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Abstract  8 

Informal and formal likelihood methods can be used to quantify uncertainty in modelled predictions 9 

of groundwater levels (GWLs). Informal methods use a relatively subjective criterion to identify sets 10 

of plausible or behavioural parameters of the GWL models. In contrast, formal methods specify a 11 

statistical model for the residuals or errors of the GWL model. The formal uncertainty estimates are 12 

only reliable when the assumptions of the statistical model are appropriate.  13 

We apply the formal approach to historical reconstructions of GWL hydrographs from four UK 14 

boreholes. We test whether a model which assumes Gaussian and independent errors is sufficient to 15 

represent the residuals or whether a model which includes temporal autocorrelation and a general 16 

non-Gaussian distribution is required. Groundwater level hydrographs are often observed at 17 

irregular time intervals so we use geostatistical methods to quantify the temporal autocorrelation 18 

rather than more standard time series methods such as autoregressive models.    19 

According to the Akaike Information Criterion, the more general statistical model better represents 20 

the residuals of the GWL model. However, no substantial difference between the accuracy of the 21 

GWL predictions and the estimates of their uncertainty is observed when the two statistical models 22 
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are compared. When the general model is applied, significant temporal correlation over periods 23 

ranging from 3 to 20 months is evident for the different boreholes. When the GWL model 24 

parameters are sampled using a Markov Chain Monte Carlo approach the distributions based on the 25 

general statistical model differ from those of the Gaussian model, particularly for the boreholes with 26 

the most autocorrelation. These results suggest that the independent Gaussian model of residuals is 27 

sufficient to estimate the uncertainty of a GWL prediction on a single date. However, if realistically 28 

autocorrelated simulations of GWL hydrographs for multiple dates are required or if the 29 

distributions of the GWL model parameters are of interest, then the more general statistical model 30 

should be used.   31 
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1. Introduction  34 

Groundwater level (GWL) hydrographs from boreholes provide valuable information about the 35 

return periods and severity of past drought and flood events. There is often a need to use 36 

deterministic models to extend a hydrograph record either to reconstruct GWLs prior to the drilling 37 

of the borehole (Mackay et al., 2014), to interpolate GWLs on dates when they were not observed 38 

(Sun et al., 2009) or to forecast future GWLs (Daliakopoulos et al., 2004). Reconstructed hydrographs 39 

might assist scientists in understanding the influence of long-term anthropogenic processes such as 40 

abstraction or climate change on the variation of GWLs (Shepley and Soley, 2012) and more 41 

specifically on the severity of extreme events (Kidmose et al., 2013). Interpolations of incomplete 42 

hydrograph records are required to compute standardised indices of GWLs (e.g. Bloomfield and 43 

Marchant, 2013) that can place current GWLs in a historical context. Forecasts of GWLs might warn 44 

land managers and policy makers of potential extreme events so that remediation efforts are 45 

focussed appropriately (Jackson et al., 2013).   46 



In all of these contexts, it is vital that the uncertainties of the modelled GWLs are quantified so that 47 

land managers and scientists interpreting predictions can determine which features reflect 48 

statistically significant variation in groundwater processes rather than model errors (Jackson et al., 49 

2015).  Uncertainties can arise because of errors in inputs to the groundwater models such as rainfall 50 

amounts, errors in the model structure, measurement errors and errors in the estimated parameters 51 

of the groundwater model. Schoups and Vrugt (2010) describe two approaches for estimating the 52 

parameter uncertainty of hydrological models. Both approaches lead to an ensemble of plausible 53 

parameters rather than a single optimal set. With formal likelihood methods, a statistical model for 54 

the residuals is specified and used to derive a likelihood function to quantify the probability that the 55 

observed data would have arisen from the hydrological model with a particular parameter set. The 56 

likelihood function is then used to assess which parameter sets are plausible. The framework which 57 

combines a deterministic model with a statistical model of the residuals is referred to as a mixed 58 

model (MM; Dobson, 1990). The predictions from the deterministic model constitute the fixed 59 

effects and the predictions of the residual model are the random effects. The random effects will 60 

include contributions resulting from input errors, measurement errors and model structural errors. A 61 

MM can be used to predict the entire probability density function (pdf) for the property of interest 62 

on a target date when it was not observed (Lessels and Bishop, 2013). This pdf is conditioned on the 63 

available observations and accounts for the correlation between the random effects on the target 64 

and observation dates.   65 

Beven et al. (2008) note that the formal likelihood approach relies on the assumptions of the 66 

statistical model and these assumptions might be inappropriate. For example, a simple model for the 67 

random effects might specify that they are independent and realized from a Gaussian distribution 68 

with zero mean and constant (i.e. stationary) variance. However, autocorrelated, non-Gaussian 69 

errors with non-stationary variance often occur (Kuczera, 1983). Therefore, Beven et al. (2008) 70 

advocate informal likelihood methods such as generalized likelihood uncertainty estimation (GLUE; 71 

Beven and Freer, 2001). In the GLUE approach the likelihood function for the errors is not linked to a 72 



specific error model. Instead, metrics such as the proportion of the variance of the observations that 73 

is explained by the hydrological model, are used to assess the plausibility of a particularly set of 74 

parameters. Thus the GLUE approach is free from assumptions but a somewhat subjective choice of 75 

likelihood function is required. The identified set of plausible parameter values can be used to 76 

generate multiple modelled reconstructions of the property of interest. The between-reconstruction 77 

variability corresponds to the contribution of parameter uncertainty to the total uncertainty. 78 

However, there is no model to predict the other contributions such as input uncertainty and model 79 

structural errors.  80 

Schoups and Vrugt (2010) respond to the concerns of Beven et al. (2008) by generalizing their 81 

random effects models to accommodate non-Gaussian variation, temporal correlation and non-82 

stationary variances. They assume that their random effects are realized from a skew exponential 83 

power (SEP) distribution which specifies the skewness and kurtosis of the residuals independently. 84 

The SEP distribution permits more general non-Gaussian variation than a transformation of the 85 

observed data (e.g. Box and Cox, 1964). The variance of the residuals is permitted to vary according 86 

to streamflow and the temporal correlation is represented by autoregressive time series models 87 

