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Abstract 

Mastitis remains one of the most common diseases of dairy cows and 

represents a large economic loss to the industry as well as a considerable 

welfare issue to the cows affected. Decisions are routinely made about the 

treatment and control of mastitis despite evidence being sparse regarding 

the likely consequences in terms of clinical efficacy and return on 

investment. The aim of this thesis was to enhance decision making around 

the treatment and prevention of mastitis using probabilistic methods. 

In Chapter 2 and Chapter 3, decision making around the treatment of 

clinical mastitis was explored using probabilistic sensitivity analysis. The 

results from Chapter 2 identified transmission to be the most influential 

parameter affecting the cost of clinical mastitis at cow level and, 

therefore, highlighted how important the prevention of transmission was 

in order to minimise losses associated with clinical mastitis. The cost-

effectiveness of an on-farm culture (OFC) approach to the treatment of 

clinical mastitis was explored in Chapter 3, and compared with the cost-

effectiveness of a ‘standard’ approach commonly used in the UK. The 

results of this study identified that the OFC approach could be cost-

effective in some circumstances but this was highly dependent on the 

proportion of Gram-negative infections and the reduction in 

bacteriological cure rate that may occur as a result of the delay before 

treatment. Therefore, in the UK, this approach is unlikely to be cost 

beneficial in the majority of dairy herds. 
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In Chapters 4, 5 and 6, decision making around the control of mastitis was 

explored utilising data from UK dairy herds that had participated in a 

nationwide mastitis control plan. In Chapter 4, mastitis control 

interventions were identified that were not currently practised by a large 

proportion of herds, and the frequency at which they were made a 

priority by the plan deliverers was also reported. In Chapter 5 and 

Chapter 6, the cost-effectiveness of specific mastitis control interventions 

was explored within an integrated Bayesian cost-effectiveness framework 

from herds with a predominance of environmental intramammary 

infections. Results from the Bayesian microsimulations identified that a 

variety of interventions would be cost effective in different farm 

circumstances. The cost-effectiveness of different interventions has been 

incorporated in a decision support tool to assist optimal decision making 

by veterinary practitioners in the field. 
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Chapter 1                          

Introduction 

 Background 1.1

 The importance of mastitis in dairy cows 1.1.1

Bovine mastitis can be defined as ‘inflammation of the mammary gland’ 

and can have either an infectious or non-infectious aetiology (Bradley, 

2002). Bovine mastitis can be classified as being either clinical (CM), 

whereby gross changes are seen in the milk, or subclinical if no such 

changes are visible but changes in the secretion are present, such as an 

increase in somatic cell count (SCC). Mastitis is the most costly infectious 

disease affecting dairy cattle, accounting for 38% of the total direct costs 

of the common production diseases (Huijps et al., 2008; Kossaibati and 

Esslemont, 1997). A conservative estimate for the total cost of CM to the 

UK dairy industry alone is in excess of £168 million annually (Bradley, 

2002). The cost of subclinical mastitis to the industry is harder to quantify 

as it is more variable and includes more hidden costs such as reduced 

yield, increased risk of culling and increased risk of clinical mastitis. 

However, a Dutch study found that the majority (55%) of the total cost of 

mastitis is caused by  subclinical infections (Huijps et al., 2008). 

Whilst the economic consequences of mastitis are reasonably well 

defined, the same is not true with respect to the impact that mastitis has 

on the welfare of the affected cows. There is, however, an increasing 

awareness within the industry of this aspect of the disease (Fitzpatrick et 
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al., 1998; Huxley and Whay, 2007; Leslie and Petersson-Wolfe, 2012) and 

a general acceptance of welfare guidelines such as the five freedoms 

(Farm Animal Welfare Council Press Statement, 1979) and advice given by 

the Farm Animal Welfare Council (Farm Animal Welfare Council, 2009) 

and European Food Safety Authority (Algers et al., 2009). One of the ‘five 

freedoms’ is “Freedom from Pain, Injury and Disease” and therefore, it is 

incumbent on all those working with dairy cows to be aware of the 

potential impact that mastitis has on the health and well-being of the 

dairy cow population. 

Other factors which have been shown to motivate farmers to improve 

mastitis management include job satisfaction, external recognition from 

peers and improved milk quality (Valeeva et al., 2007). In addition to 

these incentives for reducing mastitis in dairy cows, there is also 

increasing pressure on the industry to reduce the use of antimicrobial 

drugs in food-producing animals because of possible implications for 

human health through the emergence of antibiotic-resistant strains of 

bacteria (White and McDermott, 2001). This pressure has led to the 

banning of some antimicrobial drugs from use in food producing animals 

in certain countries already (Page, 1991) and has prompted a widespread 

call for governments to implement stricter controls on the use of ‘high 

risk’ antimicrobial drugs such as 3rd and 4th generation cephalosporins 

and fluoroquinolones (EFSA, 2011). Given that the treatment of mastitis 

accounts for the majority of the total antimicrobial drug usage on most 

dairy farms (Pol and Ruegg, 2007), this represents a further compelling 
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reason for striving to reduce mastitis in dairy cows and to consider 

carefully how we apply the use of antimicrobial drugs in the treatment 

and control of mastitis. 

 Mastitis pathogens 1.1.2

Most cases of mastitis occur in response to a bacterial infection of the 

mammary gland, but other agents that are known to cause mastitis in 

dairy cows include mycoplasmas, yeasts and algae.  More than 130 

different pathogens have been associated with bovine mastitis (Watts, 

1988). The vast majority of mastitis in the UK is of bacterial origin with 

just four species (Escherichia coli, Streptococcus uberis, Staphylococcus 

aureus and Streptococcus dysgalactiae) accounting for over 70% of all 

diagnoses made (Anon, 2009).  

Mastitis pathogens have historically been classified as either ‘contagious’ 

or ‘environmental’ (Blowey and Edmondson, 2010). Contagious bacteria 

commonly exist  within the mammary gland and are transmitted from 

cow to cow during the milking process (Radostits et al., 1994). They are 

associated with persistent infections which are reflected by a raised SCC. 

The bacteria most likely to behave in a contagious manner include 

Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus 

agalactiae. Environmental bacteria are not adapted to survive in the host 

but are opportunistic invaders from the cow’s environment. These are 

generally acquired between milkings, multiply, instigate an immune 

response and are rapidly dealt with by the immune system resulting in a 

transient increase in SCC. The bacteria most likely to infect cows via the 
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environment include the Enterobacteriacae and Streptococcus uberis. The 

distinction between contagious and environmental pathogens is not clear 

cut and there appears to be some overlap of transmission behaviour 

within pathogen species. This has been highlighted by studies that have 

demonstrated persistent infections with both Strep. uberis (Todhunter et 

al., 1995; Zadoks et al., 2003) and E. coli (Bradley and Green, 2001a; 

Döpfer et al., 1999; Hill and Shears, 1979; Lam et al., 1996b) in addition to 

studies that have shown that E. coli is quite capable of causing recurrent 

infections (Bradley and Green, 2001a; Lam et al., 1996b). It is not 

possible, therefore, to definitively categorise a mastitis pathogen as being 

contagious or environmental based on bacteriology alone and any 

bacteriology results should be interpreted in light of the mastitis 

epidemiology for a given farm (Green, 2012). 

Mastitis pathogens have also historically been classified as either ‘major’ 

or ‘minor’ pathogens based on the inflammatory response that they 

engender and their propensity to cause clinical signs. The ‘major’ 

pathogens comprise Staph. aureus, Strep. dysgalactiae, Strep. agalactiae, 

Strep. uberis and the Enterobacteriacae. The ‘minor’ pathogens comprise 

the Corynebacterium spp. and the coagulase-negative Staphylococcus spp 

(CNS). The ‘minor’ pathogens are generally associated with mild immune 

responses and rarely with clinical signs, however, as discussed 

previously, this classification is often considered to be too simplistic as 

some strains of Staph. aureus are coagulase negative and could, therefore, 

be classed as ‘minor’ pathogens which they are not (Green, 2012). 
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 Historical perspective in the UK 1.1.3

In the 1940’s, the average herd size in the UK was approximately 15 cows  

(Bradley, 2002) and the average bulk milk somatic cell count (BMSCC) 

was approximately 750,000 cells/ml (Booth, 1997). This situation 

changed considerably in the 1960’s with the introduction of the 5-point 

plan which was devised from research at the National Institute for 

Research in Dairying in Reading (Kingwill et al., 1970; Neave et al., 1969, 

1966; Smith et al., 1967). The plan consisted of the rapid identification 

and treatment of clinical mastitis, the routine application of antibiotic dry 

cow therapy at drying off, post-milking teat disinfection, the culling of 

chronically infected cows and the routine maintenance of the milking 

machine. This was further compounded by the implementation of EC Milk 

Hygiene Directive (92/46) that stipulated an upper BMSCC of 400,000 

cells/ml for milk destined for human consumption and the addition of 

financial bonuses offered to producers via the milk buyers for the 

production of milk with lower SCC. The result of the 5-point plan and the 

EC milk hygiene directive was a rapid reduction in BMSCC from over 

600,000 cells/ml in 1967 to just over 400,000 cells/ml in 1982 (Booth, 

1997) and a reduction in the incidence of CM from over 150 cases/100 

cows/year to around 40 cases/100 cows/year over the same period of 

time (Wilesmith et al., 1986; Wilson and Kingwill, 1975). The main driver 

behind the success of the 5-point plan appeared to be in reducing Gram-

positive infections caused by contagious pathogens, the prevalence of 

which has reduced dramatically since the 1960’s. A study by Wilson and 

Kingwill. (1975) showed that contagious pathogens accounted for almost 
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60% of clinical mastitis cases in 1967 whereas Bradley et al. (2007b) 

showed that they accounted for just 10% by 2005. 

 Current UK Situation 1.1.4

With respect to the current situation in the UK, the average herd size is 

currently 133 cows (AHDB Dairy, 2014) and the most recent study 

suggested that the incidence rate of clinical mastitis was likely to be 

between 47 and 65 cases per 100 cows per year (Bradley et al., 2007b). 

This is higher than many previous estimates (Berry, 1998; Milne et al., 

2002; Peeler et al., 2000, 2002), but in line with several others (Bradley 

and Green, 2001b; Kossaibati et al., 1998; Wilesmith et al., 1986). All of 

these studies have the potential of introducing selection bias as a result of 

farmers having to volunteer to participate in the surveys.  

The average BMSCC is currently around 167,000 cells/ml, and this has 

reduced each year since 2009 (DairyCo, 2015), which corresponds with 

the time that the national mastitis control plan was launched in the UK 

(Figure 1-1).  

 
Figure 1-1 UK average bulk milk somatic cell count over time. (DairyCo, 2015) 
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The aetiology of clinical mastitis in the UK, taken from the study by 

Bradley et al. (2007b), suggests that pathogens traditionally classified as 

‘environmental’ now predominate, accounting for around 60% of positive 

samples, with Strep. uberis being the most common pathogen. In contrast, 

pathogens traditionally classified as ‘contagious’ accounted for around 

13% of diagnoses made. This finding is in broad agreement with previous 

studies (Bradley and Green, 2001b; Milne et al., 2002; Wilesmith et al., 

1986) that all show that ‘environmental’ pathogens are the main cause of 

clinical mastitis in most UK dairy herds. 

 Measuring mastitis 1.1.5

The primary measures of mastitis in dairy cows are the incidence rate of 

clinical mastitis (IRCM), which is typically reported in cases/100 

cows/year, and somatic cell count, which is typically reported in cells/ml.  

Clinical mastitis 

The conventional approach to CM analysis has been focused on the 

reporting of basic quarter and cow rates and incidences as well as certain 

ratios, such as the case-to-cow-case ratio (total number of quarter-

cases/number of cow-cases) (Bradley et al., 2008a). Whilst the absolute 

rates and ratios give some indication as to the extent and likely aetiology 

of mastitis on a particular dairy farm, they are less informative when it 

comes to the targeting of mastitis control interventions and, for this, a 

different approach is required. One such approach is to categorise CM by 

its putative origin based on the temporal occurrence during the lactation 

cycle in which it presents, with cases that occur in early lactation 
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attributed to the dry period (Bradley et al., 2008b). This approach stems 

from studies that demonstrated that intramammary infections may be 

acquired from the environment during the dry period (Berry and 

Hillerton, 2002; Bradley and Green, 2001c; Eberhart and Buckalew, 1977; 

Oliver and Mitchell, 1983; Smith et al., 1985; Todhunter et al., 1991; 

Williamson et al., 1995), and that these infections are able to persist in the 

udder and cause CM in the subsequent lactation (Green et al., 2002; 

McDonald and Anderson, 1981). In the study by Green et al. (2002), it was 

demonstrated that over 50% of all environmental mastitis occurring in 

the first 100 days of lactation resulted from infections acquired during the 

dry period. A subsequent study demonstrated that much of the peak in 

clinical mastitis seen in early lactation can be attributed to dry period 

infections, particularly cases occurring in the first month of lactation 

(Green et al., 2002). Therefore, the incidence rate of clinical mastitis in the 

first 30 days of lactation can be a useful proxy for the rate of dry-period 

origin infections (Bradley et al., 2008b), and this novel approach has been 

demonstrated as being helpful in the targeting of mastitis interventions at 

herd level (Green et al., 2007b). 

The target commonly used in the UK for clinical mastitis of dry-period 

origin is <1 in 12 (1 case for every 12 cows in the herd per year) and the 

target for clinical cases of lactation origin (clinical cases after the first 30 

days of lactation) is typically <2 in 12, giving an overall rate of fewer than 

3 in 12 cows affected in a lactation cycle (Bradley et al., 2008b) (Figure 

1-2 and Figure 1-3). 
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Figure 1-2 Cases of clinical mastitis of dry-period origin plotted over time. The light 
blue bars illustrate the number of cows at risk and the dark blue line illustrates the 
rolling 3-recording rate of dry period new infections. MAR = maximum advisable rate 
(target). (TotalVet©)  

 

 
Figure 1-3 Cases of clinical mastitis of lactation origin plotted over time. The light 

green bars illustrate the number of cows at risk and the dark green line illustrates 

the rolling 3-recording rate of lactation origin infections. (TotalVet©) 

Somatic cell count  

The majority of somatic cells found in milk are leukocytes including 

macrophages, lymphocytes and neutrophils (Lee et al., 1980; Sordillo et 

al., 1997).  The number of somatic cells in milk is known to be affected 

primarily by intramammary infections (Schepers et al., 1997) due to the 

massive influx into the udder of peripheral neutrophils (Paape et al., 

2002; Sordillo et al., 1997), making it a useful marker of subclinical 

mastitis.  
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Cow level SCC data is relatively easy to collect and readily available in 

most milk recorded herds, compared with CM data, and the 

concentrations of somatic cells are used to categorise individual cows as 

‘infected’ or ‘uninfected’ according to defined thresholds. An SCC of < 

100,000 cells/ml is generally accepted to indicate the absence of infection 

(Sordillo et al., 1997), whereas a SCC > 200,000 cells/ml is indicative of a 

bacterial infection (Brolund, 1985; Schepers et al., 1997). The widely 

accepted threshold above which cows are considered to be ‘infected’ is 

200,000 cells/ml although test sensitivity is reduced at this threshold in 

herds with a high prevalence of ‘minor’ pathogens (Dohoo and Leslie, 

1991). Therefore, most standard approaches to measuring subclinical 

mastitis in dairy herds focus on the movements of cows above and below 

this threshold. Historically, SCC analysis typically comprised the 

proportion of cows above 200,000 cells/ml, the proportion of the herd 

chronically infected (> 200,000 cells/ml for 2 or more consecutive 

recordings) and the bulk milk somatic cell count (SCC of composite milk 

sample from all milking cows). With advances in computer software, it is 

possible to perform an in-depth and robust SCC analysis whereby specific 

SCC indices are used to characterise the mastitis epidemiology for a 

particular dairy farm. Commonly reported SCC parameters now include 

the lactation new infection rate (LNIR) which is a measure of the 

proportion of cows moving from a SCC < 200,000 cells/ml, to a SCC > 

200,000 cells/ml each month, dry period new infection rate (DPNIR) 

which is a monthly measure of the proportion of cows that have a SCC > 

200,000 cells/ml at the first milk recording after calving that had a SCC < 
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200,000 cells/ml at the last milk recording before being dried-off and dry 

period cure rate which is a monthly measure of the proportion of cows 

that had a SCC < 200,000 cells/ml at the first milk recording after calving 

that had a SCC > 200,000 cells/ml at the last milk recording before being 

dried-off (Bradley et al., 2007a). 

As with CM data, the relative importance of the dry-period may also be 

reflected in somatic cell count trends such as the dry-period new infection 

rate and the dry-period cure rate. Common targets for these are 

<10%/month and >85%/month respectively, however, the dry period 

cure rate tends to decrease as the rate of dry period new infection rate 

increases, as a result of reinfection of previously high SCC quarters that 

had cured earlier during the dry-period, and this needs to be factored into 

the interpretation of dry-period data (Figure 1-4 and Figure 1-5). 

The lactation new infection rate (LNIR) provides a measure of the 

proportion of cows acquiring a new intramammary infection between 

consecutive milk recordings and this can also be a useful measure of the 

relative importance of the dry-period versus lactation (Figure 1-6). A 

common target is 5-7%/month moving from SCC < 200,000 cells/ml to > 

200,000 cells/ml, although the UK mean is likely to be nearer 10%/month 

(Green, 2012).  
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Figure 1-4 Dry period new infection rate over time. The dark blue bars represent 
the percentage of cows, within 30 days of calving with a somatic cell count > 
200,000 cells/ml; the light yellow and light green bars illustrate the number of cows 
at the first recording (and < 30 days in milk) and the number defined as ‘infected’, 
respectively; the red line illustrates the rolling 3-monthly rate of dry period new 
infections and the orange line represents the target. (TotalVet©). 
 
 

 
Figure 1-5 Dry period cure rate over time. The dark blue bars represent the 
percentage of cows, within 30 days of calving with a somatic cell count < 200,000 
cells/ml that had a SCC > 200,000 cells/ml at their last milk-recording prior to drying-
off; the light yellow and light green bars illustrate the number of eligible cows (SCC > 
200,000 cells/ml at their last milk recording prior to drying-off) at the first recording 
(and < 30 days in milk) and the number defined as ‘cured’, respectively; the red line 
illustrates the rolling 3-monthly rate of dry period cure rate and the orange line 
represents the target. (TotalVet©) 
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Figure 1-6 Lactation new infection rate over time. The yellow bars represent the 

percentage of animals at each recording (of those eligible) that experience a 

lactation new infection (i.e. move from SCC < 200,000 cells/ml to SCC > 200,000 

cells/ml). The light green bars indicate the number of animals experiencing a 

lactation new infection. The green line provides a 3-monthly rolling average rate and 

the orange line represents the target. (TotalVet©) 

Both clinical mastitis and somatic cell count data can be used to provide 

an insight into whether the pathogens present on a specific dairy farm are 

behaving in a predominantly environmental manner or in a 

predominantly contagious manner. This is based on the observation that 

contagious pathogens tend to cause persistent infections and have a lower 

cure rate following treatment than environmental pathogens (Sears and 

McCarthy, 2003). A herd with a predominance of pathogens behaving in a 

contagious manner will, therefore, tend to have a high prevalence of 

‘infected’ (SCC > 200,000 cells/ml) and chronically ‘infected’ cows (SCC > 

200,000 cells/ml for 2 of the previous 3 consecutive recordings) at a 

particular time point (Bradley et al., 2007a) (Figure 1-7). They would also 

tend to have a reduced cure rate of the 1st clinical mastitis cases in 

lactation (Figure 1-8), as defined as no recurrence of clinical disease and 

either 2 consecutive cow somatic cell counts < 100,000 cells/ml or 3 < 

200,000 cells/ml. 
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Figure 1-7 Percentage of cows infected and chronically infected over time. The 
yellow bars represent the percentage of the milking herd with a SCC > 200,000 
cells/ml; the light blue bars indicate the number of animals with a SCC > 200,000 
cells/ml; the red bars show the percentage of the milking herd defined as chronically 
infected (SCC > 200,000 cells/ml for 2 of the last 3 consecutive recordings). The 
green line provides a 3-monthly rolling average proportion of the herd with a SCC > 
200,000 cells/ml and the blue line is the 3-monthly rolling average proportion of the 
herd chronically ‘infected’. (TotalVet©) 
 

 

 
Figure 1-8 Apparent cure rates over time. The light blue bars indicate the monthly 
dry-period cure rate as measured by somatic cell count (percentage of cows < 30 
days in milk with a SCC < 200,000 cells/ml that had a SCC > 200,000 cells/ml at the 
last milk recording before drying-off); the green line indicates the 12-month rolling 
average clinical 1st case cure rate (no recurrence of clinical disease after a 1st clinical 
case and either 2 consecutive SCC < 100,000 cells/ml or 3 consecutive SCC < 200,000 
cells/ml); the red line indicates the 12-month rolling average all case cure rate (no 
recurrence of clinical disease after a clinical case and either two consecutive SCC < 
100,000 cells/ml or three consecutive SCC < 200,000 cells/ml); the blue line indicates 
the 12-month rolling average subclinical case cure rate (either two consecutive SCC 
< 100,000 cells/ml or three consecutive SCC < 200,000 cells/ml after the treatment 
of a subclinical case) *no subclinical cases were treated in this herd. (TotalVet©). 
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Using the CM and SCC parameters in this way to characterise the 

epidemiology of mastitis for a given farm, both in terms of the putative 

source of the majority of new infections as well as the likely behaviour of 

pathogens present on the farm, is one of the key features of the UK 

national mastitis control scheme (Green et al., 2007b). 

 Mastitis Control 1.2

Whilst bulk milk somatic cell counts and the prevalence of subclinical 

mastitis have decreased nationally, the incidence of CM remains a 

problem for many dairy herds. It has been demonstrated that BMSCC and 

IRCM are not correlated (Barkema et al., 1998b), and that as BMSCC 

reduces, the variation in the IRCM observed increases (Barkema et al., 

1998b). It has also been reported that herds with a low BMSCC tend to 

have higher levels of environmental mastitis than herds with a higher 

BMSCC (Barkema et al., 1998b; Elbers et al., 1998; Erskine et al., 1988; 

Hutton et al., 1990), which is in agreement with the reported shift in the 

aetiology of mastitis cases in the UK, as referred to previously. The 

challenge with respect to environmental mastitis is that the interventions 

that have successfully controlled contagious mastitis do not appear to 

have the same efficacy against the causes of environmental mastitis and, 

therefore, a different approach is required. 

 Risk factors associated with clinical mastitis 1.2.1

During the last 40 years, there have been a vast number of published 

studies reporting associations between quarter-level, cow-level and herd-

level risk factors and the incidence of clinical mastitis. Most of these 
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studies were performed outside of the UK and the findings are, therefore, 

not always applicable to the UK context. They range from small-scale 

studies investigating one specific risk factor (e.g. post-milking teat 

disinfection) to large-scale studies looking at many risk factors in a 

specific ‘type’ of herd (e.g. low BMSCC). Despite these limitations, a 

number of specific risk factors were common to two or more of these 

studies. 

Certain aspects of management that increased the exposure of cows to 

environmental pathogens were consistently associated with an increased 

IRCM, such as housing on straw yards (Barnouin et al., 2005; Peeler et al., 

2000) and cleaning out the straw yards housing the milking cows less 

often than every 6 weeks (O’Reilly et al., 2006).  Low frequency of cubicle 

cleaning (Elbers et al., 1998; Schukken et al., 1991, 1990) and a low 

quantity of bedding in cubicles (Elbers et al., 1998; Schukken et al., 1991) 

were both associated with an increased IRCM. Hygiene of calving pens, 

specifically the frequency of disinfection/cleaning and quantity of 

bedding were also negatively correlated with IRCM in several studies  

(Barkema et al., 1999a; Elbers et al., 1998; Peeler et al., 2000). The size of 

the air inlet in milking cow sheds was positively correlated with the IRCM 

caused by Strep. uberis in one study (Barkema et al., 1999a), but the 

presence of an air inlet along the roof was associated with a reduced risk 

of clinical mastitis caused by Staph. aureus in another study (Schukken et 

al., 1991). The source of the cows’ drinking water was associated with an 

increased risk of clinical mastitis when originating from a stream or a well 
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as opposed to public sources (Barkema et al., 1999a; Schukken et al., 

1991, 1990). 

Aspects of management related to the milking process were also 

identified by several studies, including the application of post-milking teat 

disinfection (Barkema et al., 1999a; Elbers et al., 1998; Peeler et al., 2000; 

Schukken et al., 1991, 1990), the practice of foremilking (Barkema et al., 

1999a; Elbers et al., 1998; O’Reilly et al., 2006; Peeler et al., 2000; 

Schukken et al., 1990), which were both associated with an increased 

IRCM. The wearing of gloves during milking (O’Reilly et al., 2006; Peeler 

et al., 2000) was associated with an increased IRCM, as was the wet 

preparation of teats before milking (Barkema et al., 1999a; Schukken et 

al., 1991). The drying of wet teats with a cloth after premilking 

preparation was associated with an increased IRCM in one study  

(Barkema et al., 1999a) and a decreased IRCM in another (O’Reilly et al., 

2006). The proportion of cows leaking milk either just before or after 

milking seemed to be important, with several studies reporting a positive 

correlation with the IRCM (Elbers et al., 1998; O’Reilly et al., 2006; Peeler 

et al., 2000; Schukken et al., 1991, 1990). 

Other cow-level factors that were associated with IRCM include breed and 

milk yield, with Meuse-Rhine-Yssel breeds being associated with an 

increased risk  (Elbers et al., 1998; Schukken et al., 1991, 1990) as well as 

Holstein-Friesians (Barkema et al., 1999a) and Swedish-Holsteins 

(Nyman et al., 2007)  and higher milk yields being positively correlated 
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with IRCM (Barnouin et al., 2005; Chassagne et al., 1998; O’Reilly et al., 

2006; Schukken et al., 1990).  

 Risk factors associated with somatic cell count 1.2.2

Due to the relative availability of SCC data, there are a considerable 

number of risk factor studies relating herd management with BMSCC and 

these have been reviewed recently (Dufour et al., 2011). A key strength of 

this review was its ability to identify practices that have shown consistent 

associations with SCC under differing circumstances and which are 

therefore most likely to be relevant to the largest number of dairy farms. 

Management variables related to the milking process were some of the 

most consistent including wearing gloves during milking, which was 

associated with a low SCC (Bach et al., 2008; Hutton et al., 1991; 

Rodrigues et al., 2005), the use of automatic cluster removal systems, 

which was associated with a low SCC (Barkema et al., 1998a; Hutton et al., 

1990; Jayarao et al., 2004; Smith and Ely, 1997; Wenz et al., 2007) and 

post-milking teat disinfection, which was associated with a low SCC 

(Barkema et al., 1998a; Erskine and Eberhart, 1991; Erskine et al., 1987; 

Hutton et al., 1991; Khaitsa et al., 2000). The order of milking (e.g. milking 

high SCC and clinical mastitis cases last) has been associated with a low 

SCC in several studies (Barnouin et al., 2004; Hutton et al., 1991; Wilson 

et al., 1995) as has inspecting the milking machine at least annually 

(Barkema et al., 1998a; Erskine et al., 1987; Hutton et al., 1990; Rodrigues 

et al., 2005) and keeping cows standing after milking (Barkema et al., 

1998a; Barnouin et al., 2004). It is interesting to note that wearing gloves 
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during milking and post-milking teat disinfection were both associated 

with an increased incidence of CM despite being associated with a 

reduced SCC. This highlights how poorly correlated CM and SCC are 

(Barkema et al., 1998b), and why it is important, therefore, to consider 

the risk factors for CM and SCC separately.  

With respect to housing, the use of cubicle housing (Bartlett et al., 1992; 

Khaitsa et al., 2000; Smith and Ely, 1997; Wenz et al., 2007) with sand 

beds (Bewley et al., 2001; Jayarao et al., 2004; Wenz et al., 2007) was 

associated with the lowest SCC, as was increased cleanliness of the calving 

pens (Barkema et al., 1998a; Barnouin et al., 2004). 

Other variables consistently associated with a reduced SCC included the 

application of blanket antibiotic dry cow therapy (Barkema et al., 1998a; 

Erskine and Eberhart, 1991; Erskine et al., 1987; Hutton et al., 1991; 

Rodrigues et al., 2005; Wenz et al., 2007), the daily inspection of dry cow 

udders (Barkema et al., 1998a) and the application of the California 

Mastitis Test (Erskine et al., 1987; Rodrigues et al., 2005). 

 Implications of study design 1.2.3

The vast majority of our current knowledge with respect to mastitis 

control stems from observational studies using cross-sectional study 

designs. There are several potential reasons for this, including that they 

are relatively cheap and quick to perform and usually cover a broader 

range of subjects (Feinstein, 1989). However, there are significant 

limitations related to study design that need to be considered when 

appraising evidence arising from such studies such as confounding, 
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interactions and non-randomisation (Martin, 2013). Due to the systematic 

biases introduced by these factors and the associated propensity for the 

inflation of positive effects (Sacks et al., 1982), observational studies are 

typically used as hypothesis-generating and are considered to be a weak 

source of evidence for causality (Concato et al., 2000).  Despite 

improvements in observational study design and methodology (Benson 

and Hartz, 2000; Concato et al., 2000), intervention or ‘experimental’ 

studies remain the ‘gold-standard’ for assessing the clinical effectiveness 

of therapeutic agents/medical interventions (Abel and Koch, 1999; Byar 

et al., 1976; Feinstein, 1984). However, there are relatively few 

intervention studies reported in the veterinary literature regarding 

mastitis control (Green et al., 2007b) and those that have been performed 

have been conducted at the cow level rather than the herd level. Some 

recent examples of these include blanket dry cow therapy versus selective 

dry cow therapy (Bradley et al., 2010), use of a mastitis vaccine (Bradley 

et al., 2015) and the treatment of subclinical mastitis (van den Borne et 

al., 2010b). 

There have been several criteria proposed to assess the likelihood that 

the relationship between an observed risk factor and a disease is causal 

and these include temporality, consistency, biologic gradient and 

experimental evidence (Schukken et al., 1990); another simple 

consideration is plausibility. Plausibility simply refers to the biologic 

plausibility of a causal relationship given the current state of knowledge. 

For example, it was reported in one study that the increased cleanliness of 



36 
 

the calves was associated with a decreased risk of clinical mastitis caused 

by E. coli in the milking herd (Barkema et al., 1999a). It would be very 

difficult to arrive at a biologically plausible reason for this association to 

be causal but far more likely is that the cleanliness of the calves reflects 

some other characteristic, such as the attitude or skill of the farmer, which 

was not directly measured in the study, which could have a closer 

relationship with the incidence of clinical mastitis. 

 The Agriculture and Horticulture Development Board Dairy 1.2.4

Mastitis Control Plan 

All of the data reported and analysed in Chapters 4, 5 and 6 of this thesis 

originated from UK dairy herds that had participated in the AHDB Dairy 

Mastitis Control Plan (DMCP). Background information and a detailed 

description of the DMCP process are provided below. 

In 2003, the UK dairy levy board (Milk Development Council) invited 

tenders for a research partner to develop and test a mastitis control plan 

developed and based on the risk factors in the veterinary literature. This 

culminated in a randomised controlled clinical trial (RCT) carried out on 

52 commercial dairy herds in England and Wales in 2004/2005 with the 

aim of determining whether a clearly defined, structured plan for mastitis 

control, implemented in herds with an increased incidence of clinical 

mastitis, would reduce the incidence of clinical and subclinical disease.  

Results from the RCT showed a mean reduction in the proportion of cows 

affected with clinical mastitis of 22% (having accounted for confounders) 

in intervention herds compared with the control herds, in addition to 
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reductions of around 20% in the incidence of clinical and subclinical 

infections (Green et al., 2007b). After some further developments, the 

AHDB Dairy Mastitis Control Plan (DMCP) was launched at a national 

level in April 2009. The DMCP was delivered by trained ‘plan users’, 

consisting of veterinary practitioners and dairy consultants that had 

participated in 2 days of training, and a level of supervision and support 

was provided by the group of specialist bovine veterinarians that 

originally devised the DMCP. 

The DMCP consists of 3 main stages: i) analysis of herd data to assess 

patterns of mastitis and categorisation of each herd according to those 

patterns, ii) assessment of the current farm management and, based on 

deficiencies identified, prioritisation of the most important management 

changes required, and iii) frequent monitoring of the farm data to assess 

the subsequent impact on CM and SCC.  

The first stage is arguably the most important (and novel) element of the 

DMCP, whereby SCC and CM data for each herd are interpreted using 

specialised analytical software and one of 4 ‘diagnoses’ assigned 

according to the putative origin and cause of the majority of new 

infections as described previously. The 4 potential diagnoses are as 

follows: 

 environmental pathogens of mainly dry period origin (‘EDP’) 

 environmental pathogens of mainly lactation origin (‘EL’) 

 contagious pathogens of mainly dry period origin (‘CDP’) 

 contagious pathogens of mainly lactation origin (‘CL’) 
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The next element involves a visit to the farm during which a 

comprehensive questionnaire/survey is completed covering all aspects of 

management relevant to mastitis control (377 questions/observations). 

The answers to the questionnaire are inputted into a bespoke software 

package called the ‘ePlan’ together with the ‘diagnosis’ and management 

deficiencies that are relevant to the ‘diagnosis’ are highlighted. At this 

stage, the plan user would typically prioritise approximately 5-10 

interventions to discuss further with the herd manager and agreement 

sought on which ones to implement in the first instance. Once the 

interventions have been agreed and implemented, the plan user monitors 

the herd data (typically at 3-monthly intervals) to ensure that the plan is 

kept up to date and relevant to the herd. 

The key features of the DMCP approach are that it is farm-specific (unlike 

the 5-point plan) and utilises the farm data to help target mastitis control 

advice. It is also evidence-based, and has been proven to be effective in an 

RCT. Since the DMCP was launched at a national level in 2009, over 350 

plan users have been trained to deliver it, and over 2000 UK dairy herds 

are estimated to have participated in the scheme. 

 Statistical methods used in this thesis 1.3

Economic evaluation is increasingly used to inform decisions about which 

healthcare interventions to fund from available resources (Briggs and 

Gray, 1999). There is a need for analytic methods used for economic 

evaluation to compare new technologies with the full range of alternative 

options and reflect uncertainty in evidence in the conclusions of the 
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analysis (Smith et al., 2004), all of which can be achieved with decision 

analytic modelling. 

Decision analysis, defined as a systematic approach to decision making 

under uncertainty (Raiffa, 1968), has been widely established in the 

human healthcare sector (Hunink et al., 2014; Sox et al., 1988).  A decision 

analytic model uses mathematical relationships to define a series of 

possible consequences, and the likelihood of each consequence is 

expressed as a probability with an associated cost and outcome (Briggs 

and Gray, 1999). An important feature of decision modelling is to 

acknowledge and incorporate the inevitable uncertainty surrounding 

decisions. For example, apparently very similar herds will respond 

differently to a specific mastitis intervention and, therefore, the likelihood 

of a particular response can be expressed as a probability distribution in 

the model. The process of populating a decision model usually involves 

some form of evidence synthesis, whereby evidence is compiled from 

multiple different sources, and there are many different approaches to 

this (Spiegelhalter et al., 2004). Statisticians are increasingly using 

Bayesian methods for evidence synthesis in decision models for economic 

evaluation (Ades et al., 2006b) a key feature of which is the requirement 

for parameters to be specified as probability distributions (Felli and 

Hazen, 1999).  

 Bayesian approach 1.3.1

A Bayesian approach has been defined as ‘the explicit quantitative use of 

external evidence in the design, monitoring, analysis, interpretation and 
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reporting of a health-care evaluation’ (Spiegelhalter et al., 2004). At its 

most fundamental level, it deals with how our pre-existing opinion about 

the likely effect of a specific mastitis intervention, for example (known as 

the prior distribution), is altered, having observed some new data 

(likelihood) to arrive at a final opinion about the effect of the mastitis 

intervention (known as the posterior distribution). The mathematical 

method proposed for this is known as Bayes’ theorem, after the Reverend 

Thomas Bayes, an 18th Century minister who first described the theorem 

which essentially weights the likelihood from the new data with the 

relative plausibilities defined by the prior distribution (Spiegelhalter et 

al., 2004).  

From a decision maker’s perspective, a Bayesian approach allows the 

combining of information from diverse sources, can encompass expert 

judgement, addresses quantitatively all relevant sources of uncertainty, 

and incorporates new information as it accrues sequentially, therefore 

maximising the efficiency with which new knowledge is translated into 

clinical practice (Parmigiani, 2002). Many clinical research questions can 

most naturally be answered by assessing the probability that a particular 

hypothesis is true or false, having observed a relevant set of data (Gurrin 

et al., 2000) (e.g. the probability that a specific mastitis intervention 

would result in a net saving of £1000 after 12 months). Unfortunately, 

questions such as these cannot be readily answered within the 

conventionally applied ‘frequentist’ framework. Statistical inference 

within the frequentist framework is based upon p values that reflect the 
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probability of obtaining a particular pattern of results in a repeated series 

of identical hypothetical experiments, on the basis of a hypothesis that is 

assumed to be true (Burton et al., 1998; Gurrin et al., 2000). To establish 

the probability that a hypothesis is true given a set of data, one first needs 

to consider how plausible the hypothesis was in the first place (Nuzzo, 

2014; O’Hagan, 2003) and, therefore, the weight of evidence required to 

support it. The updating of our ‘prior’ or existing knowledge is a key 

component of Bayesian inference, and one of the key advantages of the 

Bayesian approach is that the resulting posterior distribution can be used 

to provide clinically relevant and direct answers to all kinds of questions, 

including the probability that a particular hypothesis is correct (O’Hagan, 

2003). It also removes the reliance upon significance testing and the use 

of arbitrary thresholds of ‘significance’ (Greenland and Poole, 2013; 

Gurrin et al., 2000), meaning the clinician is able to make their own 

judgement as to what is clinically ‘significant’ according to the degree of 

uncertainty they are comfortable with. 

There are numerous Bayesian approaches to economic decision 

modelling (Spiegelhalter et al., 2004), and the two simulation-based 

approaches used in this thesis are: (i) probabilistic sensitivity analysis, 

using Monte Carlo methods and (ii) a related integrated approach using 

Markov chain Monte Carlo methods (MCMC) and micro-simulation. 

 Probabilistic sensitivity analysis 1.3.2

A technique now widely adopted by the human healthcare sector for 

analysis of the cost-effectiveness of new and existing treatments is 
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probabilistic sensitivity analysis (PSA) (Briggs et al., 2002; Brown et al., 

2006). Indeed, the National Institute for Clinical Excellence (NICE) now 

requires all cost-effectiveness analyses submitted to the institute to utilise 

PSA (Claxton et al., 2005). Whilst this form of analysis has widespread 

acceptance within the human healthcare sector, there are relatively few 

examples of its use in the veterinary literature (Detilleux, 2004; Hudson et 

al., 2015, 2014). 

The main feature of PSA is that all input parameters are specified as full 

probability distributions (probabilistic), rather than point estimates 

(deterministic), to represent the uncertainty surrounding their values. 

This parameter uncertainty can then be propagated through the cost-

effectiveness model so that imprecision in model outputs is transparent 

(Briggs et al., 2002). For example, rather than using a point estimate for 

the probability of clinical cure after the treatment of CM of, say, 60%, we 

might choose a probability distribution covering the range 40-80% 

instead, accepting that we don’t know the precise figure but being fairly 

confident that it lies somewhere within this range. Then, at each iteration 

of the model, a different value is taken from the specified range and used 

as the basis for the cost-effectiveness calculations. By repeating this 

process thousands of times, many different scenarios can be explored. 

The relative importance of different model parameter values on the 

outcome of interest can then be evaluated irrespective of model 

complexity.  
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The process of randomly drawing values from within a specified 

probability distribution is commonly known as Monte Carlo simulation 

(Metropolis, 1987) and was first utilised as a research tool for the 

development of nuclear weapons during the second world war. Monte 

Carlo methods have been used across many areas of science and business 

with the primary purpose of evaluating integrals or sums by simulation 

rather than exact or approximate algebraic analysis (Spiegelhalter, 2004).  

PSA has become a popular modern method for determining the 

uncertainty in the outcomes of cost-effectiveness studies because of the 

uncertainty in input parameters (Boshuizen and van Baal, 2009). There 

have been  concerns that the use of deterministic or univariate sensitivity 

analysis may underestimate overall uncertainty (Briggs, 2000) and 

become difficult to interpret with large numbers of parameters, especially 

if any are correlated (Claxton et al., 2005). Such concerns have led to the 

development of PSA based on Monte Carlo simulation methods (O’Brien 

et al., 1994), as PSA permits the analyst to examine the effect of joint 

uncertainty in the variables of an analysis without resorting to the wide 

range of results generated by extreme scenario analysis (Briggs and Gray, 

1999). Parameter correlation is propagated automatically, providing 

meaningful sensitivity analysis regardless of parameter correlation (Ades 

et al., 2006a).  

Given that the literature is often quite sparse concerning many of the 

model inputs required, assumptions are usually necessary for this kind of 

model and this can result in unreliable conclusions being drawn if this 



44 
 

uncertainty is not properly investigated. By using PSA, we can reflect the 

level of uncertainty by defining the parameters as distributions that are 

transparent. The distributions used do require a degree of judgement and 

this has to be carried out in an open and transparent way and based on 

current literature wherever possible. 

 Integrated approach and micro-simulation 1.3.3

The traditional approach to cost-effectiveness analysis involves a two-

stage process whereby parameter estimates and intervals are first 

obtained based on subjective judgements, data analysis or a combination 

of the two and, secondly, distributions for the parameter estimates are 

then assumed and inputted into a separate model to evaluate the cost-

effectiveness. An alternative approach is the integrated or unified 

approach which is a fully Bayesian analysis that simultaneously carries 

out the evidence synthesis and cost-effectiveness analysis. The integrated 

approach requires all of the available evidence to be specified as prior 

distributions which are then revised by Bayes theorem using MCMC 

simulation to derive posterior distributions. The effects of the resulting 

posterior distributions are simultaneously propagated through the cost-

effectiveness model which is then used to make predictions.  

