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Visual tracking is the task of repeatedly inferring the state (position, motion, etc) of the

desired target in an image sequence. It is an important scientific problem as humans can

visually track targets in a broad range of settings. However, visual tracking algorithms

struggle to robustly follow a target in unconstrained scenarios. Among the many chal-

lenges faced by visual trackers, two important ones are occlusions and abrupt motion

variations. Occlusions take place when (an)other object(s) obscures the camera’s view

of the tracked target. A target may exhibit abrupt variations in apparent motion due to

its own unexpected movement, camera movement, and low frame rate image acquisition.

Each of these issues can cause a tracker to lose its target.

This thesis introduces the idea of learning and propagation of tracking information over

multiple temporal scales to overcome occlusions and abrupt motion variations. A tem-

poral scale is a specific sequence of moments in time e.g. [t− 1; t] in an image sequence.

Models (describing appearance and/or motion of the target) can be learned from the

target tracking history over multiple temporal scales and applied over multiple temporal

scales in the future. With the rise of multiple motion model tracking frameworks, there

is a need for a broad range of search methods and ways of selecting between the available

motion models.

The potential benefits of learning over multiple temporal scales are first assessed by

studying both motion and appearance variations in the ground-truth data associated

with several image sequences. A visual tracker operating over multiple temporal scales

is then proposed that is capable of handling occlusions and abrupt motion variations.

Experiments are performed to compare the performance of the tracker with competing

methods, and to analyze the impact on performance of various elements of the proposed

approach. Results reveal a simple, yet general framework for dealing with occlusions

and abrupt motion variations. In refining the proposed framework, a search method

is generalized for multiple competing hypotheses in visual tracking, and a new motion

model selection criterion is proposed.
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Chapter 1

Introduction

Computer vision has been studied actively as a scientific field since the late 1960s, when

computing power started to increase rapidly. Computer vision started with the goal of

building a system that can process images in a similar way to the human visual system,

however, it has evolved into a much broader field. For instance, applications like image

database search in the world wide web, biometrics, and computational photography

have arisen from developments in computer vision over the years. In addition, the

proliferation of digital video cameras in daily life is generating large amounts of visual

data. In response to large volumes of data, there is a growing demand for robust visual

analytics algorithms to perform automatic analysis either in real-time or offline.

To be able to understand video content fully, it is important to know certain information

about the target(s)/object(s) present in it. This information could be where each target

is, what it is doing etc. The answer to the two questions mentioned lies in how it is

moving i.e. in establishing its correspondence from one frame to the next, which is

known as visual tracking, object tracking, or target tracking. Visual object tracking is

a fundamental component in many computerized video applications such as intelligent

traffic control [Hsieh et al., 2006, Morris and Trivedi, 2008, Zhou et al., 2007], security

and surveillance [Chen et al., 2011, Hampapur et al., 2005] human-computer interaction

[Poole and Ball, 2006, Wang et al., 2006], event detection and recognition [Johnson and

Hogg, 1996, Saleemi et al., 2009, Smith et al., 2006], and many others. Due to its large

potential impact, visual tracking has remained an active topic in computer vision for

more than two decades.

Specifically, visual tracking has been researched actively since the mid 1980s, although

many estimation tools and statistical methods used to solve this problem were developed

long before that time [Smith, 2007].

1



Chapter 1. Introduction 2

Out of the many routes to visual tracking, perhaps the most popular is the probabilistic

approach. At a very basic level, a probabilistic approach makes use of the information

available from the video, and prior knowledge about the target (object) to build a

probability distribution, which can be conceived as the belief about the target’s state.

The target state is typically a set of parameters such as position, orientation and scale

of a bounding box used to represent the target. This probability distribution is updated

as soon as information, in the form of a new video frame, arrives.

Probabilistic approaches have remained popular in the realm of visual tracking because

of their ability to handle uncertainties in the measurements and models involved in a

principled manner. While tracking under uncontrolled conditions, uncertainties may

result from varying target appearance caused by factors such as illumination changes in

the scene, and variations in apparent target motion caused by e.g. low frame-rate image

acquisition.

The work presented in this thesis focuses on a widely celebrated probabilistic approach

to tracking known as recursive Bayesian estimation (RBE). It maintains a (unknown)

probability distribution, which encodes knowledge about the target state given infor-

mation from the video. This probability distribution is estimated in a recursive fashion

over time through extracting information from the incoming video frames.

Although many difficulties in visual tracking can be mitigated by a multi-camera setup,

the work in this thesis is restricted to visual tracking through a single camera system,

as most existing systems are equipped with a single camera.

1.1 Motivation for Study

Despite the fact that visual tracking is a well-defined computer vision problem, it is

challenging. It remains unsolved due to the inevitable variations associated with the

tracked target, and occlusions.

Appearance Variations: Tracking algorithms require some kind of model to detect

the presence of a target in each frame of an image sequence. The model describes the

appearance of the target i.e. what it looks like. Usually, it is built prior to the start of

tracking by utilizing information from the first frame. As it relies on limited information,

this appearance description might not be adequate when the target’s appearance changes

over time. Such change can be the result of variation in scene lighting, target pose, and

target shape (due to non-rigid deformation). Under these circumstances, the model

needs to adapt to these variations over time to remain an appropriate description of the

target’s true appearance.
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On the other hand, this adaptation risks the tracker losing its target due to the accumu-

lation of imperfect tracking results over time, which leads to a gradual mis-representation

of the target’s appearance. Although many methods have been presented to address this

adaptivity versus stability problem, it is still an open problem. Most of the solutions

presented so far are conservative in approach as they do not allow abrupt appearance

variations to be captured.

Complex Motion Variations: In unconstrained environments, a target can display

complex motion variations, which can be smooth or abrupt. To achieve efficient tracking,

it is typically assumed that the motion of the target varies smoothly over time. However,

under realistic tracking scenarios, a target’s motion can change abruptly over a given

time interval due to factors such as camera motion/switching, low frame rate image

acquisition, etc.

A vital component of probabilistic trackers is a motion model, which describes the

movement of a target over time. Assuming smooth motion variations, most of the

existing tracking approaches employ motion models that exploit a single temporal scale,

e.g. Random-Walk (RW). These models use the most recent state to predict the state at

the current time. A temporal scale is a specific sequence of moments in time e.g. [t− 1],

[t − 1; t], or [t − 3; t]. When a target exhibits a range of motion patterns(smooth to

abrupt), single scale models may find it difficult to handle this multi-modal variability

in motion. Building motion models by exploiting multiple recent state histories could,

however, provide a way to cover variable target motion better than single scale models.

Tracking frameworks use search methods to seek for the most likely hypothesis from the

space of all available hypotheses. Here, the hypothesis is the state of a target. Tracking

algorithms have typically deployed a single motion model (like RW), and so relied upon

a few search methods (like Particle Filters). To cover different motion patterns, which

single motion model might not be capable of, multiple motion model methods have

attracted increased interest in the recent past. The existence of multiple hypotheses

produced by these motion models necessitates that a broader range of search methods

be used in visual tracking.

The presence of multiple motion models also raises an important question: how to pick

the most suitable hypothesis, i.e. closest to the true target state, as the hypotheses

generated by all the models are usually not equally accurate. Exploration of the space

of possible motion model selection criteria is a prospective research direction.

Occlusions: Occlusions arise when the view of the camera that tracks the target is

obscured by another object or objects. Although it is a classic problem in visual tracking,

it remains unsolved due to the difficult nature of the problem itself. This is because target
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observation (image-based evidence) becomes very weak, or is fully unavailable, during

occlusions. Furthermore, occlusions can take place over different periods of time.

Most of the existing probabilistic tracking algorithms predict a target’s state at time t

using only its state at time t− 1. In other words, they all operate on a single temporal

scale [t−1; t]. This is a reasonable approach to tracking at time t as long as the immediate

previous state (at time t − 1) is accurately estimated. However, in the presence of

problems such as occlusion, it is quite possible that the estimated state at time t − 1

might be completely different to the true underlying state. This inaccurate target state

at time t−1 may make it difficult to estimate the true target state at time t since a large

tracking error will be propagated. As a result, the tracker can start to or completely

lose the target.

Extending the tracker’s temporal scale alone might not be enough to adequately cover the

variation in periods of occlusions. However, a tracker operating over multiple temporal

scales may be able to solve this problem. Such a tracker will make use of several previous

estimated states instead of only one at time t− 1 to infer target state at time t.

1.2 Contributions

The work described in this thesis proposes to exploit multiple temporal scales to address

two important and outstanding problems in visual tracking: occlusions and abrupt mo-

tion variations. The central objective of the thesis is to investigate the usefulness of

multiple temporal scales of model generation and application to deal with the problems

related to occlusions and abrupt motion variations. In addition, work in this thesis

generalizes a search method for multiple competing hypotheses in visual tracking, and

proposes a new way of (motion) model selection. In brief, the work presented in this

thesis makes the following contributions:

• The thesis assesses potential benefits of multiple temporal scales to visual tracking

using ground truth data. Specifically, both motion and appearance variations are

investigated by doing preliminary, but thorough experiments on the ground truth

data of several image sequences.

• The thesis proposes a visual tracker operating over multiple temporal scales that is

capable of handling occlusions and abrupt motion variations. This is accomplished

by learning motion models from the target history at different temporal scales, and

applying those over multiple temporal scales in the future. An extension of the

bootstrap particle filter is presented to search around the predictions generated by

motion models.
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• The proposed tracking framework is compared to state-of-the-art tracking algo-

rithms (both according to the CVPR’13 [Wu et al., 2013] benchmark, and their

capability to handle occlusions and abrupt motion variations) on both publicly

available benchmarks and some new data. Both quantitative and qualitative eval-

uations reveal that the proposed framework shows favourable performance against

competing methods. Experiments are also conducted to analyse the performance of

the proposed framework by excluding vital components, keeping some parameters

fixed, and varying the degrees of polynomial motion models.

• With the goal of exploring the proposed tracking framework, and as a first step

towards improving its performance further, the thesis generalizes a search method

for multiple competing hypotheses in visual tracking and proposes a new (motion)

model selection criterion.

1.3 Thesis Organization

This dissertation proposes and evaluates the idea of visual tracking over multiple tem-

poral scales, and then further explores the proposed tracking framework. In the four

chapters that constitute the body of this thesis, the following topics are covered:

1.3.1 Preliminary Background of the research related to this thesis

Chapter 2 begins by briefly describing the main challenges associated with visual track-

ing. These include change in target appearance, abrupt motion variations, and occlusions

(by other target objects and the environment). It then outlines the general framework

for visual tracking, and recalls some of the important and popular estimation tools used,

with a special focus on recursive Bayesian estimation. Next it features an overview of

the state-of-the-art approaches which are in some sense connected to the work described

in this thesis. It then provides an in-depth discussion of the existing work related to the

problems addressed in this thesis. Finally, the chapter concludes by summarizing impor-

tant trends in prior work, and highlighting the outstanding problems in visual tracking

and drawbacks in the connected body of works that propelled the research described in

this thesis.

1.3.2 Visual Tracking Over Multiple Temporal Scales

Chapter 3 defines the proposed approach of visual tracking over multiple temporal scales,

and assesses the potential benefits of multiple temporal scales. In particular, it examines
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whether, by using a set of models, learned over different temporal scales, it is possible

to generate a better prediction performance than is possible when using a single model

from this set. The chapter begins by emphasizing the importance of multiple scales in

the spatial domain, which served as a motivation for utilizing multiple temporal scales

in visual tracking. Next it investigates both motion and appearance variations in the

ground truth data of several sequences to highlight the potential benefits of access to

a set of models, derived from multiple temporal scales. This chapter concludes that

prediction performance can be improved if a set of models, extracted from multiple

temporal scales, is combined with an ability to pick the right model from the set.

After conducting a preliminary study on the potential benefits of learning over multiple

temporal scales in Chapter 3, Chapter 4 proposes a visual tracker operating over multiple

temporal scales that is capable of overcoming occlusions and abrupt motion variations.

The proposed tracker is compared with competing methods on both publicly available

benchmarks and some new data. Experiments have also been carried out to analyze the

impact on the performance of the proposed tracking framework of excluding important

components, varying the degrees of the polynomial motion models used, and keeping an

important parameter fixed.

1.3.3 Exploration of the proposed tracking framework

Chapter 5 develops further insight into the proposed tracking framework and takes a

first step towards further improving the performance of the method. In particular, it

generalizes a search method to estimate the best hypothesis around multiple competing

hypotheses, and proposes a new motion model selection criterion. A modified tracker

based on the generalized search method is evaluated and its performance is reported.

With the aim of further exploration, the chapter then defines the model selection prob-

lem in the context of the proposed framework, and proposes a new motion model se-

lection criterion. A further tracker based on this new selection method is assessed and

then discussed. Finally, the chapter concludes by describing important findings in this

exploration study.

1.4 Related Publications

The research described in this thesis has been a collaborative effort with my supervisors,

Tony Pridmore, and Michel Valstar, who have provided a guiding hand in all of the work

presented in this thesis.

The following publications are derived from this thesis:
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1. Haris Khan, Michel Valstar, and Tony Pridmore, “MTS: A Multiple Temporal

Scale Tracker Handling Occlusion and Abrupt Motion Variation”, Proc. Asian

Conference on Computer Vision (ACCV), 2014.

2. Haris Khan, Michel Valstar, and Tony Pridmore, “A Generalized Search Method

for Multiple Competing Hypotheses in Visual Tracking”, Proc. International Con-

ference on Pattern Recognition (ICPR), 2014.



Chapter 2

Related Work

This chapter reviews important computational tools used in visual tracking, features

an overview of recent state-of-the-art work in visual tracking, and provides an in-depth

discussion of prior work relevant to this thesis.

It begins by describing the general visual tracking problem and highlighting major issues

associated with it. It then outlines the main components of a tracking system, under-

scores a few early and some recent state-of-the-art work in visual tracking related to this

thesis, and recalls classic tools (search methods) used to infer solutions to the tracking

problem with a special emphasis on the approximation methods for recursive Bayesian

estimation (RBE). RBE is a popular probabilistic approach to visual tracking, and has

been used throughout the work described in this thesis. Next, it provides a detailed

discussion of prior work relevant to this dissertation. As there is an enormous amount of

published work on visual tracking, this chapter is not aimed at providing an exhaustive

literature review. Instead, the chapter highlights bodies of work that are either related

to this thesis in some sense, or are considered seminal in the visual tracking field. The

chapter concludes by summarizing important trends in prior work, and outlining the

outstanding problems that motivated our research.

2.1 The Visual Tracking Problem

In computer vision, visual tracking refers to the task of estimating the state of a target

of interest at each time instant in a given image sequence. The target state is usually

comprised of parameters such as velocity, location, and scale of a bounding box used

to represent the target. Although visual tracking extends to image sequences formed

by fusing outputs from multiple cameras, the scope of this dissertation is limited to

sequences captured from a single camera.

8
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At this stage, it is worthwhile to distinguish the tasks of visual object detection and

recognition from visual tracking. Object detection aims to find the locations and config-

urations of objects of a certain class in a given image [Vedaldi et al., 2009],[Everingham

et al., 2010]. A common example of this is face detection [Rowley et al., 1998],[Viola and

Jones, 2004]. The detection task does not consider the temporal relationships among

a sequence of images. Object recognition refers to categorizing a given object in an

image as belonging to one of a set of object classes [Vedaldi et al., 2009],[Yang, 2009].

For instance, identifying the make and model of a car given different possible categories

[Pearce and Pears, 2011], [Chen et al., 2015].

Although a visual tracker detects and recognizes a certain object, it further establishes

the object correspondence from one frame to the next frame by introducing a temporal

factor. An example of this would be to consistently infer the position, pose and motion

parameters of a moving car in some image sequence. A human equivalent of tracking is

to follow something with the eyes over a certain time period [Smith, 2007].

2.1.1 Online and Offline Tracking Methods

Tracking methods can be broadly classified as online or offline [Smith, 2007],[Hong and

Han, 2014]. Online methods only have access to the present and past member of the im-

age sequence, whereas offline methods can use all the information available in an image

sequence. Fig. 2.1 illustrates the difference between the two tracking methods [Smith,

2007]. Many tracking applications such as video surveillance and human-computer in-

teraction require online processing. On the other hand, large amounts of archived video

in local hard drives and video sharing websites can be accurately analyzed using offline

methods[Hong et al., 2013].

Most of the tracking methods discussed in this and the following chapters are online.

However, a few relevant offline methods are also reviewed in the subsequent sections.

2.1.2 General Framework for Visual Tracking

In simple terms, a tracking algorithm is composed of a matching and a search strategy

[Yang et al., 2009b] applied at each moment in time to find the best possible target

configuration (hypothesis) in a search space. For a given tracking problem, the set

of all possible solutions make up its search space [Smith, 2007]. The matching strategy

quantifies how well a given hypothesis matches the available image data, while the search

method seeks the optimal hypothesis through maximising or minimising an objective

function, which itself is a function of the matching strategy.
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t-3 t-2 t-1 t t+1 t+2 t+3

t-3 t-2 t-1 t t+1 t+2 t+3

Information available till this time-point

Available Information

Online

Offline

Figure 2.1: Difference between online and offline tracking methods. Lets
assume that the most recent frame available for processing belongs to time t. In on-
line methods, the information up to and including time t is available for processing,
and information after time t is not. Offline methods have no restriction in terms of
availability, and they can choose to track any frame from the whole image sequence

regardless of temporal order.

The matching strategy, most commonly known as the observation model, is constructed

based on an appearance model. Appearance modelling defines possible ways of describing

a target to be tracked using information from an image sequence. This information is

typically features extracted from an image sequence such as colour, texture, edges, and

motion [Perez et al., 2004]. Section 2.2 introduces simple appearance models, one of

which is used quite frequently in the proposed work, and later reviews some recent

state-of-the-art work in adaptive appearance modelling.

Search strategies control the way these appearance models are used in tracking to find the

optimal hypothesis [Smith, 2007]. At a very primitive level, these search strategies can be

classified as either probabilistic or non-probabilistic [Zhou et al., 2004]. Non-probabilistic

approaches, typically known as deterministic approaches, formulate the tracking problem

in terms of a cost function and use optimization techniques to minimise or maximise

this function [Lucas et al., 1981],[Comaniciu et al., 2003],[Fan et al., 2010],[Sevilla-Lara

and Learned-Miller, 2012]. In contrast, probabilistic approaches use statistical methods

to model the uncertainty associated with the motion and appearance of the target and

represent belief about the target state by fusing these information sources [Isard and

Blake, 1998a],[Perez et al., 2004],[Pérez et al., 2002],[Ross et al., 2008],[Mei et al., 2011].

