilution is also determined by antibody affinity. In

case of constant (fixed) dilution and incubation period, a high-affinity antibody

provides more staining intensity than an antibody with a low affinity.

2.2.3 Incubation period: Time and temperature

The incubation time, temperature, antibody titre and antibody affinity are inter-

dependent factors. An adjustment in one affects the others. Generally, antibodies with

a higher titre require less incubation time. Incubation time varies from 10 minutes to

24 hours. The incubation period of 10-30 minutes is usually sufficient for antibodies

with a high affinity and concentration to be saturated with their respective antigens,

and is widely used in a majority of staining protocols. A 24-hour incubation period

offers economic benefits because a lower amount of antibody is needed. Antibodies

with low affinity need to be incubated for a long period of time.

The equilibrium of antigen-antibody reactions can be reached rapidly at 37˚C [faster 

than room temperature (RT)]. Increasing temperature allows incubation time to be

shortened but may give rise to increased background staining. A temperature of 4˚C is 

commonly used with a 24-hour or overnight incubation. A humidity chamber is

required for preventing drying/evaporation of tissue sections [405].
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2.2.4 De-masking of antigens

During formalin fixation, the 3-dimentional structure of proteins is altered. This can

mask or destroy the antigenic epitopes and electrostatic charges and result in inability

to react with antibodies. De-masking of antigens or epitope retrieval can reverse this

process and restore the epitopes by breaking the protein cross-links (formed during

fixation) to uncover the hidden antigenic sites. Epitope retrieval can be done by either

heating for a certain length of time [heat-induced epitope retrieval (HIER)] or using

enzymatic digestion. The regular use of HIER minimises the inconsistency of IHC

staining caused by variable fixation processes. Although many retrieval protocols have

been proposed, heating in a microwave oven with citrate buffer pH 6.0 (used in this

study) is widely used and applicable to many antibodies. The optimal protocol for

each antigen/antibody interaction, however, needs to be determined [404, 406].

2.2.5 Immunoenzymatic staining with enzyme substrate reactions

In immunoenzymatic staining methods, enzymes convert colourless chromogens

(substrates) into coloured end-products. The catalytic activity of enzymes depends on

several factors e.g. concentration, pH, buffer milieu, temperature and light.

Horseradish peroxidase (HRP) and calf intestine alkaline phosphatase (AP) are

commonly used in conjugation (binding) to antibody. Substrates being oxidised by

HRP become coloured. The visualised colour of the end-product depends on the type

of chromogen used. Diaminobenzidine (DAB), which is used in this study, produces a

brown end-product and is highly stable in alcohol/organic solvents. Amino-

ethylcarbazole (AEC) forms a red end product while chloro-naphthol (CN) provides a

blue colour. Unlike DAB, AEC and CN are alcohol soluble. An aqueous counterstain

and aqueous mounting medium must be used instead of haematoxylin and non-
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aqueous DPX (dibutyl phthalate and xylene) mounting medium. Naphthol phosphate

esters, which are substrates for AP, upon being hydrolysed by AP provide bright red

or blue end-products [405].

2.2.6 Secondary antibody: Labelling reagents and amplifications

Various amplification methods have made a significant improvement in demonstrating

antigens. Small amounts of antigenic intact protein can be detected by a high

sensitivity test using amplification methods. The signal/colour intensity can be

increased by employing a conjugated/labelled secondary antibody or biotinyl

conjugate which is used in the peroxidase anti-peroxidase (PAP) complex method,

avidin-biotin complex (ABC) method, polymer-based method or tyramine

amplification technique [407]. This enables amplification of a faint, but specific,

initial signal without compromising the specificity. Streptavidin and avidin molecules

have four binding sites with strong affinities for the vitamin biotin. HRP is easily

conjugated to biotin. ABC or labelled streptavidine-biotin methods use a biotinylated

secondary antibody that links primary antibodies to a HRP conjugate. This enables a

single antibody to be associated with multiple peroxidase molecules [408]. A larger

enzyme-to-primary antibody ratio increases sensitivity in antigen detection compared

with a direct peroxidase-conjugate method. The presence of endogenous biotin in the

tissue, however, can lead to background staining with these amplification methods.

Blocking endogenous biotin methods are partially effective. The polymer-based IHC

method, which was used in this study, does not rely on endogenous biotin. This

method utilises a polymer dextran backbone in which multiple secondary antibodies

and peroxidase enzymes are conjugated. The secondary antibody attached to this
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polymer contains both anti-mouse and anti-rabbit Ig. Therefore, this reagent can be

used to detect tissue-bound primary antibodies of mouse or rabbit origin [409].

2.2.7 Immunohistochemistry (IHC) standardisation

Standardisation of the IHC technique used is a critical issue. While IHC has been

proven to be a successful technique for demonstrating related biomarkers in diagnosis

and classification of tumours, concerns have been raised for the validation of reagents,

overall reproducibility of the staining methods and the interpretation of results. There

have been many attempts to standardise IHC techniques. Nevertheless, standardisation

remains a great challenge. This is due, in large part, to the presence of uncontrollable

intrinsic factors such as variable conditions of fixation and tissue processing, which

affect antigen preservation [410]. Fixation, however, prevents proteins in the tissue

specimens from elution, degradation or modification and preserves the cellular

location of antigens, whether nuclear, cytoplasmic or membrane-bound. The adverse

influences of formalin on tissue antigenicity, as well as the great variation in fixation,

tissue handling and processing procedures, on the other hand, are some of the most

difficult factors to control. Because necrotic degradation of tissue begins immediately

after removal from the body, the time to fixation and processing is critical. Moreover,

there is also a potential to obtain inequivalent IHC staining among formalin-fixed,

paraffin-embedded (FFPE) tissue sections with different periods of time between

tissue fixation and staining [411]. The use of validated reagents, optimised staining

conditions and protocols, properly and simultaneously utilised positive and negative

controls are necessary to acquire a high test sensitivity and specificity, as well as

reproducibility. These considerations and validated protocols ensure that results

emanating from different laboratories are comparable.
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2.2.7.1 Primary antibody validation and optimisation

The selection of primary antibodies with the desired specificities in detecting target

antigens relies on the relevant data provided by the manufacturers (except when

prepared de novo in-house). Even if these antibodies have been tested for specificity

by reliable suppliers, it is necessary to confirm functional specificity of each antibody

using appropriate positive and negative control materials. The concentration [except

pre-diluted or ready-to-use (RTU) reagent] of the primary antibody must be adjusted

for each staining condition with a selected secondary labelling system in order to have

the optimal intensity and reproducibility of specific reaction with the lowest level of

non-specific background staining (maximal signal to noise ratio). The optimal

working concentration can be determined experimentally within each laboratory by

serial titration experiments. The concentration of primary antibody can be accurately

determined as µg/ml for MAbs, but can only be estimated for polyclonal antibodies

(due to the presence of different molecules). A simple dilution fraction e.g. 1:50,

1:100 etc. is often given instead of an accurate concentration (by weight).

2.2.7.2 Positive and negative controls

The positive control is a tissue section fixed and processed in a similar manner to the

test section and known to contain the target antigen. Ideally, positive controls should

have a range of intensity of reaction (from strong to weak). Positive controls which

contain very high amounts of target antigen may lead to selecting optimal working

dilutions of primary antibody that fail to detect lower levels of target antigen in the

test sections. The negative controls, identified by lack of staining, encompass two

concepts. The first is a negative reagent control typically performed by omitting the

primary antibody on a parallel control tissue section. The second is a negative
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tissue/cell control identified by lack of staining of the cells in the test sections that do

not contain the target antigen. The positive and negative control sections should be

included in every IHC run [412, 413].

2.2.7.3 False positive and false negative errors

Endogenous peroxidase activity is commonly found in haemoglobin (in red blood

cells), myoglobin (in muscle), cytochrome (in granulocytes, monocytes) and catalases

(in liver, kidney) and can cause false positive staining with HRP-based detection

methods. Suppressing endogenous peroxidase activity is routinely required prior to the

addition of primary antibody in the staining protocol and can be achieved by

incubation of tissue sections in 3% H2O2 for 5-10 minutes. In case of AP-based

detection methods, the endogenous AP activity (frequently encountered in the

intestine, kidney, lymphoid tissue or placenta) also needs to be blocked. Endogenous

biotin needs to be blocked when the ABC method is used [414].

Primary antibodies and detection systems are protein-based reagents which can react

with non-specific binding sites in tissue specimens. This can result in false positive

staining, as well as increased background staining. A protein blocking reagent is used

to reduce various non-specific protein-protein interactions between reagents and

tissues by competing for tissue binding sites.

Inappropriate tissue handling, fixation, processing or antigen retrieval may cause the

loss of antigenicity in tissue specimens and result in false negative findings. In
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addition, false negative staining can occur when any steps of the staining procedure in

a protocol are left out inadvertently.

2.2.8 Tissue microarray (TMA): Advantages and disadvantages

The advent of high throughput techniques such as microarray assays has led to

numerous studies and a large dataset of results. In a tissue-based study, performing

whole section IHC on hundreds to thousands of tissue blocks (specimens) requires

substantial resources and time. Moreover, each tissue block yields a limited number of

sections. A number of potential biomarkers therefore have not been studied as a result.

The TMA technique can overcome these problems. TMAs use a 16-gauge needle to

manually bore cores from tissue blocks and array them in a multi-tissue straw with a

recognisable pattern. This technique provides a high throughput analysis with arraying

of up to 1000 cores in one section [415].

The major advantage of TMAs is the ability to investigate a large number of patient

samples cost-effectively. Many studies have demonstrated the consistent and

comparable results between TMA-based and whole section approaches [416]. Each

core, however, is a fraction of the lesion and may not represent a whole section

particularly in tumours with marked heterogeneity. In addition, TMAs are not useful

in the study of rare or focal events such as in documenting the level of certain types

(particularly, less prominent) of immune cell infiltrates in tumours. The interactions

between tumour and stroma are also difficult to study with TMAs as stromal

components may not be adequately represented in the cores. This is considered to be a

major weakness of TMAs. Increasing the number of cores form each sample and the
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core size (vary from 0.6 to 2 mm) has been advocated to compensate for this

inadequacy [417]. Because our study encompassed various subsets of immune cell

infiltrates including less prominent subsets and stromal infiltrates, whole tissue

sections were used to avoid inadequate examination of tissue specimens and to

provide an accurate profile of cellular infiltrates and humoral expressions in both

tumour cell nests and stroma.

2.2.9 Computer-assisted scoring (image analysis): Advantages and disadvantages

The interpretation of IHC has been primarily through human visual scoring. The

scoring criteria are usually predetermined by qualitative or semi-quantitative cut-off

values, resulting in categorical values for statistical analyses. The quantitative

continuous values are more time-consuming when conducted by human assessment.

Pathological analysis of tissue specimens remains a subjective process in which the

intensity of staining and scoring may be directly influenced by visual bias. Computer-

assisted pathological scoring with automated scanning devices and image analysis

software provides a solution for overcoming the limitations of manual IHC scoring.

This can enhance reproducibility and reliability of the scoring results. The computer-

aided measurements are not subject to external confounding factors such as human

fatigue, ambient lighting or noise and may minimise the problem of inter-observer

variations [418]. It has been shown to be more time-effective when scoring a larger

number of slides (for high-throughput studies). At least, two commercially automated

image analysers (the Ariol SL-50 system and the Nuance system) are currently

available. Both systems use bright-field microscopy for automated and standardised

quantification of IHC, while the Nuance system has spectral deconvolution

capabilities. The software associated with the multispectral imager allows accurately
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automated classification of tissue type into epithelial and stromal structures [419].

Many studies have documented digital image analysis to be an alternative and reliable

tool to manual visual scoring in IHC quantification. It does not, however, provide an

analytical advantage [420, 421].

The common drawbacks of automated imaging systems include an inability to classify

tissue type and an inability to clearly segregate membrane, cytoplasmic and nuclear

staining, as well as an inability to distinguish reliably between tumour and non-tumour

tissues. In addition, more time is required for analysis using these systems [419]. To

avoid these problems, manual IHC quantification was used in this study. Also, in the

early phase of the study, slides were read and assessed by both myself and an

experienced breast pathologist to ensure concordance in delineating the different

components of the stained sections and to ensure good quality of the IHC used.

2.3 Methods

Specimens from 33 women with LLABCs that had taken part in a NAC trial were

investigated and evaluated in the study. The presence of various immune cell

infiltrates including CD4⁺ and CD8⁺ T cells, FOXP3⁺ and CTLA-4⁺ Tregs, CD56⁺

NK cells, PD1⁺ lymphocytes, CD1a⁺ DCs, CD66b⁺ neutrophils, CD68⁺ and CD163⁺

macrophages and in situ expression of various cytokines (IL-1, IL-2, IL-4, IL-10, IL-

17, TGF-β, IFN-γ) and biological molecules (VEGF, IDO and PDL1), together with a 

subset of CD44⁺CD24-/low CSCs, were studied using IHC of paraffin-embedded breast
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tumours (pre- and post-NAC) and tumour-draining ALNs (pre-NAC metastatic

tumours in ALNs and post-surgery ALNs following NAC).

All specimens were sectioned with the LEICA® RM2125 Microtome (Figure 2.2) and

mounted on SurgipathTM X-traTM Adhesive Leica® slides and then immune-stained

following an established protocol (Appendix 2) using 12 antibodies to characterise

immune cells (Table 2.2) and 10 antibodies to determine cytokines and biological

molecules (Table 2.3). The results were analysed and compared amongst groups

showing good versus poor pathological responses, pCR versus non pCR, in primary

breast tumours versus metastatic tumours in ALNs, prior to versus after NAC for

tumour specimens and metastatic (tumour excluded) versus non-metastatic ALNs. In

the group of metastatic ALNs, the comparison between metastatic ALNs with pCR

and with non pCR was analysed. In addition, the levels of infiltrating FOXP3⁺ and

CTLA4⁺ Tregs in tumour and tumour-draining ALNs were analysed for correlations

with the levels of blood FOXP3⁺ Tregs and CTLA4⁺ Tregs from 16 of these 33

patients documented in a previous study by Verma et al. (2013) [15]. Tumour

specimens prior to and after NAC were stained with conventional H&E using the

Leica Auto Stainer XL (Figure 2.3) and scored to evaluate the degree of TILs present

in tumour specimens before commencing the immune-staining. All stained sections

were scored and photographs were taken using the Nikon Eclipse 80i microscope with

a digital camera system (Figure 2.4).
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Figure 2.2 LEICA® RM2125 Microtome

Figure 2.3 Leica Auto Stainer XL
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Figure 2.4 Nikon Eclipse 80i microscope with digital camera system

2.3.1 Primary antibodies, optimisations and controls used

A total of 22 primary antibodies were used to specifically identify cellular markers

and cytokines and biological molecules in this study. These have been validated and

guaranteed for usage in IHC assessment of paraffin-embedded specimens from the

commercial suppliers. Each antibody was evaluated and titrated for optimal

concentration, incubation period and antigen retrieval for the studied specimens. The

optimisation started with the recommended concentration/ dilution from previously

published studies using these primary antibodies and/ or available data sheets of

antibody validation from the commercial suppliers. The concentrations/ dilutions were

adjusted for optimal staining intensity and clear staining background. For incubation

times, the optimisations began with 30 minutes at RT and then, decreased or increased

to overnight in a cold room if the studied sections were not properly immuno-stained.
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Positive staining controls were carried out with known positive tissue sections

available from the Nottingham Health Science Biobank (paraffin-embedded tonsil/

lymphoid tissue, liver, normal colon, colon carcinoma and kidney carcinoma,

depending on which primary antibody was being evaluated). They were

simultaneously assessed along with every immune-staining run. Negative controls

were demonstrated by omitting the primary antibodies. The detailed data for the

primary antibodies used are shown in Tables 2.2 and 2.3. The optimal concentration of

the primary antibodies, incubation periods, epitope retrieval method and type of

positive control sections, which were used in this study, are shown in Table 2.4.
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Table 2.2 Primary Antibodies Used in the Study to Phenotypically Characterise

Immune Cells

Table 2.3 Primary Antibodies Used in the Study to Characterise Cytokines and

Biological Molecules

IL-1 (monocytes, macrophages), IL-2 and IFN-γ expressions represent Th1 profile; IL-4 and IL-10

expressions represent Th2 profile

Cellular

Markers

Primary Antibody

(Unconjugated )
Clones Reported Markers Cellular Localization

Suppliers

(Cataloque No.)

CD4
Mouse monoclonal

antibody
4B12 CD4⁺ T cells Cell membrane Dako (M7310)

CD8
Mouse monoclonal

antibody
C8/144B CD8⁺ T cells Cell membrane Dako (M7103)

FOXP3
Mouse monoclonal

antibody
236A/E7 FOXP3⁺ T regulatory cells Nucleus Abcam (ab20034)

CTLA-4
Mouse monoclonal

antibody
F-8 CTLA-4⁺ T regulatory cells Cell membrane

Santa Cruz Bio.

(sc-376016)

CD68
Mouse monoclonal

antibody
KP1 Macrophages Cell membrane Abcam (ab955)

CD163
Mouse monoclonal

antibody
10D6 M2 type macrophages Cell membrane Abcam (ab74604)

CD56
Mouse monoclonal

antibody
123C3 NK cells Cell membrane Dako (M7304)

CD1a
Mouse monoclonal

antibody
010 Dendritic cells Cell membrane Dako (M3571)

PD1
Mouse monoclonal

antibody
NAT105 Activated PD1⁺ T cells Cell membrane Abcam (ab52587)

CD66b
Mouse monoclonal

antibody
80H3 Neutrophils Cell membrane LS Bio (LS-B7134)

CD24
Mouse monoclonal

antibody
8.B.76 Negative marker in stem cells Cell membrane/ cytoplasm Abcam (ab31622)

CD44
Mouse monoclonal

antibody
F10-44-2 Mesenchymal stem cells Cell membrane Abcam (ab6124)

Cytokines/

Molecules

Primary Antibody

(Unconjugated )
Clones

Reported

Expressions
Cellular Localization

Suppliers

(Cataloque No.)

IL-1
Mouse monoclonal

antibody
11E5 IL-1

Cell membrane and

cytoplasm (secreted)
Abcam (ab8320)

IL-2
Rabbit monoclonal

antibody
ERP2780 IL-2

Cell membrane and

cytoplasm (secreted)
Abcam (ab92381)

IL-4
Rabbit polyclonal

antibody
Polyclonal IL-4

Cell membrane and

cytoplasm (secreted)
Abcam (ab9622)

IL-10
Rabbit polyclonal

antibody
Polyclonal IL-10

Cell membrane and

cytoplasm (secreted)
Abcam (ab34843)

IL-17
Rabbit polyclonal

antibody
Polyclonal IL-17

Cell membrane and

cytoplasm (secreted)
Abcam (ab9565)

TGF-β
Mouse monoclonal

antibody
2Ar2 TGF-β

Cell membrane and

cytoplasm (secreted)
Abcam (ab64715)

IFN-γ
Rabbit polyclonal

antibody
Polyclonal IFN-γ

Cell membrane and

cytoplasm (secreted)
Abcam (ab9657)

VEGF
Mouse monoclonal

antibody
VG1 VEGF

Cell membrane and

cytoplasm (secreted)
Dako (M7273)

IDO
Mouse monoclonal

antibody
No data IDO

Cell membrane and

cytoplasm (secreted)
Abcam (ab55305)

PDL1
Rabbit polyclonal

antibody
Polyclonal PDL1 molecules

Cell membrane/

possible cytoplasm
Abcam (ab58810)
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Table 2.4 The Details of the Optimal Immuno-staining Conditions from Optimisation

of 22 Primary Antibodies Reactive with Breast Tumour and ALN Specimens

HIER: Heat-induced epitope retrieval; RT: Room temperature; ALNs: Axillary lymph nodes

Antibodies
Positive Control

Sections

Antigen

Retrieval

Dilution/

Concentration

Incubation

Periods

Anti CD4 Tonsil
HIER with

citrate buffer
1:80 30 minutes at RT

Anti CD8 Tonsil
HIER with

citrate buffer
1:100 30 minutes at RT

Anti FOXP3 Tonsil
HIER with

citrate buffer
20 µg/ml 30 minutes at RT

Anti CTLA-4 Colon carcinoma
HIER with

citrate buffer

1:300 for breast

1:200 for ALNs
30 minutes at RT

Anti CD68 Tonsil
HIER with

citrate buffer
1:300 30 minutes at RT

Anti CD163 Liver
HIER with

citrate buffer
Pre-diluted 30 minutes at RT

Anti CD56 Tonsil
HIER with

citrate buffer
1:50 30 minutes at RT

Anti CD1a Tonsil
HIER with

citrate buffer
1:200 15 minutes at RT

Anti PD1 Tonsil
HIER with

citrate buffer
1:100 30 minutes at RT

Anti CD66b Tonsil
HIER with

citrate buffer
10 µg/ml 30 minutes at RT

Anti CD24 Tonsil
HIER with

citrate buffer
1:200 16 minutes at RT

Anti CD44 Kidney cancer
HIER with

citrate buffer
1.25 µg/ml 15 minutes at RT

Anti IL-1 Kidney cancer
HIER with

citrate buffer
1:150 Overnight at 4˚C

Anti IL-2 Tonsil
HIER with

citrate buffer
1:500 30 minutes at RT

Anti IL-4 Kidney cancer
HIER with

citrate buffer
4 µg/ml 30 minutes at RT

Anti IL-10 Normal colon
HIER with

citrate buffer
1:400 30 minutes at RT

Anti IL-17 Normal colon
HIER with

citrate buffer
1:100 30 minutes at RT

Anti TGF-β Kidney cancer
HIER with

citrate buffer
12 µg/ml Overnight at 4˚C

Anti IFN-γ Tonsil
HIER with

citrate buffer
4 µg/ml 30 minutes at RT

Anti VEGF Tonsil
HIER with

citrate buffer
1:50 30 minutes at RT

Anti IDO Normal colon
HIER with

citrate buffer
0.75 µg/ml 15 minutes at RT

Anti PDL1 Tonsil
HIER with

citrate buffer
2.5 µg/ml 15 minutes at RT
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2.3.2 Immunohistochemical staining procedure

Immunohistochemical staining was performed on 4-µm tissue sections. Briefly, tissue

sections were heated on a 60˚C hotplate (Figure 2.5) for 10 minutes and subsequently 

dewaxed and rehydrated using xylene and graded alcohol via the Leica Auto Stainer

XL. The sections were then boiled in 0.01M citrate buffer, pH 6.0, at 98˚C for 20 

minutes in a microwave oven (1000w Whirlpool® Jet Stream) to achieve HIER. After

the sections were cooled down with running tap water, they were loaded onto the

cover-plates (Shandon Sequenza® Figure 2.6). Serial blocking was carried out with

peroxidase (3-4% hydrogen peroxide) and protein [0.4% casein in phosphate-buffered

saline (PBS)]. The sections were then incubated with the primary antibody against the

specific marker/ protein of interest for an optimal period of time and temperature

(depending on the antibody used; data shown in Tables 2.2-2.4). The NovolinkTM

polymer detection system, Leica RE7280-K with polymeric HRP-linker antibody

conjugates and DAB chromogen was used for enzyme-substrate labelling. Finally, the

sections were counterstained with haematoxylin, dehydrated and mounted in non-

aqueous DPX (dibutyl phthalate and xylene) mounting medium. More information

about the IHC staining procedure is detailed in Appendix 2.
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Figure 2.5 Leica® Hotplate and Sequenza CoverplateTM

Figure 2.6 Immune-staining using Sequenza cover-plates and trays
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2.3.3 Quantitative, semi-quantitative scoring systems

The quantitative/ semi-quantitative evaluations were done in stained sections of Tru-

Cut core biopsy tissues (before chemotherapy) and in surgical tissues (after

chemotherapy). All scored sections were blinded to the patients’ clinical and

pathological parameters and the pathological results were reviewed by a consultant

breast pathologist (Dr G. Cowley). The scoring systems used in establishing the

biological markers present in breast tumours and metastatic tumours (in ALNs), and

ALNs in this investigation, followed previously published studies documenting these

corresponding biological markers.

2.3.3.1 Breast tumour assessment prior to and after NAC

Semi-quantification of TILs

Semi-quantitative scoring of the lymphocyte infiltrates were performed on H&E–

stained sections. Intratumoural lymphocytes (ITu-Ly) were defined as intraepithelial

mononuclear cells within tumour cell nests or in direct contact with tumour cells and

were reported as the percentage of the tumour epithelial nests that contained

infiltrating lymphocytes. Stromal lymphocytes (Str-Ly) were defined as the

percentage of tumour stromal area that contained a lymphocytic infiltrate without

direct contact with tumour cells [19, 385]. Granulocyte infiltrates were excluded and

inflammatory infiltrates in the stroma of non-invasive lesions and normal breast

structures were excluded. Scores of more than 60% were considered as high levels of

infiltration whilst 60% or less were considered as low levels of infiltration for both

ITu-Ly and Str-Ly. Cases were defined as High-TIL [lymphocyte-predominant breast

cancer (LPBC)] when ITu-Ly and/or Str-Ly >60%, and as Low-TIL (non-LPBC) if



121

both ITu-Ly and Str-Ly ≤60% [387]. The semi-quantitative scoring used followed the 

methodological recommendations for evaluating TILs in breast cancer by an

International TILs Working Group 2014 [422].

Quantification of FOXP3, CTLA-4, CD8, CD4, CD56, PD1, CD1a and CD66b

positive cells

Positively stained cells in contact with tumour cells or within the tumour cell nests

were scored as “intratumoural” whereas positively stained cells in the interstitial

space/stromal area without direct contact with tumour cells were defined as

“peritumoural”. At least five non-overlapping intratumoural and peritumoural fields

were assessed at x400 high power magnification (0.239 mm2; a 22mm (10x) eyepiece

with a 40x objective enabled a circular field of 22 ÷ 40 = 0.55 mm diameter to be

evaluated). Positive staining was observed as dark-brown coloured mononuclear cells

(membrane, cytoplasm or nucleus depending on the antibodies used). Infiltrations in

each of 5 high-power fields (HPFs) were counted and the average number of

positively-stained cells per HPF was calculated. For CD56⁺, CTLA-4⁺, CD1a⁺ and

CD66b⁺ cells, which were present in low numbers, the total number of positively-

stained cells in 5 HPFs was calculated. The median number of positively-stained cells

for the entire study group (for pre-chemotherapy and for post-chemotherapy tissue

separately) was determined. Values below the median level were defined as a low

level of infiltration and values equal to or above the median value were defined as a

high level of infiltration (for multivariate analyses). Evaluation of infiltrations in post-

NAC specimens was undertaken on residual tumour nests and in the case with pCR

(complete disappearance of invasive tumour cells in the surgical specimen) in the
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tumour bed, which was characterized histologically by a hyalinised, amorphous area

with haemosiderin deposits (intratumoural) and adjacent stromal tissue (peritumoural)

[13, 396]. Evaluation of immune cell infiltration in metastatic tumours in ALNs was

undertaken only on tumour nests (intratumoural infiltration) present in a lymphoid

background of ALNs.