There are many examples of this integrated approach in the human 

medical literature (Bravo Vergel et al., 2007; Cooper et al., 2004, 2003; 

Gillies et al., 2008; O’Hagan and Stevens, 2001; Welton et al., 2008) but 

examples in the veterinary literature are relatively sparse (Archer et al., 

2014a, 2014b, 2013a, 2013b; Green et al., 2010).  
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The key features of the integrated approach are: (i) it provides a 

systematic framework for relating uncertainty about model input 

parameters to uncertainty in the computational results of the cost-

effectiveness model; (ii) it makes full allowance for any inter-

relationships between model input parameters; and (iii) it removes the 

need to make parametric distributional assumptions and facilitates 

sensitivity analyses (Cooper et al., 2004).  

A common problem when trying to base clinical decisions on the results 

of cost-effectiveness models is that it is often difficult to interpret all of 

the model outcomes and apply them to the decisions that need to be made 

(e.g. if a herd level interpretation is required from a cow-level model). For 

this reason, it is often helpful to perform a ‘follow-on’ simulation 

involving the trajectories of individual cows/herds which can then be 

used as an estimate of the expected outcome in a population of 

cows/herds. This is known as micro-simulation, and, by using this tool, it 

is possible to replicate carefully controlled clinical trials varying only the 

exposure of interest, which would often otherwise be very expensive to 

perform and could give rise to ethical concerns. 

 Markov Chain Monte Carlo for parameter estimation 1.3.4

MCMC was invented shortly after Monte Carlo methods following a study 

simulating a liquid in equilibrium with its gas phase (Metropolis et al., 

1953). The resulting ‘Metropolis algorithm’ was generalised by Hastings 

to become the ‘Metropolis-Hastings algorithm’ (Hastings, 1970), a special 
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case of which became known as the Gibbs sampler (Geman and Geman, 

1984) which is widely used today and was used in this thesis.  

MCMC is an effective means of sampling from the posterior distribution 

despite the precise form of the posterior distribution being unknown. A 

Markov chain is created by continually updating parameter estimates 

until a stable state is reached, known as convergence. Each parameter 

estimate in the chain depends only on the previous estimate, so the chain 

gradually becomes independent of past values, including initial 

conditions. Any inferences required are derived from the sampled values 

which together form an approximation of the posterior distribution of 

interest. 

A Markov Chain should converge to a stationary or non-variant state and 

the sampling process up to convergence is usually termed ‘burn in’. 

Determining if a chain has converged can be difficult (Gilks et al., 1995) 

but methods used in this thesis included the visual assessment of chain 

stability and the Brooks-Gelman-Rubin convergence diagnostic (Brooks 

and Gelman, 1998; Gelman and Rubin, 1992).  Following convergence, 

Markov Chains are typically continued for thousands of iterations to 

estimate parameters, after which, the initial ‘burn-in’ iterations are 

discarded and parameter estimates at each iteration used for onward 

prediction and simulation.  
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 Aims of the thesis 1.4

 Summary 1.4.1

The overall aim of the thesis was to explore the cost of clinical mastitis 

and cost-effectiveness of different approaches to mastitis treatment and 

specific mastitis control interventions using probabilistic methods that 

incorporated uncertainty. The results of the decision analytic models 

should facilitate decision making by enabling direct statements of 

probability to be inferred about specific clinical hypotheses. Bayesian 

approaches were used throughout the thesis to capture and propagate 

sources of uncertainty that were identifiable. 

 Overview of Chapters 1.4.2

Transmission and the cost of clinical mastitis (Chapter 2) 

The aim of Chapter 2 was to use probabilistic sensitivity analysis to 

evaluate the relative importance of different components of a model 

designed to estimate the cost of clinical mastitis. A particular focus was 

placed on the importance of pathogen transmission relative to other 

factors, such as milk price or treatment costs.  

The cost-effectiveness of an on-farm culture approach compared with a 

standard approach for the treatment of clinical mastitis in dairy cows 

(Chapter 3) 

In Chapter 3, an adaptation of the PSA model developed in Chapter 2 was 

used to explore factors affecting the cost-effectiveness of an on-farm 

culture approach versus a standard approach for the treatment of clinical 

mastitis. The main aim of this study was to help veterinary decision 
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makers identify the types of dairy herds for which the on-farm culture 

approach was likely to be cost-effective by exploring different simulated 

scenarios. 

Current management practices and interventions prioritised as part of a 

nationwide mastitis control plan (Chapter 4) 

Chapter 4 presents descriptive performance and management data taken 

from a sample of UK dairy farms that have participated in the AHDB Dairy 

Mastitis Control Plan and identifies important mastitis prevention 

practices that were not widely implemented. The aim was to develop an 

appreciation of current management practices such that this might aid the 

understanding of why mastitis remains a significant problem on many UK 

dairy farms and provide useful insights into which interventions are 

perceived to be most important for different types of farms. 

A Bayesian micro-simulation to evaluate the cost-effectiveness of specific 

interventions for mastitis control during the dry period (Chapter 5) 

The aim of Chapter 5 was to estimate the cost-effectiveness of specific 

mastitis interventions that had been implemented in UK dairy herds that 

had participated in the DMCP and that had an EDP diagnosis. The cost-

effectiveness under different circumstances was assessed using an 

integrated Bayesian micro-simulation approach.  

A Bayesian micro-simulation to evaluate the cost-effectiveness of specific 

interventions for mastitis control during lactation (Chapter 6) 

The aim of Chapter 6 was to estimate the cost-effectiveness of specific 

mastitis interventions that had been implemented in UK dairy herds that 

had participated in the DMCP and that had an EL diagnosis. As with 
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Chapter 5, the cost-effectiveness under different circumstances was 

assessed using an integrated Bayesian micro-simulation approach. An 

important end goal of this and the previous study was to integrate the 

results of the micro-simulation into a decision support tool that would 

facilitate the prioritisation of mastitis control interventions by veterinary 

practitioners and advisors. The decision support tool is not in itself a part 

of this thesis, but it is currently ongoing work building on the data 

presented within. 
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Chapter 2                         

Transmission and the cost of 

clinical mastitis 

 Introduction 2.1

Mastitis remains one of the most common diseases of dairy cows and 

represents a large economic loss to the industry as well as a considerable 

welfare issue to the cows affected (Bradley, 2002; Halasa et al., 2007). 

Despite being an infectious disease, concentration is often focussed on the 

individual animal with respect to treatment, cost and management. The 

risk posed to the rest of the herd from infected individuals and the 

potential impact of disease transmission on the cost of a case of clinical 

mastitis (CM) is often overlooked.  

The cost of CM is made up of direct costs (e.g. discarded milk, cost of 

medicines, labour) and indirect costs (e.g. loss of future production, 

increased culling), and varies considerably between farms (Huijps et al., 

2008).  Whilst the direct costs are more apparent to the producer, they 

are reported to comprise only a small proportion of the overall cost of CM 

compared to the less obvious indirect costs (Huijps et al., 2008; Kossaibati 

and Esslemont, 2000). Several studies have taken all of the direct and 

indirect costs into account and have produced average figures of £111 

(Bar et al., 2008), £167.41 (Huijps et al., 2008), £175.60 (Kossaibati and 

Esslemont, 2000) and £341.17 (Hagnestam-Nielsen and Ostergaard, 

2009) for the cost of a case of CM. Whilst this information is useful, such 
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‘average’ figures are difficult to interpret for an individual producer 

unless they happen to be the ‘average’ farm. Whilst some recent studies 

have investigated the impact of transmission on the overall cost of CM at 

herd level (Halasa, 2012; Halasa et al., 2009; van den Borne et al., 2010a),  

most studies have not evaluated the impact that within-herd transmission 

may have on the cost of CM at cow-level, nor how important this may be 

relative to the other factors that make up the overall cost of a case of CM.  

A technique now widely adopted by the human healthcare sector for 

analysis of the cost-effectiveness of new and existing treatments is 

probabilistic sensitivity analysis (PSA, see 1.3.2) (Briggs et al., 2002; 

Brown et al., 2006). The main feature of this technique is that all input 

parameters in a cost effectiveness model are specified as full probability 

distributions, rather than point estimates, to represent the uncertainty 

surrounding their values. This parameter uncertainty can then be 

propagated through the cost effectiveness model so that imprecision in 

model outputs is transparent (Briggs et al., 2002). The relative 

importance of different model parameter values on the outcome of 

interest can then be evaluated irrespective of model complexity.  

The purpose of Chapter 2 was to use PSA to evaluate the relative 

importance of different components of a model designed to estimate the 

cost of CM. The model included the potential for pathogen transmission 

between cows and was an extension of a previously described model 

structure (Steeneveld et al., 2011). A particular aim was to assess the 
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importance of the rate of transmission relative to other factors, such as 

milk price or the cost of therapeutic agents. 

 Materials and Methods 2.2

 Model Structure 2.2.1

A stochastic Monte Carlo model was developed using WinBUGS 1.4.3 

software (Lunn et al., 2000) (WinBUGS code provided in Appendix 1). 

This was used to simulate a case of CM (CM1) at the cow level and to 

calculate the associated costs simultaneously for 5 treatment protocols as 

defined by Steeneveld et al. (2011). The 5 protocols used were 3 days of 

antibiotic intramammary treatment (treatment 1), 5 days of antibiotic 

intramammary treatment (treatment 2), 3 days of intramammary and 

systemic antibiotic treatment (treatment 3), 3 days intramammary and 

systemic antibiotic treatment plus 1 day nonsteroidal anti-inflammatory 

treatment (treatment 4) and 5 days intramammary and systemic 

antibiotic treatment (treatment 5). The initial probability that the cow 

was cured bacteriologically was defined by a probability distribution 

based on the maximal cure rates given by Steeneveld et al. (2011) but 

rather than being pathogen-specific (e.g. Staph aureus, Strep 

dysgalactiae/uberis or E coli), a single distribution was used providing 

coverage of cure rates encompassing those for all of the pathogens 

modelled by Steeneveld et al. (2011). For example, for treatment 1 (3 

days of intramammary treatment), the bacteriological cure rates given 

ranged from 0.80 for E. coli infections down to 0.40 for Staph. aureus 

infections, so the uniform distribution 0.40-0.80 was used for all 
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treatment 1 cases. After an initial treatment, there were 3 possible 

outcomes; complete cure (bacteriological plus clinical cure), clinical cure 

(with no bacteriological cure) or no cure (non-clinical and non-

bacteriological cure) with probabilities based upon Steeneveld et al. 

(2011) (Table 2-1). The probability that a case was cured 

bacteriologically was assumed to be further influenced by whether the 

cow was systemically ill, the somatic cell count (SCC) at the time of 

treatment, the days in milk at the time of treatment, parity and whether it 

was a repeat case or not (Steeneveld et al., 2011) (Table 2-1). The cows 

that failed to cure bacteriologically were deemed to have an 80% chance 

of curing clinically (Steeneveld et al., 2011). 
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Table 2-1 Probability distributions specific to the 5 defined clinical mastitis antimicrobial treatment protocols used in a model designed to simulate the 
cost of a case of clinical mastitis 

 Antimicrobial treatment regimen 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 

Application and 
duration (d) 

Intramammary (3) Intramammary (5) 
Intramammary (3) + 

systemic (3) 

Intramammary (3) + 
systemic (3) + 
nonsteroidal 

antiinflammatory drug 
(1) 

Intramammary (5) + 
systemic (3) 

Probability of 
bacteriological cure1,2 

(0.40,0.80) (0.60,0.80) (0.60.0.80) (0.63,0.83) (0.70,0.90) 

Probability of 
bacteriological cure 
after extended tx1,2 

(0.30,0.90) (0.50,0.90) (0.50,0.90) (0.53,0.93) (0.60,0.99) 

Cost of medicines (£)1,3 (5.58,6.97) (9.30,11.62) (32.00,36.00) (43.00,47.00) (36.00,40.00) 

Treatment Time (hr)1,2 (0.53,0.87) (0.87,1.20) (0.58,0.92) (0.63,0.97) (0.92,1.25) 

Milk withdrawal (d)1,4 (5.00,9.00) (7.00,11.00) (5.00,9.00) (5.00,10.00) (7.00,11.00) 

1Uniform distribution with upper and lower limits specified 
2Based upon Steeneveld et al. (2011) 
3Based upon estimate of current retail price of commonly used preparations in the UK. 
4Based upon commonly used preparations in the UK. 
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The model structure was adapted from the model described by 

Steeneveld et al. (2011) (Figure 2-1), which models the sequelae 

following a case of CM within a single lactation with the addition of a risk 

of transmission from cows that cured clinically but not bacteriologically. 

Cases that completely cured could either go on to finish the lactation or be 

culled within the remainder of the lactation. The probability of being 

culled was increased if the cow was systemically ill at the time of 

treatment. The cows that cured clinically but not bacteriologically could 

go on to finish the current lactation, be culled or have a clinical recurrence 

of the original case (CM2). If a cow did not cure, it would receive a repeat 

course of the initial treatment protocol resulting in the same 3 possible 

outcomes as previously outlined. Cows that failed to cure after a repeated 

course could either die or have the quarter dried-off. If a quarter was 

dried-off they could then go on to finish the lactation at a reduced level of 

milk production, or be culled (Table 2-2). The same sequence of events 

was modelled for CM2, but after CM3, the options became narrower. The 

cows that cured completely after CM3 could either end the lactation or be 

culled. The clinical (but not bacteriological) cures  and the ‘no-cures’ were 

culled, as was the case in the model described by Steeneveld et al. (2011). 

The probabilities of a cow being culled varied according to whether the 

case was a first, second or third case. The distributions used in the model 

are shown in Table 2-1 and Table 2-2. Following each treatment for CM, 

the probability of a cow curing bacteriologically was selected from the 
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specified distribution, and, of those cows that failed to cure, 80% were 

assumed to cure clinically but not bacteriologically, as described by 

Steeneveld et al. (2011), The remaining cows were assumed to fail to cure.  

A risk of transmission was included from cows that cured clinically but 

not bacteriologically (those that did not cure clinically received another 

treatment and were deemed to be not at risk of transmission at this 

point). The probability that a cow transmitted infection to a herdmate 

(Table 2-2) was taken from van den Borne et al. (2010) who reported 

estimated transmission rates over a 14 day period for infections caused 

by Staph. aureus, Strep. uberis/dysgalactiae and E. coli. A uniform 

distribution was specified (range 0.002 to 0.25, encompassing the 

estimates of van den Borne et al. (2010)) from which a value was selected 

at random at each iteration and used for each period of risk thereafter. 

The total period of transmission risk modelled was limited to 12 weeks 

split into 14 day intervals for CM1 and CM2. Therefore, the risk of 

transmission had a wide distribution to reflect and encompass all types of 

pathogen and strain. Thus, using one distribution, we could evaluate 

differences between a very low transmission pathogen and a very high 

transmission pathogen.  
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Figure 2-1 Schematic representation of the model designed to simulate the cost of a case of clinical mastitis. Complete cure=bacteriological and clinical 
cure. Clinical cure=non-bacteriological cure but clinical cure. No cure=no bacteriological or clinical cure. Cull=culled sometime within the remainder of the 
current lactation. Extended treatment=a repeat of the same treatment that the case received initially. RT=risk of transmission. CM1=initial case of clinical 
mastitis. CM2=first clinical recurrence. CM3=second clinical recurrence. 

             = Probabilistic relationship 

             = All cows follow this route 

RT = Probability of transmission to susceptible cows over a 12 week period 
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Table 2-2 Probability distributions applicable to all 5 antimicrobial clinical mastitis (CM) treatment 
protocols used in the model designed to simulate the cost of a case of clinical mastitis 

Input parameters 
Upper and lower 
limits of uniform 

distribution 
Source 

Decrease in probability of bacteriological cure1 a 
   Parity ≥2 (-0.15,-0.05) 

 

   Days in milk ≥60 days (-0.15,-0.05) 
   Cow is systemically ill (-0.25,-0.15) 
   SCC 200,000-500,000 cells/mL at most recent recording (-0.15,-0.05) 
   SCC >500,000 cells/mL at most recent recording (-0.25,-0.15) 
   Repeated case (>1st case in current lactation) (-0.25,-0.15) 
Probability of being culled for bacteriologically noncured cases a 
   Initial case (0,0.32) 

 
   Following first clinical recurrence (CM2) (0.04,0.36) 
Probability of being culled for completely cured cases a 
   Initial case (0.04,0.06) 

    Following first clinical recurrence (CM2) (0.10,0.20) 
   Following second clinical recurrence (CM3) (0.20,0.30) 
Probability of death for nonclinical cured cases (0.04,0.06) a 
Probability of drying-off quarter for nonclinical cured cases (0.94,0.96) a 
Probability of being culled for cows with dried off quarters (0.27,0.39) a 
Increase in all culling probabilities when cow is systemically ill (0.05,0.15) a 
Probability of clinical flare-up for bacteriologically noncured 
cases 

(0.05,0.12) a 

Probability of transmission after CM1 and CM2 (0.002,0.25) b 
Proportional yield loss a 
   Case in 1st or 2nd month of lactation (0.07,0.09) 

 
   Case between months 3 and 6 (0.03,0.08) 
   Case after month 6 (0,0.04) 
   Parity ≥2 (0,0.02) 
305d Yield (Kg) (7000,10000) Author 
Daily milk discard (Kg) (5.00,50.00) Author 
Value of discarded milk (£/Kg) (0.23,0.27) (DairyCo, 2012a) 
Cost of milk production (£/Kg) (0.03,0.10) c 
Cost of labour (£/hr) (1.00,15.87) c 
Cost of cull (£) (120,720) c, d 
Cost of death (£) (1200,2000) DairyCo 2012b 
1 The value selected from this distribution was subtracted from the value selected from the 
bacteriological cure distribution. 
a = based on Steeneveld et al. (2011) 
b = based on Van den Borne et al. (2010) 
c = based on Huijps et al. (2008) 
d = based on Kossaibati & Esslemont. (2000) 
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The susceptible population was taken as the whole herd (99 cows) at the 

start of the transmission period and was reduced according to the 

number of cows that became infected after each 14 day period during the 

subsequent 12 weeks.  Cow parities and stage of lactation of the 

susceptible population were not modelled separately; thus for simplicity, 

all susceptible cows we assumed to have an equal probability of acquiring 

an infection. All cows that were infected at the end of the previous 14 day 

period were eligible to transmit infection during the next 14 day period 

according to the defined probability distribution (Table 2-2). For example, 

if the cow treated at CM1 remained subclinically infected after treatment, 

it could transmit the infection to another cow in the herd during the 

following 14 day period. At the start of the subsequent 14 day period, 

there could now be 2 infectious cows able to transmit infection to another 

2 cows during the next 14 day period. If 3 cows had become infected in 

addition to the original case, then the susceptible population would be 

reduced to 96 cows. The total number of infections accrued from CM1 and 

CM2 were combined and the costs of subsequent cases of CM were 

estimated by multiplying the cost from the original case (CM1) by the 

number of extra cases of CM caused by transmission of the original 

infection (thus assuming the same milk price, culling values and so on as 

for the initial case). A total cost of CM was derived by adding the costs 

from the original and secondary cases, following transmission. For 

example, if the cost of a case of CM was calculated to be £200 (excluding 

transmission) but the cow infected 2 herd mates, then the total cost 

(including transmission) would be calculated as £600 (£200 x 3). 
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 Model input parameters 2.2.2

The model was parameterised (i.e. the model inputs selected) with 

distributions taken from the existing literature, from current commercial 

data and where no other information was available, on transparent 

assumptions made by the Dairy Herd Health Group, University of 

Nottingham (Table 2-1 and Table 2-2). The purpose was to enable 

exploration of the relationship between each model parameter and the 

overall cost-benefit of each treatment protocol over a wide range of 

possible scenarios. Whilst not a requirement of PSA, uniform distributions 

were used throughout the model to enable evaluation of the cost of CM 

over a spectrum of different scenarios without specifying which scenarios 

were more or less likely thereby minimising assumptions. This was not 

intended to represent the ‘true’ distribution of the input parameters 

(which are generally unknown), but simply to allow investigation over the 

whole of a realistic range of equally likely parameter values and, thus, 

treatment scenarios. After a large number of model iterations (4000 per 

treatment protocol), all combinations of treatment scenarios and other 

input parameters were effectively investigated, so that dependencies 

could be evaluated. 

Where possible, distribution ranges were based on values from current 

literature. Where a point estimate was identified in the literature, a 

uniform distribution centred on that point was used, to allow sensitivity 

analysis of realistic values around this point estimate. For example, the 

increase in probability of a cow being culled within the remainder of 
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lactation when systemically ill was estimated to be 0.10 (Steeneveld et al., 

2011). In our model a uniform distribution of 0.05-0.15 was used to 

evaluate this parameter over an enlarged but specified range. The 

distributions used for input parameters are shown in Table 2-1 and Table 

2-2, along with the source or basis for the choice of each distribution. 

Economic parameter distributions included the cost of medicines (Table 

2-1), labour, milk withdrawal and loss of milk production, culling and 

death (Table 2-2). The cost of labour is subject to large variation quoted in 

the literature. For this reason a wide distribution was assigned to the 

hourly cost of labour with the upper limit taken from Huijps et al. (2008). 

The total time taken to treat each case of CM was assigned a distribution 

centred on the figures given by Steeneveld et al. (2011), surrounded by an 

additional variation of +/- 10 minutes. The total cost of labour was the 

product of the hourly rate and the total treatment time.  

The length of milk withdrawal after CM was defined by a distribution 

based on the commonly used medicines in the UK and the amount of milk 

being discarded each day was taken from a plausible milk yield 

distribution (Table 2-1). The distribution defined for milk price was taken 

from DairyCo (2012a), and was based on the average UK milk price over 

the last 12 months (range: lowest price and highest price). The cost of 

milk production was based on Huijps et al. (2008), and assigned a 

uniform distribution to reflect the variability in the figure (Table 2-2).  

The calculation of total yield loss following a case of CM was based on the 

herd 305 day yield, the parity of the animal and the stage of lactation in 
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which the infection occurred (Table 2-2). The distributions governing the 

percentage of total loss in 305 day milk yield were based on Hagnestam et 

al. (2007). The proportion of cases occurring at each stage postpartum 

and the proportion of cases affecting multiparous cows versus 

primiparous cows was governed by distributions based on Steeneveld et 

al. (2011) (Table 2-2).  The cost associated with the total loss in milk yield 

was calculated according to the total loss in earnings (i.e. the quantity of 

milk multiplied by the milk price) minus the savings made in feed costs 

(i.e. the quantity of milk loss multiplied by the cost of production). All 

distributions are provided in Table 2-2. 

The cost of culling a cow within the remainder of the current lactation 

was taken from a uniform distribution based on Huijps et al. (2008) and 

Kossaibati and Esslemont (2000), which included the slaughter value and 

replacement costs, with an appropriate range added to reflect the 

variability of this parameter (Table 2-2). The cost of the death of an 

individual was based on current UK average sales prices for freshly calved 

cows and heifers (DairyCo 2012b) which would be required to replace the 

dead cow in addition to the cost of carcass disposal (Table 2-2). 

 Model Simulation 2.2.3

The model was used to simulate 4000 cases of CM1 for each treatment 

protocol.  At each iteration, all model input parameter values for that 

iteration were stored along with the calculated cost of a CM1 case: this 

data was then used for analysis. 
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At each model iteration a value for each input parameter was drawn from 

the probability distribution for that input parameter independent of other 

parameter values selected, and the model used to calculate a cost of CM 

based on those input values. At the next iteration, a new set of parameter 

values were selected at random and used to calculate a cost of CM. This 

process was repeated 4000 times for each of the 5 treatment protocols 

and the impact of each parameter on the cost of CM was evaluated.  

 Data analysis 2.2.4

Spearman rank correlation coefficients were calculated to explore the 

univariable associations between model input parameters and the cost of 

CM (Table 2-3). The strength of the relationship was evaluated using the 

Spearman rank rho (ρ) value.  

Conventional first order multiple linear regression models were used to 

explore the relationships between model inputs (Table 2-1and Table 2-2) 

and the cost of CM for each of the treatment protocols (one model was 

constructed for each treatment protocol). A natural log transformation 

was required for the outcome variable (cost of CM) to give normality and 

homoscedasticity of the residuals. Model fit was assessed using a visual 

assessment of residuals and a Q-Q plot to evaluate normality. The 

influence of any outlying residuals was assessed using the Cook’s D value. 

Predictor variables were selected by backward stepwise selection and 

variable coefficients that were significantly different from zero (p<0.05) 

were retained in the final model. All analysis was performed in R version 

2.15.0 (R Development Core Team, 2012). 



64 
 

 The relative ‘importance’ of the independent variables (model input 

parameters) on the cost of CM was assessed for each of the 5 treatment 

protocols by removing the variable from the model and observing the 

difference in the resulting R2 value. This difference was then expressed as 

a proportion of the R2 value of the complete model.  

The final regression models were used to make predictions based on 

different cow and farm scenarios and to explore the predicted effect these 

would have on the overall cost of CM. This was undertaken by altering the 

value of each of the independent variables in the model in turn from their 

median value to the 97.5th percentile whilst keeping all other variables 

constant at their median value and recording the resulting change in the 

model output (cost of CM) as a percentage. This was performed using 

Microsoft Excel (2010).  

 Results 2.3

 Data analysis 2.3.1

The Spearman rank correlation coefficients are presented in Table 2-3. 

The cost of CM was most closely associated with the risk of transmission 

of infection for all 5 treatment protocols. This was followed by the 

bacteriological cure rate, the cost of a cull, total loss in yield and the 

presence or absence of systemic illness.  

The regression model fit was good for each of the 5 treatment protocols 

and outliers had no significant influence on the model output. The results 

of the regression analysis are illustrated in Figure 2-2. Transmission of 
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infection had the greatest influence on the overall cost of CM for all 5 

treatment protocols and the number of cows infected as a result of CM1 

ranged from 0 to 3 over the total 12 week period of risk (Table 2-4). This 

was followed by occurrence of systemic illness, cost of a cull and total 

yield loss during the remainder of the lactation. In total, 13 independent 

variables were retained in the final models (Figure 2-4). The relative 

importance of variables differed only slightly between the 5 treatment 

protocols; the general trends were similar throughout.  

The most influential financial input was the cost of a cull which accounted 

for around 10% of the variance in the total cost of CM, followed by the 

cost of milk production, milk price and cost of labour. The cost of 

medicines was not found to be a significant predictor, and was excluded 

from the final models. The relationship between the most important 

independent variables and the cost of CM are displayed in Figure 2-3.  

 Scenarios 2.3.2

The regression models were used to explore the effect that changes to 

specific independent variables had on the overall cost of CM and the 

results from treatment 1 are displayed in Figure 2-4. An increase in the 

rate of transmission from 0.13 new cases/14 days to 0.25 new cases/14 

days would increase the predicted cost of CM by up to 60%, whereas 

doubling the cost of labour from around £8.50/hr to £15.50/hr would 

only be expected to increase the cost of mastitis by around 5%. Systemic 

illness had a large effect on the total cost of CM (40%) if present due to 

the depressing effect this had upon the probability of bacteriological cure. 



66 
 

The cost of a cull had a moderate effect on the cost of CM with an increase 

from £420 to £702 resulting in a 15-20% increase in the overall cost. 

Table 2-3 Spearman rank correlation coefficients measuring the statistical 
dependence between the specified variable and the total cost of clinical mastitis 
estimated in the complete model designed to simulate the cost of a case of clinical 
mastitis. 

 Treatment 
1 

Treatment 
2 

Treatment 
3 

Treatment 
4 

Treatment 
5 

Transmission 0.70 0.68 0.71 0.70 0.64 

Bacteriological 
cure rate1 

-0.24 -0.10 -0.07 -0.13 -0.09 

Cost of cull 0.23 0.24 0.24 0.24 0.25 

Total yield loss 0.23 0.23 0.22 0.22 0.23 

Not systemically ill -0.23 -0.25 -0.25 -0.25 -0.27 

Heifer -0.15 -0.16 -0.16 -0.17 -0.17 

Not a repeat case -0.12 -0.14 -0.13 -0.14 -0.15 

Milk price 0.10 0.11 0.11 0.11 0.11 

SCC > 500,000 
cells/ml2 

0.10 0.09 0.09 0.08 0.09 

Cost of milk 
production 

-0.10 -0.10 -0.10 -0.11 -0.11 

Less than 60 days 
in milk3 

-0.09 -0.10 -0.10 -0.11 -0.11 

Milk withdrawal4 0.09 0.07 0.07 0.12 0.07 

Cost of labour 0.02 0.04 0.02 0.02 0.04 

Cost of drugs 0.02 0.00 0.02 0.00 0.01 
1 Baseline bacteriological cure rate before further influence of systemic illness, 
parity, days in milk, somatic cell count and case number. 
2 Somatic cell count at the time of clinical mastitis. 
3 Less than 60 days in milk at the time of clinical mastitis case. 
4 Milk withdrawal during antibiotic treatment. 
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Figure 2-2 Bar charts depicting the proportion of variance in the total cost of 
clinical mastitis accounted for by each variable for each of the treatment protocols 
in a model designed to simulate the cost of a case of clinical mastitis 13 days of 
antibiotic intramammary treatment; 25 days of antibiotic intramammary treatment; 
33 days of intramammary and systemic antibiotic; 43 days intramammary and 
systemic antibiotic plus 1 day NSAID; 55 days intramammary and systemic antibiotic; 
6Proportion of variance in the total cost of CM; 7Including the effect of systemic 
illness, parity, days in milk, repeat case and somatic cell count at time of case; 8Milk 
withdrawal during treatment. 
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Table 2-4 Breakdown of average (median) costs (£) associated with a case of clinical mastitis (CM) for each treatment protocol as predicted by a model 
designed to simulate the cost of a case of clinical mastitis (2.5th and 97.5th percentiles given in parenthesis). 

 Antimicrobial treatment regimen 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5 

Average proportion of total cost (%)      

Yield loss 44 41 41 39 38 

Culling 22 20 20 19 19 

Milk discard 23 27 20 20 23 

Medicines 3 5 15 18 15 

Labour 3 4 3 3 4 

Cost (£) of original CM case (including flare-ups) 229              

(132; 353) 

250              

(144; 378) 

256              

(158; 382) 

271           

(169; 398) 

278         

(170; 412) 

Median number of herd mates infected due to transmission 0.61  

(0.03;2.02) 

0.48     

(0.02;1.65) 

0.49     

(0.02;1.64) 

0.46     

(0.02;1.61) 

0.38     

(0.02;1.38) 

Cost (£) of  transmission 132                 

(47; 471) 

120                 

(47; 421) 

125                

(48; 425) 

123              

(51; 424) 

105            

(46; 363) 

Total cost (£) 361              

(179; 824) 

370         

(192;799) 

380              

(206; 806) 

394           

(216; 775) 

383        

(216;775) 

Treatment 1 = 3 days of antibiotic intramammary treatment; treatment 2 = 5 days of antibiotic intramammary treatment; treatment 3 = 3 days of intramammary and 

systemic antibiotic treatment; treatment 4 = 3 days intramammary and systemic antibiotic treatment plus 1 day NSAID; treatment 5 = 5 days intramammary and systemic 

antibiotic treatment 
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Figure 2-1 Series of scatterplots demonstrating the relationship between the 
predictor variable and the total cost of clinical mastitis (CM) for treatment 1 (3 days 
intramammary antibiotic) in a model designed to simulate the cost of a case of 
clinical mastitis. 
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Figure 2-4 Tornado plot to demonstrate the predicted effect of a given change in 
one of the predictor variables on the total cost of clinical mastitis when all of the 
others remain constant. Treatment 1 = three days of intramammary antibiotic 
treatment. Transmission refers to the risk of transmission over a 14 day period 

 

 Discussion 2.4

The results suggest that the risk of transmission of infection has the 

greatest influence on the cost of a case of CM and this appeared to be the 

case by a wide margin. Indeed, a relatively small increase in the rate of 

transmission was associated with a large increase in cost (Figure 2-4) and 

this is consistent with a study by Halasa (2012) who reported that the 

total annual net cost of intramammary infection (IMI) was highly 

sensitive to the transmission rate of Staph. aureus.  

-10% 10% 30% 50%

Percentage change in the total cost of CM 

Treatment 1 

Transmission from 0.126 to
0.2448
Cost of a cull from £420 to £702

Systemic Illness

Bacteriological cure rate from
%70 to %80
Total loss in yield from 633Kg to
923Kg
Repeat case

Heifer

Cost of milk production from
6.5ppl to 9.9ppl
Milk price from 25ppl to 27ppl

Milk withdrawal increased by 2
days
Greater than 60 days in milk

SCC > 500,000 cells/ml

Cost of labour from £8.52/hr to
£15.48/hr
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The potential for transmission of IMI between cows is well established  

(Barkema et al., 2009) and yet despite this, relatively few studies exist 

that seek to quantify this phenomenon (Lam et al., 1996a; Zadoks et al., 

2002, 2001). The transmission data from these studies has been used to 

inform some economic (Swinkels et al., 2005a,b; van den Borne et al., 

2010) and epidemiological studies (Barlow et al., 2009) but these were all 

set in the context of treatment of subclinical mastitis. One study that did 

include transmission in a discrete-event model investigating the cost of 

pathogen-specific IMI in a herd of 100 dairy cows  found that the total net 

cost was most sensitive to the transmission rate parameter (Halasa et al., 

2009). A limitation of previous research on ‘pathogen-specific’ 

transmission rates is that the rate is likely to vary considerably between 

different strains of the ‘same’ pathogen. The advantage of using PSA, is 

that a single distribution could be used to encompass many different 

plausible rates (based on literature) and the importance of this parameter 

could be investigated without the need to make assumptions as to how a 

particular pathogen may or may not behave. Therefore, the variation in 

the transmission rate parameter in this study effectively takes into 

account known variation in pathogen and strain of bacteria. Whilst the 

use of uniform distributions means that no assessment is made as to 

which scenario is more or less likely and therefore which transmission 

value is most common, their use does mean that the relative importance 

of the different transmission values affecting the cost of CM can be 

robustly assessed across a wide range of plausible situations. 
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In the model described in this study, cows that cured bacteriologically 

following treatment could go on to either finish the lactation or be culled, 

and at no point could they transmit infection to other cows. Cows that 

remained subclinically infected could either end the lactation, be culled, 

or experience a repeat case of CM; during this time, they were considered 

‘eligible’ to transmit infection whichever route they followed. Whilst this 

may represent a simplification of the biological reality, it is probably these 

subclinically infected cows that represent the major reservoir of 

contagious pathogens and the way in which those cows are managed 

could have a significant impact on the degree of between cow 

transmission and hence the cost of mastitis.  

Transmission of contagious mastitis pathogens mainly occurs during 

milking (Fox and Gay, 1993) and measures aimed at reducing 

transmission therefore tend to focus on the milking process, the 

management of the cows at milking and the milking machine itself. A 

recent systematic review of the effect of udder health management 

practices on herd SCC highlighted the importance of wearing gloves 

whilst milking, the use of (well-adjusted) automatic cluster removal, 

application of post-milking teat disinfection, milking cows with CM or a 

high SCC last and the annual inspection of the milking machine (Dufour et 

al., 2011). Whilst such studies measuring association are not strong 

evidence of causality, they do highlight practices that are likely to help 

minimise the transmission of IMI and appear to be relatively well adopted 

by dairy farmers (Rodrigues et al., 2005; Olde Riekerink et al., 2010). The 
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segregation of infected cows represents a challenge for many producers 

both logistically and diagnostically, because creating an additional group 

may add to space and time pressures and a certain amount of expenditure 

and effort will be required to diagnose infected cows. Despite this, it 

would seem logical that keeping infectious cows separate to susceptible 

individuals should reduce spread and there is evidence to support this in 

the literature (Wilson et al., 1995; Middleton et al., 2001; Zecconi et al., 

2003). A possible alternative to segregation is back-flushing the milking 

unit to prevent uninfected cows from being exposed to contaminated 

milking units from infectious cows (Keefe, 2012) and there is some 

evidence of its efficacy (Hogan et al., 1984; T. W. Smith et al., 1985). 

Whilst this may represent a significant investment to install, it may offer a 

pragmatic solution on farms for which in-parlour transmission appears to 

be a problem but for whom segregation is not a viable option. 

The role of the milking machine in transmission of mastitis should not be 

ignored despite advancements aimed at reducing its involvement. It is 

considered to account for up to 20% of new IMI’s in some herds although 

it is probably closer to around 10% in most ‘average’ herds provided the 

machine is appropriately configured (Mein, 2012). To minimise the risk of 

pathogen spread via the milking machine, it should be inspected at least 

annually (Dufour et al., 2011) which is especially pertinent given that 

61% of UK parlours in one study (Berry et al., 2005) failed their annual 

test. 
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The measuring and hence monitoring of transmission remains 

challenging at present and has typically been estimated using SCC trends, 

CM incidence data and bacteriology (Barkema et al., 2009). Molecular 

epidemiological techniques (Zadoks and Schukken, 2006) are required to 

measure how much transmission is occurring, and these are not currently 

widely available in the commercial setting. This is however likely to 

change with advances in technology, and thus the ability to accurately 

quantify and monitor the degree of transmission in dairy herds should 

improve.  

After transmission, the most important factors influencing the cost of CM 

were bacteriological cure rate, cost of a cull and loss in yield. This is 

consistent with other studies (Halasa, 2012; Heikkilä et al., 2012; Huijps 

et al., 2008). Van den Borne et al. (2010) also reported that cost of 

mastitis was sensitive to the bacteriological cure rate, with higher cure 

rates resulting in reduced costs due to mastitis when modelling the effect 

of lactational treatment of subclinical IMI’s. Barlow et al. (2009) found 

that increasing the cure rate of subclinical IMI’s was beneficial at some 

levels of transmission, but when transmission was high, it could be 

counterproductive, as it resulted in more uninfected cows (quarters) 

being available to be re-infected. 

In the model used in this study, bacteriological cure rate was structured 

to be affected by cow factors such as parity, somatic cell count at the time 

of infection, systemic illness, case number and days in milk as described 

by Steeneveld et al. (2011). However, we used probability distributions 
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rather than point estimates for the cow factors and this resulted in a 

highly variable set of possible values for bacteriological cure rate, which 

we believe reflects real potential situations. As expected, factors that 

affect the probability of bacteriological cure had an important influence 

on the cost of CM, although more research would be useful to determine 

the real degree of variation in these values in the field and the reasons for 

such variation. The other parameters in the model such as milk price, 

length of milk withdrawal and the cost of labour proved to be of lesser 

significance to the cost of CM. Interestingly, the cost of medicines was 

found to have little bearing on the overall cost of a case of CM (Table 2-3). 

In this study, the probability distributions used for the bacteriological 

cure rate reflected a greater degree of uncertainty associated with the 

least aggressive protocol (treatment 1) and an increased chance of cure 

for the more aggressive treatment protocols overall (Table 2-1). There 

was a large degree of overlap in the bacteriological cure rates for the 

different treatment protocols, and the same was true of the model outputs 

(Table 2-4) which showed that the overall cost of CM was very similar 

despite the treatment protocol selected. The relationship between the 

bacteriological cure rate and the cost of CM was variable which was likely 

to be a result of the increased width of the distribution used for treatment 

protocol 1 relative to the other treatment protocols. The median total 

costs (Table 2-4) were higher than most figures quoted in the literature as 

they included the costs incurred by any transmission that happened as a 

result of the case of CM which most other figures do not. So, rather than 
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representing the cost of a case of CM, it may be more appropriate to think 

of the values for total cost in Table 2-4 in terms of the ‘room for 

investment’ in preventing a case of CM. The median costs without taking 

into account transmission were higher than the equivalent figures quoted 

by Steeneveld et al. (2011), but these do not necessarily represent an 

‘average’ cost for mastitis because with the use of uniform distributions in 

this study, the aim was to fully explore causes of variation in cost rather 

than averages. Treatment 1 (3 days intramammary antibiotic) resulted in 

the lowest median cost, as was found by Steeneveld et al. (2011), but also 

had the broadest range, which is intuitive given the increased risk of 

transmission, subclinical infection and culling associated with a reduced 

bacteriological cure rate. Therefore, and importantly, the treatment 

protocol selected appears to be much less important than other factors 

such as transmission. Steeneveld et al. (2011) hypothesised that the 

inclusion of transmission would favour the intensive antibiotic treatment 

regimens, and there was some evidence to support this hypothesis in the 

results from our model, with the most aggressive treatment protocol 

(treatment 5) being less highly correlated to the rate of transmission than 

the other protocols (Table 2-3) and resulting in fewer cows becoming 

infected due to transmission (Table 2-4). The increased bacteriological 

cure rate associated with treatment 5 was based on expert opinion rather 

than specific studies, but if intensive antibiotic treatment protocols were 

indeed found to reduce transmission, then our model would indicate that 

the potential economic benefits could be far greater than simply those 



77 
 

associated with the individual cow. More data on expected cure rates 

would be needed to improve our understanding of this aspect. 

The use of modelling in economic evaluations is now widespread in the 

health-care sector as it enables the investigation of the likely range of 

outcomes (cost-effectiveness) under different assumptions even when the 

exact magnitude of key variables is unknown (Buxton et al., 1997). PSA 

has become the state-of-the-art method for determining the uncertainty 

in the outcomes of cost-effectiveness studies because of the uncertainty in 

input parameters (Boshuizen and van Baal, 2009). There are concerns 

that the use of deterministic or univariate sensitivity analysis may 

underestimate overall uncertainty (Briggs, 2000) and become difficult to 

interpret with large numbers of parameters especially if any are 

correlated (Claxton et al., 2005). Such limitations with other forms of 

sensitivity analysis have led to the development of PSA based on Monte 

Carlo simulation methods (O’Brien et al., 1994). PSA permits the analyst 

to examine the effect of joint uncertainty in the variables of an analysis 

without resorting to the wide range of results generated by extreme 

scenario analysis (Briggs and Gray, 1999). Parameter correlation is 

propagated automatically providing meaningful sensitivity analysis 

regardless of parameter correlation (Ades et al., 2006a). Given that the 

literature is often quite sparse concerning many of the model inputs 

required, assumptions are usually necessary for this kind of model and 

this can result in unreliable conclusions being drawn if this uncertainty is 

not properly investigated. By using PSA we can reflect the level of 
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uncertainty by defining the parameters as distributions that are specified 

and transparent. The distributions used do require a degree of judgement 

and this has to be carried out in an open and transparent way and based 

on current literature where possible.  