(Chandler and Scott, 2011). Schoups and Vrugt (2010) demonstrated their approach on rainfall 88 

runoff models in both humid and arid basins. They used Bayesian uncertainty methods to sample 89 

plausible sets of parameters for both the fixed and random effects models. For both basins, the 90 

observed flow data had a very heavy tail which resulted from the large and rapid response of the 91 

flow to large storm events. Schoups and Vrugt (2010) found that their generalized non-Gaussian 92 

model led to larger likelihoods than a model which assumed independent and Gaussian random 93 

effects. Hence the assumption of independent and Gaussian residuals was not appropriate. The 94 

generalized random effects model did not improve the model predictions. In fact, the mean squared 95 

errors were smaller for the independent Gaussian model because the generalized model led to more 96 

emphasis being placed on accurately estimating the low rather than large flows. The generalized 97 

model did however lead to large improvements in the estimates of the uncertainty of the model 98 



predictions. Also, the inappropriate Gaussian model led to quite different distributions of plausible 99 

parameters than were realized from the generalized model. 100 

The formal and informal likelihood approaches are also applicable to groundwater models. Jackson 101 

et al. (2016) use the GLUE methodology to assess the uncertainty of model reconstructions of 102 

groundwater levels at six boreholes in the UK. The reconstructions are generated using the AquiMod 103 

conceptual model (Mackay et al., 2014) and the Nash Sutcliffe Efficiency (NSE) score (Nash and 104 

Sutcliffe, 1970) is used to decide which sets of parameters are plausible. Von Asmuth and Bierkens 105 

(2005), Mirzavand and Ghazavi (2015) and Peterson and Western (2014) all specify a formal 106 

statistical model for the residuals from their models of GWLs. These statistical models are based on a 107 

Gaussian distribution but they account for temporal autocorrelation amongst the residuals.  108 

In this paper we quantify the uncertainty of AquiMod reconstructions for GWLs in four English 109 

boreholes using a formal likelihood approach similar to Schoups and Vrugt (2010) and we discuss the 110 

relative suitability of the formal and informal approaches for quantifying the uncertainty of UK 111 

groundwater models. We also explore whether the assumption of independent and Gaussian 112 

residuals is suitable for a formal model of GWLs in this context or whether a more general model is 113 

required. Groundwater hydrographs tend to be less heavy tailed than river hydrographs since, in 114 

effect, the hydrogeological system acts as a filter which temporally smooths the effects of intense 115 

storm events.   116 

One modification to the approach Schoups and Vrugt (2010) is necessary.  The autoregressive 117 

models which they use to represent temporal autocorrelation amongst the residuals are well-suited 118 

to data observed at regular intervals but they cannot be applied to irregularly sampled time series. 119 

Until the relatively recent installation of automated telemetry in some groundwater boreholes, 120 

GWLs tended to be recorded at irregular time intervals (Environment Agency, 2014) according to 121 

factors such as the availability of staff to visit the borehole and conduct a dip-test. Von Asmuth and 122 

Bierkens (2005) recognised this problem and suggested a continuous approximation to the 123 



autoregressive model. This approach was adopted by Peterson and Western (2014). In the more 124 

general hydrological context, Chandler and Scott (2011) recommend that the temporal correlation 125 

amongst irregularly sampled water levels is represented by a variogram. Variograms are more 126 

commonly associated with spatial analyses (Webster and Oliver, 2007) and they describe how the 127 

expected squared difference between a pair of observations varies according to the lag between the 128 

observation sites or times. Chandler and Scott (2013) use the method of moments to estimate their 129 

variograms but this estimator is not immediately compatible with formal likelihood functions. 130 

Therefore, we consider model-based variogram estimators (Diggle and Ribeiro, 2007) that use 131 

formal likelihood functions. Lessels and Bishop (2013) used a linear MM with an exponential 132 

variogram to represent irregularly measured water quality parameters from two catchments in 133 

southeast Australia. We represent the variograms by the flexible four parameter Matérn function 134 

which generalises many commonly used variogram functions such as the exponential model 135 

(Marchant and Lark, 2007). 136 

2. A mixed model for groundwater levels 137 

We represent the GWLs observed at times 𝑡 = 𝑡1, 𝑡2,… , 𝑡𝑛 by a MM: 138 

𝑧(𝑡𝑖) = 𝑚(𝑡𝑖|𝛃𝐟) + 𝑟(𝑡𝑖|𝛃𝐫),                                                                 (1) 

where 𝑚(𝑡𝑖|𝛃𝐟) is the deterministic model prediction or fixed effect at time 𝑡𝑖 and 𝑟(𝑡𝑖|𝛃𝐫) is the 139 

random effect or residual at time 𝑡𝑖. The 𝛃𝐟 and 𝛃𝐫 are the calibrated parameters for the fixed and 140 

random effects respectively. For brevity, we henceforth denote  𝑧(𝑡𝑖), 𝑚(𝑡𝑖|𝛃𝐟) and 𝑟(𝑡𝑖|𝛃𝐫) by 141 

𝑧𝑖 , 𝑚𝑖 and 𝑟𝑖 respectively. 142 

2.1 The fixed effects model 143 

Mackay et al. (2014) reviewed the types of models used to simulate GWLs. They distinguished ‘black 144 

box’ methodologies such as statistical transfer functions (e.g. Jakeman et al., 2006) from process-145 

driven models based on simplifications of physical laws of fluid dynamics (e.g. Shepley and Soley, 146 



2012). They noted that the process-driven models can relate the variation of GWLs to 147 

hydrogeological properties but that the calibration of these models is complex and requires more 148 

data than are typically available. In contrast, black box methodologies are more easily calibrated but 149 

they provide little insight into the controls on GWLs. Mackay et al. (2014) proposed AquiMod, a 150 

conceptual lumped parameter model, as a compromise approach. Rather than starting from basic 151 

physical principles, such conceptual models contain simpler representations of the components of 152 

the hydrogeological system. We use AquiMod as the fixed effects of our MM. 153 

AquiMod includes simple conceptual representations of soil drainage, the transfer of water through 154 

the unsaturated zone and groundwater flow. The soil zone is represented as a bucket which receives 155 

water from rainfall and releases water through evapotranspiration and drainage into the 156 

unsaturated zone. Measured rainfall and potential evapotranspiration amounts are inputs to the 157 

model. Model parameters control the nonlinear relationship between the rate of evapotranspiration 158 

and the soil moisture and the rate at which water drains from the soil. A parametric transfer 159 

function is used to represent the rate of vertical flow through the unsaturated zone into the 160 

saturated zone which is represented by a layered rectangular block of aquifer through which water 161 

flows horizontally. Water discharges from a layer via an outlet at its base. The discharge rate is 162 

dependent on the layer permeability and the hydraulic gradient. The former is controlled using a 163 

hydraulic conductivity parameter and the latter is controlled by outlet elevation and aquifer length 164 

parameters. The number of layers is selected for each borehole to lead to the best possible match 165 

between observed and modelled GWLs.      166 

This model is easier to calibrate than a more complex process-based model and more easily 167 

interpretable than a black-box model. An implementation of AquiMod with three layers in the 168 

saturated zone has a total of 16 parameters but eight of these can be estimated from available 169 

information about the catchment. The remaining eight parameter values constitute our fixed effects 170 

parameter vector 𝛃𝐟. These parameters are 𝑍𝑟  (mm) the maximum rooting depth of vegetation, 𝑝 171 



the water depletion factor of vegetation, 𝜆 the scale parameter of a Weibull function which 172 

describes the rate of recharge, 𝑘 the shape parameter for the Weibull function, 𝑆 (%) the aquifer 173 

storage coefficient and 𝑘𝑖  𝑖 = 1,2,3 (m d-1) the hydraulic conductivity for each layer of the saturated 174 

zone.  Mackay et al. (2014) estimated these parameters by finding the values which led to the largest 175 