Semi-quantification of TIMs (CD68 and CD163)

The majority of macrophages present in breast tumours were located along the border

of tumour nests. Immune-staining for TIMs was evaluated along the tumour front (TF)

over the whole section (7-10 view fields per section). This evaluation followed

previously published studies documenting the level of TIMs. Tumour tissue

containing small areas of prominent infiltration of CD68⁺ or CD163⁺ cells, which was

considerably higher than the average level of CD68⁺/ CD163⁺ cells, was defined as

hotspots (TF hotspot). All sections were evaluated at a distance away from areas of

necrosis. The TF hotspots of the two view fields with the highest measurements at

x200 magnification were averaged out (CD68 or CD163 TF mean).

The average infiltration (CD68 or CD163 TF mean) was semi-quantitatively graded as

no/weak (grade 1), moderate (grade 2), strong/robust (grade 3), and massive

infiltration (grade 4). Tumours classified as 1 included totally negative specimens as

well as specimens containing some scattered positively-stained cells along the tumour

margin. Tumours were classified as 2 when CD68 or CD163 staining was continuous

along the tumour margin but did not extend from the tumour front for more than one
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cell layer on average. CD68 or CD163 staining that, on average, extended two to three

cell layers from the tumour margin over the whole section was classified as 3; CD68

or CD163 staining extending more than three cell layers from the tumour margin in all

fields was classified as 4. For statistical analysis, grade 1 and 2 were defined as low

level of infiltration whereas grade 3 and 4 were defined as high level of infiltration

[264, 423, 424].

Semi-quantification of CD24 and CD44 positive cells

The whole section (7-10 HPFs per section) was analysed. CD24⁺ and CD44⁺ staining

was observed in tumour cells, TILs and non-tumourous breast tissue. The expression

of CD24 was evaluated as membrane and/or cytoplasmic staining in tumour cells and

CD44 as membrane staining in tumour cells. The pattern of expression was evaluated

according to staining intensity and distribution. The intensity score was determined as

0 (no staining), 1 (weak staining), 2 (moderate staining), and 3 (strong staining). The

distribution (proportion) score was determined as 1 (<30% of tumour cells) and 2

(>30% of tumour cells). The intensity and distribution scores were multiplied together

for a total score, which was 0-1 (negative/ low expression) and 2-6 (positive/ high

expression) [376, 379, 381, 425].

Semi-quantification of CD274 (PDL1) positive cells

CD274 was expressed on tumour cells and immune cells, as well as non-tumourous

breast tissue. The expression of CD274 was evaluated as membrane and/or

cytoplasmic staining in tumour cells, TILs and TIMs on a whole section (7-10 HPFs
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per section). The expression of CD274 was graded as negative/ low expression when

samples showed either no detectable CD274 or weak CD274 staining. A score of

positive/ high expression represented moderate to strong staining. The staining grade

was defined according to the majority of the DAB staining intensity throughout a

specimen. This grading system followed the studies previously published [426, 427].

Semi-quantification of cytokines (IL-1, IL-2, IL-4, IL-10, IL-17, IFN-γ, TGF-β), 

VEGF and IDO

The whole section (7-10 HPFs per section) was analysed for the presence of

cytokines, VEGF and IDO in breast cancer tissues (expressed by immune cells and

tumour cells) and semi-quantified by using the previously published H scoring system

[428]. Briefly, the H score is calculated by multiplying the percentage of positive cells

by a factor representing the intensity of immune-reactivity (1 for weak, 2 for moderate

and 3 for strong), giving a maximum score of 300. A score of <50 was considered

negative and a score of 50–100 was considered weakly positive (1+). A score of 101–

200 was scored as moderately positive (2+) and a score of 201–300 as strongly

positive (3+). In the final analysis, a score of negative and 1+ was considered as

negative/ low expression and a score of 2+ and 3+ was considered as high expression.

2.3.3.2 Axillary lymph node (ALN) assessment

ALNs consisted of several lymphoid lobules surrounded by lymph-filled subcapsular

sinuses and enclosed by a capsule. Lymphoid follicles and inter-follicular cortex

present in these lobules constituted the superficial cortex of the ALNs. The deep
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cortical portion of the lobules formed the para-cortex. The medulla of ALNs

comprised the medullary cords and medullary sinuses. The complex three-dimensional

lobules and the surrounding sinuses presented a variety of appearances in tissue

sections depending on the plane of section. Distinct populations of immune cells

reside in these three compartments [the cortex (superficial cortex), para-cortex (deep

cortex) and medulla]. B lymphocytes and plasma cells home to follicles in the

superficial cortex where they interact with follicular DCs. The majority of the T

lymphocytes were present in the deep cortex whilst macrophages were present in the

subcapsular sinus and medulla [429, 430].

Positively-stained cells in ALNs were quantified as the average % of all cells in 5

HPFs (×400 magnification) in non-metastatic para-cortical areas of ALNs (CD4⁺,

CD8⁺ and FOXP3⁺ lymphocytes) and in non-metastatic medullary areas of ALNs

(CD68⁺ and CD163⁺ macrophages). The average number of cell counts in 5 HPFs in

non-metastatic areas with the greatest accumulations of positively-stained cells on

scanning at low magnification for infrequent cell populations (CD56+, PD1+, CTLA-

4+, CD66b+ and CD1a+ cells) was determined. These quantitative evaluations followed

the methodological scoring for documenting various immune cell subsets present in

ALNs in patients with breast cancer [282, 431].

The evaluation of CD274 expression (according to the evaluation of corresponding

expression in breast tumour) in ALNs, positively-stained lymphocytes in non-

metastatic para-cortical areas of the ALNs were scored as negative/low expression

when either no detectable or weak staining was documented and high expression when
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moderate to strong staining was documented. The staining grade was defined

according to the majority of the DAB staining intensity throughout a specimen.

The expression of cytokines, VEGF and IDO in ALNs was assessed in non-metastatic,

para-cortical areas and semi-quantified by using the H scoring system (described

above) and a score of negative and 1+ was considered as negative/low expression and

a score of 2+ and 3+ was considered as high expression.

2.3.4 Statistical analyses and sample size/power calculation

Statistical analyses were performed with the IBM SPSS statistics software, version 21

(SPSS Inc., Chicago, IL, USA). Where the data did not follow a normal distribution

(Shapiro-Wilk test, p ≤ 0.05), non-parametric tests [Mann-Whitney U test (compared 

between two groups) and Kruskal-Wallis test (compared among three or more

groups)] were used to compare the groups based on pathological response to NAC and

clinico-pathological parameters. The Pearson Chi-Square test was performed to

compare the binomial data (negative/low versus high expression) of cytokines, IDO,

PDL1 and VEGF between groups. Univariate and multivariate logistic regression

analyses were carried out to determine whether a factor/variable was associated with

and significantly predicted a pCR. To evaluate and compare the related-sample data

between pre-NAC and post-NAC groups, as well as between primary breast tumours

and axillary metastatic tumours, the Related-Samples Wilcoxon Signed Rank test and

Related-Samples McNemar test were performed for comparing the number of cell

counts (continuous data) and the expression of cytokines, IDO, PDL1 and VEGF

(binomial data), respectively. The correlations between tumour-infiltrating immune

subsets (continuous data) and grade (1-5) of pathological responses (ordinal data), as
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well as between tumour-infiltrating and peripheral circulating Tregs, were carried out

using Spearman's Correlation Coefficient (rho). A probability value (p value) of equal

to or less than 0.05 (p ≤ 0.05, 2-tailed) was considered statistically significant. 

A sample size of at least 7 in each group, which will have an 80% power to detect a

difference in means of 0.66 (assuming that the common standard deviation is 0.5) for a

two independent samples test with a significance level of p value ≤ 0.05 (2-sided), was 

carried out with N Query Advisor 6.0 analysis software. This is based on an example

of a primary outcome variable of circulating FOXP3+ Tregs from a previous study in

our laboratory [15].
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CHAPTER 3: RESULTS

3.1 Analyses of Breast Tumours

3.1.1 Immune cell infiltrations

High level of TILs was associated with good pathological responses and pCRs in

pre-NAC tumours (n=33)

A high level of TILs documented in pre-NAC specimens was significantly associated

with a pCR following NAC. This was seen with both intratumoural TILs (p=0.001)

and stromal TILs (p<0.001). This significant association was also found when

comparing patients with good and poor pathological responses (PPRs) [intratumoural

TILs (p=0.002); stromal TILs (p=0.012)] in breast cancers following NAC. Moreover,

when the tumours were classified as LPBCs (ITu-Ly and/or Str-Ly >60%) they were

shown to be significantly associated with both pCRs [81.3% (13 out of 16) versus

17.6% (3 out of 17), p<0.001] and good pathological responses (GPRs) [66.7% (14

out of 21) versus 16.67% (2 out of 12), p=0.006] (Table 3.1).
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Table 3.1 Association of Tumour-infiltrating Lymphocytes (TILs) and Pathological Response to NAC(1)

(1) NAC: Neoadjuvant chemotherapy; (2) LPBC: Lymphocyte-predominant breast cancer; * Statistically significant

Low

Infiltration (n)

High

Infiltration (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value
Low

Infiltration (n)

High

Infiltration (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value

Good Pathological Response

(GPR: n=21, n=9)
10 11 9 0

Poor Pathological Response

(PPR: n=12, n=7)
12 0 6 1

Pathological Complete Response

(PCR: n=16, n=6)
6 10 6 0

Non Pathological Complete Response

(Non PCR: n=17, n=10)
16 1 9 1

Good Pathological Response

(GPR: n=21, n=9)
8 13 9 0

Poor Pathological Response

(PPR: n=12, n=7)
10 2 5 2

Pathological Complete Response

(PCR: n=16, n=6)
3 13 6 0

Non Pathological Complete Response

(Non PCR: n=17, n=10)
15 2 8 2

Good Pathological Response

(GPR: n=21, n=9)
7 14 9 0

Poor Pathological Response

(PPR: n=12, n=7)
10 2 5 2

Pathological Complete Response

(PCR: n=16, n=6)
3 13 6 0

Non Pathological Complete Response

(Non PCR: n=17, n=10)
14 3 8 2

0.086

16.051 <0.001*

Groups

Pre-NAC (n=33) Post-NAC (n=16)

TILs:

Intratumoural

9.429 0.002* 1.371 0.242

11.890 0.001* 0.640 0.424

0.242

1.371 0.242

TILs: LPBC
(2)

7.643 0.006* 2.939 0.086

13.350 <0.001* 1.371

TILs: Stromal

6.303 0.012* 2.939



130

There was no significant association between the level of TILs in the post-NAC

specimens and the pathological responses (pCR versus non pCR; GPR versus PPR)

documented following NAC (p>0.05) (Table 3.1).

No significant effect of NAC on the level of TILs (n=16)

The impact of NAC on the levels of TILs is demonstrated by the changes in the level

of TILs between pre- and post-NAC samples, as shown in Table 3.2. The levels of

both intratumoural TILs and stromal TILs were not significantly altered, when pre-

NAC samples were compared with post-NAC samples. Five out of 16 patients with a

high level of TILs were subsequently altered to a low level of TILs after NAC whilst 1

out of 16 changed from a low to a high level of TILs (p=0.219). This finding shows

that NAC did not significantly affect the total TILs, albeit the number with high levels

of infiltration was less in the post-NAC samples (Table 3.2).

Table 3.2 Alteration of Tumour Infiltrating Lymphocytes (TILs) in LLABCs(1)

Undergoing NAC(2)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Related-Samples McNemar Test

Low

Infiltraion (n)

High

Infiltration (n)

Low

Infiltraion (n)
10 1

High

Infiltration (n)
5 0

Low

Infiltraion (n)
9 1

High

Infiltration (n)
5 1

TILs: Stromal

(n=16)
Pre-NAC 0.219

Groups

Post NAC

P Value
(3)

(Pre- versus Post-NAC)

TILs: Intratumoural

(n=16)
Pre-NAC 0.219
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Intratumoural TILs positively correlated with stromal TILs (n=16)

There were significantly positive correlations between pre-NAC intratumoural TILs

and stromal TILs (correlation coefficient (rho) = 0.592, p=0.016) and also between

post-NAC intratumoural TILs and stromal TILs (correlation coefficient (rho) = 0.683,

p=0.004). However, no significant correlation was found between pre-NAC TILs and

post-NAC TILs (Table 3.3).

Table 3.3 Correlation Between Intratumoural and Stromal TILs(1) [Spearman's

Correlation Coefficient (rho)] in Patients with LLABCs(2) Undergoing NAC(3) (n=16)

(1) TILs: Tumour-infiltrating lymphocytes; (2) LLABCs: Large and locally advanced breast cancers; (3)

NAC: Neoadjuvant chemotherapy; (4) NA: Not applicable; * Statistically significant

Intratumoural

infiltrating

Stromal

infiltrating

Intratumoural

infiltrating

Stromal

infiltrating

Intratumoural infiltrating

Correlation Coefficient NA
(4)

0.592 -0.174 -0.255

P Value (2-tailed) NA 0.016* 0.519 0.341

Stromal infiltrating

Correlation Coefficient 0.592 NA -0.200 0.098

P Value (2-tailed) 0.016* NA 0.458 0.719

Intratumoural infiltrating

Correlation Coefficient -0.174 -0.200 NA 0.683

P Value (2-tailed) 0.519 0.458 NA 0.004*

Stromal infiltrating

Correlation Coefficient -0.255 0.098 0.683 NA

P Value (2-tailed) 0.341 0.719 0.004* NA

Post-NAC

Groups

Pre-NAC Breast Post-NAC Breast

Pre-NAC
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Figure 3.1 TILs in the sections of LLABCs, using H&E staining, at 200x (A, B) and 400x (C, D)

magnifications; A, C: low level of lymphocytic infiltration; B, D: high level of lymphocytic infiltration.

Low level of TILs defined as ≤ 60% of tumour nests (Itu: intratumoural) and/or stromal areas (Str: 

stromal) infiltrated by lymphocytes. High level of TILs defined as > 60% of tumour nests and/or

stromal areas infiltrated by lymphocytes.

Pre-NAC TIL subsets modified the pathological response to NAC (n=33)

Amongst the various TIL immune cell subsets (CD4⁺, CD8⁺, FOXP3⁺, CTLA-4⁺,

PD1⁺ T cells and CD56⁺ NK cells) present in pre-NAC specimens, a higher level of

intratumoural and peritumoural CD4⁺ T cells (p=0.023, p=0.001) and CD8⁺ T cells

(p=0.008, p=0.002) was significantly associated with a pCR (Table 3.4). High levels

of intratumoural and peritumoural CD56⁺ NK cells were associated with both pCR

(p=0.001, p<0.001) and good pathological responses (p=0.004, p=0.004) (Table 3.5).

The infiltration of CD4⁺ T cells was found intratumourally to range from 0.6 to 171,
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with a median of 8.8 cells/HPF, and peritumourally from 1 to 242, with a median of 17

cells/HPF. The infiltration of CD8⁺ T cells was found intratumourally to range from

0.4 to 202.4, with a median of 19.4 cells/HPF, and peritumourally from 1.8 to 201.6,

with a median of 22.4 cells/HPF. The median number of both intratumoural and

peritumoural CD56⁺ NK cells was 3 cells/5 HPFs [intratumoural: 3 (0-17) cells/5

HPFs; peritumoural: 3 (0-45) cells/5 HPFs].

Pre-NAC FOXP3+ Tregs failed to modify the pathological response to NAC

(n=33)

The level of pre-NAC tumour-infiltrating FOXP3⁺ Tregs (intratumoural and

peritumoural) showed no significant difference amongst the various pathological

response groups (p>0.05) while only peritumoual CTLA-4⁺ Tregs were significantly

associated with a pCR (p=0.041) (Table 3.4 and 3.5). The infiltration of FOXP3⁺ 

Tregs were found to range intratumourally from 0.4 to 96.8, with a median of 5.6

cells/HPF, and peritumourally from 0.8 to 110.6, with a median of 11.2 cells/HPF. The

median number of intratumoural and peritumoural CTLA-4⁺ Tregs was 2 (0-20) and 4

(0-50) cells/5 HPFs, respectively.

PD1⁺ T cells, CD66b⁺ PMNs and CD1a⁺ DCs were not associated with a

pathological response to NAC (n=16)

The pre-NAC intratumoural and peritumoural tumour-infiltrating PD1⁺ T cells,

CD66b⁺ PMNs and CD1a⁺ DCs, were found to be not different between the pCR and
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non pCR groups, as well as the good and poor pathological response groups (p>0.05)

(Tables 3.4 and 3.5).

Table 3.4 Association of Pre-NAC(1) Tumour-infiltrating T Cell Subsets and

Pathological Response to NAC

(1) NAC: Neoadjuvant chemotherapy; (2) Average cell count per 400x high-power field; (3) Mann-

Whitney U test; * Statistically significant

T Cell

Subsets
Groups

Pre-NAC

Intratumoural

Median (Range)
(2)

P Value
(3)

(GPR versus PRR,

PCR versus Non PCR)

Pre-NAC

Peritumoural

Median (Range)
(2)

P Value
(3)

(GPR versus PRR,

PCR versus Non PCR)

Good Pathological Response

(GPR, n=21)
16.8 (0.6-171.0) 23.0 (1.0-242.0)

Poor Pathological Response

(PPR, n=12)
5.9 (1.4-166.2) 11.3 (1.0-113.0)

Pathological Complete Response

(PCR, n=16)
45.2 (1.6-171.0) 43.4 (1.0-242.0)

Non Pathological Complete Response

(Non PCR, n=17)
5.8 (0.6-166.2) 10.4 (1.0-113.0)

Good Pathological Response

(GPR, n=21)
26.0 (0.4-202.4) 65.2 (2.8-201.6)

Poor Pathological Response

(PPR, n=12)
12.9 (0.8-99.2) 12.6 (1.8-110.0)

Pathological Complete Response

(PCR, n=16)
40.6 (5.2-202.4) 75.5 (5.6-201.6)

Non Pathological Complete Response

(Non PCR, n=17)
12.8 (0.4-99.2) 12.2 (1.8-110.0)

Good Pathological Response

(GPR, n=21)
5.6 (0.4-96.8) 10.0 (0.8-110.6)

Poor Pathological Response

(PPR, n=12)
5.5 (0.8-45.6) 13.0 (0.8-44.8)

Pathological Complete Response

(PCR, n=16)
6.3 (0.4-96.8) 12.5 (0.8-110.6)

Non Pathological Complete Response

(Non PCR, n=17)
5.4 (0.8-45.6) 10.8 (0.8-44.8)

Good Pathological Response

(GPR, n=9)
2.0 (0.0-57.4) 1.8 (0.0-81.2)

Poor Pathological Response

(PPR, n=7)
0.4 (0.0-1.0) 0.8 (0.0-3.6)

Pathological Complete Response

(PCR, n=6)
2.6 (0.0-57.4) 1.9 (0.4-81.2)

Non Pathological Complete Response

(Non PCR, n=10)
0.5 (0.0-3.2) 0.9 (0.0-3.6)

CD4
+

(n=33)

0.213 0.131

0.023* 0.001*

CD8
+

(n=33)

0.075 0.082

0.008* 0.002*

FOXP3
+

(n=33)

1.000 0.897

0.958 0.363

PD1
+

(n=16)

0.114 0.174

0.118 0.093
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Figure 3.2 Summary of the median numbers of pre-NAC tumour-infiltrating T cell subsets between

pCR and non pCR groups; Itu: Intratumoural, Str: Stromal/peritumoural
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Figure 3.3 CD4⁺ T lymphocytes in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD4 (Dako, M7310) at a 1:80 dilution for 30 mins at RT.

Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was used

to visualize the staining. The sections were counterstained with haematoxylin. A: low level of CD4⁺ T

cell infiltration; B: high level of CD4⁺ T cell infiltration. The average number of brown membrane-

stained cells, regardless of intensity, in contact with tumour cells or within tumour cell nests (Itu:

intratumoural) and in the interstitial stroma (Str: stromal/peritumoural) per HPF were counted.

Figure 3.4 CD8+ T lymphocytes in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD8 (Dako, M7103) at a 1:100 dilution for 30 mins at RT.

Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was used

to visualize the staining. The sections were counterstained with haematoxylin. A: low level of CD8+ T

cell infiltration; B: high level of CD8+ T cell infiltration. The average number of brown membrane-

stained cells, regardless of intensity, in contact with tumour cells or within tumour cell nests (Itu:

intratumoural) and in the interstitial stroma (Str: stromal/peritumoural) per HPF were counted.
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Figure 3.5 FOXP3⁺ Tregs in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to FOXP3 (Abcam, ab20034) at a concentration of 20 µg/ml

for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of FOXP3⁺ Treg infiltration; B: high level of FOXP3⁺ Treg infiltration. The average number

of brown nuclear-stained cells, regardless of intensity, in contact with tumour cells or within tumour

cell nests (Itu: intratumoural) and in the interstitial stroma (Str: stromal/peritumoural) per HPF were

counted.

Figure 3.6 PD1⁺ T cells in the sections of LLABCs, using IHC staining, at 400x magnification. Briefly,

heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The sections were

then incubated with MAbs to PD1 (Abcam, ab52587) at a 1:100 dilution for 30 mins at RT. Polymeric

HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was used to visualize

the staining. The sections were counterstained with haematoxylin. A: low level of PD1⁺ T cell

infiltration; B: high level of PD1⁺ T cell infiltration. The average number of brown membrane-stained

cells, regardless of intensity, in contact with tumour cells or within tumour cell nests (Itu:

intratumoural) and in the interstitial stroma (Str: stromal/peritumoural) per HPF were counted.
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Table 3.5 Association of Pre-NAC(1) Tumour-infiltrating CTLA-4+ Tregs, CD56+ NK

Cells, CD1a+ DCs and CD66b+ PMNs and Pathological Response to NAC

(1) NAC: Neoadjuvant chemotherapy; (2) Total cell count per 5 high-power fields; (3) Mann-Whitney U

test; * Statistically significant

Immune

Cell

Subsets

Groups

Pre-NAC

Intratumoural

Median (Range)
(2)

P Value
(3)

(GPR versus PRR,

PCR versus Non PCR)

Pre-NAC

Peritumoural

Median (Range)
(2)

P Value
(3)

(GPR versus PRR,

PCR versus Non PCR)

Good Pathological Response

(GPR, n=21)
2.0 (0.0-20.0) 6.0 (0.0-50.0)

Poor Pathological Response

(PPR, n=12)
1.5 (0.0-11.0) 2.5 (0.0-9.0)

Pathological Complete Response

(PCR, n=16)
2.5 (0.0-20.0) 7.0 (0.0-50.0)

Non Pathological Complete Response

(Non PCR, n=17)
2.0 (0.0-11.0) 2.0 (0.0-11.0)

Good Pathological Response

(GPR, n=21)
6.0 (0.0-17.0) 9.0 (0.0-45.0)

Poor Pathological Response

(PPR, n=12)
1.0 (0.0-8.0) 1.0 (0.0-11.0)

Pathological Complete Response

(PCR, n=16)
7.0 (1.0-17.0) 15.0 (2.0-45.0)

Non Pathological Complete Response

(Non PCR, n=17)
1.0 (0.0-8.0) 1.0 (0.0-11.0)

Good Pathological Response

(GPR, n=9)
3 (1-104) 1 (1-16)

Poor Pathological Response

(PPR, n=7)
11 (0-63) 2 (0-11)

Pathological Complete Response

(PCR, n=6)
3 (1-104) 1.5 (1-16)

Non Pathological Complete Response

(Non PCR, n=10)
4 (0-63) 1.5 (0-11)

Good Pathological Response

(GPR, n=9)
2 (0-53) 2 (0-71)

Poor Pathological Response

(PPR, n=7)
1 (0-3) 1 (0-2)

Pathological Complete Response

(PCR, n=6)
3 (0-53) 5 (0-71)

Non Pathological Complete Response

(Non PCR, n=10)
1 (0-3) 1 (0-2)

CTLA-4
+

(n=33)

0.187 0.075

0.068 0.041*

CD56
+

(n=33)

0.004* 0.004*

0.001* <0.001*

CD1a
+

(n=16)

0.837 0.837

0.713 0.492

CD66b
+

(n=16)

0.174 0.408

0.181 0.118
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Figure 3.7 Summary of the median numbers of pre-NAC tumour-infiltrating immune cell subsets

between pCR and non pCR groups; Itu: Intratumoural, Str: Stromal/peritumoural
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Figure 3.8 CTLA-4+ Tregs in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CTLA-4 (Santa Cruz Bio, sc-376016) at a 1:300 dilution for

30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of CTLA-4+ Treg infiltration; B: high level of CTLA-4+ Treg infiltration. The total number of

brown membrane-stained cells, regardless of intensity, in contact with tumour cells or within tumour

cell nests (Itu: intratumoural) and in the interstitial stroma (Str: stroma/peritumoural) in 5 HPFs were

counted.

Figure 3.9 CD56⁺ NK cells in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD56 (Dako, M7304) at a 1:50 dilution for 30 mins at RT.

Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was used

to visualize the staining. The sections were counterstained with haematoxylin. A: low level of CD56⁺

NK cell infiltration; B: high level of CD56⁺ NK cell infiltration. The total number of brown membrane-

stained cells, regardless of intensity, in contact with tumour cells or within tumour cell nests (Itu:

intratumoural) and in the interstitial stroma (Str: stromal/peritumoural) in 5 HPFs were counted.
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Figure 3.10 CD1a⁺ DCs in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD1a (Dako, M3571) at a 1:200 dilution for 15 mins at RT.

Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was used

to visualize the staining. The sections were counterstained with haematoxylin. A: low level of CD1a⁺

DC infiltration; B: high level of CD1a⁺ DC infiltration. The total number of brown membrane-stained

cells, regardless of intensity, in contact with tumour cells or within tumour cell nests (Itu:

intratumoural) and in the interstitial stroma (Str: stromal/peritumoural) in 5 HPFs were counted.

Figure 3.11 CD66b⁺ neutrophils in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD66b (LS Bio, LS-B7134) at a concentration of 10 µg/ml

for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of CD66b⁺ neutrophil infiltration; B: high level of CD66b⁺ neutrophil infiltration. The total

number of brown membrane-stained cells, regardless of intensity, in contact with tumour cells or within

tumour cell nests (Itu: intratumoural) and in the interstitial stroma (Str: stromal/ peritumoural) in 5

HPFs were counted.
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High CD8⁺ T cell: FOXP3⁺ Treg ratio was associated with a good pathological

response and pCR

The CD8⁺ T cell: FOXP3⁺ Treg ratio was calculated from the number of cell counts

per HPF of tumour-infiltrating CD8+ T cells and FOXP3+ Tregs in the same tissue

section. In the pCR group, the intratumoural CD8⁺ T cell: FOXP3⁺ Treg median ratio

was 7.40. This was significantly higher than the median ratio in the non pCR group

(7.40 versus 1.48, p=0.002). Concomitant findings were also demonstrated in the

peritumoural CD8⁺ T cell: FOXP3⁺ Treg median ratio (5.37 versus 1.67, p=0.001).