Our model calculated transmission over a limited period of 12 weeks, a 

constraint primarily due to increasing model complexity. The amount of 

time that a cow remains infective following an IMI is dependent on many 

different factors, and, hence extremely variable. The duration of non-

agalactiae streptococcal infections may range from 1 day up to 1 lactation 

(Todhunter et al., 1995; Zadoks et al., 2003), with a median of 42 days 

(Zadoks et al., 2003). For Staph. aureus, the average length of infectivity 

was found to be 115 days for herds practicing post-milking teat 

disinfection (Lam et al., 1997). Given these findings, the 12 week period 

that we used could have resulted in an under-estimation of the effect of 

transmission.  

 Conclusions 2.5

The rate of transmission was found to be by far the most influential 

parameter in a PSA investigating the factors affecting the cost of CM at the 

individual cow level. This was followed by bacteriological cure rate, cost 

of culling and loss of yield. The results from this study suggest that more 

emphasis should be placed on the reduction in the risk of transmission in 

dairy herds when seeking to minimise the economic impact of CM.
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Chapter 3                                         

The cost-effectiveness of an on-

farm culture approach compared 

with a standard approach for the 

treatment of clinical mastitis in 

dairy cows 
 

 Introduction 3.1

Not only is mastitis important in terms of the economics, as reported in 

Chapter 2, but the treatment and prevention of mastitis is widely reported 

as the most common reason for antimicrobial drug use on dairy farms 

(González et al., 2010; Pol and Ruegg, 2007; Thomson et al., 2008). There 

is increasing pressure on the agricultural sector to reduce antimicrobial 

drug usage due to fears over antimicrobial resistance (AMR) (O’Neill, 

2015), and the way in which antimicrobial drugs are applied with respect 

to the treatment of mastitis is, therefore, a sensible target. Conventionally, 

all cases of clinical mastitis would receive a course of antimicrobial agents 

but an alternative approach is the selective treatment of cases according 

to the results of an on-farm culture (OFC) system. With the OFC system, 

only cases that yield a Gram-positive or mixed culture are treated with 

antimicrobial drugs, resulting in many cases of clinical mastitis not being 

treated at all (Lago et al., 2011a). This was demonstrated recently in a 

study performed in 8 herds based in Minnesota, Wisconsin and Ontario, 
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which reported that 51% of cows enrolled in the OFC group received 

antimicrobial drugs as opposed to 100% of the cows enrolled in the 

conventional group. The same study reported no statistical differences 

between the two groups with respect to the bacteriological cure risk, the 

time taken to clinical cure, new intramammary infection risk, treatment 

failure risk or risk of removal from the herd within 21 days (Lago et al., 

2011a). 

Whilst OFC appears to be effective at reducing antimicrobial drug usage 

(Hess et al., 2003; Lago et al., 2011a; Neeser et al., 2006), little is known 

about factors influencing the overall cost-effectiveness of this approach 

and, therefore, the types of herds in which it is most likely to be cost-

effective. The purpose of this chapter was to use probabilistic sensitivity 

analysis (PSA, see 1.3.2) to investigate the main factors that influence the 

cost-effectiveness of an OFC approach to treating clinical mastitis. The 

model used was an adaptation of the one reported in Chapter 2 with the 

addition of OFC-specific parameters based on previous research (Lago et 

al., 2011a). A specific aim was to identify the herd circumstances under 

which an OFC approach would be most likely to be cost-effective. 

 Materials and methods 3.2

 Model structure 3.2.1

A stochastic Monte Carlo model was developed using OpenBUGS 3.2.2 

software (Thomas et al., 2006). The model was used to simulate a case of 

clinical mastitis at the cow level and to calculate the associated costs 
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simultaneously when treated according to 2 different treatment 

protocols; i) a standard approach (3 tubes of intramammary antibiotic) 

and ii) an OFC programme as described by Lago et al. (2011a). The 

general model structure and assumptions were consistent irrespective of 

the treatment protocol applied, and was as described in Chapter 2 (Figure 

2-1). An initial case of clinical mastitis (CM1) could either: i) cure 

bacteriologically, ii) cure clinically but remain subclinically infected, or iii) 

fail to cure (either clinically or bacteriologically). If CM1 failed to cure, 

then a repeat treatment (same as initial treatment) would be 

administered, and the same 3 outcomes permitted. If CM1 cured 

bacteriologically, then the cow could either end the lactation or be culled 

before the end of lactation. If CM1 cured clinically but not 

bacteriologically, then it could either end the lactation, be culled before 

the end of lactation, or have a repeat episode of clinical mastitis (CM2). 

CM2 would be treated according to the same protocol as CM1 and would 

then follow the same possible outcomes as CM1. A third clinical 

recurrence was permitted for subclinically infected cows (CM3) which 

were again treated in the same way as CM1 and CM2. If the cow remained 

subclinically infected after CM3 or failed to cure clinically, then the cow 

would be culled before the end of lactation. If the cow cured 

bacteriologically after CM3, then it could either finish the lactation or be 

culled before the end of lactation (Figure 2-1). 

A risk of transmission parameter was included from cows that remained 

subclinically infected after CM1 and CM2. This represented the risk that 
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the infection was transmitted from the infected cow to one of the other 99 

‘susceptible’ cows in the herd during a 12-week period. The 12-week 

period was split into 14-day blocks meaning the infected cow could infect 

another cow in the herd every 14-days. If infection did spread to another 

cow, then it too would be considered to be infectious during the 

subsequent 14-day blocks. For example, if a cow remained subclinically 

infected after CM1 and it transmitted an infection to another cow during 

the first 14-day block, then there would be 2 infectious cows at the start 

of the second 14-day block and the susceptible population would then be 

98 cows. 

 Model input parameters 3.2.2

The model was parameterized with distributions based on existing 

literature and current commercial data where possible (Table 3-1). All 

parameter inputs were specified as uniform distributions with the 

purpose of simulating a wide variety of different scenarios without 

making assumptions as to which was the most likely. The distribution 

ranges were based on the literature wherever possible but if only point 

estimates were available then plausible ranges were added around the 

point estimate. The input parameters were the same as used in Chapter 2 

with the addition of some OFC-specific parameters based on the study by 

Lago et al. (2011a) (Table 3-2).  

 On-farm culture specific input parameters 3.2.3

The OFC-specific input parameters comprised distributions reflecting 

changes to the bacteriological cure rate, the proportion of culture-positive 



83 
 

cases, the time taken to set-up and read the culture plates and the cost of 

a plate. The distribution for the reduction in bacteriological cure rate 

associated with the OFC protocol was uniform (-0.22-0), meaning the 

maximum reduction possible was 22% and the minimum was 0. This 

possible reduction in bacteriological cure rate arises because of the delay 

in treatment when using the OFC system. The middle value of 11% was 

the non-significant effect size reported by Lago et al. (2011a) which was 

the overall reduction in bacteriological cure rate in cases of clinical 

mastitis treated with the OFC protocol compared to cases treated with the 

standard approach.  The distribution specifying the ‘herd-level’ 

proportion of Gram-positive cases was uniform (0.1-0.9), meaning the 

lowest proportion was 10% of cases with a Gram-positive culture and the 

highest proportion was 90%. This distribution reflects the wide spread of 

values identified in the study by Lago et al. (2011a). There were no 

published figures for the cost of the biplate used in the study or the time 

taken to set-up and evaluate the culture results so plausible ranges were 

estimated as (£1.00-1.40) and (30-60 mins) respectively. The 

distributions used for all other input parameters are listed in Table 3-1. 
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Table 3-1 Probability distributions applicable to both treatment protocols used in a model 
designed to simulate the cost of a case of clinical mastitis treated according to different treatment 
protocols 

Input parameters 
Upper and lower 
limits of uniform 

distribution 
Source 

Probability of bacteriological cure                                                           (0.40,0.80) a 
Probability of bacteriological cure after extended treatment         (0.30,0.90) 
Decrease in probability of bacteriological cure1 

a 
a 

   Parity ≥2 (-0.15,-0.05) 

 

   Days in milk ≥60 days (-0.15,-0.05) 
   Cow is systemically ill (-0.25,-0.15) 
   SCC 200,000-500,000 cells/mL at most recent recording (-0.15,-0.05) 
   SCC >500,000 cells/mL at most recent recording (-0.25,-0.15) 
   Repeated case (>1st case in current lactation) (-0.25,-0.15) 
Probability of being culled for bacteriologically noncured cases a 
   Initial case (0,0.32) 

 
   Following first recurrence (CM2) (0.04,0.36) 
Probability of being culled for completely cured cases a 
   Initial case (0.04,0.06) 

    Following first recurrence (CM2) (0.10,0.20) 
   Following second recurrence (CM3) (0.20,0.30) 
Probability of death for nonclinical cured cases (0.04,0.06) a 
Probability of drying-off quarter for nonclinical cured 
cases 

(0.94,0.96) a 

Probability of being culled for cows with dried off quarters (0.27,0.39) a 
Increase in all culling probabilities when cow is 
systemically ill 

(0.05,0.15) a 

Probability of clinical recurrence for bacteriologically 
noncured cases 

(0.05,0.12) a 

Probability of transmission after CM1 and CM2 (0.002,0.25) 
(Van den Borne, 

2010) 
Proportional yield loss a 
   Case in 1st or 2nd month of lactation (0.07,0.09) 

 
   Case between months 3 and 6 (0.03,0.08) 
   Case after month 6 (0,0.04) 
   Parity ≥2 (0,0.02) 
305d Yield (Kg) (7000,10000) Author 
Milk withdrawal (d) (5.00,9.00) b 
Daily milk discard (Kg) (5.00,50,00) Author 
Value of discarded milk (£/Kg) (0.23,0.27) (DairyCo, 2012a) 
Cost of milk production (£/Kg) (0.03,0.10) c 
Treatment Time (hr) (0.53,0.87) a 
Cost of labour (£/hr) (1.00,15.87) c 
Cost of drugs (£) (5.58,6.97) d 
Cost of cull (£) (120,720) c; e 
Cost of death (£) (1200,2000) DairyCo 2012b 
1 The value selected from this distribution was subtracted from the value selected from the 
bacteriological cure distribution 
a=based on Steeneveld et al. (2011) 
b= based on commonly used preparations in the UK 
c= based on Huijps et al. (2008) 
d= based on estimate of current retail price of commonly used preparations in the UK 
e= based on Kossaibati & Esslemont (2000) 
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 Model simulation 3.2.4

The model was used to simulate 5000 cases of CM1 for each treatment 

protocol. At each model iteration, a value was selected at random from 

within the ranges specified for each input parameter, independent of each 

other, and the associated costs calculated. The parameter values and 

overall cost were stored for each model iteration and were used for 

subsequent analysis. The difference in overall cost between the two 

protocols was calculated at each model iteration by subtracting the cost of 

the OFC approach from the cost of the standard approach. Therefore, a 

positive value would indicate that the standard approach was more cost-

effective and a negative value would indicate that the OFC protocol was 

more cost-effective. The distribution specifying the herd-level proportion 

of Gram-positive cases would govern whether the case treated according 

to the OFC protocol was Gram-positive (or mixed infection) and, 

therefore, treated with antibiotics, or Gram-negative (or no growth) and, 

therefore, not treated with antibiotics. In this way, the impact of the 

proportion of Gram-positive cases on the overall cost-effectiveness of the 

OFC protocol could be assessed.  

 Data analysis 3.2.5

Spearman rank correlation coefficients were calculated to explore the 

univariable associations between model input parameters and the 

difference in cost between the standard and OFC treatment protocols 

(Table 3-2). The strength and direction of the relationships were 

evaluated using the Spearman rank rho (ρ) value. The outcome variable of 
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specific interest was the difference in cost between the two treatment 

protocols, however, additional model parameters were included to 

provide further insight into where cost differences arose. These were the 

cost of antimicrobial drugs, the difference in time taken to treat each case, 

the difference in milk withdrawal period and the difference in the rate of 

transmission. 

Table 3-2 On-farm culture specific model input parameters used in a model 
designed to simulate the cost of a case of clinical mastitis treated according to 
different treatment protocols 

Input parameters 

Upper and 
lower limits 
of uniform 

distribution 

Source 

Proportion of culture-positive cases (0.10,0.90) Based upon Lago et al. (2011a) 
Reduction in bacteriological cure rate (-0.22,0.00) Based upon Lago et al. (2011a) 
Cost of plate (£) (1.00,1.40) Based upon current retail price 
Culture time (hr) (0.30.1.00) Author 

 

Descriptive analysis was performed to identify scenarios in which the OFC 

approach was most cost-effective. To facilitate this, the 5000 simulated 

cases were sub-divided into 3 groups according to the magnitude of 

reduction in bacteriological cure rate associated with the OFC protocol as 

compared with the standard approach: i) large difference (LD) group (17-

22% reduction), ii) moderate difference (MD) group (>5-<17% reduction) 

and iii) small difference (SD) group (0-5% reduction). The difference in 

cost-effectiveness between the standard and OFC protocols was then 

assessed for the different groups and at different proportions of Gram-

positive cases. 
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 Results 3.3

 Data analysis 3.3.1

Across all 5000 simulated cases, the standard protocol was the most cost-

effective 68% of the time. The median cost related to a case treated with 

the standard protocol was £365 and the median cost related to a case 

treated with the OFC protocol was £382. The maximum difference in cost 

between the two protocols was £226 with a median of £19.  

The Spearman rank correlation coefficients for the OFC-specific 

parameters are shown in Table 3-3. The difference in cost between the 

two protocols was most closely related to the difference in bacteriological 

cure rate and the proportion of Gram-positive cases. As the difference in 

bacteriological cure rate and proportion of Gram-positive cases increased, 

the difference in overall cost became higher, making the OFC protocol less 

cost-effective than the standard protocol. Both the cost of the biplate and 

the time taken to set-up and evaluate the biplates had a negligible 

relationship with the cost-effectiveness of the OFC protocol as measured 

by the Spearman rank correlation coefficients (Table 3-3). 

With respect to the model input parameters common to both protocols, 

those significantly associated with the difference in cost were the 

difference in the milk withdrawal period (rho=0.75), difference in the cost 

of drugs (rho=0.61), difference in the time taken to treat the cow (and 

culture) (rho=0.61) and the difference in the rate of transmission 

(rho=0.51). 
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Table 3-3 Spearman rank correlation coefficients for on-farm specific model input 
parameters in a model designed to simulate the cost of a case of clinical mastitis 
treated according to different treatment protocols 

Parameter rho 

Proportion culture-positive 0.31 
Difference in bacteriological cure rate -0.28 
Cost of plate 0.0062 
Culture time 0.02 

 

 Scenario and sensitivity analysis 3.3.2

The median difference in cost between the two protocols was plotted 

against the proportion of Gram-positive cases and this indicated that the 

proportion of Gram-positive cases would need to be less than 12% for the 

OFC protocol to be more cost-effective than the standard protocol (Figure 

3-1). When the proportion of Gram-positive cases increased to 50%, the 

OFC protocol was on average £29 more expensive per case than the 

standard protocol. However, the difference in cost between the treatment 

groups was sensitive to the underlying bacteriological cure rate of Gram-

positive cases. When clinical mastitis was subdivided according to 

whether the difference in bacteriological cure rate was small (SD) 

medium (MD) or large (LD) the difference in the cost-effectiveness of the 

treatments was as follows. The OFC protocol was more cost-effective than 

the standard protocol when the proportion of Gram-positive cases was 

less than 47% in the SD group (Figure 3-2) and less than 21% in the MD 

group (Figure 3-3). The OFC protocol was never more cost-effective than 

the standard protocol for cases in the LD group (Figure 3-4). Therefore, 

the underlying bacteriological cure rate was a key parameter determining 

relative cost-effectiveness of the treatment approaches. 
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Figure 3-1 Difference in cost between standard and OFC protocol (all scenarios) 
taken from a model designed to simulate the cost of a case of clinical mastitis 
treated according to different treatment protocols A positive value for difference 

=standard protocol more cost-effective; a negative value = OFC protocol more cost-

effective.  

 

Figure 3-2 Difference in cost between standard and OFC protocol (SD) taken from a 
model designed to simulate the cost of a case of clinical mastitis treated according 
to different treatment protocols A positive value for difference =standard protocol 

more cost-effective; a negative value = OFC protocol more cost-effective. SD = 0-5% 

reduction in bacteriological cure rate compared with standard protocol.  
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Figure 3-3 Difference in cost between standard and OFC protocol (MD) taken from 
a model designed to simulate the cost of a case of clinical mastitis treated 
according to different treatment protocols A positive value for difference =standard 

protocol more cost-effective; a negative value = OFC protocol more cost-effective. 

MD = 5-17% reduction in bacteriological cure rate compared with standard protocol. 

 

Figure 3-4 Difference in cost between standard and OFC protocol (LD) taken from a 
a model designed to simulate the cost of a case of clinical mastitis treated 
according to different treatment protocols A positive value for difference =standard 

protocol more cost-effective; a negative value = OFC protocol more cost-effective. 

LD = 17-22% reduction in bacteriological cure rate compared with standard protocol. 
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 Discussion 3.4

The simulation analyses revealed that both the difference in the 

bacteriological cure rate due to a delay in treatment and the proportion of 

Gram-positive cases that occur on a dairy unit will have a fundamental 

impact on whether OFC will be cost-effective. There has undoubtedly 

been a shift in the aetiology of clinical mastitis towards environmental 

pathogens, with coliforms and no-growths frequently reported as 

accounting for approximately 50% of all clinical mastitis culture results 

(Bradley and Green, 2001b; Bradley et al., 2007b; Breen et al., 2009) as 

was the case in the study by Lago et al. (2011a). On this basis, it would be 

fair to assume that most dairy herds would expect to treat approximately 

50% of clinical mastitis cases with antimicrobial drugs if utilizing an OFC 

approach. The reduction in bacteriological cure rate associated with OFC 

is more difficult to predict as there is very little published data on the 

extent to which cure is reduced by a delay in treatment of mastitis. 

However, a reduction of some degree is likely given the 24 hour delay in 

initiating antimicrobial treatment for the Gram-positive cases and the 

potential for Gram-positive cases to be incorrectly diagnosed as Gram-

negative and therefore not treated, as was the case in 14% of the cases 

not treated with antibiotics in the study by Lago et al. (2011a). Given the 

results from this research, further work to quantify the likely reduction in 

bacteriological cure rate that will arise from this delay in treatment is 

critical if the cost-effectiveness and welfare implications of OFC are to be 

established. 
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One of the aims stated by the authors of the original OFC studies (Lago et 

al., 2011a, 2011b) was to use their results to evaluate the overall cost-

benefit of using an OFC system, but to date, no data have been published. 

The results of this study serve to illustrate that an OFC approach for the 

treatment of clinical mastitis would probably not be cost-effective in 

many circumstances, in particular, not those in which Gram-positive 

pathogens represent more than 20% of all clinical cases. Since 

Streptococcus uberis and Staphylococcus aureus remain common mastitis 

pathogens on dairy units in many countries, the cost-effectiveness of OFC 

should be carefully scrutinised in these circumstances. 

Whilst OFC will reduce total antimicrobial drug usage on farm, the effect 

on cow health and welfare and overall dairy farm profitability should be 

considered. The assertion that there is no ‘significant’ reduction in 

bacteriological cure from delayed treatment of Gram-positive pathogens 

is fragile and requires substantially more research with sufficient power 

to detect small differences in effect size. In the study by Lago et al. 

(2011a), statistical analysis revealed a non-significant difference of 11% 

in bacteriological cure risk between the standard and OFC groups. In that 

study, the sample size used meant that a difference ≥14% would have 

been needed between groups to detect the difference as being ‘significant’ 

(Lago et al., 2011a), and it therefore remains uncertain whether there is a 

true difference in bacteriological cure between groups. The sensitivity 

analysis in the current study suggests that a difference in cure rate of less 
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than 14% could certainly determine whether OFC is cost-effective, and 

therefore, larger studies to ascertain this true difference are needed. 

Significant differences were reported in the pathogen-specific 

bacteriological cure rates in the study by Lago et al. (2011a), particularly 

with respect to Klebsiella spp. and Staphylococcus aureus. Whilst the 

reason for these differences is unknown, it is possible that the reduction 

in bacteriological cure rate associated with OFC is a result of delayed 

treatment, as was hypothesised by Lago et al. (2011a) and has been 

reported in a previous study (Hillerton and Semmens, 1999). Given the 

importance of this parameter, future research should include pathogen 

specific differences in bacteriological cure rates when treatment is 

delayed by using OFC. 

In the current study, the overall proportion of Gram-positive cases was 

also shown to be related to the likelihood of cost-effectiveness of an OFC 

treatment programme. The proportion of Gram-positive cases was shown 

to be highly variable in the study by Lago et al. (2011a), in which the 

proportion of quarter cases receiving intramammary antibiotic treatment 

as a consequence of assignment to the OFC protocol ranged from 31%-

89% in the 8 study herds. In the current study, the overall proportion of 

Gram-positive cases had to be less than 12% (depending on 

bacteriological cure rate) for OFC to be more cost-effective than the 

standard protocol. By this measure, OFC would not have been cost-

effective in any of the herds in the study by Lago et al. (2011a). However, 

when cases were grouped according to the difference in bacteriological 
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cure rate, OFC would be cost-effective when the proportion of Gram-

positive cases was less than 47% in the SD group and less than 21% in the 

MD group. The OFC approach would, therefore, be most suitable for herds 

in which Gram-negative pathogens are responsible for most clinical 

mastitis and where the treatment of cows using an OFC approach results 

in a minimal reduction in the bacteriological cure rate. In practice, it is 

possible to assess the proportion of Gram-positive cases on a unit and this 

will inform decision making on the likely cost benefit of OFC. 

There may be a balance to be struck between reducing antimicrobial 

usage and possible deleterious effects in terms of cow welfare and farm 

finances; would the extra cost incurred by adopting an OFC approach be 

considered a price worth paying if it results in a reduction in antibiotic 

drug usage on dairy farms by 25%, as was estimated by Lago et al. 

(2011a)? If, for societal reasons, this was considered to be a price worth 

paying, there is also an issue of who should bear the cost. Whilst difficult, 

it is perhaps time such debates became transparent given the increasing 

pressure on antimicrobial drug usage and the potential risks posed by 

antimicrobial resistant bacteria. In the absence of legal jurisdiction, it is 

incumbent on those advising on animal health and welfare to ensure that 

the adoption of new technologies, such as OFC, are undertaken in light of 

comprehensive, transparent welfare and cost-effectiveness assessments. 

Whilst the overall likelihood of cost-effectiveness was affected mostly by 

the proportion of Gram-positive cases and the difference in 

bacteriological cure rate, the parameters within the model that had the 
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largest impact on the difference in cost were the difference in milk-

withdrawal period, the difference in the cost of drugs, the difference in 

culture and treatment time and the difference in rate of transmission. 

Clearly, OFC would be expected to reduce the amount of milk withdrawn 

from sale and the amount of money spent on drugs because a proportion 

of the cows would not receive any antimicrobial treatment and would 

therefore not incur any statutory milk withhold upon resolution of clinical 

signs. This is in agreement with Lago et al. (2011a) who reported a 

reduction in milk withdrawal period (5.2 days v 5.9 days) and quantity of 

antimicrobial drug usage (51% of OFC cases treated v 100% of standard 

cases treated) associated with OFC. The increase in labour required to 

acquire milk samples from clinical mastitis cases in an aseptic manner 

and plate out for culture is perhaps harder to assess and is likely to 

represent a cost not only in terms of the time taken, but also the 

opportunity cost incurred as a result of the herdsman being unable to 

perform other duties as a result. The distribution used in this study of 30-

60 mins is, therefore, likely to be a realistic estimate for most 

circumstances. The large impact that transmission could have on the cost 

of a case of clinical mastitis has been reported in the previous chapter and 

it is not surprising therefore that it was closely related to the difference in 

cost between the standard and OFC approaches also. Whilst the risk 

would clearly be influenced by herd management and pathogen-specific 

factors, it could also be affected by any delay in treatment and differences 

in bacteriological cure rate associated with OFC, resulting in an increased 
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risk of transmission. This again would need to be assessed at the herd 

level. 

There will inevitably be some unknown parameters in any cost-

effectiveness model (Buxton et al., 1997) and these parameters will have 

a degree of uncertainty surrounding their true value. PSA permits the 

incorporation of this parameter uncertainty which is subsequently 

propagated through the model and is therefore reflected in the model 

outputs. PSA is widely considered to be an implementation of Bayesian 

statistics, because all parameters have a probability distribution, which is 

a distinguishing feature of the Bayesian approach (Boshuizen and van 

Baal, 2009; O’Hagan, 2003). One of the key advantages of the Bayesian 

approach in medicine is that it removes the reliance upon significance 

testing and the use of arbitrary thresholds of ‘significance’ (Greenland and 

Poole, 2013; Gurrin et al., 2000) meaning the clinician is free to make 

their own judgement as to what is clinically ‘significant’ according to the 

degree of uncertainty with which they are comfortable. In this study, the 

PSA allowed an evaluation of the parameters likely to be important in 

determining the cost-effectiveness of the OFC approach and has 

highlighted that more research is needed in this field before the technique 

can be recommended on a widespread basis. 

 Conclusions 3.5

The results of this study indicate that the proportion of Gram-positive 

cases and the difference in bacteriological cure rate between the two 

treatment approaches has the greatest impact on the probability that an 
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OFC approach would be more cost-effective than a standard approach for 

the treatment of clinical mastitis. The OFC approach appears to be 

suitable for herds in which Gram-negative pathogens are responsible for 

most clinical mastitis and where the treatment of cows according to the 

results of an OFC approach results in minimal reductions in the 

bacteriological cure rates. These results suggest that OFC will probably 

not be cost-effective for many herds, and that OFC should, therefore, only 

be adopted after careful consideration of the predominant pathogens 

present in each herd and an honest discussion about the uncertainty 

surrounding its overall cost-effectiveness. 
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Chapter 4                                  

Current management practices 

and interventions prioritised as 

part of a nationwide mastitis 

control plan 
 

 Introduction 4.1

Having highlighted the significant cost of mastitis in Chapter 2 and the 

concerns about the quantity of antimicrobial drugs used to treat mastitis 

in Chapter 3, the focus of the remainder of the thesis is on the control of 

mastitis. All of the data reported and analysed in Chapters 4, 5 and 6 

originated from UK dairy herds that have participated in the AHDB Dairy 

Mastitis Control Plan (DMCP, see 1.2.4) 

A variety of studies have considered on-farm management practices 

relevant to mastitis control but there have been relatively few peer-

reviewed studies from the UK (Fenlon et al. 1995, Green et al. 2007b, 

Green et al. 2008, Langford et al. 2009) and nothing as detailed as the 

DMCP questionnaire which has 377 questions and observations all 

relevant to mastitis control. A better appreciation of current management 

practices would aid the understanding of why mastitis remains such a 

problem on many UK dairy farms and provide useful insights into which 

interventions are perceived to be most important for different types of 
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farms. The purposes of this chapter were to report performance and 

management data taken from a sample of UK dairy farms that have 

participated in the DMCP and to identify important mastitis prevention 

practices that are not currently widely implemented.  The frequency at 

which these deficiencies in management were prioritised by the plan 

deliverers was also reported to evaluate how important these 

management practices were perceived to be. 

 Materials and methods 4.2

 AHDB Dairy Mastitis Control Plan (DMCP) 4.2.1

As described in Section 1.2.4, the DMCP consists of 3 main stages; i) 

analysis of the herd data to assess patterns of mastitis and categorisation 

of each herd according to those patterns; ii) assessment of the current 

farm management, and, based on deficiencies identified, prioritisation of 

the most important management changes required; and, iii) frequent 

monitoring of the farm data to assess the subsequent impact on CM and 

SCC. During stage ii), the answers to the questionnaire and the ‘diagnosis’ 

made are entered into the ePlan software package. Once all of the 

required information is entered, the programme identifies where the herd 

differs from ‘best practice’ in terms of mastitis control, and highlights 

specific interventions most relevant to the herd diagnosis. For example, a 

lack of pre-milking teat disinfection would only be highlighted if the herd 

had an Environmental Lactation (EL) diagnosis.  
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The plan deliverer would prioritise 5-10 of these interventions to be 

implemented on the farm.  A three level ranking system was used for the 

interventions based on the strength of evidence from research, to assist 

the plan deliverer in prioritising which interventions to focus on; 

interventions supported by most evidence were made the priority for 

action (DairyCo, 2014). 

 Farm selection 4.2.2

Participating farms were included in this study if the herd performance 

data (e.g.  SCC data and CM records) were available at the plan start date 

in addition to the ePlan data (the answers to the questionnaire, the herd 

diagnosis and the prioritised interventions).  

 Data collection 4.2.3

Herd performance data were submitted electronically by the plan 

deliverer when each farm was enrolled on the DMCP. Plan deliverers 

were contacted directly by the author and asked to send relevant ePlan 

data.  

 Data analysis 4.2.4

The herd performance and ePlan data were imported into Microsoft 

Access (Microsoft, 2010), checked and exported into Microsoft Excel 

(Microsoft, 2010) for analysis. The herds were grouped accordingly for 

analysis; EDP, EL, CDP/CL. The CDP/CL herds were grouped together due 

to similarities in the epidemiology and low numbers of herds assigned 

those contagious diagnoses.  
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Some of the parameters used to measure mastitis performance in the 

participating herds are defined in Table 4-1, and consisted of: bulk milk 

SCC (12 month mean calculated from individual cow somatic cell counts 

weighted for milk production), incidence rate of clinical mastitis (IRCM), 

new lactation origin infection incidence rate as measured by SCC (LNIR) 

and CM records (CMLP) and new dry period infection incidence rate as 

measured by SCC (DPNIR) and CM records (CMDP) (Bradley et al., 2008b, 

2007a). Mann-Whitney-Wilcoxon tests were used to compare the mastitis 

parameters between the three groups of herds and a significance 

probability was set at P ≤0.05 for a two-tailed test. 

Table 4-1 Mastitis parameter definitions 

Mastitis Parameter Definition 
Lactation new infection 

rate (LNIR) 
The percentage of ‘uninfected’ cows (<200,000 
cells/ml for the whole of the current lactation, or 
<200,000 cells/ml at the previous three milk 
recordings, or below 100,000 cells/ml at the 
previous two milk recordings if previously 
>200,000 cells/ml in this lactation) that crossed 
the 200,000 cells/ml threshold at the following 
milk recording. (Target <5% per month) 

Dry period new infection 
rate (DPNIR) 

The percentage of cows (and heifers) ‘infected’ 
(>200,000 cells/ml*) in the first 30d after calving 
that were ‘uninfected’ (<200,000 cells/ml) in the 
milk recording within 1 month of drying off. 
(Target <10% per month) (*>400,000 cells/ml if 
recorded within 5 days of calving) 

Dry period cure rate 
(DPCURE) 

The percentage of ‘infected’ cows (>200,000 
cells/ml) prior to drying-off that were ‘uninfected’ 
(<200,000 cells/ml*) at the first milk recording 
after calving. (*<400,000 cells/ml if recorded 
within 5 days of calving) 

Clinical mastitis of lactating 
period origin rate (CMLP) 

The incidence rate of first (index) cases occurring 
in lactation, 31-305 days in milk. (Target <2 in 12 
cows per lactation period) 

Clinical mastitis of dry 
period origin rate (CMDP) 

The incidence rate of first (index) cases occurring 
at <31 days in milk (likely dry period origin). 
(Target <1 in 12 cows per 30 day period ) 
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The proportion of herds that were not performing each intervention was 

calculated, and the frequency with which each intervention was 

‘prioritised’ by the plan deliverers was also calculated. The interventions 

were ranked according to the proportion of eligible herds that undertook 

them and the interventions that were least commonly practiced were 

reported.  

 Results 4.3

A total of 234 herds that had been enrolled on the DMCP between 2009-

2012 were included in the study. The geographical location of the farms is 

shown in Figure 4-1. The median herd size was 184 cows (range 51-973) 

which is greater than the current UK average of 125 (DairyCo, 2013). The 

median 305 day milk yield of the 234 herds was 8463 litres (4297-12410) 

which is also greater than the current national average of 7445 litres 

(DairyCo, 2013).  

 

Figure 4-1 Geographical location of herds in the study 
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 Mastitis parameters 4.3.1

Differences between the mastitis parameters for the different groups of 

herds are shown in Table 4-2. The median bulk milk somatic cell count 

(BMSCC) for all herds was 208,000 cells/ml (range 74,000-809,000 

cells/ml) and the median incidence rate of clinical mastitis (IRCM) was 57 

cases/100 cows/year (range 6-164). The incidence of new lactation origin 

infections as measured by SCC (LNIR) and clinical mastitis records 

(CMLP) was higher for the herds with a Contagious Lactation/Contagious 

Dry Period and Environmental Lactation diagnosis than farms with an 

Enviromental Dry Period diagnosis. The apparent cure rate during the dry 

period as measured by SCC (DPCURE) was significantly higher in 

Environmental Lactation herds than the Environmental Dry Period and 

Contagious Lactation/Contagious Dry Period herds. The incidence of dry 

period origin infections as measured by CM data (CMDP) was significantly 

higher in the Environmnetal Dry Period herds than the herds with an 

Environmental Lactation or Contagious Lactation/Contagious Dry Period 

diagnosis (Table 4-2). 
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Table 4-2 General performance parameters and mastitis indices from the 234 UK 
dairy herds used in the study. Range of 12 month averages given (lowest-highest) 
with median value in parenthesis 

 
EDP EL CDP/CL 

Overall 
(median) 

Number 111 103 20 234 
Herd Size 51-553(200) 52-973 (216) 74-390 (176) 51-973 (184) 
305d Yield1 
(Litres) 4297-

10663(8496) 
4770-

12410(8509) 
6496-

10198(7997) 
4297-12410 

(8463) 

BMSCC2               
(x1000 
cells/ml) 

74-809 (220) 79-670 (221) 91-421(249) 74-809 (208) 

IRCM3 
(cases/100 
cows/year) 

18-164 (65) 6-145 (58) 21-122 (58) 6-164 (63) 

LNIR4 (%) 
4.1-19.2(8.5)a 4.6-20.7(9.3) 7.3-17.1(10.4)b 4.1-20.7(8.9) 

DPNIR5 (%) 
5.3-38(19.2)a 5.8-50(15.6)b 9.3-32(18.8)a 0-63.6(17.25) 

DPCURE6 46.2-
96.1(72.7)a 

53.8-
92.6(76.8)b 

44.7-
89.1(68.7)a 

44.7-
96.1(74.15) 

CMDP7 
(number of 
cases per 12 
cows/%) 

0.61-4.75 
(1.82/15.17%)b 

0.04-2.99 
(1.01/8.42%)a 

0.33-2.2 
(1.04/8.67%)a 

0.04-4.75 
(1.36/11.33%) 

CMLP8 
(number of 
cases per 12 
cows/%) 

0.70-4.94 
(2.65/22.08%)a 

0.34-6.97 
(3.09/25.75%)b 

1.96-4.61 
(2.67/22.25%) 

0.34-6.97 
(2.78/23.17%) 

1 Mean total milk yield/cow during the first 305 days of lactation for the herd 
2 Bulk milk somatic cell count - calculated from individual cow somatic cell 
counts weighted for milk production 
3 Incidence rate of clinical mastitis 
4 Lactation new infection rate (the percentage of cows previously <200,000 
cells/ml cows crossing the 200,000 cells/ml threshold since the last monthly 
recording) 
5 Dry period new infection rate (the percentage of cows that have been recorded 
for the first time this lactation and are <31 days in milk that are >200,000 
cells/ml and were <200,000 cells/ml at drying-off). Heifers are always assumed 
to be <200,000 cells/ml prior to first calving. 
6 Dry period cure rate (the percentage of cows that were recorded >200,000 
cells/ml prior to drying-off that were <200,000 cells/ml at the first recording 
after calving. 
7 Incidence rate of first (index) clinical mastitis cases of dry period origin (<31 
days in milk) 
8 Incidence rate of first (index) clinical mastitis cases of putative lactation origin 
(i.e. >30 days in milk) 
a,b significantly different within row (p≤0.05) 
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 Herd Management Practices 4.3.2

The interventions that were most frequently found not to be undertaken 

in herds with different diagnoses are displayed in Table 4-3. Only those 

interventions relevant to each diagnosis were included in these results. 

The frequency at which interventions were prioritised by the plan 

deliverers is presented in Table 4-3. The number of interventions 

prioritised on each farm ranged from 1-92, with a median of 22.  

The three least commonly practiced interventions in the EDP herds were 

the separation of heifers from dry cows prior to calving, allowing at least 

4 weeks before returning dry cows to any one grazing, loafing or rest area 

after it has been use by cattle and not allowing dry cows to have access to 

any one lying area for more than 2 weeks. The three least commonly 

practiced interventions in the EL herds were grouping cows with a high 

SCC/CM separately and milking them last at each milking, using hot 

disinfectant to clean clusters that become dirty during milking and 

milking cows with a high SCC/CM last.  
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Table 4-3 Proportion of herds currently practising each intervention at the time of study, proportion of herds not practising each intervention that were 
prioritised by the plan deliverer and the proportion of herds not practising each intervention that were not prioritised by the plan deliverer (ranked in 
order of least commonly practiced). 

EDP EL CDP/CL 

Pregnant heifers kept separate to 
dry cows prior to calving 

 

Cows with a high SCC/CM are 
grouped separately and milked 
last at each milking. 

 

Hot disinfectant is used to 
clean clusters that become 
dirty during milking. 

 
>4wks allowed before returning dry 
cows to any one grazing, loafing or 
rest area after it has been used by 
cattle  

Hot disinfectant is used to clean 
clusters that become dirty during 
milking. 

 

Cows with CM and high SCC 
milked last. 

 

Dry cows don't have access to any 
one lying area for >2 continuous 
weeks 

 

Cows with CM and high SCC are 
milked last. 

 

Clusters washed with hot 
disinfectant after milking a 
cow with CM or a high SCC. 

 

Cows calve in individual calving 
pens 

 

Foremilking each quarter to 
detect mastitis. 

 

Cows with a high SCC/CM 
grouped separately and milked 
last at each milking. 

 

Dry cows spend <2wks on the same 
pasture, paddock or field 

 

Cows with CM and high SCC are 
milked with a separate cluster. 

 

Liners are changed at least 
every 2500 milkings or 6 
monthly. 

 

Alleyways, loafing and feed areas 
scraped at least twice daily (dry 
cows) 

 

High SCC cows are clearly marked. 

 

Cows are not dried-off during 
the milking process. 
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Milk yield reduced to less than 15 
litres before drying off 

 

Cows with CM grouped separately 
to the main herd. 

 

All high SCC cows are clearly 
marked. 

 

Use of different dry cow therapy 
products for different cows 

 

Liners changed at least every 
2500 milkings or 6 monthly. 

 

Cows with CM and high SCC 
are milked with a separate 
cluster. 

 

Cleaning out dry cow straw yards 
completely at least once per month 

 

Milking cows are not returned to 
any one grazing, loafing or rest 
area <4 weeks after it has been 
used by cattle.  

Cows with CM grouped 
separately to the main herd. 

 

Dry cows provided with at least 3m2 
loafing space/cow 

 

Cows wait less than one hour to 
be milked. 

 

Pregnant maiden heifers are 
kept separate to dry cows 
prior to calving. 

 

New clean, dry straw provided in 
dry cow yards at least once daily 

 

Water trough space of >10cm per 
cow for all cows at all stages of the 
production cycle. 

 

The parlour has in-line filters. 

 

Bedded lying area provided to dry 
cows of 1.25m2/1000L of milk/cow 
(herd annual milk yield) 

 

Clusters washed with hot 
disinfectant after milking a cow 
with CM or a high SCC. 

 

Post milking teat disinfection 
applied at cluster removal or 
within 30 seconds of cluster 
removal.  

 

 

 

Management not currently practiced at the time of the farm visit and prioritised by the plan deliverer 

Management not currently practiced at the time of the farm visit and not prioritised by the plan deliverer 

Management already practiced at the time of the farm visit 
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 Discussion 4.4

The results of this study show that many mastitis-related management 

practices that are generally considered to be important were not widely 

performed in a large sample of UK dairy herds. This is one of the most 

comprehensive field studies of its kind and the first to group the herds 

according to the putative origin of new mastitis cases. This grouping is 

important as the most significant aspects of mastitis control for a CL herd 

are very different than those for an EDP herd, and, therefore, by grouping 

herds in this way, we are able to highlight the most relevant management 

‘deficiencies’.  

 EDP herds 4.4.1

Management of the dry cow/calving cow accommodation to maximise 

hygiene was an area of potential weakness highlighted in this study. Dry 

cows had continual access to the same pasture/lying area for more than 2 

weeks in over 80% of EDP herds and were allowed to return to paddocks 

within 4 weeks of them being previously grazed in 85% of EDP herds. The 

‘graze 2, rest 4’ strategy (i.e. graze the same paddock for no more than 2 

continual weeks followed by at least a 4 week rest period) has been found 

to be very effective at reducing the risk of CM in the first 30 days after 

calving (Green et al., 2007b), and was commonly prioritised by the plan 

deliverers in this study. 

The size of the bedded lying area for dry cows was insufficient in over half 

of the EDP herds in this study, despite research demonstrating the 

importance of this with respect to SCC in the first 30 days of lactation 
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(Green et al., 2008). Other practices not undertaken by the majority of 

EDP herds include adding fresh bedding to the dry cows daily and 

scraping alleyways, loafing and feed areas twice daily which have been 

associated with a reduced risk of CM in the first 30 days of lactation 

(Green et al., 2007b). Each of these examples was highly prioritised by the 

plan deliverers, reflecting the perceived importance associated with dry 

cow environmental management for these herds. 