Nash-Sutcliffe Efficiency (NSE) score. The NSE score is measure of the proportion of variance which 176 

has been explained by the model and is defined as: 177 

NSE = 1 −
∑ {𝑧𝑖 −𝑚𝑖}

2𝑛
𝑖=1

∑ {𝑧𝑖 − 𝑧̅}
2𝑛

𝑖=1

,                                                 (2) 

where 𝑧̅ is the mean of the observed values. Jackson et al. (2016) set a threshold of 0.5 on the NSE 178 

when deciding which parameter vectors were plausible. 179 

 2.2 The random effects model 180 

We assume that the random effects, 𝑟𝑖, are a realization of a multivariate random function with zero 181 

mean.   A simple random effects model would assume that the random function is Gaussian with 182 

fixed variance and that the realizations from this function are independent. However, this model 183 

might not be sufficiently flexible to represent observed GWLs (Bloomfield and Marchant, 2013). A 184 

more general random function can be described in terms of its marginal distributions and its 185 

dependence structure or copula (e.g. Bárdossy and Li, 2008). A marginal distribution is the pdf for a 186 

random function, in our case the random effects, at a single time. It does not take any account of the 187 

random effects at other times. In this paper, we assume that the residuals at each time are realized 188 

from the same marginal distribution with density 𝑓(𝑟) and cumulative distribution function (cdf) 189 

𝐹(𝑟). Therefore, if an appropriate marginal distribution is specified, the set of 𝑢𝑖 = 𝐹(𝑟𝑖) quantile 190 

values should be a sample from a uniform distribution bounded by zero and one. The copula 191 

describes the correlation between the 𝑢𝑖. If we assume a Gaussian copula and denote the cdf of a 192 

standardised Gaussian distribution by Φ0,1 then 𝐚 = (𝑎1, … , 𝑎𝑛), where 𝑎𝑖 = Φ0,1
−1(𝑢𝑖), is a 193 



realization of a multivariate Gaussian distribution where each marginal has zero mean and unit 194 

variance and the 𝑎𝑖  are linearly correlated with correlation matrix 𝐂.  195 

The log-likelihood of a multivariate random function with marginal distribution 𝑓(𝑟), Gaussian 196 

copula and correlation matrix 𝐂 can be written (Kazianka and Pilz, 2010; Marchant et al., 2011) 197 

𝑙 = −
1

2
log|𝐂| +

1

2
𝐚T(𝐈𝑛 − 𝐂

−1)𝐚 − ∑ log[𝑓(𝑟𝑖)]
𝑛
𝑖=1 ,                                      (3)    198 

where 𝐈𝑛 is the identify matrix of length 𝑛.  199 

We relax the standard assumption of independent Gaussian residuals by calibrating random effects 200 

models with more general marginal distributions and correlation matrices. Our choice of marginal 201 

distribution is the asymmetric exponential power (AEP) distribution (Figure 1). This has density (Zhu 202 

and Zinde-Walsh, 2009): 203 

𝑓(𝑥) =

{
 

 (
𝛼

𝛼∗
)
1

𝜎
𝐾EP(𝑝1)exp (−

1

𝑝1
|
𝑥 − 𝜇

2𝛼∗𝜎
|
𝑝1
)                                                if 𝑥 ≤ 𝜇 

(
1 − 𝛼

1 − 𝛼∗
)
1

𝜎
𝐾EP(𝑝2)exp (−

1

𝑝2
|

𝑥 − 𝜇

2(1 − 𝛼∗)𝜎
|
𝑝2
)                             if 𝑥 > 𝜇.

     (4) 

where 𝜇 is the location parameter, 𝜎 > 0 is the scale parameter, 𝛼 ∈ (0,1) is the skewness 204 

parameter, 𝑝1 > 0 and 𝑝2 > 0 are the left and right tail parameters, 𝐾EP(𝑝) = 1/[2𝑝
1/𝑝Γ(1 +205 

1/𝑝)] is the normalizing constant, Γ is the Gamma function and 𝛼∗ = 𝛼𝐾EP(𝑝1)/[𝛼𝐾EP(𝑝1) +206 

(1 − 𝛼)𝐾EP(𝑝2)]. Figure 1 illustrates how the skewness and the decay of the left and right tails of 207 

the pdf are controlled by 𝛼, 𝑝1 and 𝑝2. When 𝑝1 = 𝑝2 the AEP distribution reduces to an alternative 208 

parameterisation of the SEP distribution used by Schoups & Vrugt (2010). Zhu and Zinde-Walsh also 209 

derive expressions for the AEP cdf in terms of the Gamma cdf G(𝑥, 𝛾): 210 

𝐹(𝑥) =

{
 

 𝛼 [1 − 𝐺 (
1

𝑝1
(|
𝑥 − 𝜇

2𝛼∗𝜎
|)
𝑝1
,
1

𝑝1
)]  if 𝑥 ≤ 𝜇

𝛼 + (1 − 𝛼)𝐺 (
1

𝑝2
(|

𝑥 − 𝜇

2(1 − 𝛼∗)𝜎
|)
𝑝1
,
1

𝑝2
)  if 𝑥 > 𝜇

 ,                             (5) 

the quantile function of the AEP: 211 



𝐹−1(𝑣) =

{
 
 

 
 

𝜇 − 2𝜎𝛼∗ [𝑝1𝐺
−1 (1 −

𝑣

𝛼
,
1

𝑝1
)]

1
𝑝1
if 𝑣 ≤ 𝜇

𝜇 + 2𝜎(1 − 𝛼∗) [𝑝2𝐺
−1 (1 −

1 − 𝑣

1 − 𝛼
,
1

𝑝2
)]

1
𝑝2
if 𝑣 > 𝜇

,                           (6) 

and demonstrate that the expectation of an AEP distributed random variable 𝑋  is: 212 

E(𝑥) = 𝜇 +
𝜎

𝐵
[(1 − 𝛼)2

𝑝2Γ(2/𝑝2)