Section 2.3.1 reviews some of the popular non-probabilistic search methods in tracking.

Section 2.3.2 discusses various probabilistic search methods in detail, as they are central

to this thesis.
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2.1.3 Major Visual Tracking Problems

Like object detection and object recognition, visual tracking has to deal with problems

that trouble computer vision systems in general [Arvind Ganesh and Ma, 2011], such

as appearance variations, background clutter and occlusions. In addition to these three

challenges, a visual tracking method has to cope with variations in the apparent motion

of the tracked target. In the context of visual tracking, appearance variations can be

caused by changes in illumination, pose, and shape, occlusions can be partial or full,

and motion can vary smoothly or abruptly in a given time interval.

Recent research in visual tracking has focussed on challenging real-world tracking prob-

lems more than the experiments in purely laboratory settings [Yilmaz et al., 2006]. In

these realistic conditions, it is quite possible for a target to display any combination of

the aforementioned problems. As a result, robust tracking becomes a severely compli-

cated task in such conditions. To be able to develop a tracker that can handle real-world

challenges, first it is important to understand the nature and source of these challenges

in detail.

Illumination changes are one of the most important sources of appearance variations.

They can influence the appearance of the target in an image as the colour of the target

may change due to the properties (intensity and colour) of the falling incident light

[Smith, 2007]. For instance, a target may look different under light from flashing blue

and red bulbs than under sunlight. This can introduce problems since the most common

models of target appearance are simple, e.g. colour distributions. As an example, Fig.

2.2 shows some images of a target captured under different illumination conditions.

(a) (b) (c)

Figure 2.2: Appearance changes due to different illumination conditions.
This figure shows three different images of a lady captured under different illuminations.

These images are taken from [He et al., 2013].

Target appearance can vary significantly if it changes shape on its own. Some targets,

such as cars, are rigid, while others, like humans, are non-rigid. Rigid targets do not

change their shape (Fig. 2.3(a)), while non-rigid can deform and take many complex
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shapes (Fig. 2.3(b)). To accurately capture the variations shown by a non-rigid target,

a high dimensional state representation is required, and searching for the best possi-

ble configuration in this space can be a daunting task. For instance, the pose space

in articulated human tracking has many degrees of freedom and, therefore, advanced

optimization techniques are required to efficiently find the most likely configuration.

(a) Frames # 6,26, and 226 of the car sequence.

(b) Frames # 25,51, and 65 of the transformer sequence.

Figure 2.3: Example of a rigid and a non-rigid target. The target in all frames is
represented by a red bounding box. (A) shows that a rigid target (car) does not change
its shape during tracking, while (B) indicates that a non-rigid target (transformer)

takes complex shapes during tracking.

Another dimension of appearance change is pose variation, which can be divided into

in-plane and out-of-plane rotations. In-plane rotations occur when a target changes its

orientation in the image plane, while out-of-plane rotations result when a target rotates

across the image plane. Out-of-plane rotations can be difficult to handle since some or

all of target features becomes invisible, depending on the degree of rotation. An example

of appearance variation caused by out-of-plane rotations is illustrated in Fig. 2.4. For

robust tracking, it is necessary to learn these variations offline or adapt to them while

tracking.

Background clutter can introduce problems for trackers as it contains elements that

may bear similarity to some target features. In severe cases, some patches might appear

very similar to the target. These are termed distractors. The appearance model used

should be discriminative i.e. able to confidently distinguish between the target and these
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(a) (b) (c)

Figure 2.4: Changes in appearance due to out-of-plane rotations. An example
of how a person’s face appears differently when undergoing out-of-plane rotation. These

images are taken from [Yang, 2008].

visually similar objects. Fig. 2.5 shows an example of distractors in the background while

tracking a person’s face.

(a) (b) (c)

Figure 2.5: An example of distractors in the background while tracking a
person’s face. In all three images, the target(face of a person) is represented by a

yellow bounding box, while the distractors are two faces in the background.

Another difficult tracking problem is occlusion. Occlusions arise when the camera’s

view of the tracked target is blocked by one or more stationary or moving object(s). In

addition to this, targets can occlude themselves by undergoing out-of-plane rotation or

articulated motion. Fig. 2.6 illustrates three different kinds of occlusion. In real-world

scenarios, a tracked target can stay partially or fully occluded for variable time periods.

Because the target image evidence is partially or wholly unavailable, it becomes hard for

a tracker to maintain contact with the target through occlusions. This is particularly

problematic if a change in the appearance or direction of motion occurs while the target is

occluded. Reliable recovery of the target after occlusions is essential to achieve accurate

tracking.

Although a target can exhibit numerous types of motion, in general, its motion is cate-

gorized as varying smoothly or abruptly over some time interval. Fig. 2.7 demonstrates

two typical motion variations. Abrupt variations can be due to motion of the target
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(a) (b) (c)

Figure 2.6: Various types of occlusions. A tracked target is represented by a cyan
bounding box in (a) and (b), and by a dashed yellow bounding box in (c). The target
is occluded by a stationary object in (a), and by a moving object in (b). In (c), the

target is self-occluded. Image in (c) is taken from [Smith, 2007].

itself and/or camera movement. The search in state space can be constrained consider-

ably when motion is smooth. However, to cover abrupt motions it is essential to search

a relatively large area of or even the entire state space. The selected search method

therefore directly determines the efficiency of the tracking method, and the robustness

of the tracker to noise and local maxima.

(a) (Frame #551) (b) (Frame #554)

(c) (Frame #448) (d) (Frame #449)

Figure 2.7: Two different kinds of motion variations. This figure demonstrates
smoothly and abruptly varying motion of a target, which is represented by a white
bounding box in all four frames of a video sequence. From frame #551 to frame #554,
the variation in motion is smooth, while from frame #448 to frame #449, it is abrupt.

These images are taken from [Kwon and Lee, 2008].

Efficiency is an important requirement, particularly for online tracking methods. Be-

cause these methods are used or expected to work in real-time applications, they have

to process information upon its availability as quickly as possible. On the other hand,

a high-dimensional target representation coupled with online learning may be required
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to achieve robust tracking. Consequently, it becomes very hard for the search mech-

anism to fulfill the efficiency requirement and at the same time find the best possible

configuration.

2.2 Appearance Modelling

As mentioned earlier, appearance modelling characterizes possible ways of representing

the target given information from a video sequence. An appearance model can be as

simple as a colour histogram in some colour space, as proposed by [Pérez et al., 2002],

or it can be complex, such as the hybrid generative discriminative model proposed by

[Yu et al., 2008].

Before probing deeply into the literature on appearance modelling in visual tracking, it is

important to briefly survey classic ways of representing target shape, as it is fundamental

to appearance representation. Some typical shape representations used in visual tracking

are illustrated in Fig. 2.8 and are described below.

Points are often used to represent targets that cover a small region of an image [Yilmaz

et al., 2006]. Algorithms using this representation only estimate the translation of the

target. This estimation can be achieved in three different ways: (1) by tracking on a

frame-to-frame basis [Lucas et al., 1981], (2) through matching key-points [Veenman

et al., 2001], and (3) by learning linear predictors [Zimmermann et al., 2009].

Geometric shapes are often used to describe rigid targets, and sometimes deformable

targets. Common geometric shapes are the bounding box and ellipse. Methods based

on this representation estimate location, scale, and in-plane rotation of the target.

Contours are often utilized to represent non-rigid targets as they delineate the target

boundary. Parametric representations of contours have been applied to track human

heads [Birchfield, 1998], while non-parametric representations have been used to track

people [Yilmaz et al., 2004].

Articulated models are used to represent the motion of non-rigid targets which them-

selves are composed of rigid parts. These rigid parts are described by geometric shapes

and their relative motion is governed by a model of their geometric relations [Kalal,

2011]. Articulated models have been used to track non-rigid targets such as humans

[Wang et al., 2003],[Ramanan et al., 2007].

The work described in this thesis uses a bounding box to represent the target shape. This

representation, though simple, has good expressive power. Typically, three parameters

are used to describe the bounding box. In the subsequent sections, existing work on
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(a) (b) (c) (d)

Figure 2.8: Typical target shape representations used in visual tracking.
Four different shape representations shown in this figure are: (a) points, (b) geometric
shapes, (c) contours, and (d) articulated models. These images are taken from [Kalal,

2011].

appearance modelling, mostly related to this shape representation, will be discussed. The

discussion of appearance models has been divided into two major categories: generative

models and discriminative models.

2.2.1 Generative Models

Generative models encode the appearance of the target. The simplest and perhaps the

most popular generative models used in visual tracking are colour histograms. Colour

features have reasonable expressive ability and are readily available from an image se-

quence. [Comaniciu et al., 2000] have shown that colour histograms can be used to

track various targets in an efficient and robust manner. However, it is obvious that this

representation cannot distinguish among targets having similar colour distributions. A

remedy to this problem was proposed by [Pérez et al., 2002]. While modelling target

appearance, they considered the spatial arrangement of colour features by dividing the

target shape into different subregions and extracting a colour histogram from each.

Template based appearance models represent the target using a single exemplar e.g. an

image patch [Schweitzer et al., 2002],[Reddy and Chatterji, 1996]. As target appearance

can vary significantly over time a fixed template, formed prior to the start of tracking,

cannot stay valid over extended periods of time. To adapt to these variations, it is

essential to update this template during tracking. On the other hand, the adaptation

is prone to drift as incorrect estimates of the target state can gradually corrupt the

evolving template with the introduction of the background information. Moreover, a

single template obviously does not allow encoding of multiple possible appearances.

To handle the trade off between adaptive and non-adaptive tracking, it is important to

update the template only if necessary and re-use previously learned templates otherwise.

This idea was demonstrated successfully in the work of [Matthews et al., 2004].
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To represent multiple appearances of a target, a single template can be decomposed into

multiple bases using a dimensionality reduction technique such as Principal Component

Analysis (PCA). [Black and Jepson, 1998] utilized eigenbasis to encode known target

appearances in an offline trained target model and used it to track deformable targets.

However, these models are limited to tracking applications for which the target appear-

ances are known in advance. Ross et al.[Ross et al., 2008] learned a low-dimensional

subspace (eigenbasis) in an incremental manner during tracking and demonstrated ro-

bustness to moderate illumination and appearance variations. However, the appearance

model can drift when presented with noisy updates, which are caused by imperfect track-

ing results, because the algorithm does not include any mechanism to reduce the impact

of these updates.

Another way of handling variations in target appearance is to construct multiple simple

appearance models, with each model responsible for covering a certain type of varia-

tion. The seminal work of Kwon and Lee [Kwon and Lee, 2010] used Sparse Principal

Component Analysis (SPCA) to form multiple basic target models to track robustly in

challenging tracking environments. Each target model is a mixture of templates and

its cardinality is determined by the number of non-zero entries in the principal compo-

nent corresponding to this target model. By sampling these basic appearance models

according to the state of the recent tracking environment, [Kwon and Lee, 2011] showed

improved accuracy and efficiency in real-world settings. To handle abrupt appearance

variations, Park et al. [Park et al., 2012] modelled the probabilistic dependency be-

tween sequential target appearances. They clustered formerly seen target appearances

based on their visual similarity, learned cluster-specific classifiers as multiple appearance

models, and then modelled the dependency between these learned appearance models.

The algorithm is effective in tracking an abruptly varying target appearance, but is

computationally expensive.

The success of sparse representations in face recognition motivated its application in vi-

sual tracking. Mei and Ling [Mei and Ling, 2009] modelled the target as a sparse linear

combination of target and trivial templates using L1-minimization. A good target can-

didate can be well approximated by the trivial templates leading to a sparse coefficient

vector, whereas a bad candidate will often produce a dense coefficient vector. The re-

sulting tracker shows robustness against clutter and illumination changes. However, the

computational complexity of L1-minimization is high, which precludes its applicability

in real-time scenarios. To improve the efficiency of sparse coding methods, [Li et al.,

2011] used an orthogonal matching pursuit algorithm, and [Bao et al., 2012] proposed

an accelerated proximal gradient approach to solve the costly optimization problem.
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Recently, sparse representations have been further exploited, in different formulations,

to enhance robustness to appearance variations. Zhang et al. [Zhang et al., 2012b]

proposed a tracking framework based on multi-task sparse learning, in which the inter-

dependencies among different particles were taken into account to improve the accuracy

of [Mei and Ling, 2009]. In [Jia et al., 2012], a local sparse appearance model was

proposed that utilizes partial as well as spatial information of the target to achieve bet-

ter performance than methods based on holistic representations such as [Mei and Ling,

2009]. A dictionary, formed by sampling overlapped local image patches from a set of

templates, was used to encode local patches in a candidate region. An alignment-pooling

method was proposed to reduce the impact of outliers and retain structural information

in this local representation.

Multi-region representations of the target are more robust to noise and other appear-

ance variations compared to holistic, as mentioned earlier in this section. They were

further used to good advantage by many approaches attempting to cover large geo-

metric appearance changes. In [Shahed Nejhum et al., 2008], a constantly changing

foreground shape was represented by a few rectangular blocks, whose positions within

the tracking window were adaptively determined. To track a given frame, the algorithm

finds a tracking window by scanning whole image, segments the precise boundary of

the target in this window, and updates the configuration of rectangular blocks with this

extracted boundary. Kwon and Lee [Kwon and Lee, 2009] proposed a more flexible

patch-based appearance model, in which the patches are added, removed, and moved

by affine transformation and transition to deal with large geometric and photometric

appearance variations. However, the local appearance model can still drift because it

does not have a mechanism to identify noisy samples during the appearance update

process. Cehovin et al. [Cehovin et al., 2011] combined global appearance of the target

with the local patch-based target representation using a novel coupled-layer visual model

to reduce noisy samples while updating the local appearance. The aforementioned ap-

proaches have shown good accuracy while tracking non-rigid targets, but at the cost of

speed.

Despite the fact that these online generative models have demonstrated success, there

are two major concerns that require attention. First, a large number of examples are

required from some sequence of recently processed frames to capture the likely appear-

ance variations. Since there are often only a few available, these models assume that the

target appearance does not vary significantly in this period. However, if this assumption

is violated, the appearance model may again drift. Second, these models do not take

into account the available background information, which again might improve their

tracking accuracy and robustness [Zhang et al., 2012a].
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2.2.2 Discriminative Models

Discriminative models learn a decision boundary between foreground (target) and back-

ground (non-target) examples. This decision boundary is also termed a binary classifier.

The classifier can be trained offline by providing all possible target(positive) and non-

target(negative) examples(patches), or can be adapted online by utilizing the weakly

labeled data generated by a tracker.

For discriminative models to stay valid over extended periods of tracking, it is necessary

to update the decision boundary as soon as new tracking data becomes available. Collins

et al. [Collins et al., 2005] developed a framework to select the most discriminative

features online and Avidan [Avidan, 2007] proposed a method to update an ensemble

of weak classifiers to separate the target from the background. In [Collins et al., 2005],

the set of candidate features is comprised of linear combinations of red, green, and

blue pixel values. A likelihood image is produced for each candidate feature in which

object pixels have positive values and background pixels have negative values. Then,

a variance ratio is computed from histograms of these likelihood values to quantify

the separability of object and background classes under this feature. Finally, top N

most discriminative features are selected for tracking based on their ability to separate

between object and background. In [Avidan, 2007], a weak classifier is a separating

hyperplane learned from target and non-target examples. A strong classifier is learned

using (offline)Adaboost algorithm from the ensemble of weak classifiers, which is then

used to produce a confidence map in a given frame for tracking. In [Grabner and

Bischof, 2006], Grabner & Bischof proposed an online version of Adaboost to select

discriminative features. Again, features are weak classifiers, which perform better than

a chance. However, contrary to offline boosting, where all examples are used to update

one weak classifier, in online boosting, all weak classifiers get updated upon the arrival

of a new example.

Although the aforementioned approaches adapt to target appearance variations, each

time the classifier (model) is updated errors may be introduced into it by imperfect

tracking results. The repeated inclusion of these errors over time will most likely lead to

degradation of the classifier, also known as the drift problem. The degradation occurs

since the classifier gradually loses the ability to distinguish between target and non-

target examples. Furthermore, the above-mentioned approaches are online versions of

supervised learning techniques; they are not good at tackling noisy labels.

The trade-off between non-adaptive and adaptive classifiers can be portrayed as the

stability-plasticity dilemma [Grossberg, 1987]. If a classifier has been trained offline,

and it is not updated online then it cannot drift. However, its non-adaptive nature
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would not allow robust tracking of a target that is undergoing appearance variations.

On the other hand, online classifiers being updated with their own tracking results can

easily lead to tracking failure in the case of incorrect updates.

An intuitive way to reduce the drift problem is to bind an online appearance learner

(tracking classifier) with a fixed (non-adaptive) initial appearance (auxiliary classifier).

One of the first attempts in this direction was made by Grabner et al.[Grabner et al.,

2008], in which they used an offline classifier in conjunction with an online classifier.

The coupling of an adaptive classifier with a fixed classifier overcomes the drift problem

to a certain extent, but does not allow the method to adapt to appearance changes

beyond a certain range. The drift problem can also be alleviated by training a pair of

independent classifiers. [Yu et al., 2008] adopted a co-training based approach to label

the incoming data and train a hybrid generative discriminative model. The generative

model encodes all the appearance variations of the target that have been seen while

tracking, while the discriminative model focuses on the recent appearance variations of

the target. The co-training approach requires the feature sets for the classifiers to be

conditionally independent, which is a strict assumption for visual tracking.

Online classifiers (e.g. boosting) or learners being updated on their own tracking result

can drift due to the label noise problem. The label noise problem emerges when the

bounding boxes of the target do not perfectly overlap with the target [Santner et al.,

2010]. If label noise persists over a tracking sequence, the tracker will most likely start

to loose lock on the target. An online version of the Multiple Instance Learning (MIL)

technique was introduced to tracking by Babenko et al.[Babenko et al., 2009] to overcome

the label noise problem. Their central idea was to take patches most likely lying on the

target as instances for the positive bag, and instances further away from the target as

negatives. With this formulation, the ambiguity in tracking results caused by imperfect

alignment of the target bounding box and target is passed onto the learning algorithm,

which now has to decide which instance in each positive bag is the most correct. Most

correct implies the instance whose bounding box aligns most closely with the target.

Zhong et al. [Zhong et al., 2010] handled the label noise problem by framing tracking in

a weakly supervised learning scenario where the labels (possibly noisy) for positive and

negative examples were provided by multiple imperfect oracles (i.e. trackers). Recently,

Hare et al. [Hare et al., 2011] proposed an online structured output support vector

machine (SVM) to alleviate the effect of misaligned examples. Instead of learning a

classifier, which predicts binary labels, the approach learns a predictor that directly

predicts the target transformation between frames.