Less than 20% of the EDP herds used individual calving pens, despite 

evidence that they are associated with a reduced SCC and reduced 

incidence of CM (Barnouin et al., 2004; Bartlett et al., 1992; O’Reilly et al., 

2006). This indicates that many cows are calving in the dry cow yards and 

almost 60% of EDP herds were failing to completely clean-out these straw 

yards on a monthly basis, which may result in increased CM (Peeler et al., 

2000). The use of individual calving pens and the cleaning-out of dry cow 

yards were prioritised in 50% and 88% of cases respectively, once again 

reflecting the importance of dry period hygiene, but also possibly 

reflecting the practical difficulties that come with implementing 

individual calving pens on some dairy farms. 

Almost 60% of the EDP herds were not selecting dry cow therapy (DCT) 

at cow-level in this study (DCT products selected according to the 

infection status at drying-off), and this was made a priority in 45% of the 

herds not doing so (Table 4-3).  Whole-herd antibiotic DCT has been 

recommended as part of the 5-point plan for several decades (Neave et al., 

1969), with the aim of curing existing IMI’s and preventing new IMI’s 
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during this time (Smith et al., 1966). There is, however, a growing body of 

evidence showing potential advantages to selecting DCT at the cow-level 

rather than the herd-level due to the impact on total antimicrobial usage 

on-farm (Scherpenzeel et al., 2014), as well as a reduction in CM caused 

by Gram-negative bacteria (Bradley et al., 2010) and a reduced overall 

risk of CM in the first 30 days of lactation (Green et al., 2007b).  

Less than 30% of EDP herds were reducing yields to below 15 litres prior 

to drying-off, and this was only prioritised in 26% of cases suggesting that 

other interventions were deemed more important for most EDP herds. 

Increased yields at drying off have been associated with increased SCC 

(Green et al., 2008) and IMI at calving (Dingwell et al., 2004; Odensten et 

al., 2007; Rajala-Schultz et al., 2005), which is considered to be in-part as 

a result of delayed formation of the keratin plug in the teat due to milk 

leakage (Dingwell et al., 2004). Two strategies employed to reduce the 

milk yield prior to drying-off include feed restriction and reduced milking 

frequency (Bushe and Oliver, 1987), and, whilst both are effective, the 

restriction of feed followed by abrupt cessation of milking was associated 

with a reduced risk of IMI during the dry period (Tucker et al., 2009).  

The vast majority (86%) of EDP herds mixed the heifers with the cows 

prior to calving. However, several studies have demonstrated that the 

mixing of maiden heifers and cows during the dry period is associated 

with increased rates of CM (Barkema et al., 1999a) and increased SCC (De 

Vliegher et al., 2004). Recent studies have also shown that heifers which 

have a raised SCC at the first milk recording post-partum, are less 
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productive over the whole of their lifetime and have decreased longevity 

(Archer et al., 2014a, 2013a; De Vliegher et al., 2005; Piepers et al., 2009), 

and this is probably why it was made a priority for 64% of these herds. 

 EL herds 4.4.2

For herds with an EL diagnosis, key focus areas include the management 

of the milking cows’ environment as well as the milking routine and 

machine maintenance. The management of high SCC cows and those with 

CM featured prominently, and were rarely housed separately to the main 

herd in our study despite good evidence of the benefits of doing so 

(Middleton et al., 2001; Wilson et al., 1995; Zecconi et al., 2003). Where 

this is not possible, it is still preferable to milk these infected cows last, 

but again this was not practiced in 83% of the EL herds, despite the  

association with reductions in SCC (Barnouin et al., 2004; Hutton et al., 

1991; Wilson et al., 1995). If neither of these approaches is practical, then 

a pragmatic solution may be to at least mark infected cows so they are 

easily identifiable and milk them with a separate cluster, but these were 

also poorly practiced despite evidence suggesting an association with 

reduced SCC (Barnouin et al., 2004).  

Another aspect of management relating to the hygiene of the milking 

plant that was not widely practiced was the replacement of liners at the 

appropriate interval. This highlights the value in the DMCP approach in 

that it ensures that mastitis control measures that are often assumed to 

be universally implemented are investigated and rectified when found to 

be lacking. 
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The practice of foremilking was only carried out in approximately a 

quarter of the EL herds in this study despite being a legal requirement 

(European Commission, 2004). Foremilking is typically recommended to 

detect CM, and is also a means of premilking stimulation (Wagner and 

Ruegg, 2002). The application of foremilking is well established in 

mastitis control programmes (Rodrigues et al., 2005) as it facilitates the 

rapid detection of CM allowing for the prompt treatment and therefore 

increased likelihood of successful outcomes (Hillerton and Semmens, 

1999).  

Two thirds of the EL herds were not following the ‘graze 2, rest 4’ 

principle as described previously, and the same number of herds were 

allowing cows to wait for more than 1 hour to be milked. These aspects of 

environmental management could both result in an increased exposure of 

the cows teats to pathogens, in addition to the increased risk of lameness 

caused by increased waiting times prior to milking (Espejo and Endres, 

2007). 

 CDP/CL herds 4.4.3

Many of the management practices least implemented by the CDP/CL 

herds were the same as for the EL herds, and focussed primarily on the 

risk of transmission during the milking process, as would be expected. 

Perhaps the most striking feature concerning these herds was how few of 

them grouped or milked cows according to their infection status, or 

replaced the liners at the correct interval, which for these herds is likely 

to be of paramount importance. This was reflected in the high proportion 
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of such interventions that were prioritised by the plan deliverers for the 

CDP/CL herds.  

The majority of herds in this study (87%) were classified as having a 

predominantly environmental pattern of disease, divided almost equally 

between EDP and EL diagnoses. This was not unexpected, as it reflects the 

national trend for the increased importance of the cows’ environment as a 

source of intramammary infections relative to the contagious spread of 

pathogens from cow to cow that were more common historically (Bradley 

2002, Bradley et al., 2007a). Contagious pathogens are relatively well 

controlled by the 5 point plan which was introduced in the 1960’s and 

adopted widely by dairy farmers in the UK (Bradley, 2002). 

Unfortunately, this strategy was not designed to control the 

environmental routes of transmission, and so a more farm-specific 

approach is required to identify risk factors and implement appropriate 

interventions accordingly. 

The importance of the dry period with respect to mastitis control has 

been well documented (Bradley and Green, 2004), and it is known that a 

significant proportion of CM cases occurring within the first 30 days after 

calving will have been caused by infections acquired during the dry 

period (Bradley and Green, 2000; Green et al., 2002). For herds where 

these type of infections predominate, the impact that deficiencies in dry 

cow management may have on udder health and productivity can be 

profound, and should therefore be the focus of any mastitis control plan 

(Green et al., 2007b). Approximately half of the herds in this study were 



114 
 

assigned a dry period origin diagnosis and as this is the first large scale 

study to categorise herds in this way, it is not possible to say if this is 

typical of the national population. 

Whilst representing a relatively large sample of UK dairy herds for this 

type of study, it is likely that the results are biased towards herds seeking 

veterinary input with respect to mastitis control rather than being 

representative of the national herd as a whole. However, this may provide 

a true reflection of dairy herds seeking veterinary input with respect to 

mastitis control, and therefore is of value to those involved in the delivery 

of these services. The majority of the herds included in this study were 

also based in the south-west of England (Figure 4-1) meaning that they 

may not necessarily be representative of herds in Wales, Scotland and the 

north of England. 

The EDP herds had similar BMSCC and CM rates as the other herds in the 

study but were characterised by a significantly higher rate of CMDP than 

the other herds when the plan was first implemented as would be 

expected. They also had a significantly higher rate of DPNIR than the EL 

herds. Suggested targets for the rate of DPNIR and CMDP are 10% and 1 

in 12 respectively, and the averages for the EDP herds in this study were 

considerably higher than these. 

Herds with an EL diagnosis had a similar BMSCC and CM rate to the other 

herds in the study, but were characterised by significantly lower rates of 

DPNIR and significantly higher DPCURE rates then the other herds as well 
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as a significantly higher rate of CMLP than the EDP herds. Suggested 

targets for LNIR and CMLP are 5% and 2 in 12 respectively. 

There were far fewer herds with a ‘contagious’ diagnosis in this study. 

The CDP/CL herds were characterised by a lower average milk yield than 

the other herds in the study and a higher BMSCC, which would be 

expected due to the increased chronicity associated with IMI’s caused by 

‘contagious’ pathogens (Bradley et al., 2007b). All other mastitis 

parameters were broadly similar to the other herds in the study with the 

exception of the dry period cure rate, which was the lowest of all the 

groups reflecting the increased challenge of curing infections caused by 

‘contagious pathogens’(Barkema et al., 2009). 

The frequency with which the interventions reported in this study were 

prioritised by the plan deliverers varied widely. When interventions were 

not highly prioritised, this may reflect the presence of more pressing 

concerns in those particular herds or perhaps a lack of perceived efficacy. 

With a limited number of intervention studies from which to draw from, it 

is very difficult to have much certainty about the efficacy of most mastitis 

interventions at the individual herd level, and any uncertainty about the 

clinical and financial benefit of an intervention will affect the decision to 

implement it (Green et al., 2010; Huijps et al., 2010).  Another reason why 

mastitis interventions may not have been implemented is that vets may 

sometimes make too many recommendations at once (Sorge et al., 2010), 

or fail to ascertain the farmers own priorities before addressing their own 

concerns (Derks et al., 2013).  A useful continuation of this study would 
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be an investigation into what effect different management interventions 

or combinations of interventions may have on the mastitis performance, 

for different types of herd, thus facilitating an evidence-based approach to 

decision making. 

 Conclusions 4.5

The results of this study provide data on performance and management of 

UK dairy herds, grouped according to the main putative origin of new 

cases of mastitis. Many aspects of management that might be considered 

to be important in mastitis control were not being practiced by a large 

proportion of these herds. A better understanding of those practices not 

widely adopted by UK dairy farmers at present may aid practitioners in 

identifying and overcoming potential barriers to improved mastitis 

control in UK dairy herds.  
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Chapter 5                                             

A Bayesian micro-simulation to 

evaluate the cost-effectiveness of 

specific interventions for mastitis 

control during the dry period 
 

 Introduction 5.1

Having highlighted current management practices and identified specific 

mastitis control interventions not widely practiced in Chapter 4, the 

objective of the next two chapters was to explore the cost-effectiveness of 

interventions that were implemented in herds during the study period. 

This analysis was performed separately for ‘environmental dry period’ 

(EDP) herds in Chapter 5 and ‘environmental lactation’ (EL) herds in 

Chapter 6. 

The importance of the dry period with respect to mastitis control is now 

well established (Bradley and Green, 2000, 2004), however the precise 

interventions that reduce the risk of acquiring IMI during this time are 

not clearly understood.  

There exists a vast body of literature reporting associations between 

various management practices and different measures of udder health e.g. 

Dufour et al. (2011). A potential limitation with risk factor studies is that 

they cannot always provide evidence of causation and so there remains a 
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large degree of uncertainty as to the likely impact that a specific 

intervention has and therefore its overall cost-effectiveness. Intervention 

studies can provide evidence of causation (Rubin, 2007; Martin, 2013), 

but there are very few intervention studies that have sought to measure 

the efficacy of specific mastitis control interventions within a cost-

effectiveness framework (Green et al., 2010). Furthermore, uncertainty 

about the clinical and financial benefit of an intervention, will affect the 

decision to implement it (Green et al., 2010; Huijps et al., 2010).  If 

potential interventions are to be prioritised in a rational and evidence-

based way, cost benefit analyses are required that capture the uncertainty 

of the efficacy of interventions. 

With limited resources available to a commercial dairy farm, it is 

important that potential mastitis interventions are prioritised not only 

according to their efficacy, but also on the likely return on investment. 

The efficient use of available resources requires an understanding of the 

opportunity costs whereby resources are allocated to fund one 

intervention at the expense of the potential ‘benefits’ afforded by an 

alternative intervention. This is the dilemma faced by veterinary decision 

makers, and with many possible mastitis interventions making claims on 

farm resources, it is necessary when deciding whether to employ 

resources in one area to be able to compare the probability of a net 

benefit in that area with all other potential areas where those resources 

could be employed (Briggs and Gray, 1999).  
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The aim of this chapter was to investigate the cost-effectiveness of 

mastitis control interventions to reduce IMI’s caused by ‘environmental’ 

pathogens during the dry period. An integrated Bayesian cost-

effectiveness framework (see 1.3.3) was used to construct a probabilistic 

decision model that could be used to inform clinical decision making. 

 Materials and methods 5.2

 Data collection 5.2.1

All of the data were collected from UK dairy herds that had participated in 

the AHDB Dairy Mastitis Control Plan (DMCP, see 1.2.4) during 2009-

2012 that were assigned an EDP diagnosis. There were 265 plan 

deliverers at the time of the study and each were asked to submit their 

ePlan data, which consisted of the answers to the questionnaire, the 

interventions prioritised and the herd ‘diagnosis’ for each of the farms 

they had visited. They were also asked to submit the herd health and 

performance data recorded on-farm, consisting of CM and SCC records, 

herd size and milk production data, covering the 12 months prior to the 

DMCP start date and the first 12 months from after the plan was 

implemented. Out of the 265 plan deliverers, 87 plan deliverers had the 

information and responded. From the 87 plan deliverers that responded, 

ePlan data were received for a total of 452 herds that had participated in 

the DMCP during 2009-2012. Complete herd health and performance data 

were available for 290 of the 452 herds submitted. The 87 plan deliverers 

that had responded were asked to specify the interventions that were 

actually implemented on-farm over the 12 months after the initial herd 
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visit. The plan deliverers submitted this information for 212 out of the 

290 herds for which complete data were available. From the 212 herds 

with complete data, 77 herds were assigned an ‘EDP’ diagnosis and 

therefore used in this study. All of this information was collated in a 

Microsoft Access database (Microsoft Corp., Redmond, WA).  

 Data analysis 5.2.2

The clinical and subclinical mastitis data for each of the 77 herds were 

initially checked for completeness and any herds with incomplete records 

were excluded from the analysis; 73 herds out of the 77 had complete SCC 

data and were used for the SCC analysis and 64 herds out of the 77 had 

complete CM data and were therefore used for the CM analysis. In total, 

data from all 77 herds was used as some herds had complete SCC data and 

incomplete CM data and vice versa. The outcome of interest in this 

research was mastitis originating from infections acquired during the dry 

period as reflected by clinical mastitis and somatic cell count records. 

Therefore to measure this, the incidence rate of clinical mastitis during 

the first 30 days after calving (CMDP) was used (reported by DMCP 

participants as the number of cases/12 cows/month) which has been 

shown to be correlated to intramammary infections acquired during the 

dry period (Bradley and Green, 2000; Green et al., 2002), and the monthly 

percentage of cows that had a SCC < 200,000 cells/ml at the milk 

recording prior to drying off, that were > 200,000 cells/ml at the first milk 

recording after parturition (DPNIR), which has also been shown to be 
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indicative of new dry period intramammary infections (Bradley et al., 

2002; Cook et al., 2002; Bradley and Green, 2005).  

Interventions that had been implemented on at least two farms were 

identified and for each farm, categorised as 0 (not already implemented at 

the time of the initial farm visit and not implemented following the 

intervention visit), 1 (not already implemented at the time of the initial 

farm visit but implemented following the DMCP) or 2 (already 

implemented at the time of the initial farm visit or not applicable). 

Interventions were classified as not applicable when they concerned an 

area of management not relevant to a particular farm (e.g. management of 

dry cow cubicles on a farm that used straw yards to house the dry cows). 

Collinearity between covariates was assessed using Pearson product-

moment correlation coefficients, and no significant collinearity was found. 

A Bayesian one-step micro-simulation model was constructed in 

OpenBUGS version 3.2.2 (Lunn et al., 2009) separately for each of the two 

outcomes, incorporating a multiple regression model and an onwards 

cost-effectiveness micro-simulation, based on methods described 

previously (Spiegelhalter et al., 2004) (Example WinBUGS code provided 

in Appendix 2). Therefore the posterior distributions from the one-step 

micro-simulation model incorporated uncertainty in all model 

parameters (Figure 5-1). 
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Vague prior distributions Data 

1. Posterior estimate of % change in clinical mastitis 

rate (CMDP) from the regression model used to 

simulate the CMDP after 12 months for each 

intervention (CMDPPRED) 

CMDP at the start of the 12-month 

period (CMDPINITIAL) 

2. Number of cases prevented during a 12 month period in a 

120 cow herd for each intervention (CASESCMPREV) 

CASESCMPREV = (CMDPINITIAL-CMDPPRED) x 10 

3. Change in annual cost of clinical mastitis for a 120 

cow herd (SAVINGCM) 

SAVINGCM = CASESCM x COSTCM 

Cost of clinical mastitis/case 

(COSTCM) COSTCM ~Normal 

(mean=313, sd=101) 

4. Incremental Net Benefit (INB) 

INB = SAVINGCM - COSTINT 

Cost of implementing the 

intervention/12 months 

(COSTINT)                       

Distribution 

Point values  

Figure 5-1  Overview of the 1-step micro-simulation procedure designed to simulate the 
cost-effectiveness of specific mastitis control interventions, using the clinical mastitis 
micro-simulation model as an example.  
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The regression models that were incorporated in the first stage of the 

micro-simulation models took the form; 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝒙𝟏𝒊 + 𝜷𝟐𝒙𝟐𝒊 + 𝜷𝟑𝒙𝟑𝒊 + ⋯ + 𝜷𝒑𝒙𝒑𝒊 + 𝜺𝒊     𝒊 = 𝟏, … , 𝒏        (1) 

𝜺𝒊~𝐍(𝟎, 𝛔𝜺
𝟐) 

where 𝑌𝑖 = the 𝑖th observation of the outcome variable, 𝛽0= intercept 

value, 𝑥𝑝𝑖 = the 𝑝th predictor variable for the 𝑖th herd, 𝛽𝑝 = the 𝑝th 

regression coefficient, 𝜀𝑖 = the residual error, 𝑝 = number of predictor 

variables and 𝑛 = the number of herds. 

The outcome variable (𝑌𝑖) used for the clinical mastitis regression model 

was the percentage change in the CMDP rate during the 12 month period 

from implementation of the recommended interventions and the outcome 

variable (𝑌𝑖) used in the somatic cell count regression model was the 

percentage change in the DPNIR rate during this 12 month period. Both of 

these variables were approximately normally distributed (Figure 5-2 and 

Figure 5-3), and the influence of any outlying residuals was assessed 

using the Cook’s D value.  

𝐂𝐥𝐢𝐧𝐢𝐜𝐚𝐥 𝐦𝐚𝐬𝐭𝐢𝐭𝐢𝐬 𝐫𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐦𝐨𝐝𝐞𝐥 𝐨𝐮𝐭𝐜𝐨𝐦𝐞

=  
𝐂𝐌𝐃𝐏(𝟏𝟐 𝐦𝐨𝐧𝐭𝐡𝐬) − 𝐂𝐌𝐃𝐏(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)

𝐂𝐌𝐃𝐏(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)
 𝐱 𝟏𝟎𝟎  

Where CMDP(12 months) = the mean CMDP during the first 12 months 

after the mastitis control plan started and CMDP(initial) = the mean 

CMDP during the 12 months before the mastitis control plan started. 
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𝐒𝐨𝐦𝐚𝐭𝐢𝐜 𝐜𝐞𝐥𝐥 𝐜𝐨𝐮𝐧𝐭 𝐫𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐦𝐨𝐝𝐞𝐥 𝐨𝐮𝐭𝐜𝐨𝐦𝐞

=  
𝐃𝐏𝐍𝐈𝐑(𝟏𝟐 𝐦𝐨𝐧𝐭𝐡𝐬) − 𝐃𝐏𝐍𝐈𝐑(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)

𝐃𝐏𝐍𝐈𝐑(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)
 𝐱 𝟏𝟎𝟎 

Where DPNIR(12 months) = the mean DPNIR during the first 12 months 

after the mastitis control plan started and DPNIR(initial) = the mean 

DPNIR during the 12 months before the mastitis control plan started. 

 

Figure 5-2 Distribution of the outcome variable for the clinical mastitis regression 
model used to predict the effectiveness of specific mastitis control interventions. 
CMDP = incidence rate of clinical mastitis in the first 30 days after calving. 
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Figure 5-3 Distribution of the outcome variable for the somatic cell count 
regression model used to predict the effectiveness of specific mastitis control 
interventions. DPNIR = monthly percentage of cows that had a somatic cell count 
<200,000 cells/ml at the milk recording prior to drying off, that were >200,000 
cells/ml at the first milk recording after parturition. 

 

Vague prior distributions were used for model parameters as follows; 

σ𝜀
2~Gamma(0.001,0.001), and β~Normal(0,106). The model predicted 

values for the outcome variables for each herd were compared with the 

observed data and displayed graphically to illustrate model performance. 

Full probability distributions of the intervention efficacy estimates from 

the regression models were carried forward in to the next stages of the 

micro-simulation model.   

The purpose of the micro-simulation was to simulate the cost-

effectiveness of each intervention in theoretical herds with a herd size of 

120 cows, with different initial rates of CMDP and DPNIR and different 

costs associated with implementing each intervention (Figure 5-1). The 

Change in DPNIR (%) 
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values for CMDP and DPNIR on the simulated farms prior to interventions 

being implemented were taken from actual data from 125 herds that had 

previously participated in the DMCP so that a range of plausible scenarios 

were used. The micro-simulation comprised the steps described below; 

each step was undertaken at each model iteration.  

Step 1. The regression model (1) was used to obtain an estimate of the 

percentage change in the CMDP rate after a 12 month period for each 

intervention for a given herd. The initial CMDP rate increased or 

decreased according to the estimated percentage change and this resulted 

in a predicted new CMDP rate for each farm once it had implemented the 

intervention (CMDPPRED). 

Step 2. The number of cases that would be prevented during a 12 month 

period (CASESCMPREV) in a 120 cow herd was then simulated for each 

intervention individually by multiplying the difference between the initial 

CMDP rate (CMDPINITIAL) and the predicted CMDP rate (CMDPPRED) by 10 

to convert the denominator to be per 120 cows: 

𝐂𝐀𝐒𝐄𝐒𝐂𝐌𝐏𝐑𝐄𝐕 = (𝐂𝐌𝐃𝐏𝐈𝐍𝐈𝐓𝐈𝐀𝐋 − 𝐈𝐑𝐂𝐌𝟑𝟎𝐏𝐑𝐄𝐃) 𝐱 𝟏𝟎 

Step 3. The change in annual cost of clinical mastitis for a 120 cow herd 

(SAVINGCM) was calculated at each iteration by multiplying the number of 

cases prevented (CASESCMPREV) by the cost of a case of clinical mastitis 

(COSTCM): 

𝐒𝐀𝐕𝐈𝐍𝐆𝐂𝐌 = 𝐂𝐀𝐒𝐄𝐒𝐂𝐌𝐱 𝐂𝐎𝐒𝐓𝐂𝐌 
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A cost per case of clinical mastitis within 30 days of calving was specified 

as a full probability distribution, COSTCM~Normal (mean=313, sd=101), 

based on a stochastic simulation study in the UK (Green et al., 2009). A 

cost was selected at random from this distribution at each iteration and 

multiplied by the number of cases prevented to give an overall saving in 

pounds sterling associated with the implementation of each intervention. 

Step 4. The incremental net benefit (INB) was calculated at each iteration 

to represent the overall net benefit after all ‘savings’ and ‘costs’ had been 

considered over the 12 month period: 

𝐈𝐍𝐁𝐂𝐌 = 𝐒𝐀𝐕𝐈𝐍𝐆𝐂𝐌 −  𝐂𝐎𝐒𝐓𝐈𝐍𝐓 

The cost of implementing each intervention (COSTINT) was specified as 

one of four different values taken from across a plausible spectrum 

ranging from a ‘low cost’ scenario (£250/12 months) to a ‘high cost’ 

scenario (£1000/12 months). Due to the huge inter-farm variation in the 

cost of implementing mastitis interventions, any specified range could be 

considered to be arbitrary. Therefore,  rather than trying to predict the 

actual cost of implementing specific interventions, a range of values was 

specified to provide an indication as to how much ‘room for investment’ 

there was for each specific intervention. The actual cost of 

implementation can be entered in the decision support tool in order to 

make farm-specific predictions.  

Parameters throughout the model were estimated from 10,000 Markov 

chain Monte Carlo (MCMC) iterations, following a burn-in of 1000 
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simulations.  Three chains starting at ‘overdispersed’ initial values were 

simulated and convergence was assessed by comparing intra- and inter-

chain variability using the Brooks-Gelman-Rubin diagnostic (Brooks and 

Gelman, 1998; Gelman and Rubin, 1992). 

An indicator variable was set to 1 at each intervention when the micro-

simulation model predicted an INB of £1000 or greater and otherwise to 

0. The mean value of this indicator over the 10,000 iterations provided an 

estimate of the probability of exceeding a return of £1000. Predictions of 

INB were plotted for each of the four different values of COSTINT to 

produce probabilistic cost-effectiveness curves that display the 

probability of saving, at least, £1000 over 12 months at different levels of 

mastitis for each intervention (Figure 5-4, Figure 5-5, Figure 5-6 and 

Figure 5-7). A cut point probability of ≥60% for a saving ≥£1000 in a 12 

month period was used to label interventions as potentially cost-effective; 

these interventions are reported. A saving of £1000 in a 12 month period 

was considered by the authors to be a worthwhile saving for 

demonstration purposes but farmers will be able to stipulate their own 

desired level of saving in the decision support tool. 

 Somatic cell count micro-simulation model 5.2.3

The micro-simulation steps took the same form for the somatic cell count 

micro-simulation model except the cost of a case of DPNIR was defined by 

the normal distribution; COSTSCC~Normal (mean=290, sd=112) (Green et 

al., 2009). 
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 Results 5.3

 Herd parameters 5.3.1

The median size of the 77 herds selected for analysis was 187 cows 

(range 51-553) and the median 305d milk yield was 8611 kg (range 

4297-10590). The median incidence rate of CM in the 12 months prior to 

mastitis interventions was 59.5 cases/100 cows/year (range 18-164) and 

the median 12 month average BMSCC was 206,000 cells/ml (range 

74,000-398,000). The median CMDP rate at the time of the initial herd 

visit was 13 cases/100 cows/month (12 month average, range 0.25-

36.25) and the median DPNIR was 18.35%/month (12 month average, 

range 1.9-43.8).  

 Interventions 5.3.2

A total of 112 interventions were evaluated in the analysis (see Appendix 

3) and the number of farms implementing each of the interventions 

ranged from 2-15 ( Table 5-1 and Table 5-2). Interventions that were 

found to be cost-effective in most scenarios were reported resulting in 13 

interventions for the CM model and 9 interventions for the SCC model. 

The interventions could be broadly grouped into three categories; 

management of the dry cow environment, management of the calving cow 

environment and the selection and application of dry cow therapy. 
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 Micro-simulation models 5.3.3

Regression model fit 

Both regression models demonstrated a good ability to predict the 

incidence rate of CMDP and DPNIR for a given farm, with the model 

predictions explaining over 84% of the variability in the observed data in 

the clinical mastitis regression model (Figure 5-8) and 78% in the somatic 

cell count regression model (Figure 5-9).  

Cost-effectiveness outcome 

The probability of an incremental net benefit of at least £1000 for 

different interventions is provided in Table 5-1, Table 5-2, Figure 5-4, 

Figure 5-5, Figure 5-6 and Figure 5-7. Interventions in the clinical mastitis 

micro-simulation model that were cost-effective for most farms (>75% 

probability of saving £1000 with initial CMDP rate of 2 cases/12 cows and 

a COSTINT of £500) were dry cow rations being formulated by a suitably 

qualified nutritionist as opposed to an unqualified person, selecting dry 

cow therapy (DCT) at cow level (selective) rather than at herd level 

(blanket), balancing calcium and magnesium in the dry cow rations, 

designing cubicles in such a way that 90% of dry cows lied in them 

correctly and not drying-off cows during foot trimming procedures. The 

interventions in the somatic cell count micro-simulation model that were 

cost-effective for most farms (>75% probability of saving £1000 with 

initial DPNIR of 20% and a COSTINT of £500) were spreading bedding 

evenly in dry cow yards as opposed to poor bedding spreading, abrupt 
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drying off as opposed to once daily milking and calving in individual pens 

as opposed to communal yards.  

Interventions in the clinical mastitis micro-simulation model that were 

sensitive to the cost of the intervention and the initial CMDP and 

therefore only likely to be cost-effective in certain scenarios included 

cleaning dry cow cubicles at least twice daily, calving in individual calving 

pens as opposed to communal yards, milking cows for the first time 

within 24 hours of calving and considering both antibiotic and non-

antibiotic dry cow therapy approaches for low somatic cell count cows. 

Interventions in the somatic cell count micro-simulation model that were 

sensitive to the cost of the intervention and the initial DPNIR included 

milking cows for the first time within 24 hours of calving, removing calves 

from the cow within 24 hours of birth and differentiating infected from 

uninfected cows at drying off using SCC records from the current 

lactation. 
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Figure 5-4 Probabilistic cost-effectiveness curve for use of individual calving pens. 
The arrows indicate how to read from the curve with the dashed line representing 
the probability of saving at least £1000 in 12 months at an intervention cost of 
£250 in a herd with a CMDP rate of 2 cases/12 cows. The solid arrow represents 
the probability of saving at least £1000 in 12 months at an intervention cost of 
£1000 in a herd with a CMDP rate of 2 cases/12 cows. CMDP = incidence rate of 
clinical mastitis in the first 30 days after calving  

 

Figure 5-5 Probabilistic cost-effectiveness curve for removing dung from dry-cow 
cubicles at least twice daily. CMDP = incidence rate of clinical mastitis in the first 30 

days after calving.  
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Figure 5-6 Probabilistic cost-effectiveness curve for removing calves within 24hrs of 
birth. DPNIR = monthly percentage of cows that had a somatic cell count <200,000 

cells/ml at the milk recording prior to drying off, that were >200,000 cells/ml at the 

first milk recording after parturition. 

 

Figure 5-7 Probabilistic cost-effectiveness curve for checking all quarters within 
24hrs of calving. DPNIR = monthly percentage of cows that had a somatic cell count 

<200,000 cells/ml at the milk recording prior to drying off, that were >200,000 

cells/ml at the first milk recording after parturition.  

DPNIR (%) 

DPNIR (%) 
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Figure 5-8  Scatterplot of observed and predicted values of the percentage change 
in CMDP. Predicted values were generated from the clinical mastitis regression 

 CMDP = incidence rate of clinical mastitis in the first 30 days after calving  model.

 

Figure 5-9 Scatterplot of observed and predicted values of the percentage change 
in DPNIR. Predicted values were generated from the somatic cell count regression 
model. DPNIR = monthly percentage of cows that had a somatic cell count <200,000 
cells/ml at the milk recording prior to drying off, that were >200,000 cells/ml at the 
first milk recording after parturition.
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Table 5-1 Probability of saving at least £1000 after 12 months as predicted by the micro-
simulation model. The probabilities are given for different incidence rates of clinical 
mastitis in the first 30 days after calving (CMDP) and different costs of implementing the 
intervention. Interventions listed in order of cost-effectiveness 

   Cost of Intervention (£) 

Intervention 
n CMDP 

(cases/12 
cows)  

250 500 750 1000 

Dry cow rations should be formulated by a 
suitably qualified nutritional advisor 

 1.5 0.92 0.89 0.85 0.80 
2 2.0 0.95 0.94 0.92 0.89 
 3.0 0.98 0.97 0.96 0.95 

Dry cow therapy (DCT) should be selected 
at the cow level (a suitable product for each 
cow) rather than herd level 

 1.5 0.84 0.76 0.67 0.57 
8 2.0 0.92 0.88 0.83 0.77 
 3.0 0.97 0.96 0.93 0.91 

Calcium and magnesium should be 
balanced to prevent milk fever 

 1.5 0.77 0.71 0.65 0.58 
4 2.0 0.85 0.81 0.77 0.71 
 3.0 0.90 0.88 0.86 0.84 

Cows must not be dried off during foot-
trimming 

 1.5 0.76 0.70 0.63 0.56 
2 2.0 0.83 0.79 0.75 0.70 
 3.0 0.89 0.87 0.85 0.82 

Cubicles should be designed such that at 
least 90% of dry cows will lie in them 
correctly at all times 

 1.5 0.74 0.67 0.60 0.54 
2 2.0 0.82 0.78 0.73 0.68 
 3.0 0.88 0.86 0.84 0.81 

Dung, soiling and wet bedding should be 
removed at least twice daily from dry cow 
cubicles 

 1.5 0.70 0.59 0.48 0.38 
6 2.0 0.83 0.76 0.68 0.60 
 3.0 0.92 0.89 0.85 0.80 

Cows should be milked for the first time 
within 24 hours of calving 

 1.5 0.70 0.60 0.50 0.40 
7 2.0 0.81 0.75 0.68 0.60 
 3.0 0.90 0.87 0.83 0.79 

Cows should calve in individual pens rather 
than yards rather than communal yards 

 1.5 0.65 0.56 0.47 0.39 
3 2.0 0.76 0.70 0.63 0.56 
 3.0 0.86 0.82 0.78 0.74 

Both antibiotic and non-antibiotic DCT 
approaches should be considered for low 
somatic cell count cows 

 1.5 0.50 0.39 0.29 0.21 
7 2.0 0.65 0.56 0.47 0.39 
 3.0 0.80 0.74 0.68 0.62 

Clean bedding material should be applied 
to dry cow cubicles at least once daily if 
using  organic bedding 

 1.5 0.46 0.36 0.27 0.20 
9 2.0 0.61 0.52 0.44 0.36 
 3.0 0.76 0.70 0.64 0.58 

Straw yards for calving cows should be 
cleaned out completely at least once per 
month 

 1.5 0.40 0.28 0.20 0.13 
15 2.0 0.58 0.47 0.37 0.29 

 3.0 0.74 0.67 0.60 0.53 
Pasture must not be grazed for more than 
two consecutive weeks and must be rested 
for at least four weeks before cows are 
returned to graze 

 1.5 0.41 0.33 0.26 0.20 
6 2.0 0.52 0.45 0.39 0.33 
 

3.0 0.63 0.59 0.54 0.49 

Calves must only be allowed to suckle their 
own dam to prevent the possible transfer of 
pathogens in milk between cows 

 1.5 0.28 0.19 0.12 0.07 
14 2.0 0.44 0.35 0.26 0.19 

 3.0 0.64 0.56 0.48 0.41 
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Table 5-2 Probability of saving at least £1000 after 12 months as predicted by the 
micro-simulation model. The probabilities are given for different rates of DPNIR1 
and different costs of implementing the intervention. Interventions listed in order 
of cost-effectiveness 

   Cost of Intervention (£) 

Intervention 
n DPNIR1 

% 
250 500 750 1000 

Cows should calve in individual pens 
rather than yards rather than communal 
yards 

 15 0.84 0.78 0.72 0.65 
3 20 0.90 0.86 0.83 0.78 
 30 0.95 0.93 0.91 0.89 

Drying off must be abrupt; that is, cows 
should not be milked once daily in the 
days prior to drying-off 

 15 0.84 0.78 0.72 0.65 
5 20 0.90 0.86 0.83 0.78 
 30 0.95 0.93 0.91 0.89 

Bedding should be spread evenly rather 
than unevenly in straw yards for dry cows 

 15 0.80 0.76 0.71 0.66 
2 20 0.86 0.83 0.79 0.76 
 30 0.90 0.89 0.87 0.85 

There must be good ventilation but 
without draughts in all calving cow 
housing 

 15 0.64 0.56 0.48 0.41 
3 20 0.73 0.67 0.61 0.55 
 30 0.82 0.79 0.75 0.71 

The calf should be removed from the cow 
within 24 hrs of birth after ensuring 
colostrum has been fed 

 15 0.62 0.53 0.44 0.36 
5 20 0.74 0.66 0.60 0.52 
 30 0.84 0.80 0.76 0.72 

Cows should be milked for the first time 
within 24 hours of calving 

 15 0.59 0.49 0.40 0.32 
7 20 0.72 0.64 0.56 0.48 
 30 0.83 0.79 0.74 0.69 

Dry cow therapy must be administered 
hygienically, as detailed in the standard 
operating procedure 

 15 0.52 0.43 0.34 0.26 
12 20 0.65 0.57 0.49 0.42 

 30 0.78 0.73 0.68 0.63 
You should differentiate infected from 
uninfected cows using somatic cell count 
records from the current lactation 

 15 0.42 0.34 0.27 0.21 
3 20 0.54 0.47 0.40 0.34 
 30 0.66 0.61 0.56 0.51 

Each quarter should be stripped within 4 
hours of calving to check for mastitis 

 15 0.38 0.29 0.22 0.16 
6 20 0.52 0.44 0.36 0.29 
 30 0.68 0.62 0.55 0.49 

1DPNIR = monthly percentage of cows that had a SCC <200,000 cells/ml at the milk 

recording prior to drying off, that were >200,000 cells/ml at the first milk recording 

after parturition (12 month average). 
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 Discussion 5.4

This study illustrates how the clinical efficacy of specific mastitis 

interventions can be quantified and incorporated into a Bayesian cost-

effectiveness model using a one-stage micro-simulation. This is the first 

intervention study to explore cost-effectiveness of mastitis interventions 

within a Bayesian framework, the results of which are to be incorporated 

into a decision support tool that will be made available to 

veterinarians/advisors involved with implementing the AHDB Dairy 

Mastitis Control Plan in the United Kingdom.  

Interventions relating to the design and comfort of dry cow cubicles such 

as designing cubicles in such a way that cows lie in them correctly and 

removing dung and wet bedding from cubicles at least twice daily were 

potentially cost-effective interventions in the clinical mastitis micro-

simulation, and aspects of management related to these have been 

highlighted previously (Barkema et al., 1999b). This earlier study 

identified type of cubicle divider and thickness of cubicle bedding to be 

associated with the incidence rate of clinical mastitis. The hygiene of dry 

cow cubicles has been associated with changes in bulk milk somatic cell 

count (Barkema et al., 1998a) and clinical mastitis incidence rate 

(Schukken et al., 1991; Green et al., 2007b), and this highlights the need to 

provide comfortable, clean cubicles for dry cows as well as lactating cows. 

Another aspect of the dry cow environment which is important but 

commonly overlooked is the grazing management and specifically the 

rotation of paddocks. In this study a ‘graze 2, rest 4’ policy was used 
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(paddocks are grazed for no more than 2 consecutive weeks and then 

rested for no less than 4 weeks), and whilst the effect of this intervention 

was relatively small in each of the micro-simulation models, the combined 

predicted reduction in clinical mastitis and somatic cell count would make 

this an intervention likely to be cost-effective, providing the cost to 

implement it was modest. This is in agreement with two previous studies 

that found this intervention to be associated with reduced somatic cell 

counts and clinical mastitis incidence in UK dairy herds (Green et al., 

2007b, 2008), and emphasises the need to consider pasture 

contamination and ways to mitigate these risks. 

The use of individual calving pens as opposed to communal yards had a 

high probability of cost-effectiveness, and this has been identified as an 

important risk factor by previous studies (Hutton et al., 1991; Bartlett et 

al., 1992; Barkema et al., 1998; Barnouin et al., 2004; O’Reilly et al., 2006). 

This effect may be due to a reduction in pathogen exposure but may also 

reflect indirectly, the negative impact of cross-suckling calves which has 

been associated with clinical mastitis incidence in the current study and 

previously (Green et al., 2007a). Cross-suckling would also be less likely 

to occur when calves are removed within 24 hours of calving and this 

intervention was associated with a moderate probability of a £1000 

return in the somatic cell count micro-simulation model. 

Selecting dry cow therapy at cow level was associated with a reduced 

CMDP rate, as has been reported previously (Green et al., 2007b). Since 

neither the products used nor the criteria applied to select between cows 
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was specified in this study, it remains unclear whether some approaches 

to selective dry cow therapy are superior to others.  

Having a policy of using both antibiotic and non-antibiotic approaches 

when drying-off low somatic cell count cows was predicted to reduce the 

rate of CMDP and was very likely to be a cost-effective intervention. 

Importantly, such a policy will also reduce the quantity of antimicrobial 

usage on farm. With the increasing concerns about antibiotic resistance 

comes an increasing pressure on dairy farmers to reduce antibiotic usage 

(Call et al., 2008; Oliver et al., 2011). In herds such as these with a low 

prevalence of contagious mastitis and a relatively low bulk milk somatic 

cell count, the targeting of antibiotic dry cow therapy at cows infected at 

drying off and use of non-antibiotic teat-sealants in uninfected cows is a 

rational and effective approach to dry cow therapy (Huxley et al., 2002; 

Green et al., 2008; Bradley et al., 2010; Cameron et al., 2015). Irrespective 

of which dry cow therapy products are used at drying-off, interventions 

affecting the hygiene of the procedure itself, and the cleanliness of the 

environment in which it is performed, were shown to be potentially cost-

effective in both models and confirms previous study findings (Peeler et 

al., 2000; Barnouin et al., 2004, 2005; Green et al., 2008).  

Two interventions in the clinical mastitis micro-simulation model that 

were predicted to be highly cost-effective in most scenarios were the 

formulation of dry cow rations by a suitably qualified nutritional adviser 

and the balancing of calcium and magnesium to prevent milk fever. This is 

also in agreement with other studies investigating the role of nutrition in 
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mastitis control (Kremer et al., 1993; Oltenacu and Ekesbo, 1994; 

O’Rourke, 2009). These studies reported that mastitis was more likely to 

occur in cows diagnosed with clinical ketosis and cows deficient in 

vitamins and trace elements such as selenium, vitamin E, copper, zinc, 

vitamin A and β-carotene.  