Γ2(1/𝑝2)
− 𝛼2

𝑝1Γ(2/𝑝1)

Γ2(1/𝑝1)
],                                      (7) , 213 

where 𝐵 = 𝛼𝐾EP(𝑝1) + (1 − 𝛼)𝐾EP(𝑝2).  214 

Schoups and Vrugt (2010) use autoregressive models to determine the correlation between random 215 

effects. However, this approach cannot be used when the GWLs are observed at irregular time 216 

intervals. Instead, we use a model-based geostatistical approach (Diggle and Ribeiro, 2007) and 217 

calculate the entries of 𝐂 using an authorized parametric function which ensures that 𝐂 is positive 218 

definite. Many such authorized functions exist (Webster and Oliver, 2007) including the exponential 219 

model which is a continuous equivalent to an autoregressive model of order 1. We choose the more 220 

general Matérn function: 221 

𝐂𝑖,𝑗 = {

1                                                                       if |𝑡𝑖 − 𝑡𝑗| = 0

1

2𝜈−1𝛤(𝜈)
(
|𝑡𝑖 − 𝑡𝑗|

𝜌
)

𝜈

𝐾𝜈 (
|𝑡𝑖 − 𝑡𝑗|

𝜌
)       if |𝑡𝑖 − 𝑡𝑗| > 0

                                             (8) 

to express entry 𝑖, 𝑗 of the covariance as a function of |𝑡𝑖 − 𝑡𝑗|, the time separating the two 222 

observations. The Matérn function has two parameters, namely the distance parameter 𝜌 and the 223 

smoothness parameter 𝜈. The smoothness parameter controls the rate of decay of the function for 224 

small lags (Figure 2). When 𝜈 = 0.5 the Matérn function is equal to the exponential function. If we 225 

select 𝜇 to ensure that E(𝑟) = 0 then our general model of the residuals has six parameters to be 226 

calibrated i.e. 𝛃𝐫 = (𝜎, 𝛼, 𝑝1, 𝑝2, 𝜌, 𝜈). 227 

2.3 Calibration of the mixed model 228 



Our general MM has a total of 14 parameters which must be estimated or calibrated on observed 229 

GWLs. The maximum likelihood (ML) estimator uses a numerical optimization algorithm to find the 230 

values of these parameters that maximizes the log-likelihood function (Eqn. 3) for the calibration 231 

data. It is also possible to compare different model structures by comparing their likelihoods. For 232 

example, one might wish to consider whether an AquiMod fixed effects model with a three layer 233 

saturated zone is a significantly better fit to the data than a model with only two layers. 234 

Alternatively, one might consider whether a random effects model with a Matérn correlation 235 

function is superior to one that uses an exponential model.  This can be achieved by fitting each 236 

model by ML and then comparing their Akaike Information Criterion (AIC; Akaike, 1973): 237 

AIC = 2𝑘 − 2𝑙,                                                                         (14) 

for the maximized log-likelihood 𝑙 from Equation 3. Here, 𝑘 is the total number of parameters in the 238 

model. If too many parameters are included in a model it might be over-fitted. This means that the 239 

model matches the intricacies of the calibration data very closely but is less suitable for representing 240 

independent validation data. The model with the lowest AIC is thought to be the best compromise 241 

between complexity and quality of fit to the data (Webster and Oliver, 2007). Alternative 242 

information criteria such as the Bayesian Information Criterion (BIC, Marshall et al., 2005) do exist. 243 

However, the formula for the BIC includes the number of observations. When the observations are 244 

highly correlated some adjustment of this term will be required.  245 

The ML estimator is a frequentist method that looks for the single set fixed parameter values that 246 

generated the observed data (Minasny et al., 2011). In reality, such a set of parameters rarely exist. 247 

Deterministic models tend to approximate the complexities of environmental systems. Even if an 248 

optimal deterministic model existed, it is highly unlikely that sufficient calibration data would be 249 

available to uniquely identify the parameters of this model. Indeed, many deterministic models 250 

include state variables that are unmeasurable. Therefore a number of models are likely to be 251 

suitable to represent the environmental system (Beven and Binley, 1992).  252 



In a Bayesian analysis the model parameters are treated as probabilistic variables. Our knowledge of 253 

the parameter values prior to collecting any data is expressed as a prior distribution.  Then the 254 

observations are used to update these priors and to form a posterior distribution of the GWLs which 255 

combines our prior knowledge with the information that could be inferred from the observations. 256 

The posterior distribution can be sampled using a Markov Chain Monte Carlo (MCMC) approach 257 

(Diggle and Ribeiro, 2007). This is an iterative method which moves between behavioural or 258 

plausible parameter vectors according to the corresponding values of the log-likelihood function. 259 

The parameter vector is randomly perturbed and the Metropolis-Hastings algorithm (Hastings, 1970) 260 

is used to decide if the parameter set is behavioural. The MCMC approach is computationally 261 

demanding and the perturbations of the parameter vector must be carefully controlled to ensure 262 

that the sample is representative of the behavioural parameter set. Until recently, these challenges 263 

might have prevented the use of the approach to estimate all of the parameters of a deterministic 264 

GWL model. However, Vrugt et al. (2008) have developed the DiffeRential Evolution Adaptive 265 

Metropolis (DREAM) algorithm which permits efficient MCMC sampling in high dimensional 266 

parameter spaces and automatically selects effective perturbations of the parameter vector. 267 

Minasny et al. (2011) demonstrated how this algorithm could be applied in conjunction with 268 

geostatistical models and Minasny et al. (2013) described how it could be extended to MMs that 269 

included nonlinear fixed effects models. The MCMC sample can also be used to assess whether the 270 

parameters of the fixed effects model are identifiable. This concept is formally defined by Renard et 271 

al. (2010). A parameter is non-identifiable if the observed data do not provide any information about 272 

that parameter. In this case the posterior distribution of the parameter is no more certain than the 273 

prior distribution. 274 

2.4 Prediction using the mixed model 275 

The calibrated mixed model can be used to make a prediction of the pdf of the residuals or to 276 

generate simulations of the residuals at a set of times where the GWL was not observed.  These 277 



predictions and simulations are conditional on the observations that are available. In our discussion 278 

above we demonstrated that 𝐚 = (𝑎1, … , 𝑎𝑛), where 𝑎𝑖 = Φ0,1
−1(𝑢𝑖) is a realization of a multivariate 279 

Gaussian random function. The kriging predictor (Webster & Oliver, 2007) can be used to predict 𝑎 280 

at a set of 𝑞 target times 𝐓 = (𝑇1, … , 𝑇𝑞) when it was not observed. We denote these predictions by 281 