The drift problem can be explicitly addressed by combining trackers with different ap-

pearance adapting capabilities or by integrating a tracker and a detector. Santner et
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al.[Santner et al., 2010] heuristically combined an adaptive online learning method with

two complementary tracking approaches. A template tracker and an optical-flow-based

mean-shift tracker are the non-adaptive and adaptive approaches, respectively, while an

online random-forest is a moderately adaptive method. Although the proposed method

reduces drift to a reasonable extent, it requires certain thresholds to be adjusted prior

to tracking to perform well. Kalal et al. [Kalal et al., 2012] trained a binary classifier by

exploiting the structure of unlabeled data during tracking using positive and negative

constraints. This binary classifier was used to correct the errors made by the tracker,

thereby reducing the drift problem.

The discriminative learning paradigm has also been exploited through mid-level cues,

compressed features, and the incorporation of spatial constraints to achieve robust visual

tracking. Wang et al. [Wang et al., 2011] proposed a discriminative model based on

superpixels to minimize the impact of drift. This appearance model is constructed by

clustering segmented superpixels from training images. Rich image representations can

be combined with simple discriminative models to build robust and efficient trackers.

Based on this formulation, Zhang et al. [Zhang et al., 2012a] projected high-dimensional

features, which represent the target and the background samples, to a low-dimensional

space using a compressed sensing technique, and then trained a binary classifier on these

low-dimensional features to counter appearance variations and achieve computationally

efficient tracking. To cope with appearance changes, Zhang and Van der Maaten [Zhang

and van der Maaten, 2014] trained appearance models of target parts and the structural

constraints between these parts jointly in an online structured SVM.

2.2.3 Other Approaches

Almost all the aforementioned approaches, in both the generative and discriminative

learning paradigms, assume that a target model trained (updated) till the previous

time-point is still valid for the current time-point. However, the appearance of the

target might have changed significantly at the current time-point. As a result, the target

model, trained till the previous time-point, would produce a sub-optimal target state

at the current time-point, and the errors accumulated over time might cause tracking

failure. To address the above problem, Bai and Tang [Bai and Tang, 2012] designed

three sets of patches for training the online laplacian ranking SVM. The first and the

second set contain patches corresponding to bounding boxes of the target in the initial

and the latest frames, respectively, to adapt to the fluctuation in the target appearance.

While the third set comprises patches corresponding to rough location of the target from

the current time-point to adapt to the substantial appearance variations.
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Most of the tracking approaches reviewed in the previous two sections assume that the

best target state produces the highest likelihood score near the previously estimated

state. This assumption is only valid if the target model, updated over time, is always

correct. However, as mentioned in the previous two sections (2.2.1,2.2.2), it is not

difficult to imagine that the target model might become contaminated with noise (i.e.

background information) in real-world tracking scenarios. This noisy target model would

not allow the search method to output the true target state even though it might have

converged to the global optimum solution (the best state). The best state found in this

case would not correspond to the true state. With this tracking error, the target model

includes more background and might drift over time. Recently, Kwon and Lee [Kwon

and Lee, 2013] proposed an indirect solution to this drift problem. They employed

two Markov Chains in an interactive manner to find the best state as the one that

maximizes the average of the lower and upper bounds of the likelihood and at the same

time minimizes the gap between two bounds of the likelihood. This best state would

produce the same likelihood, regardless of the target models used.

2.3 Search Strategies

Previous section discussed some different methods of modelling target appearance. This

section reviews search strategies that use appearance models and image data to infer

a solution to the tracking problem. In simple terms, the aim of the search strategy is

to find the best hypothesis from the space of all possible hypotheses. The space of all

possible hypotheses defines the search space of a search method. The dimensionality of

this search space is determined by the number of variables included in the target state

multiplied by states per variable.

As mentioned previously, search strategies can be either probabilistic or non-probabilistic.

Probabilistic approaches, described in section 2.3.2, use random variables and their corre-

sponding probability distributions to model the uncertainty associated with the motion,

observation, state and appearance of the target. These models are then fused to infer

knowledge about the target state at each time-step. In contrast, the non-probabilistic

approaches discussed in section 2.3.1 employ optimization methods to find the best

target state.
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2.3.1 Non-probabilistic Search Strategies

Non-probabilistic search strategies typically cast tracking as an optimization problem.

With this formulation, the tracking problem is described by a cost function and the so-

lution is achieved by maximizing or minimizing this cost function [Smith, 2007]. These

methods gained popularity as they exhibit good convergence properties and are compu-

tationally efficient.

One early work in optimization-based tracking is known as EigenTracking [Black and

Jepson, 1998]. In this work, the target is represented by a small set of eigen bases and

a tracking solution is found by minimizing an error function which defines similarity

between the learned bases and the image data through least-squares approximation.

Avidan [Avidan, 2004] argued that eigenbasis is not a general purpose classification

technique, and proposed a fusion of SVM and an optic-flow based tracker to track

vehicle rear-ends. An SVM based detection module was used to find candidate vehicle

regions. These detected regions were then tracked by maximizing the SVM classification

score using gradient descent.

Another early, but classic optimization technique for tracking is based on the Mean

Shift algorithm. Mean Shift is a general non-parametric approach finding the mode

of a density function which was introduced by Fukunaga and Hostetler [Fukunaga and

Hostetler, 1975]. Later, it was adopted to solve the tracking problem by Commaniciu

et al. [Comaniciu et al., 2000]. In [Comaniciu et al., 2000], mean shift iterations are

utilized to find the target candidate that best matches the target model. The matching

function is a similarity measure based on the Bhattacharyya coefficient.

2.3.2 Probabilistic Search Strategies

Probabilistic search strategies hold three clear advantages over the non-probabilistic

methods described in the previous section [Smith, 2007]. The first is flexibility, as one

component can be exchanged for another (e.g. an edge based observation model can be

replaced with a colour based observation model) without affecting the overall design. The

second is their generality: an inference method used for single target tracking might also

be applicable to a pose estimation problem. Third, but an important advantage of these

methods, is the ability to systematically handle unpredictable target configurations and

noise. This is possible because probabilistic methods can maintain multiple hypotheses,

which makes them robust to the uncertainties present in real-world data. For instance,

these methods are robust to situations in which a target may move unpredictably or,

due to clutter, it appears that there may be more than one likely solution.
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Recursive Bayesian estimation (RBE) is the most popular and celebrated technique in

probabilistic tracking, although there are a few alternatives. RBE formulates tracking

as the temporal propagation of conditional densities over time. Let Xt be the target

state at time t, and Y1:t = {y1, ...,yt} be the observations up to time t. According to

RBE, the posterior probability p(Xt|Y1:t) given the state Xt at time t and observations

Y1:t up to t can be computed as:

p(Xt|Y1:t) = Ctp(Yt|Xt)

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1, (2.1)

where the term p(Yt|Xt) expresses the observation model. It measures how well the

observation Yt at time t supports the hypothesis that the target is in state Xt at

time t. p(Xt|Xt−1) is called the motion model or the state evolution, and determines

the probability of transitioning to state Xt at time t given state Xt−1 at time t − 1.

Ct = 1
p(Yt|Y1:t−1) ensures that the posterior probability sums to one over the state space.

Eq.2.1 is composed of two steps (See Fig. 2.9): prediction and update. During pre-

diction, the posterior probability at time t− 1, p(Xt−1|Y1:t−1), is propagated to time t

using the motion model p(Xt|Xt−1) to form a prior distribution p(Xt|Y1:t−1),

p(Xt|Y1:t−1) =

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1, (2.2)

In the update step, this prior distribution is corrected using the observation model

p(Yt|Xt) to generate the posterior probability p(Xt|Y1:t) at time t.

p(Xt|Y1:t) = Ctp(Yt|Xt)p(Xt|Y1:t−1), (2.3)

The posterior probability p(Xt|Y1:t) encodes belief about the state of the target at time

t using observations Y1:t up to time t. The next section reviews well-known methods

for computing recursive Bayesian estimation.

Figure 2.9: Steps involved in estimating the posterior PDF at time t from the given
posterior PDF at time t− 1 using RBE.
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2.3.2.1 Kalman Filter

The Kalman Filter dates back to 1960, when it was formally presented by R. Kalman

[Kalman, 1960]. In general, the Kalman filter provides an optimal way of estimating

the hidden state of a system by analyzing observable measurements [Kalman, 1960]. In

other words, the Kalman filter solves the state estimation problem completely. It is

important, however, to realize that the filter provides an optimal solution only if certain

assumptions hold true.

In terms of Bayesian tracking, the first assumption is that the model governing the state

evolution must be linear with additive Gaussian noise, and the second assumption is

that the observation density must be Gaussian. If these assumptions are valid for a

tracking situation then the Kalman Filter will provide an exact solution to the recursive

Bayesian estimation.

Informally, the filter can be described as the composition of three stages: deterministic

prediction, stochastic diffusion, and prediction correction through measurement. In the

deterministic prediction stage, the mean value of the state distribution changes while the

covariance remains fixed. To capture inaccuracies in the process of deterministic pre-

diction and the unavoidable noise present in any real-world phenomenon, the stochastic

diffusion process is incorporated, resulting in increased state covariance. Finally, this

state prediction is corrected using observable measurements to produce a final state es-

timate. This last step also results in the alteration of the state mean and covariance.

In summary, this filtering process is a combination of a prediction step and a correction

step. Both deterministic prediction and stochastic diffusion generate the predicted state

that is refined using the measurement to estimate the final state.

Mathematically, the predictive component of the Kalman filter, which produces the a

priori state estimate and its covariance, respectively, can be written in terms of equations

2.4 and 2.5. The a priori estimate depicts the predicted state before the arrival of new

measurements. The state transition can be written as:

X−t = AX̂t−1, (2.4)

where X−t denotes the predicted state at time t, and X̂t−1 represents the estimated

state at time t − 1. A is the deterministic motion model that relates the state at time

t− 1 to the state at time t. To reflect the inaccuracy (error) in this state evolution, the

covariance of this predicted state is computed according to:
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P−t = APt−1A
T + Q, (2.5)

where P−t is the covariance of the predicted state X−t at time t, and Q is the covariance

of the noise associated with the state prediction process.

The correction component of Kalman filter refines the state prediction by optimally

combining it with the measurement. An a posteriori estimate of the target state is

computed as:

X̂t = X−t + Kt

(
Yt −HX−t

)
, (2.6)

where

Kt = P−t HT
(
HP−t HT + R

)−1
, (2.7)

and R is the noise associated with the measurement process. H is a quantity that maps

a state vector into its equivalent measurement vector. Like the predictive component,

the a posteriori state covariance has to be computed,

Pt = (I−KtH) P−t . (2.8)

Thought of as an estimation tool, the Kalman filter has two desirable features: ability

to fuse information from different sources in a principled manner, and recursiveness

[Cannons, 2008]. Recursivenss implies that at each time-step it does not have to store

and reprocess all the previous information.

Despite these useful features, the Kalman filter makes strict assumptions about the

nature of system dynamics and observations which typically do not hold in general

tracking conditions. For instance, the likelihood densities arising from image features

are usually multimodal. As a result, the solution to Eq. 2.1 would be intractable. Under

these situations, Particle Filtering is a popular state estimation tool that overcomes the

limitations of the Kalman Filter. The following section will describe how particle filtering

implements recursive Bayesian estimation.
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2.3.2.2 Particle Filters

Particle filters (PF) belong to the class of sequential Monte Carlo (SMC) filters. They

can be used to represent the propagation of conditional densities when the dynamics and

observation densities involved in a system are non-Gaussian. The core idea of PF is to

represent the posterior probability density function (pdf) of a state by a set of weighted

particles.

As a state estimation tool, PF can approximate the Bayesian filtering distribution (Equa-

tion 2.1). Now, in terms of PF, the prediction and update steps of Bayesian filtering

become the propagation and weighting of particles, respectively. To achieve them, dy-

namic and observation models are applied individually to each of the particles.

Formally, the posterior pdf p(Xt−1|Y1:t−1) at time t − 1 is approximated by a set of

weighted particles
{

X
(i)
t−1, ω

(i)
t−1

}
, i = 1, ...., n, where X

(i)
t−1 is the ith particle and ω

(i)
t−1

is its corresponding weight (Fig. 2.10(a)). Given this representation, the three steps to

approximate the posterior pdf at time t are: resampling, propagation of particles, and

weighting of particles.

Resampling A common problem with PF is degeneracy, in which one particle dominates

the rest after a few iterations. This effect can be reduced by introducing a resampling

step, which would eliminate particles with lower weights and concentrate on particles

with higher weights. In the resampling step, the weighted particle set
{

X
(i)
t−1, ω

(i)
t−1

}
is resampled (with replacement) according to the weights ω

(i)
t−1 to get the unweighted

particle set
{

X
(i)
t−1,

1
n

}
. Fig. 2.10(b) illustrates the result of the resampling step.

Propagation of particles This step is also known as hypothesis generation. Each mem-

ber (particle) of this set
{

X
(i)
t−1,

1
n

}
is propagated using the motion model p (Xt|Xt−1)

to approximate the prior distribution p(Xt|Y1:t−1) at time t by an unweighted particle

set
{

X
(i)
t , 1

n

}
(Fig. 2.10(c)).

Weighting of particles This step is also termed hypothesis correction. Here, each

particle belonging to the set
{

X
(i)
t , 1

n

}
is weighted based on the observation model

p(Yt|Xt) to approximate the posterior pdf p(Xt|Y1:t) at time t by a weighted particle

set
{

X
(i)
t , ω

(i)
t

}
. Fig. 2.10(d) shows high weight particles with darker tonalities of grey

and vice versa as the result of applying the observation model and the approximated

posterior pdf at time t is sketched in Fig. 2.10(e).

In general, PF can provide good approximation to the posterior pdf in a computationally

efficient way as long as the chosen proposal distribution generates samples near the

modes of the posterior pdf. However, when the dimension of the state space increases,

as is typically found in multi-object tracking, it becomes difficult to find a good proposal
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Figure 2.10: Steps involved in one iteration of a particle filter algorithm. (a)
Posterior pdf at time t − 1 approximated by a particle set is the input to the filter at
time t. (b) Resampling step: particles with lower weights are eliminated while particle
with relatively higher weights are selected multiple times. (c) Propagation of particles:
Each particle in the unweighted particle set is propagated using the motion model to
approximate the prior distribution at time t. (d) Weighting of particles: Propagated
particles are weighted according to the observation model. (e) These weighted particles

approximate the posterior pdf at time t. This figure is taken from [Smith, 2007].

distribution. As a result, the efficiency of PF decreases as it requires an exponentially

large number of samples to cover this high-dimensional space. To improve the efficiency

of SMC filters, methods based on Markov Chain Monte Carlo (MCMC) were proposed.

The following section will describe one of the most popular and widely used MCMC

method in visual tracking and a few advanced MCMC methods.

2.3.2.3 Markov Chain Monte Carlo

MCMC sampling methods construct a Markov Chain whose implicit stationary state

probability approximates the target posterior. In this formulation, structural knowledge

of the state space can be incorporated into the sampling, and the particles are gener-

ated more frequently in important regions of the underlying posterior, which improves

efficiency.

Among many MCMC sampling methods, Metropolis-Hastings (MH) is the most famous

and has been widely applied to visual tracking problems [Khan et al., 2005],[Smith

et al., 2005],[Kwon and Lee, 2010]. The MH algorithm constructs a set of particles to

approximate the Bayesian filtering distribution (Eq. 2.1). In contrast to the previously

described sampling method, PF, this algorithm approximates the posterior pdf by an

unweighted particle set
{
X(i), 1

n

}
, i = 1, ..., n. The following subparagraph will describe
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how the MH algorithm is used to define the Markov Chain whose stationary distribution

π (X) will be equal to the sought posterior pdf p(Xt|Y1:t).

The Metropolis Hastings (MH) Algorithm Metropolis Hastings performs a

random-walk to approximate the stationary distribution π(X). Each move of the al-

gorithm proposes a state, which is accepted or rejected using an evaluation criterion.

Let X
′
t be the state proposed by the proposal density Q(X

′
t|X

q
t ) in the qth iteration of

the MH algorithm. X
′
t is then evaluated using the acceptance ratio a,

a = min

[
1,
π(X

′
t)Q(Xt; X

′
t)

π(Xt)Q(X
′
t; Xt)

]
. (2.9)

If a ≥ 1, the proposal X
′
t is accepted and added to the Markov Chain Xq+1

t = X
′
t.

Otherwise, the proposal is accepted with probability a. If the proposal is not accepted,

then the previous state is added to the Markov Chain Xq+1
t = Xq

t .

Although the steps required to simulate the Markov Chain using the MH algorithm are

quite straightforward, quick convergence of Markov Chain to the underlying invariant

distribution might not be an easy task. To make sure that it converges in a reasonable

time, a carefully designed proposal density is required. For instance, if the variance of

this proposal is too small, then the chain might visit only a few of the posterior modes.

On the other hand, a higher variance in this proposal may cause a chain to get stuck

in one of the posterior modes for a long time, due to a high rejection rate. The nega-

tive impact of mistuned variance in the MH algorithm becomes especially pronounced

in large search spaces. In what follows, some alternative MCMC sampling methods,

which attempt to overcome the aforementioned limitations of the MH algorithm, will be

discussed briefly.

Adaptive MCMC algorithms Adaptive MCMC algorithms [Roberts and Rosen-

thal, 2009] provide an automatic way of tuning the proposal variance, in order to main-

tain a certain acceptance rate of the sampler, and thus can better mix the different

modes of the posterior pdf. The proposal variance is tuned on-the-fly to produce an

acceptance rate close to the optimal value 0.44 [Roberts et al., 1997]. Roberts et al.

[Roberts et al., 1997] showed that high dimensional target distributions of dimensional-

ity d satisfying certain moment conditions, the Optimal value of the proposal variance

λ̂d satisfies d0.5λ̂d = l, for some fixed l which is contingent on the roughness of the target

distribution. This optimal proposal variance then leads to the optimal acceptance rate

of 0.44. For more details on the theoretical derivation of this optimal value, please refer
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to [Roberts et al., 1997],[Rosenthal et al., 2011], and [Sherlock, 2006]. The capability

to automatically tune the proposal variance makes adaptive methods effective when re-

quired to visit large areas of the search space, e.g. when tracking abrupt target motion.

However, the method lacks a systematic way of escaping local maxima, and an efficient

sampling scheme to deal with large state spaces.

Partition-based algorithms These methods divide state space into a number of

equally sized cells, and use exploration and exploitation moves to approximate the com-

plex target distribution. The exploration moves encourage the method to visit cells that

have not been explored enough, while the exploitation moves let the method spend more

time in cells that contain modes of the target distribution.