Comparable significant differences were found in the GPRs versus PPRs in both the

intratumoural (p=0.027) and peritumoural (p=0.027) ratios in pre-NAC specimens

(Table 3.6).

Table 3.6 The Association of Pre-NAC(1) Tumour-infiltrating CD8+ T Cell: FOXP3+

Treg Ratio and Pathological Response to NAC

(1) NAC: Neoadjuvant chemotherapy; (2) CD8⁺ T cell: FOXP3⁺ Treg ratio; (3) Mann-Whitney U test; *

Statistically significant

Groups
Intratumoural

Median (Range)
(2)

P Value
(3)

(GPR versus PRR,

PCR versus Non PCR)

Peritumoural

Median (Range)
(2)

P Value
(3)

(GPR versus PRR,

PCR versus Non PCR)

Good Pathological Response

(GPR, n=21)
3.26 (0.18-45.00) 4.67 (0.53-23.29)

Poor Pathological Response

(PPR, n=12)
1.37 (0.67-6.04) 1.81 (0.10-6.78)

Pathological Complete

Response (PCR, n=16)
7.40 (0.27-45.00) 5.37 (1.08-23.29)

Non Pathological Complete

Response (Non PCR, n=17)
1.48 (0.18-6.04) 1.67 (0.10-6.78)

CD8/FOXP3

ratio (n=33)

0.027* 0.027*

0.002* 0.001*
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NAC reduced immune cells (CD4⁺, FOXP3⁺, CTLA-4⁺ and PD1⁺) in the tumour

microenvironment but not CD8+ T lymphocytes (n=16)

Following 8 cycles of NAC, the levels of different TIL subsets in post-NAC

specimens were significantly reduced, compared with their related pre-NAC

specimens, apart from the CD8⁺ subset. Table 3.7 shows that NAC significantly

reduced both intratumoural (p=0.001) and peritumoural (p=0.001) FOXP3⁺ Tregs,

peritumoural (p=0.029) CTLA-4⁺ Tregs, and both intratumoural (p=0.005) and

peritumoural (p=0.016) PD1⁺ T cells. The CD4⁺ T cell subset infiltration was also

significantly reduced both intratumourally (p=0.01) and peritumourally (p=0.006).

Moreover, the intratumoural infiltration of the CD56⁺ NK cell subset was also

significantly reduced (p=0.018). NAC, however, did not significantly affect the level

of CD8⁺ T cells (p>0.05) albeit there was some reduction in numbers. The

intratumoural CD1a+ DC subset was significantly reduced by NAC (p=0.001) while

the peritumoural component remained unchanged (p=0.184).

Contrary to the lymphocyte subsets, CD66b⁺ PMN infiltrations were increased both

intratumourally and peritumourally after NAC but these differences did not reach

statistical significance (p=0.125, p=0.47) (Table 3.7).



144

Table 3.7 Alteration of Cellular Infiltrations in LLABCs(1) Undergoing NAC(2)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Average cell count per 400x high-power field; (4) Wilcoxon signed rank test; * Statistically significant

Cell Subsets

(n=16)
Groups

Pre-NAC

Median (Range)
(3)

Post-NAC

Median (Range)
(3)

P Value
(4)

(Pre- versus Post-NAC)

Intratumoural Infiltration 15.4 (2.6-171.0) 3.0 (0.0-71.6) 0.010*

Peritumoural Infiltration 45.6 (6.8-242.0) 6.3 (1.2-236.0) 0.006*

Intratumoural infiltration 20.2 (3.4-202.4) 10.3 (0.0-83.6) 0.278

Peritumoural Infiltration 43.6 (1.8-201.6) 27.1 (1.6-144.6) 0.326

Intratumoural infiltration 14.8 (2.4-96.8) 0.7 (0.0-22.2) 0.001*

Peritumoural Infiltration 15.9 (2.2-110.6) 1.4 (0.4-28.4) 0.001*

Intratumoural infiltration 0.4 (0.0-4.0) 0.1 (0.0-1.2) 0.060

Peritumoural Infiltration 0.6 (0.2-10.0) 0.1 (0.0-5.2) 0.029*

Intratumoural infiltration 0.3 (0.0-3.4) 0.0 (0.0-0.6) 0.018*

Peritumoural Infiltration 0.3 (0.0-3.4) 0.2 (0.0-0.6) 0.151

Intratumoural infiltration 0.7 (0.0-20.8) 0.0 (0.0-0.4) 0.001*

Peritumoural Infiltration 0.3 (0.0-3.2) 0.2 (0.0-1.4) 0.184

Intratumoural infiltration 0.7 (0.0-57.4) 0.0 (0.0-0.6) 0.005*

Peritumoural Infiltration 1.5 (0.0-81.2) 0.0 (0.0-4.0) 0.016*

Intratumoural infiltration 0.2 (0.0-10.6) 0.9 (0.0-10.0) 0.125

Peritumoural Infiltration 0.3 (0.0-14.2) 0.5 (0.0-16.4) 0.470

CD66b
+

Neutrophils

CD56
+

NK Cells

CD1a
+

DCs

PD1
+

T

Lymphocytes

CD8
+

T

Lymphocytes

FOXP3
+

Tregs

CTLA-4
+

Tregs

CD4
+

T

Lymphocytes
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Figure 3.12 Summary of the median numbers of tumour-infiltrating immune cell subsets between pre-

NAC and post-NAC; Itu: Intratumoural, Str: Stromal/peritumoural

CD163⁺ but not CD68⁺ pre-NAC TIMs were significantly associated with

pathological responses to NAC

High level of infiltration (grade 3 and 4) of CD163⁺ (M2 polarised) TIMs in pre-NAC

specimens was found to have a significant association with pathological responses

[76.2% (16 out of 21) in the good pathological response group versus 25% (3 out of

12) in the poor pathological response group, p=0.004]. This association was also

documented in the pCR group (p=0.008). While high levels of pre-NAC CD163⁺

TIMs were associated with a GPR and pCR following NAC, CD68⁺ TIMs did not

show these patterns of responses. There was also no significant association between

the levels of TIMs (CD163⁺, CD68⁺) and the pathological responses documented in

the post-NAC specimens (Table 3.8).
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Table 3.8 Analyses of Tumour-infiltrating CD68+ and CD163+ Macrophages in the Breast Tumours Pre- and Post-NAC(1)

(1) NAC: Neoadjuvant chemotherapy; * Statistically significant

Low

Infiltration (n)

High

Infiltration (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value
Low

Infiltration (n)

High

Infiltration (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value

Good Pathological Response

(GPR: n=9, n=9)
5 4 9 0

Poor Pathological Response

(PPR: n=7, n=7)
6 1 5 2

Pathological Complete Response

(PCR: n=6, n=6)
3 3 6 0

Non Pathological Complete Response

(Non PCR: n=10, n=10)
8 2 8 2

Good Pathological Response

(GPR: n=21, n=9)
5 16 7 2

Poor Pathological Response

(PPR: n=12, n=7)
9 3 3 4

Pathological Complete Response

(PCR: n=16, n=6)
3 13 5 1

Non Pathological Complete Response

(Non PCR: n=17, n=10)
11 6 5 5

0.197 2.939 0.086

Macrophages Groups

Pre-NAC Post-NAC

0.008* 1.778 0.182

1.571 0.210 1.371 0.242

CD163
+

(n=33)

8.192 0.004* 2.049 0.152

7.127

CD68
+

(n=16)

1.667
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NAC did not influence the level of TIMs in LLABCs (n=16)

There were no significant changes in the levels of either the CD163⁺ or CD68⁺ TIMs

following NAC. The levels of pre-NAC TIMs were not significantly different from the

related post-NAC specimens, suggesting that NAC had no effect. With CD68⁺ TIMs,

5 out of 16 cases demonstrated alteration in the level of infiltration after NAC (4 cases

changed from high to low, 1 case from low to high, p=0.375). In 8 out of 16 cases of

CD163⁺ TIMs the level of infiltration was altered (6 cases from high to low, 2 cases

from low to high, p=0.289) (Table 3.9). This finding suggests that the M2 polarisation

of macrophages (express CD163) persisted after NAC.

Table 3.9 Alteration of Tumour-infiltrating CD68+ and CD163+ Macrophages in

LLABCs(1) Undergoing NAC(2)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Related-Samples McNemar Test

Low

Infiltraion (n)

High

Infiltration (n)

Low

Infiltraion (n)
10 1

High

Infiltration (n)
4 1

Low

Infiltraion (n)
4 2

High

Infiltration (n)
6 4

CD163
+

(n=16) Pre-NAC 0.289

Post-NAC

P Value
(3)

(Pre versus Post NAC)

CD68
+

(n=16) Pre-NAC 0.375

GroupsMacrophages
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Figure 3.13 CD68⁺ macrophages in the sections of LLABCs, using IHC staining, at 200x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to CD68 (Abcam, ab955) at a 1:300 dilution for 30

mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of CD68+ macrophage infiltration; B: high level of CD68⁺ macrophage infiltration. Tumours

were classified as low level of infiltration when the positively brown membrane-stained cells were

scattered or continuous along the tumour margin but did not extend from the tumour front (TF) for

more than one cell layer. Extension for two or more layers from the TF was classified as a high level of

infiltration.

Figure 3.14 CD163⁺ macrophages in the sections of LLABCs, using IHC staining, at 200x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to CD163 (Abcam, ab74604) at a pre-diluted

concentration for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary

antibody. DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low level of CD163+ macrophage infiltration; B: high level of CD163⁺ macrophage

infiltration. Tumours were classified as low level of infiltration when the positively brown membrane-

stained cells were scattered or continuous along the tumour margin but did not extend from the tumour

front (TF) for more than one cell layer. Extension for two or more layers from the TF was classified as

a high level of infiltration.
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Immune cell subsets associated with a pCR showed a positive correlation with

grade of pathological response (n=33)

The levels of pre-NAC tumour-infiltrating CD4+ (peritumoural only) and CD8+ T cells

and CD56+ NK cells, as well as CD8+ T cell: FOXP3+ Treg ratio which had been

found to have a significant association with a pCR, also showed a significant positive

correlation with the grade (1-5) of pathological response elicited in the breast cancers

with NAC. Higher levels of these immune cell infiltrations were significantly

associated with higher grades of pathological response to NAC (Table 3.10).

Table 3.10 Correlation Between Tumour-infiltrating CD4+ and CD8+ T Cells, CD56+

NK Cells, CD8:FOXP3 Ratio and Grade of Pathological Response [Spearman's

Correlation Coefficient (rho)] in Women with LLABCs(1) Pre-NAC(2)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Pathological responses were graded from grade 1 (no pathological response) to grade 5 (complete

pathological response); * Statistically significant

Correlation Coefficient P Value (2-tailed)

Intratumoural Infiltrating 0.316 0.073

Peritumoural Infiltrating 0.468 0.006*

Intratumoural Infiltrating 0.446 0.009*

Peritumoural Infiltrating 0.471 0.006*

Intratumoural Infiltrating 0.602 <0.001*

Peritumoural Infiltrating 0.702 <0.001*

Intratumoural Infiltrating 0.511 0.002*

Peritumoural Infiltrating 0.484 0.004*

Immune Cell Subsets

(n=33)
Groups

CD8
+

T cells

CD8
+

T cell: FOXP3
+

Treg ratio

Grade of Pathological Response
(3)

CD4
+

T cells

CD56
+

NK cells
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Clinical and pathological parameters and the association with pre-NAC TILs,

CD163⁺ TIMs, FOXP3⁺ Tregs, CD8⁺ T cells in the tumour microenvironment and

pCR (n=33)

Amongst the various clinical and pathological parameters investigated, TIL levels

were found to have a significant association with tumour grade (p=0.001) and ER

status (p=0.007). High levels of TILs (LPBCs) were found in 81.2% (9 out of 11) of

ER-ve tumours compared with only 31.8% (7 out of 22) of ER+ve tumours. 77.8% (14

out of 18) of high histological grade (grade 3) tumours were LPBCs while only 13.3%

(2 out of 15) with low histological grade (grade 1, 2) of tumours had prominent TILs.

ER status and tumour grade also showed a significant relationship with levels of

CD163⁺ TIMs. A high level of TIMs was found in 81.2% (9 out of 11) of ER-ve

tumours compared with 45.5% (10 out of 22) of ER+ve tumours (p=0.046) and 83.3%

(15 out of 18) of high grade tumours compared with 26.7% (4 out of 15) of moderate

and low grade tumours (p=0.004). Both ER-ve and high histological grade tumours

were significantly associated with a pCR (p=0.049 and p=0.01, respectively).

Nevertheless, the levels of TILs and CD163⁺ TIMs were not found to be significantly

associated with tumour recurrence or survival at 4 years of follow-up (a median

follow-up of 51 months), (Table 3.11).

The levels of peritumoural FOXP3⁺ Tregs (p=0.018), intratumoural (p=0.038) and

peritumoural (p=0.032) CD8⁺ T cells were significantly associated with tumour grade

(Table 3.12). There was no significant association between age, BMI, menopausal
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status, tumour size, nodal status (clinical), HER2 status, NAC regimen and the level of

immune cell infiltrations (TILs, CD163+ TIMs, FOXP3+ Tregs and CD8+ T cells)

(Tables 3.11 and 3.12). Tumour type was excluded from statistical analysis because

the majority of specimens were ductal. Only 2 cases were lobular cancers.

The presence of TILs (LPBCs) and TIMs (CD163+) was strongly associated with the

absence of ERs and the presence of high grade tumours. These tumours (ER-ve and

high grade) were associated with a high pCR rate. TILs and TIMs (CD163+),

therefore, probably played a key role in inducing a pCR with NAC in women with

LLABCs.
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Table 3.11 Clinical and Pathological Parameters of Patients (n=33) Studied and the Association of Pre-NAC(1) Tumour-infiltrating

Lymphocytes (TILs),Tumour-infiltrating CD163+ Macrophages (TIMs) and Pathological Complete Response (pCR)

(1) NAC: Neoadjuvant chemotherapy; (2) BMI: Body mass index (≤30: Non-obese, >30: Obese); (3) AC-TX: Doxorubicin, cyclophosphamide, taxotere and

Xeloda® (capecitabine), respectively; (4) 4 years follow-up; * Statistically significant

Low

Infiltration (n)

High

Infiltration (n)

Pearson Chi-

Square Value
P Value

Low

Infiltration (n)

High

Infiltration (n)

Pearson Chi-

Square Value
P Value Non PCR (n) PCR (n)

Pearson Chi-

Square Value
P Value

Age (years)

<50 7 7 6 8 8 6

≥50 10 9 8 11 9 10

BMI
(2)

(kg/m
2
)

 ≤30 11 9 10 10 11 9

>30 6 7 4 9 6 7

Menopausal status

pre 6 10 5 11 8 8

post 11 6 9 8 9 8

Tumour size

<40 mm 10 8 8 10 9 9

≥40 mm 7 8 6 9 8 7

Nodal status

negative 6 4 5 5 5 5

positive 11 12 9 14 12 11

Tumour grade

1 (low) 1 1 1 1 2 0

2 (moderate) 12 1 10 3 10 3

3 (high) 4 14 3 15 5 13

Oestrogen receptor

negative 2 9 2 9 3 8

positive 15 7 12 10 14 8

HER-2 receptor

negative 13 10 10 13 13 10

positive 4 6 4 6 4 6

NAC regimen

AC-TX
(3) 7 9 6 10 6 10

AC-T 10 7 8 9 11 6

Recurrent disease
(4)

no 9 13 8 14 7 15

yes 8 3 6 5 10 1

Death
(4)

no 13 14 11 16 12 15

yes 4 2 3 3 5 1

0.750 0.387 0.308 0.579 2.443 0.118

0.247 0.619 1.193 0.275 0.247 0.619

2.443 0.118 1.588

0.674 0.412 0.172 0.678 2.972 0.085

2.972 0.085 0.992 0.319 10.252 0.001*

0.383

7.340 0.007* 3.970 0.046* 3.882 0.049*

0.762 0.383 0.035 0.853 0.762

0.010*

0.414 0.520 0.337 0.561 0.013 0.909

14.847 0.001* 11.270 0.004* 9.303

0.579

0.259 0.611 0.066 0.797 0.036 0.849

0.208 0.029 0.866

0.022 0.881 0.002 0.966 0.308

Groups

TILs TIMs PCR
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Table 3.12 Clinical and Pathological Parameters of Patients (n=33) Studied and the

Presence of Pre-NAC(1) Tumour-infiltrating FOXP3+ Tregs and CD8+ T Cells

(1) NAC: Neoadjuvant chemotherapy; (2) Average cell count per 400x high-power field; (3) Mann-

Whitney U test; (4) BMI: Body mass index (≤30: Non-obese, >30: Obese); (5) Kruskal-Wallis test; (6)

AC-TX: Doxorubicin, cyclophosphamide, taxotere and Xeloda® (capecitabine), respectively; (7) 4 years

follow-up; * Statistically significant

Pre-NAC

Intratumoural

Median (Range)
(2)

P

Value
(3)

Pre-NAC

Peritumoural

Median (Range)
(2)

P

Value
(3)

Pre-NAC

Intratumoural

Median (Range)
(2)

P

Value
(3)

Pre-NAC

Peritumoural

Median (Range)
(2)

P

Value
(3)

Age (years)

<50 14 5.6 (0.4-26.2) 12.6 (0.8-26.8) 24.1 (0.8-97.4) 17.7 (1.8-110.0)

≥50 19 4.8 (0.8-96.8)   11.2 (0.8-110.6)   14.4 (0.4-202.4) 26.2 (2.0-201.6)

BMI
(4)

(kg/m
2
)

 ≤30 20 6.3 (0.8-96.8) 14.3 (0.8-110.6) 20.3 (0.4-202.4) 22.8 (2.0-127.2)

>30 13 4.8 (0.4-60.4) 6.6 (0.8-27.8) 14.4 (0.8-197.2) 22.4 (1.8-201.6)

Menopausal status

pre 16 9.1 (0.4-60.4) 14.7 (0.8-27.8) 31.7 (0.8-197.2) 41.8 (1.8-201.6)

post 17 4.6 (0.8-96.8) 6.6 (0.8-110.6) 12.8 (0.4-202.4) 22.4 (2.0-127.2)

Tumour size

<40 mm 18 4.4 (0.8-77.0) 9.3 (0.8-110.6) 20.8 (0.8-202.4) 22.8 (1.8-201.6)

      ≥40 mm 15 11.2 (0.4-96.8) 14.2 (0.8-44.8) 19.4 (0.4-99.2) 22.4 (3.4-114.0)

Nodal status

negative 10 8.8 (2.4-77.0) 12.7 (3.0-110.6) 13.9 (3.4-202.4) 43.6 (1.8-201.6)

positive 23 5.6 (0.4-96.8) 10.0 (0.8-32.0) 21.2 (0.4-112.6) 18.4 (2.0-118.8)

Tumour grade

1 (low) 2 32.5 (19.4-45.6) 35.8 (26.8-44.8) 64.0 (28.8-99.2) 88.0 (87.2-88.8)

2 (moderate) 13 4.2 (0.4-26.2) 5.2 (0.8-21.8) 10.4 (0.8-78.4) 11.2 (2.6-110.0)

3 (high) 18 6.3 (0.8-96.8) 14.0 (0.8-110.6) 31.9 (0.4-202.4) 70.5 (1.8-199.8)

Oestrogen receptor

negative 11 5.6 (0.8-96.8) 11.2 (0.8-110.6) 29.6 (1.0-202.4) 65.2 (2.0-127.2)

positive 22 5.5 (0.4-60.4) 11.2 (0.8-44.8) 13.7 (0.4-197.2) 18.9 (1.8-201.6)

HER-2 receptor

negative 23 7.4 (0.4-96.8) 11.6 (0.8-110.6) 19.4 (0.4-202.4) 26.2 (2.6-201.6)

positive 10 3.6 (0.8-11.6) 9.3 (0.8-17.4) 14.3 (1.0-97.4) 15.0 (1.8-86.4)

NAC regimen

AC-TX
(6) 16 7.2 (0.4-60.4) 12.7 (0.8-44.8) 25.4 (0.8-197.2) 47.8 (2.6-201.6)

AC-T 17 4.8 (0.8-96.8) 10.8 (0.8-110.6) 13.4 (0.4-202.4) 19.4 (1.8-127.2)

Recurrent disease
(7)

no 22 7.2 (0.4-77.0) 11.4 (0.8-110.6) 25.4 (0.8-202.4) 65.0 (2.6-201.6)

yes 11 4.8 (0.8-96.8) 10.8 (0.8-26.8) 7.4 (0.4-78.4) 12.2 (1.8-114.0)

Death
(7)

no 27 5.6 (0.4-77.0) 11.6 (0.8-110.6) 21.2 (0.8-202.4) 64.8 (1.8-201.6)

yes 6 5.1 (0.8-96.8) 8.6 (0.8-22.2) 9.8 (0.4-78.4) 10.5 (2.0-114.0)

Groups N

FOXP3
+

Tregs CD8
+
T cells

0.109
(5) 0.018* 0.038* 0.032*

0.957 0.900 1.000 0.397

0.190 0.486 0.817 0.901

0.144 0.221 0.576 0.603

0.721 0.866 0.281 0.440

0.173

0.638 0.665 0.530 0.154

0.929 0.817 0.326 0.657

0.703 0.118 0.899 0.730

0.326 0.423 0.157 0.958

0.114 0.221 0.428 0.133

0.946 0.538 0.205
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TILs are an independent predictive factor for a pCR

Various clinical and pathological parameters have been shown to be associated with a

high pCR rate (young age, small tumour size, high histological grade, ER-ve and

HER2+ve tumours) [19]. Our data showed that high histological grade, ER-negativity

and a high level of TILs were significantly predictive of a pCR in univariate analysis

(p=0.005, 0.049 and 0.001, respectively). TILs, furthermore, was an independent

predictive factor for pCR in a multivariate analysis [Odds ratio (OR) 11.17 (95%

confidence interval (CI) 1.41 to 88.49), p=0.022; adjusted for tumour grade and ER

status as confounding factors, adjusted R2: 0.375]. Tumours with a high level of TILs

were more likely to achieve a pCR with NAC (>11 fold increase), when compared

with tumours with a low level of TILs. The logistic regression analysis confirmed

TILs to be a significant independent predictor of a pCR, in both univariate and

multivariate analyses (Table 3.13).

Table 3.13 Univariate and Multivariate (Logistic Regression) Analyses of Predictive

Factors for Pathological Complete Response to NAC(1) in LLABCs(2) (n=33)

(1) NAC: Neoadjuvant chemotherapy; (2) LLABCs: Large and locally advanced breast cancers; (3) OR:

Odds ratio (4) CI: Confidence interval; (5) TILs: Tumour-infiltrating Lymphocytes ; (6) LPBC:

Lymphocyte-predominant breast cancer; (7) ER: Oestrogen receptor; (8) AC-TX: Doxorubicin,

cyclophosphamide, taxotere and Xeloda® (capecitabine), respectively; * Statistically significant; NA:

Not applicable

OR
(3)

95% CI
(4) P Value OR 95% CI P Value

TILs
(5)

: high (LPBC
(6)

) versus low 20.22 3.45-118.65 0.001* 11.17 1.41-88.49 0.022*

Age: <50 versus ≥50 0.68 0.17-2.71 0.579 NA NA NA

Tumour size: <40mm versus ≥40mm 1.14 0.29-4.51 0.849 NA NA NA

Tumour grade: 3 versus 1/2 10.4 2.03-53.20 0.005* 2.99 0.33-27.00 0.328

ER
(7)

status: negative versus positive 4.67 0.96-22.79 0.049* 1.01 0.11-9.63 0.994

HER-2 status: positive versus negative 1.95 0.43-8.83 0.386 NA NA NA

NAC regimen: AC-TX
(8)

versus AC-T 3.06 0.74-12.63 0.123 NA NA NA

Parameters
Univariate Analysis Multivariate Analysis
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Tumour-infiltrating CD56+ NK cells are an independent predictive factor for a

pCR

In univariate analysis, the immune cell subsets which were significantly associated

with a pCR, have been confirmed to be significant predictors for a pCR with NAC (a

median value of infiltration used as a cut-off point for high and low levels of

infiltration). Among these immune cell subsets, peritumoural tumour-infiltrating

CD56+ NK cells (≥3 cells/5HPFs) appeared to have the highest OR [32.67 (95% CI 

4.71-226.52), p<0.001]. Moreover, only CD56+ NK cell infiltration was an

independent predictor in a multivariate model with a 17.5 fold of estimated effect on

achieving a pCR [OR 17.5 (95% CI 2.06-148.49), p=0.009; adjusted R2: 0.497]. Thus,

tumour-infiltrating CD56+ NK cells are an important subset of TILs and play a key

role in inducing a pCR with NAC (Table 3.14).
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Table 3.14 Univariate and Multivariate (Logistic Regression) Analyses of Predictive

Immunological Parameters for Pathological Complete Response to NAC(1) in

LLABCs(2) (n=33)

(1) NAC: Neoadjuvant chemotherapy; (2) LLABCs: Large and locally advanced breast cancers; (3) OR:

Odds ratio (4) CI: Confidence interval; (5) HPF: High-power field; * Statistically significant; NA: Not

applicable

Note: The median value was used as cut-off point for high and low levels of infiltration. The

intratumoural infiltration was not included in multivariate analysis because it was correlated with

peritumoural infiltration. In a separate multivariate analysis, the parameters CD4+, CD8+ and CD56+

intratumoural infiltration were not statistically significant (data not shown).

Absence of CD44⁺, CD24-/low expression in breast tumours with a pCR (n=16)

Pre-NAC breast tumours that expressed high levels of CD24 had a significantly higher

pCR rate than those that did not [62.5% (5 out of 8) versus 12.5% (1 out of 8),

p=0.039]. In the case of CD44 expression, no significant association was found with

regard to response to NAC. None of the breast tumours (0 out of 4) which expressed

high CD44 and negative/low CD24 concurrently (putative CSCs), demonstrated a

pCR. Conversely, none of the breast cancers which showed a pCR (0 out of 6)

OR
(3)

95% CI
(4) P Value OR 95% CI P Value

CD4
+
 Intratumoural Infiltrating: high (≥8.8 

cells/HPF) versus low (<8.8 cells/HPF
(5)

)
10.40 2.03-53.20 0.005* NA NA NA

CD4
+
 Peritumoural Infiltrating: high (≥17.0 

cells/HPF) versus low (<17.0 cells/HPF)
14.08 2.61-75.77 0.002* 2.56 0.11-59.47 0.558

CD8
+
 Intratumoural Infiltrating: high (≥19.4 

cells/HPF) versus low (<19.4 cells/HPF)
7.20 1.54-33.56 0.012* NA NA NA

CD8
+
 Peritumoural Infiltrating: high (≥22.4 

cells/HPF) versus low (<22.4 cells/HPF)
14.08 2.61-75.77 0.002* 2.56 0.11-59.47 0.558

CD56
+
 Intratumoural Infiltrating: high (≥3.0 

cells/5HPFs) versus low (<3.0 cells/5HPFs)
7.94 1.60-39.42 0.011* NA NA NA

CD56
+
 Peritumoural Infiltrating: high (≥3.0 

cells/5HPFs) versus low (<3.0 cells/5HPFs)
32.67 4.71-226.52 <0.001* 17.50 2.06-148.49 0.009*

CD163
+

Macrophages: high (grade 3 and 4)

versus low (grade 1 and 2)
7.94 1.60-39.42 0.011* 2.49 0.22-28.63 0.462

Parameters
Univariate Analysis Multivariate Analysis
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concurrently expressed high CD44 and negative/low CD24 (Table 4.15). Nonetheless,

when comparing breast cancers with a pCR against breast cancers not showing a pCR,

the difference of expression (CD44⁺, CD24-/low) did not reach statistical significance

(p=0.074) (Table 3.15).