𝐚T. The length 𝑞 vector of expectations 𝐞T and the 𝑞 × 𝑞 covariance matrix 𝐯T of 𝐚T are: 282 

𝐞T = 𝐂TO𝐂
−1𝐚,                                                                           (9) 

𝐯T = 𝐂TT − 𝐂TO𝐂
−1𝐂TO

T ,                                                             (10) 

where 𝐂TO is the 𝑞 × 𝑛 matrix of correlations between the residuals on the target times and the 283 

observed residuals and 𝐂TT is the correlation matrix for the residuals at the target times. The LU 284 

method (Webster & Oliver, 2007) can be used to generate simulations of  𝐚T. These can be 285 

transformed to simulations of the residuals: 286 

𝐫T = 𝐹
−1[Φ0,1(𝐚T)].                                                                  (11) 

The correlation between the elements of each of the realizations will be consistent with the 287 

calibrated model.  Alternatively it is possible to predict the pdf of the residual for a single target time 288 

conditional on the observed residuals 𝐫 by calculating:   289 

𝑓(𝑟∗|𝐫, 𝛃𝐫) =
𝑓(𝑟∗) × ϕ𝑒𝑇,√𝑣𝑇(𝑎

∗)

ϕ0,1(𝑎
∗)

,                                                       (12) 

for the range of plausible values of 𝑟∗. Here, 𝑎∗ = Φ0,1
−1[𝐹(𝑟∗)], ϕ𝑒,𝑏 is the pdf of a Gaussian 290 

distribution with mean 𝑒 and standard deviation 𝑏 and 𝑒T and 𝑣T are the expectation and variance 291 

of the kriged prediction on this single date. Note that if the residuals on the target date are 292 

independent of the conditioning observed residuals or if no conditioning observations are included 293 

in the prediction, then 𝑒T = 0, 𝑣T = 1 and Eqn. 12 reduces to 𝑓(𝑟∗|𝐫, 𝛃𝐫) = 𝑓(𝑟
∗).  294 



If the MM has been calibrated by the MCMC approach then an ensemble of independent 295 

realisations of the parameter vector will have been sampled. The pdf of the residual conditional on 296 

the observed GWLs is then equal to Eqn. 12 averaged across the parameter vectors. This pdf 297 

accounts for the uncertainty in estimating the fixed and random effects parameters and the residual 298 

errors of the fixed effects model.  299 

2.5 Validation of the mixed model 300 

The NSE score (Eqn. 2) is commonly used as a criterion to validate hydrological models. However, 301 

Thyer et al. (2009) note that the NSE score is only a measure of the accuracy of the predictions and it 302 

cannot be used to confirm that the assumed distribution of the random effects is consistent with the 303 

observed data. Therefore, Thyer et al. (2009) recommend the use of the predictive QQ plot. If the 304 

calibrated MM is used to predict the 𝑖th observed GWL then the p-value of the observed value is 305 

equal to: 306 

𝑝𝑖 = Φ0,1 (
𝑎̃𝑖 − 𝑒𝑖

√𝑣𝑖
),                                                                 (13) 

 where 𝑎̃𝑖 is the observed value of 𝑎 at time 𝑖 (i.e. 𝑎̃𝑖 = Φ0,1
−1[𝐹(𝑟̃𝑖)]), and 𝑒𝑖, 𝑣𝑖 are the expectation 307 

(Eqn. 9) and variance (Eqn. 10) of the kriged prediction of 𝑎𝑖. If the observed GWL is a realization of 308 

the MM then 𝑝𝑖  is a realization of a uniform distribution on [0,1]. A QQ plot is constructed by 309 

calculating 𝑝𝑖  for a large number of observations. The 𝑝𝑖  are sorted and plotted against the 310 

theoretical p-values or the cdf of the uniform distribution (i.e. evenly spaced values between zero 311 

and one). If all of the points of the QQ plot lie on the 1:1 line, the MM predictive distribution agrees 312 

exactly with the observations. If all the points lie above (or alternatively, below) the 1:1 line then the 313 

GWLs are under (over) predicted. If the points lie below (above) the 1:1 line for small theoretical p-314 

values and above (below) the 1:1 line for large theoretical p-values then the predictive uncertainty 315 

of the MM is under (over) estimated.  316 



3. Methods  317 

All of the computations were conducted using Matlab (Mathworks, 2014) and the Matlab 318 

implementation of the DREAM algorithm (Vrugt, 2016) was used to perform the MCMC analyses.   319 

3.1 Borehole and Meteorological Data 320 

We estimated MMs for the monthly records from four boreholes considered by MacKay et al. 321 

(2014). These boreholes are named Chilgrove House (540 observations), Hucklow South (440 322 

observations), Lower Barn Cottage (368 observations) and Skirwith (326 observations) and they are 323 

set in chalk, limestone, lower greensand and sandstone respectively. Three of these boreholes were 324 

considered by Jackson et al. (2016) when they used GLUE to quantify uncertainty in a GWL model. 325 

MacKay et al. (2014) give full details about the characteristics and setting of the boreholes. The GWL 326 

records were extracted from the UK National Groundwater Archive (National Groundwater Level 327 

Archive, 2013).  Monthly GWLs from the boreholes are shown in Figure 3. Strong seasonal patterns 328 

are evident in all of the hydrographs and the Lower Barn Cottage and Skirwith hydrographs are 329 

considerably smoother than the other two. We follow MacKay et al. (2014) and use the first half of 330 

these time series for calibration of our MMs and the second half for validation. There are 18 missing 331 

observations from Skirwith during the validation period. 332 

The monthly precipitation data required as an input to AquiMod were extracted from the Centre for 333 

Ecology and Hydrology’s CERF 1km gridded precipitation dataset which is derived from UK 334 

Meteorological Office data (Keller et al., 2005). The monthly potential evapotranspiration time series 335 

were extracted from the Meteorological Office Rainfall and Evaporation Calculation System (Field, 336 

1983). These are based on a modified version of the Penman-Monteith equation (Monteith and 337 

Unsworth, 2008).  338 

3.2 Model calibration and analyses 339 



We calibrated a series of MMs with increasingly complex random effects using the ML estimator. 340 

The initial models assumed that the random effects were independent and realized from a Gaussian 341 

distribution with constant variance. This Gaussian model was then generalized to include temporal 342 

correlation described firstly by exponential and then by Matérn covariance functions. The 343 

independent, exponential and Matérn covariance models were then used in conjunction with the 344 

AEP distribution. The structure of the fixed effects models were identical to the AquiMod models 345 

used by MacKay et al. (2014). The Chilgrove House and Hucklow South models had three saturated 346 

zone structures whereas there were only two saturated zone structures for Lower Barn Cottage and 347 