The uncertainty in clinical and financial outcome for an individual farm is 

important and illustrates the usefulness of using a probability distribution 

for anticipated financial returns. The integrated Bayesian model used in 

this analysis simultaneously derived the joint posterior distribution for all 

unknown parameters and propagated the effects through the predictive 

cost-effectiveness model. In this example, uncertainty in the cost of 

mastitis for each herd is included as well as the uncertainty of the effects 

of the interventions. There are several advantages of this approach, which 

have been outlined previously (Spiegelhalter and Best, 2003; 

Spiegelhalter et al., 2004). The main disadvantages of the unified Bayesian 

approach include the need for full MCMC software in order to obtain a 

solution although this is currently freely available (Lunn et al., 2000) and 

it can also be difficult to evaluate or check model accuracy (Green et al., 

2010). Such unified Bayesian models are used widely in human medicine 

(Parmigiani, 2002; Spiegelhalter et al., 2004), but there are few examples 

in the veterinary literature (Green et al., 2010; Archer et al., 2014). They 

provide a useful method to improve the understanding of the 

uncertainties involved in clinical decision making and therefore have 
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much to offer the decision analyst and decision-maker (Cooper et al., 

2004). 

The results of this research were incorporated into a spreadsheet-based 

decision support tool to enable vets and farmers to explore different 

scenarios applicable to them. Farm-specific parameters can be entered 

and required savings specified, resulting in predictions that are relevant 

to each individual farm. For example, information regarding the herd size, 

current clinical and subclinical mastitis performance and costs can be 

inputted in addition to the cost of implementing each intervention. The 

level of saving required after 12 months is then specified according to the 

farmers needs and the decision support tool calculates the probability of 

making the specified level of return and displays this as a probability 

distribution so the uncertainty can be visualised. The decision support 

tool also allows different combinations of interventions to be evaluated 

simultaneously so that many different scenarios can be explored. 

This research measured the cost-effectiveness of mastitis interventions in 

herds specifically with an ‘EDP’ diagnosis and as such it is difficult to 

know how these findings would translate to herds more generally. The 

results may have been influenced by participation bias due to 

characteristics common to the plan deliverers that submitted data 

compared with those that didn’t. It is also likely that the results are biased 

towards herds seeking veterinary input with respect to mastitis control 

rather than being representative of the national herd as a whole. 

However, the data most likely provides a true reflection of dairy herds 
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seeking veterinary input with respect to mastitis control and is, therefore, 

of value to those involved in the delivery of these services. 

 Conclusions 5.5

In this study, data from 77 UK dairy herds were used to explore the cost-

effectiveness of specific mastitis control interventions in herds with a 

particular problem with IMI’s acquired during the dry period. The results 

from the Bayesian micro-simulation models were incorporated in a 

decision support tool that will assist optimal decision making by 

veterinary practitioners in the field. 
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Chapter 6                                             

A Bayesian micro-simulation to 

evaluate the cost-effectiveness of 

specific interventions for mastitis 

control during lactation 
 

 Introduction 6.1

In the previous chapter, Bayesian micro-simulation models were used to 

explore the cost-effectiveness of specific mastitis control interventions in 

herds with a particular problem with IMI’s acquired during the dry-

period (EDP). In this chapter, the same methodology was applied to 

explore the cost-effectiveness of specific mastitis control interventions in 

herds with a particular problem with intramammary infections acquired 

during lactation (EL).  

As discussed previously, the historical approach to mastitis control 

centred around generic advice, focussing on a few specific control 

measures such as the 5-point plan and the National Mastitis Council 10-

point plan (National Mastitis Council, 2006). More recently, veterinarians 

have started to monitor somatic cell count records to manage individually 

infected cows (Biggs, 2005; Schukken et al., 2003), and to focus on 

milking routines and hygiene to manage the overall prevalence of 

infection within the herd. However, by focussing on the prevalence of 
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infection and controlling the risks of cow-to-cow transmission, there is a 

danger that the large number of risk factors associated with housing and 

pasture management, which are likely to be more important for most UK 

dairy herds, might be overlooked (Bradley et al., 2008b, 2007a). By 

measuring the cost-effectiveness of specific interventions implemented by 

EL herds in many different simulated scenarios, mastitis control 

interventions can be better prioritised according to each individual EL 

herds’ circumstances.    

The aim of this chapter was to investigate the cost-effectiveness of 

specific mastitis control interventions aimed at reducing IMI’s caused by 

pathogens acquired from the environment, during lactation. As in the 

previous chapter, an integrated Bayesian cost-effectiveness framework 

was used to construct a probabilistic decision model that could be used to 

inform clinical decision making. 

 Materials and methods 6.2

 Data collection 6.2.1

The data collection process was described in the previous two chapters 

(Sections 4.2.3 and 5.2.1)and the data used for this chapter came 

exclusively from herds in the dataset that were assigned an EL diagnosis. 

From the 212 herds with complete data, 75 herds were assigned an ‘EL’ 

diagnosis and therefore used in this study.  
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 Data analysis 6.2.2

The clinical and subclinical mastitis data for each of the 75 herds were 

initially checked for completeness, and any herds with incomplete 

records were excluded from the analysis. 73 herds out of the 75 had 

complete SCC data and were used for the SCC analysis and 66 herds out of 

the 75 had complete CM data and were therefore used for the CM analysis. 

In total, data from all 75 herds was used as some herds had complete SCC 

data and incomplete CM data and vice versa. 

The outcome of interest in this research was mastitis originating from 

infections acquired during lactation as reflected by clinical mastitis and 

somatic cell count records. To measure this, the incidence rate of clinical 

mastitis after the first 30 days of lactation (CMLP) was used (reported by 

DMCP participants as the number of cases/12 cows/month), as was the 

monthly percentage of cows that had a SCC > 200,000 cells/ml at the 

monthly milk recording, that were < 200,000 cells/ml at the previous 

monthly milk recording (LNIR). 

The outcome variable used for the clinical mastitis regression model was 

the percentage change in CMLP during the 12 month period from 

implementation of the recommended interventions and the outcome 

variable used in the somatic cell count regression model was the 

percentage change in the LNIR during this 12 month period. Both of these 

variables were approximately normally distributed (Figure 6-1 and 

Figure 6-2), and the influence of any outlying residuals was assessed 

using the Cook’s D value. 
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𝐂𝐥𝐢𝐧𝐢𝐜𝐚𝐥 𝐦𝐚𝐬𝐭𝐢𝐭𝐢𝐬 𝐫𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐦𝐨𝐝𝐞𝐥 𝐨𝐮𝐭𝐜𝐨𝐦𝐞

=  
𝐂𝐌𝐋𝐏(𝟏𝟐 𝐦𝐨𝐧𝐭𝐡𝐬) − 𝐂𝐌𝐋𝐏(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)

𝐂𝐌𝐋𝐏(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)
 𝐱 𝟏𝟎𝟎  

Where CMLP(12months) = the mean CMLP during the first 12 months 

after the mastitis control plan started and CMLP(initial) = the mean CMLP 

during the 12 months before the mastitis control plan started. 

𝐒𝐨𝐦𝐚𝐭𝐢𝐜 𝐜𝐞𝐥𝐥 𝐜𝐨𝐮𝐧𝐭 𝐫𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐦𝐨𝐝𝐞𝐥 𝐨𝐮𝐭𝐜𝐨𝐦𝐞

=  
𝐋𝐍𝐈𝐑(𝟏𝟐 𝐦𝐨𝐧𝐭𝐡𝐬) − 𝐋𝐍𝐈𝐑(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)

𝐋𝐍𝐈𝐑(𝐢𝐧𝐢𝐭𝐢𝐚𝐥)
 𝐱 𝟏𝟎𝟎 

Where LNIR(12months) = the mean monthly LNIR during the first 12 

months after the mastitis control plan started and LNIR(initial) = the mean 

monthly LNIR during the 12 months before the mastitis control plan 

started. 
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Figure 6-1 Distribution of the outcome variable for the clinical mastitis regression 
model used to predict the effectiveness of specific mastitis control interventions. 
CMLP = incidence rate of clinical mastitis after the first 30 days of lactation. 

 

Figure 6-2 Distribution of the outcome variable for the somatic cell count 
regression model used to predict the effectiveness of specific mastitis control 
interventions. LNIR = the monthly percentage of cows that had a SCC >200,000 

cells/ml at the monthly milk recording, that were <200,000 cells/ml at the previous 

monthly milk recording. 

Change in LNIR (%) 
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Interventions that had been implemented on at least two farms were 

identified and for each farm, categorised as 0 (not already implemented at 

the time of the initial farm visit and not implemented following the 

intervention visit), 1 (not already implemented at the time of the initial 

farm visit but implemented following the DMCP) or 2 (already 

implemented at the time of the initial farm visit or not applicable). 

Interventions were classified as not applicable when they concerned an 

area of management not relevant to a particular farm (e.g. management of 

loose yards on a farm that only used cubicles to house the milking cows). 

Collinearity between covariates was assessed using Pearson product-

moment correlation coefficients, and no significant collinearity was found. 

A Bayesian one-step micro-simulation model was constructed in 

OpenBUGS version 3.2.2 (Lunn et al., 2009) separately for each of the two 

outcomes, incorporating a multiple regression model and an onwards 

cost-effectiveness micro-simulation, following  the same methods as 

described in the previous chapter (Figure 5-1).  

The purpose of the micro-simulation was to simulate the cost-

effectiveness of each intervention in theoretical herds with a herd size of 

120 cows, with different initial rates of CMLP and LNIR and different costs 

associated with implementing each intervention. The values for CMLP and 

LNIR on the simulated farms prior to interventions being implemented 

were taken from actual data from 150 herds that had previously 

participated in the DMCP, so that a range of plausible scenarios were 

used.  
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Due to the way in which LNIR is calculated (i.e. the percentage of new 

intramammary infections/month), the number of cases prevented was 

multiplied by 12 to convert it from a monthly figure to an annual figure. 

This was the only difference between the SCC model in Chapter 5 and the 

SCC model in this chapter. 

 Results 6.3

 Herd parameters 6.3.1

The median size of the 75 herds selected for analysis was 199 cows 

(range 76-973), and the median 305-day milk yield was 8424 kg (range 

4770-12410). The median incidence rate of CM in the 12 months prior to 

mastitis interventions was 58.5 cases/100 cows/year (range 6-133), and 

the median 12-month average calculated BMSCC was 203,000 cells/ml 

(range 103,000-425,000). The median CMLP at the time of the initial herd 

visit was 26 cases/100 cows/month (12-month average, range 1.17-53.4) 

and the median LNIR rate was 9.7%/month (12-month average, range 

4.4-21.4). 

 Interventions 6.3.2

A total of 131 interventions were evaluated in the analysis and the 

number of farms implementing each of the interventions ranged from 2-

28 (Table 6-1 and Table 6-2). The interventions could be broadly grouped 

into three categories: hygiene of the milking cow environment, the 

milking routine and access to food and water. 
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 Micro-simulation models 6.3.3

Regression model fit 

Both regression models demonstrated a good ability to predict the 

incidence rate of CMLP and LNIR for a given farm, with the model 

predictions explaining 57% of the variability in the observed data in the 

clinical mastitis regression model (Figure 6-3) and 52% in the somatic 

cell count regression model (Figure 6-4).  

Cost-effectiveness outcome 

The probability of an incremental net benefit of at least £1000 for 

different interventions is provided in Table 6-1, Table 6-2, Figure 6-5, 

Figure 6-6, Figure 6-7 and Figure 6-8. Interventions in the clinical mastitis 

micro-simulation model that were cost-effective for most farms (>75% 

probability of saving £1000 with initial CMLP of 3.5 cases/12 cows and a 

COSTINT of £500) were ensuring good fly control for all lactating cows and 

heifers through the summer period when flies are expected or apparent, 

use of drying agents to improve the dryness of cubicle beds for the 

milking cows and keeping the herd closed, with barriers to outside 

animals and people. All of the reported interventions in the somatic cell 

count micro-simulation model were cost-effective for most farms (>75% 

probability of saving £1000 with initial LNIR rate of 15% and a COSTINT of 

£500) except giving cows access to water at all times (not be denied 

access for more than 1 hour in a 24 hour period). 

Interventions in the clinical mastitis micro-simulation model that were 

less likely to be cost-effective included avoiding the milking cows from 
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having access to any one lying area for more than two continuous weeks, 

cleaning straw yards out completely at least once per month, providing a 

minimum of at least 2m2/cow of loafing space and the rotating of routes 

and gateways wherever possible should poaching occur. 

Table 6-1 Probability of saving at least £1000 after 12 months as predicted by the 
micro-simulation model. The probabilities are given for different incidence rates of 
clinical mastitis after the first 30 days of lactation (CMLP) and different costs of 
implementing the intervention. 

   Cost of Intervention (£) 

Intervention n 
CMLP  

(cases/12 
cows)  

250 500 750 1000 

You should avoid letting milking cows 
have access to any one lying area for 
more than two continuous weeks 

 2.0 0.40 0.32 0.25 0.19 
6 3.5 0.61 0.56 0.50 0.45 
 5.0 0.70 0.66 0.62 0.58 

The herd should be closed, with barriers 
to outside animals and people 

 2.0 0.69 0.62 0.55 0.48 
3 3.5 0.83 0.80 0.76 0.72 
 5.0 0.88 0.86 0.84 0.82 

Drying agents could be used to improve 
the dryness of cubicle beds for the 
milking cows 

 2.0 0.98 0.96 0.94 0.91 
3 3.5 0.99 0.99 0.98 0.98 
 5.0 1.00 1.00 0.99 0.99 

You must ensure good fly control for all 
lactating cows and heifers through the 
summer period when flies are expected 
or apparent 

 2.0 0.87 0.84 0.80 0.76 
3 3.5 0.93 0.91 0.90 0.88 
 

5.0 0.95 0.94 0.93 0.92 

Foremilking should be into a strip-cup or 
carried out with great care to avoid the 
spread of infection 

 2.0 0.55 0.49 0.43 0.38 
2 3.5 0.68 0.64 0.61 0.57 
 5.0 0.73 0.71 0.69 0.66 

You should rotate the use of routes and 
gateways wherever possible should 
poaching occur 

 2.0 0.49 0.41 0.34 0.27 
5 3.5 0.67 0.62 0.57 0.52 
 5.0 0.74 0.71 0.68 0.65 

There must be a minimum of at least 
2m2/cow of loafing space 

 2.0 0.44 0.38 0.33 0.27 
3 3.5 0.59 0.55 0.51 0.47 
 5.0 0.65 0.62 0.59 0.56 

The success of mastitis treatments must 
be monitored by monitoring cow SCC in 
the months after treatment 

 2.0 0.58 0.50 0.42 0.35 
6 3.5 0.76 0.72 0.67 0.63 
 5.0 0.82 0.80 0.77 0.74 

Straw yards should be cleaned out 
completely at least once per month 

 2.0 0.39 0.32 0.26 0.21 
5 3.5 0.56 0.51 0.47 0.43 
 5.0 0.63 0.60 0.57 0.53 
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Table 6-2 Probability of saving at least £1000 after 12 months as predicted by the 
micro-simulation model. The probabilities are given for different starting rates of 
LNIR1 and different costs of implementing the intervention. 

   Cost of Intervention (£) 

Intervention n 
LNIR1 

(%/month)  
250 500 750 1000 

The clusters must be squarely aligned 
and balanced centrally under all cows 

 10 0.74 0.72 0.69 0.67 
7 15 0.79 0.77 0.75 0.74 
 20 0.80 0.79 0.78 0.77 

There should be at least 0.6m feed space 
per cow in total for access to forage, 
concentrate or complete diet portions of 
the cows' feed. 

 10 0.82 0.81 0.80 0.78 
3 15 0.85 0.84 0.83 0.82 
 

20 0.86 0.85 0.84 0.84 

You must maintain excellent housing 
conditions (as for winter) if cows have 
access to housed lying areas during the 
grazing months. (milking cows) 

 10 0.84 0.83 0.82 0.81 
4 15 0.86 0.86 0.85 0.84 
 

20 0.87 0.87 0.86 0.86 

There should be a bedded lying area of 
1.25m2/1000L of milk/cow (herd annual 
milk yield) 

 10 0.74 0.72 0.69 0.67 
7 15 0.79 0.77 0.76 0.74 
 20 0.81 0.79 0.78 0.77 

A non-steroidal anti-inflammatory drug 
(NSAID) should be used when treating  
Grade 3 cases of clinical mastitis 

 10 0.85 0.84 0.82 0.81 
3 15 0.87 0.86 0.85 0.84 
 20 0.88 0.87 0.87 0.86 

There should be no significant pooling of 
liquid in housing, feeding and/or loafing 
areas 

 10 0.94 0.93 0.92 0.91 
5 15 0.96 0.95 0.95 0.94 
 20 0.96 0.96 0.95 0.95 

20 to 30 seconds must elapse after 
application of pre-milking teat 
disinfection, before teats are dried 

 10 0.79 0.77 0.74 0.72 
9 15 0.83 0.81 0.80 0.79 
 20 0.85 0.84 0.83 0.82 

There must be good ventilation, but 
without draughts in all milking cow 
housing 

 10 0.97 0.96 0.96 0.95 
6 15 0.98 0.98 0.97 0.97 
 20 0.99 0.98 0.98 0.98 

Cows should always have access to 
water (not be denied access for more 
than 1 hour in a 24 hour period) 

 10 0.72 0.70 0.68 0.66 
5 15 0.75 0.74 0.73 0.72 
 20 0.77 0.76 0.75 0.74 

1 LNIR = the monthly percentage of cows that had a SCC >200,000 cells/ml at the 

monthly milk recording, that were < 200,000 cells/ml at the previous monthly milk 

recording. 
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Figure 6-3 Scatterplot of observed and predicted values of the percentage change 
in the incidence rate of clinical mastitis after the first 30 days of lactation (CMLP). 
Predicted values were generated from the clinical mastitis regression model. 

 

 

Figure 6-4 Scatterplot of the observed and predicted values of the monthly rate of 
LNIR. Predicted values were generated from the clinical mastitis regression model. 

LNIR = percentage of cows that had a SCC > 200,000 cells/ml at the monthly milk 

recording, that were < 200,000 cells/ml at the previous monthly milk recording. 
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Figure 6-5 Probabilistic cost-effectiveness curve for keeping a closed herd. The 
arrows indicate how to read from the curve with the dashed line representing the 
probability of saving at least £1000 in 12 months at an intervention cost of £250 in a 
herd with a CMLP rate of 2 cases/12 cows. The solid arrow represents the 
probability of saving at least £1000 in 12 months at an intervention cost of £1000 in 
a herd with a CMLP rate of 3 cases/12 cows. CMLP = incidence rate of clinical 
mastitis after the first 30 days of lactation.  
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Figure 6-6 Probabilistic cost-effectiveness curve for having good fly control for all 
lactating cows and heifers. CMLP = incidence rate of clinical mastitis after the first 
30 days of lactation. 
 

 

Figure 6-7 Probabilistic cost-effectiveness curve for using an NSAID when treating 
Grade 3 clinical mastitis cases. LNIR = percentage of cows that had a SCC > 200,000 
cells/ml at the monthly milk recording, that were < 200,000 cells/ml at the previous 
monthly milk recording. 

LNIR (%) 
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Figure 6-8 Probabilistic cost-effectiveness curve for having a bedded lying area of 
1.25m2/1000L of milk/cow. LNIR = percentage of cows that had a SCC > 200,000 
cells/ml at the monthly milk recording, that were < 200,000 cells/ml at the previous 
monthly milk recording. 
 

 Discussion 6.4

This chapter illustrates how the clinical efficacy of specific mastitis 

interventions can be quantified and incorporated into a Bayesian cost-

effectiveness model using a one-stage micro-simulation. The results of 

this and the previous chapter are to be incorporated into a decision 

support tool that will be made available to veterinarians/advisors 

involved with implementing the DMCP in the United Kingdom. 

Interventions concerning the management of the milking cow 

environment featured prominently among those likely to be cost-effective 

for most dairy farmers, which is unsurprising given the epidemiology of 

the herds selected for this study. The loose-housing of milking cows in 

LNIR (%) 
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straw yards has been frequently associated with an increased risk of 

clinical mastitis and increased somatic cell count (Bareille et al., 1998; 

Barnouin et al., 2005, 2004; O’Reilly et al., 2006). The results of this study 

would indicate that some of this risk could be mitigated cost-effectively by 

completely cleaning out straw yards at least once monthly and providing 

a bedded lying area of at least 1.25m2/1000L of milk/cow (herd annual 

milk yield). This is in agreement with previous studies that have reported 

associations between the stocking density of straw yards (Bareille et al., 

1998; Green et al., 2008) and the frequency at which straw yards are 

cleaned out (O’Reilly et al., 2006; Peeler et al., 2000) with somatic cell 

counts. 

Other interventions more generally related to the milking cow 

environment that were likely to be cost-effective for most producers 

included avoiding any significant pooling of liquid in housing, feeding 

and/or loafing areas, ensuring good ventilation in all milking cow 

accommodation and maintaining excellent housing conditions when cows 

have access to housed lying areas during the grazing months. Access to 

and cleanliness of loafing areas has been associated with reduced herd 

somatic cell count previously (Barnouin et al., 2004; Bartlett et al., 1992), 

as has good ventilation (Schukken et al., 1991), but the maintenance of 

housing during the grazing period has not been directly linked with 

mastitis before.  However, giving dry cows access to housing whilst 

grazed has been associated with increased somatic cell counts in early 

lactation (Green et al., 2008), and it could be that this reflects the sub-
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optimal housing conditions that are likely to manifest when the 

accommodation is not in full-time use. 

Other grazing-related interventions likely to be cost-effective in some 

circumstances included not letting milking cows have access to any one 

lying area for more than two continuous weeks and rotating the use of 

routes and gateways wherever possible should poaching occur. This 

finding is supported by previous work that has reported Strep. uberis 

surviving for extended periods on pasture (Lopez-Benavides et al., 2007) 

and farm tracks, especially in wet conditions (Lopez-Benavides et al., 

2005). This is also in agreement with two previous studies that have 

demonstrated a reduced incidence of clinical mastitis and increased 

somatic cell count in the first 30 days of lactation by restricting the access 

of dry-cows to any one grazing area to less than 2 weeks followed by 

stock not grazing the pasture for a minimum of 4 weeks (Green et al., 

2008, 2007a).  

Several interventions related to the milking process were also found 

likely to be cost-effective for many producers, including allowing at least 

20-30 seconds to elapse before wiping-off pre-milking teat disinfectant, 

ensuring that clusters are squarely aligned and balanced centrally under 

all cows and foremilking (into a strip-cup or at least carried out with great 

care to avoid the spread of infection). The application of pre-milking teat 

disinfection to reduce new intramammary infections, especially those 

caused by pathogens behaving in an environmental manner, is well 

established (Bennett, 1982; Oliver et al., 2001, 1993; Pankey et al., 1987; 
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Sérieys and Poutrel, 1996) although previous cost-effectiveness studies 

have failed to demonstrate an overall cost-benefit (Morton et al., 2014; 

Ruegg and Dohoo, 1997). Due to the time pressures associated with the 

milking process, milking staff may attempt to save time by reducing the 

interval between the application of pre-milking teat disinfection, and 

subsequent wiping of the teats, thereby potentially reducing the product 

efficacy. The results of this study suggest that allowing at least 20-30 

seconds to elapse before wiping-off pre-milking teat disinfectant is likely 

to be cost effective for the majority of dairy farmers, and that cutting this 

contact time short may prove to be a false economy. 

The practice of foremilking as a means of detecting cases of clinical 

mastitis has frequently been associated with an increased incidence rate 

of clinical mastitis (Elbers et al., 1998; O’Reilly et al., 2006; Peeler et al., 

2000; Schukken et al., 1991) as has the use of a strip-cup when doing so 

(Bartlett et al., 1992). However, from these studies, it is not possible to 

establish if the practice of foremilking/using a strip-cup is causally 

related to the incidence of clinical mastitis or simply that herds that 

practice foremilking are more effective at diagnosing, and, as a 

consequence, report more cases of clinical mastitis. This intervention was 

only implemented by 2 herds, and therefore some caution should be 

exercised when considering the implications of this finding. However, it 

would seem prudent to practice foremilking in such a manner that any 

risk of transmitting infections to neighbouring cows is minimised, and 

this study provides some evidence that by doing so, any resulting increase 
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in labour could well be offset by reductions in the incidence of clinical 

mastitis. 

Ensuring good fly control for all lactating cows and heifers through the 

summer period when flies are expected or apparent was very cost-

effective in most scenarios due to the resulting reduction in clinical 

mastitis. Previous studies have demonstrated the ability of flies to 

transmit intramammary infections to heifers (Gillespie et al., 1999; Owens 

et al., 1998), and effective fly control has been associated with reduced 

risk of intramammary infections in heifers (Nickerson et al., 1995; Piepers 

et al., 2011). Whilst effective fly control is now a well-established aspect 

of heifer management, this study provides some much-needed evidence of 

the cost-effectiveness of effective fly control for the adult milking herd as 

well. 

The cost-effectiveness of the use of drying agents to improve the dryness 

of cubicle beds for the milking cows was an interesting finding. The 

positive association between the moisture content of cubicle bedding and 

bacterial load is well accepted, as is the relationship between the number 

of bacteria present in cubicle bedding and the incidence of intramammary 

infections (Hogan et al., 1990, 1989). However, to date, evidence 

supporting the use of drying agents as an effective means of reducing the 

risk of mastitis has been lacking, and one previous study that reported an 

association between the use of drying agents and an increased somatic 

cell count (Bareille et al., 1998). Whilst no specific products can be 
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recommended, this study provides some evidence that they may play a 

useful and cost-effective role in some herds with a specific EL problem. 

The use of a non-steroidal anti-inflammatory drug (NSAID) when treating 

grade 3 cases of clinical mastitis (defined as milk and udder changes and 

also signs of systemic illness) was likely to be cost-effective for the 

majority of dairy farmers due to an associated reduction in the rate of 

new IMI’s as measured by SCC. Previous experimental E. coli and 

endotoxin models have demonstrated improved clinical parameters (e.g. 

reduced rectal temperature, reduced clinical signs and improved rumen 

function) associated with the administration of carprofen, flunixin 

meglumine and ketoprofen (Anderson et al., 1986; Banting et al., 2008; 

Shpigel et al., 1994; Vangroenweghe et al., 2005). One previous study 

reported a reduction in somatic cell count in cows with clinical mastitis 

(grades 1 or 2) treated with a parenteral antibiotic and meloxicam, 

compared with cows treated with a parenteral antibiotic only (McDougall 

et al., 2009), however, this finding was not accompanied by a cost-

effectiveness analysis to help justify such an approach.  

Interventions related to nutrition such as the provision of at least 60cm of 

feed-space per cow and not denying cows access to water for any more 

than 1hr/day resulted in reductions in the LNIR and were cost-effective in 

many circumstances. Whilst this is the first study to find a relationship 

between either of these interventions and somatic cell count, one 

previous study found an association between the increased number of 

feeding spaces/cow with a reduced incidence of E.coli mastitis (Barkema 
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et al., 1999a), and another study reported an increase in individual cow 

somatic cell count following a period of water deprivation (Reneau, 

1986). 

Two interventions that were cost-effective due to reductions in the 

incidence rate of clinical mastitis were having a closed herd, with barriers 

to people and other animals and the monitoring of the success of mastitis 

treatments by monitoring cow SCC in the months after treatment. The 

risks posed to a dairy herd by people, other animals and the purchasing of 

new animals are well known (Barkema et al., 2009), but, despite this, 

there is evidence that biosecurity measures, in general, are poorly 

implemented on cattle farms (Brennan and Christley, 2012) with poor or 

inappropriate knowledge-transfer often cited as a potential cause (Sayers 

et al., 2014). Given that the herd veterinarian remains a highly valued 

advisor to most dairy farmers (Hall and Wapenaar, 2012), there is a clear 

opportunity for the profession to engage more in the discussion 

concerning biosecurity measures and for effective biosecurity measures -

including the monitoring of disease and having a closed herd; being 

established in more herds. 

The fit of the regression models was not as good as the models reported 

in the previous chapter. This probably reflects the increased number of 

interventions implemented by EL herds compared with EDP herds 

meaning that interventions that were implemented by EL herds, were 

done so by fewer farmers, resulting in increased uncertainty in the 

predicted effect. 
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 Conclusions 6.5

In this study, data from 75 UK dairy herds were used to explore the cost-

effectiveness of specific mastitis control interventions in herds with a 

particular problem with IMI’s originating from the cows’ environment, 

acquired during lactation. The results from the Bayesian micro-simulation 

models demonstrate the probability of cost-effectiveness under different 

scenarios, which were incorporated in a decision support tool that will 

assist optimal decision making by veterinary practitioners in the field.     
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Chapter 7                             

Discussion and Conclusions 
 

 Discussion 7.1

This research used PSA and integrated Bayesian micro-simulation to 

explore factors affecting the cost of clinical mastitis, the cost-effectiveness 

of an on-farm culture approach for the treatment of mastitis and the cost-

effectiveness of specific mastitis control interventions. For livestock 

health and disease-control decisions, information is needed on: (i) the 

disease and production system; (ii) the physical effects of disease and its 

subsequent effects on the production system; (iii) the incidence and/or 

prevalence of disease; (iv) technologies and options available to control 

disease and improve health and productivity; (v) the impact of disease 

and control options on other systems (e.g. on human health); (vi) 

evaluations of the effects of disease and of strategies for control (Bennett, 

1992). The results described in this thesis have a particular role to play in 

providing information on the last of these aspects, informing decisions 

about the costs associated with mastitis treatment and describing the 

potential savings that are possible with specific mastitis interventions.  

 Treatment of clinical mastitis 7.1.1

Whilst the current incidence rate of clinical mastitis in the UK is unknown, 

it is likely to be approximately 47-65 cases/100 cows/year (Bradley et al., 

2007b). There are currently around 1.9 million dairy cows in the UK 
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(AHDB Dairy, 2015), meaning that approximately 855,000-1,235,000 

cases of clinical mastitis are treated every year in the UK. Given this large 

number of mastitis treatments each year and the associated financial, 

emotional and welfare implications, it is important that farmers and vets 

understand the relative importance of the factors affecting the cost of 

mastitis so that better decisions can be made about how to minimise any 

losses. In Chapter 2, the cost of a case of clinical mastitis was modelled for 

5 different treatment protocols and a rate of transmission was included to 

simulate scenarios ranging from low-risk to high-risk of transmission. 

PSA was used so that all model input parameters were specified as 

probability distributions, thereby, capturing some of the uncertainty 

surrounding their true value. The rate of transmission was identified as 

the most important determinant of the total cost of a case of clinical 

mastitis, which was perhaps unsurprising, but what was arguably more 

surprising was the lack of available evidence on which to base the 

transmission rate input parameter on. The few studies that have included 

transmission rate parameters in mastitis models (Barlow et al., 2009; 

Halasa, 2012; Halasa et al., 2010; Swinkels et al., 2005; Swinkels et al., 

2005; van den Borne et al., 2010a) have all based them on the results of a 

small number of studies (Lam et al., 1996a; Zadoks et al., 2002, 2001). 

Despite this limitation, some of this inherent uncertainty surrounding the 

likelihood of transmission is captured by the probability distribution, 

propagated through the model and reflected in model outputs. 
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Another interesting finding from Chapter 2 was that treatment protocol 1 

(3 days of intramammary antibiotics) was the most cost-effective 

approach on average compared with the other more aggressive treatment 

regimes. This is in agreement with Steeneveld et al. (2011), as one might 

expect, given that many of the model inputs were common to both 

studies. Some caution needs to be exercised concerning this finding 

because the evidence for the bacteriological cure rates associated with 

treatment protocols 2-5 was minimal. As a result, the distributions used 

for protocols 3-5 were based entirely on the opinions of expert colleagues, 

which may be considered a weakness. However, it is known that the 

treatment of clinical mastitis during lactation typically results in modest 

bacteriological cure rates (Roberson, 2012), although this is clearly 

dependent on cow and pathogen factors (Barkema et al., 2006; Bradley 

and Green, 2009; McDougall et al., 2007), and it is therefore unlikely that 

more evidence would have altered the overall conclusions of this study. 

There will, of course, remain situations when a more aggressive 

treatment protocol is justified, based on specific cow or pathogen factors, 

and the more risk-averse dairy farmers may opt to treat for longer in 

return for a marginally increased certainty of bacteriological cure. 

Irrespective of the treatment protocol used, the study in Chapter 2 serves 

to highlight how important transmission is, relative to the other factors 

affecting the cost of clinical mastitis, which should be a key consideration 

when deciding how to manage cows with clinical mastitis. 
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The PSA model developed in Chapter 2 was adapted in Chapter 3 to 

compare the cost-effectiveness of the treatment of clinical mastitis based 

on the results of an on-farm culture approach (OFC) compared with a 

‘standard’ treatment protocol of 3 days of intramammary antibiotic 

administered to all cases. To the authors knowledge, this is the first cost-

effectiveness analysis to have been reported concerning the OFC system 

despite the first OFC studies being published in 2011 (Lago et al., 2011a, 

2011b). On average, approximately 6 million intramammary tubes are 

used each year in the UK, which equates to approximately 1500 kg of 

active ingredient (Eckford et al., 2013). The use of OFC has the potential 

to reduce this figure quite considerably, but questions remain with 

respect to economic and ethical considerations given the reduction in 

bacteriological cure rates that may be associated with its use. In a recent 

report highlighting some of the challenges facing the future provision of 

farm animal veterinary services in the UK, one thing that farmers 

wanted/expected from their vets was the introduction of new technology 

and R&D support (Lowe, 2009). Given the high level of trust that most 

dairy farmers still have in the veterinary profession (Hall and Wapenaar, 

2012), it is important that new technologies like OFC are introduced in 

light of comprehensive cost-effectiveness analyses that incorporate 

uncertainty in transparent and intuitive ways.  The study in Chapter 3 

concluded that despite reducing antibiotic usage, the OFC approach was 

unlikely to be more cost-effective than the standard approach for most 

dairy farms and should, therefore, only be adopted after careful 

consideration of the predominant pathogens present in each herd and an 
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honest discussion about the uncertainty surrounding its overall cost-

effectiveness. A limitation of this study was the sparse evidence available 

on which to base the bacteriological cure model input parameter for the 

OFC-branch of the model. Given how sensitive the model outputs were to 

this parameter, it would have been preferable to have had more than one 

relatively small-scale study (Lago et al., 2011a) on which to base this 

distribution. The study by Lago et al. (2011a) reported an overall 

bacteriological cure risk of 71% for cows treated conventionally and 60% 

for those treated according to the results of OFC. At the pathogen level, 

the OFC-associated reduction in bacteriological cure risk for all Gram-

negative infections was 16 percentage points (86% v 70%) and 25 

percentage points (43% v 18%) for Staph. aureus infections. Similar 

differences were reported in an unpublished study performed in Canada 

which found an OFC-associated reduction in bacteriological cure risk of 

13 percentage points for Staph. aureus infections (53% v 40%) and 18 

percentage points for infections caused by Gram-positive pathogens other 

than Staph. aureus (71% v 53%) (MacDonald, 2011). A wide distribution 

was used in Chapter 3 to capture this uncertainty but clearly more 

research is needed to better understand the impact of OFC on 

bacteriological cure rates, the reasons for such reductions and ways in 

which they can be mitigated. At this time, as the OFC approach begins to 

be adopted by an increasing number of UK dairy farms and interest in the 

approach grows, the cost-effectiveness analysis from Chapter 3 will 

provide much-needed and timely support to practitioners when deciding 

how best to apply this new technology. 
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 Mastitis control 7.1.2

Having highlighted the significant cost of mastitis in Chapter 2 and the 

concerns about the quantity of antimicrobial drugs used to treat mastitis 

in Chapter 3, the focus of the remainder of the thesis was on the control 

and prevention of mastitis which is, of course, the most effective way of 

reducing the cost of mastitis and the quantity of antimicrobial drugs used. 

All of the data used in these chapters came from UK dairy farms that had 

participated in the AHDB Dairy Mastitis Control Plan (DMCP, see 1.2.4) 

since it began in 2009. The DMCP is a rare example of an evidence-based, 

farm-specific approach to mastitis control that has been proven to reduce 

the risk of clinical and subclinical mastitis in the field (Green et al., 

2007b). Other countries have tried similar initiatives, but have either 

failed to demonstrate any significant improvements in udder health as a 

result (Tschopp et al., 2015) or reported some improvements but were 

unable to provide a control group with which to compare the results (Lam 

et al., 2013). Since the DMCP was launched in 2009, over 300 plan 

deliverers have been trained, and over 2000 farms have had some 

involvement with the plan, representing approximately 20% of the 

national herd. 

What was most disappointing given the success of the DMCP was the 

difficulty in acquiring data from participating vets and dairy herds and the 

variation in the quality of data that were provided. Much of the first 18 

months of this project was spent contacting plan deliverers in a variety of 

different ways and persistently encouraging them to submit ePlan, farm 
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performance and intervention data for the herds that they had been 

involved with. By the end of the data collection period, complete data 

were submitted for 212 herds, which equated to approximately 20% of 

the herds that were eligible at the time, and far fewer than had been 

hoped for at the start of the project. The reasons for this are complex and 

multifactorial but relate generally to the broad, collaborative approach of 

the DMCP delivery model which is both a strength and a weakness. 

Firstly, the DMCP was not developed in such a way as to facilitate the 

comprehensive and robust collation of outcomes. During 2009-2012, 

there was no obligation for plan deliverers to upload ePlan and farm 

performance data to a central database (this has subsequently changed), 

and so it was not possible to know how much data really existed before 

the data collection phase began. Secondly, there was a significant problem 

with poor data quality and evidence of a lack of appreciation of the 

importance of data in understanding mastitis patterns on-farm. A lot of 

data was ‘lost’ due to the absence of clinical mastitis records and due to 

multiple diagnoses having been selected in the ePlan data (e.g. EDP and 

EL). As clinical mastitis cases are detected and recorded by the dairy 

farmers, there is a great deal of variation in the quantity and quality of 

these records, and when cases are not recorded in an electronic format 

they can be difficult to access by vets and researchers. Incomplete or 

absent clinical mastitis records hinder the ability of the plan deliverer to 

make an accurate assessment of the mastitis epidemiology for a particular 

dairy farm, which may explain why some of the farms were assigned 

multiple diagnoses. Equally, the somatic cell count and clinical mastitis 
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data may present a mixed picture, and deciding between an EDP and EL 

diagnosis, for example, might be challenging. The importance of assigning 

only one diagnosis is emphasised, however, during the plan deliverer 

training days, and so it was disappointing to find so many examples 

where this recommendation had not been followed. Thirdly, the plan 

deliverers themselves vary considerably in terms of occupation, IT and 

herd health skills and general enthusiasm for the scheme itself. A 

significant number of plan deliverers would have viewed the training as a 

form of continuing professional development and would not necessarily 

be in a position to implement any/many plans directly. Also, some plan 

deliverers may have found they struggled with the IT aspects of the DMCP 

approach or were unable to ‘sell’ it to their clients. As a result, the 

majority of plans implemented are delivered by a relatively small number 

of enthusiastic plan deliverers, which may explain to some extent why 

only 87 of the 265 plan deliverers contributed any data at all. 

One of the consequences of obtaining fewer data than hoped is that of 

reduced study power and potentially fewer interventions to analyse in the 

study. The advantage of using a Bayesian framework in this context is that 

it doesn’t rely on frequentist measures of statistical significance, and any 

uncertainty resulting from low study power should be reflected in the 

width of the posterior distributions. By adopting Bayesian methods, less 

potentially clinically useful information is discarded, leaving the clinical 

decision makers with more evidence on which to base their decisions. The 

limited amount of data also meant that it wasn’t possible to investigate 
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the cost-effectiveness of combined interventions to see if there was any 

extra benefit derived by implementing two or more specific interventions 

in certain scenarios. One example of this was in Chapter 5, when 3 

interventions related to the ‘graze 2, rest 4’ (paddocks are not grazed for 

more than 2 continuous weeks and at least 4 weeks must elapse before 

cows are returned to graze) intervention were combined as one 

parameter. This showed a greater effect when all three were implemented 

as opposed to each of them singly, and other such relationships may have 

been apparent with more data. 

The limited amount of data from CDP/CL herds precluded them from the 

cost-effectiveness analysis, but given the significant amount already 

known about the effective control of contagious pathogens (Barkema et 

al., 2006) and the fact that CDP/CL herds only account for approximately 

5% of herds participating in the DMCP (Bradley et al., 2012), there is 

arguably less of a need for this analysis at present. 

Despite the challenges posed by the data collection process, the resulting 

dataset was the largest and most comprehensive of its kind and the first 

to have such detailed information on the mastitis epidemiology for each 

farm as well as current farm management practices. This has made it 

possible to investigate the cost-effectiveness of a large number of mastitis 

control interventions under different scenarios, which has not been done 

previously. Whilst we knew that the DMCP was effective overall, we 

hadn’t previously had any means of knowing which interventions were 

most likely to be cost-effective for specific herds and, therefore, the 
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decision about which interventions to implement has, up until now, been 

based largely on practical considerations and intuition. Using the results 

from Chapter 5 and Chapter 6, it will now be possible to rank a selection 

of mastitis control interventions based on the probability of a specific 

return by way of a decision support tool, which will offer much needed 

evidence-based support to those delivering mastitis control services in 

the UK. This serves to highlight one of the key strengths of the Bayesian 

approach in that the resulting posterior distributions can be used to 

provide clinically relevant and direct answers to important questions 

including the probability that a particular hypothesis is correct.  

The results of the descriptive analysis presented in Chapter 4 highlight 

that the average herd size and milk yield of the study farms were slightly 

higher than the current national averages. Given that the study farms 

were drawn from a convenience sample of farms that had participated in 

the national mastitis control scheme, there were inherent biases within 

the dataset and one might question how representative they are of the 

national population. However, they are likely to be representative of other 

herds participating in the DMCP at present or in the future and, therefore, 

the cost-effectiveness analysis should be of relevance to a large number of 

dairy herds in the UK and wider. 