Kwon and Lee [Kwon and Lee, 2008] combined the Wang-Landau Monte Carlo (WLMC)

method with the MCMC method to escape local maxima in a complex posterior dis-

tribution, while searching in a regular grid that divides the image space in a number

of equally sized cells. In [Kwon and Lee, 2008], the Wang-Landau method estimates

the Density of States (DOS) term, which denotes the extent to which cells have been

explored, and this term is used to generate moves to cells that have not been explored

enough. This allows discovery of local maxima in specific cells, while jumping between

them. The likelihood term in MCMC causes this method to spend more time in cells

that contain highly probable target states. With this term, the method expends more

samples around the current local maximum, which has already been well explored. This

thesis generalizes this search method to cells of variable size and location in Chapter 5.

Along similar lines, [Zhou et al., 2012] introduced Stochastic approximation Monte Carlo

(SAMC) sampling into the Bayesian filtering to approximate the target distribution,

while searching in a regular grid. The method generates global and local moves to

locate possible modes and exploit local mode structure, respectively.

To summarize, in the beginning of this chapter, major visual tracking problems were

described. Then a few basic as well as some advanced approaches to appearance mod-

elling with a greater emphasis on the recent state-of-the-art were reviewed. Finally,

classic search methods that use appearance models to find the optimum solution to the

tracking problem were touched upon.

Before delving into the in-depth discussion about approaches addressing occlusions and

abrupt motion variations, the following section briefly describes a few tracking methods

based on object detection and data association paradigm. It is a popular model for

tracking multiple targets [Zhang et al., 2015] and some of the approaches based on this

paradigm are related to the work presented in this thesis.
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2.4 Tracking by detection and data association

Recent progress in object detection research [Felzenszwalb et al., 2010, Wu and Nevatia,

2007, Zhu et al., 2006] has produced many multi-target tracking frameworks based on

object detection followed by data association process. An offline or an online learned ob-

ject detector is used to find candidate locations of targets in each frame of the sequence.

Then, a data association process aims to estimate the tracks of the targets by linking

detection responses corresponding to same target over time. However, the detector can

output missed detections (false negatives), false alarms (false positives), and inaccurate

detections. The complexity of the association process increases which now has to handle

these problems along with the linking task (assigning a unique detection to a track)

[Zhang et al., 2015].

Local Linking-based Methods To overcome the association problems, some works

[Cai et al., 2006, Khan et al., 2005, Li et al., 2008, Okuma et al., 2004, Wu and Nevatia,

2007] have tried to solve the correspondence (linking) problem locally i.e. using infor-

mation from a single or multiple close by frames. [Wu and Nevatia, 2007] associated

detections frame-by-frame by proposing a similarity measure for matching detections

based on cues from motion, size and colour and used a greedy algorithm to estab-

lish correspondence between tracks and detections. [Okuma et al., 2004] proposed a

combination of mixture particle filter and Adaboost detector to track multiple play-

ers frame-by-frame. The proposal distribution is constructed by a mixture model that

merges information from the motion models of the players and the Adaboost detection.

The learned Adaboost detector allows to quickly detect the new players entering the

field of view while the autoregressive dynamics lets tracking of individual players. Local

association-based methods are prone to tracking failure when the targets occlude each

other as the noisy detections complicate the data association [Huang et al., 2013].

Global Linking-based Methods In contrast to local approaches, many efforts have

been made to solve the association problem for multiple target tracking by looking over a

longer time window. Multiple Hypotheses Tracking (MHT) [Reid, 1979] and Joint Prob-

abilistic Data Association Filter (JPDAF) [Fortmann et al., 1983] are among the earliest

to resolve the correspondence problem in multi-target tracking. These approaches main-

tain multiple hypotheses until enough information can be collected to resolve the ambi-

guity [Huang et al., 2013]. These methods are computationally expensive since search

space grows exponentially with the number of frames. To mitigate this difficulty, some

works have tried to simultaneously optimize all trajectories by using different optimiza-

tion techniques. For instance, [Andriluka et al., 2008] used Viterbi algorithm to recover
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target paths, and [Kaucic et al., 2005, Srinivas et al., 2006] used Hungarian algorithm

to simultaneously find the optimal trajectories.

Hierarchal Methods Some recent works have combined local linking with global as-

sociation to solve the multi-target tracking problem. These approaches generate tracklets

(short tracks) by connecting detections between neighbouring frames and then progres-

sively link tracklets into longer tracks using global association methods. For example,

[Xing et al., 2009] proposed a detection-based two-stage framework for multi-target

tracking. In local stage, a particle filter is used to generate reliable tracklets. In the

global stage, detection responses are collected from a temporal sliding window to gener-

ate a set of potential tracklets. The reliable tracklets generated from the local stage and

a set of potential tracklets collected from temporal window are associated by Hungar-

ian algorithm to get the global association. [Huang et al., 2013] presented a hierarchal

association framework in which a two-threshold conservative strategy was used to link

detection responses in consecutive frames to form tracklets and a Hungarian algorithm

was used at the higher stages of the hierarchy.

In what follows, approaches handling two outstanding problems in visual tracking, oc-

clusion and target motion variations will be re-visited, since they are relevant to the

work described in this thesis.

2.5 Existing Approaches for Handling Occlusion

As described in section 2.1.3, occlusion is a classic problem in visual tracking, and a

number of approaches have tried to address it. Generally, occlusion handling may be

explicit or implicit. Explicit approaches depend on some detection mechanism to reveal

occlusion events, while implicit approaches employ rich target representations that are

robust to occlusion. A few approaches scan the whole image or use context around the

target for re-detection after occlusions.

Explicit Approaches Explicit occlusion handling requires robust occlusion detec-

tion. Yin et al. [Yin and Collins, 2008] presented a combination of local and global

mode seeking techniques. During normal tracking, when the target is visible from frame

to frame, local optimization was used to track the local mode of the objective function

whose arguments are translation, scale, and rotation parameters of the target bounding

box. To recover from occlusions, adaptive simulated annealing (ASA) was adopted as

a global optimization technique with the same objective function to detect the object

through stochastically sampling the large 4D space of translation, scale, and rotation.
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Occlusion detection was achieved with a naive threshold based on the value of the ob-

jective function used in local mode seeking. Along similar lines, Avidan [Avidan, 2007]

detected occlusions by setting a threshold on the classification score.

Lerdsudwichai et al.[Lerdsudwichai et al., 2005] detected occlusions by using an occlusion

grid with a drop in similarity value. The occlusion grid records locations that objects

occupy in an image, it is same size as the video frame and each cell of the grid represents

a pixel of the video frame. The similarity value is the distance between the tracked object

model and the image observation corresponding to the most likely object configuration.

Prior to tracking, each cell in this grid is initialized with the number of the object

occupying the corresponding pixel in the first frame, and, while tracking, this grid is

updated with the tracking results. Occlusion between objects is detected by searching

the cells of this grid, and variations in similarity values of objects are examined to find

the occluder and the occluding object. This approach can produce false alarms because

the required drop in similarity could occur due to natural appearance variation.

To explicitly tackle occlusions, Kwak et al. [Kwak et al., 2011] trained a classifier on

the patterns of observation likelihoods in a completely offline manner. In this approach,

a target is divided into regular grid cells, and the classifier is used to determine the

occlusion status of each cell. However, training and testing must be performed in the

same environment to ensure the reliability of this algorithm, and the tracking algorithms

used (for training and testing) should be identical.

In [Mei et al., 2011] and [Bao et al., 2012], an occlusion map is generated by examining

trivial coefficients, and is used to determine the occlusion state of a tracking result. Triv-

ial coefficients correspond to trivial templates that are used in a sparse representation

to account for image corruptions such as occlusions. These get activated (become non-

zero) when the pixel intensity in a given image observation cannot be well approximated

by the target templates. The occlusion map is processed by applying morphological

operations to approximate the occluding region, and if the area of this region is greater

than a pre-defined threshold, the corresponding template is said to be occluded. Both

these methods are prone to false positives when it is hard to separate the intensity of

the occluding object from small random noise on the occluded object. On a general

note, from the above discussion, it can be observed that reliable occlusion detection is

an open problem.

Implicit Approaches Implicit approaches can be divided into two categories. The

first is based on adaptive appearance models which use statistical analysis [Han and

Davis, 2005, Jepson et al., 2001, Ross et al., 2008] to reason about occlusion. In [Jep-

son et al., 2001], the target model is described by a mixture of 3 components, which
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is updated online to account for appearance variations. In [Han and Davis, 2005], a

more flexible target model based on a mixture of Gaussians was proposed, in which the

number of Gaussians was automatically determined according to the temporal appear-

ance variations. Although adaptive appearance models can improve tracking accuracy,

they expect noise-free appearances for learning. During partial and full occlusions, the

state estimates of the tracker can be poor. Passing the noisy appearances correspond-

ing to these poor states to an online learning method would quite likely result in an

inappropriate appearance model being learned.

Approaches in the second category divide the target into patches to indirectly reason

about occlusion using robust statistics [Adam et al., 2006], [Han and Davis, 2009]. [Adam

et al., 2006] preserves the spatial distribution of pixel intensities with a patch-based

target representation. Every patch votes on the hypothesized positions and scales of

the target at each moment in time during tracking. Outliers (occluded patches) are

rejected by applying an outlier detection mechanism on the voting maps. [Han and

Davis, 2009] tracks parts in a low dimension parameter space, and estimates the high

dimensional parameters by statistically combining the individual tracking results. These

approaches are, however, susceptible to failure in case of full occlusions. For instance,

in [Adam et al., 2006], when the number of occluded patches increases beyond a certain

percentage, the tracker can jump to a non-target region.

Some recent works have deployed multiple appearances in different formulations to indi-

rectly counter occlusions. Kwon and Lee. [Kwon and Lee, 2010] selected a fixed number

of target models for a sampling based search method. To improve the efficiency and

the accuracy of the sampling process, [Kwon and Lee, 2011] sampled target models us-

ing the recent tracking history. Recently, Park et al. [Park et al., 2012] modelled the

probabilistic dependency between sequential target appearances, in order to infer the

most probable target appearance at the current time-step. Though effective in handling

various appearance variations and short-term occlusions, these methods can still lose the

target during longer-term occlusions as they do not use temporal information other than

from the immediate previous time-step to estimate the state at the current time-step.

Approaches Exploiting Detectors and Context It is possible to re-acquire a

target after occlusion by scanning the whole image space with a target model (classifier).

A few approaches have exploited detectors to re-locate the target after occlusion [Kalal

et al., 2012], [Grabner et al., 2008]. However, the detector could report false positives

in the presence of distractors, causing the tracker to fail. Moreover, these approaches

are not computationally efficient as they search the whole image space once the target

is lost.
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Recently, a class of tracking methods which not only take the target description into

account but also consider its context have shown improved robustness in overcoming

occlusions. Grabner et al. [Grabner et al., 2010] and Yang et al. [Yang et al., 2009b]

employed spatio-temporal context to learn the target location while it is occluded. In

particular, [Grabner et al., 2010] determines the location of the target when it is invisible

by introducing supporters, which are local image features that bear a strong or weak

temporal correlation to the motion of the target. In a similar pursuit, Dinh et al. [Dinh

et al., 2011] developed a new tracking framework based on supporters and distractors.

Distractors are the regions that have similar appearance to the target, while supporters

correspond to local image features around the target whose motion is statistically related

to the target over a short temporal scale. Although these approaches are robust to

occlusions, they rely on the presence of auxiliary objects to re-acquire the target after

occlusions.

Other Approaches Some approaches address domain-specific occlusion of known

target types. Lim et al. [Lim et al., 2006] proposed a human tracking system based

on learning dynamic appearance and motion models. In [Lim et al., 2006], dynamical

appearance and motion models are learned from a small set of initial frames using robust

system identification techniques. Occlusion detection is achieved by setting a threshold

on the likelihood value, which can report a false alarm in case of an appearance variation.

A three-dimensional geometric hand model was proposed by Sudderth et al. [Sudderth

et al., 2004] to reason about occlusion in a non-parametric belief propagation tracking

framework. This approach requires a detailed model of the desired target to be built

before reasoning about occlusion, which is not always possible.

Occlusions can be dealt with using a multi-camera setup. [Dockstader and Tekalp, 2001]

used a Bayesian belief network to fuse inputs from multiple views, and [Fleuret et al.,

2008] combined a probabilistic occupancy map, generated from multiple frames at each

time instant, with a global optimization to overcome occlusion. As most videos are shot

with a single camera, and multiple cameras bring additional costs, this is not a generally

applicable solution.

Another method of handling occlusion is to alter the search mechanism of the tracking

process. Arnaud and Memin [Arnaud and Mémin, 2007] dealt with occlusions by modify-

ing the diffusion process in the particle filter using partial linear gaussian models. These

models allow the use of optimal importance function for the diffusion process, and thus,

the resulting algorithm explores the state space in an optimal way. Karavasilis et al.

[Karavasilis et al., 2011] tackled occlusion by forwarding the estimated target location to

a Kalman filter whose parameters are determined online based on recent motion history.
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Although these methods may be effective in dealing with occlusions, they tend to be

computationally expensive. For instance, in [Arnaud and Mémin, 2007], the image-based

motion model used to propagate each particle costs more than the usual auto-regressive

motion models.

2.6 Existing Approaches for Handling Motion Variations

In 2D visual tracking, target motion can exhibit many variations. In general, these vari-

ations can be classified as either smooth or abrupt over some time interval. To facilitate

efficient tracking, most tracking methods assume that the target motion varies smoothly.

However, in real-world scenarios, the target motion can undergo abrupt variations due

to its own unexpected movement, camera switching/motion, and low-frame rate image

acquisition. Furthermore, a target can accelerate and decelerate, and this motion can be

thought of lying somewhere between the boundaries of smoothly and abruptly varying

motion.

An important component of Bayesian tracking (Eq. 2.1) is a motion model, which

describes the expected motion of a target over time. Motion models can guide the search

towards the correct modes of the target distribution. In other words, the search space of

tracking parameters to be estimated can be reduced. Consequently, the search method

would be computationally efficient and immune to local optimum. In what follows,

motion modelling techniques and approaches without motion prior will be reviewed.

General-Purpose Motion Models Since it is difficult to produce an accurate mo-

tion model for a large variety of tracking environments, sampling-based tracking frame-

works have conventionally depended on a single general-purpose motion model, with

parameters set a-priori, like Random Walk (RW) [Chang and Ansari, 2005],[Perez et al.,

2004] or Nearly Constant Velocity (NCV) [Shan et al., 2007],[Pernkopf, 2008]. The RW

model is based on the assumption that the target’s velocity is a white noise sequence,

and therefore, it is temporally totally uncorrelated. In contrast, the NCV model assumes

that the target’s velocity is fully correlated, and changes in this velocity happen due to

white noise of acceleration. In short, the two models lie at the two extremes in terms of

how much the velocity is temporally correlated [Kristan et al., 2010].

A drawback of these general-purpose models is their inability to handle complex mo-

tion variations. For instance, if the target accelerates or suddenly changes its motion

direction, these models cannot deliver accurate tracking.



Chapter 2. Related Work 37

It is possible to cover large motion uncertainty with these models by increasing the pro-

cess noise. Stochastic search methods such as particle filters [Isard and Blake, 1998a]

usually require a larger number of particles when process noise is kept high, to cover

the unmodelled dynamics of the target. As a result, the tracking task becomes compu-

tationally expensive and the search method becomes vulnerable to distractors.

Hybrid Approaches To overcome the limitations of general-purpose motion models

embedded in particle filters (PF), some works have proposed a hybrid of particle filter and

Mean Shift algorithms. Maggio and Cavallaro [Maggio and Cavallaro, 2005] formulated

a hybrid particle filter/Mean Shift tracker with an adaptive transition model to track

abrupt target motion with fewer particles. Particles were generated using a zero-order

model with adaptive Gaussian noise, and then Mean Shift (MS) was independently

applied to each particle to find local modes of the posterior. However, if the PF tends

towards a local maximum the MS step will accelerate the process. To alleviate this effect,

Naeem et al.[Naeem et al., 2007] combined Annealed Particle Filter (APF) with Mean

Shift. The annealing process in PF smoothes out the likelihood function, which makes

the global maximum clearer and allows particles to spread further through increased

process noise. The algorithm is robust to local clutter as the MS applied at each stage

of annealing pulls particles towards the true target, but is computationally expensive as

it requires MS to be applied to each particle at each step of the annealing process.

Improved Proposal Distributions One approach to the increased variance in es-

timation caused by high process noise is to make an efficient and informed proposal

distribution. Okuma et al. [Okuma et al., 2004] designed a proposal distribution that

mixed hypotheses generated by an AdaBoost detector and a standard autoregressive mo-

tion model to guide a particle filter based tracker. The combination of two approaches

allowed their framework to detect targets entering the scene and at the same time achieve

consistent track formation. Kristan et al. [Kristan et al., 2010] formulated a two-stage

dynamic model to improve the accuracy and efficiency of bootstrap particle filters. The

two-stage dynamic model is comprised of a liberal and a conservative model. The lib-

eral model is responsible for greater perturbations in the target’s dynamics, while the

conservative model assumes smaller perturbation in the target’s dynamics. The method

fails when the target exhibits frequent spells of non-constant motion. Kwon and Lee

[Kwon and Lee, 2011] utilized the recent sampling history to generate candidate pro-

posal distributions (motion models) which were then sampled randomly using Reversible

Jump Markov Chain Monte Carlo (RJMCMC). The approach requires the recent sam-

pling history to be clustered and evaluates each tracker sample using the recent tracking

history, which might be cumbersome for even a near real-time tracking application. To
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handle complex target motion, Mikami et al. [Mikami et al., 2009] used the entire history

of estimated states to generate a prior distribution over the target state at immediate

and some future time-steps. The accuracy of the prior distribution relies on two strict

assumptions: similar target states repeat often and, if the current state is similar to the

retrieved past state, the temporal development of current and past states will be similar.

Offline Learned Motion Models Several attempts have been made to learn motion

models offline. Isard and Blake [Isard and Blake, 1998b] learned a small set of motion

models from ground truth data, and used a hardcoded finite state machine (FSM) to

manage transitions between them. Later, North et al. [North et al., 2000] extended the

work of [Isard and Blake, 1998b] by learning the parameters of more complex dynamics.

They illustrated the effectiveness of their approach on a juggling example by jointly

learning the parameters of each motion class and the transition probabilities among

these classes. Madrigal et al. [Madrigal et al., 2012] guided a particle filter based target

tracker with a motion model learned offline. This model was based on the local motion

observed by the camera. Pavlovic et al. [Pavlovic et al., 2000] learned models of human

dynamics from motion capture data. An obvious limitation of offline learning is that

models can only be used to track the specific class of targets for which they are trained.