Skirwith. The AIC was calculated for each calibrated MM. For each borehole, the MM with the lowest 348 

AIC was used to predict the GWLs during the validation period and to calculate the uncertainty of 349 

these predictions. Predictive QQ plots were calculated for the calibration observations (without 350 

conditioning data) and the validation observations.  351 

For each borehole, the MMs were recalibrated using the DREAM MCMC approach. All of the 352 

AquiMod parameters were assumed to have uniform prior distributions. The bounds on these 353 

parameters were identical to the parameter ranges considered by MacKay et al. (2014). The MCMC 354 

was iterated 600 000 times. Initial runs of the algorithm indicated that around 15 000 iterations 355 

were required before the Gelman-Rubin convergence diagnostic (Vrugt et al., 2009) was consistently 356 

less than 1.2 indicating that the MCMC had converged to the plausible portion of the parameter 357 

space. There was evidence of some correlation between sampled parameter vectors separated by 358 

up to 100 iterations. We therefore conservatively discarded the first 100 000 parameter vectors and 359 

only selected every 500th on the remaining vectors to yield an ensemble of 1 000 parameter vectors 360 

which we treated as if they were independent samples of the parameter set. The validation 361 

procedures that had been applied to the ML estimates were then repeated for the ensembles of 362 

MCMC parameter estimates. We also used the MCMC ensembles to assess which of the AquiMod 363 

parameters were identifiable.  364 



4. Results 365 

4.1 Maximum likelihood estimation of the mixed models 366 

Table 1 shows the AIC values for the ML estimates of the different MMs for each borehole. In each 367 

case, the inclusion of the AEP rather than Gaussian random effects and the inclusion of 368 

autocorrelated random effects led to a decrease in the AIC. In contrast the NSE scores (Table 2) were 369 

largely unchanged as MM complexity was increased. Indeed, in the case of Lower Barn Cottage there 370 

is a sharp decrease in NSE when the AEP random effects with exponential correlation function are 371 

generalised to a Matérn correlation function. For three of the four boreholes the lowest AIC was 372 

achieved with an exponential covariance function but at Lower Barn Cottage there was sufficient 373 

improvement in likelihood to justify the use of a Matérn function.  374 

The predicted pdfs of the random effects based on these best fitting MMs varied in terms of the 375 

magnitude and direction of their skew and the rate of decay of each tail (Figure 4). However, the 376 

observed residuals from the fixed effects model were generally consistent with these predicted pdfs. 377 

The best fitting models also differ in terms of their autocorrelation functions (Figure 5). At Chilgrove 378 

House and Hucklow South temporal autocorrelation is only evident for time lags of less than 5 379 

months whereas for Skirwith there is correlation for lags up to 20 months and for Lower Barn 380 

Cottage, observations separated by well over 20 months are autocorrelated.  381 

The predictions of GWLs for the four sites during the validation period (Figure 6) followed the same 382 

pattern of peaks and troughs as the observed values and the observations were generally within the 383 

90% confidence limits of the predictions. The predictive QQ plots for the calibration data at 384 

Chilgrove House, Hucklow South and Skirwith were all reasonably close to the 1:1 line for both the 385 

Gaussian independent random effects (Figure 7) and the best fitting general random effects model 386 

(Figure 8). However, the corresponding plots for Lower Barn Cottage were further from the 1:1 line, 387 

particularly for the more general model where the curve was consistently above the 1:1. This 388 



indicates that there is systematic under prediction of GWLs and is consistent with the relatively poor 389 

NSE score for this site. We suspected that there were too few observations to accurately estimate all 390 

of the components of the general MM for Lower Barn Cottage. Also, the observations that were 391 

available were highly correlated. Therefore, we re-calibrated the MM for this site using both the 392 

original calibration and validation observations and saw a marked improvement in the QQ plot 393 

(Figure 8e). At Chilgrove House, the QQ plot for the validation data was also close to the 1:1 line for 394 

both the Gaussian and general random effects models. There was some moderate under estimation 395 

of the uncertainty of the validation predictions using the general random effects model at Hucklow 396 

South and slightly more severe over-estimation of the uncertainty at Skirwith. The validation QQ 397 

plots for both the Gaussian and best fitting random effects models were both relatively poor for 398 

Lower Barn Cottage. 399 

4.2 MCMC estimation of parameters 400 

The ensembles drawn from the MCMC samplers indicate that the AquiMod parameters (Figure 9) 401 

and parameters of the AEP distribution (Figure 10) are generally identifiable for each borehole. The 402 

parameters are confined to a range that is less than that of the prior distribution. Note that the 403 

range on the x-axis in these plots is identical to the range of the prior uniform distribution of the 404 

parameter. However, the spread of the posterior realizations of 𝑘, the shape parameter of the 405 

Weibull distribution within AquiMod, is almost as wide as the prior distribution for all of the 406 

boreholes. Closer inspection of the MCMC ensembles revealed that this parameter is highly 407 

correlated to 𝜆, the scale parameter of the Weibull distribution, and this relationship explains the 408 

identifiability issue. At Lower Barn Cottage and Skirwith the identifiability of many of the AquiMod 409 

parameters improves when the entire observation record, rather than half of it, is used for 410 

calibration.  411 

The posterior ensembles from the Gaussian independent random effects model (red histograms in 412 

Figure 8) and the best fitting random effects model (grey histograms) are relatively similar for 413 



Chilgrove House and Hucklow South. However, for Lower Barn Cottage and Skirwith, there are 414 

marked differences between the posterior distributions of the parameters.    415 

The MCMC ensembles of random effects parameters were used to estimate the uncertainty of the 416 

correlation functions (Figure 5). These plots illustrate that there is significant temporal auto-417 

correlation amongst the random effects at the p=0.05 level for more than 2 months at Chilgrove 418 

House, more than 5 months at Hucklow South and more than 20 months at Lower Barn Cottage and 419 

Skirwith. Figure 11 shows histograms of NSE values achieved by each parameter vector within the 420 