No further significant differences in responses to NAC were found in the analyses of

post-NAC tumours, n=10 (post-NAC tumour specimens with pCR were excluded from

analyses as there was no residual invasive tumour present) (Table 3.16).
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Table 3.15 Association of Pre-NAC(1) CD24 and CD44 Expressions and Pathological

Response to NAC

(1) NAC: Neoadjuvant chemotherapy; * Statistically significant

Low/Negative

Expression (n)

High/ Positive

Expression (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value

Good Pathological Response

(GPR, n=9)
3 6

Poor Pathological Response

(PPR, n=7)
5 2

Pathological Complete Response

(PCR, n=6)
1 5

Non Pathological Complete Response

(Non PCR, n=10)
7 3

Good Pathological Response

(GPR, n=9)
5 4

Poor Pathological Response

(PPR, n=7)
3 4

Pathological Complete Response

(PCR, n=6)
3 3

Non Pathological Complete Response

(Non PCR, n=10)
5 5

Good Pathological Response

(GPR, n=9)
8 1

Poor Pathological Response

(PPR, n=7)
4 3

Pathological Complete Response

(PCR, n=6)
6 0

Non Pathological Complete Response

(Non PCR, n=10)
6 4

Tumours

(n=16)
Groups

Pre-NAC

CD24
+

2.286 0.131

4.267 0.039*

3.200 0.074

0.000 1.000

CD44
+
, CD24

-/ low

2.116 0.146

CD44
+

0.254 0.614
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Table 3.16 Association of Post-NAC(1) CD24 and CD44 Expressions and Pathological

Response to NAC

(1) NAC: Neoadjuvant chemotherapy; NA: Not applicable

No effect of NAC on expression of CSCs in breast tumours with non pCR

The changes in the levels of expression of CD24 and CD44 between pre-NAC

tumours and related post-NAC residual tumours (non pCR) were analysed in the non

pCR group (n=10). The expression of CD44 trended to alter [50% (5 out of 10)

changed to high level of expression] in residual tumours present in the post-NAC

specimens (p=0.063). No significant changes in CD44⁺ CD24-/low expression in non

pCR tumours undergoing NAC was documented (p=0.125) (Table 3.17).

Low/Negative

Expression (n)

High/ Positive

Expression (n)

Pearson Chi-Square Value

(GPR versus PPR)
P Value

Good Pathological Response

(GPR, n=3)
3 0

Poor Pathological Response

(PPR, n=7)
5 2

Good Pathological Response

(GPR, n=3)
0 3

Poor Pathological Response

(PPR, n=7)
0 7

Good Pathological Response

(GPR, n=3)
0 3

Poor Pathological Response

(PPR, n=7)
2 5

Tumours

(n=10)
Groups

Post-NAC

1.071 0.301CD24
+

NA NA

1.071 0.301

CD44
+

CD44
+
,CD24

-/ low
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Table 3.17 Alteration of CD24 and CD44 Expression in LLABCs(1) Undergoing

NAC(2)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Related-Samples McNemar Test

Figure 3.15 CD24⁺ tumour cells in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD24 (Abcam, ab31622) at a 1:200 dilution for 16 mins at

RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was

used to visualize the staining. The sections were counterstained with haematoxylin. A: low level of

CD24 expression; B: high level of CD24 expression. The expression was evaluated according to

staining intensity and distribution of the brown membrane and/or cytoplasmic-stained tumour cells. The

Low/Negative

Expression (n)

High/ Positive

Expression (n)

Low/Negative

Expression (n)
6 1

High/ Positive

Expression (n)
2 1

Low/Negative

Expression (n)
0 5

High/ Positive

Expression (n)
0 5

Low/Negative

Expression (n)
2 4

High/ Positive

Expression (n)
0 4

Post-NAC

P Value
(3)

(Pre- versus Post-NAC)

CD24
+ Pre-NAC 1.000

Groups
Tumours

(n=10)

CD44
+ Pre-NAC 0.063

CD44
+
, CD24

-/low Pre-NAC 0.125
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intensity score was determined from 0 (no staining) to 3 (strong staining). The distribution score was

determined as 1 (<30% of tumour cells) and 2 (>30% of tumour cells). The intensity score and

distribution score were multiplied together for a total score, which was 0–1 for negative/low expression

and 2–6 for positive/high expression. Scoring performed on a whole tissue section (7-10 HPFs); Tu:

tumour.

Figure 3.16 CD44⁺ tumour cells in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to CD44 (Abcam, ab6124) at a concentration of 1.25 µg/ml

for 15 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of CD44 expression; B: high level of CD44 expression. The expression was evaluated

according to staining intensity and distribution of the brown membrane-stained tumour cells. The

intensity score was determined from 0 (no staining) to 3 (strong staining). The distribution score was

determined as 1 (<30% of tumour cells) and 2 (>30% of tumour cells). The intensity score and

distribution score were multiplied together for a total score, which was 0–1 for negative/low expression

and 2–6 for positive/high expression. Scoring performed on a whole tissue section (7-10 HPFs); Tu:

tumour.

3.1.2 The expression of cytokines, IDO, VEGF and PDL1

Expression of the Th1 cytokines (IL-2, IFN-γ) was not associated with a good 

pathological response elicited with NAC (n=16)
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IL-1 (produced by macrophages, B cells and DCs), IL-2 and IFN-γ (produced also by 

CTLs and NK cells) in the tumour specimens were found to be expressed by both

immune cells and tumour cells. The level of IL-1, IL-2 and IFN-γ expression, when 

comparing pCR versus non pCR groups and good versus poor pathological response

groups, showed no significant differences of expression in both pre-NAC and post-

NAC analyses (p>0.05) of tumour specimens (Table 3.18).

High expression of the Th2 cytokine IL-10 was associated with a poor

pathological response to NAC

For the Th2 cytokines (IL-4 and IL-10) and TGF-β (produced by Tregs, TIMs and 

tumour cells), only the expression of IL-10 in post-NAC specimens showed a

significant difference. The significantly higher level of expression of IL-10 was

demonstrated in the poor pathological response group, when compared with the good

pathological response group [100% (7 out of 7) versus 12.5% (1 out of 8), p<0.001]

and in the non pCR group, when compared with the pCR group [70% (7 out of 10)

versus 16.7% (1 out of 6), p=0.039]. TGF-β expression in the post-NAC specimens 

tended to be more prominent in the non pCR group [80% (8 out of 10) versus 33.3%

(2 out of 6), p=0.062] (Table 3.19).

High expression of VEGF was associated with a pCR

Pre-NAC VEGF expression was significantly associated with pCR responses

(p=0.018). 66% of tumours in the pCR group highly expressed VEGF whereas only

10% (1 out of 10) in the non pCR group had high VEGF expression. No significant
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difference of VEGF expression was documented in the post-NAC specimens (Table

3.20).

High expression of IL-17 was associated with poor pathological responses to NAC

Post-NAC IL-17 expression was found to be significantly associated with pathological

response to NAC. Higher levels of expression were found in the poor pathological

response group (p=0.036) and in tumours lacking a pCR (p=0.013). There was no

association demonstrated in the pre-NAC specimens (Table 3.20).

Expression of IDO and PDL1 showed no association with NAC-responses

In the case of IDO and PDL1 expressions, there were no significant differences

between the NAC-response groups in either the pre-NAC and post-NAC analyses

(Table 3.20).
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Table 3.18 Analyses of IL-1, IL-2, and IFN-γ Expression in the Breast Cancer Pre-NAC and Post-NAC(1)

(1) NAC: Neoadjuvant chemotherapy

Low/Negative

Expression (n)

High

Expression (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value
Low/Negative

Expression (n)

High

Expression (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value

Good Pathological Response

(GPR, n=9)
2 7 4 5

Poor Pathological Response

(PPR, n=7)
3 4 2 5

Pathological Complete Response

(PCR, n=6)
1 5 3 3

Non Pathological Complete Response

(Non PCR, n=10)
4 6 3 7

Good Pathological Response

(GPR, n=9)
3 6 5 4

Poor Pathological Response

(PPR, n=7)
2 5 6 1

Pathological Complete Response

(PCR, n=6)
2 4 3 3

Non Pathological Complete Response

(Non PCR, n=10)
3 7 8 2

Good Pathological Response

(GPR, n=9)
0 9 4 5

Poor Pathological Response

(PPR, n=7)
2 5 2 5

Pathological Complete Response

(PCR, n=6)
0 6 2 4

Non Pathological Complete Response

(Non PCR, n=10)
2 8 4 6

Cytokines

(n=16)
Groups

Pre-NAC Post-NAC

0.950 0.330 0.640 0.424

IL-2

0.042 0.838 1.667 0.197

0.019

IL-1

0.780 0.377 0.423 0.515

0.889 1.571 0.210

IFN-γ

2.939 0.086 0.423 0.515

1.371 0.242 0.71 0.790
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Figure 3.17 IL-1 (A, B), IL-2 (C, D) and IFN-γ (E, F) expression in the sections of LLABCs, using

IHC staining, at 400x magnification. Briefly, heat-mediated antigen retrieval was performed using

citrate buffer, pH 6 (20 mins). The sections were then incubated with MAbs to IL-1 (Abcam, ab8320) at

a 1:150 dilution for overnight at 4˚C, MAbs to IL-2 (Abcam, ab92381) at a 1:500 dilution for 30 mins 

at RT and Polyclonal Abs to IFN-γ (Abcam, ab9657) at a concentration of 4 µg/ml for 30 mins at RT, 

respectively. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A,

C, E: low level of expression; B, D, F: high level of expression. The H score [% of positive cells

(brown membrane/cytoplasmic-stained tumour and immune cells) x intensity of staining (1 to 3)] was

used to assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on a 

whole tissue section (7-10 HPFs); Tu: tumour and Ly: lymphocyte.
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Table 3.19 Analyses of IL-4, IL-10 and TGF-β Expression in the Breast Cancer Pre-NAC and Post-NAC(1)

(1) NAC: Neoadjuvant chemotherapy; (2) TGF-β was scored as negative and positive; * Statistically significant 

Low/Negative

Expression (n)

High

Expression (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value
Low/Negative

Expression (n)

High

Expression (n)

Pearson Chi-Square Value

(GPR versus PPR, PCR

versus Non PCR)

P Value

Good Pathological Response

(GPR, n=9)
1 8 6 3

Poor Pathological Response

(PPR, n=7)
1 6 3 4

Pathological Complete Response

(PCR, n=6)
1 5 4 2

Non Pathological Complete Response

(Non PCR, n=10)
1 9 5 5

Good Pathological Response

(GPR, n=9)
3 6 8 1

Poor Pathological Response

(PPR, n=7)
3 4 0 7

Pathological Complete Response

(PCR, n=6)
2 4 5 1

Non Pathological Complete Response

(Non PCR, n=10)
4 6 3 7

Good Pathological Response

(GPR, n=9)
6 3 5 4

Poor Pathological Response

(PPR, n=7)
3 4 1 6

Pathological Complete Response

(PCR, n=6)
4 2 4 2

Non Pathological Complete Response

(Non PCR, n=10)
5 5 2 8

Cytokines

(n=16)
Groups

Pre-NAC Post-NAC

0.152 0.696 0.423 0.515

IL-10

0.152 0.696 12.444 <0.001*

0.071

IL-4

0.036 0.849 0.907 0.341

0.790 4.267 0.039*

TGF-β
(2)

0.907 0.341 2.861 0.091

0.423 0.515 3.484 0.062



167

Figure 3.18 IL-4 (A, B) and IL-10 (C, D) expression in the sections of LLABCs, using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with polyclonal Abs to IL-4 (Abcam, ab9622) at a

concentration of 4 µg/ml for 30 mins at RT, polyclonal Abs to IL-10 (Abcam, ab34843) at a 1:400

dilution for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody.

DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A, C: low level of expression; B, D: high level of expression. The H score [% of positive

cells (brown membrane/cytoplasmic-stained tumour and immune cells) x intensity of staining (1 to 3)]

was used to assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on a 

whole tissue section (7-10 HPFs); Tu: tumour and Ly: lymphocyte.
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Figure 3.19 TGF-β expression in the sections of LLABCs, using IHC staining, at 400x magnification. 

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to TGF-β (Abcam, ab64715) at a concentration of 12 µg/ml 

for overnight at 4˚C. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB 

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

Negative/low level of expression; B: Positive/high level of expression. The H score [% of positive cells

(brown membrane/cytoplasmic-stained tumour and immune cells) x intensity of staining (1 to 3)] was

used to assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on a 

whole tissue section (7-10 HPFs); Tu: tumour and Ly: lymphocyte.
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Table 3.20 Analyses of VEGF, IDO, IL-17 and PDL1 Expression in the Breast Cancer Pre-NAC and Post-NAC(1)

(1) NAC: Neoadjuvant chemotherapy; * Statistically significant

Low/Negative

Expression (n)

High

Expression (n)

Pearson Chi-Square

Value (GPR versus PPR,

PCR versus Non PCR)

P Value
Low/Negative

Expression (n)

High

Expression (n)

Pearson Chi-Square

Value (GPR versus PPR,

PCR versus Non PCR)

P Value

Good Pathological Res pons e

(GPR, n=9)
5 4 7 2

Poor Pa thological Res pons e

(PPR, n=7)
6 1 4 3

Pathologica l Complete Respons e

(PCR, n=6)
2 4 5 1

Non Pa thological Complete Res ponse

(Non PCR, n=10)
9 1 6 4

Good Pathological Res pons e

(GPR, n=9)
6 3 6 3

Poor Pa thological Res pons e

(PPR, n=7)
5 2 4 3

Pathologica l Complete Respons e

(PCR, n=6)
3 3 4 2

Non Pa thological Complete Res ponse

(Non PCR, n=10)
8 2 6 4

Good Pathological Res pons e

(GPR, n=9)
2 7 6 3

Poor Pa thological Res pons e

(PPR, n=7)
3 4 1 6

Pathologica l Complete Respons e

(PCR, n=6)
2 4 5 1

Non Pa thological Complete Res ponse

(Non PCR, n=10)
3 7 2 8

Good Pathological Res pons e

(GPR, n=9)
3 6 7 2

Poor Pa thological Res pons e

(PPR, n=7)
3 4 4 3

Pathologica l Complete Respons e

(PCR, n=6)
3 3 4 2

Non Pa thological Complete Res ponse

(Non PCR, n=10)
3 7 7 3

Cytokines

(n=16)
Groups

Pre-NAC Post-NAC

VEGF

1.667 0.197 0.780 0.377

5.605 0.018* 0.950 0.330

0.071 0.790

IL-17

0.780 0.377 4.390 0.036*

IDO

0.042 0.838 0.152 0.696

PDL1

0.152 0.696 0.780 0.377

0.640 0.424 0.019 0.889

0.019 0.889 6.112 0.013*

1.571 0.210
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Figure 3.20 VEGF expression in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to VEGF (Dako, M7273) at a 1:50 dilution for 30 mins at RT.

Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB chromogen was used

to visualize the staining. The sections were counterstained with haematoxylin. A: low level of

expression; B: high level of expression. The H score [% of positive cells (brown

membrane/cytoplasmic-stained tumour and immune cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on a whole tissue 

section (7-10 HPFs); Tu: tumour, Ma: macrophage and Ly: lymphocyte.

Figure 3.21 IDO expression in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with MAbs to IDO (Abcam, ab55305) at a concentration of 0.75 µg/ml for

15 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of expression; B: high level of expression. The H score [% of positive cells (brown

membrane/cytoplasmic-stained tumour and immune cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on a whole tissue 

section (7-10 HPFs); Tu: tumour, Ma: macrophage and Ly: lymphocyte.
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Figure 3.22 IL-17 expression in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with polyclonal Abs to IL-17 (Abcam, ab9565) at a 1:100 dilution for 30

mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of expression; B: high level of expression. The H score [% of positive cells (brown

membrane/cytoplasmic-stained tumour and immune cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on a whole tissue 

section (7-10 HPFs); Tu: tumour and Ly: lymphocyte.

Figure 3.23 PDL1 expression in the sections of LLABCs, using IHC staining, at 400x magnification.

Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20 mins). The

sections were then incubated with polyclonal Abs to PDL1 (Abcam, ab58810) at a concentration of 2.5

µg/ml for 15 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody.

DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low level of expression; B: high level of expression. The expression was graded as

negative/low level of expression when there was no detectable or weak staining (brown

membrane/cytoplasmic-stained tumour and immune cells). High level of expression represented

moderate to strong staining according to the majority of staining intensity throughout a whole tissue

section (7-10 HPFs); Tu: tumour and Ly: lymphocyte.
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NAC reduced IL-4 expression in breast tumours (n=16)

Table 3.21 illustrates the effect of NAC on the alteration of the expression of

cytokines, IDO, VEGF and PDL1 in breast cancers. The expression of IL-4 following

NAC was significantly altered (p=0.016). In 43.8% (7 out of 16) of cases, the level of

expression was altered from high (pre-NAC) to low/negative (post-NAC). In none of

the cases (0 out of 16) was the level of expression altered from low/negative (pre-

NAC) to high (post-NAC). Thus, the level of IL-4 expression in breast tumours was

significantly reduced with NAC.
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Table 3.21 Alteration of Expression of Cytokines, Indoleamine 2,3-dioxygenase

(IDO), Programmed Death Ligand 1 (PDL1) and Vascular Endothelial Growth Factor

(VEGF) in LLABCs(1) Undergoing NAC(2)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Related-Samples McNemar Test; (4) TGF-β was scored as negative and positive; * Statistically 

significant

Low/Negative

Expression (n)

High

Expression (n)

Low/Negative

Expression (n)
3 2

High

Expression (n)
3 8

Low/Negative

Expression (n)
4 1

High

Expression (n)
7 4

Low/Negative

Expression (n)
0 2

High

Expression (n)
6 8

Low/Negative

Expression (n)
2 0

High

Expression (n)
7 7

Low/Negative

Expression (n)
3 3

High

Expression (n)
5 5

Low/Negative

Expression (n)
4 5

High

Expression (n)
2 5

Low/Negative

Expression (n)
8 3

High

Expression (n)
3 2

Low/Negative

Expression (n)
8 3

High

Expression (n)
2 3

Low/Negative

Expression (n)
3 2

High

Expression (n)
4 7

Low/Negative

Expression (n)
5 1

High

Expression (n)
6 4

Groups
Cytokines

(n=16)

IL-1 Pre-NAC 1.000

Pre-NAC 0.727

TGF-β
(4) Pre-NAC 0.453

VEGF Pre-NAC 1.000

IDO Pre-NAC 1.000

PDL1 Pre-NAC 0.125

IL-17 Pre-NAC 0.688

IL-2 Pre-NAC 0.070

IFN-γ Pre-NAC 0.289

IL-4

Post-NAC

Pre-NAC 0.016*

P Value
(3)

IL-10
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3.2 Analyses of Metastatic Tumours in ALNs

High level of TILs was associated with a pCR in tumour-involved ALNs (n=20)

The level of TILs present in tumour nests of metastatic deposits in ALNs were

assessed in pre-NAC ALN biopsies (n=20). High level of TIL infiltration (more than

60% of metastatic tumour nests containing lymphocytes) was found in 55.6% (5 out of

9) cases of metastatic ALNs which subsequently had a pCR with NAC, compared with

9.1% (1 out of 11) of cases in which the metastatic tumours persisted within the nodes

after NAC, (p=0.024) (Table 3.22).

High level of CD163+ TIMs was associated with a pCR in tumour-involved ALNs

High level of CD163+ TIMs in metastatic tumours was found to be significantly

associated with a pCR [100% (9 out of 9) versus 36.4% (4 out of 11), p=0.003] (Table

3.22).

High level of CD4+ and CD8+ T cell and CD56+ NK cell infiltration was associated

with a pCR in tumour-involved ALNs

Table 3.23 shows that a high level of CD4+ (p=0.004) and CD8+ T cell (p=0.001) and

CD56+ NK cell (p=0.010) infiltration in metastatic tumours in ALNs was significantly

associated with a pCR in the metastases. These results resembled the findings in

primary tumours in breast and confirmed the relevancy of these subsets in modifying
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the response to NAC in metastases. No association was found between the levels of

Tregs (FOXP3+, CTLA-4+) and ALN pCR (p>0.05).

Table 3.22 Tumour-infiltrating Lymphocytes (TILs) and CD163+ TIMs in Metastatic

Tumours in ALNs(1) Pre-NAC(2) and Association with a PCR in the ALNs Following

NAC

(1) ALNs: Axillary lymph nodes; (2) NAC: Neoadjuvant chemotherapy; * Statistically significant

Low

Infiltration

(n)

High

Infiltration

(n)

Pearson Chi-Square

Value (PCR versus

Non PCR)

P Value

Pathological Complete Response

(PCR, n=9)
4 5

Non Pathological Complete Response

(Non PCR, n=11)
10 1

Pathological Complete Response

(PCR, n=9)
0 9

Non Pathological Complete Response

(Non PCR, n=11)
7 4

TILs

(n=20)

CD163
+

Macrophages

(n=20)

8.811 0.003*

Immune Cell

Subsets
Groups

Pre-NAC

5.089 0.024*
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Table 3.23 Intratumoural Tumour-infiltrating Lymphocyte Subsets in Metastatic

Tumours in ALNs(1) Pre-NAC(2) and Association with Subsequent PCR Following

NAC

(1) ALNs: Axillary lymph nodes; (2) NAC: Neoadjuvant chemotherapy; (3) Average cell count per 400x

high-power field; (4) Mann-Whitney U test; * Statistically significant

Pathological Complete Response

(PCR, n=9)
65.0 (19.4-157.4)

Non Pathological Complete Response

(Non PCR, n=11)
13.2 (0.6-100.8)

Pathological Complete Response

(PCR, n=9)
99.2 (33.2-160.8)

Non Pathological Complete Response

(Non PCR, n=11)
11.6 (0.4-93.0)

Pathological Complete Response

(PCR, n=9)
18.0 (5.0-73.6)

Non Pathological Complete Response

(Non PCR, n=11)
6.4 (1.0-20.4)

Pathological Complete Response

(PCR, n=9)
2.6 (0.4-11.6)

Non Pathological Complete Response

(Non PCR, n=11)
0.8 (0.0-2.2)

Pathological Complete Response

(PCR, n=9)
2.2 (1.0-26.8)

Non Pathological Complete Response

(Non PCR, n=11)
1.0 (0.0-2.2)

CD56
+

NK cells 0.010*

P Value
(4)

(PCR versus Non PCR)

Tumour Infiltration

Median (range)
(3)

CD8
+

T cells 0.001*

FOXP3
+

Tregs 0.152

CTLA-4
+

Tregs 0.112

Immune Cell

Subsets (n=20)
Groups

CD4
+

T cells 0.004*
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Figure 3.24 Summary of the median numbers of tumour-infiltrating lymphocyte subsets in pre-NAC

metastatic tumours in ALNs and subsequent pCR and non pCR following NAC

Higher levels of tumour-infiltrating Tregs (FOXP3+, CTLA-4+) in ALN

metastases than in corresponding primary breast tumours (n=20)

The levels of TILs, TIMs and intratumoural tumour-infiltrating lymphocyte subsets

present in primary breast tumours were compared with their corresponding ipsilateral

ALN metastases (n=20). The levels of TILs, TIMs, CD4+ and CD8+ T cell subsets

remained unchanged in the ALN metastases (p>0.05). There were, however,

significantly higher levels of tumour-infiltrating Tregs (FOXP3+, CTLA-4+) in ALN

metastases. The median number of tumour-infiltrating FOXP3+ Tregs in metastatic

tumours was 7.2 (1.0-73.6) cells/HPF compared with 5.5 (0.4-96.8) cells/HPF in the

corresponding primary tumours (p=0.026). The median number of tumour-infiltrating

CTLA-4+ Tregs in metastatic tumours was 0.8 (0-11.6) cells/HPF compared with 0.4
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(0-2.2) cells/HPF in the corresponding primary tumours (p=0.036). Higher Treg

infiltrations in ALN metastases may reflect a greater immunosuppression in the

microenvironment of metastatic ALN tumours, compared with the primary tumour

bed. The CD8⁺ T cell: FOXP3⁺ Treg ratio, however, was not significantly different

between the primary and metastatic tumours (p=0.167). The median number of

tumour-infiltrating CD56+ NK cells was also significantly increased in metastatic

tumours, compared with primary tumours [1.5 (0-26.8) versus 0.8 (0-3.2), p=0.006]

(Table 3.24 and 3.25).

Table 3.24 Comparison of Tumour-infiltrating Lymphocytes (TILs) and CD163+

Macrophages Between Primary Breast Tumours and Metastatic Tumours in Women

with LLABCs(1)

(1) LLABCs: Large and locally advanced breast cancers; (2) ALNs: Axillary lymph nodes; (3) Related-

Samples McNemar Test

Low

Infiltration (n)

High

Infiltration (n)

Low

Infiltration (n)
11 2

High

Infiltration (n)
3 4

Low

Infiltration (n)
6 2

High

Infiltration (n)
1 11

Metastatic Tumours in ALNs
(2)

P Value
(3)

(Primary versus

Metastases)

Primary

Tumours

in Breast

1.000

Groups

CD163
+

Macrophages

Primary

Tumours

in Breast

1.000

TILs
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Table 3.25 Comparison of Intratumoural Tumour-infiltrating Immune Cell Subsets

Between Primary Breast Tumours and Metastatic Tumours in Women with LLABCs(1)

(1) LLABCs: Large and locally advanced breast cancers; (2) ALNs: Axillary lymph nodes; (3) Average cell

count per 400x high-power field; (4) Wilcoxon signed rank test; * Statistically significant

Figure 3.25 Summary of the median numbers of tumour-infiltrating lymphocyte subsets between

primary and metastatic tumours; ALNs: Axillary lymph nodes

Immune Cell

Subsets (n=20)

Primary Tumours in Breast

Median (Range)
(3)

Metastatic Tumours in ALNs
(2)

Median (Range)
(3)

P Value
(4)

(Primary versus

Metastases)

CD4
+

T cells 12.8 (0.6-166.2) 26.1 (0.6-157.4) 0.313

CD8
+

T cells 27.4 (0.4-112.6) 37.1 (0.4-160.8) 0.117

FOXP3
+

Tregs 5.5 (0.4-96.8) 7.2 (1.0-73.6) 0.026*

CTLA-4
+

Tregs 0.4 (0.0-2.2) 0.8 (0.0-11.6) 0.036*

CD56
+

NK cells 0.8 (0.0-3.2) 1.5 (0.0-26.8) 0.006*

CD8/FOXP3 ratio 3.91 (0.18-45.00) 3.29 (0.40-21.92) 0.167
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CD8+ T cells and CD56+ NK cells showed a positive correlation between primary

and metastatic tumours

Table 3.26 shows the correlations between specific immune cell infiltrates in primary

breast tumours and ALN metastatic tumours. CD8+ T cells and CD56+ NK cells were

documented to have a positive correlation (p=0.020 and <0.001, respectively).