Buchanan and Fitzgibbon [Buchanan and Fitzgibbon, 2007] derived a robust motion

prior from the global motion of 2D feature points in a temporal window, and then used

this prior in the conventional Bayesian framework to track these points. Cifuentes et

al. [Cifuentes et al., 2012] developed a few specialist motion models, which only track

well in scenes having similar geometry and camera motion, and proposed a classification

based approach to automatically predict the right specialist motion model from a set of

available models for a given video sequence. Though these specialist models are better

than the general-purpose models under known conditions, their design and the training of

the selection method, which chooses the most suitable one, requires supervised discovery

of motion classes beforehand.

Approaches Without Motion Prior Abrupt or discontinuous motion is difficult

for any motion model to capture. Early solutions to this problem were based on a

hierarchical search strategy, in which the search proceeds from coarse (large) to fine

(small) scales in the spatial domain. The intuition behind this strategy is that the

search results in coarse scales may be refined by those in finer scales. An obvious

advantage of this approach is the computational efficiency, since it is required to search

a large state space. Sullivan et al. [Sullivan et al., 1999] mingled image observations

from multiple scales to perform efficient search at the fine scale. A potential drawback



Chapter 2. Related Work 39

of this approach is that the propagation of error from the coarse scale might cause

the search results in the finer scale to deviate from the true optimum. To solve this

error propagation problem, Hua and Wu [Hua and Wu, 2004] proposed a framework

based on a dynamic Markov network to search collaboratively in different scales, and

developed a sequential belief propagation scheme to perform inference in this dynamic

model. While this approach alleviates the effect of error propagation mentioned earlier,

the risk of losing image information by down-scaling cannot be ignored. Recently, Li

et al. [Li et al., 2008] combined observers learned at different temporal scales with a

cascaded particle filter to deal with large motion uncertainty. Observers have different

discriminative powers, and are utilized at designated stages of the cascade. While this

approach has shown promising results in tracking faces, it requires offline training prior

to tracking, and thus it cannot be readily applied to track any object.

Abrupt motion can be countered by combining local sampling methods with global

sampling schemes. The reason why local and global sampling methods are combined

is as follows. Local samplers can trap in local optimum (local-trap problem) when the

energy landscape of the filtering distribution is rough as in cases of abrupt motion.

Whereas global samplers have the ability to jump between the different possible modes

of the target distribution under these situations, but they are not good at exploring

local mode structure. Their integration produces the possibility of avoiding the local-

trap problem and yet exploring the local mode structure while searching large state

spaces. Kwon and Lee [Kwon and Lee, 2008] combined an efficient sampling method

with an annealing procedure to search the whole image after dividing it into a fixed grid

of equal sized cells. Towards a similar goal, Zhou at al. [Zhou et al., 2012] introduced a

new sampling method, known as Stochastic Approximation Monte Carlo (SAMC), into

the Bayesian tracking to search for the optimal target state in a regular grid.

Some works have employed more general graphical models than the typical first-order

Markov Chain used in probabilistic tracking along with patch matching techniques [Kor-

man and Avidan, 2011] to cope with motion discontinuities. Recently, Hong et al. [Hong

et al., 2013] proposed an offline tracker that selects easy-to-track frames first out of the

remaining ones and delays tracking of troublesome frames till the end. To track a frame,

posterior density from already tracked frames is propagated to this frame in a recur-

sive manner. The density propagation is implemented by a patch matching technique.

Though this approach has shown improved tracking in case of abrupt motions and other

challenges, it requires and strongly relies on an efficient and a robust patch matching

technique for the density propagation. Furthermore, this approach completely discards

the temporal coherency information of the target, which might be helpful in resolving

appearance ambiguities caused by distractors. Along similar lines, [Hong and Han, 2014]

proposed a more accurate offline tracker that addresses the tracking problem through
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learning an optimal tree structure in a given video. The idea is to find an optimal tree

structure appropriate for tracking, and then improve performance by making use of the

found structure. To solve both these problems jointly, an iterative framework based

on MCMC technique is employed. A new tree structure is proposed by sampling and

validated by tracking in each iteration.

2.7 Observations

This section will underscore a few general as well as some specific observations about

the existing approaches to occlusion and motion variations that motivated the research

described in the later chapters of this thesis.

2.7.1 Regarding Current Solutions to Occlusion

Many approaches have used complex appearance models to implicitly address partial

occlusions and short-term full occlusions [Adam et al., 2006, Han and Davis, 2005,

Kwon and Lee, 2010, 2011, Ross et al., 2008]. However, during long-term full occlusions

it is quite difficult for any appearance model to stay valid no matter how complex it is.

From the computational perspective, such appearance models are usually not feasible

in real-time tracking applications. So, a relatively simple appearance model along with

the availability of reliable motion information might be a better approach to recovering

from long-term full occlusions.

Reliable occlusion detection is an unsolved problem in the visual tracking community.

This is because often the functions used for explicit occlusion identification can easily

report false alarms when a target’s appearance changes abruptly. A tracking algorithm

based on implicit occlusion handling that treats the two tracking modes, tracking without

occlusions and tracking with occlusions, in a similar manner can be a plausible solution.

Since such an approach would not distinguish between the two tracking modes, it may

provide a well-grounded recovery after occlusions.

An exhaustive search over the whole image space might re-capture the target after a full

occlusion, but it is vulnerable to distractors and often computationally infeasible. More-

over, approaches based on this strategy require reliable occlusion detection to trigger the

exhaustive search, whose flaws have been described earlier. Instead of this brute-force

search over the whole state space, motion information from multiple previous time-steps

can trigger a guided search around the likely modes of the posterior only.
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The exploitation of context, making use of auxiliary objects around the tracked target,

has shown some success in handling full occlusions [Dinh et al., 2011, Grabner et al.,

2010, Xiong et al., 2012, Yang et al., 2009b]. However, these approaches are mainly

based on the assumption that either a rigid or non-rigid context is available around the

target throughout tracking.

Just as auxiliary objects provide contextual information which helps overcome occlusion,

this thesis suggests that models built and used over multiple temporal scales can aid

target recovery when it re-appears.

A common, but important feature of approaches to occlusion handling is that they work

on a single temporal scale i.e. [t−1, t]. Based on a first-order Markov Chain assumption,

they infer a target’s state at time t using only its state at time t − 1. The underlying

assumption for single scale trackers is that the length of occlusion is shorter than the

temporal scale used. However, this is a strict assumption since occlusions can occur

over different periods of time. A single scale tracker might not be able to reliably handle

variability in the period of occlusion.

Contrary to tracking over single scale, this thesis proposes visual tracking over multiple

temporal scales to implicitly handle occlusions of variable lengths (Chapter 4) without

requiring complex appearance models and exhaustive search methods.

2.7.2 Regarding Current Solutions to Motion Variations

The design of an informative proposal distribution can help sampling-based trackers to

counter complex target motion. These proposals are often based on hypotheses generated

by an offline trained object detector. Because the detectors scan the whole image, they

could produce false positives in the presence of distractors. Such false positives can lead

to drift, if the appearance model used in the tracker cannot discriminate the tracked

target from visually similar objects.

Multiple motion model approaches have been used to deal with a range of target motion.

Approaches based on offline learned motion models can represent various motion classes

effectively, but they can only be used to track targets whose motion is learned prior to

the start of tracking. Furthermore, the offline learning requires ground truth on target

behaviour, which might be difficult to obtain for very long image sequences. Due to

the limited applicability of these approaches, interest towards online development of

multiple motion models has grown in the recent past. As reported in the literature,

these multiple motion models are either RW models with different variances, which are

learned from the recent sampling history to perform MCMC based inference, or a set
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of specialist models in which each member is responsible for handling a certain type of

target motion.

This thesis addresses a similar challenge, that is to capture reasonable variations in

the target’s path, but from a temporal perspective. Instead of using a set of specialist

motion models, a set of motion models is learned from the target history at multiple

temporal scales. This learning over multiple temporal scales lets the proposed tracker

maintain a richer description of the target’s path. To show the potential advantages of

learning over multiple temporal scales, not only motion but appearance variations as

well are studied in the ground truth data of several image sequences in Chapter 3.

The existence of multiple competing hypotheses or predictions by the multiple motion

models opens up the possibility of a wider range of search methods. To search for the

target in a fixed grid of equal sized cells, an integration of the Wang-Landau method and

the Markov Chain Monte Carlo (MCMC) method has recently been introduced [Kwon

and Lee, 2008]. Chapter 5 generalizes this search method to cells of variable size and

location, where the cells are formed around the predictions generated by multiple motion

models.



Chapter 3

Potential Benefits of Multiple

Temporal Scales

Most visual domain trackers interact with the estimated states over time at a single,

fixed temporal scale, usually [t − 1; t] [Huttenlocher et al., 1993],[Murray and Basu,

1994],[Dellaert et al., 1999], [Koller-Meier and Ade, 2001],[Matthews et al., 2004],[Khan

et al., 2005], [Wu and Nevatia, 2006],[Adam et al., 2006],[Wu and Nevatia, 2007],[Ross

et al., 2008], [Moreno-Noguer et al., 2008],[Yang et al., 2009a],[Mei and Ling, 2009],[Kwon

and Lee, 2009],[Kwon and Lee, 2010],[Babenko et al., 2011],[Jia et al., 2012],[Park et al.,

2012], and [Xing et al., 2013]. In other words, they typically learn a model (be it

appearance or motion) at a single temporal scale utilizing only the most recent state

history, and use this model over a single temporal scale in the future, e.g. [t; t + 1],

to localize the target. In contrast, this thesis introduces the idea of visual tracking

over multiple temporal scales. This implies that more than one model could be used

to estimate the target state at each moment in time. Each model is learned at a given

temporal scale using a particular history of tracked states and applied over multiple

temporal scales in the future. Now, this formulation raises a three-fold question. (1) if

a larger set of models is available, are any of these models able to make better predictions

than the standard first order Markov model using only t − 1? A slightly different, but

related question would be is there any benefit (in terms of predictive ability) to be

gained by switching between these models? (2) Can we utilize the models produced

from multiple state histories to predict multiple time-steps ahead e.g. [t; t+ 1], [t; t+ 2],

or [t; t+ 6] and so deal with variable length occlusions? (3) How can we select the most

suitable model from a set of models and integrate this selection process into a tracking

framework?

43
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This chapter addresses the first question only i.e. by creating a set of models (be it

motion or appearance) derived from different temporal scales, can better prediction

performance be generated, than would be possible if only a single model from this set

were available. The other two questions will be addressed in chapter 4.

This chapter begins by emphasizing the role of multiple scales in the spatial domain to

build motivation for multiple temporal scales in visual tracking (Section 3.1). Then, it

investigates both motion and appearance variations in the ground truth data of several

image sequences to show the potential benefits of access to a set of models extracted

from multiple temporal scales in Section 3.2. The chapter concludes by summing up

the material covered, and by re-iterating important findings of the experiments and the

questions raised above (Section 3.3).

3.1 Importance of Multiple Scales

The first half of this section discusses the role of multiple scales in the spatial domain,

which served as a foundation for the development of many successful feature detectors, to

build motivation for the study of multiple temporal scales in visual tracking. The second

half underscores open problems in the visual tracking domain that can be approached

through learning and operating over multiple temporal scales.

Computer vision algorithms interpreting image data for applications like 3D reconstruc-

tion [Ladikos et al., 2008], [Furukawa and Ponce, 2009], pose estimation [Shakhnarovich

et al., 2003],[Agarwal and Triggs, 2004],[Shotton et al., 2013], object recognition [Fergus

et al., 2003], [Lazebnik et al., 2006], [Fei-Fei et al., 2007], and many more typically require

feature detection in the early stages of processing. Feature detection is often considered

vital because it is important to achieve invariance to geometric transformations such as

translation, rotation, and scale and photometric transformations like illumination and

exposure.

One of the early works in this direction was edge detection [Prewitt, 1970]. Edge de-

tection might appear a relatively straightforward task, but it was observed that it is

not simple to extract edge descriptors reliably. Typically, this was attributed to noise

that can be reduced by smoothing the image before applying the edge detector [Canny,

1983],[Torre and Poggio, 1986]. Later, it was revealed that these problems actually stem

from the fact that real-world objects contain different types of structures at different

scales. To handle the multi-scale nature of real-world objects, multi-scale representations

such as pyramids [Burt and Adelson, 1983], and scale-space [Witkin, 1984],[Koenderink,

1984],[Lindeberg, 1993] were proposed.
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Perhaps the best-known work on multiple scales in the spatial domain is the scale-space

theory proposed by Lindeberg [Lindeberg, 1994]. It states that the notion of scale is

crucial when extracting semantically meaningful information and suppressing irrelevant

variations from multidimensional signals. For instance, in terms of image data, the

concept of scale is crucial when computing features and descriptors. Since real-world

objects contain different types of structures at different scales, they may look different

depending on the scale of observation. For example, the concept of a branch of a tree

might be relevant at scales of a few centimeters to only a few meters, while the concept

of a forest only make senses at the kilometer level. A robust vision system should be

able to handle these scale variations.

When a vision system observes an unknown scene, there is no way to know in ad-

vance what scales will be useful for extracting meaningful information. A multi-scale

representation of the image data, in which the original signal is embedded into a one

parameter family of signals using scale as the parameter [Lindeberg, 2007], is therefore

indispensable.

The hypothesis made here is that a similar approach could be adopted in visual tracking.

In particular, a tracker operating over multiple temporal scales can generate a rich set

of temporal information and allow complex variations (motion and appearance) to be

captured. Problems like occlusion and abruptly varying target motion can be addressed

with this formulation.

Occlusions can take place over different periods of time [Yilmaz et al., 2006]. A tracker

operating at a single temporal scale (for instance, [Huttenlocher et al., 1993], [Koller-

Meier and Ade, 2001],[Adam et al., 2006],[Ross et al., 2008],[Mei and Ling, 2009], and

[Kwon and Lee, 2011]) cannot reliably handle the variability associated with periods

of occlusion because it relies on a single temporal prior at the current time-point to

estimate the target state. Here, a temporal scale is the duration of a specific sequence

of moments in time e.g. [t − 1; t] or [t − 4; t], and the temporal prior associated with

this is the information (estimated posterior or a motion prediction) propagated from

the first member of the sequence to the last. This prior becomes unreliable if the

duration of occlusion is larger than the temporal scale from which it is generated. Visual

tracking over multiple temporal scales has the potential to solve this problem. Single

scale trackers such as [Dellaert et al., 1999], [Khan et al., 2005], [Wu and Nevatia,

2006], [Ross et al., 2008], [Yang et al., 2009a], [Mei and Ling, 2009], [Kwon and Lee,

2010],[Babenko et al., 2011], [Jia et al., 2012], [Park et al., 2012], and [Xing et al., 2013]

implicitly assume that occlusions are shorter than the temporal scale used. However,

multiple scale trackers make the weaker assumption that any occlusion will be shorter

than the longest temporal scale used [Yilmaz et al., 2006].
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In unconstrained environments, target motion can exhibit complex variations [Yang

et al., 2011]. In predictive tracking, learnt motion models describe the recent history of

the target state - the most recent section of the target’s path across the image plane.

Trackers using, for example, a single linear motion model effectively represent the target

path as a straight line, which obviously cannot capture and represent likely variation

in this path. By building multiple motion models at multiple temporal scales, much as

images are modelled at multiple spatial scales, it is possible to maintain a much richer

description of the target path. The diverse set of models produced captures at least

some of the complexity of that path and, when used to make predictions, the model set

has the potential to represent variation in target motion better than any single model.

Appearance variations can also be learnt over multiple temporal scales [Li et al., 2008],

[Xing et al., 2013]. A model generated from a shorter scale is more specific as it has

only seen a few examples of target appearance, while a model learnt over a longer scale

is more general since it has access to a wider range of examples of target appearance

than the shorter scale model. While tracking, longer scale models can capture large

appearance variations and so may avoid the drift problem better than shorter scale

models, but their likelihood response is not smooth and is costly to learn. Shorter scale

models may catch smooth appearance variations better than longer scale models, and

their likelihood response is relatively smooth and quicker to learn. Therefore, a set of

appearance models, each learnt over a different temporal scale, should be able to handle

variability in appearance better than any single model.

The following section tests the hypothesis, both in terms of motion and appearance,

that a set of models, learnt over different temporal scales, can provide better prediction

performance than any single model.

3.2 Probing motion and appearance variations in the ground

truth data

It is hypothesized that when utilizing multiple temporal scales, there are often better

models available than the model based on the most recent, minimal duration state

history. The model built at the minimal duration state history is taken as the basis

of comparison because it is common practice in predictive tracking to use this model,

especially when describing target motion.

To test the aforementioned hypothesis, experiments were performed evaluating the abil-

ity of each of a set of models, learned over state histories of different lengths, to predict
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motion and appearance in the ground truth data associated with seventeen challeng-

ing video sequences. These ground truth experiments demonstrate the feasibility of

obtaining improved performance by learning over multiple temporal scales.

Of seventeen image sequences, fourteen are publicly available (Car, Basketball, Deer,

Lemming, Shaking, Singer1, Iron, Girl, Trellis, Football, and Mountainbike are from

[Wu et al., 2013], Panda is from [Kalal et al., 2012], and Singer1(low frame rate), and

Skating1(low frame rate) are from [Kwon and Lee, 2010]) and three are our own (Squash,

toy2 and Ball1 ). These video sequences contain different targets, such as the head of

a vocalist, a toy tied to a thread, a lady skating, an animal sprinting, etc. Since the

videos were shot in unconstrained environments, the targets exhibit complex motions

either due to their own movement, camera motion, or low frame rate and miscellaneous

changes in appearance caused by factors such as out-of-plane rotations and illumination

variations.

Ten sequences were used to evaluate motion prediction, and seven to assess appearance

prediction. Table 3.1(a), and Table 3.1(b) highlight the challenging aspects of the videos

associated with motion prediction and appearance prediction, respectively.

Table 3.1: Challenging aspects of videos used for evaluating motion and
appearance prediction.

(a) Videos used for evaluating motion prediction.

Sequence Main Challenges
toy2 Target accelerates, decelerates, and suddenly changes motion direction
Deer Abruptly varying target motion due to target itself

Lemming Target accelerates and decelerates
Shaking Smooth target motion

Car Abrupt target motion due to low frame rate and camera motion
Singer1(low frame rate) Abrupt target motion due to low frame rate
Skating1(low frame rate) Abrupt target motion due to low frame rate

Ball1 Abruptly varying target motion due to target itself
Squash Irregular target motion due to target itself

Mountainbike Smooth target motion

(b) Videos used for assessing appearance prediction.