MCMC ensembles for each borehole. For Chilgrove House and Hucklow South these values are fairly 421 

tightly clustered around the maximum. For Lower Barn Cottage and Skirwith the NSE values are 422 

more variable indicating that the proportion of GWL variation explained by the fixed effects models 423 

varies between different parameter vectors within the ensemble. The NSE values for these two 424 

boreholes do become more clustered close to the maximum when the entire observation record is 425 

used to calibrate the model. 426 

5. Discussion 427 

5.1 Overview 428 

We have demonstrated how MMs can be used to represent the temporal variation of GWLs at 429 

specific boreholes and to predict these GWLs on dates where they were not measured. These 430 

predictions can be used to reconstruct hydrographs for times prior to the drilling of the borehole, to 431 

fill in gaps in the hydrograph through interpolation and to simulate potential future characteristics of 432 

hydrographs under different climate scenarios.  The MM framework is flexible in terms of the 433 

deterministic model that may be included in the fixed effects and the structure of the random 434 

effects. The MMs were tested using the same monthly GWL observations that had previously been 435 

modelled by Mackay et al. (2014) using informal methods. However, the correlation functions 436 

included in the random effects are fully compatible with the irregularly sampled hydrographs that 437 



are available for many sites in the UK (Environment Agency, 2014). The uncertainty of MM 438 

parameters can be accounted for by sampling them using a MCMC approach. This reveals that they 439 

are generally identifiable although some parameters cannot be uniquely defined if they are strongly 440 

related to each other (Renard et al., 2009). 441 

5.2 Structure of the random effects 442 

For all four boreholes the best fitting MM according to the AIC included temporal autocorrelation 443 

amongst the random effects which were realized from an AEP rather than a Gaussian distribution. 444 

This indicates that the residuals are inconsistent with the assumptions that they were independent 445 

and realized from a Gaussian distribution. In this respect our results agree with the findings of 446 

Schoups and Vrugt (2010) for rainfall runoff models. Also in common with Schoups and Vrugt (2010), 447 

we found that the accuracy of the GWL predictions was not substantially improved by including the 448 

more general random effects model. The NSE scores achieved in this study were a very slight 449 

improvement on those recorded by Mackay et al. (2014) for the same boreholes but we suspect that 450 

these improvements were wholly due to differences in the numerical methods used to minimize the 451 

objective function when estimating the parameters rather than a difference in the modelling 452 

approach. 453 

Schoups and Vrugt (2010) found that the inclusion of their general random effects model did lead to 454 

substantial improvements in the estimates of the predictive uncertainty. This did not occur for the 455 

predictions from AquiMod. This difference could have arisen because the deviations of GWLs from 456 

the Gaussian distribution are far less severe than for stream flows where very heavy tails result from 457 

sharp responses to storm events. Indeed, the models of Schoups and Vrugt (2010) included a 458 

relationship between the error variance and the flow rate but when we experimented with such 459 

relationships for AquiMod (results not shown) the likelihood did not improve.  460 



The QQ plots indicated that the predictive uncertainty of AquiMod was relatively poorly estimated 461 

by the autocorrelated AEP models for the two sites with substantial temporal correlation. We 462 

suspect this was because there were too few observations from these sites and those that were 463 

available were too strongly correlated to accurately estimate all of the parameters of the MM. The 464 

likelihood function for an auto-correlated variable is known to be particularly sensitive to the 465 

correlation between close pairs of observations (Stein, 1999). It appears that when insufficient data 466 

are available, the general random effects models lead to an emphasis being placed on accurately 467 

estimating the autocorrelation function at the expense of the marginal distributions and fixed effects 468 

parameters. Therefore poor NSE scores and QQ plots can result. The QQ plots for the boreholes with 469 

strong autocorrelation were improved when the number of calibration data was doubled. The 470 

number of observations required to accurately estimate all parameters of the MM will depend on 471 

the complexity of the model and the amount of autocorrelation amongst the residuals. Therefore, it 472 

is not possible to give general guidelines about the data requirements and fitted MMs should be 473 

carefully validated to confirm their adequacy.  474 

The QQ plots using independent validation data tended to be further from the 1:1 line than those 475 

based on the calibration data. This could be due in part to changes in the accuracy of the rainfall 476 

data over time. Jackson et al. (2016) discuss how the density of UK rain gauges varies over time. 477 

There are two more substantive implications of assuming independent and Gaussian random effects 478 

when estimating random effects. First, the method will fail to identify temporal autocorrelation 479 

amongst the random effects. Significant temporal correlation was identified for all four boreholes 480 

and for two of the boreholes this continued for ranges up to 20 months. If this temporal correlation 481 

is not modelled then it will not be accounted for when using observations to condition predictions of 482 

GWLs (Eqn. 12). For example, if predictions of the GWL were required one month prior to the 483 

observational record, one would expect them to be correlated to the first few observations from the 484 

record and predictions which ignored the autocorrelation would be suboptimal. It is also important 485 



to account for temporal autocorrelation when simulating GWLs on multiple dates. If realisations of 486 

the hydrograph are produced where the monthly GWLs are erroneously independent, the 487 

uncertainty of the duration of events such as droughts that span multiple months will be poorly 488 

estimated. The second implication of inappropriate assumptions in the random effects is that the 489 

parameters of the fixed effects will be poorly estimated. 490 

5.3 Formal and informal approaches to quantifying uncertainty of groundwater levels 491 

The formal likelihood methods applied here considered the effects of parameter uncertainty and the 492 

combined effects of model specification, input and measurement errors that are included in the 493 

random effects. If the random effects model assumptions are appropriate then these are calculated 494 

using objective statistical methods. In contrast the informal uncertainty methods as implemented by 495 

Jackson et al. (2016) and Mackay et al. (2014) associate all of the predictive uncertainty with the 496 

parameter uncertainty. A subjective threshold is placed on the NSE or a similar criterion to decide 497 

whether a proposed model is behavioural. The plots of NSEs realized from the MCMC analysis of our 498 

models (Figure 11) suggest that a single NSE threshold is unlikely to be suitable for all boreholes. 499 

Indeed, the ensembles of behavioural parameters identified by Mackay et al. (2014) suggest they are 500 

considerably less identifiable than those in Figure 9.  However, we note that despite these 501 

misgivings, the containment ratios recorded by Jackson et al. (2016) are comparable to those that 502 

can be inferred from our QQ plots, that the informal methodologies can be implemented more 503 

quickly than our formal likelihood approaches and that no assumptions about the structure of the 504 

model errors are required. 505 

 5.4 Further generalisations of the random effects models 506 

Although the random effects models applied in this paper are substantially more flexible than 507 

standard independent Gaussian models there are many ways in which they could be further 508 

generalised. For example, Schoups & Vrugt (2010) permitted the variability of runoff models to 509 



linearly increase according to the flow. The variance of the random effects might also be permitted 510 

to vary according to GWLs, seasonally or according to any relevant covariate (Marchant et al., 2009). 511 

Such changes can easily be incorporated into the MM (Eqn. 1). It is possible to incorporate any 512 

marginal distribution for the random effects into the copula-based framework (Eqn. 3). The fit of the 513 