Increased infiltration of CD8+ T cells and CD56+ NK cells in the tumour

microenvironment of primary tumours had a concordant increase of these infiltrates in

ipsilateral ALN metastatic tumours.

Table 3.26 Correlations of Tumour-infiltrating Lymphocyte Subsets Between Primary

Breast Tumours and Metastatic Tumours in Women with LLABCs(1) [Spearman's

Correlation Coefficient (rho)] (n=20)

(1) LLABCs: Large and locally advanced breast cancers; (2) ALNs: Axillary lymph nodes; (3) NA: Not

applicable; * Statistically significant

CD4
+

T

cells

CD8
+

T

cells

FOXP3
+

Tregs

CTLA-4
+

Tregs

CD56
+

NK

cells

CD4
+

T cells

Correlation Coefficient 0.061 NA NA NA NA

P Value (2-tailed) 0.797 NA NA NA NA

CD8
+

T cells

Correlation Coefficient NA 0.514 NA NA NA

P Value (2-tailed) NA 0.020* NA NA NA

FOXP3
+

Tregs

Correlation Coefficient NA NA 0.390 NA NA

P Value (2-tailed) NA NA 0.089 NA NA

CTLA-4
+

Tregs

Correlation Coefficient NA NA NA 0.246 NA

P Value (2-tailed) NA NA NA 0.296 NA

CD56
+

NK cells

Correlation Coefficient NA NA NA NA 0.721

P Value (2-tailed) NA NA NA NA <0.001*

Primary

Tumours

in Breast

Groups

Metastatic Tumours in ALNs
(2)
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Figure 3.26 FOXP3+ Tregs in the section of metastatic tumour in axillary lymph node, using IHC

staining, at 100x (A), 200x (B) and 400x (C) magnifications. Briefly, heat-mediated antigen retrieval

was performed using citrate buffer, pH 6 (20 mins). The section was then incubated with MAbs to

FOXP3 (Abcam, ab20034) at a concentration of 20 µg/ml for 30 mins at RT. Polymeric HRP-linker

antibody conjugate was used as secondary antibody. DAB chromogen was used to visualize the

staining. The section was counterstained with haematoxylin. The average number of brown nuclear-

stained cells, regardless of intensity, in contact with metastatic tumour cells or within metastatic tumour

cell nests per HPF was counted. MTu: Metastatic tumour; LN: Lymphoid tissue.

Figure 3.27 CD8⁺ T cells (A) and CD56⁺ NK cells (B) in the sections of metastatic tumour in axillary

lymph node, using IHC staining, at 200x magnification. Briefly, heat-mediated antigen retrieval was

performed using citrate buffer, pH 6 (20 mins). The sections were then incubated with MAbs to CD8

(Dako, M7103) at a 1:100 dilution for 30 mins at RT, MAbs to CD56 (Dako, M7304) at a 1:50 dilution

for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. The

average number of brown membrane-stained cells, regardless of intensity, in contact with metastatic

tumour cells or within metastatic tumour cell nests per HPF was counted. MTu: Metastatic tumour; LN:

Lymphoid tissue.
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3.3 Analyses of ALN Parenchyma

The assessments of various immune cell subsets and expression of cytokines and

biological molecules (IDO, VEGF, PDL1) present in post-NAC tumour-draining

ALNs (lymph node parenchyma), comparing non-metastatic versus metastatic ALNs

(n=33) and metastatic ALNs with pCRs versus metastatic ALNs with non pCRs

(n=24), were carried out.

3.3.1 Immune cell components in ALNs

No differences in immune cell components were found between metastatic and

non-metastatic ALNs

There were no significant differences in the percentage/average number of positively

stained immune cell subsets between metastatic and non-metastatic ALNs. CD4+ and

CD8+ T lymphocytes and FOXP3+ Tregs were prominent immune cells in the para-

cortical area of ALNs. CD68+ and CD163+ macrophages were prominent immune cells

in the medullary area of ALNs. The levels (%) of these subsets present in tumour-free

areas of metastatic and non-metastatic ALNs were similar (p>0.05) (Table 3.27).

CTLA-4+ Tregs, CD56+ NK cells, CD1a+ DCs, PDI+ T cell and CD66b+ PMNs were

much less prominent and found scattered in the para-cortical area of ALNs. The levels

(average cell count/HPF of the highest accumulation) of these minor subsets were also

comparable between metastatic and non-metastatic ALNs (P>0.05) (Table 3.28).
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Table 3.27 Analysis of the Major Immune Cell Subsets in ALNs(1) in Women with

LLABCs(2) Undergoing NAC(3): Comparison of Metastatic and Non-metastatic ALNs

(1) ALNs: Axillary lymph nodes; (2) LLABCs: Large and locally advanced breast cancers; (3) NAC:

Neoadjuvant chemotherapy; (4) Average percentage of positively stained cells out of all the lymphoid

cells in the ALN sections examined; (5) Mann-Whitney U test; (6) Tumour-free areas examined

Figure 3.28 Summary of the median % of major immune cell subsets in metastatic (tumour-free areas)

and non-metastatic ALNs

Immune Cell Subsets Groups
ALN

Median (Range)
(4) P Value

(5)

Non-metastatic ALNs (n=9) 63.0 (43.0-74.0)

Metastatic ALNs (n=24)
(6) 68.0 (32.0-75.0)

Non-metastatic ALNs (n=9) 26.0 (15.4-34.0)

Metastatic ALNs (n=24) 20.5 (10.4-40.0)

Non-metastatic ALNs (n=9) 4.4 (2.9-8.6)

Metastatic ALNs (n=24) 4.6 (0.2-10.8)

Non-metastatic ALNs (n=9) 25.0 (14.8-34.0)

Metastatic ALNs (n=7) 29.0 (13.8-33.0)

Non-metastatic ALNs (n=9) 21.0 (16.0-29.0)

Metastatic ALNs (n=24) 23.0 (10.0-33.0)

FOXP3
+

Tregs (n=33) 0.736

CD4
+

T cells (n=33) 0.796

CD8
+

T cells (n=33) 0.121

CD68
+

Macrophages (n=16) 0.918

CD163
+

Macrophages (n=33) 1.000
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Figure 3.29 CD4⁺ T cells in the sections of axillary lymph nodes (ALNs), using IHC staining, at 400x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to CD4 (Dako, M7310) at a 1:80 dilution for 30

mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low percentage of CD4⁺ T cells; B: high percentage of CD4⁺ T cells. The positive brown membrane-

stained cells in tumour-free para-cortical areas of ALNs were quantified as the average % of all cells (5

HPFs).

Figure 3.30 CD8⁺ T cells in the sections of axillary lymph nodes (ALNs), using IHC staining, at 400x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to CD8 (Dako, M7103) at a 1:100 dilution for 30

mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low percentage of CD8⁺ T cells; B: high percentage of CD8⁺ T cells. The positive brown membrane-

stained cells in tumour-free para-cortical areas of ALNs were quantified as the average % of all cells (5

HPFs).
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Figure 3.31 FOXP3⁺ Tregs in the sections of axillary lymph nodes (ALNs), using IHC staining, at 400x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to FOXP3 (Abcam, ab20034) at a concentration of

20 µg/ml for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody.

DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low percentage of FOXP3⁺ Tregs; B: high percentage of FOXP3⁺ Tregs. The positive

brown nuclear-stained cells in tumour-free para-cortical areas of ALNs were quantified as the average

% of all cells (5 HPFs).

Figure 3.32 CD68⁺ macrophages in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate, buffer pH 6

(20 mins). The sections were then incubated with MAbs to CD68 (Abcam, ab955) at a 1:300 dilution

for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low percentage of CD68+ macrophages; B: high percentage of CD68⁺ macrophages. The positive brown

membrane-stained cells in tumour-free medullary areas of ALNs were quantified as the average % of all

cells (5 HPFs).
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Figure 3.33 CD163⁺ macrophages in the sections of axillary lymph nodes (ALNs), using IHC staining,

at 400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to CD163 (Abcam, ab74604) at a pre-diluted

concentration for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary

antibody. DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low percentage of CD163⁺ macrophages; B: high percentage of CD163⁺

macrophages. The positive brown membrane-stained cells in tumour-free medullary areas of ALNs

were quantified as the average % of all cells (5 HPFs).
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Table 3.28 Analysis of the Less Prominent Immune Cell Subsets in ALNs(1) in

Women with LLABCs(2) Undergoing NAC(3): Comparison of Metastatic and Non-

metastatic ALNs

(1) ALNs: Axillary lymph nodes; (2) LLABCs: Large and locally advanced breast cancers; (3) NAC:

Neoadjuvant chemotherapy; (4) Average cell count of positively stained cells per 400x High-power field

in the ALN sections examined; (5) Mann-Whitney U test; (6) Tumour-free areas examined; (7) PMNs:

Polymorphonuclear leukocytes

Figure 3.34 Summary of the median numbers (average cell count) of minor immune cell subsets

between metastatic and non-metastatic ALNs

Immune Cell Subsets Groups
ALN

Median (Range)
(4) P Value

(5)

Non-metastatic ALNs (n=9) 16.8 (5.2-100.4)

Metastatic ALNs (n=24)
(6) 11.0 (0.6-38.6)

Non-metastatic ALNs (n=9) 17.8 (15.8-52.8)

Metastatic ALNs (n=24) 18.3 (2.2-60.4)

Non-metastatic ALNs (n=9) 12.8 (0.8-62.0)

Metastatic ALNs (n=7) 23.8 (6.6-67.0)

Non-metastatic ALNs (n=9) 6.4 (1.4-36.0)

Metastatic ALNs (n=7) 12.6 (2.0-72.6)

Non-metastatic ALNs (n=9) 5.2 (0.6-94.0)

Metastatic ALNs (n=7) 8.4 (1.0-163.0)

CD1a
+

DCs (n=16) 0.536

CTLA-4
+

Tregs (n=33) 0.193

CD56
+

NK cells (n=33) 0.437

PD1
+

T cells (n=16) 0.408

CD66b
+

PMNs
(7)

(n=16) 0.837
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Figure 3.35 CTLA-4⁺ Tregs in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to CTLA-4 (Santa Cruz Bio, sc-376016) at a

1:200 dilution for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary

antibody. DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low number of CTLA-4⁺ Tregs; B: high number of CTLA-4⁺ Tregs. The average

number of cell counts per HPF in tumour-free para-cortical areas of ALNs with the greatest

accumulation of the positive brown membrane-stained cells was quantified.

Figure 3.36 CD56⁺ NK cells in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to CD56 (Dako, M7304) at a 1:50 dilution for

30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low number of CD56⁺ NK cells; B: high number of CD56⁺ NK cells. The average number of cell counts

per HPF in tumour-free para-cortical areas of ALNs with the greatest accumulation of the positive

brown membrane-stained cells was quantified.
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Figure 3.37 CD1a⁺ DCs in the sections of axillary lymph nodes (ALNs), using IHC staining, at 400x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to CD1a (Dako, M3571) at a 1:200 dilution for 15

mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low number of CD1a⁺ DCs; B: high number of CD1a⁺ DCs. The average number of cell counts per HPF

in tumour-free para-cortical areas of ALNs with the greatest accumulation of the positive brown

membrane-stained cells was quantified.

Figure 3.38 PD1⁺ T cells in the sections of axillary lymph nodes (ALNs), using IHC staining, at 400x

magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6 (20

mins). The sections were then incubated with MAbs to PD1 (Abcam, ab52587) at a 1:100 dilution for

30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low number of PD1⁺ T cells; B: high number of PD1⁺ T cells. The average number of cell counts per

HPF in tumour-free para-cortical areas of ALNs with the greatest accumulation of the positive brown

membrane-stained cells was quantified.
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Figure 3.39 CD66b⁺ PMNs in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to CD66b (LS Bio, LS-B7134) at a

concentration of 10 µg/ml for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as

secondary antibody. DAB chromogen was used to visualize the staining. The sections were

counterstained with haematoxylin. A: low number of CD66b⁺ PMNs; B: high number of CD66b⁺

PMNs. The average number of cell counts per HPF in tumour-free para-cortical areas of ALNs with the

greatest accumulation of the positive brown membrane-stained cells was quantified.

Metastatic ALNs with high CD8+ T cell and low FOXP3+ Treg components were

significantly associated with a pCR (n=24)

The significantly higher % of CD8+ T cells [27% (13.4-40) versus 19.5% (10.4-30),

p=0.048] and significantly lower % of FOXP3+ Tregs [3.1% (0.2-6.9) versus 6.5%

(1.7-10.8), p=0.019] in the para-cortical areas (tumour-free) of ALNs were found to be

significantly associated with a pCR in the metastatic deposits following NAC. No

significant association was found for CD4+ T cells, CTLA-4+ Tregs, CD56+ NK cells

and CD163+ macrophages (p>0.05) (Table 3.29).
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Table 3.29 Analyses of Immune Cell Subsets in Metastatic ALNs(1) in Women with

LLABCs(2) Undergoing NAC(3): Comparing Metastatic ALNs with PCRs and Non

pCRs

(1) ALNs: Axillary lymph nodes; (2) LLABCs: Large and locally advanced breast cancers; (3) NAC:

Neoadjuvant chemotherapy; (4) Average percentage of positively stained cells out of all the lymphoid

cells in the ALN sections (CD4+ and CD8+ T cells, FOXP3+ Tregs and CD163+ macrophages); (5) Mann-

Whitney U test; (6) Average cell count of positive stained cells per 400x high-power field in the ALN

sections (CTLA-4+ Tregs and CD56+ NK cells); * Statistically significant

Immune Cell Subsets

(n=24)
Groups

ALN

Median (Range)
(4) P Value

(5)

Pathological Complete Response

(PCR, n=10)
61.0 (32.0-75.0)

Non Pathological Complete Response

(Non PCR, n=14)
69.0 (36.0-74.0)

Pathological Complete Response

(PCR, n=10)
27.0 (13.4-40.0)

Non Pathological Complete Response

(Non PCR, n=14)
19.5 (10.4-30.0)

Pathological Complete Response

(PCR, n=10)
3.1 (0.2-6.9)

Non Pathological Complete Response

(Non PCR, n=14)
6.5 (1.7-10.8)

Pathological Complete Response

(PCR, n=10)
24.0 (10.0-33.0)

Non Pathological Complete Response

(Non PCR, n=14)
22.5 (14.4-33.0)

Immune Cell Subsets

(n=24)
Groups

ALN

Median (Range)
(6) P Value

(5)

Pathological Complete Response

(PCR, n=10)
5.7 (0.6-29.6)

Non Pathological Complete Response

(Non PCR, n=14)
11.2 (3.2-38.6)

Pathological Complete Response

(PCR, n=10)
19.7 (2.2-60.4)

Non Pathological Complete Response

(Non PCR, n=14)
15.9 (6.8-39.0)

FOXP3
+

Tregs 0.019*

CD4
+

T cells 0.172

CD8
+

T cells 0.048*

CTLA-4
+

Tregs 0.341

CD163
+

Macrophages 0.796

CD56
+

NK cells 0.472
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Figure 3.40 Summary of the median % of major immune cell subsets between metastatic axillary lymph

nodes (ALNs) with pCR and non pCR

High % of CD8⁺ T cell: % of FOXP3⁺ Treg ratio in ALN para-cortical areas was

associated with a pCR in tumour-involved ALNs

The ratio of CD8⁺ T cell: FOXP3⁺ Treg infiltrates in primary tumours was

significantly higher in breast cancers subsequently showing a pCR post-NAC

(previously presented in Table 3.6). This ratio in ALN metastatic tumours was also

higher in the pCR group but did not reach statistical significance (5.87 versus 1.93,

p=0.08) (Table 3.30). High % of CD8⁺ T cell: % of FOXP3⁺ Treg ratio in the para-

cortical areas of ALNs was significantly associated with a pCR in tumour deposits in

metastatic ALNs. A median ratio of 7.24 was found in metastatic ALNs with a pCR

compared with 3.19 in metastatic ALNs with a non pCR (p=0.006).
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Table 3.30 The Association between CD8+ T Cell: FOXP3+ Treg Ratio and

Pathological Complete Response (pCR) to Neoadjuvant Chemotherapy

(1) CD8:FOXP3 ratio in primary and metastatic tumours; the ratio was calculated from the level of

tumour-infiltrating CD8⁺ T cells and tumour-infiltrating FOXP3⁺ Tregs (intratumourally). In ALNs, the

ratio was calculated from the % of CD8⁺ T cells and % of FOXP3⁺ Tregs present in ALN (tumour-free

areas) parenchyma; (2) Mann-Whitney U test; (3) ALN: Axillary lymph node; * Statistically significant

3.3.2 Expression of cytokines and biological molecules in ALNs

Th1, Th2 and Th17 cytokines, IDO, PDL1, TGF-β, IL-1 and VEGF were studied in 

post-NAC ALNs and the levels of expression between metastatic and non-metastatic

ALNs were compared (n=16).

ALNs with no metastases expressed high levels of the Th1 cytokines IL-2 and

IFN-γ (n=16) 

Significantly higher levels of IL-2 and IFN-γ expressions were found in post-NAC 

non-metastatic ALNs [88.9% (8 out of 9) versus 14.3% (1 out of 7), p=0.003 and

72.8% (8 out of 11) versus 20% (1 out of 5), p=0.049, respectively], compared with

metastatic ALNs (Table 3.31).

Sites Groups Median (Range)
(1) P Value

(2)

(PCR versus Non PCR)

Tumours with PCR 7.40 (0.27-45.00)

Tumours with Non pCR 1.48 (0.18-6.04)

Metastatic tumours with PCR 5.87 (1.35-21.92)

Metastatic tumours with Non pCR 1.93 (0.40-7.20)

ALNs with PCR 7.24 (3.33-75.00)

ALNs with Non pCR 3.19 (1.78-8.00)
0.006*

Primary breast tumours, n=33

(CD8Ѐ�d�ĐĞůů͗�&K yWϯЀ�dƌĞŐ�ƌĂƟŽͿ

Metastatic tumours, n=20

;��ϴЀ�d�ĐĞůů͗�&K yWϯЀ�dƌĞŐ�ƌĂƟŽͿ

ALNs
(3)

with metastases, n=24

(%CD8⁺ T cell : %FOXP3Ѐ�dƌĞŐ�ƌĂƟŽͿ

0.002*

0.080
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ALNs with metastases expressed high levels of the Th2 cytokine IL-10 (n=16)

By contrast, IL-10 showed a significantly higher expression in post-NAC metastatic

ALNs [71.4% (5 out of 7) versus 22.2% (2 out of 9), p=0.049]. There were no

significant differences in the levels of expression of IL-1, IL-17, IDO, TGF-β, PDL1 

and VEGF between metastatic and non-metastatic ALNs following NAC (p>0.05)

(Table 3.31).
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Table 3.31 Expression of Cytokines, Indoleamine 2,3-dioxygenase (IDO),

Programmed Death Ligand 1 (PDL1) and Vascular Endothelial Growth Factor (VEGF)

in ALNs(1) in Women with LLABCs(2) Following NAC(3)

(1) ALNs: Axillary lymph nodes; (2) LLABCs: Large and locally advanced breast cancers; (3) NAC:

Neoadjuvant chemotherapy; (4) IDO and TGF-β were scored as negative and positive; * Statistically 

significant

Cytokines

(n=16)
Groups

Low/Negative

Expression (n)

High

Expression (n)
Pearson Chi-

Square Value
P Value

Non-metastatic ALN (n=9) 3 6

Metastatic ALN (n=7) 2 5

Non-metastatic ALN (n=9) 1 8

Metastatic ALN (n=7) 6 1

Non-metastatic ALN (n=9) 3 6

Metastatic ALN (n=7) 3 4

Non-metastatic ALN (n=9) 7 2

Metastatic ALN (n=7) 2 5

Non-metastatic ALN (n=9) 1 8

Metastatic ALN (n=7) 3 4

Non-metastatic ALN (n=9) 2 7

Metastatic ALN (n=7) 4 3

Non-metastatic ALN (n=9) 7 2

Metastatic ALN (n=7) 5 2

Non-metastatic ALN (n=9) 1 8

Metastatic ALN (n=7) 4 3

Non-metastatic ALN (n=9) 5 4

Metastatic ALN (n=7) 5 2

Non-metastatic ALN (n=9) 6 3

Metastatic ALN (n=7) 6 1

IL-1 0.042 0.838

IL-2 8.905 0.003*

IL-4 0.152 0.696

IL-10 3.874 0.049*

IL-17 2.116 0.146

IDO
(4) 2.049 0.152

PDL1 0.085 0.771

IFN-γ 3.883  0.049*

TGF-β
(4) 0.423 0.515

VEGF 0.762 0.383
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Figure 3.41 IL-1 expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to IL-1 (Abcam, ab8320) at a 1:150 dilution for

overnight at 4˚C. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB 

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of IL-1 expression; B: high level of IL-1 expression. The H score [% of positive cells (brown

membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to assess the level of

expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic areas of a whole 

ALN section (7-10 HPFs).

Figure 3.42 IL-2 expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to IL-2 (Abcam, ab92381) at a 1:500 dilution

for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of IL-2 expression; B: high level of IL-2 expression. The H score [% of positive cells (brown

membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to assess the level of

expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic areas of a whole 

ALN section (7-10 HPFs).
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Figure 3.43 IL-4 expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with polyclonal Abs to IL-4 (Abcam, ab9622) at a

concentration of 4 µg/ml for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as

secondary antibody. DAB chromogen was used to visualize the staining. The sections were

counterstained with haematoxylin. A: low level of IL-4 expression; B: high level of IL-4 expression.

The H score [% of positive cells (brown membrane/cytoplasmic-stained cells) x intensity of staining (1

to 3)] was used to assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed 

on non-metastatic areas of a whole ALN section (7-10 HPFs).

Figure 3.44 IL-10 expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with polyclonal Abs to IL-10 (Abcam, ab34843) at a 1:400

dilution for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody.

DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low level of IL-10 expression; B: high level of IL-10 expression. The H score [% of

positive cells (brown membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic 

areas of a whole ALN section (7-10 HPFs).
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Figure 3.45 IL-17 expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with polyclonal Abs to IL-17 (Abcam, ab9565) at a 1:100

dilution for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody.

DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low level of IL-17 expression; B: high level of IL-17 expression. The H score [% of

positive cells (brown membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic 

areas of a whole ALN section (7-10 HPFs).

Figure 3.46 IDO expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to IDO (Abcam, ab55305) at a concentration of

0.75 µg/ml for 15 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary

antibody. DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low level of IDO expression; B: high level of IDO expression. The H score [% of

positive cells (brown membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic 

areas of a whole ALN section (7-10 HPFs).
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Figure 3.47 PDL1 expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with polyclonal Abs to PDL1 (Abcam, ab58810) at a

concentration of 2.5 µg/ml for 15 mins at RT. Polymeric HRP-linker antibody conjugate was used as

secondary antibody. DAB chromogen was used to visualize the staining. The sections were

counterstained with haematoxylin. A: low level of PDL1 expression; B: high level of PDL1 expression.

PDL1 expression was scored as negative/low (no detectable or weak brown membrane/cytoplasmic

staining) and high (moderate to strong staining). The staining grade was defined according to the

majority of the staining intensity in non-metastatic areas throughout an ALN section (7-10 HPFs).

Figure 3.48 IFN-γ expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at 

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with polyclonal Abs to IFN-γ (Abcam, ab9657) at a 

concentration of 4 µg/ml for 30 mins at RT. Polymeric HRP-linker antibody conjugate was used as

secondary antibody. DAB chromogen was used to visualize the staining. The sections were

counterstained with haematoxylin. A: low level of IFN-γ expression; B: high level of IFN-γ expression. 

The H score [% of positive cells (brown membrane/cytoplasmic-stained cells) x intensity of staining (1

to 3)] was used to assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed 

on non-metastatic areas of a whole ALN section (7-10 HPFs).
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Figure 3.49 TGF-β expression in the sections of axillary lymph nodes (ALNs), using IHC staining, at 

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to TGF-β (Abcam, ab64715) at a concentration 

of 12 µg/ml for overnight at 4˚C. Polymeric HRP-linker antibody conjugate was used as secondary 

antibody. DAB chromogen was used to visualize the staining. The sections were counterstained with

haematoxylin. A: low level of TGF-β expression; B: high level of TGF-β expression. The H score [% of 

positive cells (brown membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to

assess the level of expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic 

areas of a whole ALN section (7-10 HPFs).

Figure 3.50 VEGF expression in the sections of axillary lymph nodes (ALNs), using IHC staining at

400x magnification. Briefly, heat-mediated antigen retrieval was performed using citrate buffer, pH 6

(20 mins). The sections were then incubated with MAbs to VEGF (Dako, M7273) at a 1:50 dilution for

30 mins at RT. Polymeric HRP-linker antibody conjugate was used as secondary antibody. DAB

chromogen was used to visualize the staining. The sections were counterstained with haematoxylin. A:

low level of VEGF expression; B: high level of VEGF expression. The H score [% of positive cells

(brown membrane/cytoplasmic-stained cells) x intensity of staining (1 to 3)] was used to assess the level

of expression; low was ≤ 100 and high was > 100. Scoring performed on non-metastatic areas of a 

whole ALN section (7-10 HPFs).
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3.4 Circulating and Tumour-infiltrating Tregs: Comparisons and Correlations

The levels of blood and tumour-infiltrating FOXP3⁺ and CTLA-4⁺ Tregs, pre- and

post-NAC (n=16), were analysed for the association with pathological response to

NAC, the effects of NAC on levels of infiltration and any correlations between the

blood and tumour microenvironment.

Pre-NAC blood and tumour Tregs did not modify pathological response to NAC

Similar to pre-NAC tumour-infiltrating Tregs (FOXP3⁺ and CTLA-4⁺), the levels of

pre-NAC circulating Tregs [absolute numbers (AbNs) and %] were not significantly

different in any of the different NAC response groups (GPR versus PPR and pCR

versus non pCR, p>0.05) (Table 3.32).