Sequence Main Challenges
Singer1 Illumination Variation, and Out-of-Plane Rotation

Iron Illumination Variation, Out-of-Plane Rotation, Out-of-View, and Partial Occlusion
Girl Illumination Variation, Out-of-Plane Rotation, and Partial Occlusion

Trellis Illumination Variation, and Out-of-Plane Rotation
Football Out-of-Plane Rotation, and Partial Occlusion
Panda Illumination Variation, Out-of-Plane Rotation, Partial and Full Occlusion

Football1 Out-of-Plane Rotation



Chapter 3. Potential Benefits of Multiple Temporal Scales 48

3.2.1 Learning Motion Over Multiple Temporal Scales

This section evaluates the position(location) prediction performance of a set of motion

models learned over different temporal scales. To examine location prediction, multiple

linear motion models are learned from the recent history of target’s state over different

model-scales, and then these learned models are used to predict target state at the next

time-step. The model-scale is the duration of a sequence of recently estimated target

states (See Fig. 3.1).

A linear motion model M is learned at a given model-scale m separately for the x-

dimension, and y-dimension of the target’s state. The x, and y part of the target state are

considered uncorrelated. This is done so that the basic idea of the proposed approach can

be evaluated properly. They may be correlated under some circumstances, for example,

when a target’s path across image plane is roughly diagonal. Taking correlations among

state’s component into account while learning models could be an avenue for future

work.

Let Zm = {x̂n}n=t
n=t−m+1 represent a sequence of recently estimated x-locations of target

states at model-scale m. Similarly, let Wm = {ŷn}n=t
n=t−m+1 denote a sequence of recently

estimated y-locations of target states at model-scale m. For this preliminary study, Zm

and Wm are obtained by manual annotation. Given M learned at model-scale m at time

t, for x-location of target state it is written as:

x̃n = φmx̂t + τmx̂tn, (3.1)

where τ is the slope, φ the intercept, and x̂t denotes that the model parameters have

been learnt using a sequence of recently estimated x-components of target states whose

last member is x̂t. Model parameters can be learned inexpensively via ordinary least

squares (OLS) applied to Zm. Along similar lines, given M learned over model-scale m

at time t, for y-location of target state it is written as:

ỹn = φmŷt + τmŷt n, (3.2)

where the parameters τ , φ, and ŷt in this equation has the same interpretation as

described for Eq.3.1 and model parameters are learned via OLS applied to Wm.

A linear motion model is preferred over higher-order models in this study for several

reasons. Since it is possible to learn a linear function on as few as two data-points, small

model-scales can be included in the model set. With a linear motion model, the risk of

over-fitting is largely avoided in our case, as the largest model-scale in the model set is

on the shorter side. A relatively large number of data points are required for learning
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a higher order model. Although extrapolation is not considered safe for interpolating

polynomial functions, it is usually more reliable with a linear motion model than higher

order models [Clymo, 2014].

Here, we denote a set of motion models corresponding to model-scales 1, 2, 3, 4 and 5 at

time t by Mt = {M1
t ,M

2
t ,M

3
t ,M

4
t ,M

5
t }. Fig. 3.1 illustrates 5 motion models constituted

over model-scales 1, 2, 3, 4 and 5. Motion models corresponding to model-scales 2, 3, 4,

and 5 are learned using a linear function. As there is only a single previous state estimate

for model-scale 1 (corresponding to the first-order Markov Chain assumption), a linear

function cannot be learned. Therefore, the motion model belonging to model-scale 1

predicts the next location by simply adding Gaussian noise to the previous location.

Although these model-scales were chosen empirically, they cover the range needed to

represent (while predicting) the variations in the target’s path, which form patterns of

different lengths.

Model-Scale

tt-4 t+1 t+T

Prediction-Scale

Figure 3.1: Learning and Predicting Motion Over Multiple Temporal Scales.
Multiple motion models are learned from the recent history of estimated states at
different temporal scales, and each model is applied over multiple temporal scales in
the future. In this figure, 5 motion models corresponding to 5 different temporal scales
are shown at time t, where 1 out of 5 is a standard first-order Markov model, and
4 others are learned on 4 different sequences comprising recently estimated states of
lengths 2, 3, 4 and 5, respectively, and each model predicts target state T time-steps

ahead.

Each member of the set Mt can be used to predict target location multiple time-steps

ahead in the future e.g. [t + 1, t + 6]. Here, however, learned models are used to

generate predictions only at time t+ 1 to test the hypothesis stated in the beginning of

this chapter i.e. learning motion over different model-scales can add value in terms of

improvement in position prediction performance. For each predicted location, the error

is computed by finding its Euclidean distance from the ground truth location at time



Chapter 3. Potential Benefits of Multiple Temporal Scales 50

t + 1. Cumulative centre location error (over time) is used to assess the performance

since it is easier to interpret than raw centre location error (over time). The former

summarizes the performance (through accumulation) at each time-point and thus, makes

comparison among competing methods more interpretable than the latter. Fig. 3.2 plots

the cumulative location error associated with each individual motion model belonging

to set Mt and that obtained by selecting the best performing model from this set for

each time-point. Note that this best model is chosen using oracle-like knowledge of the

ground truth, and selecting the right motion model is a major challenge.

The results demonstrate that the position prediction performance improves when the

best model is selected from a set of models learnt over multiple scales, as compared to

any fixed, individual model. Thus, if one knows which model to pick, access to a set

of models learned at multiple model-scales can significantly improve performance. It is

interesting to note that with this access the performance gain is not only substantial for

sequences containing abrupt motion but is also encouraging for the sequences in which

the target motion varies relatively smoothly. In addition, the results reveal that for

most of the sequences considered, the motion models corresponding to different temporal

scales maintain their performance ranking over time, although that ranking is different

for each video class, and thus context-dependent. For example, the ranking of individual

models is fixed across Fig 3.2(a), which displays results for low frame rate videos, but it

is different in Fig. 3.2(b), which plots results under abrupt motion variations. In a video

class, large variations in the target motion are produced by the same factor(s) such as

camera movement and low frame rate.

Fig. 3.2(a) shows motion prediction performance given low frame rate videos. Perhaps

the most noteworthy point is that in both videos the ranking of individual models is

almost the same, and upon selecting the best model from the model set the performance

gain compared to the best individual model is almost the same. On an individual

basis, the model corresponding to the largest model-scale performed the best, and as

the model-scale decreases, the accuracy of the associated model decreases. This might

be due to the fact that when a video is captured at a low frame rate, or downsampled,

most of the time the resulting variation in motion remains smooth. More often than

not, longer scale models are a better fit to periodic variations in motion. As an example,

Fig. 3.3(a) displays the temporal evolution of target state in the first 100 frames of

the skating1(lfr) sequence, which contains (nearly)smooth motion variations, and Fig.

3.3(b) plots prediction performance of motion models corresponding to model-scales 1,

2, 3, 4, and 5 over these frames. It can be seen that, generally, longer scale models have

better prediction performance than shorter scale models.
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(a) Prediction performance when there are abrupt motion variations due to low frame
rate (∼1/3 of the original frame rate of the sequence.
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(b) Prediction performance when there are abrupt motion variations due to camera
motion, or the target itself.
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(c) Prediction performance when there is abrupt motion due to target itself.
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(d) Prediction performance when the target accelerates, decelerates, or suddenly
changes direction.
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(e) Prediction performance in case of smooth motion variations.

Figure 3.2: Performance comparison in case of motion prediction on ten
challenging video sequences. Each plot illustrates the cumulative center location
error over time for the selected best motion model from a set and the individual motion

models.

Fig. 3.2(b) and Fig. 3.2(c) plot location prediction performance when there are abrupt

motion variations due to camera shake and/or the target itself. Interestingly, again,

for the videos included in each figure, individual models keep the same order in terms

of performance. However, for videos in this class, the shorter scale models, except the

shortest, outperform the longer scale models. The same can be observed in situations

where motion variations are due to acceleration, deceleration, and sudden changes in the

direction of motion. For instance, in the right panel of Fig. 3.2(d), which plots results

obtained from the toy1 sequence, it can be seen that when switching from the longer

scale models to the shorter scale models prediction performance improves. It could be

argued that in these sequences, the motion of the target is quite erratic; typically, it does

not make a smooth pattern over time. As an example, Fig. 3.4(a) displays temporal

evolution of target state in the first 100 frames of the ball1 sequence, which contains

unpredictable motion variations, and Fig. 3.4(b) plots performance of motion models

corresponding to model-scales 1, 2, 3, 4, and 5 over these frames. It can be seen that,

generally, shorter scale models outperform their longer scale counterparts.

An improvement of 300 pixels and 128 pixels cumulative location error was observed

in the Shaking and Mountainbike sequences, which contain smooth motion variations,

when selecting the best-performing from a set of models, derived from multiple model-

scales, in comparison to a single member of this set (See Fig. 3.2(e)). The difference in
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(a) Temporal Evolution of target state in the first 100 frames of the skating1(low frame
rate) sequence.
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(b) Performance of models corresponding to model-scales 1,2,3,4, and 5 in these frames.

Figure 3.3: Position prediction performance under (nearly)smooth motion
variations.
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(a) Temporal Evolution of target state in the first 100 frames of ball1 sequence.
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Figure 3.4: Position prediction performance under unpredictable motion
variations.
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individual performances of the models is not sizable, especially in the Shaking sequence,

but longer scale models still surpass their shorter scale fellows.
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Figure 3.5: Selection percentage for each motion model in ten video se-
quences. The figure illustrates percentage of times each motion model is selected in

ten video sequences.

The cumulative error associated with a motion model over the course of a video sequence

does not always reflect its selection percentage i.e. the percentage of times that motion

model makes the most accurate prediction at a given time-step in a video sequence.

A few very inaccurate predictions may give motion model a high cumulative centre

location error, but, due to it making slightly better predictions than the others most of

the time, this model might have a relatively high selection percentage. Fig. 3.5 shows

the percentage of times each motion model is selected in ten video sequences. Improved

performance of longer scale models over shorter scale models in videos where motion

variations usually form smooth patterns similar in length to the longer scales used can

be claimed, but in a loose sense. In contrast, the dominance in terms of performance

of shorter scale models over longer scale models in videos where motion variations are

mainly unpredictable can be claimed much more confidently. For instance, in the Deer

sequence, models derived from model-scale 2 and 1 made the most accurate prediction
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52% and 22% of times, respectively, whereas models constituted at model-scale 5 and 4

delivered the most accurate prediction 8% and 12% of times, respectively.

3.2.2 Learning Appearance Over Multiple Temporal Scales

Like motion, target appearance is subject to variations over time in unconstrained track-

ing environments. For an appearance model to stay valid for extended periods of time, it

is imperative to capture these variations. Having seen the advantages of access to a set

of motion models, learned over different model-scales, over any individual model, this

section will apply the same concept, learning over multiple temporal scales, to appear-

ance modelling, and examine the effect on performance. Appearance models are learned

over different model-scales from the appearances corresponding to recently estimated

target states. These learned models are then used to predict target appearance at the

next time-step.

It is important to note the difference between the updated appearance model at time

t after estimating the state, which is usually found in the tracking literature, and the

predicted appearance at time t+1, which will be introduced in this section. Tracking ap-

proaches [Han and Davis, 2005][Grabner and Bischof, 2006],[Ross et al., 2008], [Babenko

et al., 2009],[Mei and Ling, 2009],[Kwon and Lee, 2010], that update model at time t

assume that the true target appearance at time t+ 1 will not be very different from this

updated model, whereas the approach that will be described in this section relaxes this

assumption and hallucinates an appearance at time t + 1 that might be substantially

different compared to the evidence-based model of the appearance at time t.

A colour histogram [Pérez et al., 2002] was used to encode target appearance in these

experiments. It has three desirable features in terms of tracking. Firstly, it is compu-

tationally cheap to compute, and is particularly suitable for search mechanisms that

search a large state space. Secondly, the resulting feature vector is quite compact, which

is usually desirable for learning methods. Finally, it is robust to modest appearance

variations and has proven useful in tracking a variety of different targets [Pérez et al.,

2002],[Kristan et al., 2010].

Formally, the colour histogram is used to encode a target’s appearance in the rectangular

region R(qt) specified by the state qt. The state at time t is given by qt = {xt, yt, st},
where xt, yt, and st denote the x, y location, and scale of the rectangular region, re-

spectively. In terms of a feature vector, the colour histogram can be represented as

h(qt) = (hu(qt))u=1...N , where N is the total number of bins in a colour histogram.



Chapter 3. Potential Benefits of Multiple Temporal Scales 58

To model the target appearance at the model-scale m, the following methodology is

employed. Let Hm = {h(q̂n)}n=t
n=t−m+1 be a sequence of length m comprised of colour

histograms computed at a sequence of recently estimated target states {q̂n}n=t
n=t−m+1.

Similarly, let bmu = {(hu(q̂n)}n=t
n=t−m+1 represents a sequence of m histogram bin counts

corresponding to the uth bin of the colour histogram h. The top row of Fig. 3.6 graph-

ically illustrates make-up of Hm, and bmu . For each bmu , a linear function as described

in Eq. 3.1 is learned. A set of learned linear functions on bmu , where u = 1...N , defines

a learned appearance model Am
t at time t over temporal scale m. In other words, Am

t

comprises N learned linear functions over N sequences each of length m, where each

sequence consists of m histogram bin counts corresponding to the uth bin of the colour

histogram h. The bottom row of Fig. 3.6 graphically demonstrates the composition of

Am
t .

To evaluate the primary idea of learning appearance over multiple temporal scales and for

the sake of simplicity, the features or the bins of a histogram are considered independent.

We acknowledge that this is a strong assumption. It is quite likely for the features to be

correlated in some way, and taking this into account while learning could yield improved

models.

Here, a set of appearance models corresponding to model-scales 1, 5, and 9 at time t

is symbolized by At = {A1
t , A

5
t , A

9
t }. Appearance models associated with scales 5, and

9 are learned using the aforementioned methodology. The model at scale 1 utilizes the

previously estimated appearance to be the predicted appearance at the next moment in

time.

These model-scales were chosen as existing tracking methods based on adaptive ap-

pearance models either use the immediate previous observation from time-point t − 1

[Grabner and Bischof, 2006, Han and Davis, 2005, Matthews et al., 2004] or observations

from some sequence of past time-points e. g. [t − 1; t − 5] [Kwon and Lee, 2010, 2011,

Ross et al., 2008] for modelling appearance.

Every member of the set At predicts a colour histogram (target appearance) h̃t+1 at time

t + 1. For each predicted h̃t+1, the squared Bhattacharyya distance [Comaniciu et al.,

2003] to the colour histogram extracted at the ground truth state h(gt+1) is computed

at time t+ 1:

D2
bhat(h̃t+1,h(gt+1)) = 1−

N∑
u=1

√
h̃ut+1h

u(gt+1), (3.3)

where gt+1 indicates the ground truth state at time t+ 1.

Fig. 3.7 plots the cumulative Bhattacharyya distance over time of the individual ap-

pearance models belonging to the set A and the best performing model from this set
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A linear function learned over 

A linear function learned over 

A linear function learned over 

Figure 3.6: Appearance model over model-scale m. The figure graphically
illustrates the composition of appearance model over model-scale m.
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from seven video sequences. The model with the lowest distance at a given time is taken

as the best model at that time.

Results reveal that better appearance predictions can be made if a set of appearance

models learned at different temporal scales is used in comparison to an individual, fixed

appearance model. Again, this relies on being able to select the right model from A.

In addition, the results demonstrate that unlike motion models, the appearance models

corresponding to different model-scales change their ranking over time in four out of

seven sequences.

Appearance models generated from multiple model-scales improve appearance prediction

performance in comparison to any individual model, but this performance gain is low

compared to the gain made when this concept was applied to motion models. The

dimensionality of the feature space (110D) when learning appearance is very high in

comparison to the dimemsionality of state space (2D) when learning motion. However,

the learning method used both for motion and appearance models is the same, and does

not consider correlation among variables. This assumption affects appearance modelling

more than the motion modelling, due to high dimensionality of the feature space. As a

result, the learned appearance models produce appearances that are not as accurate as

the states predicted by the learned motion models.

Fig. 3.7(a) shows appearance prediction performance in the girl, and football sequences.

The ranks of appearance models corresponding to different model-scales are quite similar

in both the sequences, but the gain in performance upon using the model set is apparently

higher in the football sequence than the girl sequence. In both the sequences, the

appearance model corresponding to model-scale 9 show slightly better performance than

the model over model-scale 1 for more than two-third of the total duration, after which

they switch ranks and continue unchanged till the end. The aforementioned trend is more

evident in the football sequence. In contrast, the appearance model built over model-

scale 5 does not change its rank throughout either sequences. A somewhat improved

performance of the appearance model over model-scale 9 compared to its counterpart

over model-scale 5 might be due to the fact that the variations in most of the variables

(bin values) of the histogram form regular patterns of different time duration, which suit

long scale models well. As an example, the top row of Fig. 3.8(a) shows the temporal

evolution of bin values in the the first 200 frames of the girl sequence, and the bottom

row of the Fig. 3.8(a) plots cumulative Bhattacharyya distance for appearance models

corresponding to model-scales 5, and 9. Although there is not much difference in the

performance of two models initially, model over scale 9 has somewhat better performance

than the model over scale 5 for the most part.
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(a) Prediction performance when there are illumination variations, out-of-plane rota-
tions, and partial occlusions.
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(b) Prediction performance when there are illumination variations, out-of-plane rota-
tions, and partial and full occlusions.
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(c) Prediction performance in case of illumination variations and out-of-plane rotations.
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(d) Prediction performance in case of out-of-plane rotations, partial occlusions, illumi-
nation changes, and when some portion of the target leaves the view.

Figure 3.7: Performance comparison in case of appearance prediction on
seven challenging video sequences. Each plot illustrates the cumulative Bhat-
tacharyya distance over time for the selected best appearance model from a set and the

individual appearance models.
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(a) Temporal evolution of bin values in the first 200 frames of the girl sequence (top),
and the performance of appearance models corresponding to model-scales 5, and 9 in

these frames (bottom).
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Temporal evolution of bin values in the panda sequence
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(b) Temporal evolution of bin values in the first 200 frames of the panda sequence
(top), and the performance of appearance models corresponding to model-scales 5, and

9 in these frames (bottom).