 Potential future work 7.1.3

In general, approaches to providing advice on mastitis control may be 

divided into two types; ‘reactive’ and ‘prospective’. The most prevalent 

approach historically has been the reactive approach, whereby a 
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veterinary practitioner or advisor is asked to assess a problem situation, 

whether long-standing or a sudden outbreak. Investigations typically 

include the analysis of farm records, and current management strategies 

including a farm assessment and some milk samples may be taken to 

assess pathogen involvement. A prospective approach to mastitis control 

incorporates many of the principles of herd health management; setting 

goals, on-going monitoring of disease and updating of management 

practices when goals are not achieved (Green, 2012; National Mastitis 

Council, 2006). The advantage of prospective mastitis management is that 

problems should be identified sooner than with reactive approaches and, 

as the average herd size gets larger and skilled farm labour units per cow 

are reduced, should ensure that resources and effort are directed to the 

areas that give the greatest returns. 

The problem with both reactive and prospective approaches to mastitis 

control is that they rely on current farm information to define what is 

happening and therefore what to change. In this sense, they are both in 

fact ‘reactive’. What the studies in Chapter 5 and Chapter 6 exemplify is a 

different approach that is likely to become more prevalent in the future, 

whereby current data are used to predict what is likely to happen in the 

future. In what might be termed ‘predictive’ mastitis control, accurate 

biological predictions would be made from current farm information. 

With advances in on-farm technologies, scientific approaches and data 

handling capabilities, ‘predictive’ mastitis control is becoming a reality 

especially as the advancement of computer technology means that value 
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can now be derived from complex datasets to drive decision making in the 

so-called ‘big data’ revolution (Hudson, 2015).  

The key to success with ‘predictive’ mastitis control approaches will be to 

make use of readily available information and to ensure results are 

relevant and accessible to the end user. The provision of appropriate (in 

terms of quantity, quality and form) and timely information to decision 

makers is vital if 'good' decisions (i.e. those which best achieve the 

objectives) are to be made (Bennett, 1992). The need for ‘real-time’ 

decision support tools has never been greater, as the sheer volume of data 

being generated on dairy farms can mean that ‘good’ decisions are not 

always intuitive. The results from Chapter 5 and Chapter 6 will be 

incorporated into a decision support tool that will facilitate the 

prioritisation of interventions based on the probability of cost-

effectiveness in a way that is completely customisable to each individual 

farm’s circumstances. 

 Conclusions 7.2

 Chapter 2 7.2.1

The rate of transmission was found to be by far the most influential 

parameter in a PSA investigating the factors affecting the cost of CM at the 

individual cow level. This was followed by bacteriological cure rate, the 

cost of culling and loss of yield. The results from this study suggested that 

more emphasis should be placed on the reduction in the risk of 
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transmission in dairy herds when seeking to minimise the economic 

impact of CM. 

 Chapter 3 7.2.2

The results of this study indicated that the proportion of Gram-positive 

cases and the difference in bacteriological cure rate between the two 

treatment approaches had the greatest impact on the probability that an 

OFC approach would be more cost-effective than a standard approach for 

the treatment of clinical mastitis. The OFC approach appeared to be 

suitable for herds in which Gram-negative pathogens were responsible 

for most clinical mastitis and where the treatment of cows according to 

the results of an OFC approach resulted in minimal reductions in 

bacteriological cure rates. 

 Chapter 4 7.2.3

This study provided data on performance and management of UK dairy 

herds, grouped according to the main putative origin of new cases of 

mastitis. Many aspects of management that might be considered to be 

important in mastitis control were not being practiced by a large 

proportion of these herds. A better understanding of those practices not 

widely adopted by UK dairy farmers at present may aid practitioners in 

identifying and overcoming potential barriers to improved mastitis 

control in UK dairy herds.  
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 Chapter 5 7.2.4

In this study, data from 77 UK dairy herds were used to explore the cost-

effectiveness of specific mastitis control interventions in herds with a 

particular problem with mastitis acquired during the dry period. The 

results from the Bayesian micro-simulation identified many specific 

mastitis control interventions that were likely to be cost-effective in many 

different scenarios. 

 Chapter 6 7.2.5

In this study, data from 75 UK dairy herds were used to explore the cost-

effectiveness of specific mastitis control interventions in herds with a 

particular problem with mastitis originating from the cows’ environment, 

acquired during lactation. The results from the Bayesian micro-simulation 

models demonstrated the probability of cost-effectiveness under different 

scenarios, which were incorporated in a decision support tool that would 

assist optimal decision making by veterinary practitioners in the field.                     

 Overall 7.2.6

The overall aim of the thesis was to explore the cost of clinical mastitis 

and cost-effectiveness of different approaches to mastitis treatment and 

specific mastitis control interventions using probabilistic methods that 

incorporated uncertainty. Bayesian approaches were used throughout the 

thesis to capture and propagate sources of uncertainty that were 

identifiable. The results from Chapters 2 and 3 highlight the need to 

consider the risk of transmission and the potential impact of delayed 

treatment when deciding how best to treat cases of clinical mastitis. The 
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results of the decision analytic models presented in Chapters 5 and 6 

should facilitate decision making by allowing direct statements of 

probability to be inferred about specific mastitis control interventions. 

The research presented in this thesis as a whole, provides a greater 

understanding of the economics of the treatment and control of mastitis 

and aspects of this research will be made applicable to veterinary 

practitioners and dairy farmers through the development of a decision 

support tool. 
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Appendices 

Appendix 1 

Example of the WinBUGS code for the cost of clinical mastitis model 

from Chapter 2. 

{ 

#Optimal bacterial cure rates for the 5 treatment protocols 
bacticure1 <- pathogencurerate1 
pathogencurerate1~dunif(0.40, 0.80) 
 
bacticure2 <- pathogencurerate2 
pathogencurerate2~dunif (0.6, 0.8) 
 
bacticure3 <- pathogencurerate3 
pathogencurerate3~dunif(0.6,0.8) 
 
bacticure4 <-pathogencurerate4 
pathogencurerate4~dunif(0.63,0.83) 
 
bacticure5 <- pathogencurerate5 
pathogencurerate5~dunif(0.7,0.9) 
 
#Cure rates if given extended tx i.e. range increased by +-0.1 
 
bacticure1a <- pathogencurerate1a 
pathogencurerate1a~dunif(0.30, 0.90) 
 
bacticure2a <- pathogencurerate2a 
pathogencurerate2a~dunif (0.5, 0.9) 
 
bacticure3a <- pathogencurerate3a 
pathogencurerate3a~dunif(0.5,0.9) 
 
bacticure4a <-pathogencurerate4a 
pathogencurerate4a~dunif(0.53,0.93) 
 
bacticure5a <- pathogencurerate5a 
pathogencurerate5a~dunif(0.6,0.99) 
 
 
# CALCULATE PARITY NUMBER, DIM, ILL, REPEAT CASE, SCC 
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whichparity~dunif(0,1) 
whichdim~dunif(0,305) 
systillness~dunif(0,1) 
whichcase~dunif(0,1) 
rand~dunif(0,1) 
 
parity2 <- step(whichparity-0.17) *parityeffect 
 
dimover60<-step(whichdim-60)*dimeffect 
 
systill<-step(systillness-0.85)*illeffect 
 
repeatcase<-step(whichcase-0.92)*repeateffect 
 
sccless200<-step(0.7-rand) 
 
btwn200500<-(step(rand-0.7) - step(rand-0.9))*btwn200500effect 
 
gt500<- step(rand-0.9)*gt500effect 
 
 
#CALC COW EFFECTS ON BACTICURE RATE 
 
parityeffect~dunif(-0.15, -0.05) 
dimeffect~dunif(-0.15,-0.05) 
illeffect~dunif(-0.25,-0.15) 
repeateffect~dunif(-0.25,-0.15) 
btwn200500effect~dunif(-0.15,-0.05) 
gt500effect~dunif(-0.25,-0.15) 
 
#Probability of bacterial cure 
apcowbacticure1 <- bacticure1 + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure2 <-bacticure2 + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure3 <-bacticure3 + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure4 <-bacticure4 + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure5 <-bacticure5 + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
pcowbacticure1<-step(apcowbacticure1)*apcowbacticure1 
pcowbacticure2<-step(apcowbacticure2)*apcowbacticure2 
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pcowbacticure3<-step(apcowbacticure3)*apcowbacticure3 
pcowbacticure4<-step(apcowbacticure4)*apcowbacticure4 
pcowbacticure5<-step(apcowbacticure5)*apcowbacticure5 
 
 
#Probability of no cure 
pnoncure1 <- 1-pcowbacticure1 
pnoncure2 <- 1-pcowbacticure2 
pnoncure3 <- 1-pcowbacticure3 
pnoncure4 <- 1-pcowbacticure4 
pnoncure5 <- 1-pcowbacticure5 
 
#Probability of non bacterial but clinical cure 
pcowclincure1 <- pnoncure1*0.8 
pcowclincure2 <- pnoncure2*0.8 
pcowclincure3 <- pnoncure3*0.8 
pcowclincure4 <- pnoncure4*0.8 
pcowclincure5 <- pnoncure5*0.8 
 
#Probability of no bacterial or no clinical cure 
pcownoncure1 <- 1-(pcowbacticure1 + pcowclincure1) 
pcownoncure2 <- 1-(pcowbacticure2 + pcowclincure2) 
pcownoncure3 <- 1-(pcowbacticure3 + pcowclincure3) 
pcownoncure4 <- 1-(pcowbacticure4 + pcowclincure4) 
pcownoncure5 <- 1-(pcowbacticure5 + pcowclincure5) 
 
#CALCULATE TREATMENT COSTS ASSOCIATED WITH FIRST CASE 
 
#cost in pounds 
costofdrugs1~dunif(5.58,6.97) 
costofdrugs2~dunif(9.30,11.62) 
costofdrugs3~dunif(32,36) 
costofdrugs4~dunif(43,47) 
costofdrugs5~dunif(36,40) 
 
#total treatment time in hours 
treatmenttime1~dunif(0.53,0.87) 
treatmenttime2~dunif(0.87,1.2) 
treatmenttime3~dunif(0.58,0.92) 
treatmenttime4~dunif(0.63,0.97) 
treatmenttime5~dunif(0.92,1.25) 
 
#hourly rate in pounds 
labourcost~dunif(1,15.87) 
 
#total cost of labour (£) 
costoflabour1<-treatmenttime1*labourcost 
costoflabour2<-treatmenttime2*labourcost 
costoflabour3<-treatmenttime3*labourcost 
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costoflabour4<-treatmenttime4*labourcost 
costoflabour5<-treatmenttime5*labourcost 
 
#Length of milk discard in days 
milkwithdrawal1~dunif(5,9) 
milkwithdrawal2~dunif(7,11) 
milkwithdrawal3~dunif(5,9) 
milkwithdrawal4~dunif(5,10) 
milkwithdrawal5~dunif(7,11) 
 
#Amount of milk discarded each day (Kg) 
dailymilkdiscard~dunif(5,50) 
 
#Milk price (£/kg) 
milkprice~dunif(0.23,0.27) 
 
#Cost of milk production (£/Kg) 
milkprodcost~dunif(0.03,0.1) 
 
#Total cost of milk discard (£) 
costofdiscard1<-milkwithdrawal1*dailymilkdiscard*milkprice 
costofdiscard2<-milkwithdrawal2*dailymilkdiscard*milkprice 
costofdiscard3<-milkwithdrawal3*dailymilkdiscard*milkprice 
costofdiscard4<-milkwithdrawal4*dailymilkdiscard*milkprice 
costofdiscard5<-milkwithdrawal5*dailymilkdiscard*milkprice 
 
#Total cost of FIRST treatment (£) 
txcost1<-costofdrugs1 + costoflabour1 + costofdiscard1 
txcost2<-costofdrugs2 + costoflabour2 + costofdiscard2 
txcost3<-costofdrugs3 + costoflabour3 + costofdiscard3 
txcost4<-costofdrugs4 + costoflabour4 + costofdiscard4 
txcost5<-costofdrugs5 + costoflabour5 + costofdiscard5 
 
#CALCULATION OF COSTS ASSOCIATED WITH COWBACTICURE 
#parameters taken from Hagnestam 2007/Steeneveld/Madouasse 
 
herd305yield~dunif(7000,10000) 
 
parity2Beffect~dunif(0,0.02) 
 
parity2B <- step(whichparity-0.17) *parity2Beffect 
 
btwn3and6yieldloss~dunif(-0.04,-0.01) 
gt6yieldloss~dunif(-0.07,-0.05) 
btwn3and6lact<-(herd305yield*-0.23) 
gt6lact<-(herd305yield*-0.67) 
 
casemonth1or2<-step(0.6-rand) 
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btwn3and6<-(step(rand-0.6) - step(rand-0.9))*btwn3and6yieldloss 
 
gt6<- step(rand-0.9)*gt6yieldloss 
 
btwn3and6effect<-(step(rand-0.6)-step(rand-0.9))*btwn3and6lact 
 
gt6effect<-step(rand-0.9)*gt6lact 
 
yieldloss~dunif(0.07,0.09) 
 
totalyieldloss<-herd305yield*(yieldloss+parity2B+btwn3and6+gt6) 
 
costoftotalyieldloss<-(milkprice*totalyieldloss)-
(milkprodcost*totalyieldloss) 
 
#Can either end lactation or be culled. Cost of cull = 420 +- 300 
 
pcull1~dunif(0.04,0.06) 
costofcull~dunif(120,720) 
pculltotal1<-pcull1+systill1 
cull1a<-pculltotal1*pcowbacticure1 
cull2a<-pculltotal1*pcowbacticure2 
cull3a<-pculltotal1*pcowbacticure3 
cull4a<-pculltotal1*pcowbacticure4 
cull5a<-pculltotal1*pcowbacticure5 
 
pendlactation1<-1-pculltotal1 
endlactation1a<-pendlactation1*pcowbacticure1 
endlactation2a<-pendlactation1*pcowbacticure2 
endlactation3a<-pendlactation1*pcowbacticure3 
endlactation4a<-pendlactation1*pcowbacticure4 
endlactation5a<-pendlactation1*pcowbacticure5 
 
cull1acosts<-cull1a*(costofcull+txcost1) 
cull2acosts<-cull2a*(costofcull+txcost2) 
cull3acosts<-cull3a*(costofcull+txcost3) 
cull4acosts<-cull4a*(costofcull+txcost4) 
cull5acosts<-cull5a*(costofcull+txcost5) 
 
endlactcosts1a<-endlactation1a*(costoftotalyieldloss+txcost1) 
endlactcosts2a<-endlactation2a*(costoftotalyieldloss+txcost2) 
endlactcosts3a<-endlactation3a*(costoftotalyieldloss+txcost3) 
endlactcosts4a<-endlactation4a*(costoftotalyieldloss+txcost4) 
endlactcosts5a<-endlactation5a*(costoftotalyieldloss+txcost5) 
 
 
#CALCULATE TREATMENT COSTS AFTER FAILURE TO CURE 
(cownoncure) 
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# i.e Extended Treatment resulting in 3 outomes - cowbacticure1a, 
cowclincure1a and cownoncure1a (range for cure rates increased due to 
increased uncertainty) 
 
#Probability of bacterial cure 
 
apcowbacticure1a <- bacticure1a + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure2a <-bacticure2a + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure3a <-bacticure3a + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure4a <-bacticure4a + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
apcowbacticure5a <-bacticure5a + 
(parity2+dimover60+systill+repeatcase+btwn200500+gt500) 
 
pcowbacticure1a<-step(apcowbacticure1a)*apcowbacticure1a 
pcowbacticure2a<-step(apcowbacticure2a)*apcowbacticure2a 
pcowbacticure3a<-step(apcowbacticure3a)*apcowbacticure3a 
pcowbacticure4a<-step(apcowbacticure4a)*apcowbacticure4a 
pcowbacticure5a<-step(apcowbacticure5a)*apcowbacticure5a 
 
 
cowbacticure1a<-pcowbacticure1a*pcownoncure1 
cowbacticure2a<-pcowbacticure2a*pcownoncure2 
cowbacticure3a<-pcowbacticure3a*pcownoncure3 
cowbacticure4a<-pcowbacticure4a*pcownoncure4 
cowbacticure5a<-pcowbacticure5a*pcownoncure5 
 
#Probability of no cure 
pnoncure1a<-1-pcowbacticure1a 
pnoncure2a<-1-pcowbacticure2a 
pnoncure3a<-1-pcowbacticure3a 
pnoncure4a<-1-pcowbacticure4a 
pnoncure5a<-1-pcowbacticure5a 
 
#Probability of Clinical cure  
 
pcowclincure1a<-pnoncure1a*0.8 
pcowclincure2a<-pnoncure2a*0.8 
pcowclincure3a<-pnoncure3a*0.8 
pcowclincure4a<-pnoncure4a*0.8 
pcowclincure5a<-pnoncure5a*0.8 
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cowclincure1a<-pcowclincure1a*pcownoncure1 
cowclincure2a<-pcowclincure2a*pcownoncure2 
cowclincure3a<-pcowclincure3a*pcownoncure3 
cowclincure4a<-pcowclincure4a*pcownoncure4 
cowclincure5a<-pcowclincure5a*pcownoncure5 
 
#Probability of Non bacterial and Non clinical cure 
pcownoncure1a <- 1-(pcowbacticure1a + pcowclincure1a) 
pcownoncure2a <- 1-(pcowbacticure2a + pcowclincure2a) 
pcownoncure3a <- 1-(pcowbacticure3a + pcowclincure3a) 
pcownoncure4a <- 1-(pcowbacticure4a + pcowclincure4a) 
pcownoncure5a <- 1-(pcowbacticure5a + pcowclincure5a) 
 
cownoncure1a<-pcownoncure1a*pcownoncure1 
cownoncure2a<-pcownoncure2a*pcownoncure2 
cownoncure3a<-pcownoncure3a*pcownoncure3 
cownoncure4a<-pcownoncure4a*pcownoncure4 
cownoncure5a<-pcownoncure5a*pcownoncure5 
 
#Calculation of costs associated with cowbacticurea (cull or endlactation) 
 
cull1b<-pculltotal1*cowbacticure1a 
cull2b<-pculltotal1*cowbacticure2a 
cull3b<-pculltotal1*cowbacticure3a 
cull4b<-pculltotal1*cowbacticure4a 
cull5b<-pculltotal1*cowbacticure5a 
 
endlactation1b<-pendlactation1*cowbacticure1a 
endlactation2b<-pendlactation1*cowbacticure2a 
endlactation3b<-pendlactation1*cowbacticure3a 
endlactation4b<-pendlactation1*cowbacticure4a 
endlactation5b<-pendlactation1*cowbacticure5a 
 
cull1bcosts<-cull1b*(costofcull+(2*txcost1)) 
cull2bcosts<-cull2b*(costofcull+(2*txcost2)) 
cull3bcosts<-cull3b*(costofcull+(2*txcost3)) 
cull4bcosts<-cull4b*(costofcull+(2*txcost4)) 
cull5bcosts<-cull5b*(costofcull+(2*txcost5)) 
 
endlactcosts1b<-endlactation1b*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts2b<-endlactation2b*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts3b<-endlactation3b*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts4b<-endlactation4b*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts5b<-endlactation5b*(costoftotalyieldloss+(2*txcost1)) 
 
#Calculation of costs aasociated with cownoncurea (death or dry off) 
 
costofdeath~dunif(1200,2000) 
pdeath~dunif(0.04,0.06) 
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death1<-pdeath*cownoncure1a 
death2<-pdeath*cownoncure2a 
death3<-pdeath*cownoncure3a 
death4<-pdeath*cownoncure4a 
death5<-pdeath*cownoncure5a 
 
costofdeath1<-death1*(costofdeath+(2*txcost1)) 
costofdeath2<-death2*(costofdeath+(2*txcost2)) 
costofdeath3<-death3*(costofdeath+(2*txcost3)) 
costofdeath4<-death4*(costofdeath+(2*txcost4)) 
costofdeath5<-death5*(costofdeath+(2*txcost5)) 
 
pdryoff<-1-pdeath 
dryoff1<-pdryoff*cownoncure1a 
dryoff2<-pdryoff*cownoncure2a 
dryoff3<-pdryoff*cownoncure3a 
dryoff4<-pdryoff*cownoncure4a 
dryoff5<-pdryoff*cownoncure5a 
 
pdryoffcull~dunif(0.27,0.39) 
#range added to steeneveld value of 0.33 
 
dryoffcull1<-pdryoffcull*dryoff1 
dryoffcull2<-pdryoffcull*dryoff2 
dryoffcull3<-pdryoffcull*dryoff3 
dryoffcull4<-pdryoffcull*dryoff4 
dryoffcull5<-pdryoffcull*dryoff5 
 
costofdryoffcull1<-dryoffcull1*(costofcull+(2*txcost1)) 
costofdryoffcull2<-dryoffcull2*(costofcull+(2*txcost2)) 
costofdryoffcull3<-dryoffcull3*(costofcull+(2*txcost3)) 
costofdryoffcull4<-dryoffcull4*(costofcull+(2*txcost4)) 
costofdryoffcull5<-dryoffcull5*(costofcull+(2*txcost5)) 
 
pdryoffsurvive<-1-pdryoffcull 
dryoffsurvive1<-pdryoffsurvive*dryoff1 
dryoffsurvive2<-pdryoffsurvive*dryoff2 
dryoffsurvive3<-pdryoffsurvive*dryoff3 
dryoffsurvive4<-pdryoffsurvive*dryoff4 
dryoffsurvive5<-pdryoffsurvive*dryoff5 
 
dryoffyieldloss~dunif(0.13,0.17) 
#range added to steeneveld value of 15% loss if 3 quarted 
 
dryofftotalyieldloss<-herd305yield*dryoffyieldloss 
costofdryofftotalyieldloss<-(milkprice*dryofftotalyieldloss)-
(milkprodcost*dryofftotalyieldloss) 
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costofdryoffsurvive1<-
dryoffsurvive1*(costofdryofftotalyieldloss+(2*txcost1)) 
costofdryoffsurvive2<-
dryoffsurvive2*(costofdryofftotalyieldloss+(2*txcost2)) 
costofdryoffsurvive3<-
dryoffsurvive3*(costofdryofftotalyieldloss+(2*txcost3)) 
costofdryoffsurvive4<-
dryoffsurvive4*(costofdryofftotalyieldloss+(2*txcost4)) 
costofdryoffsurvive5<-
dryoffsurvive5*(costofdryofftotalyieldloss+(2*txcost5)) 
 
#Calculation of costs associated with pcowclincure (cullc, endlactationc or 
cm2) 
 
pcull1c~dunif(0,0.32) 
illeffect1~dunif(0.05,0.15) 
systill1<-step(systillness-0.85)*illeffect1 
pcull1ctotal<-(pcull1c+systill1) 
 
cowclincure1total<-pcowclincure1+cowclincure1a 
cowclincure2total<-pcowclincure2+cowclincure2a 
cowclincure3total<-pcowclincure3+cowclincure3a 
cowclincure4total<-pcowclincure4+cowclincure4a 
cowclincure5total<-pcowclincure5+cowclincure5a 
 
xcull1c<-pcull1ctotal*pcowclincure1 
xcull2c<-pcull1ctotal*pcowclincure2 
xcull3c<-pcull1ctotal*pcowclincure3 
xcull4c<-pcull1ctotal*pcowclincure4 
xcull5c<-pcull1ctotal*pcowclincure5 
 
ycull1c<-pcull1ctotal*cowclincure1a 
ycull2c<-pcull1ctotal*cowclincure2a 
ycull3c<-pcull1ctotal*cowclincure3a 
ycull4c<-pcull1ctotal*cowclincure4a 
ycull5c<-pcull1ctotal*cowclincure5a 
 
xcostcull1c<-xcull1c*(costofcull+txcost1) 
xcostcull2c<-xcull1c*(costofcull+txcost1) 
xcostcull3c<-xcull1c*(costofcull+txcost1) 
xcostcull4c<-xcull1c*(costofcull+txcost1) 
xcostcull5c<-xcull1c*(costofcull+txcost1) 
 
ycostcull1c<-ycull1c*(costofcull+(2*txcost1)) 
ycostcull2c<-ycull1c*(costofcull+(2*txcost1)) 
ycostcull3c<-ycull1c*(costofcull+(2*txcost1)) 
ycostcull4c<-ycull1c*(costofcull+(2*txcost1)) 
ycostcull5c<-ycull1c*(costofcull+(2*txcost1)) 
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pendlactation2<-1-(pcull1ctotal+pcm2) 
 
xendlactation1c<-pendlactation2*pcowclincure1 
xendlactation2c<-pendlactation2*pcowclincure2 
xendlactation3c<-pendlactation2*pcowclincure3 
xendlactation4c<-pendlactation2*pcowclincure4 
xendlactation5c<-pendlactation2*pcowclincure5 
 
yendlactation1c<-pendlactation2*cowclincure1a 
yendlactation2c<-pendlactation2*cowclincure2a 
yendlactation3c<-pendlactation2*cowclincure3a 
yendlactation4c<-pendlactation2*cowclincure4a 
yendlactation5c<-pendlactation2*cowclincure5a 
 
xcostofendlactation1c<-xendlactation1c*(costoftotalyieldloss+txcost1) 
xcostofendlactation2c<-xendlactation2c*(costoftotalyieldloss+txcost2) 
xcostofendlactation3c<-xendlactation3c*(costoftotalyieldloss+txcost3) 
xcostofendlactation4c<-xendlactation4c*(costoftotalyieldloss+txcost4) 
xcostofendlactation5c<-xendlactation5c*(costoftotalyieldloss+txcost5) 
 
ycostofendlactation1c<-
yendlactation1c*(costoftotalyieldloss+(2*txcost1)) 
ycostofendlactation2c<-
yendlactation2c*(costoftotalyieldloss+(2*txcost2)) 
ycostofendlactation3c<-
yendlactation3c*(costoftotalyieldloss+(2*txcost3)) 
ycostofendlactation4c<-
yendlactation4c*(costoftotalyieldloss+(2*txcost4)) 
ycostofendlactation5c<-
yendlactation5c*(costoftotalyieldloss+(2*txcost5)) 
 
pcm2~dunif(0.05,0.12) 
#Taken from Steeneveld 2010 
 
cm2tx1<-pcm2*(pcowclincure1+cowclincure1a) 
cm2tx2<-pcm2*(pcowclincure2+cowclincure2a) 
cm2tx3<-pcm2*(pcowclincure3+cowclincure3a) 
cm2tx4<-pcm2*(pcowclincure4+cowclincure4a) 
cm2tx5<-pcm2*(pcowclincure5+cowclincure5a) 
 
costofcm2tx1<-cm2tx1*txcost1 
costofcm2tx2<-cm2tx2*txcost2 
costofcm2tx3<-cm2tx3*txcost3 
costofcm2tx4<-cm2tx4*txcost4 
costofcm2tx5<-cm2tx5*txcost5 
 
#Costs associated with CM2  
 
bpcowbacticure1b<-pcowbacticure1-0.2 
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bpcowbacticure2b<-pcowbacticure2-0.2 
bpcowbacticure3b<-pcowbacticure3-0.2 
bpcowbacticure4b<-pcowbacticure4-0.2 
bpcowbacticure5b<-pcowbacticure5-0.2 
 
pcowbacticure1b<-step(bpcowbacticure1b)*bpcowbacticure1b 
pcowbacticure2b<-step(bpcowbacticure2b)*bpcowbacticure2b 
pcowbacticure3b<-step(bpcowbacticure3b)*bpcowbacticure3b 
pcowbacticure4b<-step(bpcowbacticure4b)*bpcowbacticure4b 
pcowbacticure5b<-step(bpcowbacticure5b)*bpcowbacticure5b 
 
 
#cure rates assoc with extended tx 
bpcowbacticure1z<-pcowbacticure1a-0.2 
bpcowbacticure2z<-pcowbacticure2a-0.2 
bpcowbacticure3z<-pcowbacticure3a-0.2 
bpcowbacticure4z<-pcowbacticure4a-0.2 
bpcowbacticure5z<-pcowbacticure5a-0.2 
 
pcowbacticure1z<-step(bpcowbacticure1z)*bpcowbacticure1z 
pcowbacticure2z<-step(bpcowbacticure2z)*bpcowbacticure2z 
pcowbacticure3z<-step(bpcowbacticure3z)*bpcowbacticure3z 
pcowbacticure4z<-step(bpcowbacticure4z)*bpcowbacticure4z 
pcowbacticure5z<-step(bpcowbacticure5z)*bpcowbacticure5z 
 
 
# reduction of 0.2 taken from Steeneveld (as repeat case) 
 
cowbacticure1b<-cm2tx1*pcowbacticure1b 
cowbacticure2b<-cm2tx2*pcowbacticure2b 
cowbacticure3b<-cm2tx3*pcowbacticure3b 
cowbacticure4b<-cm2tx4*pcowbacticure4b 
cowbacticure5b<-cm2tx5*pcowbacticure5b 
 
#Probability of no cure 
pnoncure1b<- 1-pcowbacticure1b 
pnoncure2b<- 1-pcowbacticure2b 
pnoncure3b<- 1-pcowbacticure3b 
pnoncure4b<- 1-pcowbacticure4b 
pnoncure5b<- 1-pcowbacticure5b 
 
#Probability of non bacterial but clinical cure 
pcowclincure1b<- pnoncure1b*0.8 
pcowclincure2b<- pnoncure2b*0.8 
pcowclincure3b<- pnoncure3b*0.8 
pcowclincure4b<- pnoncure4b*0.8 
pcowclincure5b<- pnoncure5b*0.8 
 
cowclincure1b<-cm2tx1*pcowclincure1b 
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cowclincure2b<-cm2tx2*pcowclincure2b 
cowclincure3b<-cm2tx3*pcowclincure3b 
cowclincure4b<-cm2tx4*pcowclincure4b 
cowclincure5b<-cm2tx5*pcowclincure5b 
 
#Probability of no bacterial or no clinical cure 
pcownoncure1b <- 1-(pcowbacticure1b + pcowclincure1b) 
pcownoncure2b <- 1-(pcowbacticure2b + pcowclincure2b) 
pcownoncure3b <- 1-(pcowbacticure3b + pcowclincure3b) 
pcownoncure4b <- 1-(pcowbacticure4b + pcowclincure4b) 
pcownoncure5b <- 1-(pcowbacticure5b + pcowclincure5b) 
 
cownoncure1b<-cm2tx1*pcownoncure1b 
cownoncure2b<-cm2tx2*pcownoncure2b 
cownoncure3b<-cm2tx3*pcownoncure3b 
cownoncure4b<-cm2tx4*pcownoncure4b 
cownoncure5b<-cm2tx5*pcownoncure5b 
 
#Costs assoc. with cowbacticure()b (either cull or endlactation) 
 
pcull2~dunif(0.10,0.20) 
 
systill2<-step(systillness-0.85)*illeffect1 
 
cull1d<-(pcull2+systill2)*cowbacticure1b 
cull2d<-(pcull2+systill2)*cowbacticure2b 
cull3d<-(pcull2+systill2)*cowbacticure3b 
cull4d<-(pcull2+systill2)*cowbacticure4b 
cull5d<-(pcull2+systill2)*cowbacticure5b 
 
costofcull1d<-cull1d*costofcull 
costofcull2d<-cull2d*costofcull 
costofcull3d<-cull3d*costofcull 
costofcull4d<-cull4d*costofcull 
costofcull5d<-cull5d*costofcull 
 
pendlactation3<-1-(pcull2+systill2) 
 
endlactation1d<-pendlactation3*cowbacticure1b 
endlactation2d<-pendlactation3*cowbacticure2b 
endlactation3d<-pendlactation3*cowbacticure3b 
endlactation4d<-pendlactation3*cowbacticure4b 
endlactation5d<-pendlactation3*cowbacticure5b 
 
endlactcost1d<-endlactation1d*costoftotalyieldloss 
endlactcost2d<-endlactation2d*costoftotalyieldloss 
endlactcost3d<-endlactation3d*costoftotalyieldloss 
endlactcost4d<-endlactation4d*costoftotalyieldloss 
endlactcost5d<-endlactation5d*costoftotalyieldloss 
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#CALCULATE TREATMENT COSTS AFTER FAILURE TO CURE (extended 
tx) 
 
#Probability of bacterial cure 
pcowbacticure1c<-pcowbacticure1z 
pcowbacticure2c<-pcowbacticure2z 
pcowbacticure3c<-pcowbacticure3z 
pcowbacticure4c<-pcowbacticure4z 
pcowbacticure5c<-pcowbacticure5z 
 
cowbacticure1c<-pcowbacticure1c*cownoncure1b 
cowbacticure2c<-pcowbacticure2c*cownoncure2b 
cowbacticure3c<-pcowbacticure3c*cownoncure3b 
cowbacticure4c<-pcowbacticure4c*cownoncure4b 
cowbacticure5c<-pcowbacticure5c*cownoncure5b 
 
#Probability of no cure 
pnoncure1c<-1-pcowbacticure1c 
pnoncure2c<-1-pcowbacticure2c 
pnoncure3c<-1-pcowbacticure3c 
pnoncure4c<-1-pcowbacticure4c 
pnoncure5c<-1-pcowbacticure5c 
 
#Probability of Clinical cure  
pcowclincure1c<-pnoncure1c*0.8 
pcowclincure2c<-pnoncure2c*0.8 
pcowclincure3c<-pnoncure3c*0.8 
pcowclincure4c<-pnoncure4c*0.8 
pcowclincure5c<-pnoncure5c*0.8 
 
cowclincure1c<-pcowclincure1c*cownoncure1b 
cowclincure2c<-pcowclincure2c*cownoncure2b 
cowclincure3c<-pcowclincure3c*cownoncure3b 
cowclincure4c<-pcowclincure4c*cownoncure4b 
cowclincure5c<-pcowclincure5c*cownoncure5b 
 
#Probability of Non bacterial and Non clinical cure 
pcownoncure1c <- 1-(pcowbacticure1c + pcowclincure1c) 
pcownoncure2c <- 1-(pcowbacticure2c + pcowclincure2c) 
pcownoncure3c <- 1-(pcowbacticure3c + pcowclincure3c) 
pcownoncure4c <- 1-(pcowbacticure4c + pcowclincure4c) 
pcownoncure5c <- 1-(pcowbacticure5c + pcowclincure5c) 
 
cownoncure1c<-cownoncure1b*pcownoncure1c 
cownoncure2c<-cownoncure2b*pcownoncure2c 
cownoncure3c<-cownoncure3b*pcownoncure3c 
cownoncure4c<-cownoncure4b*pcownoncure4c 
cownoncure5c<-cownoncure5b*pcownoncure5c 
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#Calculation of costs associated with cowbacticure c (cull or endlactation) 
 
cull1e<-(pcull2+systill2)*cowbacticure1c 
cull2e<-(pcull2+systill2)*cowbacticure2c 
cull3e<-(pcull2+systill2)*cowbacticure3c 
cull4e<-(pcull2+systill2)*cowbacticure4c 
cull5e<-(pcull2+systill2)*cowbacticure5c 
 
endlactation1e<-pendlactation3*cowbacticure1c 
endlactation2e<-pendlactation3*cowbacticure2c 
endlactation3e<-pendlactation3*cowbacticure3c 
endlactation4e<-pendlactation3*cowbacticure4c 
endlactation5e<-pendlactation3*cowbacticure5c 
 
cull1ecosts<-cull1e*(costofcull+(2*txcost1)) 
cull2ecosts<-cull2e*(costofcull+(2*txcost2)) 
cull3ecosts<-cull3e*(costofcull+(2*txcost3)) 
cull4ecosts<-cull4e*(costofcull+(2*txcost4)) 
cull5ecosts<-cull5e*(costofcull+(2*txcost5)) 
 
endlactcosts1e<-endlactation1e*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts2e<-endlactation2e*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts3e<-endlactation3e*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts4e<-endlactation4e*(costoftotalyieldloss+(2*txcost1)) 
endlactcosts5e<-endlactation5e*(costoftotalyieldloss+(2*txcost1)) 
 
#Calculation of costs aasociated with cownoncurec (death or dry off) 
 
death1c<-pdeath*cownoncure1c 
death2c<-pdeath*cownoncure2c 
death3c<-pdeath*cownoncure3c 
death4c<-pdeath*cownoncure4c 
death5c<-pdeath*cownoncure5c 
 
costofdeath1c<-death1c*(costofdeath+(2*txcost1)) 
costofdeath2c<-death2c*(costofdeath+(2*txcost2)) 
costofdeath3c<-death3c*(costofdeath+(2*txcost3)) 
costofdeath4c<-death4c*(costofdeath+(2*txcost4)) 
costofdeath5c<-death5c*(costofdeath+(2*txcost5)) 
 
pdryoffc<-1-pdeath 
dryoff1c<-pdryoffc*cownoncure1c 
dryoff2c<-pdryoffc*cownoncure2c 
dryoff3c<-pdryoffc*cownoncure3c 
dryoff4c<-pdryoffc*cownoncure4c 
dryoff5c<-pdryoffc*cownoncure5c 
 
dryoffcull1c<-pdryoffcull*dryoff1c 
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dryoffcull2c<-pdryoffcull*dryoff2c 
dryoffcull3c<-pdryoffcull*dryoff3c 
dryoffcull4c<-pdryoffcull*dryoff4c 
dryoffcull5c<-pdryoffcull*dryoff5c 
 
costofdryoffcull1c<-dryoffcull1c*(costofcull+(2*txcost1)) 
costofdryoffcull2c<-dryoffcull2c*(costofcull+(2*txcost2)) 
costofdryoffcull3c<-dryoffcull3c*(costofcull+(2*txcost3)) 
costofdryoffcull4c<-dryoffcull4c*(costofcull+(2*txcost4)) 
costofdryoffcull5c<-dryoffcull5c*(costofcull+(2*txcost5)) 
 
pdryoffsurvivec<-1-pdryoffcull 
dryoffsurvive1c<-pdryoffsurvivec*dryoff1c 
dryoffsurvive2c<-pdryoffsurvivec*dryoff2c 
dryoffsurvive3c<-pdryoffsurvivec*dryoff3c 
dryoffsurvive4c<-pdryoffsurvivec*dryoff4c 
dryoffsurvive5c<-pdryoffsurvivec*dryoff5c 
 
costofdryoffsurvive1c<-
dryoffsurvive1c*(costofdryofftotalyieldloss+(2*txcost1)) 
costofdryoffsurvive2c<-
dryoffsurvive2c*(costofdryofftotalyieldloss+(2*txcost2)) 
costofdryoffsurvive3c<-
dryoffsurvive3c*(costofdryofftotalyieldloss+(2*txcost3)) 
costofdryoffsurvive4c<-
dryoffsurvive4c*(costofdryofftotalyieldloss+(2*txcost4)) 
costofdryoffsurvive5c<-
dryoffsurvive5c*(costofdryofftotalyieldloss+(2*txcost5)) 
 
 
#Calculation of costs associated with cowclincure b 
 
pcull3~dunif(0.04,0.36) 
#figure of 0.2 given by steeneveld 
 
cowclincure1bctotal<-cowclincure1b+cowclincure1c 
cowclincure2bctotal<-cowclincure2b+cowclincure2c 
cowclincure3bctotal<-cowclincure3b+cowclincure3c 
cowclincure4bctotal<-cowclincure4b+cowclincure4c 
cowclincure5bctotal<-cowclincure5b+cowclincure5c 
 
xcull1d<-(pcull3+systill2)*cowclincure1b 
xcull2d<-(pcull3+systill2)*cowclincure2b 
xcull3d<-(pcull3+systill2)*cowclincure3b 
xcull4d<-(pcull3+systill2)*cowclincure4b 
xcull5d<-(pcull3+systill2)*cowclincure5b 
 
ycull1d<-(pcull3+systill2)*cowclincure1c 
ycull2d<-(pcull3+systill2)*cowclincure2c 
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ycull3d<-(pcull3+systill2)*cowclincure3c 
ycull4d<-(pcull3+systill2)*cowclincure4c 
ycull5d<-(pcull3+systill2)*cowclincure5c 
 
xcostcull1d<-xcull1d*(costofcull+txcost1) 
xcostcull2d<-xcull2d*(costofcull+txcost2) 
xcostcull3d<-xcull3d*(costofcull+txcost3) 
xcostcull4d<-xcull4d*(costofcull+txcost4) 
xcostcull5d<-xcull5d*(costofcull+txcost5) 
 
ycostcull1d<-ycull1d*(costofcull+(2*txcost1)) 
ycostcull2d<-ycull2d*(costofcull+(2*txcost2)) 
ycostcull3d<-ycull3d*(costofcull+(2*txcost3)) 
ycostcull4d<-ycull4d*(costofcull+(2*txcost4)) 
ycostcull5d<-ycull5d*(costofcull+(2*txcost5)) 
 
pendlactation4<-1-(pcull3+systill2+pcm3) 
 
xendlactation1d<-pendlactation4*cowclincure1b 
xendlactation2d<-pendlactation4*cowclincure2b 
xendlactation3d<-pendlactation4*cowclincure3b 
xendlactation4d<-pendlactation4*cowclincure4b 
xendlactation5d<-pendlactation4*cowclincure5b 
 
yendlactation1d<-pendlactation4*cowclincure1c 
yendlactation2d<-pendlactation4*cowclincure2c 
yendlactation3d<-pendlactation4*cowclincure3c 
yendlactation4d<-pendlactation4*cowclincure4c 
yendlactation5d<-pendlactation4*cowclincure5c 
 
xcostofendlactation1d<-xendlactation1d*(costoftotalyieldloss+txcost1) 
xcostofendlactation2d<-xendlactation2d*(costoftotalyieldloss+txcost2) 
xcostofendlactation3d<-xendlactation3d*(costoftotalyieldloss+txcost3) 
xcostofendlactation4d<-xendlactation4d*(costoftotalyieldloss+txcost4) 
xcostofendlactation5d<-xendlactation5d*(costoftotalyieldloss+txcost5) 
 
ycostofendlactation1d<-
yendlactation1d*(costoftotalyieldloss+(2*txcost1)) 
ycostofendlactation2d<-
yendlactation2d*(costoftotalyieldloss+(2*txcost2)) 
ycostofendlactation3d<-
yendlactation3d*(costoftotalyieldloss+(2*txcost3)) 
ycostofendlactation4d<-
yendlactation4d*(costoftotalyieldloss+(2*txcost4)) 
ycostofendlactation5d<-
yendlactation5d*(costoftotalyieldloss+(2*txcost5)) 
 
pcm3~dunif(0.05,0.12) 
#Taken from Steeneveld 2010 
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cm3tx1<-pcm3*(cowclincure1b+cowclincure1c) 
cm3tx2<-pcm3*(cowclincure2b+cowclincure2c) 
cm3tx3<-pcm3*(cowclincure3b+cowclincure3c) 
cm3tx4<-pcm3*(cowclincure4b+cowclincure4c) 
cm3tx5<-pcm3*(cowclincure5b+cowclincure5c) 
 
costofcm3tx1<-cm3tx1*txcost1 
costofcm3tx2<-cm3tx2*txcost2 
costofcm3tx3<-cm3tx3*txcost3 
costofcm3tx4<-cm3tx4*txcost4 
costofcm3tx5<-cm3tx5*txcost5 
 