Higher post-NAC blood (%) and intratumoural FOXP3⁺ Tregs were associated

with a poor response to NAC

Post-NAC, there was a significantly higher % of circulating FOXP3⁺ Tregs and

significantly higher levels of intratumoural FOXP3⁺ Tregs in the PPR group (p=0.001

and p=0.016, respectively) and in the patients whose tumours had no pCR (p=0.007

and p<0.001, respectively) (Table 3.33). Another significant difference was also

observed in the AbNs of circulating CTLA-4⁺ Tregs. A higher blood AbN of

circulating CTLA-4⁺ Tregs was significantly associated with the PPR group (p=0.008)

(Table 3.33).
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Table 3.32 Analyses of Pre-NAC Circulating and Tumour-infiltrating FOXP3+ and CTLA-4+ Tregs in Patients with LLABCs(1)

(1) LLABCs: Large and locally advanced breast cancers; (2) Average count per 400x high-power field; (3) Mann-Whitney U test; (4) AbN: Absolute number (cells/mm3);

(5) GPR: Good pathological response; (6) PPR: Poor pathological response; (7) PCR: Pathological complete response

Tregs Groups
Intratumoural

Median (Range)
(2) P Value

(3)
Peritumoural

Median (Range)
(2) P Value

(3) % Circulating

Median (Range)
P Value

(3)
AbN Circulating

Median (Range)
(4) P Value

(3)

GPR (n=9)
(5) 12.8 (2.4-96.8) 13.8 (2.2-110.6) 1.50(0.62-3.40) 235 (107-427)

PPR (n=7)
(6) 16.8 (4.2-45.6) 17.4 (6.6-44.8) 2.17 (1.18-3.24) 165 (155-180)

PCR (n=6)
(7) 36.6 (2.4-96.8) 18.0 (5.2-110.6) 1.55 (1.10-3.24) 266 (107-427)

Non PCR (n=10) 14.1 (4.2-45.6) 15.9 (2.2-44.8) 1.85 (0.62-3.40) 168 (155-235)

GPR (n=9) 0.4 (0.0-4.0) 0.6 (0.2-10.0) 1.10 (0.05-3.24) 13 (5-19)

PPR (n=7) 0.4 (0.0-2.2) 0.6 (0.2-1.6) 1.35 (0.76-1.71) 17 (8.5-19)

PCR (n=6) 1.1 (0.2-4.0) 1.4 (0.2-10.0) 1.05 (0.05-3.24) 15 (6-19)

Non PCR (n=10) 0.3 (0.0-2.2) 0.4 (0.2-1.6) 1.46 (0.23-1.80) 14.5 (5-19)

0.470 0.606 0.837 0.174

0.606 0.606 0.536 0.071

0.492 0.562 0.958 0.181

FOXP3
+

CTLA-4
+

0.147 0.093 0.635 0.875
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Table 3.33 Analyses of Post-NAC Circulating and Tumour-infiltrating FOXP3+ and CTLA-4+ Tregs in Patients with LLABCs(1)

(1) LLABCs: Large and locally advanced breast cancers; (2) Average count per 400x high-power field; (3) Mann-Whitney U test; (4) AbN: Absolute number (cells/mm3);

(5) GPR: Good pathological response; (6) PPR: Poor pathological response; (7) PCR: Pathological complete response; * Statistically significant

Tregs Groups
Intratumoural

Median (Range)
(2) P Value

(3)
Peritumoural

Median (Range)
(2) P Value

(3) % Circulating

Median (Range)
P Value

(3)
AbN Circulating

Median (Range)
(4) P Value

(3)

GPR (n=9)
(5) 0.0 (0.0-2.4) 0.8 (0.4-7.4) 0.53 (0.25-0.90) 166 (35-230)

PPR (n=7)
(6) 2.2 (0.6-22.2) 1.4 (1.0-28.4) 1.18 (0.80-1.85) 157 (118-168)

PCR (n=6)
(7) 0.0 (0.0-0.0) 1.3 (0.4-7.4) 0.35 (0.25-0.90) 173 (49-230)

Non PCR (n=10) 1.8 (0.6-22.2) 1.4 (0.4-28.4) 1.15 (0.53-1.85) 158 (35-177)

GPR (n=9) 0.0 (0.0-1.2) 0.0 (0.0-1.2) 0.58 (0.10-1.71) 5 (2-7)

PPR (n=7) 0.4 (0.0-1.2) 0.4 (0.0-5.2) 0.89 (0.37-1.69) 7 (6-15)

PCR (n=6) 0.0 (0.0-1.0) 0.0 (0.0-0.2) 0.55 (0.10-1.25) 5.5 (2-7)

Non PCR (n=10) 0.3 (0.0-1.2) 0.3 (0.0-5.2) 0.77 (0.37-1.71) 6.5 (4-15)

0.114 0.299 0.299 0.008*

0.118 0.181 0.220 0.181

FOXP3
+

CTLA-4
+

0.313

0.016* 0.252 0.001* 0.470

<0.001* 0.635 0.007*
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Concurrent reduction of blood and tumour-infiltrating Tregs as a result of NAC

Table 3.34 shows the very important effects of NAC on FOXP3⁺ and CTLA-4⁺ Tregs.

There were significant reductions in the peripheral circulating (% and AbNs) and

tumour-infiltrating (intratumoural and peritumoural) Tregs after NAC. These findings

emphasise the positive influences of NAC on anticancer immune defences by

significantly abolishing both systemic and local immune regulatory cells.

Table 3.34 Analyses of Circulating and Tumour-infiltrating FOXP3+ and CTLA-4+

Tregs in Patients with LLABCs(1) Undergoing NAC(2) (n=16)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; (3)

Wilcoxon signed rank test; (4) Average count per 400x high-power field; (5) AbN: Absolute number

(cells/mm3); * Statistically significant

A positive correlation between blood (%) and tumour-infiltrating FOXP3⁺ Tregs

post-NAC

Prior to NAC, the level of circulating Tregs was not found to be significantly

correlated with the level of Tregs in the tumour microenvironment. However, this

correlation became significant after NAC. There was a positive correlation between

Tregs Groups Pre-NAC Post-NAC P Value
(3)

Intratumoural Infiltrating: Median (Range)
(4)

14.8 (2.4-96.8) 0.7 (0-22.2) 0.001*

Peritumoural Infiltrating: Median (Range)
(4)

15.9 (2.2-110.6) 1.4 (0.4-28.4) 0.001*

% Circulating: Median (Range) 1.54 (0.62-3.40) 0.81 (0.25-1.85) 0.001*

AbN Circulating: Median (Range)
(5)

170 (107-427) 159 (35-230) < 0.001*

Intratumoural Infiltrating: Median (Range) 0.4 (0.0-4.0) 0.1 (0.0-1.2) 0.060

Peritumoural Infiltrating: Median (Range) 0.6 (0.2-10.0) 0.1 (0.0-5.2) 0.029*

% Circulating: Median (Range) 1.31 (0.05-3.24) 0.72 (0.10-1.71) 0.017*

AbN Circulating: Median (Range) 15 (5-19) 6 (2-15) <0.001*

FOXP3
+

CTLA-4
+
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post-NAC % of peripheral circulating FOXP3⁺ Tregs and post-NAC intratumoural

FOXP3⁺ Tregs [Correlation Coefficient (rho) 0.687, p=0.003] (Table 3.35). Patients

with a higher % of peripheral circulating FOXP3⁺ Tregs after NAC had high FOXP3⁺

Tregs in the residual tumours. This was significantly associated with a poor response

to NAC. There was no significant correlation observed between circulating and

tumour-infiltrating CTLA-4⁺ Tregs (Tables 3.36).

Table 3.35 Correlation Between Circulating and Tumour-infiltrating FOXP3+ Tregs

[Spearman's Correlation Coefficient (rho)] in Patients with LLABCs(1) Undergoing

NAC(2) (n=16)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; NA: Not

applicable; * Statistically significant

Intratumoural

infiltrating

Peritumoural

infiltrating

Intratumoural

infiltrating

Peritumoural

infiltrating

%Circulating

Correlation Coefficient -0.116 -0.208

P Value (2-tailed) 0.668 0.440

AbN Circulating

Correlation Coefficient -0.191 -0.263

P Value (2-tailed) 0.478 0.325

%Circulating

Correlation Coefficient 0.687 0.347

P Value (2-tailed) 0.003* 0.188

AbN Circulating

Correlation Coefficient -0.342 0.016

P Value (2-tailed) 0.195 0.952

Post-NAC

NA NA

NA NA

NA NA

NA NA

Groups

Pre-NAC Breast Post-NAC Breast

Pre-NAC
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Table 3.36 Correlation Between Circulating and Tumour-infiltrating CTLA-4+ Tregs

[Spearman's Correlation Coefficient (rho)] in Patients with LLABCs(1) Undergoing

NAC(2) (n=16)

(1) LLABCs: Large and locally advanced breast cancers; (2) NAC: Neoadjuvant chemotherapy; NA: Not

applicable

The significant findings from the study are summarised in Table 3.37. The results

document those findings from our study which are in agreement with previously

published data (referenced). Table 3.37 also documents new/original findings which,

to the best of our knowledge, have not been previously published.

Intratumoural

infiltrating

Peritumoural

infiltrating

Intratumoural

infiltrating

Peritumoural

infiltrating

%Circulating

Correlation Coefficient -0.425 -0.220

P Value (2-tailed) 0.101 0.412

AbN Circulating

Correlation Coefficient 0.055 0.242

P Value (2-tailed) 0.839 0.367

%Circulating

Correlation Coefficient 0.145 0.305

P Value (2-tailed) 0.592 0.250

AbN Circulating

Correlation Coefficient 0.270 0.034

P Value (2-tailed) 0.312 0.899

Post-NAC

NA NA

NA NA

NA NA

NA NA

Groups

Pre-NAC Breast Post-NAC Breast

Pre-NAC
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Table 3.37 Summary of the Key and Significant Findings from the Study

New/Original Findings

Primary tumours

1. Pre-NAC CD56+ NK cells were associated with a pCR

2. Pre-NAC CD163+ TIMs were associated with a pCR

3. Pre-NAC CTLA-4+ Tregs (peritumoural) were associated with a pCR

4. NAC reduced CTLA-4+ Tregs, PD1+ T cells, CD56+ NK cells (intratumoural) and CD1a+ DCs

(intratumoural)

5. NAC reduced both the blood and tumour FOXP3+ and CTLA-4+ Tregs concurrently

6. There was a positive correlation between blood (%) and tumour (intratumoural) FOXP3+ Tregs (post-NAC)

7. High FOXP3+ Tregs (post-NAC) in blood (%) and tumour (intratumoural) were associated with a poor

pathological response

8. Pre-NAC high VEGF expression was associated with a pCR

9. Post-NAC high IL-10 and IL-17 expressions were associated with a non pCR

10. NAC reduced IL-4 expression

Metastatic tumours

1. High levels of TILs, CD4+ and CD8+ T cells, CD56+ NK cells and CD163+ TIMs were associated with

ALN pCRs

2. Higher levels of FOXP3+ and CTLA-4+ Tregs and CD56+ NK cells were present in metastatic tumours than

in the corresponding primary tumours

3. CD8+ T cells and CD56+ NK cells showed a positive correlation between metastatic and primary tumours

ALNs

1. High % of CD8+ T cells and low % of FOXP3+ Tregs in para-cortical (tumour-free) areas of metastatic

ALNs were associated with ALN pCRs

2. High CD8:FOXP3 ratio in para-cortical (tumour-free) areas of metastatic ALNs was associated with an

ALN pCR

3. Th2 polarisation was present in ALNs with metastases (high IL-10, low IL-2 and IFN-γ in ALNs with 

metastases)

Confirmed Previously Published Findings

Primary tumours

1. Pre-NAC TILs (ITu-Ly, Str-Ly and LPBC) were associated with pCRs [Denkert et al. (2010), West et al.

(2011), Yamaguchi et al. (2012), Ono et al. (2012), Lee et al. (2013), Issa-Nummer et al. (2013)]

2. Pre-NAC CD4+ and CD8+ T cells were associated with pCRs [Oda et al. (2012), Seo et al. (2013), Lee et al.

(2013), Garcia-Martinez et al. (2014)]

3. Pre-NAC high CD8:FOXP3 ratio was associated with a pCR [Ladoire et al. (2011)]

4. NAC reduced FOXP3+ Tregs [Aruga et al. (2009), Liu et al. (2012), Demir et al. (2013)] and CD4+ (but not

CD8+) T cells [Garcia-Martinez et al. (2014)]
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CHAPTER 4: DISCUSSION

4.1 Introduction and Overview

Variable levels of the tumour-infiltrating immune cells and the expression of a range

of cytokines and different biological molecules in the tumour microenvironment of

paraffin-embedded breast cancer and ALN specimens were well demonstrated with the

IHC techniques used. The parameters studied represented the in situ immunity in the

tumour microenvironment and the tumour-draining ALNs which, as well as the

systemic immune system, play a key role in the responses elicited in breast cancers

with NAC. The broad range of immune cell subsets and biologically active molecules

studied in this thesis provides a better understanding of the possible anticancer role of

the local immune milieu and its contribution to immune-mediated tumour cell death

associated with NAC.

The NAC combination (AC followed by T ± X) used in our trial is known to have

immunomodulatory effects. Doxorubicin has been shown to enhance the generation of

antigen-specific CD8+ T cells and promote tumour infiltration by activated IFN-γ 

producing CD8+ T cells [172, 173]. In vitro, doxorubicin increased antigen-specific

CD4+ Th1 responses by inducing expression of CD40L and 4-1BB on CD4+ T cells

[31]. Cyclophosphamide inhibits the generation and function of FOXP3+ Tregs in

humans with various cancers [32, 169]. Taxanes have been shown to have immune
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stimulatory effects against tumours [95, 103]. In patients with advanced breast cancer,

docetaxel therapy was associated with an increase in serum IFN-γ, IL-2 and IL-6 

levels and enhancement of circulating NK cell activity [29, 30]. Capecitabine is

enzymatically converted to 5-FU on ingestion. 5-FU is known to increase the

expression of TAAs on tumour cells and to enhance ADCC [177].

Our study encompassed the crucial immune subsets which play a major role in

anticancer immune defences (innate: NK cells, DCs and macrophages; adaptive: T

effector lymphocytes), as well as the major inhibitory mechanisms enabling immune

escape and inducing tumour tolerance (Tregs, PD1⁺ T cells, M2-polarised TIMs and

PMNs). The complex biological interactions between the immune cell subsets, as well

as between immune cells and tumour cells (either by direct contact or secreting

cytokines/ biological molecules) in situ in the tumour environment and their

relationship to circulating subsets (documented in a previous study [15]) were

investigated. We confirmed previously published findings and made a number of new

(not previously reported) and significant observations, in LLABCs and ALNs pre- and

post-NAC.

Tumour destruction by NAC is a complex process and involves various interactions

between the cancer and the host immune cells. Cytotoxic chemotherapy non-

specifically destroys tumour cells as well as normal rapidly proliferating cells. Innate

and adaptive anticancer immunity, systemically and in situ, which are enhanced by

NAC (e.g. by releasing TAAs, activating DCs and reducing immune inhibitory

mechanisms), make an important contribution to tumour cell death. Immune-mediated
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tumour cell death, in turn, enhances the response of NAC on tumour cell destruction

and clearance. Our findings that putative anticancer immune subsets (tumour-

infiltrating CD4⁺ and CD8⁺ T cells, and CD56⁺ NK cells) appeared to make an

important contribution to a pCR and that NAC significantly reduced the level of

immune inhibitory/regulatory subsets (tumour-infiltrating Tregs, PD1⁺ T cells)

confirmed the hypothesis postulated in the thesis. However, inadequate or suboptimal

anticancer immune responses (low/moderately activated), which are unable to kill and

delete all tumour cells, may result in a state of dormancy (no or very low tumour cell

proliferative rate) [161]. As most chemotherapeutic agents act during cell division, a

dormant state may induce tumour cells to become less sensitive or even resistant to

NAC. In contrast, some inhibitory immune subsets which are able to promote tumour

growth (increasing proliferative rate) may make such tumours more sensitive to NAC.

These reasons may be responsible for some of our findings showing that certain

inhibitory immune subsets (high levels of CD163⁺ TIMs and peritumoural CTLA-4⁺

Tregs) were also associated with a pCR. The thesis characterised the different subsets

present in the tumour microenvironment which were associated with a good

pathological response to NAC and a pCR, and identified high levels of TILs and

CD56+ NK cells as independent predictors of a pCR (multivariate analysis).

The NAC used in our study differentially preserved the tumour-infiltrating CD8+ T

cells but significantly reduced both the circulating and tumour-infiltrating FOXP3+

and CTLA-4+ (peritumoural) Tregs, as well as immune checkpoint PD1+ T cells,

thereby preventing the secretion of inhibitory cytokines (IL-4, IL-10, TGF-β), and 

disrupting the PD1/PDL1 pathway. The restoration of immune anticancer effector
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mechanisms is likely to lead to an enhancement of immune-mediated tumour cell

death. Moreover, the significant correlation of high CD8+ T cells and CD8+ T cell:

FOXP3+ Treg ratio with pCR (and hence DFS and OS) suggests a close association

between high levels of CD8+ T cells/CTLs and the concomitant depletion of Tregs.

The close interrelationship between a pCR in LLABCs and the concomitant immune

changes induced by NAC suggests that immune-mediated tumour cell death may be a

crucial component of NAC-associated tumour cell destruction and removal.

The clinical benefits of NAC are compromised by its toxic morbidity, as well as the

costs involved. Not all of the patients with LLABCs respond well to NAC [105]. Non-

responsiveness or progressive disease during NAC cycles results in patient

disappointment and medical staff frustration, and the risk of a reduced likelihood of a

cure. The immunological parameters characterised in the breast (and ALNs) may be

used in conjunction with other clinical and pathological parameters to specifically

identify patients with LLABCs who are more likely to achieve a pCR with NAC, and

thus best suited to receive NAC.

4.2 Tumour-infiltrating Immune Cells and Pathological Responses to NAC

4.2.1 TILs and pCR

In pre-NAC specimens, we investigated the putative anticancer defences, as

characterised by TILs, and their possible role in the responses elicited with NAC. A

high level of TILs denoted a prominent immune inflammatory response in the tumour
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microenvironment in women with LLABCs. This was significantly associated with a

good pathological response and pCR in the breast. These findings are similar to the

results from a much larger (1000 samples) study of TILs and NAC responses in breast

cancer [19]. Although the high level of TILs was significantly associated with high

grade and ER-ve tumours, which may have contributed to a higher pCR rate, the

multivariate analysis established the independent predictive value of TILs as a

predictor of a pCR after adjusting for tumour grade and ER status. Our findings of a

high level of TILs as an independent predictive factor for a pCR with NAC is in

agreement with the few previously published articles [17-19, 384, 389, 394]. This

important finding has confirmed the strong association between the in situ immune

profile in the breast tumour microenvironment and the pathological responses elicited

with NAC.

The level of TILs has been evaluated in stroma and in tumour nests (intratumoural)

separately. We documented that both stromal and intratumoural TILs, as well as

LPBCs, were associated with a pCR and there was a positive correlation between the

levels of stromal and intratumoural TILs. TILs, however, are able to move within the

living tissue microenvironment. The distinction may be somewhat artificial and related

to the static situation in histological sections [422]. Both compartments, therefore,

represent TILs. Some studies have found stromal TILs to be a superior and more

reproducible parameter than intratumoural TILs in the prediction of clinical outcomes

[385, 386] and a pCR with NAC [384]. Nevertheless, both stromal and intratumoural

TILs are predictive of pathological response to NAC in most studies.
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The evidence of TILs in prediction of a pCR in breast cancer with NAC has

accumulated during the time while our study was on-going. Recently, a systematic

review and meta-analysis validated the predictive role of TILs in response to NAC in

breast cancer [432] and the ‘International TILs Working Group’ has been established

[422]. Despite the results from this meta-analysis, it is still unclear as to the predictive

role of different subsets of TILs in response to NAC.

4.2.2 CD4+, CD8+ T lymphocytes, FOXP3+ Tregs and pCR

The major component of TILs is T lymphocytes, which are predominantly CD4⁺ and

CD8⁺ T cells. CD4⁺ and CD8⁺ T cells are the major effectors of the adaptive cell-

mediated immune response (T-helper cells and CTLs). The significantly higher levels

of CD4⁺ and CD8⁺ T cells (intratumoural and peritumoural) in LLABCs with pCRs

support the postulate that adaptive anticancer immunity plays an important role in

modulating responses of the breast cancer to NAC. These findings are consistent with

results from previous studies [393, 394, 396]. A recently published study, however,

documented a significantly higher pCR rate in breast tumours with a high level of

CD4⁺ T cell but low level of CD8⁺ T cell infiltrates. This study attributed the high

level of CD4⁺ T cell infiltration as the main factor responsible for the occurrence of a

pCR [224]. The results in this study were obtained using the TMA technique. TMAs

focus on a much smaller area in studied specimens with the risk of bias due to the

potential heterogeneity of distribution of TILs, thus accounting for some of the

variance with the findings published by a number of other authors [393, 394, 396]. In

our study, full tissue sections were used to document TIL subsets. The difference in
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intrinsic subtypes of breast cancer studied as well as the variation in NAC regimens

used among the studies may also be responsible for some of the contradictive findings.

The median number of intratumoural CD4⁺ T cells [Median: 36.8 (Interquartile range,

IQR: 19.7 – 293.9) cells/mm2] was higher than the median number of infiltrating

CD4⁺ T cells present in normal breast lobules [Median: 27.3 (IQR: 0 - 101.2)

cells/mm2] [433], whereas the median number of intratumoural CD8⁺ T cells

[Median: 79.4 (IQR: 23.4 – 257.9) cells/mm2] was lower than the median number of

infiltrating CD8⁺ T cells present in normal lobules [Median: 216.3 (IQR: 145.8 –

303.3) cells/mm2] [433]. Our data, which was presented as the median number of cells

per HPF (0.239 mm2) with a minimum to maximum range was converted to cells per 1

mm2 with interquartile ranges (1st quartile to 3rd quartile) to enable direct comparisons

to be made. The comparison between normal breast tissue and LLABCs showed an

inverted ratio of CD4+ and CD8+ components of T lymphocytes present in the local

milieu. However, the differences in CD4⁺ and CD8⁺ T cell levels between normal

breast tissue and LLABC are less pronounced than the levels in the FOXP3⁺ Treg 

subset between normal and malignant breast tissues. The median number of

intratumoural FOXP3⁺ Tregs present in LLABCs [Median: 23.4 (IQR: 9.6 – 61.9)

cells/mm2] was substantially increased when compared with normal breast lobules

[Median: 0.5 (IQR: 0 – 4) cells/mm2]. The data on FOXP3⁺ Tregs present in normal

breast tissue was documented from specimens obtained from women undergoing a

reduction mammoplasty [229]. There was more than a 45 fold higher median number

of FOXP3⁺ Tregs present in LLABCs, compared with normal breast tissue indicating

the very prominent immunosuppression in the tumour microenvironment of LLABCs.
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Similar to TIL compartments, both peritumoural and intratumoural infiltrates represent

the extent and distribution of the infiltration of these immune cell subsets. There is a

postulate that lymphocytes directly interacting with cancer cells (intratumoural) might

be more relevant and, therefore, more useful for prognostic/predictive evaluation. The

intratumoural infiltrates, however, are usually present in lower numbers and detected

in fewer cases. They are also more heterogeneous than peritumoural infiltrates. Some

authors suggest that the peritumoural/stromal infiltration is a superior and more

reproducible parameter than intratumoural infiltration in documenting the level of

immune infiltrates in the tumour microenvironment [422]. Since the peritumoural

infiltration is measured in the areas/spaces between tumour nests, the growth pattern

of tumour nests will not affect the measurement (cell count). Moreover, measurement

of intratumoural infiltration may not add anything further to the information provided

by peritumoural infiltration. Despite the methodological reasoning mentioned above,

both peritumoural and intratumoral CD4⁺ and CD8⁺ T cells are predictive of a pCR

with NAC in our study. A positive correlation with the grade of pathological response

(1-5) to NAC was also shown in the study.

The level of tumour-infiltrating FOXP3⁺ Tregs in our study, however, failed to

demonstrate any predictive role for a pCR. The previous studies of pre-NAC tumour-

infiltrating FOXP3⁺ Tregs and the pCR rate following NAC in breast cancers had

shown inconsistent findings. Oda et al. (2012) documented that the presence of pre-

NAC tumour-infiltrating FOXP3⁺ Tregs in breast cancers was significantly associated

with high pCR rates [396]. Seo et al. (2013) and Lee et al. (2013) also documented

that the high levels of tumour-infiltrating FOXP3⁺ Tregs were associated with a pCR
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[393, 394]. On the other hand, other studies have shown that absence or low levels of

pre-NAC tumour-infiltrating FOXP3⁺ Tregs in breast cancers was associated with a

better prognosis (DFS and OS) and a high pCR [229, 234, 390]. The variability of

breast cancer subtypes (ER and HER2 status, tumour grade, etc.) enrolled in each

study and also the subtypes of FOXP3⁺ Tregs (iTregs and nTregs) present in the

tumours, as well as the presence of FOXP3 on activated T lymphocytes may be

responsible for these different findings. To address the relevance of pre-NAC tumour-

infiltrating FOXP3⁺ Tregs, the specific subtypes of breast cancer and Tregs need to be

identified and compared.

Nevertheless, the relevance of tumour-infiltrating FOXP3⁺ Treg levels was shown

when combined with the CD8+ T cell levels. The association of high levels of tumour-

infiltrating CD4+ and CD8+ T cells (which are major components of TILs) and a pCR

with NAC (mentioned above) may be an effect of the high level of TILs in the

specimens but the CD8⁺ T cell: FOXP3⁺ Treg ratio is not. The CD8⁺ T cell: FOXP3⁺

Treg ratio is likely to be a good biological marker representing the status of adaptive

anticancer immunity in the local milieu of LLABCs. CD8+ CTLs are able to destroy

tumour cells after appropriate activation while FOXP3+ Tregs inhibit and dampen

down the generation of CTLs, secrete immunosuppressive IL-10 and TGF-β, as well 

as mediate IL2 deprivation in the local milieu [8, 227]. A high ratio (intratumoural or

peritumoural) in the tumour microenvironment in our study was associated with a pCR

and also had a positive correlation with the pathological grade of response to NAC.

These results highlight the requirement for activated CTLs and concomitant depletion

of immunosuppressive Tregs. Dysfunctional CD8⁺ T cell responses as a result of



217

excessive and prolonged stimulation and continuous inappropriate signal activation

results in T cell exhaustion and loss of effector and memory function. This persists

even after removal of Tregs [434]. The results of our study confirm the findings

previously documented by Ladoire et al. (2011) [391]. Increased number of CD8+ T

cells and decreased number of FOXP3+ Tregs in the tumour microenvironment are

likely to be associated with a better response to NAC.

Although identifying specific subsets of TILs with the IHC technique may not be more

reliable than the level of TILs in terms of predicting a pCR with NAC, it provides a

better understanding of the immune complexity in the tumour microenvironment and

the possible contribution of specific immune cell subsets to immune-mediated tumour

cell death associated with a better pathological response to NAC.