Figure 3.8: Performance comparison between appearance models derived
from model-scale 5, and 9 under two different types of variations in bin
values. The plots in Fig. 3.8(a) show that when the variations in bin values in some
way form regular patterns of different duration, then the appearance model over model-
scale 9 performs slightly better than the appearance model over model-scale 5, while
the plots in Fig. 3.8(b) reveal that under almost unpredictable (irregular) variations of
the bin values, the appearance model over model-scale 5 performs a little superior to

the appearance model corresponding to model-scale 9.
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Figure 3.9: Selection percentage for each appearance model in seven video
sequences. The figure illustrates percentage of times each appearance model is selected

in seven video sequences.

Fig. 3.7(b) reveals appearance prediction performance in the panda, and trellis se-

quences. The ranks of individual models are almost the same in both the sequences.

In contrast to the plots in Fig. 3.7(a), the plots in Fig. 3.7(b) reveal that the ap-

pearance model derived from model-scale 5 takes the lead in terms of performance over

the appearance model corresponding to model-scale 9 after approximately one-third of

both the sequences. This could be because the variations in most of the variables of

the histogram are more or less unpredictable, i.e erratic in nature. To demonstrate,

the temporal evolution of bin values in the first 200 frames of the panda sequence are

displayed in the top row of Fig. 3.8(b), and the cumulative Bhattacharyya distance of

appearance models corresponding to model-scale 5, and 9 is plotted in the bottom row

of Fig. 3.8(b). It can be seen that the appearance model over model-scale 5 is a little

superior to the appearance model derived from model-scale 9 under such variations.

Similar behaviour can be observed in the singer1 sequence in Fig. 3.7(c), in which the

appearance model over model-scale 5 is a little better than the model over model-scale

9.
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It was observed that appearance prediction performance improves when a set of ap-

pearance models, derived from multiple model-scales, is utilized in comparison to any

individual model, but model over model-scale 1 contributes more to this improved perfor-

mance than the others (learned models over model-scale 5, and 9) in almost all sequences.

Since the learned models do not take into account the correlation among the bin values

of the histogram, which is a strong assumption, they are not highly effective, and hence

often their predicted appearances do not match closely to the true target appearance

than the model over model-scale 1. A more powerful learning mechanism may remedy

this.

Fig. 3.9 plots the percentage of times each appearance model is selected in seven video

sequences. The ranks of appearance models over model-scales 1, and 9 in the girl and

football sequences in Fig. 3.9 are the same when compared to the cumulative error plots

of Fig. 3.7(a). However, the ranks of appearance models corresponding to model-scales

5, and 9 in the rest of the sequences are inverted in Fig. 3.9 when compared to the

cumulative error plots of Fig. 3.7.

3.3 Conclusion

This chapter posed the question, is there any benefit in terms of prediction performance

to be gained by using a set of models, derived from multiple temporal scales, rather than

any fixed, individual model? This is the first step towards determining the potential of

the idea of visual tracking over multiple temporal scales.

To analyze the benefits of learning over multiple temporal scales, both motion and

appearance variations were investigated in the ground truth data of several challenging

sequences. In general, the experimental results revealed that prediction performance

improves with access to a set of models, provided it is possible to select which is the best

model to use at any given time. For appearance prediction, this gain in the performance

is not substantial when compared to the location prediction, but it is encouraging enough

to develop this idea further in the future.

Some interesting results were also obtained from the individual performances of mod-

els. In situations where variations in motion or appearance form approximately regular

patterns of some duration, the longer scale models perform better than the shorter

scale models. On the other hand, when the variations are more erratic, the shorter scale

models surpass their longer scale counterparts. Again, these performance gains are more

notable in case of location prediction than appearance prediction.
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Having seen the benefits of access to a set of multi-scale models, in the next chapter

we will address the other two questions with respect to motion modelling: first, can we

use these models, derived from multiple histories of the target state, to make flexible

predictions multiple time-points ahead and overcome occlusions? And secondly: how

can we automatically select the most suitable model at each time-point and fit this

selection process into a tracking framework? We focus on motion modelling rather than

appearance modelling as this fits more readily into a tracking framework than multi-scale

appearance modelling, which requires further development.



Chapter 4

A Visual Tracker Operating Over

Multiple Temporal Scales

In the previous chapter, it was observed that learning over multiple temporal scales has

the potential to improve prediction performance. This is considered crucial in predictive

tracking. A good motion prediction (close to the true target state) can improve the

sampling efficiency of the search method and may make it more robust to local optima.

To address questions (2) and (3) that arose from the proposed idea of visual tracking

over multiple temporal scales at the start of foregoing chapter, this chapter proposes

a visual tracker operating over multiple temporal scales that is capable of handling

occlusion and non-constant target motion. This is achieved by learning motion models

from the target history at different temporal scales and applying those models over

multiple temporal scales in the future. These motion models are learned online in

a computationally inexpensive manner. To provide reliable recovery of tracking after

occlusions, the bootstrap particle filter is extended to propagate particles at multiple

temporal scales, possibly many frames ahead, guided by these motion models. In terms

of Bayesian tracking, the prior distribution at the current time-step is approximated by

a mixture of the most likely modes of several previous posteriors propagated using their

respective motion models. This improved and rich prior distribution, formed by models

learned and applied over multiple temporal scales, makes the proposed tracker more

robust to complex target motion by covering a relatively large search space. Experiments

have been carried out on both publicly available benchmarks and new video sequences.

Results reveal that the proposed method successfully handles occlusions and a variety

of rapid changes in target motion.

68
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4.1 Introduction

Occlusion is a complicated problem for visual tracking frameworks. In real-world sce-

narios, a tracked target can stay partially or fully occluded for variable time periods.

Because the target image evidence is partially or wholly unavailable, it becomes hard for

a tracker to maintain contact with the target through occlusions. This is particularly

problematic if a change in the appearance or direction of motion occurs while the target

is occluded. While many solutions have been proposed to the occlusion problem, it re-

mains an open issue. For a thorough review of the existing work on occlusion handling,

please refer to chapter 2 of this thesis.

Maintaining accurate estimates of a target’s state is also difficult when it exhibits com-

plex motion patterns. These can be the result of rapidly varying motion of a target,

camera movement, and/or low frame rate of the video. As motion uncertainty increases

during quickly varying movement, the search space of the parameters to be estimated

during tracking becomes large. Although poor motion prediction can directly affect

tracking accuracy under these situations, little attention has been paid to this problem.

For a detailed study of the existing body of work on motion variations, please see chapter

2 of this thesis.

This chapter proposes a tracking framework exploiting models learnt and applied over

multiple temporal scales that is capable of implicitly coping with occlusions and non-

constant target motion without using strong appearance models, explicit occlusion de-

tection mechanisms or exhaustive search methods.

To recover from occlusion a flexible prediction method is employed, which estimates

target state at temporal scales up to the expected maximum duration of likely occlusions.

To achieve this, motion models are learnt at multiple model-scales and used to predict

possible target states at multiple prediction-scales ahead in time. The model-scale is the

duration of a sequence of recently estimated target states over which a motion model is

learnt. The prediction-scale is the temporal distance, measured in frames of the input

image sequence, over which a given prediction is made. Reliable recovery of tracking after

occlusions is achieved by extending the bootstrap particle filter to propagate particles

to multiple prediction-scales, using models learnt at multiple model-scales. Fig. 4.1

summarises the approach.

The proposed framework can handle variable motion well due to the following: in pre-

dictive tracking, learnt motion models describe the recent history of target state —the

most recent section of the target’s path across the image plane. Trackers using, for

example, a single linear motion model effectively represent the target path as a straight
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Model-Scale

tt-4 t+1 t+T

Prediction-Scale

(a) Multiple motion models are learned from the recent history of estimated states at
different temporal scales, and each model is applied to multiple temporal scales in the

future.

tt-T t-1t-2t-3

(b) This means that, when determining target state, multiple sets of motion models are
available to make predictions. Each set includes models learnt at multiple model-scales.

In the proposed method one model per set is selected to propagate particles.

Figure 4.1: Visual Tracking Over Multiple Temporal Scales.

line. By building multiple motion models at multiple model-scales, the proposed frame-

work maintains a much richer description of target path. The diverse set of models

produced captures at least some of the complexity of that path and, when used to make

predictions, the model set represents variation in target motion better than any single

model. Furthermore, when such models operate over multiple prediction-scales, they

facilitate the development of a rich and improved prior distribution at each time-point.
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This lets the proposed framework capture an increased search space, which is valuable

in the presence of abrupt variations in target motion.

Tracking methods bearing resemblance to the proposed method are graph-based tracking

methods working on temporal windows [Poiesi and Cavallaro, 2015, Shafique and Shah,

2005, Shu et al., 2012]. These methods formulate the multi-target tracking problem as

a graph in which nodes corresponds to the detection responses and edges represent the

cost of moving from one node to another. Given this graph, the aim is to produce several

subgraphs in which the detections belonging to same object are connected [Zamir et al.,

2012].

The detections are produced by a background subtraction algorithm or an object detec-

tor in each frame of a video sequence. To deal with occlusions and missed detections,

these methods maintain a temporal buffer in which the correspondence problem is solved

using optimization algorithms that compute approximate graph solutions [Poiesi and

Cavallaro, 2015]. For instance, [Shafique and Shah, 2005] poses multi-frame correspon-

dence problem in terms of a graph and proposes a non-iterative greedy algorithm for

approximating the solution. [Poiesi and Cavallaro, 2015] recursively associated detec-

tions using a graph-based tracker on temporal windows and computed solution to the

graph using a greedy algorithm. Short tracks are generated by optimally associating

detections and the long tracks are formed by sequentially linking short tracks. The pro-

posed approach also maintains temporal windows to overcome occlusions, however, it is

different to aforementioned works in the following ways.

The proposed approach doesn’t detect target in each frame and therefore doesn’t link

those detections in temporal windows to achieve tracking. It jointly estimates the target

detection and track using state predictions (temporal priors) and particle clusters propa-

gated from several previous time-points. These temporal priors are produced by motion

models constituted over multiple model-scales at each time-point. A motion model se-

lection mechanism selects the most suitable motion model (corresponding to a temporal

prior) from each of the previous time-points. Above-mentioned approaches formulate

the correspondence (linking) problem in terms of a graph and employ greedy optimiza-

tion algorithms to compute the solution i.e. estimate trajectories of given targets. The

proposed approach uses selected model from each previous time-point to propagate the

most probable mode of the corresponding density to the current time-point to achieve

tracking.

The remainder of this chapter is organized as follows. The proposed approach is ex-

pressed in terms of Bayesian tracking in Section 4.2. After this theoretical segment,

implementation details of the proposed tracking framework are presented in Section 4.3.

Then, the proposed framework is compared with competing methods on some publicly
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available benchmarks and new video sequences, and analyzed in Section 4.5. Finally,

Section 4.6 concludes the chapter, and outlines the potential limitations of the differ-

ent components of the proposed framework, which will allow us to explore this method

further in chapter 5.

4.2 Bayesian Tracking Formulation

The aim is to find the best state of the target at time t given observations up to time t.

State at time t is given by Xt = {Xx
t , X

y
t , X

s
t },where Xx

t ,Xy
t , and Xs

t represent the x,y

location and scale of the target, respectively. In a Bayesian formulation, the proposed

solution to tracking problem comprises two steps: update 4.1, and prediction 4.2.

p(Xt|Y1:t) ∝ p(Yt|Xt)p(Xt|Y1:t−1). (4.1)

where p(Xt|Y1:t) is the posterior probability given the state Xt at time t, and observa-

tions Y1:t up to t. p(Yt|Xt) denotes the observation model.

p(Xt|Y1:t−1) =

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1. (4.2)

where p(Xt|Y1:t−1) is the prior distribution at time t, and p(Xt|Xt−1) is a motion model.

In this work, the accuracy of the posterior distribution at a given time t is improved

by improving the prior distribution. Here, the prior distribution is approximated by

a mixture of the most probable modes of T previous posteriors propagated by the T

selected motion models, which are generated using information from up to T frames

ago. Eq. 4.2 in the standard Bayesian formulation can now be written as:

p(Xt|Y1:t−1) ≈
∫ k=T

k=1
pk(Xt|Y1:t−k)dk, (4.3)

which is now the sum of T individual predictive distributions originated from the T

previously estimated posteriors.

pk(Xt|Y1:t−k) ≈
∫
Xt−k

pk(Xt|Xt−k)p(X̃t−k)dXt−k. (4.4)

where pk(Xt|Xt−k) is the motion model selected at time t from a set of motion models

learned at time t−k, and p(X̃t−k) ⊂ p(Xt−k|Y1:t−k) is the most probable mode (approx-

imated via N particles) of the posterior at time t − k. A relatively rich and improved

prior distribution in Eq. 4.3 allows handling occlusions and abrupt motion variation in
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a simple manner without resorting to complex appearance models and exhaustive search

methods.

The posterior corresponding to the kth predictive distribution can be written as:

pk(Xt|Y1:t−k,Yt) ∝ p(Yt|Xt)pk(Xt|Y1:t−k). (4.5)

Then, the posterior distribution p(Xt|Y1:t) at time t is a sum of T individual posteriors:

p(Xt|Y1:t) =

k=T∑
k=1

pk(Xt|Y1:t−k,Yt). (4.6)

When particles are used to approximate the kth predictive distribution, which is formed

by convoluting p(X̃t−k) with pk(Xt|Xt−k), Eq. 4.4 becomes:

pk(Xt|Y1:t−k) ≈
N∑
i=1

pk(Xt|X(i)
t−k)p(X̃

(i)
t−k). (4.7)

Now the posterior corresponding to the approximated kth predictive distribution can be

written as:

pk(Xt|Y1:t−k,Yt) ≈ p(Yt|Xt)
N∑
i=1

pk(Xt|X(i)
t−k)p(X̃

(i)
t−k). (4.8)

The approximated posterior p(Xt|Y1:t) at time t through particles is a sum of T indi-

vidual posteriors:

p(Xt|Y1:t) ∝
k=T∑
k=1

p(Yt|Xt)
N∑
i=1

pk(Xt|X(i)
t−k)p(X̃

(i)
t−k). (4.9)

The best state of the target X̂t is obtained using Maximum a Posteriori (MAP) estimate

over the Nt = N × T weighted particles which approximate p(Xt|Y1:t),

X̂t = arg max
X

(m)
t

p(X
(m)
t |Y1:t) form = 1, ..., Nt, (4.10)

where X
(m)
t is the mth particle.
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4.3 A Multiple Temporal Scale Framework

The core idea is to construct an improved and rich prior distribution at each time-point

by combining sufficient particle sets that at least one set will be valid and allow recovery

from occlusion and robustness to non-constant motion. A valid particle set is the most

likely mode of an accurate estimation of the posterior probability from some previous

time-point, propagated by a motion model generated over an appropriate model-scale

and unaffected by occlusion. This is in contrast to most existing approaches [Isard and

Blake, 1998a],[Ross et al., 2008],[Pérez et al., 2002],[Bao et al., 2012], and [Jia et al.,

2012], in which the posterior from the most recent time-point (t − 1) is propagated to

the current time-point (t).

In the proposed method, multiple sets of motion models are available at each time-

point. The models in each set are all learned at a single previous time-point, but

over multiple model-scales. One motion model is selected from each set, and used to

propagate particles forward from the time at which it was learned. Propagation from

several adjacent time-points using selected motion models generates several particle sets

at each future time-point, within a certain temporal distance.

At each time t, the proposed algorithm proceeds through three stages: evaluation, learn-

ing, and prediction.

4.3.1 Evaluation

T sets of motion models are available at time t, one from each of the T preceding time-

steps. Each set of models at time t is represented by its corresponding set of predictions.

Based on these predictions, the most suitable motion model from each set is selected,

and used to generate particles describing target state at time t.

The T sets of motion models available at time t are represented by the corresponding

T sets of predicted states at time t. Let Lt = {lkt |k = 1, ..., T} denote T different sets

of states predicted by their respective motion models, where lkt = {lj,kt |j = 1, ..., G} is a

set of states predicted by G motion models belonging to (learned at) the kth previous

time-step. lj,kt denotes the predicted state by jth motion model learned at kth previous

time-step. For instance in Fig. 4.2(a), l1t is a set containing 4 states predicted by 4

motion models learned at time t− 1.
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4.3.1.1 Model Set Reduction

The aim of model set reduction is to establish search regions for the particle filter in

which there is a high probability of the target being present. This in turn will reduce

the sampling effort, as search regions corresponding to all the predictions no longer need

to be searched.

The most suitable motion model Rk
t is selected from each set using the following criterion

on the corresponding set of predicted states lkt :

l̂kt = arg max
lj,kt

p(Yt|lj,kt ) (4.11)

where l̂kt is the most suitable state prediction from the set lkt , and p(Yt|lj,kt ) measures the

visual likelihood at the predicted state lj,kt . In other words, l̂kt is the most suitable state

prediction of the most suitable motion model Rk
t . For example, Fig. 4.2(b) shows the

predicted state l̂1t of the most suitable motion model R1
t chosen from 4 motion models

learned at time t − 1. After this selection process, the T sets of motion models are

reduced to T individual models.

One motion model is selected at time t from each of the T previous time-points because

it is assumed that at least one of them would have generated an accurate model. An

accurate model is one whose state prediction at time t is close to the true target state.

It is of course possible that none of the models belonging to one or more previous time-

points are accurate enough.

4.3.1.2 Propagation of Particles

In the bootstrap particle filter [Arulampalam et al., 2002], the posterior probability at

time t−1 is estimated by a set of particles X
(i)
t−1 and their weights ω

(i)
t−1,{X(i)

t−1, ω
(i)
t−1}Ni=1,

such that all the weights in the particle set sum to one. The particles are resampled

to form an unweighted representation of the posterior {X(i)
t−1, 1/N}Ni=1. At time t, they

are propagated using the motion model p(Xt|Xt−1) to approximate a prior distribution

p(Xt|Yt−1). Finally, they are weighted according to the observation model p(Yt|Xt),

approximating the posterior probability at time t.

Here, particle sets not just from one previous time-step (t−1), but from T previous time-

steps are propagated to time t using the T selected motion models. When using first-

order polynomial (linear) motion models the most suitable motion model Rk
t selected

from those learnt at the kth previous time-step will propagate a particle set from the kth
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T
t-T t-1 t

1

Set of predicted states 

Predicted state

(a) In the evaluation stage, there exist T different sets of predicted states at time
t, where each set lkt comprises G states predicted by G motion models learned at kth
previous time-step. In this figure, l1t is a set composed of 4 states predicted by 4 motion

models learned at time t− 1.

t-T
T

t-1 t

1

Predicted state      of the most suitable motion model

(b) Model Set Reduction. T sets of motion models available at time t, represented
by the corresponding T sets of predicted states, are reduced to T individual models.
This is achieved by selecting the most suitable motion model Rk

t from G motion models

learned at kth previous time-step. This figure shows the predicted state l̂1t of the most
suitable motion model R1

t selected from 4 motion models learned at time t− 1.

t-T
T

t-1 t

1

Predicted state      of the most suitable motion model

Particle set

(c) Propagation of Particles. T selected motion models, one from each of the T
preceding time-steps, are used to propagate particle sets from T preceding time-steps
to time t. In this figure, the most suitable motion model R1

t , selected from 4 motion

models learned at time t − 1, and represented by its predicted state l̂1t , is used to
propagate particle set from time t− 1 to time t.