#Costs associated with cm3 (Page 3 model) 
 
cpcowbacticure1d<-pcowbacticure1b-0.2 
cpcowbacticure2d<-pcowbacticure2b-0.2 
cpcowbacticure3d<-pcowbacticure3b-0.2 
cpcowbacticure4d<-pcowbacticure4b-0.2 
cpcowbacticure5d<-pcowbacticure5b-0.2 
 
pcowbacticure1d<-step(cpcowbacticure1d)*cpcowbacticure1d 
pcowbacticure2d<-step(cpcowbacticure2d)*cpcowbacticure2d 
pcowbacticure3d<-step(cpcowbacticure3d)*cpcowbacticure3d 
pcowbacticure4d<-step(cpcowbacticure4d)*cpcowbacticure4d 
pcowbacticure5d<-step(cpcowbacticure5d)*cpcowbacticure5d 
 
# reduction of 0.2 taken from Steeneveld (as repeat case) 
 
cowbacticure1d<-cm3tx1*pcowbacticure1d 
cowbacticure2d<-cm3tx2*pcowbacticure2d 
cowbacticure3d<-cm3tx3*pcowbacticure3d 
cowbacticure4d<-cm3tx4*pcowbacticure4d 
cowbacticure5d<-cm3tx5*pcowbacticure5d 
 
#Probability of no cure 
pnoncure1d<- 1-pcowbacticure1d 
pnoncure2d<- 1-pcowbacticure2d 
pnoncure3d<- 1-pcowbacticure3d 
pnoncure4d<- 1-pcowbacticure4d 
pnoncure5d<- 1-pcowbacticure5d 
 
#Probability of non bacterial but clinical cure 
pcowclincure1d<- pnoncure1d*0.8 
pcowclincure2d<- pnoncure2d*0.8 
pcowclincure3d<- pnoncure3d*0.8 
pcowclincure4d<- pnoncure4d*0.8 
pcowclincure5d<- pnoncure5d*0.8 
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cowclincure1d<-cm3tx1*pcowclincure1d 
cowclincure2d<-cm3tx2*pcowclincure2d 
cowclincure3d<-cm3tx3*pcowclincure3d 
cowclincure4d<-cm3tx4*pcowclincure4d 
cowclincure5d<-cm3tx5*pcowclincure5d 
 
#Probability of no bacterial or no clinical cure 
pcownoncure1d <- 1-(pcowbacticure1d + pcowclincure1d) 
pcownoncure2d <- 1-(pcowbacticure2d + pcowclincure2d) 
pcownoncure3d <- 1-(pcowbacticure3d + pcowclincure3d) 
pcownoncure4d <- 1-(pcowbacticure4d + pcowclincure4d) 
pcownoncure5d <- 1-(pcowbacticure5d + pcowclincure5d) 
 
cownoncure1d<-cm3tx1*pcownoncure1d 
cownoncure2d<-cm3tx2*pcownoncure2d 
cownoncure3d<-cm3tx3*pcownoncure3d 
cownoncure4d<-cm3tx4*pcownoncure4d 
cownoncure5d<-cm3tx5*pcownoncure5d 
 
#Costs assoc. with cowbacticure d (either cull or endlactation) 
 
pcull4~dunif(0.20,0.30) 
# pcull taken from steeneveld (p=0.25) 
 
systill4<-step(systillness-0.85)*illeffect1 
 
cull1f<-(pcull4+systill4)*cowbacticure1d 
cull2f<-(pcull4+systill4)*cowbacticure2d 
cull3f<-(pcull4+systill4)*cowbacticure3d 
cull4f<-(pcull4+systill4)*cowbacticure4d 
cull5f<-(pcull4+systill4)*cowbacticure5d 
 
costofcull1f<-cull1f*costofcull 
costofcull2f<-cull2f*costofcull 
costofcull3f<-cull3f*costofcull 
costofcull4f<-cull4f*costofcull 
costofcull5f<-cull5f*costofcull 
 
pendlactation5<-1-(pcull4+systill4) 
 
endlactation1f<-pendlactation5*cowbacticure1d 
endlactation2f<-pendlactation5*cowbacticure2d 
endlactation3f<-pendlactation5*cowbacticure3d 
endlactation4f<-pendlactation5*cowbacticure4d 
endlactation5f<-pendlactation5*cowbacticure5d 
 
endlactcost1f<-endlactation1f*costoftotalyieldloss 
endlactcost2f<-endlactation2f*costoftotalyieldloss 
endlactcost3f<-endlactation3f*costoftotalyieldloss 
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endlactcost4f<-endlactation4f*costoftotalyieldloss 
endlactcost5f<-endlactation5f*costoftotalyieldloss 
 
#CALCULATE TREATMENT COSTS AFTER FAILURE TO CURE (cull) 
 
cull1g<-cownoncure1d 
cull2g<-cownoncure2d 
cull3g<-cownoncure3d 
cull4g<-cownoncure4d 
cull5g<-cownoncure5d 
 
cull1gcosts<-cull1g*(costofcull+txcost1) 
cull2gcosts<-cull2g*(costofcull+txcost2) 
cull3gcosts<-cull3g*(costofcull+txcost3) 
cull4gcosts<-cull4g*(costofcull+txcost4) 
cull5gcosts<-cull5g*(costofcull+txcost5) 
 
#Calculation of costs associated with cowclincure d 
 
cull1h<-cowclincure1d 
cull2h<-cowclincure2d 
cull3h<-cowclincure3d 
cull4h<-cowclincure4d 
cull5h<-cowclincure5d 
 
cull1hcosts<-cull1h*(costofcull+txcost1) 
cull2hcosts<-cull2h*(costofcull+txcost2) 
cull3hcosts<-cull3h*(costofcull+txcost3) 
cull4hcosts<-cull4h*(costofcull+txcost4) 
cull5hcosts<-cull5h*(costofcull+txcost5) 
 
#Transmission 1a 
 
trans0~dunif(0.002,0.25) 
ptrans0<-trans0*(population0/100) 
ptrans2<-ptrans0*(population2/100) 
ptrans4<-ptrans0*(population4/100) 
ptrans6<-ptrans0*(population6/100) 
ptrans8<-ptrans0*(population8/100) 
ptrans10<-ptrans0*(population10/100) 
 
population0<-99 
population2<-99-total2 
population4<-99-total4 
population6<-99-total6 
population8<-99-total8 
population10<-99-total10 
 
trans1<-pcowclincure1+cowclincure1a 
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trans2<-ptrans0*trans1 
trans3<-trans2*ptrans2 
trans4<-ptrans2*trans1 
trans5<-ptrans4*trans1 
trans6<-trans4*ptrans4 
trans7<-trans2*ptrans4 
trans8<-trans3*ptrans4 
trans9<-ptrans6*trans1 
trans10<-trans5*ptrans6 
trans11<-trans4*ptrans6 
trans12<-trans6*ptrans6 
trans13<-trans2*ptrans6 
trans14<-trans7*ptrans6 
trans15<-trans3*ptrans6 
trans16<-trans8*ptrans6 
trans17<-ptrans8*trans1 
trans18<-trans9*ptrans8 
trans19<-trans5*ptrans8 
trans20<-trans10*ptrans8 
trans21<-trans4*ptrans8 
trans22<-trans11*ptrans8 
trans23<-trans6*ptrans8 
trans24<-trans12*ptrans8 
trans25<-trans2*ptrans8 
trans26<-trans13*ptrans8 
trans27<-trans7*ptrans8 
trans28<-trans14*ptrans8 
trans29<-trans3*ptrans8 
trans30<-trans15*ptrans8 
trans31<-trans8*ptrans8 
trans32<-trans16*ptrans8 
trans33<-ptrans10*trans1 
trans34<-trans17*ptrans10 
trans35<-trans9*ptrans10 
trans36<-trans18*ptrans10 
trans37<-trans5*ptrans10 
trans38<-trans19*ptrans10 
trans39<-trans10*ptrans10 
trans40<-trans20*ptrans10 
trans41<-trans4*ptrans10 
trans42<-trans21*ptrans10 
trans43<-trans11*ptrans10 
trans44<-trans22*ptrans10 
trans45<-trans6*ptrans10 
trans46<-trans23*ptrans10 
trans47<-trans12*ptrans10 
trans48<-trans24*ptrans10 
trans49<-trans2*ptrans10 
trans50<-trans25*ptrans10 
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trans51<-trans13*ptrans10 
trans52<-trans26*ptrans10 
trans53<-trans7*ptrans10 
trans54<-trans27*ptrans10 
trans55<-trans14*ptrans10 
trans56<-trans28*ptrans10 
trans57<-trans3*ptrans10 
trans58<-trans29*ptrans10 
trans59<-trans15*ptrans10 
trans60<-trans30*ptrans10 
trans61<-trans8*ptrans10 
trans62<-trans31*ptrans10 
trans63<-trans16*ptrans10 
trans64<-trans32*ptrans10 
 
total2<-trans2 
total4<-total2+trans3+trans4 
total6<-total4+trans5+trans6+trans7+trans8 
total8<-
total6+trans9+trans10+trans11+trans12+trans13+trans14+trans15+tran
s16 
total10<-
total8+trans17+trans18+trans19+trans20+trans21+trans22+trans23+tra
ns24+trans25+trans26+trans27+trans28+trans29+trans30+trans31+tra
ns32 
total12<-
total10+trans33+trans34+trans35+trans36+trans37+trans38+trans39+tr
ans40+trans41+trans42+trans43+trans44+trans45+trans46+trans47+tra
ns48+trans49+trans50+trans51+trans52+trans53+trans54+trans55+tra
ns56+trans57+trans58+trans59+trans60+trans61+trans62+trans63+tra
ns64 
 
#Transmission 2a 
 
bptrans0<-trans0*(bpopulation0/100) 
bptrans2<-bptrans0*(bpopulation2/100) 
bptrans4<-bptrans0*(bpopulation4/100) 
bptrans6<-bptrans0*(bpopulation6/100) 
bptrans8<-bptrans0*(bpopulation8/100) 
bptrans10<-bptrans0*(bpopulation10/100) 
 
bpopulation0<-99 
bpopulation2<-99-btotal2 
bpopulation4<-99-btotal4 
bpopulation6<-99-btotal6 
bpopulation8<-99-btotal8 
bpopulation10<-99-btotal10 
 
btrans1<-pcowclincure2+cowclincure2a 
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btrans2<-bptrans0*btrans1 
btrans3<-btrans2*bptrans2 
btrans4<-bptrans2*btrans1 
btrans5<-bptrans4*btrans1 
btrans6<-btrans4*bptrans4 
btrans7<-btrans2*bptrans4 
btrans8<-btrans3*bptrans4 
btrans9<-bptrans6*btrans1 
btrans10<-btrans5*bptrans6 
btrans11<-btrans4*bptrans6 
btrans12<-btrans6*bptrans6 
btrans13<-btrans2*bptrans6 
btrans14<-btrans7*bptrans6 
btrans15<-btrans3*bptrans6 
btrans16<-btrans8*bptrans6 
btrans17<-bptrans8*btrans1 
btrans18<-btrans9*bptrans8 
btrans19<-btrans5*bptrans8 
btrans20<-btrans10*bptrans8 
btrans21<-btrans4*bptrans8 
btrans22<-btrans11*bptrans8 
btrans23<-btrans6*bptrans8 
btrans24<-btrans12*bptrans8 
btrans25<-btrans2*bptrans8 
btrans26<-btrans13*bptrans8 
btrans27<-btrans7*bptrans8 
btrans28<-btrans14*bptrans8 
btrans29<-btrans3*bptrans8 
btrans30<-btrans15*bptrans8 
btrans31<-btrans8*bptrans8 
btrans32<-btrans16*bptrans8 
btrans33<-bptrans10*btrans1 
btrans34<-btrans17*bptrans10 
btrans35<-btrans9*bptrans10 
btrans36<-btrans18*bptrans10 
btrans37<-btrans5*bptrans10 
btrans38<-btrans19*bptrans10 
btrans39<-btrans10*bptrans10 
btrans40<-btrans20*bptrans10 
btrans41<-btrans4*bptrans10 
btrans42<-btrans21*bptrans10 
btrans43<-btrans11*bptrans10 
btrans44<-btrans22*bptrans10 
btrans45<-btrans6*bptrans10 
btrans46<-btrans23*bptrans10 
btrans47<-btrans12*bptrans10 
btrans48<-btrans24*bptrans10 
btrans49<-btrans2*bptrans10 
btrans50<-btrans25*bptrans10 
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btrans51<-btrans13*bptrans10 
btrans52<-btrans26*bptrans10 
btrans53<-btrans7*bptrans10 
btrans54<-btrans27*bptrans10 
btrans55<-btrans14*bptrans10 
btrans56<-btrans28*bptrans10 
btrans57<-btrans3*bptrans10 
btrans58<-btrans29*bptrans10 
btrans59<-btrans15*bptrans10 
btrans60<-btrans30*bptrans10 
btrans61<-btrans8*bptrans10 
btrans62<-btrans31*bptrans10 
btrans63<-btrans16*bptrans10 
btrans64<-btrans32*bptrans10 
 
btotal2<-btrans2 
btotal4<-btotal2+btrans3+btrans4 
btotal6<-btotal4+btrans5+btrans6+btrans7+btrans8 
btotal8<-
btotal6+btrans9+btrans10+btrans11+btrans12+btrans13+btrans14+btra
ns15+btrans16 
btotal10<-
btotal8+btrans17+btrans18+btrans19+btrans20+btrans21+btrans22+btr
ans23+btrans24+btrans25+btrans26+btrans27+btrans28+btrans29+btra
ns30+btrans31+btrans32 
btotal12<-
btotal10+btrans33+btrans34+btrans35+btrans36+btrans37+btrans38+b
trans39+btrans40+btrans41+btrans42+btrans43+btrans44+btrans45+bt
rans46+btrans47+btrans48+btrans49+btrans50+btrans51+btrans52+btr
ans53+btrans54+btrans55+btrans56+btrans57+btrans58+btrans59+btra
ns60+btrans61+btrans62+btrans63+btrans64 
 
#Transmission 3a 
 
cptrans0<-trans0*(cpopulation0/100) 
cptrans2<-cptrans0*(cpopulation2/100) 
cptrans4<-cptrans0*(cpopulation4/100) 
cptrans6<-cptrans0*(cpopulation6/100) 
cptrans8<-cptrans0*(cpopulation8/100) 
cptrans10<-cptrans0*(cpopulation10/100) 
 
cpopulation0<-99 
cpopulation2<-99-ctotal2 
cpopulation4<-99-ctotal4 
cpopulation6<-99-ctotal6 
cpopulation8<-99-ctotal8 
cpopulation10<-99-ctotal10 
 
ctrans1<-pcowclincure3+cowclincure3a 
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ctrans2<-cptrans0*ctrans1 
ctrans3<-ctrans2*cptrans2 
ctrans4<-cptrans2*ctrans1 
ctrans5<-cptrans4*ctrans1 
ctrans6<-ctrans4*cptrans4 
ctrans7<-ctrans2*cptrans4 
ctrans8<-ctrans3*cptrans4 
ctrans9<-cptrans6*ctrans1 
ctrans10<-ctrans5*cptrans6 
ctrans11<-ctrans4*cptrans6 
ctrans12<-ctrans6*cptrans6 
ctrans13<-ctrans2*cptrans6 
ctrans14<-ctrans7*cptrans6 
ctrans15<-ctrans3*cptrans6 
ctrans16<-ctrans8*cptrans6 
ctrans17<-cptrans8*ctrans1 
ctrans18<-ctrans9*cptrans8 
ctrans19<-ctrans5*cptrans8 
ctrans20<-ctrans10*cptrans8 
ctrans21<-ctrans4*cptrans8 
ctrans22<-ctrans11*cptrans8 
ctrans23<-ctrans6*cptrans8 
ctrans24<-ctrans12*cptrans8 
ctrans25<-ctrans2*cptrans8 
ctrans26<-ctrans13*cptrans8 
ctrans27<-ctrans7*cptrans8 
ctrans28<-ctrans14*cptrans8 
ctrans29<-ctrans3*cptrans8 
ctrans30<-ctrans15*cptrans8 
ctrans31<-ctrans8*cptrans8 
ctrans32<-ctrans16*cptrans8 
ctrans33<-cptrans10*ctrans1 
ctrans34<-ctrans17*cptrans10 
ctrans35<-ctrans9*cptrans10 
ctrans36<-ctrans18*cptrans10 
ctrans37<-ctrans5*cptrans10 
ctrans38<-ctrans19*cptrans10 
ctrans39<-ctrans10*cptrans10 
ctrans40<-ctrans20*cptrans10 
ctrans41<-ctrans4*cptrans10 
ctrans42<-ctrans21*cptrans10 
ctrans43<-ctrans11*cptrans10 
ctrans44<-ctrans22*cptrans10 
ctrans45<-ctrans6*cptrans10 
ctrans46<-ctrans23*cptrans10 
ctrans47<-ctrans12*cptrans10 
ctrans48<-ctrans24*cptrans10 
ctrans49<-ctrans2*cptrans10 
ctrans50<-ctrans25*cptrans10 
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ctrans51<-ctrans13*cptrans10 
ctrans52<-ctrans26*cptrans10 
ctrans53<-ctrans7*cptrans10 
ctrans54<-ctrans27*cptrans10 
ctrans55<-ctrans14*cptrans10 
ctrans56<-ctrans28*cptrans10 
ctrans57<-ctrans3*cptrans10 
ctrans58<-ctrans29*cptrans10 
ctrans59<-ctrans15*cptrans10 
ctrans60<-ctrans30*cptrans10 
ctrans61<-ctrans8*cptrans10 
ctrans62<-ctrans31*cptrans10 
ctrans63<-ctrans16*cptrans10 
ctrans64<-ctrans32*cptrans10 
 
ctotal2<-ctrans2 
ctotal4<-ctotal2+ctrans3+ctrans4 
ctotal6<-ctotal4+ctrans5+ctrans6+ctrans7+ctrans8 
ctotal8<-
ctotal6+ctrans9+ctrans10+ctrans11+ctrans12+ctrans13+ctrans14+ctran
s15+ctrans16 
ctotal10<-
ctotal8+ctrans17+ctrans18+ctrans19+ctrans20+ctrans21+ctrans22+ctra
ns23+ctrans24+ctrans25+ctrans26+ctrans27+ctrans28+ctrans29+ctrans
30+ctrans31+ctrans32 
ctotal12<-
ctotal10+ctrans33+ctrans34+ctrans35+ctrans36+ctrans37+ctrans38+ctr
ans39+ctrans40+ctrans41+ctrans42+ctrans43+ctrans44+ctrans45+ctran
s46+ctrans47+ctrans48+ctrans49+ctrans50+ctrans51+ctrans52+ctrans5
3+ctrans54+ctrans55+ctrans56+ctrans57+ctrans58+ctrans59+ctrans60+
ctrans61+ctrans62+ctrans63+ctrans64 
 
#Transmission 4a 
 
dptrans0<-trans0*(dpopulation0/100) 
dptrans2<-dptrans0*(dpopulation2/100) 
dptrans4<-dptrans0*(dpopulation4/100) 
dptrans6<-dptrans0*(dpopulation6/100) 
dptrans8<-dptrans0*(dpopulation8/100) 
dptrans10<-dptrans0*(dpopulation10/100) 
 
dpopulation0<-99 
dpopulation2<-99-dtotal2 
dpopulation4<-99-dtotal4 
dpopulation6<-99-dtotal6 
dpopulation8<-99-dtotal8 
dpopulation10<-99-dtotal10 
 
dtrans1<-pcowclincure4+cowclincure4a 
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dtrans2<-dptrans0*dtrans1 
dtrans3<-dtrans2*dptrans2 
dtrans4<-dptrans2*dtrans1 
dtrans5<-dptrans4*dtrans1 
dtrans6<-dtrans4*dptrans4 
dtrans7<-dtrans2*dptrans4 
dtrans8<-dtrans3*dptrans4 
dtrans9<-dptrans6*dtrans1 
dtrans10<-dtrans5*dptrans6 
dtrans11<-dtrans4*dptrans6 
dtrans12<-dtrans6*dptrans6 
dtrans13<-dtrans2*dptrans6 
dtrans14<-dtrans7*dptrans6 
dtrans15<-dtrans3*dptrans6 
dtrans16<-dtrans8*dptrans6 
dtrans17<-dptrans8*dtrans1 
dtrans18<-dtrans9*dptrans8 
dtrans19<-dtrans5*dptrans8 
dtrans20<-dtrans10*dptrans8 
dtrans21<-dtrans4*dptrans8 
dtrans22<-dtrans11*dptrans8 
dtrans23<-dtrans6*dptrans8 
dtrans24<-dtrans12*dptrans8 
dtrans25<-dtrans2*dptrans8 
dtrans26<-dtrans13*dptrans8 
dtrans27<-dtrans7*dptrans8 
dtrans28<-dtrans14*dptrans8 
dtrans29<-dtrans3*dptrans8 
dtrans30<-dtrans15*dptrans8 
dtrans31<-dtrans8*dptrans8 
dtrans32<-dtrans16*dptrans8 
dtrans33<-dptrans10*dtrans1 
dtrans34<-dtrans17*dptrans10 
dtrans35<-dtrans9*dptrans10 
dtrans36<-dtrans18*dptrans10 
dtrans37<-dtrans5*dptrans10 
dtrans38<-dtrans19*dptrans10 
dtrans39<-dtrans10*dptrans10 
dtrans40<-dtrans20*dptrans10 
dtrans41<-dtrans4*dptrans10 
dtrans42<-dtrans21*dptrans10 
dtrans43<-dtrans11*dptrans10 
dtrans44<-dtrans22*dptrans10 
dtrans45<-dtrans6*dptrans10 
dtrans46<-dtrans23*dptrans10 
dtrans47<-dtrans12*dptrans10 
dtrans48<-dtrans24*dptrans10 
dtrans49<-dtrans2*dptrans10 
dtrans50<-dtrans25*dptrans10 
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dtrans51<-dtrans13*dptrans10 
dtrans52<-dtrans26*dptrans10 
dtrans53<-dtrans7*dptrans10 
dtrans54<-dtrans27*dptrans10 
dtrans55<-dtrans14*dptrans10 
dtrans56<-dtrans28*dptrans10 
dtrans57<-dtrans3*dptrans10 
dtrans58<-dtrans29*dptrans10 
dtrans59<-dtrans15*dptrans10 
dtrans60<-dtrans30*dptrans10 
dtrans61<-dtrans8*dptrans10 
dtrans62<-dtrans31*dptrans10 
dtrans63<-dtrans16*dptrans10 
dtrans64<-dtrans32*dptrans10 
 
dtotal2<-dtrans2 
dtotal4<-dtotal2+dtrans3+dtrans4 
dtotal6<-dtotal4+dtrans5+dtrans6+dtrans7+dtrans8 
dtotal8<-
dtotal6+dtrans9+dtrans10+dtrans11+dtrans12+dtrans13+dtrans14+dtra
ns15+dtrans16 
dtotal10<-
dtotal8+dtrans17+dtrans18+dtrans19+dtrans20+dtrans21+dtrans22+dtr
ans23+dtrans24+dtrans25+dtrans26+dtrans27+dtrans28+dtrans29+dtra
ns30+dtrans31+dtrans32 
dtotal12<-
dtotal10+dtrans33+dtrans34+dtrans35+dtrans36+dtrans37+dtrans38+d
trans39+dtrans40+dtrans41+dtrans42+dtrans43+dtrans44+dtrans45+dt
rans46+dtrans47+dtrans48+dtrans49+dtrans50+dtrans51+dtrans52+dtr
ans53+dtrans54+dtrans55+dtrans56+dtrans57+dtrans58+dtrans59+dtra
ns60+dtrans61+dtrans62+dtrans63+dtrans64 
 
#Transmission5a 
 
eptrans0<-trans0*(epopulation0/100) 
eptrans2<-eptrans0*(epopulation2/100) 
eptrans4<-eptrans0*(epopulation4/100) 
eptrans6<-eptrans0*(epopulation6/100) 
eptrans8<-eptrans0*(epopulation8/100) 
eptrans10<-eptrans0*(epopulation10/100) 
 
epopulation0<-99 
epopulation2<-99-etotal2 
epopulation4<-99-etotal4 
epopulation6<-99-etotal6 
epopulation8<-99-etotal8 
epopulation10<-99-etotal10 
 
etrans1<-pcowclincure5+cowclincure5a 
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etrans2<-eptrans0*etrans1 
etrans3<-etrans2*eptrans2 
etrans4<-eptrans2*etrans1 
etrans5<-eptrans4*etrans1 
etrans6<-etrans4*eptrans4 
etrans7<-etrans2*eptrans4 
etrans8<-etrans3*eptrans4 
etrans9<-eptrans6*etrans1 
etrans10<-etrans5*eptrans6 
etrans11<-etrans4*eptrans6 
etrans12<-etrans6*eptrans6 
etrans13<-etrans2*eptrans6 
etrans14<-etrans7*eptrans6 
etrans15<-etrans3*eptrans6 
etrans16<-etrans8*eptrans6 
etrans17<-eptrans8*etrans1 
etrans18<-etrans9*eptrans8 
etrans19<-etrans5*eptrans8 
etrans20<-etrans10*eptrans8 
etrans21<-etrans4*eptrans8 
etrans22<-etrans11*eptrans8 
etrans23<-etrans6*eptrans8 
etrans24<-etrans12*eptrans8 
etrans25<-etrans2*eptrans8 
etrans26<-etrans13*eptrans8 
etrans27<-etrans7*eptrans8 
etrans28<-etrans14*eptrans8 
etrans29<-etrans3*eptrans8 
etrans30<-etrans15*eptrans8 
etrans31<-etrans8*eptrans8 
etrans32<-etrans16*eptrans8 
etrans33<-eptrans10*etrans1 
etrans34<-etrans17*eptrans10 
etrans35<-etrans9*eptrans10 
etrans36<-etrans18*eptrans10 
etrans37<-etrans5*eptrans10 
etrans38<-etrans19*eptrans10 
etrans39<-etrans10*eptrans10 
etrans40<-etrans20*eptrans10 
etrans41<-etrans4*eptrans10 
etrans42<-etrans21*eptrans10 
etrans43<-etrans11*eptrans10 
etrans44<-etrans22*eptrans10 
etrans45<-etrans6*eptrans10 
etrans46<-etrans23*eptrans10 
etrans47<-etrans12*eptrans10 
etrans48<-etrans24*eptrans10 
etrans49<-etrans2*eptrans10 
etrans50<-etrans25*eptrans10 
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etrans51<-etrans13*eptrans10 
etrans52<-etrans26*eptrans10 
etrans53<-etrans7*eptrans10 
etrans54<-etrans27*eptrans10 
etrans55<-etrans14*eptrans10 
etrans56<-etrans28*eptrans10 
etrans57<-etrans3*eptrans10 
etrans58<-etrans29*eptrans10 
etrans59<-etrans15*eptrans10 
etrans60<-etrans30*eptrans10 
etrans61<-etrans8*eptrans10 
etrans62<-etrans31*eptrans10 
etrans63<-etrans16*eptrans10 
etrans64<-etrans32*eptrans10 
 
etotal2<-etrans2 
etotal4<-etotal2+etrans3+etrans4 
etotal6<-etotal4+etrans5+etrans6+etrans7+etrans8 
etotal8<-
etotal6+etrans9+etrans10+etrans11+etrans12+etrans13+etrans14+etran
s15+etrans16 
etotal10<-
etotal8+etrans17+etrans18+etrans19+etrans20+etrans21+etrans22+etra
ns23+etrans24+etrans25+etrans26+etrans27+etrans28+etrans29+etran
s30+etrans31+etrans32 
etotal12<-
etotal10+etrans33+etrans34+etrans35+etrans36+etrans37+etrans38+et
rans39+etrans40+etrans41+etrans42+etrans43+etrans44+etrans45+etra
ns46+etrans47+etrans48+etrans49+etrans50+etrans51+etrans52+etran
s53+etrans54+etrans55+etrans56+etrans57+etrans58+etrans59+etrans
60+etrans61+etrans62+etrans63+etrans64 
 
 
#Transmission 1b 
 
xptrans0<-trans0*(xpopulation0/100) 
xptrans2<-xptrans0*(xpopulation2/100) 
xptrans4<-xptrans0*(xpopulation4/100) 
xptrans6<-xptrans0*(xpopulation6/100) 
xptrans8<-xptrans0*(xpopulation8/100) 
xptrans10<-xptrans0*(xpopulation10/100) 
 
xpopulation0<-99 
xpopulation2<-99-xtotal2 
xpopulation4<-99-xtotal4 
xpopulation6<-99-xtotal6 
xpopulation8<-99-xtotal8 
xpopulation10<-99-xtotal10 
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xtrans1<-cowclincure1b+cowclincure1c 
xtrans2<-xptrans0*xtrans1 
xtrans3<-xtrans2*xptrans2 
xtrans4<-xptrans2*xtrans1 
xtrans5<-xptrans4*xtrans1 
xtrans6<-xtrans4*xptrans4 
xtrans7<-xtrans2*xptrans4 
xtrans8<-xtrans3*xptrans4 
xtrans9<-xptrans6*xtrans1 
xtrans10<-xtrans5*xptrans6 
xtrans11<-xtrans4*xptrans6 
xtrans12<-xtrans6*xptrans6 
xtrans13<-xtrans2*xptrans6 
xtrans14<-xtrans7*xptrans6 
xtrans15<-xtrans3*xptrans6 
xtrans16<-xtrans8*xptrans6 
xtrans17<-xptrans8*xtrans1 
xtrans18<-xtrans9*xptrans8 
xtrans19<-xtrans5*xptrans8 
xtrans20<-xtrans10*xptrans8 
xtrans21<-xtrans4*xptrans8 
xtrans22<-xtrans11*xptrans8 
xtrans23<-xtrans6*xptrans8 
xtrans24<-xtrans12*xptrans8 
xtrans25<-xtrans2*xptrans8 
xtrans26<-xtrans13*xptrans8 
xtrans27<-xtrans7*xptrans8 
xtrans28<-xtrans14*xptrans8 
xtrans29<-xtrans3*xptrans8 
xtrans30<-xtrans15*xptrans8 
xtrans31<-xtrans8*xptrans8 
xtrans32<-xtrans16*xptrans8 
xtrans33<-xptrans10*xtrans1 
xtrans34<-xtrans17*xptrans10 
xtrans35<-xtrans9*xptrans10 
xtrans36<-xtrans18*xptrans10 
xtrans37<-xtrans5*xptrans10 
xtrans38<-xtrans19*xptrans10 
xtrans39<-xtrans10*xptrans10 
xtrans40<-xtrans20*xptrans10 
xtrans41<-xtrans4*xptrans10 
xtrans42<-xtrans21*xptrans10 
xtrans43<-xtrans11*xptrans10 
xtrans44<-xtrans22*xptrans10 
xtrans45<-xtrans6*xptrans10 
xtrans46<-xtrans23*xptrans10 
xtrans47<-xtrans12*xptrans10 
xtrans48<-xtrans24*xptrans10 
xtrans49<-xtrans2*xptrans10 
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xtrans50<-xtrans25*xptrans10 
xtrans51<-xtrans13*xptrans10 
xtrans52<-xtrans26*xptrans10 
xtrans53<-xtrans7*xptrans10 
xtrans54<-xtrans27*xptrans10 
xtrans55<-xtrans14*xptrans10 
xtrans56<-xtrans28*xptrans10 
xtrans57<-xtrans3*xptrans10 
xtrans58<-xtrans29*xptrans10 
xtrans59<-xtrans15*xptrans10 
xtrans60<-xtrans30*xptrans10 
xtrans61<-xtrans8*xptrans10 
xtrans62<-xtrans31*xptrans10 
xtrans63<-xtrans16*xptrans10 
xtrans64<-xtrans32*xptrans10 
 
xtotal2<-xtrans2 
xtotal4<-xtotal2+xtrans3+xtrans4 
xtotal6<-xtotal4+xtrans5+xtrans6+xtrans7+xtrans8 
xtotal8<-
xtotal6+xtrans9+xtrans10+xtrans11+xtrans12+xtrans13+xtrans14+xtran
s15+xtrans16 
xtotal10<-
xtotal8+xtrans17+xtrans18+xtrans19+xtrans20+xtrans21+xtrans22+xtra
ns23+xtrans24+xtrans25+xtrans26+xtrans27+xtrans28+xtrans29+xtrans
30+xtrans31+xtrans32 
xtotal12<-
xtotal10+xtrans33+xtrans34+xtrans35+xtrans36+xtrans37+xtrans38+xtr
ans39+xtrans40+xtrans41+xtrans42+xtrans43+xtrans44+xtrans45+xtra
ns46+xtrans47+xtrans48+xtrans49+xtrans50+xtrans51+xtrans52+xtrans
53+xtrans54+xtrans55+xtrans56+xtrans57+xtrans58+xtrans59+xtrans6
0+xtrans61+xtrans62+xtrans63+xtrans64 
 
#Transmission 2b 
 
yptrans0<-trans0*(ypopulation0/100) 
yptrans2<-yptrans0*(ypopulation2/100) 
yptrans4<-yptrans0*(ypopulation4/100) 
yptrans6<-yptrans0*(ypopulation6/100) 
yptrans8<-yptrans0*(ypopulation8/100) 
yptrans10<-yptrans0*(ypopulation10/100) 
 
ypopulation0<-99 
ypopulation2<-99-ytotal2 
ypopulation4<-99-ytotal4 
ypopulation6<-99-ytotal6 
ypopulation8<-99-ytotal8 
ypopulation10<-99-ytotal10 
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ytrans1<-cowclincure2b+cowclincure2c 
ytrans2<-yptrans0*ytrans1 
ytrans3<-ytrans2*yptrans2 
ytrans4<-yptrans2*ytrans1 
ytrans5<-yptrans4*ytrans1 
ytrans6<-ytrans4*yptrans4 
ytrans7<-ytrans2*yptrans4 
ytrans8<-ytrans3*yptrans4 
ytrans9<-yptrans6*ytrans1 
ytrans10<-ytrans5*yptrans6 
ytrans11<-ytrans4*yptrans6 
ytrans12<-ytrans6*yptrans6 
ytrans13<-ytrans2*yptrans6 
ytrans14<-ytrans7*yptrans6 
ytrans15<-ytrans3*yptrans6 
ytrans16<-ytrans8*yptrans6 
ytrans17<-yptrans8*ytrans1 
ytrans18<-ytrans9*yptrans8 
ytrans19<-ytrans5*yptrans8 
ytrans20<-ytrans10*yptrans8 
ytrans21<-ytrans4*yptrans8 
ytrans22<-ytrans11*yptrans8 
ytrans23<-ytrans6*yptrans8 
ytrans24<-ytrans12*yptrans8 
ytrans25<-ytrans2*yptrans8 
ytrans26<-ytrans13*yptrans8 
ytrans27<-ytrans7*yptrans8 
ytrans28<-ytrans14*yptrans8 
ytrans29<-ytrans3*yptrans8 
ytrans30<-ytrans15*yptrans8 
ytrans31<-ytrans8*yptrans8 
ytrans32<-ytrans16*yptrans8 
ytrans33<-yptrans10*ytrans1 
ytrans34<-ytrans17*yptrans10 
ytrans35<-ytrans9*yptrans10 
ytrans36<-ytrans18*yptrans10 
ytrans37<-ytrans5*yptrans10 
ytrans38<-ytrans19*yptrans10 
ytrans39<-ytrans10*yptrans10 
ytrans40<-ytrans20*yptrans10 
ytrans41<-ytrans4*yptrans10 
ytrans42<-ytrans21*yptrans10 
ytrans43<-ytrans11*yptrans10 
ytrans44<-ytrans22*yptrans10 
ytrans45<-ytrans6*yptrans10 
ytrans46<-ytrans23*yptrans10 
ytrans47<-ytrans12*yptrans10 
ytrans48<-ytrans24*yptrans10 
ytrans49<-ytrans2*yptrans10 
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ytrans50<-ytrans25*yptrans10 
ytrans51<-ytrans13*yptrans10 
ytrans52<-ytrans26*yptrans10 
ytrans53<-ytrans7*yptrans10 
ytrans54<-ytrans27*yptrans10 
ytrans55<-ytrans14*yptrans10 
ytrans56<-ytrans28*yptrans10 
ytrans57<-ytrans3*yptrans10 
ytrans58<-ytrans29*yptrans10 
ytrans59<-ytrans15*yptrans10 
ytrans60<-ytrans30*yptrans10 
ytrans61<-ytrans8*yptrans10 
ytrans62<-ytrans31*yptrans10 
ytrans63<-ytrans16*yptrans10 
ytrans64<-ytrans32*yptrans10 
 
ytotal2<-ytrans2 
ytotal4<-ytotal2+ytrans3+ytrans4 
ytotal6<-ytotal4+ytrans5+ytrans6+ytrans7+ytrans8 
ytotal8<-
ytotal6+ytrans9+ytrans10+ytrans11+ytrans12+ytrans13+ytrans14+ytra
ns15+ytrans16 
ytotal10<-
ytotal8+ytrans17+ytrans18+ytrans19+ytrans20+ytrans21+ytrans22+ytr
ans23+ytrans24+ytrans25+ytrans26+ytrans27+ytrans28+ytrans29+ytra
ns30+ytrans31+ytrans32 
ytotal12<-
ytotal10+ytrans33+ytrans34+ytrans35+ytrans36+ytrans37+ytrans38+yt
rans39+ytrans40+ytrans41+ytrans42+ytrans43+ytrans44+ytrans45+ytr
ans46+ytrans47+ytrans48+ytrans49+ytrans50+ytrans51+ytrans52+ytra
ns53+ytrans54+ytrans55+ytrans56+ytrans57+ytrans58+ytrans59+ytran
s60+ytrans61+ytrans62+ytrans63+ytrans64 
 
#Transmission 3b 
 
zptrans0<-trans0*(zpopulation0/100) 
zptrans2<-zptrans0*(zpopulation2/100) 
zptrans4<-zptrans0*(zpopulation4/100) 
zptrans6<-zptrans0*(zpopulation6/100) 
zptrans8<-zptrans0*(zpopulation8/100) 
zptrans10<-zptrans0*(zpopulation10/100) 
 
zpopulation0<-99 
zpopulation2<-99-ztotal2 
zpopulation4<-99-ztotal4 
zpopulation6<-99-ztotal6 
zpopulation8<-99-ztotal8 
zpopulation10<-99-ztotal10 
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ztrans1<-cowclincure3b+cowclincure3c 
ztrans2<-zptrans0*ztrans1 
ztrans3<-ztrans2*zptrans2 
ztrans4<-zptrans2*ztrans1 
ztrans5<-zptrans4*ztrans1 
ztrans6<-ztrans4*zptrans4 
ztrans7<-ztrans2*zptrans4 
ztrans8<-ztrans3*zptrans4 
ztrans9<-zptrans6*ztrans1 
ztrans10<-ztrans5*zptrans6 
ztrans11<-ztrans4*zptrans6 
ztrans12<-ztrans6*zptrans6 
ztrans13<-ztrans2*zptrans6 
ztrans14<-ztrans7*zptrans6 
ztrans15<-ztrans3*zptrans6 
ztrans16<-ztrans8*zptrans6 
ztrans17<-zptrans8*ztrans1 
ztrans18<-ztrans9*zptrans8 
ztrans19<-ztrans5*zptrans8 
ztrans20<-ztrans10*zptrans8 
ztrans21<-ztrans4*zptrans8 
ztrans22<-ztrans11*zptrans8 
ztrans23<-ztrans6*zptrans8 
ztrans24<-ztrans12*zptrans8 
ztrans25<-ztrans2*zptrans8 
ztrans26<-ztrans13*zptrans8 
ztrans27<-ztrans7*zptrans8 
ztrans28<-ztrans14*zptrans8 
ztrans29<-ztrans3*zptrans8 
ztrans30<-ztrans15*zptrans8 
ztrans31<-ztrans8*zptrans8 
ztrans32<-ztrans16*zptrans8 
ztrans33<-zptrans10*ztrans1 
ztrans34<-ztrans17*zptrans10 
ztrans35<-ztrans9*zptrans10 
ztrans36<-ztrans18*zptrans10 
ztrans37<-ztrans5*zptrans10 
ztrans38<-ztrans19*zptrans10 
ztrans39<-ztrans10*zptrans10 
ztrans40<-ztrans20*zptrans10 
ztrans41<-ztrans4*zptrans10 
ztrans42<-ztrans21*zptrans10 
ztrans43<-ztrans11*zptrans10 
ztrans44<-ztrans22*zptrans10 
ztrans45<-ztrans6*zptrans10 
ztrans46<-ztrans23*zptrans10 
ztrans47<-ztrans12*zptrans10 
ztrans48<-ztrans24*zptrans10 
ztrans49<-ztrans2*zptrans10 
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ztrans50<-ztrans25*zptrans10 
ztrans51<-ztrans13*zptrans10 
ztrans52<-ztrans26*zptrans10 
ztrans53<-ztrans7*zptrans10 
ztrans54<-ztrans27*zptrans10 
ztrans55<-ztrans14*zptrans10 
ztrans56<-ztrans28*zptrans10 
ztrans57<-ztrans3*zptrans10 
ztrans58<-ztrans29*zptrans10 
ztrans59<-ztrans15*zptrans10 
ztrans60<-ztrans30*zptrans10 
ztrans61<-ztrans8*zptrans10 
ztrans62<-ztrans31*zptrans10 
ztrans63<-ztrans16*zptrans10 
ztrans64<-ztrans32*zptrans10 
 
ztotal2<-ztrans2 
ztotal4<-ztotal2+ztrans3+ztrans4 
ztotal6<-ztotal4+ztrans5+ztrans6+ztrans7+ztrans8 
ztotal8<-
ztotal6+ztrans9+ztrans10+ztrans11+ztrans12+ztrans13+ztrans14+ztran
s15+ztrans16 
ztotal10<-
ztotal8+ztrans17+ztrans18+ztrans19+ztrans20+ztrans21+ztrans22+ztra
ns23+ztrans24+ztrans25+ztrans26+ztrans27+ztrans28+ztrans29+ztrans
30+ztrans31+ztrans32 
ztotal12<-
ztotal10+ztrans33+ztrans34+ztrans35+ztrans36+ztrans37+ztrans38+ztr
ans39+ztrans40+ztrans41+ztrans42+ztrans43+ztrans44+ztrans45+ztran
s46+ztrans47+ztrans48+ztrans49+ztrans50+ztrans51+ztrans52+ztrans5
3+ztrans54+ztrans55+ztrans56+ztrans57+ztrans58+ztrans59+ztrans60+
ztrans61+ztrans62+ztrans63+ztrans64 
 