4.2.3 CD56⁺ NK cells and pCR

High levels of CD56⁺ NK cell infiltration, either intratumoural or peritumoural, were

associated with good pathological responses and pCRs. Furthermore, the level of ≥3 

cells/5HPFs was an independent predictive factor for a pCR. CD56 has been used to

document the subset of TILs in breast cancer by Hornychova et al. (2008). They

demonstrated an increased number of CD56+ NK cell counts after NAC [388]. CD56⁺

NK cells have been shown to play an important role in tumour immune surveillance,

in the prevention of progressive tumour growth and in the defence against metastatic

dissemination. An important mechanism of the CD56⁺ NK cell anticancer effect, apart

from tumour cell lysis, occurs via the secretion of IFN-γ, activation of T lymphocytes 

and the selective generation of immunogenic DCs [435, 436]. Although most
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established tumours in animal models have very low levels of NK cells, adoptively

transferred ex vivo activated NK cells readily infiltrate tumours and induce tumour cell

death [437]. However, in situ production of IL-2 and IL-15 is necessary to continually

reactivate infiltrating NK cells to prevent NK cell exhaustion and inhibition by

suppressor/inhibitory cells and humoral factors, such as TGF-β in the tumour milieu 

[438, 439]. Most human solid tumours have very low levels of CD56⁺ NK cell

infiltration. However, where there was more prominent infiltration by CD56⁺ NK cells

in certain cancers (colorectal carcinoma, oesophageal squamous cell carcinoma,

gastric carcinoma, squamous cell lung cancer), this was shown to be associated with

an improved prognosis and reduction in tumour recurrence [256-259].

There is a dearth of published evidence regarding tumour-infiltrating CD56⁺ NK cells

in LLABCs. To the best of our knowledge, this is the first time that this significant

association between tumour-infiltrating CD56⁺ NK cells and pathological responses to

NAC in LLABCs has been described. This finding emphasises the important role of

innate immunity in modifying the response to NAC.

However, reduced NK cell cytotoxicity and altered NK cell phenotypic profiles have

been demonstrated in patients with breast cancer. There was also an increased

proportion of more immature or non-cytotoxic NK cells [440, 441]. The IHC

technique used in the study was unable to define specific NK cell subsets

(CD16+CD56dim and CD16-CD56bright) with their different NK cell functions

(cytotoxicity, cytokine secretion). In addition, we did not demonstrate any association

between in situ tumour levels of IL-2, INF-γ or TGF-β and the pathological response 
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elicited in the breast tumour by NAC. The levels of tumour-infiltrating CD56⁺ NK

cells documented in our study may not be representative of their functional activity

(cytotoxicity and/or cytokine secretion).

4.2.4 CD1a⁺ DCs

The level of tumour-infiltrating CD1a⁺ DCs, which has been documented to show a

significantly better clinical outcome and OS in many solid cancers [284-287], has not

been found to be significantly associated with a better OS in breast cancer [281].

There has been no previously published study regarding tumour-infiltrating CD1a⁺

DCs in LLABCs and their relationship to pathological responses with NAC. Our

findings showed no significant association between the levels of tumour-infiltrating

CD1a⁺ DCs and pathological responses to NAC. DCs are potent APCs and are

necessary to initiate and direct adaptive anticancer immunity. Our findings may

indicate that the higher levels of DCs in the microenvironment of LLABCs did not

exhibit better anticancer functions and support the previous studies that DCs in breast

cancers are poorly activated/switched-off [279, 280]. The number/density of tumour-

infiltrating CD1a⁺ DCs alone cannot predict the outcome of treatment. Additionally,

the different subtypes and level of maturation of DCs affect their functions and

expressions. Identification of tumour-infiltrating DCs with different cellular

(activating) markers, apart from CD1a, may be more relevant.

The immunological functions of tumour-infiltrating DCs in LLABCs remain poorly

defined. These cells were documented to be immature/poorly activated or switched-

off, therefore, unable to induce an efficient anticancer immune response. Inhibition of
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DC maturation and function appears to be one of the mechanisms that tumours exploit

to evade anticancer immunity [442]. It has been shown that cancer cells were able to

induce the differentiation of mature DCs to TGF-β secreting DCs in vitro. These DCs

were poor at eliciting the activation of naïve T cells and sustaining the differentiation

into Th1 cells. TGF-β secreting DCs directly expand FOXP3+ Tregs (through TGF-β) 

and also recruit FOXP3+ Tregs through chemokine production such as CCL22 [443].

Several therapeutic strategies have been proposed in attempting to restore the ability of

DCs to mediate an efficient anticancer immune response.

4.2.5 PD1⁺ T cells and CTLA-4⁺ Tregs as immune co-inhibitory subsets

Even through PD1⁺ T cells were frequently found in the microenvironment of

LLABCs, as well as the expression of PDL1, their levels were not shown to have any

association with pathological responses to NAC. Targeting the co-inhibitory

checkpoint pathway of PD1 is a new and effective treatment modality/option for

advanced metastatic melanoma and NSCLC [189, 190]. Its relevance in LLABCs

requires further investigation. Similar to PD1, another co-inhibitory checkpoint

molecule is CTLA-4. Contrary to our postulate, a high level of peritumoural CTLA-4⁺

Tregs (provides inhibitory effect to anticancer immune response) in LLABCs showed

a significant association with a pCR. High levels of tumour-infiltrating PD1⁺ T cells

and CTLA-4⁺ Tregs, as well as PDL1 expression, have been shown to be associated

with poor survival and positively correlated with high tumour grade and in TNBCs

[190, 242, 297, 298]. The association between high levels of CTLA-4⁺ Tregs and high

tumour grade with a pCR may be responsible for this contradictory finding in our

study.
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The negative contributions of these immune inhibitory subsets to pathological

responses to NAC may be difficult to establish because their levels are likely to be

prominent in tumour subtypes with high pCR rates. In our study, 55% of the LLABCs

(18 out of 33 specimens) were high tumour grade and 9% of the LLABCs (3 out of 33

specimens) were TNBCs. In the analysis of clinical and pathological parameters, high

tumour grade was significant associated with a pCR. The analysis within a particular

subtype of breast cancer may provide a better understanding for the possible

contribution of these inhibitory subsets to pathological response to NAC.

4.2.6 CD66b⁺ PMNs (TANs)

High levels of tumour-infiltrating CD66b⁺ PMNs have been demonstrated to be

significantly associated with poor clinical outcomes (DFS, OS) in various solid

cancers [306-308]. In our study they were not significantly associated with

pathological responses to NAC in LLABCs. Mildly/or moderately activated PMNs

(recently described as N2 tumour-associated neutrophils) release small/moderate

amounts of oxygen radicals and proteinases when they enter the tumour

microenvironment [303, 304]. The small/moderate levels of these toxic substances are

unable to destroy tumours but promote tumour growth and invasiveness. However,

they were present in small numbers in the microenvironment of LLABCs. The

differences of responses to NAC may be difficult to identify with a small cohort of

only 16 patients. However, this is the first time that a relationship between tumour-

infiltrating CD66b⁺ PMNs and pathological responses to NAC in LLABCs has been

described (no published data, to date).
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4.2.7 CD163+ TIMs and pCR

TIMs derived from circulating monocytes are recruited to the tumour

microenvironment by a number of chemokines and factors released from necrotic

cells, and in response to hypoxia. Once localised, monocytes respond to the tumour

microenvironment and mature into TIMs expressing CD163 (a haemoglobin scavenger

receptor), as an alternatively activated M2 phenotype [265]. These macrophages

develop properties favouring tumour growth and metastatic spread [262, 266, 267].

The data from a meta-analysis (solid tumours including breast cancer) showed that

high levels of tumour-infiltrating M2 macrophages were associated with poor

prognosis (DFS and OS) [268]. Contrary to our postulate (high levels of the M2 TIMs

negatively influenced anticancer immune defences and pathological responses to

NAC), high levels of tumour-infiltrating CD163⁺ macrophages (M2 phenotype),

which support tumour progression and immune escape, were significantly associated

with a good pathological response and pCR in our study. Since a pCR is a surrogate

marker for a good OS [107-109], our findings demonstrated the reverse results.

Heys et al. (2012) documented TIMs in breast cancer using CD68, suppressor of

cytokine signalling (SOCS) 1 and SOCS3. SOCS1 (representing M2 macrophages)

inhibits pro-inflammatory signalling pathways downstream of IFN-γ and TLR4, whilst 

SOCS3 (representing classically activated M1 macrophages) inhibits signal transducer

and activator of transcription 3 (STAT3) signalling. High levels of SOCS3+ TIMs in

breast tumours were associated with a pCR with NAC. There was no association

between SOCS1+ TIMs and pathological response to NAC [274]. These findings are

different from our results. The use of different cellular markers in documenting the

alternative activated M2 macrophages yielded variable results. To differentiate M2
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and M1 macrophages in the tumour microenvironment may need more specific

markers. However, there is a lack of published data on CD163⁺ TIMs and their

relationship with pathological responses to NAC in breast cancer. Our findings suggest

that high levels of CD163⁺ TIMs may be a predictor for a good pathological response/

pCR to NAC, but not necessarily to DFS and OS, as discussed above for CTLA-4+

Tregs. Similar findings published with other parameters, indicate that certain types of

cancers (e.g. TNBCs) are associated with a high pCR but have a poor long-term

outcome [110]. The high level of the M2 CD163⁺ TIMs in the microenvironment, as

well as their production of certain biological molecules (VEGF, EGF and MMPs) may

make the local environment a privileged site for tumour cell proliferation and invasion

[264]. Highly proliferative and more aggressive breast tumours have better responses

to chemotherapy [19, 51]. The significantly high level of VEGF in the specimens with

pCR from our study also supports this concept.

Macrophages are heterogeneous with different subsets having different functions. The

present study suggests that the level of CD68+ TIMs (general macrophage marker) in

the microenvironment of breast tumours is not associated with a pCR and thus not

related to prognosis [273]. Thus, it is unsurprising that our study also showed no

association of CD68+ TIMs with pathological response to NAC. Identifying TIMs with

cellular markers related to their functions/activations, as for CD163 or SOCS, is

necessary to document the potential contribution of TIMs to tumour cell growth and

response to NAC.
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4.3 CD44⁺, CD24-/low CSCs and PCR

In solid tumours, it has been demonstrated that only a small proportion of the cancer

cells are able to form colonies in an in vitro clonogenic assay [444]. A phenotypically

distinct subset of cancer cells has the capacity to proliferate and form new tumours.

Some biological markers can be used to identify these clonogenic cells in the tumours

distinguishing the tumourigenic (tumour initiating CSCs) cells from other non-

tumorigenic cells. The putative stem cell markers CD44⁺ and CD24-/low are frequently

used to identify CSCs present in breast cancer (strongly express the adhesion molecule

CD44 and very low levels of the adhesion molecule CD24) [377, 378]. Poor

response/resistance to NAC in LLABCs may be related to the presence of CSCs,

which are inherently resistant to chemotherapy and radiotherapy [374-376]. Our study,

however, failed to demonstrate any significant association between the different

pathological responses with NAC in breast tumours with the presence of CSCs. The

expression of CD44⁺ CD24-/low was not predictive of a pCR. In the study, the

expression of CD44 and CD24 were documented by a single IHC-staining of two

sections from each specimen. This method may not be appropriate to document the

CSCs in breast tumours. Abraham et al. (2005) in an IHC study evaluating breast

CSCs (identified these markers by double-staining IHC technique) showed no

association with clinical outcome and OS [378].

In LLABCs with no pCR following NAC, the expression of these adhesion molecules

in residual tumours compared with the corresponding pre-NAC tumours was not

significantly altered. NAC had no significant effect on the level of expression of these
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markers in LLABCs. These findings partly support the postulate that CD44⁺ CD24-/low

breast cancer cells (putative CSCs) are resistant to NAC but the expression of CD44⁺

CD24-/low is unable to predict the response of a pCR to NAC.

4.4 Metastatic Tumours: Local Immune Milieu and PCR in Metastatic ALNs

Data from our NAC study, which was recently published, showed a greater clinical

benefit when there was a pCR in both the primary breast tumour and metastatic

tumour in the ALNs, compared with a pCR in the breast tumour alone [110].

Therefore, identifying the immune predictors of a pCR in metastatic ipsilateral ALNs

is even more important than pCR responses in primary tumours.

Our findings showed that the levels and types of cellular immune infiltrates present in

ALN metastatic tumours were significantly associated with the subsequent

pathological responses to NAC. The immune parameters (TILs, CD163+ TIMs, CD4+

and CD8+ T cells, and CD56+ NK cells) which were significantly associated with a

pCR in the primary tumours were also found to be significant associated with a pCR in

the ipsilateral tumour-draining metastatic ALNs. These findings may indicate that the

relevance of the local immune milieu in predicting pathological response to NAC

remains during metastatic spread to ALNs. To the best of our knowledge, this is the

first time to date that the association of specific immune infiltrates and a pCR with

NAC have been documented in metastatic tumours in ALNs. There is a dearth of
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publications regarding the biological markers predicting a pCR with NAC in

metastatic tumours in ALNs in breast cancer.

The comparison of the levels of immune infiltrates between primary tumours and ALN

metastases indicated some specific alteration of the intrinsic immune milieu when the

primary tumours had spread. The metastatic process involves diverse interactions

between tumour cells and their microenvironment. Primary tumours consist of

heterogeneous populations of tumour cells with genetic alterations that allow them to

overcome physical boundaries, disseminate, and deposit in a distant site. This complex

process requires intrinsic cellular alterations such as surface adhesion molecules,

membrane receptors, matrix metalloproteinases and abilities to escape from anticancer

immune surveillance. Only 0.01% or fewer of the tumour cells entering the lymphatic

or blood circulation develop into metastases. A successful colonisation of escaping

tumour cells is also depends on the microenvironment of metastatic sites [149, 445].

There was no significant change in the level of TILs and CD163+ TIMs between

primary tumours and corresponding ALN metastatic tumours. The CD4+ and CD8+ T

cell subsets also remained comparable. Contrary to the findings documented by

Cimino-Mathews et al. (2013), the level of TILs (CD4+ and CD8+ T cell subsets) was

significantly lower in metastases [398]. This finding, however, came from the study of

distant metastatic tumours (compared with primary tumours). The immune

microenvironment present in loco-regional lymph node metastases may be different

from distant metastases. The distant metastases indicate the final stage of malignant

disease in which anticancer immunity is overwhelming evaded.
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The significantly higher levels of Tregs (FOXP3+, CTLA-4+) in ALN metastatic

tumours indicate a more immunosuppressed tumour microenvironment. This may be

one of the major mechanisms that enables/promotes metastatic spread. Tregs

(FOXP3+, CTLA-4+), therefore, are probably one of the major immune subsets playing

a key role in metastatic spread to and progressive growth in ALNs. However,

significantly higher levels of CD56+ NK cells in metastatic tumours were also

observed. Due to the dearth of data on levels of immune cell infiltration of ALN

metastatic tumours, in comparison with the primary tumours in the breast, this thesis is

the first to document these interesting observations.

4.5 Expression of Cytokines and Pathological Response to NAC

In solid tumours, malignant cells and host immune infiltrating cells express and

secrete a range of Th1, Th2 and Th17 cytokines (IL-1, IL-2, IL-4, IL-10, IL-17, IFN-γ) 

and TGF-β. These cytokines modulate and suppress the in situ anticancer immune

responses, enhancing tumour cell growth and progression, and propensity to

metastasise [318, 321, 322, 325, 326, 332, 342]. In our study, the semi-quantitative

method used did not discriminate between the tumour-infiltrating immune cells and

the malignant cells, nor quantify precisely the contribution of the various host immune

cells to the cytokine levels in the tumour microenvironment.

Regardless of the presence of a significantly high level of TILs or CD4+ subset in

LLABCs with subsequent pCR with NAC, the expression of Th1, Th2 and Th17
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cytokine profiles present in pre-NAC breast cancer specimens did not show any

association or prediction of the subsequent pathological response to NAC. The study,

however, documented a wide range of cytokine expressions in situ, including IFN-γ 

and TGF-β, in both breast cancer cells and infiltrating immune cells. Since the tumour 

cells were able to express a wide range of cytokines [144, 317], the expression of

cytokines present in the tumour microenvironment assessed by the IHC technique in

the study may not accurately represent the functional activity of the immune cell

infiltrates.

In post-NAC, there was a significantly high level of expression of IL-10 and a non-

significantly (p=0.062) high level of expression of TGF-β in breast cancer specimens 

showing no pCR or a poor response to NAC. These findings suggest that Th2

polarisation in the tumour microenvironment may be one of the mechanisms enabling

the tumour cells to be resistant to NAC. Data from our previous study showed that in

vitro cytokine production by T lymphocytes from the blood of patients with LLABCs

also showed Th2 polarisation [15]. In addition, a significantly high level of expression

of IL-17 was observed in breast cancer specimens with no pCR or a poor response to

NAC (post-NAC). This is the first time, to the best of our knowledge, that the

relationship between the expression of cytokines in the tumour microenvironment and

the pathological responses to NAC in LLABCs has been demonstrated.

In the tumour microenvironment Th1, Th2 and Th17 cytokines, as well as TGF-β, play 

an important role in modulating in situ innate and adaptive immune mechanisms

[446]. The Th1 cytokines IL-2 and IFN-γ enhance CTL- and NK cell-mediated 
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regression of cancer cells. IFN-γ can either promote or suppress Treg activity 

depending on the cytokine environment. IL-2 also has a key role in controlling Treg

function in the periphery [447]. The Th2 cytokines IL-4 and IL-10 suppress the

generation of CTLs and Th1 cells and recruit tumour entry of Tregs [8, 150].

Moreover, IL-4 has been shown to both increase and inhibit Treg function. It can

enhance FOXP3 expression and suppressor activity of Tregs and conversely, can

inhibit TGF-β induced Treg development [448, 449]. Th1 and Th2 cytokine 

expression in tumours has a variable effect on patient outcomes in a range of human

cancers, including breast cancer [209]. The role of IL-17 is not well defined. Some

animal studies suggest it promotes tumour growth and angiogenesis [328, 329].

Yamazaki et al. (2008) have shown that IL-17 promotes the recruitment of Tregs to

sites of IL-17 mediated inflammation [450]. Others have suggested an increased

generation of CTLs and an enhanced tumour rejection [330, 451]. Contradictory

results have been demonstrated in a range of human tumours, including breast cancer

[209]. In one study in breast cancer, the level of Th17 cells was shown to be increased

and associated with an improved prognosis [332]. TGF-β expression is usually up-

regulated in human cancers. It induces production of FOXP3+ Tregs and has strong

immunosuppressive effects, inhibiting the generation and activity of innate (DCs, NK

cells) and adaptive (CD4+ and CD8+ T cells) immunity [8, 446]. TGF-β can promote 

an epithelial to mesenchymal transition, resulting in enhanced tumour cell mobility,

local invasion and formation of metastases [157]. An inflammatory environment, not

infrequent in tumours, can induce the transformation of FOXP3+ Tregs into FOXP3-

effector cells producing IFN-γ [452]. This is further evidence of the plasticity of the 

different CD4+ T cell effector-regulator subsets. The interplay between the different T
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cell profiles in human cancers is complex, the outcomes variable and in need of further

careful study.

4.6 NAC Modulates Anticancer Immune Defences in Tumour Microenvironment

The differences in the levels of immune cell infiltrations and expression of various

cytokines and biological molecules between pre- and post-NAC tumours demonstrated

the effects of NAC on these immune parameters. We documented the significant

reduction of the major inhibitory immune cell subsets (FOXP3⁺ and CTLA-4⁺ Tregs

and PD1⁺ T cells) in the tumour microenvironment post-NAC whilst the TILs and

CD8⁺ T cell subset showed no significant changes. Notably, the significant reduction

of the levels of tumour-infiltrating FOXP3⁺ Tregs following NAC is concordant with

previous studies [13, 395, 397]. Reducing the levels of infiltrating Tregs may be an

effect of cyclophosphamide. Anthracyclines enhance the generation of antigen-specific

CD8+ T cells and promote tumour infiltration by activated IFN-γ producing CD8+ T

cells [172, 173]. Capecitabine (via 5-FU) increases the expression of TAAs on tumour

cells and production of IFN-γ by tumour-infiltrating CD8+ T cells [177]. The

enhancing of the generation and function of CD8+ T cells by NAC combinations used

in the study supports our findings that infiltrating CD8+ T cells were relatively

resistant to NAC. The NAC differentially preserved the tumour-infiltrating CD8+ T

cell subset but significantly reduced inhibitory subsets leading to the restoration of

immune anticancer effector mechanisms. These findings emphasise the beneficial

effects of NAC in enhancing anticancer immunity. In our previous study, the NAC

regimen with anthracyclines, cyclophosphamide, taxanes and capecitabine modulated
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and enhanced anticancer immune defences systemically through the reduction of

circulating Tregs and MDSCs [15]. Part of this cohort was used to characterise the in

situ tumour microenvironment in this thesis.

Significant effects of NAC were also found in reducing intratumoural CD56⁺ NK cells

and CD1a⁺ DCs which may result in the inhibition of anticancer innate immunity.

These findings are contrary to the previous findings documented by Hornychova et al.

(2008) that the number of CD56⁺ NK cells and CD1a⁺ DCs was increased after NAC

in breast tumours with no pCR [388]. In our previous study of NK cells [453], there

was a significant reduction of blood NK cell activity in women with LLABCs and this

reduction was more pronounced in patients with poor responses to NAC. As a result,

the NK cells present in the tumour microenvironment after NAC may or may not be

functional.

In addition, tumour-infiltrating CD4⁺ T cells were also significantly reduced.

However, the effect of tumour-infiltrating CD4⁺ T cells on anticancer immunity

depends on Th1/Th2 polarisation in the local milieu. The reduction of tumour-

infiltrating CD4⁺ T cells may help to regularise the Th1/Th2 polarity. This significant

reduction may be a result of the reduction of Tregs as a substantial number of the

Tregs are CD4+ FOXP3+ T cells. The significant reduction of infiltrating CD4+ T cells

(but preserved infiltrating CD8+ T cells) following NAC is concordant with previously

published findings [224].
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Furthermore, we documented no significant changes in the level of CD163⁺ and

CD68⁺ TIMs and tumour-infiltrating CD66b⁺ PMNs following NAC. An unchanged

level of CD163⁺ TIMs following NAC suggests that the NAC was unable to re-

polarise the M2 macrophages to the M1 phenotype. The macrophages and PMNs play

a crucial role in innate immunity and their alternative activated phenotypes may

negatively influence the anticancer immunity [10, 303]. It was interesting to note that

tumour-infiltrating CD66b⁺ PMNs appeared to be resistant to chemotherapy, in

contrast to their sensitivity whist in the circulation. These findings, including the

significant reduction in the level of intratumoural CD56⁺ NK cells and CD1a⁺ DCs

following NAC, suggest that the beneficial effect of NAC on enhancing anticancer

immunity in the local milieu was more convincingly demonstrated for the adaptive

rather than the innate immune pathways.

Effect of NAC on the expression of cytokines was documented by the alteration of the

levels of expression between pre- and post-NAC breast cancer specimens. Following

NAC, the expression of IL-4 was significantly reduced whilst the other cytokines

remained unaltered. IL-4 is a key immunosuppressive Th2 cytokine. This significant

reduction in the level of IL-4 expression suggests a positive effect of NAC on

anticancer immune defences. This finding, documented for the first time, showed the

effects of NAC on altering the polarisation towards a Th1 cytokine profile in the

tumour microenvironment in the patients with LLABCs. Nevertheless, NAC did not

significantly alter the expression of other important biological molecules (VEGF, IDO,

PDL1 and IL-17).
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4.7 Regulatory T Cells: Systemic and Local Milieu

It has been documented that the circulating levels of Tregs are significantly increased

in patients with solid cancers, as well as in patients with LLABCs [15, 454]. The

increased levels detected in the blood may not always reflect the situation in the

tumour microenvironment [38]. To document the relationship between the systemic

and local tumour microenvironment, the circulating FOXP3⁺ and CTLA-4⁺ Tregs

were analysed for correlations with tumour-infiltrating FOXP3⁺ and CTLA-4⁺ Tregs

in the same cohort of patients. We documented no significant correlation in pre-NAC

data. Nevertheless, the NAC was able to modulate anticancer immunity both

systemically and locally. This was demonstrated by the significant concurrent

reductions of circulating FOXP3⁺ and CTLA-4⁺ Tregs (both % and AbNs) and

tumour-infiltrating FOXP3⁺ and CTLA-4⁺ Tregs (both peritumoural and intratumoural

infiltrations) following NAC. There was also a significant positive correlation between

the % of circulating FOXP3⁺ Tregs and intratumoural FOXP3⁺ Tregs in post-NAC

specimens.

4.8 ALNs and the Immune Microenvironment

In the study of ALN specimens, the levels/proportions of various immune subsets

present in tumour-draining ALNs were not significantly altered by the presence of

metastatic disease. Because the study was carried out in non-metastatic areas of ALNs,

it is possible that the alteration of the immune microenvironment of metastatic tumour
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deposits in ALNs may be present only within or around the metastatic tumours. The

metastatic tumours, however, were unable to alter phenotypically the immune

microenvironment of ALNs in general. Our findings are partly consistent with three

studies by Mansfield et al. [282, 431, 455]. These three studies were carried out in

sentinel lymph nodes (SLNs: the first group of ALNs directly receiving lymphatic

drainage from breast tumours) with and without SLN metastases. Non-metastatic areas

of the SLNs were studied. Similar to our findings, there were no significant

differences in the percentages of CD8⁺ T cells and CD1a⁺ DCs and expression of IDO

between metastatic and non-metastatic SLNs [282, 455]. However, these studies

showed a significantly higher % of FOXP3⁺ Tregs (20% versus 14%, p=0.02) [455]

and significantly lower % of CD163⁺ macrophages (10.5% versus 13.8%, p=0.002)

[431] in metastatic SLNs, in contrast to our results which failed to demonstrate such

changes. These different findings may be a result of a different immune

microenvironment between SLNs, the first group of tumour-draining lymph nodes and

thus exposed for longer periods to afferent tumour cell dissemination and suppressor

molecules than more centrally sited ALNs.

It is also possible that these different findings amongst studies may be an effect of

NAC. The results of previous studies mentioned above were from non-NAC pre-

treated SLNs whilst our results were from post-NAC surgical specimens of ALNs.

There is a dearth of published studies documenting the immune microenvironment in

tumour-draining ALNs, particularly regarding metastatic spread.
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The significantly high expression of IL-2 and IFN-γ in non-metastatic ALNs and the 

significantly high expression of IL-10 in metastatic ALNs support the postulate of a

Th1 polarisation in the local immune milieu in non-metastatic ALNs and the Th2

polarisation in the local immune milieu in metastatic ALNs, respectively. The

cytokine polarisation towards a Th2 profile in the microenvironment of ALNs may

suppress the generation of specific immune effector cells and allow the metastatic foci

to embed and grow. It is possible that the metastatic deposits themselves induce the

polarisation of the cytokine profiles in the microenvironment by the secretion of IL-10

and TGF-β [144, 317]. Matsuura et al. (2006) demonstrated in SLNs that in the 

absence of metastases, DC maturation and Th1 responses were low. In the presence of

SLN metastatic disease, however, DC maturation and Th2 polarisation occurred [456].

In contrast to ALNs with metastases, the levels of cytokines present in the

microenvironment of ALNs with no metastases are probably derived exclusively from

ALN immune cells. Our study confirmed the immunosuppressive microenvironment

in metastatic ALNs. Our study is the first to document (to the best of our knowledge)

the significance of cytokine expression in tumour-draining ALNs in women with

LLABCs undergoing NAC.