MM might also be improved by incorporating a non-Gaussian dependence structure into this 514 

framework. Eltahir and Yeh (1999) noted that groundwater drought episodes tend to last longer 515 

than flood episodes. This suggests that the correlation between successive random effects during 516 

droughts might be stronger than that during floods. Such behaviour could be accommodated by 517 

using a non-Gaussian and non-symmetric copula model (Bárdossy and Li, 2008) for the dependence 518 

structure. Before applying any of these generalisations it will be necessary to confirm that they lead 519 

to a substantial improvement in the likelihood and AIC and to confirm by validation that the 520 

resultant predictive distributions are appropriate. 521 

6. Conclusions  522 

Mixed models estimated by formal likelihood methods can be used to predict GWLs and to estimate 523 

the uncertainty of these predictions. In contrast to informal methods, the criterion used to estimate 524 

the models is objective and based on the likelihood that the observed data would have been realized 525 

from the specified model. However, these likelihoods are only appropriate if the assumptions on 526 

which they are based are appropriate. Therefore it is necessary to thoroughly validate the estimated 527 

MM through methods such as predictive QQ plots which assess the accuracy of the entire predictive 528 

distribution rather than just the accuracy of the estimated expected GWL at each time. If the 529 

validation results are poor then generalisations of the random effects model should be considered. 530 

GWLs recorded a month apart can be highly correlated and therefore a substantial number of 531 

observations may be required to accurately estimate all of the components of the MM. Our tests of 532 

the MM on four UK GWL hydrographs indicated that the assumptions of independent and Gaussian 533 

errors are unlikely to be completely appropriate. However, the application of these inappropriate 534 



models did not lead to a substantial deterioration of the GWL predictions or the estimates of their 535 

uncertainty. The appropriateness of the random effects model is more important in circumstances 536 

where the temporal correlation of the random effects or the posterior distributions of the fixed 537 

effects parameters are of interest.  538 
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Figures 661 

 662 

Figure 1: Examples of the AEP pdf for 𝜇 = 0, 𝜎 = 1 and stated values of 𝛼, 𝑝1and 𝑝2. 663 

 664 
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 666 

 667 

Figure 2: Examples of the Matérn covariance function with 𝑐1 = 1, 𝜌 = 2 and stated values of 𝜈. 668 
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 671 

Figure 3: Observed monthly GWLs from (a) Chilgrove House, (b) Hucklow South, (c) Lower Barn 672 

Cottage, (d) Skirwith. Validation period is shaded grey. 673 
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 675 

Figure 4: Maximum likelihood estimate of AEP pdf of residuals (continuous curve) and observed 676 

distribution of residuals during calibration (crosses) and validation (circles) periods. Boreholes are (a) 677 

Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, (d) Skirwith. Plots (e) and (f) correspond 678 

to models at Lower Barn Cottage and Skirwith that have been calibrated on all of the available data. 679 



 680 

Figure 5: Maximum likelihood estimate of auto-correlation function for residuals (black line) and 681 

90% confidence interval of the correlation function according to the MCMC sample (shaded region). 682 

Boreholes are (a) Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, (d) Skirwith. Plots (e) 683 

and (f) correspond to models at Lower Barn Cottage and Skirwith that have been calibrated on all of 684 

the available data. 685 
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Figure 6: 90% prediction intervals of GWLs during a 10-year part of the validation period (shaded 688 

region) and observed GWLs (crosses) according to the best fitting MM. Prediction intervals are based 689 

on the MCMC samples and do not use conditioning data. Boreholes are (a) Chilgrove House, (b) 690 

Hucklow South, (c) Lower Barn Cottage, (d) Skirwith.  691 
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 693 
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 695 

Figure 7: QQ plots upon prediction of GWLs using maximum likelihood estimate of mixed model with 696 

Gaussian and independent random effects during calibration period (black line) and validation 697 

period (green line). Boreholes are (a) Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, 698 

(d) Skirwith. Plots (e) and (f) correspond to models at Lower Barn Cottage and Skirwith that have 699 

been calibrated on all of the available data. 700 



 701 

Figure 8: QQ plots upon prediction of GWLs using maximum likelihood estimate of best fitting 702 

generalized mixed model during calibration period (black line) and validation period (green line). 703 

Boreholes are (a) Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, (d) Skirwith. Plots (e) 704 

and (f) correspond to models at Lower Barn Cottage and Skirwith that have been calibrated on all of 705 

the available data.  706 
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 708 

 709 

Figure 9: Histograms of AquiMod parameters realized within the 1000 MCMC samples for models 710 

with Gaussian independent (red) and AEP generalized (grey) random effects. The bounds on the 711 

parameter values correspond to the bounds on the uniform prior distributions. The boreholes are (a) 712 

Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, (d) Skirwith. Plots (e) and (f) correspond 713 

to models at Lower Barn Cottage and Skirwith that have been calibrated on all of the available data. 714 



 715 

Figure 10: Histograms of AEP marginal distribution parameters realized within the 1000 MCMC 716 

samples. The bounds on the parameter values correspond to the bounds on the uniform prior 717 

distributions. The boreholes are (a) Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, (d) 718 

Skirwith. Plots (e) and (f) correspond to models at Lower Barn Cottage and Skirwith that have been 719 

calibrated on all of the available data.  720 



 721 

Figure 11: Calibration NSE scores for the MCMC samples of AquiMod parameters. The boreholes are 722 

(a) Chilgrove House, (b) Hucklow South, (c) Lower Barn Cottage, (d) Skirwith. Plots (e) and (f) 723 

correspond to models at Lower Barn Cottage and Skirwith that have been calibrated on all of the 724 

available data. 725 
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 Gaussian AEP 

 Independent Exponential Matérn Independent Exponential Matérn 

Chilgrove House 1247.2 1241.5 1243.1 1219.3 1209.1 1211.1 

Hucklow South 1137.1 1133.3 1135.5 1122.5 1113.9 1117.1 

Lower Barn Cottage -87.1 -237.0 -243.8 -108.4 -294.1 -294.6 

Skirwith -162.1 -277.7 -275.4 -155.6 -283.9 -280.8 

 730 

Table 1: AIC values for maximum likelihood estimates of mixed models for the calibration data from 731 

four boreholes with different distributions and correlation functions. Smallest AIC values are 732 

highlighted in bold. 733 

 734 

 Gaussian AEP 

 Independent Exponential Matérn Independent Exponential Matérn 

Chilgrove House 0.93 0.93 0.93 0.93 0.93 0.90 

Hucklow South 0.74 0.73 0.73 0.73 0.73 0.70 

Lower Barn Cottage 0.74 0.65 0.64 0.76 0.76 0.54 

Skirwith 0.84 0.82 0.83 0.84 0.84 0.78 

 735 

Table 2:  NSE scores for maximum likelihood estimates of mixed models for the calibration data from 736 

the four boreholes with different distributions and correlation functions.  737 