#Transmission 4b 
 
rptrans0<-trans0*(rpopulation0/100) 
rptrans2<-rptrans0*(rpopulation2/100) 
rptrans4<-rptrans0*(rpopulation4/100) 
rptrans6<-rptrans0*(rpopulation6/100) 
rptrans8<-rptrans0*(rpopulation8/100) 
rptrans10<-rptrans0*(rpopulation10/100) 
 
rpopulation0<-99 
rpopulation2<-99-rtotal2 
rpopulation4<-99-rtotal4 
rpopulation6<-99-rtotal6 
rpopulation8<-99-rtotal8 
rpopulation10<-99-rtotal10 
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rtrans1<-cowclincure4b+cowclincure4c 
rtrans2<-rptrans0*rtrans1 
rtrans3<-rtrans2*rptrans2 
rtrans4<-rptrans2*rtrans1 
rtrans5<-rptrans4*rtrans1 
rtrans6<-rtrans4*rptrans4 
rtrans7<-rtrans2*rptrans4 
rtrans8<-rtrans3*rptrans4 
rtrans9<-rptrans6*rtrans1 
rtrans10<-rtrans5*rptrans6 
rtrans11<-rtrans4*rptrans6 
rtrans12<-rtrans6*rptrans6 
rtrans13<-rtrans2*rptrans6 
rtrans14<-rtrans7*rptrans6 
rtrans15<-rtrans3*rptrans6 
rtrans16<-rtrans8*rptrans6 
rtrans17<-rptrans8*rtrans1 
rtrans18<-rtrans9*rptrans8 
rtrans19<-rtrans5*rptrans8 
rtrans20<-rtrans10*rptrans8 
rtrans21<-rtrans4*rptrans8 
rtrans22<-rtrans11*rptrans8 
rtrans23<-rtrans6*rptrans8 
rtrans24<-rtrans12*rptrans8 
rtrans25<-rtrans2*rptrans8 
rtrans26<-rtrans13*rptrans8 
rtrans27<-rtrans7*rptrans8 
rtrans28<-rtrans14*rptrans8 
rtrans29<-rtrans3*rptrans8 
rtrans30<-rtrans15*rptrans8 
rtrans31<-rtrans8*rptrans8 
rtrans32<-rtrans16*rptrans8 
rtrans33<-rptrans10*rtrans1 
rtrans34<-rtrans17*rptrans10 
rtrans35<-rtrans9*rptrans10 
rtrans36<-rtrans18*rptrans10 
rtrans37<-rtrans5*rptrans10 
rtrans38<-rtrans19*rptrans10 
rtrans39<-rtrans10*rptrans10 
rtrans40<-rtrans20*rptrans10 
rtrans41<-rtrans4*rptrans10 
rtrans42<-rtrans21*rptrans10 
rtrans43<-rtrans11*rptrans10 
rtrans44<-rtrans22*rptrans10 
rtrans45<-rtrans6*rptrans10 
rtrans46<-rtrans23*rptrans10 
rtrans47<-rtrans12*rptrans10 
rtrans48<-rtrans24*rptrans10 
rtrans49<-rtrans2*rptrans10 
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rtrans50<-rtrans25*rptrans10 
rtrans51<-rtrans13*rptrans10 
rtrans52<-rtrans26*rptrans10 
rtrans53<-rtrans7*rptrans10 
rtrans54<-rtrans27*rptrans10 
rtrans55<-rtrans14*rptrans10 
rtrans56<-rtrans28*rptrans10 
rtrans57<-rtrans3*rptrans10 
rtrans58<-rtrans29*rptrans10 
rtrans59<-rtrans15*rptrans10 
rtrans60<-rtrans30*rptrans10 
rtrans61<-rtrans8*rptrans10 
rtrans62<-rtrans31*rptrans10 
rtrans63<-rtrans16*rptrans10 
rtrans64<-rtrans32*rptrans10 
 
rtotal2<-rtrans2 
rtotal4<-rtotal2+rtrans3+rtrans4 
rtotal6<-rtotal4+rtrans5+rtrans6+rtrans7+rtrans8 
rtotal8<-
rtotal6+rtrans9+rtrans10+rtrans11+rtrans12+rtrans13+rtrans14+rtrans
15+rtrans16 
rtotal10<-
rtotal8+rtrans17+rtrans18+rtrans19+rtrans20+rtrans21+rtrans22+rtran
s23+rtrans24+rtrans25+rtrans26+rtrans27+rtrans28+rtrans29+rtrans3
0+rtrans31+rtrans32 
rtotal12<-
rtotal10+rtrans33+rtrans34+rtrans35+rtrans36+rtrans37+rtrans38+rtra
ns39+rtrans40+rtrans41+rtrans42+rtrans43+rtrans44+rtrans45+rtrans
46+rtrans47+rtrans48+rtrans49+rtrans50+rtrans51+rtrans52+rtrans53
+rtrans54+rtrans55+rtrans56+rtrans57+rtrans58+rtrans59+rtrans60+rt
rans61+rtrans62+rtrans63+rtrans64 
 
#Transmission 5b 
 
gptrans0<-trans0*(gpopulation0/100) 
gptrans2<-gptrans0*(gpopulation2/100) 
gptrans4<-gptrans0*(gpopulation4/100) 
gptrans6<-gptrans0*(gpopulation6/100) 
gptrans8<-gptrans0*(gpopulation8/100) 
gptrans10<-gptrans0*(gpopulation10/100) 
 
gpopulation0<-99 
gpopulation2<-99-gtotal2 
gpopulation4<-99-gtotal4 
gpopulation6<-99-gtotal6 
gpopulation8<-99-gtotal8 
gpopulation10<-99-gtotal10 
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gtrans1<-cowclincure5b+cowclincure5c 
gtrans2<-gptrans0*gtrans1 
gtrans3<-gtrans2*gptrans2 
gtrans4<-gptrans2*gtrans1 
gtrans5<-gptrans4*gtrans1 
gtrans6<-gtrans4*gptrans4 
gtrans7<-gtrans2*gptrans4 
gtrans8<-gtrans3*gptrans4 
gtrans9<-gptrans6*gtrans1 
gtrans10<-gtrans5*gptrans6 
gtrans11<-gtrans4*gptrans6 
gtrans12<-gtrans6*gptrans6 
gtrans13<-gtrans2*gptrans6 
gtrans14<-gtrans7*gptrans6 
gtrans15<-gtrans3*gptrans6 
gtrans16<-gtrans8*gptrans6 
gtrans17<-gptrans8*gtrans1 
gtrans18<-gtrans9*gptrans8 
gtrans19<-gtrans5*gptrans8 
gtrans20<-gtrans10*gptrans8 
gtrans21<-gtrans4*gptrans8 
gtrans22<-gtrans11*gptrans8 
gtrans23<-gtrans6*gptrans8 
gtrans24<-gtrans12*gptrans8 
gtrans25<-gtrans2*gptrans8 
gtrans26<-gtrans13*gptrans8 
gtrans27<-gtrans7*gptrans8 
gtrans28<-gtrans14*gptrans8 
gtrans29<-gtrans3*gptrans8 
gtrans30<-gtrans15*gptrans8 
gtrans31<-gtrans8*gptrans8 
gtrans32<-gtrans16*gptrans8 
gtrans33<-gptrans10*gtrans1 
gtrans34<-gtrans17*gptrans10 
gtrans35<-gtrans9*gptrans10 
gtrans36<-gtrans18*gptrans10 
gtrans37<-gtrans5*gptrans10 
gtrans38<-gtrans19*gptrans10 
gtrans39<-gtrans10*gptrans10 
gtrans40<-gtrans20*gptrans10 
gtrans41<-gtrans4*gptrans10 
gtrans42<-gtrans21*gptrans10 
gtrans43<-gtrans11*gptrans10 
gtrans44<-gtrans22*gptrans10 
gtrans45<-gtrans6*gptrans10 
gtrans46<-gtrans23*gptrans10 
gtrans47<-gtrans12*gptrans10 
gtrans48<-gtrans24*gptrans10 
gtrans49<-gtrans2*gptrans10 
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gtrans50<-gtrans25*gptrans10 
gtrans51<-gtrans13*gptrans10 
gtrans52<-gtrans26*gptrans10 
gtrans53<-gtrans7*gptrans10 
gtrans54<-gtrans27*gptrans10 
gtrans55<-gtrans14*gptrans10 
gtrans56<-gtrans28*gptrans10 
gtrans57<-gtrans3*gptrans10 
gtrans58<-gtrans29*gptrans10 
gtrans59<-gtrans15*gptrans10 
gtrans60<-gtrans30*gptrans10 
gtrans61<-gtrans8*gptrans10 
gtrans62<-gtrans31*gptrans10 
gtrans63<-gtrans16*gptrans10 
gtrans64<-gtrans32*gptrans10 
 
gtotal2<-gtrans2 
gtotal4<-gtotal2+gtrans3+gtrans4 
gtotal6<-gtotal4+gtrans5+gtrans6+gtrans7+gtrans8 
gtotal8<-
gtotal6+gtrans9+gtrans10+gtrans11+gtrans12+gtrans13+gtrans14+gtran
s15+gtrans16 
gtotal10<-
gtotal8+gtrans17+gtrans18+gtrans19+gtrans20+gtrans21+gtrans22+gtra
ns23+gtrans24+gtrans25+gtrans26+gtrans27+gtrans28+gtrans29+gtran
s30+gtrans31+gtrans32 
gtotal12<-
gtotal10+gtrans33+gtrans34+gtrans35+gtrans36+gtrans37+gtrans38+gt
rans39+gtrans40+gtrans41+gtrans42+gtrans43+gtrans44+gtrans45+gtra
ns46+gtrans47+gtrans48+gtrans49+gtrans50+gtrans51+gtrans52+gtran
s53+gtrans54+gtrans55+gtrans56+gtrans57+gtrans58+gtrans59+gtrans
60+gtrans61+gtrans62+gtrans63+gtrans64 
 
totalcosts1<-
cull1acosts+endlactcosts1a+xcostcull1c+xcostofendlactation1c+ycostofen
dlactation1c+ycostcull1c+cull1bcosts+endlactcosts1b+costofdeath1+cost
ofdryoffsurvive1+costofdryoffcull1+costofcull1d+endlactcost1d+xcostcul
l1d+xcostofendlactation1d+ycostcull1d+ycostofendlactation1d+cull1ecos
ts+endlactcosts1e+costofdeath1c+costofdryoffsurvive1c+costofdryoffcull
1c+costofcull1f+endlactcost1f+cull1hcosts+cull1gcosts 
 
totalcosts2<-
cull2acosts+endlactcosts2a+xcostcull2c+xcostofendlactation2c+ycostofen
dlactation2c+ycostcull2c+cull2bcosts+endlactcosts2b+costofdeath2+cost
ofdryoffsurvive2+costofdryoffcull2+costofcull2d+endlactcost2d+xcostcul
l2d+xcostofendlactation2d+ycostcull2d+ycostofendlactation2d+cull2ecos
ts+endlactcosts2e+costofdeath2c+costofdryoffsurvive2c+costofdryoffcull
2c+costofcull2f+endlactcost2f+cull2hcosts+cull2gcosts 
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totalcosts3<-
cull3acosts+endlactcosts3a+xcostcull3c+xcostofendlactation3c+ycostofen
dlactation3c+ycostcull3c+cull3bcosts+endlactcosts3b+costofdeath3+cost
ofdryoffsurvive3+costofdryoffcull3+costofcull3d+endlactcost3d+xcostcul
l3d+xcostofendlactation3d+ycostcull3d+ycostofendlactation3d+cull3ecos
ts+endlactcosts3e+costofdeath3c+costofdryoffsurvive3c+costofdryoffcull
3c+costofcull3f+endlactcost3f+cull3hcosts+cull3gcosts 
 
totalcosts4<-
cull4acosts+endlactcosts4a+xcostcull4c+xcostofendlactation4c+ycostofen
dlactation4c+ycostcull4c+cull4bcosts+endlactcosts4b+costofdeath4+cost
ofdryoffsurvive4+costofdryoffcull4+costofcull4d+endlactcost4d+xcostcul
l4d+xcostofendlactation4d+ycostcull4d+ycostofendlactation4d+cull4ecos
ts+endlactcosts4e+costofdeath4c+costofdryoffsurvive4c+costofdryoffcull
4c+costofcull4f+endlactcost4f+cull4hcosts+cull4gcosts 
 
totalcosts5<-
cull5acosts+endlactcosts5a+xcostcull5c+xcostofendlactation5c+ycostofen
dlactation5c+ycostcull5c+cull5bcosts+endlactcosts5b+costofdeath5+cost
ofdryoffsurvive5+costofdryoffcull5+costofcull5d+endlactcost5d+xcostcul
l5d+xcostofendlactation5d+ycostcull5d+ycostofendlactation5d+cull5ecos
ts+endlactcosts5e+costofdeath5c+costofdryoffsurvive5c+costofdryoffcull
5c+costofcull5f+endlactcost5f+cull5hcosts+cull5gcosts 
 
totalcostplustransmission1<-totalcosts1+(totalcosts1*(total12+xtotal12)) 
 
totalcostplustransmission2<-
totalcosts2+(totalcosts2*(btotal12+ytotal12)) 
 
totalcostplustransmission3<-
totalcosts3+(totalcosts3*(ctotal12+ztotal12)) 
 
totalcostplustransmission4<-
totalcosts4+(totalcosts4*(dtotal12+rtotal12)) 
 
totalcostplustransmission5<-
totalcosts5+(totalcosts5*(etotal12+gtotal12)) 
 
} 
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Appendix 2 

Example of WinBUGS code for cost-effectiveness model from Chapter 5 

 
#----MODEL Definition---------------- 
 
model 
{ 
# Level 1 definition 
for(i in 1:N) { 
CMDPx[i] ~ dnorm(mu[i],tau) 
mu[i]<- a[i] + b[i] + c[i] 
 
a[i]<- beta[1] * cons[i]   
+ beta[2] * D0.CMDP12MR[i]    #Day 0 CMDP rate 
+ beta[3] * v7220i_1[i]                #DC cubicles cleaned twice daily 
+ beta[4] * v7220i_2[i] 
+ beta[5] * v7620i_1[i]                 #DC rations formulated by qualified nutritionist 
+ beta[6] * v7620i_2[i] 
+ beta[7] * v7860i_1[i]                 #DCT selected at cow level 
+ beta[8] * v7860i_2[i] 
+ beta[9] * v7880i_1[i]                #AB and non-AB DCT considered for low scc cows 
+ beta[10] * v7880i_2[i] 
+ beta[11] * v8015i_1[i]             #Cows calve in individual calving pens 
b[i]<- beta[12] * v8015i_2[i] 
+ beta[13] * v8135i_1[i]           #Straw yards should be completely mucked out at least 
monthly 
+ beta[14] * v8135i_2[i] 
+ beta[15] * v8715i_1[i]           #Calves must only be allowed to suckle their own dam 
+ beta[16] * v8715i_2[i] 
+ beta[17] * v7815i_1[i] 
+ beta[18] * v7815i_2[i] 
+ beta[19] * v8735i_1[i]            #Cows should be first milked within 24hrs of calving 
+ beta[20] * v8735i_2[i] 
+ beta[21] * v7640i_1[i] 
c[i]<- beta[22] * v7640i_2[i] 
+ beta[23] * v7680i_1[i]            #Calcium and Magnesium should be balanced to 
prevent MF 
+ beta[24] * v7680i_2[i] 
+ beta[25] * v7171i_1[i]            #Cubilces should be designed so >90% cows lie in 
them right 
+ beta[26] * v7171i_2[i] 
+ beta[27] * v7310i_1[i] 
+ beta[28] * v7310i_2[i] 
+ beta[29] * v7830i_1[i]           #Cows must not be dried off whilst foot trimming 
+ beta[30] * v7830i_2[i] 
+ beta[31] * v7355i_1[i]  
+ beta[32] * v7355i_2[i] 
+ beta[33] * v7225i_1[i]           #Clean bedding should be applied at least daily (DC) 
+ beta[34] * v7225i_2[i] 
+ beta[35] * v7115i_1[i]           #Max no. days cows dried off before calving <70 
+ beta[36] * v7115i_2[i] 
+ beta[37] * graze_2_rest_4_1[i]          #G2R4 
+ beta[38] * graze_2_rest_4_2[i]  
 
} 
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# Higher level definitions 
# Priors for fixed effects 
for (k in 1:38) { beta[k] ~ dflat() } 
# Priors for random terms 
tau ~ dgamma(0.001000,0.001000) 
sigma2 <- 1/tau 
 
for (j in 1: P) { 
 
cmcost[j] ~ dnorm(313, 0.00009803)I(0, )     #cost of a case of CM (Green et al 2009) 
 
#cost benefit analysis of cleaning cubicles twice daily 
cleancubicleseffect[j] <- y[j] * (beta[3]/100)   #predicted effect of clean cubicles on 
CMDP 
cleancubiclescost1[j] <- 250                #cost of using instslling calving pens (£) 
cleancubiclescost2[j] <- 500  
cleancubiclescost3[j] <- 750  
cleancubiclescost4[j] <- 1000 
cleancubiclessaving[j] <- (cmcost[j] * cleancubicleseffect[j]) * 10   #Savings made/yr 
for 120 cow herd 
inbCLEANCUBICLES1[j] <- cleancubiclessaving[j] + cleancubiclescost1[j]   #INB (£)  
inbCLEANCUBICLES2[j] <- cleancubiclessaving[j] + cleancubiclescost2[j]  
inbCLEANCUBICLES3[j] <- cleancubiclessaving[j] + cleancubiclescost3[j]  
inbCLEANCUBICLES4[j] <- cleancubiclessaving[j] + cleancubiclescost4[j]  
p500.cleancubicles1[j]<-step(-(inbCLEANCUBICLES1[j]+500))       #probability of 
saving £500 after 1 year 
p500.cleancubicles2[j]<-step(-(inbCLEANCUBICLES2[j]+500))    
p500.cleancubicles3[j]<-step(-(inbCLEANCUBICLES3[j]+500))    
p500.cleancubicles4[j]<-step(-(inbCLEANCUBICLES4[j]+500))    
p1000.cleancubicles1[j]<-step(-(inbCLEANCUBICLES1[j]+1000))    
p1000.cleancubicles2[j]<-step(-(inbCLEANCUBICLES2[j]+1000))    
p1000.cleancubicles3[j]<-step(-(inbCLEANCUBICLES3[j]+1000))    
p1000.cleancubicles4[j]<-step(-(inbCLEANCUBICLES4[j]+1000))    
 
#cost benefit analysis of ration 
rationeffect[j] <- y[j] * (beta[5]/100)               #predicted effect of ration on CMDP 
rationcost1[j] <- 250                                      #cost of ration (£) 
rationcost2[j] <- 500   
rationcost3[j] <- 1000  
rationcost4[j] <- 2000  
rationsaving[j] <- (cmcost[j] * rationeffect[j]) * 10   #Savings made/yr for 120 cow herd 
inbRATION1[j] <- rationsaving[j] + rationcost1[j]                         #INB (£)    
inbRATION2[j] <- rationsaving[j] + rationcost2[j]                         #INB (£)  
inbRATION3[j] <- rationsaving[j] + rationcost3[j]                         #INB (£) (  
inbRATION4[j] <- rationsaving[j] + rationcost4[j]                         #INB (£) (negative 
means saving money)  
p1000.ration1[j]<-step(-(inbRATION1[j]+1000)) #probability of saving £1000 after 1 
year 
p1000.ration2[j]<-step(-(inbRATION2[j]+1000))  
p1000.ration3[j]<-step(-(inbRATION3[j]+1000))                            
p1000.ration4[j]<-step(-(inbRATION4[j]+1000))                            
 
 
} 
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Appendix 3 

 

EDP Interventions investigated in Chapter 5 

 
Alleyways, loafing and feed areas should be scraped at least twice daily. 

(dry cows) 

Straw yards should be cleaned out completely at least once per month. 

(dry cows) 

As a general principle the environment of dry cows should be managed at 

least as well as for milking cows. 

There should be a bedded lying area of 1.25sq.m. Per 1000 litres of milk 

per cow (herd annual milk yield) (dry cows) 

Calves must only be allowed to suckle their own mother to prevent the 

possible transfer of pathogens in milk between cows. 

Alleyways, loafing and feed areas should be scraped at least twice daily. 

(calving cows) 

Straw yards should be cleaned out completely at least once per month. 

(calving cows) 

New, clean, dry straw should be put in yards or pens at least once daily. 

(calving cows) 

You must monitor indices describing udder health in conjunction with the 

attending veterinary surgeon. 

Dry cow therapy must be administered hygienically, as detailed in the 

standard operating procedure provided with the training materials. 

Cows are sometimes or always dried off during the milking process. 
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Cows must be observed for signs of disease at least every 6 hours for the 

first 24hrs, to ensure early detection of mastitis (or any other disease). 

New clean, dry straw should be put in the yards at least once daily. (dry 

cows) 

Cows sometimes have access to the same lying area (e.g. Loafing paddock, 

paddock near the farm or sheltered area) for more than two continuous 

weeks. (dry cows) 

At least 250kg of straw per cow should be used to bed cows per month 

housed (~1.5 tonnes straw per dry cow per winter). (dry cows) 

Cows are sometimes on the same pasture, paddock or field for two or 

more weeks. (dry cows) 

There should be 15sq.m. Per cow, whether cows calve in pens or yards. 

You must monitor mastitis indices at least every three months. 

If limited space is available, priority should be given to the space 

allowances for transition cows and bedding frequency should be 

increased. (dry cows) 

Heifers must be kept in clean, dry environmental conditions at all times. 

Calves must be fed 3 litres colostrum in the first 6 hours of life to 

minimize the risk of general disease. 

Milk yield should be reduced to less than 15 litres by the time of drying 

off, and preferably to less than 10 litres. 

You should monitor mastitis indices on a monthly basis. 

Mixing maiden heifers and dry cows should be avoided since this has 

been associated with an increased risk of mastitis after calving. 



258 
 

Clean bedding material should be applied at least once daily for organic 

bedding. (dry cows) 

An aseptic milk sample must be collected from every case of clinical 

mastitis. 

Cows sometimes return to a grazing, loafing or rest area within 4 weeks 

after it has last been used by cattle. (dry cows) 

An aseptic treatment procedure and partial insertion of the 

intramammary tube into the teat end must be used (as for dry cow 

therapy administration). 

Cows should be milked for the first time within 24 hours of calving. 

The success of mastitis treatments must be monitored (in consultation 

with the attending veterinary surgeon) by monitoring cow scc in the 

months after treatment. 

Cows should be dried off in the parlour, (but not during milking) since 

this gives best access for udder preparation. 

Dry cow therapy should be selected at the cow level (a suitable product 

for each cow) in consultation with the attending veterinary surgeon. 

Both antibiotic and non-antibiotic approaches should be considered for 

low scc cows. 

Pens must be cleaned out between each cow calving. 

Each quarter should be stripped within 4 hours of calving to check for 

mastitis. 

There should be a separate transition cow group from approximately 3 

weeks before calving. 

Clinical mastitis incidence per quarter and per cow (indices to monitor) 
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Dung, soiling and wet bedding should be removed at least twice per day 

from dry cow cubicles. (dry cows) 

Sometimes cows have to share calving pens or there are insufficient pens 

to allow them to be cleaned out between calvings. 

There should be water trough space of >10cm per cow for all cows at all 

stages of the production cycle, including availability in the yards before 

and after milking. 

Quarters must be fore-milked at each milking to look for milk changes 

(clots, watery, changes in colour). 

You must move to a different field or move feeders if severe poaching of 

the land and/or gateways occurs. (dry cows) 

There must be good ventilation, but without draughts in all dry cow 

housing. 

New, clean sand should be put in yards or pens at least daily (aim to get 

cows onto a straw bed during calving). 

A minimum of 10 milk samples must be cultured and the incidence of 

specific pathogens monitored in conjunction with a veterinary advisor. 

Responses to treatment. (indices to monitor) 

Drying off must be abrupt; that is, cows should not be milked once daily. 

The calf should be removed from the cow within 24 hrs of birth after 

ensuring colostrum has been fed. 

The high scc cow decision support tool should be used in consultation 

with the attending veterinary surgeon to decide the best course of action 

for each cow. 
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Drying agents should be used to improve the dryness of the cubicle beds. 

(dry cows) 

All early dry period cows should have an appropriate dry cow mineral 

supplement. 

In-line filters (if present) must be checked after each cow is milked. 

There must be at least 2sq.m. loafing space/cow. (dry cows) 

Inorganic bedding materials should be used wherever possible. (dry 

cows) 

Surface flooding or severe poaching sometimes occurs at pasture. (dry 

cows) 

A cmt (california mastitis test) test should be carried out on all quarters of 

each cow within 7 days of calving. 

You should never exceed a stocking density of 100 cows/acre/day in a 

two week period. (dry cows) 

Vitamin E - 1200 iu /cow/day (dry cows) 

Heifers must have clean legs, udders and tails at all times. 

All clinical cases of mastitis must be treated with antibiotics. 

Significant pooling of liquid in housing, feeding and/or loafing areas 

occurs. 

Straw, sawdust or paper products should be stored under a waterproof 

cover and kept dry at all times. 

You should consider an extended antibiotic therapy regime. (treatment of 

high scc cows) 
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There should be at least 0.6m feedspace per cow in total for access to 

forage, concentrate or complete diet portions of the cows' feed. (dry 

cows) 

There must be good ventilation but without draughts in all calving cow 

housing. 

Calcium and magnesium should be balanced to prevent milk fever, 

whether calcium restriction or DCAB manipulation are used. 

Cows with milk yields that have dropped below 5 litres should be dried 

off immediately. 

Pre-milking teat disinfection must be carried out. 

You should take a pre-treatment sample. (treatment of high scc cows) 

20 to 30 seconds must elapse after application of pre-milking teat 

disinfection, before teats are dried. 

There should be a brisket board in the cubicles at a distance of 

approximately 75% of the cubicle length (1.82m) to ensure that at least 

90% of the dry cows dung into the passageway. (dry cows) 

Cows should calve in individual pens rather than yards. 

The yards or pens should have a base with sand on top of hardcore or 

concrete. (calving cows) 

However many of the following items are performed, they must be done 

in this order: wash and dry teats, foremilk, pre-milking teat disinfection, 

dry teats with individual towels. 

A CMT should be used to assess milk from quarters when in doubt over 

the presence of mastitis. 
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A J5 vaccination protocol could be used if the herd is suffering from 

uncontrollable severe coliform mastitis. 

You should differentiate infected from uninfected cows using scc records 

from the current lactation. 

The base of the straw yard should have excellent drainage, possibly with 

sand on top of hardcore or concrete. (dry cows) 

There must be good ventilation, but without draughts in all milking cow 

housing. 

Each quarter must be foremilked to detect mastitis. 

Sufficient bedding should be used to keep surface conditions dry but also 

to retain cow comfort. (dry cows) 

There should be at least 3sq.m. Per cow. (dry cows) 

Individual cow somatic cell counts and trends. (indices to monitor) 

Collecting yards must be scraped before or after every milking. 

Dry cow rations should be formulated by a suitably qualified  nutritional 

advisor. 

All cases of clinical mastitis must be recorded according to a defined 

protocol. 

Concrete floors must be grooved where and floors must be non-slip in all 

areas. (calving cows) 

A non- steroidal anti-inflammatory drug should be used. (treatment of 

grade 2 cases) 

Exit to parlour must be stress-free (no operator pressure or poor design 

features such as excessive slopes or bends). 

Bedding should be spread evenly. (dry cows) 
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Ideally the dry period should be between 42 and 70 days in length. 

Cubicles should be designed such that at least 90% of dry cows will lie in 

them correctly at all times. (dry cows) 

The milking staff must assess cows for dullness, depression, anorexia. 

Cows must not be dried off when foot-trimming. 

Ideally the dry period should be between 42 and 70 days in length. 

New bedding should be spread evenly. (calving cows) 



264 
 

Appendix 4 

 

EL Interventions investigated in Chapter 6 

 
Liners must be changed at least every 2500 milkings or 6 monthly 

(whichever occurs first) - unless the manufacturer specifies otherwise. 

Clusters must be applied within 1 minute of the end of teat preparation. 

There should be less than 5% of cows with moderate/severe teat end 

damage (hyperkeratosis). 

An aseptic milk sample must be collected from every case of clinical 

mastitis. 

Collecting yards must be scraped before or after every milking. 

Each quarter must be foremilked to detect mastitis. 

A six monthly machine test must be carried out by an independent, 

suitably qualified technician to ISO standard. 

However many of the following items are performed, they must be done 

in this order: wash and dry teats, foremilk, pre-milking teat disinfection, 

dry teats with individual towels. 

Quarters must be fore-milked at each milking to look for milk changes 

(clots, watery, changes in colour). 

Pre-milking teat disinfection must be carried out. 

An aseptic treatment procedure and partial insertion of the 

intramammary tube into the teat end must be used (as for dry cow 

therapy administration). 
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Cows with clinical mastitis and high scc must be milked last to stop the 

spread of infection to other cows. 

20 to 30 seconds must elapse after application of pre-milking teat 

disinfection, before teats are dried. 

There should be water trough space of >10cm per cow for all cows at all 

stages of the production cycle, including availability in the yards before 

and after milking. 

There must be a clean yard on exit, which is scraped before and during 

milking if necessary. 

You must monitor mastitis indices at least every three months. 

You must monitor indices describing udder health in conjunction with the 

attending veterinary surgeon. 

The clusters must be squarely aligned and balanced centrally under all 

cows. 

Hot disinfectant should be used to clean clusters that become dirty during 

milking. 

You should avoid returning cows to any one grazing, loafing or rest area 

for at least 4 weeks after it has been used by cattle. (milking cows) 

Hot disinfectant must be used to wash clusters after milking a cow with 

clinical mastitis or a high somatic cell count, whether or not a separate 

cluster is used and, where possible, the plant back to the recording 

jar/meter must also be back-flushed with hot disinfectant. 

The routine should take around 1 minute from start of preparation to 

putting units on. 
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Calves must be fed 3 litres colostrum in the first 6 hours of life to 

minimize the risk of general disease. 

Damp bales should be discarded or at least used for the animals at lowest 

risk, such as youngstock. 

Dump clusters/lines/buckets should be tested as a part of the plant 

assessment and included in a dynamic test. 

Alleyways, loafing and feeding areas must be scraped out at least twice 

daily. (milking cows) 

The success of mastitis treatments must be monitored (in consultation 

with the attending veterinary surgeon) by monitoring cow scc in the 

months after treatment. 

There must be good ventilation, but without draughts in all milking cow 

housing. 

There should be sufficient grip and grooving of concrete in all areas to 

prevent the risk of slipping and injury. 

You should avoid letting cows have access to any one lying area (for 

example loafing paddocks near to the farm or sheltered areas) for more 

than two continuous weeks. (milking cows) 

Dump bucket/line cluster liners must be changed when parlour liners are 

changed – and should be changed more frequently if necessary. 

You should actively manage gateways/walkways by using bark, hardcore, 

shavings etc to minimize the risk of poaching. (milking cows) 

A minimum of 10 milk samples must be cultured and the incidence of 

specific pathogens monitored in conjunction with a veterinary advisor. 
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All high scc cows (as a guide >200,000 cells/ml for two of the last three 

months) should be clearly marked (using tail tape, leg bands, sprays etc), 

so that care can be taken to avoid their milk contaminating hands or other 

cows through splashes or aerosols. 

As a second best to the above, cows with clinical mastitis and high somatic 

cell counts should at least be milked with a separate cluster (this cluster 

should not be used to milk fresh calved cows or cows with milk out of the 

tank for reasons other than mastitis). 

All wet areas must be dried with clean paper/laundered towel, with one 

clean / fresh part used per teat. 

Straw, sawdust or paper products should be stored under a waterproof 

cover and kept dry at all times. 

A rapid kill disinfection product must be used. (pre-milking teat 

disinfection) 

Straw yards should be cleaned out completely at least once per month. 

(milking cows) 

The acr removal flow rate should be checked at six monthly intervals by a 

suitably trained technician. 

A wash with hot water and disinfectant should be carried out after every 

milking. 

When a house is re-bedded after cleaning out, the environment must be 

totally clean, preferably disinfected and copious amounts of bedding used 

to ensure the cows do not become dirty. (milking cows) 

There should be a bedded lying area of 1.25 sq.m. Per 1000 litres of milk 

per cow (herd annual milk yield). For example, an 8,000 litre cow needs 
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approximately 10 sq.m., whilst a 10,000 litre cow needs 12.5 sq.m. 

(milking cows) 

You should rotate the use of routes and gateways wherever possible 

should poaching occur. (milking cows) 

Cases which are doubtful but that have an increased cmt reading (or 

conductivity) must be treated. 

You should group cows with a high scc and cows with clinical cases of 

mastitis separately to the main herd and milk them last at each milking. 

Cows should always have access to water (not be denied access for more 

than 1 hour in a 24 hour period). 

Clean bedding material must be applied at least once daily for organic 

bedding. (milking cows) 

Significant pooling of liquid in housing, feeding and/or loafing areas 

occurs. 

Clinical mastitis incidence per quarter and per cow (indices to monitor) 

All clinical cases of mastitis must be treated with antibiotics. 

You should monitor mastitis indices on a monthly basis. 

If limited space is available, priority should be given to the space 

allowances for the high yielding cows and bedding frequency should be 

increased. 

The high scc cow decision support tool should be used in consultation 

with the attending veterinary surgeon to decide the best course of action 

for each cow. 
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The milking machine should be washed with hot water and a full 

disinfection cycle, following the manufacturers recommendations, after 

every milking. 

Responses to treatment. (indices to monitor) 

You should avoid having cows on the same pasture, paddock or field for 

more than two continuous weeks. (milking cows) 

Significant poaching of pastures, gateways, walkways, shelter or feed 

areas sometimes occurs. 

Air bleed holes must remain open and clear throughout the milking 

process. 

You must maintain excellent housing conditions (as for winter) if cows 

have access to housed lying areas during the grazing months. (milking 

cows) 

Sufficient bedding must be used to keep surface conditions dry and also 

retain cow comfort. (milking cows) 

You must show due diligence with milk withdrawal when using off-label 

products by using the standard milk withdrawal period (at least 7 days) 

and then also testing the milk to ensure freedom from antibiotic residues 

before allowing it back into the bulk tank. 

Fresh food should be provided after each milking to encourage the cows 

to stand for >30 minutes after milking and to prevent access to the lying 

area. 

The herd should have a written farm policy for biosecurity made in 

consultation with the attending veterinary surgeon. 
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As a second best measure, you should at least group cows with clinical 

mastitis separately to the main herd. 

Hands and gloves should be washed and dried during milking if they 

become dirty. 

A CMT should be used to assess milk from quarters when in doubt over 

the presence of mastitis. 

Cows must not be over-milked. 

Cows are sometimes on the same pasture, paddock or field for two or 

more weeks. (dry cows) 

There should be well designed yards and alleys that minimise the risk of 

slipping and injury. 

The herd should be closed, with barriers to outside animals and people. 

You must move to a different field if severe poaching of the land and/or 

gateways occurs. (milking cows) 

A static and dynamic machine test must be performed by an independent 

qualified technician if a new parlour or extension is fitted. 

You must ensure good fly control for all lactating cows and heifers 

through the summer period when flies are expected or apparent. 

You should take a pre-treatment sample. (treatment of high scc cows) 

Cows sometimes have to wait more than one hour to be milked. 

Drying agents could be used to improve the dryness of cubicle beds, but 

they are not clinically proven to reduce mastitis. (milking cows) 

The base of the straw yard should have excellent drainage, possibly with 

sand on top of hardcore or concrete. (milking cows) 
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There should be at least 0.6m feedspace per cow in total for access to 

forage, concentrate or complete diet portions of the cows' feed. (milking 

cows) 

The straw for bedding should be unchopped. (milking cows) 

Dry straw only should be harvested or purchased. Prior to bedding, straw 

should contain no more than 15% moisture and this can be checked using 

a moisture meter if in doubt. 

If teats are dirty they must be washed up to base of the udder with warm 

potable water. 

In-line filters (if present) must be checked after each cow is milked. 

Inorganic bedding materials should be used wherever possible. (milking 

cows) 

You could use ‘off-label’ approaches to treatment in consultation with the 

attending veterinary surgeon. 

Clusters that become dirty during milking must be washed using potable 

(ie water of drinking quality) water. 

The scrapers must work sufficiently often to keep alleyways clean. 

(milking cows) 

There must be access to ad lib water in the post milking yard. 

Affected quarters must be stripped out thoroughly. 

Selenium - 3.6 mg /cow/day (dry cows) 

There should be 5% more cubicles than cows for each group. (milking 

cows) 

There should be a brisket board in the cubicles at a distance of 

approximately 75% of the cubicle length (but should be adjustable) to 
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ensure that at least 90% of the cows dung into the passageway. (milking 

cows) 

The milking staff must assess cows for dullness, depression, anorexia. 

Foremilking should be into a strip cup or carried out with great care to 

avoid the spread of infection. 

A non- steroidal anti-inflammatory drug should used. (treatment of grade 

3 cases) 

Cubicle partitions must be safe and in good condition and unlikely to 

cause teat or udder injury. (milking cows) 

You must have sufficient pasture drainage to never allow surface flooding 

or severe poaching. (milking cows) 

Water troughs must not be sited in the bedded area, and must be 

surrounded by a clean, well-drained surface in the loafing or feed areas. 

(milking cows) 

New, clean, dry straw should be put in yards or pens at least once daily. 

(calving cows) 

Pre-milking teat disinfection should be applied with a cup rather than a 

spray. 

Copper 11 mg/kg dm in diet (milking cows) 

Dogs should not be used to move cows, when cows are housed. 

A non- steroidal anti-inflammatory drug should be used. (treatment of 

grade 2 cases) 

There should be less than 5% of cows with liner slip. 
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At least 250kg of straw per cow should be used to bed cows per month 

housed (approximately 1.5 tonnes straw per milking cow per winter). 

(milking cows) 

Some cows show signs of discomfort during milking. 

The cow must be cmt negative for 3 consecutive days if purchased in early 

lactation. (cows being bought) 

 cubicles should be designed such that at least 90% cows will lie in them 

correctly, at all times. (milking cows) 

Alleyways, loafing and feed areas should be scraped at least twice daily. 

(dry cows) 

In general, the highest flow rate acr setting at removal should be used that 

allows effective milk out, to minimize the time clusters are on the cows. 

Cows sometimes have access to the same lying area (e.g. Loafing paddock, 

paddock near the farm or sheltered area) for more than two continuous 

weeks. (dry cows) 

There must be a minimum of at least 2sq.m./cow. (loafing space for 

milking cows) 

The milking staff must look at/feel the udder for signs of inflammation 

(heat, swelling, redness, pain). 

Less than 5% cows should leak milk while waiting to be milked. 

Vitamin E - 550 iu / cow / day (milking cows) 

There must be at least as many cubicles as cows for each group. (milking 

cows) 

Selenium 0.3 mg/kg dm in diet (milking cows) 

There should be less than 2% of cows with other teat lesions. 
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A licensed antibiotic product must be used for treatment according to 

datasheet recommendations. 

Collecting yards should have sufficient drainage to prevent excessive 

pooling of liquid and footbaths should not be used just before milking. 

Grade three cases should be treated in close consultation with the 

attending veterinary surgeon. 

Collecting yards should have sufficient grip and grooving to prevent the 

risk of slipping and injury. 

Zinc 50 mg/kg dm in diet (milking cows) 

During milking, the vacuum should not drop by more than 2kpa when one 

more cluster than the number of milking staff is open. 

You should consider an extended antibiotic therapy regime. (treatment of 

high scc cows) 

You must follow the manufacturer’s recommendations regarding the 

wash such as the quantity/temperature of water required and the 

types/concentrations/frequency of chemicals used. 

Clean bedding material must be applied at least once every other day for 

inorganic bedding. (milking cows) 

Exit to parlour must be stress-free (no operator pressure or poor design 

features such as excessive slopes or bends). 

Dogs should be used with extreme care to move cows. 

Pooling of liquid in the post milking yard sometimes occurs. 

Cows with clinical mastitis must be milked to a dump line where possible. 