4.9 Metastatic ALNs and ALN PCR

The levels/proportions of various immune subsets present in the tumour-free

parenchyma in tumour-draining ALNs, which had not shown any relationship with

metastases, were significantly associated with a pCR in the metastatic tumours in the

ALNs following NAC. The in situ immune milieu in metastatic ALNs was also
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demonstrated to be significantly associated with a pathological response to NAC.

Significantly higher levels of the CD8+ T cell subset and significantly lower levels of

the FOXP3+ Tregs (tumour-free para-cortex) were demonstrated in metastatic ALNs to

be associated with a pCR (metastatic ALNs with pCR versus non pCR). Moreover, the

CD8⁺ T cell: FOXP3⁺ Treg ratio (good marker of the status of adaptive anticancer

immunity) in the tumour-free para-cortex was also associated with a pCR in metastatic

ALNs. These findings suggest a positive anticancer effect of the in situ immune milieu

in ALNs on the pathological response of ALN metastases following NAC. There is a

dearth of publications regarding a pCR in metastatic ALNs in breast cancer and no

study to date which has demonstrated the contribution of the in situ immune milieu in

the tumour-draining ALNs to a pCR following NAC.

4.10 Study Challenges, Unresolved Issues and Limitations of the Thesis

The interactions of host immune defences and tumour cells in the tumour

microenvironment are complex and not well defined. The density/distribution of

immune cell infiltrates in LLABCs identified by H&E staining and IHC of paraffin-

embedded specimens is a snapshot taken when the tumour was removed and formalin-

fixed. It may not fully or reliably represent a more dynamic and changing immune

status in the microenvironment in vivo. These cellular infiltrates may be high in

number but dysfunctional or severely immunosuppressed. Some of the phenotypic

cellular markers used in this study to specifically document the immune cell subsets

may encompass more than one subset [e.g. FOXP3⁺ Tregs, CTLA-4⁺ Tregs and PD1⁺

T cells also express CD4, some CD56⁺ NK cells can express CD8 and some CD8⁺ T
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cells can express CD56 (NKT cells)] [457]. The expressions of some cellular markers

may be plastic (e.g. FOXP3 expressed on activated T cells) [235]. For these reasons,

more specific cellular markers related to the function of the particular cell subset may

need to be used to document these immune infiltrates. Moreover, the expression of

cytokines and biological molecules present in specimens is the sum of molecules

produced by various immune cell subsets and/or tumour cells. These expressions may

not reliably represent a particular immune function of a specific immune cell subset.

The changes in the level of immune cell infiltrations and alterations in the level of

cytokine/biological molecule expression following NAC were assessed by snapshots

of a dynamic process taken between the time points of prior to and after 8 cycles of

NAC and thus were the summation of numerous factors and processes which may alter

during the course of the NAC. Some of these changes/alterations may be a result of

several confounding factors affecting the immune status of patients. The patients’

general well-being, nutritional status and medication used are examples. Therefore, the

significant changes/alterations in the immune microenvironment present in the study

may not be exclusively from an effect of NAC.

MDSC is another major immune inhibitory subset which plays an important role in the

tumour microenvironment. The level/density of MDSC infiltrates may affect the

response to NAC. A number of cellular markers are needed to specifically identify the

phenotypic characteristics of this subset. Moreover, a great number of MDSC

phenotypes with different functions have been described in various solid cancers and

diseases [260]. These factors make the study of tumour-infiltrating MDSCs with the
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IHC technique limited and difficult. Fresh tissue specimens processed into single cell

suspensions and flow cytometry with fluorescence activated cell sorting (FACS) are

recommended for use in analyses of tissue-infiltrating MDSCs [458]. For these

reasons, the characterisation of MDSCs in the microenvironment of LLABCs was not

carried out.

An important limitation of our study is the sample number. The sample size of this

study was based on a cohort of patients from a previous study in which circulating

Tregs were documented pre- and post-NAC [15]. A sample size of at least 7 in each

group having an 80% power to detect a difference between two groups with p values

of ≤0.05 (two-sided) was calculated by assuming the common standard deviation of 

circulating blood Tregs as 0.5. As our findings are derived from several assays of

different parameters, the sample size of at least 7 in each group may not be appropriate

for some of the tests. In addition, the issue of multiple hypothesis testing may lower

the significance of our findings. In characterising the Th1/Th2 cytokine polarisation

and expression of biological molecules (a total of 10 variables), as well as

documenting 10 various immune cell subsets, our hypothesis testing consisted of

multiple assessments. When a Bonferroni correction for multiple comparisons was

undertaken, p values ≤ 0.0025 were considered statistically significant while p values 

≤ 0.05 were identified as trends. A high level of significance of p≤0.0025 is likely to 

be difficult to obtain from a small sample size. A larger cohort, therefore, may need to

be studied to resolve these limitations. Moreover, the study was retrospective and non-

randomised. The significant findings from the study are relevant but need to be

confirmed before implementing these findings into the clinical setting.
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CHAPTER 5: CONCLUSIONS

The findings from our study have further established that the immune

microenvironment is a key contributing factor to achieving a better outcome from

NAC in both primary tumours and metastatic tumours in tumour-draining ALNs. The

level of TILs and various immune cell infiltrations (CD4⁺ and CD8⁺ T cells, CD56⁺

NK cells and CD163⁺ macrophages) in LLABCs, which were well demonstrated with

the IHC techniques used, could be clinically useful to further define women with

LLABCs who may benefit from NAC. Moreover, a high level of TILs and

peritumoural CD56+ NK cell infiltration ≥3 cells/5HPFs can be used as independent 

predictive factors for a pCR. These biological markers can be readily determined from

histopathological examination of breast tumour biopsies (using H&E and IHC) before

commencing therapy. They may supplement other clinical parameters in establishing

optimal treatment, as well as prognostic prediction, for individual women with

LLABCs suitable for NAC.

The thesis has confirmed previously published findings, namely the significant

association between TILs and subsets (CD4⁺ and CD8⁺) including the CD8⁺ T cell:

FOXP3⁺ Treg ratio and a pCR, as well as the significant reduction of tumour-

infiltrating Tregs following NAC. The work described in the thesis has also

documented new and not previously reported findings. To the best of our knowledge,

this is the first time that the following significant associations in women with LLABCs

undergoing NAC have been reported: (1) a high level of tumour-infiltrating CD56⁺

NK cells and CD163⁺ TIMs with a pCR; (2) a high level of expression of IL-10 and
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IL-17 in breast tumours post-NAC with a poor response to NAC; (3) Th2 cytokine

polarisation in tumour-draining ALNs with ALN metastases; (4) the significant

concomitant reduction of circulating and tumour-infiltrating Tregs with NAC; and (5)

the reduction in the level of PD1⁺ T cell infiltrates and IL-4 expression in LLABCs

after NAC. See Table 3.37 which summarises the key and significant findings of the

study, and classifies them into new/original and confirmatory (previously published)

findings.

Findings in the thesis also suggest that the beneficial effects of NAC may be

significantly mediated via modulation of anticancer immunity, in particularly the

adaptive immune pathway and the reduction of its associated T regulatory pathways.

The NAC combination used in our study differentially preserved the tumour-

infiltrating CD8+ T cell population but significantly reduced both the circulating and

tumour-infiltrating Tregs (FOXP3+, CTLA-4+) and immune checkpoint PD1+ T cells,

thereby preventing the secretion of immunosuppressive cytokines (IL-4, IL-10, TGF-

β), and disrupting the PD1/PDL1 pathway. This restoration of immune anticancer 

effector mechanisms leads to immune-mediated tumour cell death. Moreover, the

significant correlation of a high level of CD8+ T cell infiltrates and CD8+ T cell:

FOXP3+ Treg ratio and a pCR (and hence DFS and OS) in breast cancers (breast, ALN

metastases) highlights the requirement for activated CTLs and concomitant depletion

of Tregs. The close interrelationship between a pCR in LLABCs and the concomitant

immune changes induced by NAC suggests that immune-mediated tumour cell death

is a crucial component of NAC-associated tumour cell destruction and removal. A

better understanding of this relationship, in particular, the factors preventing optimal



241

delivery of immune-mediated tumour cell death is essential for devising more

effective chemotherapeutic strategies in the management of breast cancer.
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CHAPTER 6: FURTHER STUDIES

LLABC is a heterogeneous malignancy and consists of different subtypes. The

relevance of the tumour local immune milieu in predicting and contributing to the

pathological responses with NAC may be influenced by the different biological

subtypes within the cancer. Patients with ER-ve and HER2+ve breast cancers, as well

as tumours with high histological grade, respond well to NAC. These patients are

likely to derive optimal benefit from NAC. On the other hand, LLABCs with ER+ve,

HER2-ve or low grade tumours have low pCR rates. NAC is expensive, costly,

associated with a significant morbidity and the pCR rate is variable. Thus the decision

to treat with NAC as a primary systemic treatment in patients with LLABCs needs

more careful consideration and assessment to evaluate these detrimental consequences

against the likely benefits, especially in elderly patients and those with severe co-

morbidities. Immunological parameters such as TILs and other immune cell infiltrates,

which are associated with good responses to NAC, may be helpful in predicting the

likely response to NAC and decision to its use. In order to confirm the significance of

the findings found in the thesis with these tumour subtypes and differential immune

cell infiltrates, a larger, prospective, randomised cohort will need to be further studied.

Documenting the level/density of MDSCs in the microenvironment of LLABCs and

their contribution to NAC responses, as well as the effects of NAC on MDSC

infiltrates will require different methodology from IHC. This is an interesting area for

further exploration. Targeted therapy with MAb (trastuzumab), as well as NAC, has

been increasingly used in primary systemic treatment for HER2+ve LLABCs. TILs
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and other immune infiltrates may provide important and additional biomarkers

reflecting the anticancer immune responses in the tumour microenvironment, and

should be further investigated for their predictive and prognostic roles in response to

this targeted approach.

Further and better understanding of the mechanisms underlying the density and

distribution of immune cell infiltrates and cytokine expression in the tumour milieu, as

well as their changes/alterations after primary treatment may contribute to the

development of new immune-targeted therapies for breast cancer. Functional assays

will be crucial and may require the removal of cells from fresh specimens (as

suggested for MDSCs) and use in vitro assays. Alternatively, IHC needs to be used to

characterise biomarkers of molecular and transcriptional pathways in cells in tumour

specimens in the breast and tumour-draining ALNs.
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Appendix 1

Table A. Patient and Tumour Characteristics, Responses to Neoadjuvant Chemotherapy and 4 Years Follow-up (n=33)

Patient

No.
Age

BMI(1)

(kg/m
2
)

Menopausal

Status
(2)

Nodal Status

(Clinical

Assessment)

Tumour

Size (mm)

Tumour

Type

Histological

Grade
(3)

ER

Status
(4)

HER-2

Status
(5)

NAC

Regimen
(6)

Clinical

Response
(7)

Pathological

Response

(Breast)(8)

Pathological

Response (Axilla:

Nodal Metastasis)(9)
Recurrence

(10)
Death

(10)

5 40 21.90 pre +ve 40x50 ductal 3 +ve -ve 4AC-4TX responder grade 5 grade 3 no no

7 61 33.29 post -ve 70x60 ductal 3 -ve +ve 4AC-4T responder grade 5 NA no no

9 51 21.87 pre -ve 34x32 ductal 3 -ve -ve 4AC-4TX responder grade 5 NA no no

11 35 28.32 pre +ve 100x82 ductal 2 +ve -ve 4AC-4T responder grade 4 grade 3 yes yes

12 57 24.44 post +ve 47x42 ductal 3 +ve -ve 4AC-4T responder grade 4 grade 2 yes yes

13 43 31.56 pre -ve 35x35 ductal 3 +ve +ve 4AC-4T responder grade 3 NA yes no

15 35 25.85 pre +ve 50x40 ductal 2 +ve -ve 2AC-6TX non-responder grade 3 grade 2 no no

17 61 23.81 post -ve 36x21 ductal 2 +ve +ve 4AC-4T responder grade 5 NA no no

20 57 26.29 post -ve 38x35 ductal 2 +ve -ve 2AC-6T non-responder grade 3 NA no no

21 48 30.25 pre +ve 22x15 ductal 1 +ve -ve 4AC-4T responder grade 3 grade 1 yes no

22 47 23.52 pre +ve 40x40 ductal 3 +ve -ve 2AC-6TX non-responder grade 5 grade 3 no no

29 54 25.49 post +ve 34x27 lobular 2 +ve -ve 4AC-4TX responder grade 3 grade 2 yes no

37 52 24.70 post -ve 40x39 ductal 1 +ve -ve 4AC-4TX responder grade 3 NA no no

38 63 31.35 post -ve 44x44 ductal 3 +ve -ve 4AC-4T responder grade 4 NA yes yes

40 50 26.49 post -ve 36x32 metaplastic 3 -ve -ve 4AC-4T responder grade 5 NA no no

41 51 32.03 pre -ve 30x30 ductal 3 +ve -ve 4AC-4TX responder grade 5 NA no no

46 38 33.19 pre +ve 39x38 ductal 3 -ve +ve 4AC-4TX responder grade 5 grade 3 no no

63 37 20.93 pre +ve 35x30 ductal 2 -ve +ve 4AC-4T responder grade 4 grade 2 yes no

73 47 30.01 pre +ve 33x33 ductal 3 -ve +ve 4AC-4TX responder grade 5 grade 3 no no

77 65 27.63 post +ve 20x20 ductal 3 -ve +ve 2AC-6T non-responder grade 1 grade 2 yes yes

80 45 29.30 pre +ve 36x31 ductal 2 +ve -ve 2AC-6T non-responder grade 2 grade 1 yes no

82 67 28.65 post +ve 30x30 lobular 2 +ve -ve 4AC-4TX responder grade 5 grade 2 no no

83 50 22.37 pre +ve 40x40 ductal 3 -ve +ve 2AC-6TX non-responder grade 3 grade 2 no no

84 47 26.29 post +ve 45x30 ductal 2 +ve -ve 4AC-4T responder grade 3 grade 2 yes yes

86 64 32.37 post -ve 40x40 ductal 2 +ve -ve 2AC-6T non-responder grade 2 grade 2 no no

88 58 32.97 post +ve 25x15 ductal 2 +ve -ve 2AC-6TX non-responder grade 4 grade 1 no no

89 49 39.65 pre +ve 25x25 ductal 2 +ve -ve 2AC-6TX non-responder grade 2 grade 2 no no

90 56 26.01 post +ve 30x27 ductal 3 +ve -ve 4AC-4TX responder grade 5 grade 3 no no

96 51 25.28 post +ve 45x45 ductal 3 -ve -ve 2AC-6T non-responder grade 5 grade 2 yes yes
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(1) BMI: Body mass index (≤30: Non-obese, >30: Obese) 

(2) Menopausal status: Pre-menopausal, age < 55 years with normal menstrual cycles; Post-menopausal, age > 50 years with no spontaneous menses for at least one year/

or age ≤ 50 years with no spontaneous menses within the past 2 years/or women who had bilateral oophorectomy prior to the diagnosis of breast cancer 

(3) Histological grade: Grade 1 (well differentiated), grade 2 (moderately differentiated), grade 3 (poorly differentiated)

(4) ER (oestrogen receptor): Allred scoring system was used for measuring expression of ER (score ≥ 3 for positive, < 3 for negative) 

(5) HER2 (human epidermal growth factor receptor 2): Determined by FISH (fluorescence in-situ hybridisation)

(6) A: Adriamycin (doxorubicin), C: Cyclophosphamide, T: Taxotere (docetaxel) and X: Xeloda® (capecitabine)

(7) Clinical response was assessed by MRI (magnetic resonance imaging) of breast after 2 cycles of AC using the RECIST criteria

(8) Pathological response in breast was graded as grade 1: No change or some alteration to individual malignant cells but no reduction in overall cellularity; grade 2: A

minor loss of tumour cells but overall cellularity still high, up to 30 % loss; grade 3: Between an estimated 30% and 90% reduction in tumour cells; grade 4: A marked

disappearance of tumour cells such that only small clusters or widely dispersed individual cells remain, more than 90% loss of tumour cells; grade 5: No malignant cells

identifiable from the site of the tumour (pCR)

(9) Pathological response in axilla was graded as grade 1: Metastasis with no fibrosis; grade 2: Metastasis with variable replacement by fibrous tissue; grade 3: No

malignant cells identifiable but replacement by fibrous tissue (pCR); NA (not applicable): No nodal metastasis

(10) Recurrent disease and death from a median follow-up of 51 months

108 56 24.92 post +ve 47x40 ductal 3 -ve +ve 4AC-4TX responder grade 5 grade 3 no no

112 49 37.41 pre +ve 50x40 ductal 2 +ve -ve 4AC-4TX responder grade 5 grade 3 no no

114 38 31.21 pre +ve 42x36 ductal 3 -ve +ve 4AC-4T responder grade 5 grade 3 no no

115 65 32.22 post +ve 14x12 ductal 3 +ve -ve 4AC-4T responder grade 5 grade 3 no no
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Appendix 2

IHC Staining Procedure

1. Place slides on the 60°C hotplate for 10 minutes

2. Allow to cool and place in Leica autostainer slide rack

3. Load the rack into an autostainer and run 'Program 1' for dewaxing/ rehydrating

sections (xylene 5 minutes x 2 times; IMS 2minutes x 3 times; water 5 minutes)

4. When the program has finished, the autostainer machine sounds an alarm; follow the

instructions for removing rack and place it in a water bath.

5. Perform antigen retrieval; for microwave HIER, use the Leica autostainer pots without

metal handles and with cut-away lids.

6. Working in a large bath of tap water, load slides onto the Sequenza plates, then place

in Sequenza trays.

7. Fill the Sequenza reservoir half full with TBS (Tris Buffered Saline) to rinse the slides,

and watch it flow through to ensure there are no air bubbles (as this will impair staining).

If the TBS runs through a sequenza plate either very quickly or very slowly, this indicates

an air bubble, in which case the slide must be re-loaded into the Sequenza plate.

8. Apply Peroxidase Block (Novolink Kit) for 5 minutes

9. Wash with TBS for 5 minutes x 2 times

10. Apply Protein Block (Novolink Kit) for 5 minutes

11. Wash with TBS for 5 minutes x 2 times
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12. Apply 100 µl of primary antibody (optimally diluted in Leica antibody diluent) and

incubate for the required time

13. Wash with TBS for 5 minutes x 2 times

14. Apply 100 µl Post Primary Block (Novolink Kit) for 30 minutes

15. Wash with TBS for 5 minutes x 2 times

16. Apply 100 µl Novolink Polymer for 30 minutes

17. Make up DAB working solution; 1:20 DAB chromogen in DAB substrate buffer

(Novolink kit) DAB working solution should be kept in the dark and used within 6 hours.

18. Wash sections with TBS for 5 minutes x 2 times

19. Apply 100 µl DAB working solution for 5 minutes

20. Wash with TBS for 5 minutes x 2 times

21. Apply 1O0 µl Novolink haematoxylin for 6 minutes

22. Remove slides from Sequenza plates and place in a Leica autostainer rack, under

water

23. Dehydrate and clear using Leica Autostainer; program 2 (IMS for 2 minutes x 3

times; xylene for 5 minutes x 2 times)

24. Remove the final xylene pot to a fume-cupboard and replace with another xylene pot

in the machine

25. Mount sections in DPX.

Note: Do not allow the sections to dry at any stage of this procedure
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Appendix 3

Solutions and Reagents

1. Sodium Citrate Buffer pH 6.0, 1 litre

• Tri-sodium citrate (di-hydrate) 2.9 g

• Distilled water 1000 ml

• Mix to dissolve sodium citrate and adjust pH to 6.0 with 1M HCl.

Add 0.5 ml Tween20. Store at room temperature or at 4˚C if storing for longer than 3 

months.

Final concentrations: Sodium citrate 0.01M, Tween20 0.05%

2. TBST (Tris-Buffered Saline, 0.05% Tween20), 1 litre

• 10X TBS (Tris-Buffered Saline) 100 ml

• Distilled water 900 ml

• Tween20 0.5 ml
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Appendix 4

TNM Classification of Breast Cancer (AJCC/UICC 7th Edition, 2010)

Primary tumour (T)

TX Primary tumour cannot be assessed

T0 No evidence of primary tumour

Tis Carcinoma in situ

Tis (DCIS) Ductal carcinoma in situ

Tis (LCIS) Lobular carcinoma in situ

Tis (Paget)

Paget disease of the nipple NOT associated with invasive carcinoma and/or

carcinoma in situ (DCIS and/or LCIS) in the underlying breast parenchyma.

Carcinomas in the breast parenchyma associated with Paget disease are

categorized based on the size and characteristics of the parenchymal disease,

although the presence of Paget disease should still be noted

T1 Tumour ≤ 20 mm in greatest dimension 

T1mi Tumour ≤ 1 mm in greatest dimension 

T1a Tumour > 1 mm but ≤ 5 mm in greatest dimension 

T1b Tumour > 5 mm but ≤ 10 mm in greatest dimension 

T1c Tumour > 10 mm but ≤ 20 mm in greatest dimension 

T2 Tumour > 20 mm but ≤ 50 mm in greatest dimension 

T3 Tumour > 50 mm in greatest dimension

T4
Tumour of any size with direct extension to the chest wall and/or to the skin

(ulceration or skin nodules)
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T4a
Extension to chest wall, not including only pectoralis muscle

adherence/invasion

T4b

Ulceration and/or ipsilateral satellite nodules and/or edema (including peau

d’orange) of the skin, which do not meet the criteria for inflammatory

carcinoma

T4c Both T4a and T4b

T4d Inflammatory carcinoma

Regional lymph nodes (N)

Clinical (N)

NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Metastasis to movable ipsilateral level I, II axillary lymph node(s)

N2

Metastases in ipsilateral level I, II axillary lymph nodes that are clinically

fixed or matted or in clinically detected ipsilateral internal mammary nodes

in the absence of clinically evident axillary lymph node metastasis

N2a
Metastases in ipsilateral level I, II axillary lymph nodes fixed to one another

(matted) or to other structures

N2b

Metastases only in clinically detected ipsilateral internal mammary nodes

and in the absence of clinically evident level I, II axillary lymph node

metastases

N3 Metastases in ipsilateral infraclavicular (level III axillary) lymph node(s),
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with or without level I, II axillary node involvement, or in clinically detected

ipsilateral internal mammary lymph node(s) and in the presence of clinically

evident level I, II axillary lymph node metastasis; or metastasis in ipsilateral

supraclavicular lymph node(s), with or without axillary or internal mammary

lymph node involvement

N3a Metastasis in ipsilateral infraclavicular lymph node(s)

N3b
Metastasis in ipsilateral internal mammary lymph node(s) and axillary

lymph node(s)

N3c Metastasis in ipsilateral supraclavicular lymph node(s)

Pathological (pN)

pNX Regional lymph nodes cannot be assessed

pN0

No regional lymph node metastasis identified histologically. Note: Isolated

Tumour cell clusters (ITCs) are defined as small clusters of cells ≤ 0.2 mm, 

or single tumour cells, or a cluster of < 200 cells in a single histologic cross-

section; ITCs may be detected by routine histology or by

immunohistochemical (IHC) methods; nodes containing only ITCs are

excluded from the total positive node count for purposes of N classification

but should be included in the total number of nodes evaluated

pN0(i-) No regional lymph node metastases histologically, negative IHC

pN0(i+)
Malignant cells in regional lymph node(s) ≤ 0.2 mm (detected by 

hematoxylin-eosin [H&E] stain or IHC, including ITC)

pN0(mol-) No regional lymph node metastases histologically, negative molecular
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findings (reverse transcriptase polymerase chain reaction [RT-PCR])

pN0(mol+)
Positive molecular findings (RT-PCR) but no regional lymph node

metastases detected by histology or IHC

pN1

Micrometastases; or metastases in 1-3 axillary lymph nodes and/or in

internal mammary nodes, with metastases detected by sentinel lymph node

biopsy but not clinically detected

pN1mi Micrometastases (> 0.2 mm and/or > 200 cells, but none > 2.0 mm)

pN1a Metastases in 1-3 axillary lymph nodes (at least 1 metastasis > 2.0 mm)

pN1b

Metastases in internal mammary nodes, with micrometastases or

macrometastases detected by sentinel lymph node biopsy but not clinically

detected

pN1c

Metastases in 1-3 axillary lymph nodes and in internal mammary lymph

nodes, with micrometastases or macrometastases detected by sentinel lymph

node biopsy but not clinically detected

pN2
Metastases in 4-9 axillary lymph nodes or in clinically detected‡ internal

mammary lymph nodes in the absence of axillary lymph node metastases

pN2a Metastases in 4-9 axillary lymph nodes (at least 1 Tumour deposit > 2.0 mm)

pN2b
Metastases in clinically detected internal mammary lymph nodes in the

absence of axillary lymph node metastases

pN3

Metastases in ≥ 10 axillary lymph nodes; or in infraclavicular (level III 

axillary) lymph nodes; or in clinically detected‡ ipsilateral internal

mammary lymph nodes in the presence of ≥ 1 positive level I, II axillary 

lymph nodes; or in > 3 axillary lymph nodes and in internal mammary
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lymph nodes, with micrometastases or macrometastases detected by sentinel

lymph node biopsy but not clinically detected; or in ipsilateral

supraclavicular lymph nodes

pN3a
Metastases in ≥ 10 axillary lymph nodes (at least 1 Tumour deposit > 2.0 

mm); or metastases to the infraclavicular (level III axillary lymph) nodes

pN3b

Metastases in clinically detected ipsilateral internal mammary lymph nodes

in the presence of ≥ 1 positive axillary lymph nodes; or in > 3 axillary lymph

nodes and in internal mammary lymph nodes, with micrometastases or

macrometastases detected by sentinel lymph node biopsy but not clinically

detected

pN3c Metastases in ipsilateral supraclavicular lymph nodes

Distant metastasis (M)

M0 No clinical or radiographic evidence of distant metastasis

cM0(i+)

No clinical or radiographic evidence of distant metastases, but deposits of

molecularly or microscopically detected Tumour cells in circulating blood,

bone marrow, or other non-regional nodal tissue that are no larger than 0.2

mm in a patient without symptoms or signs of metastases

M1
Distant detectable metastases as determined by classic clinical and

radiographic means and/or histologically proven > 0.2 mm
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TNM Staging

Stage T N M

0 Tis N0 M0

IA T1 N0 M0

IB T0 N1mi M0

T1 N1mi M0

IIA T0 N1 M0

T1 N1 M0

T2 N0 M0

IIB T2 N1 M0

T3 N0 M0

IIIA T0 N2 M0

T1 N2 M0

T2 N2 M0

T3 N1 M0

T3 N2 M0

IIIB T4 N0 M0

T4 N1 M0

T4 N2 M0

IIIC Any T N3 M0

IV Any T Any N M1

Data from National Comprehensive Cancer Network (NCCN) Clinical Practice

Guidelines in Oncology, 2013 [82]
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