Figure 4.2: Graphical illustration of events occurring at the evaluation
stage.



Chapter 4. A Visual Tracker Operating Over Multiple Temporal Scales 77

previous time-step as follows

Xx
t,k = Xx

t−k + g(Rk
t )k +N (0, σ2

xk), (4.12)

where Xx is the horizontal part of the target state, g() indicates the slope of the model,

and N (0, σx) is a Gaussian distribution with zero-mean and σ2
x variance. For instance,

in Fig. 4.2(c), the most suitable motion model R1
t , is used to propagate a particle set

from time t− 1 to time t.

Propagation from the last T time-steps, generates T particle sets at time t. Since the

prior distribution at time t is now a combination of T predictive distributions (particle

sets), it is rich compared to the prior of the original bootstrap particle filter. Each prop-

agated particle set (kth predictive distribution pk(Xt|Y1:t−k)) is now weighted according

to the observation model p(Yt|Xt) to form the respective posterior pk(Xt|Y1:t−k,Yt).

Then, the final posterior p(Xt|Y1:t) at time t is a sum of T individual posteriors.

If the target was occluded for less than or equal to T − 1 frames, it may be recovered by

a set of particles unaffected by the occlusion. To focus on particles with large weights,

and reduce computational cost, the first N particles are retained after the resampling

step.

The best state of the target X̂t is obtained using MAP estimate over the Nt = N × T
weighted particles which approximate p(Xt|Y1:t) (Eq.4.10).

4.3.1.3 Model (Prediction) Status

It is important to mention the number of motion models available in the evaluation

stage at time-points ahead of the current time t since this is not equal everywhere. T

time-points ahead of time t will be considered because the proposed framework operates

at T temporal scales.

There are G× (T − 1) predicted states (or T − 1 sets of predicted states) at time t+ 1,

and G × 0 predicted state (or 0 set of predicted state) at time t + T . In other words,

there are G × (T − 1) motion models (or T − 1 sets of motion models) at time t + 1,

and G × 0 motion model (or 0 set of motion models) available at time t + T (See Fig.

4.3). Recall that the G is the cardinality of the set of motion models learnt at each

time-point.
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t-1t-T t t+T

T sets of motion 
models

t+1

T sets of motion 
models

T sets of motion 
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T-1 sets of 
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T-T sets of 
motion models

Figure 4.3: Model Status at time-points ahead of time t (current time-point)
in the evaluation stage. T − 1 sets of motion models are present at time t+ 1, and
T − T set of motion models is available at time t + T when proceeding through the

evaluation stage.

4.3.2 Learning

Having estimated the target state at time t, the task of this stage is to learn linear motion

models at multiple model-scales that can be used to make forward predictions. A linear

motion model is represented by M. M is learned at a given model-scale separately for

the x-location, y-location, and scale s of the target’s state. Fig. 4.4(a) shows four linear

motion models learned over four different model-scales at time t.

Here, a linear motion model over model-scale m is learned, taking into account how well

the states in this sequence have been estimated and their relevance in terms of how far

each estimated state is from the most recently estimated state [Kristan et al., 2010]. Let

Zm = {x̂n}n=t
n=t−m+1 represent a sequence of recently estimated x-components of target

states over model-scale m, and let Qm = {θ̂n}n=t
n=t−m+1 be a set of their weights. The

linear motion model over model-scale m at time t can be written as:

x̃n = φmx̂t + τmx̂tn, (4.13)

where τ is the slope, φ the intercept, and x̂t denotes that the model parameters have

been learnt using a sequence of recently estimated x-components of target states whose

last member is x̂t. Eq. 4.13 is same as Eq. 3.1 and it is repeated here in an effort

to make the chapter self-contained. Now the parameters, φmx̂t and τmx̂t , in Eq. 4.13 can

be determined via weighted least squares (WLS) method by minimizing the following

weighted sum of squared differences [Kristan et al., 2010]

S(φmx̂t , τ
m
x̂t ) =

t∑
n=t−m+1

M(n)
t (x̂n − x̃n)2, (4.14)
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Model-Scale 5

t-4 t-1 t

Estimated states

(a) In the learning stage, multiple motion models are constituted at multiple model-
scales using the recent history of estimated states at time t. In this figure, four linear
motion models are learned over four different model-scales at time t. The four model-

scales are 2,3,4, and 5.

Learned Motion Model

t+Tt

Prediction-Scale

t+1

(b) At the prediction stage, a set of learned motion models are used to predict possible
target states at T prediction-scales. In this figure, a set comprising four learned motion
models is shown at time t. Each motion model predicts possible target state at T

prediction-scales.

Figure 4.4: Graphical illustration of the learning stage and the prediction
stage.

where M(n)
(.) are the weights defined as

M(n)
t = θ̂ne

−0.5
(n−t)2

σ2o . (4.15)

The first term in Eq. 4.15 is the visual likelihood score at x̂n, and the second term

is a Gaussian. A Gaussian function is used to attenuate the importance of farther

states as recent states are more pertinent in explaining targets current motion [Kristan

et al., 2010]. Note that other functions that show similar behaviour (e.g., an exponential

function) can also be used in place of a Gaussian [Kristan et al., 2010]. Effectively the

m = 3σo most recently estimated states are considered in Eq. 4.14 because the weights
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Figure 4.5: Model Status at time-points ahead of time t (current time-point)
after the prediction stage. T sets of motion models are present at time t + 1, and

1 set of motion models is available at time t+ T after the prediction stage.

of all other states are very small.

4.3.3 Prediction

Learned motion models are now used to predict possible target states at T prediction-

scales. Let M
j=1,...,|Mt|
t represent a set of learned motion models at time t, where |.|

is the cardinality of the set. The cardinality of this set is G, and each model predicts

target state l(x̃, ỹ, s̃) at T prediction-scales. For example, Fig. 4.4(b) shows a set of

G = 4 learned motion models at time t predicting possible target states. The proposed

method is summarized in Algorithm 1.

4.3.4 Model (Prediction) Status

It is worth mentioning here the available number of models (predictions) at time-points

ahead of time t after the prediction stage.

There would be G×T predicted states (or T sets of predicted states) at time t+ 1, and

G predicted states (or 1 set of predicted states) at time t + T . In other words, there

would be G×T motion models (or T sets of motion models) at time t+1, and G motion

models (or 1 set of motion models) available at time t+ T (See Fig. 4.5).

In comparison to the model status in the evaluation stage, here, the set(s) of models

(predictions) available at each time-point ahead of time t (is) are increased by 1. This

is because now the models have been learnt at time t, and they have generated state

predictions over T prediction-scales.
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Algorithm 1 A Multiple Temporal Scale Tracker

Input: Pt = ∅
Let W = {Wt−1, ...,Wt−T } represent the resampled sets of particles after estimation of

the posterior from T previous time-steps, where Wt−1 = {X(i)
t−1,

1
N }

N
i=1.

Output: Best state X̂t at time t.

Evaluation Stage

for k = 1 to T
for j = 1 to G

- Measure visual likelihood p(Yt|lj,kt ), where lj,kt is the predicted state at time t by
jth motion model from kth previous time-step.

end
- Select the most suitable motion model Rk

t at time t using Eq. 4.11.
- Approximate kth predictive distribution pk(Xt|Y1:t−k) by propagating the particle

set from kth previous time-step Wt−k = {X(i)
t−k,

1
N }

N
i=1 using Eq. 4.12 by taking the

slope of selected motion model Rk
t to time t. After propagation the particle set is

represented by W k
t = {X(i)

t , 1
N }

N
i=1.

- Convert kth predictive distribution into the respective posterior distribution
pk(Xt|Y1:t−k,Yt) using p(Yt|Xt). After weighting the particle set is represented by

W k
t = {X(i)

t , ω
(i)
t }Ni=1.

- Pt = Pt ++ W k
t . (++ is the concatenation symbol)

end
- Pt represents the approximated posterior p(Xt|Y1:t) at time t.
- Estimate the best state X̂t using Eq 4.10.

- Retain the first N particles Wt = {X(i)
t , 1

N }
N
i=1 after resampling Pt.

Learning Stage

for e = 1 to G
- m = mdscales(e), where mdscales is an array containing G model-scales.
- Learn linear motion model at mth model-scale separately on locations x,y, and
scale s of the target state.

end

Prediction Stage

for e = 1 to G
- Predict locations x,y, and scale s of the target state at T prediction-scales using
Eq. 4.13.

end



Chapter 4. A Visual Tracker Operating Over Multiple Temporal Scales 82

4.4 Applying the proposed framework to the two-stage

motion model

Algorithm 1 summarizes the proposed framework as applied to linear motion models.

The proposed framework has also been applied to the two-stage model of [Kristan et al.,

2010] to demonstrate its generality. The RW and NCV models present two extremes in

the temporal correlation of velocity. The two-stage model is based on a more general

approach, known as a Gauss-Markov process (GMP), that allows velocity to be modelled

as correlated noise, but without taking into consideration the extent to which it is

correlated. By modelling motion with a GMP, it is possible to capture dynamics which

lie between RW and NCV. The state of the target now includes an additional internal

velocity term v in both the x and y directions. With the two-stage model Eq. 4.12

becomes:

Xx
t,k =

{
Xx

t−k + γ1g(Rk
t )k + φ1,2v

x
t−k + Ωx k = 1

X x́
t,k + Ωx k > 1

(4.16a)

X x́
t,k = X x́

t,k−1 + γ1g(Rk
t ) + φ1,2v

x́
t,k−1 (4.16b)

X x́
t,1 = Xx

t−k + γ1g(Rk
t ) + φ1,2v

x
t−k (4.16c)

vxt,k =

{
φ2,2v

x
t−k + γ2g(Rk

t ) + Ωv k = 1

vx́t,k + Ωv k > 1
(4.16d)

vx́t,k = φ2,2v
x́
t,k−1 + γ2g(Rk

t ) (4.16e)

vx́t,1 = φ2,2v
x
t−k + γ2g(Rk

t ) (4.16f)

[Ωx,Ωv]ᵀ ∼ N (0, Qxk) (4.16g)

Where Ωx and Ωv are the noise processes acting on the target’s position and the asso-

ciated internal velocity (in this case it is x-part of the target’s position), respectively.

N (0, Qxk) is the zero-mean Gaussian distribution with Qx as the covariance matrix.

φ1,2 and γ1 are the proportions in which the the internal velocity vxt−k and the slope of

the selected motion model g(Rk
t ), also called rigid velocity, are combined into the deter-

ministic part of the velocity acting on the position Xx
t−k at time t − k. Note that the

nondeterministic part of the velocity acting on the position Xx
t−k is N (0, σ2

x). Likewise,

φ2,2 and γ2 are the proportions in which the internal velocity vxt−k and the rigid velocity

g(Rk
t ) are combined into the deterministic part of the velocity acting on the velocity

vxt−k at time t − k. For the full derivation of the aforementioned proportions1, please

refer to [Kristan et al., 2010].

1We set the correlation time parameter β of the two-stage to 10 in all the experiments. With this
setting, the values of φ1,2,γ1,φ2,2, and γ2 become 0.1,0.9,10−5, and 1, respectively.
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Upon applying the proposed framework to the two-stage model, we have two ways to

estimate target state: the rigid prediction ľt = (x̌t, y̌t, št) and the flexible estimate

X̂t = (X̂x
t , X̂

y
t , X̂

s
t ). From the selected polynomial motion models Rk=1:T

t available at

time t, the prediction of the model with the highest visual likelihood score is taken as

the rigid prediction ľt = (x̌t, y̌t, št). Eq. 4.16a propagates x and y components of the

particles from the kth previous time-step to time t by taking the slope of the selected

polynomial motion model (in case of linear) as the rigid velocity, while the s component

is propagated using Eq. 4.12. After propagation from T previous time-steps, the flexible

estimate of the target state X̂t = {X̂x
t , X̂

y
t , X̂

s
t } is computed using Eq. 4.10. Now the

normalized state of the target n̂t is calculated by reducing the variance of the flexible

estimate of the target state X̂t by fusing it with the rigid prediction ľt of the target

state:

n̂t =
ľtψľt

+ X̂tψX̂t

ψľt
+ ψX̂t

, (4.17)

where ψľt
is the visual likelihood score at ľt, and ψX̂t

is the visual likelihood score at X̂t.

4.5 Experimental Details and Results

4.5.1 Data

To evaluate the accuracy of the proposed method, 3 different sets of sequences were

compiled. In total, fourteen sequences were used. Ten are publicly available (PETS

2001 Dataset 1 2, TUD-Campus[Andriluka et al., 2008], TUD-Crossing [Andriluka et al.,

2008], Person[Dihl et al., 2011], car [Wu et al., 2013], jogging [Wu et al., 2013], deer [Wu

et al., 2013], lemming [Wu et al., 2013], boy [Wu et al., 2013] and PETS 2009 Dataset

S2 3) and four are our own (squash, ball1,ball2, and toy1 ). Fig. 4.6 shows the first frame

of each sequence, with the target to be tracked annotated with a bounding box.

The selection of sequences for each set is carried out based on the chief criterion that a

given sequence must involve occlusions (partial and/or full) of variable lengths and/or

abrupt motion variation. This is because the proposed method aims at handling these

two problems. Furthermore, the selection ensured that each set includes targets of

different types (e.g. a ball, a person, or a car) to be tracked and a mix of indoor and

outdoor environments.

The first set contains 9 sequences (ball2, TUD-Campus, TUD-Crossing, Person, PETS

2001, PETS 2009, car, jogging, and toy1 ) and each sequence contains occlusions (partial

2PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/
3PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/
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Figure 4.6: Image sequences used for evaluation. The first frame with the
bounding box (red) of the target to be tracked is shown for each sequence.
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and/or full) of different time periods. In addition, the targets in these sequences undergo

scale variations and modest appearance changes due to illumination variations. The

second set contains 2 sequences (squash and ball1 ) and the target in each sequence

displays abrupt motion variations and faces occlusions of variable time periods. The

last and the third set comprise 3 sequences (deer, lemming, and boy) and the target

motion in each sequence undergoes abrupt variations. Along with non-constant target

motion, these sequences include challenges such as background clutter and out-of-plane

rotations.

4.5.2 Evaluation Protocol

We used three metrics for evaluation: center location error, Pascal score [Santner et al.,

2010], and precision at a fixed threshold of 20 pixels [Babenko et al., 2011].

Among the many evaluation metrics used for tracking, center location error is most

common. It is defined as the Euclidean distance between the center location of the

tracked target and the manually labeled ground truth [Wu et al., 2013]. Then the

center location error over all the frames of a video sequence is averaged to summarise

performance for this sequence. This measure provides a broad indication of performance,

but cannot identify how well the tracker maintained contact with the target throughout

a video sequence. A tracker that closely captures the target for most of the sequence,

but then fails completely on the last several frames, might for example have an average

center location error higher than a tracker that follows the target throughout the course

of the sequence, though not as precisely [Babenko et al., 2011].

For the above reason, [Babenko et al., 2011] adopted the precision plot. This reports the

percentage of frames in which the estimated target location stays within a predefined

threshold distance (in pixels) of the ground truth. In this work, precision is shown at a

threshold distance of 20 pixels from the ground truth.

When a target exhibits scale and rotational changes, the precision metric cannot measure

performance correctly. It only compares position part of the estimated target state and

the corresponding ground truth. To overcome these problems, another evaluation metric

known as the Pascal score [Santner et al., 2010] is used. Given the tracked bounding box

bt, and the ground truth bounding box bg, the Pascal score is defined as S =
area(bt∩bg)
area(bt∪bg) ,

where ∩, and ∪ represent the intersection and union of two regions, respectively. A

frame is counted as successfully (correctly) tracked whose Pascal score S is above 0.5.

So, the percentage of successfully tracked frames of a sequence summarizes performance

on this sequence.
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4.5.3 Experimental Settings

The appearance model used in all the experiments reported here was the colour his-

togram of [Pérez et al., 2002]. The aim is to investigate the power of multiple temporal

scales to deal with occlusion and abrupt motion variation. To evaluate this indepen-

dently of the appearance model, a simple appearance model is used on purpose. The

Bhattacharyya coefficient was used as the distance measure. Linear motion models with

model-scales of 2,3,4, and 5 frames were used (four models in total).

These model-scales were chosen empirically, but there are two reasons why these partic-

ular model-scales. The first and the primary reason for this is that we wanted to know

when utilizing multiple temporal scales, if there are better models available than the

zero-order model [Dellaert et al., 1999, Jia et al., 2012, Mei and Ling, 2009, Ross et al.,

2008]. With this question, the appropriate direction was to explore the immediate longer

scale models 2, 3, 4, and 5 for the range of model-scales. Lastly, the number of models

i.e. 4 was chosen to have (include) different flavours of model-scales in the model set. It

contains model-scales of shorter duration as well as of longer duration with reference to

zero-order model. Of course more model-scales (of longer duration) can be added, but

that might not add diversity to the model set.

MTS-L denotes the proposed method applied over a linear motion model (Algorithm

1). As mentioned earlier, we also apply our proposed framework to the two-stage model

of [Kristan et al., 2010], which is denoted by MTS-TS, to show its generality. In MTS-

TS, the β parameter of the two-stage model was fixed at 10, giving high weight to the

rigid velocity, estimated by the linear motion model, and very low weight to the internal

velocity. As a result, it becomes strongly biased towards the predicted location, but still

allows some deviation.

The proposed method was compared to three baseline and seven state-of-the-art trackers.

The first two baseline trackers, TRW and TNCV , were colour based particle filters from

[Pérez et al., 2002], but use different motion models. TRW used a random-walk model

while TNCV used a nearly constant velocity model. The third baseline tracker TTS was

the two-stage dynamic model proposed by [Kristan et al., 2010]. The parameters, K

and β, in [Kristan et al., 2010] were set to 5 and 10, respectively.

The state-of-the-art trackers are SCM [Zhong et al., 2012], ASLA [Jia et al., 2012],

L1-APG [Bao et al., 2012],VTD [Kwon and Lee, 2010], FragT [Adam et al., 2006],

SemiBoost [Grabner et al., 2008], and WLMCMC [Kwon and Lee, 2008]. The minimum

and maximum number of samples used for WLMCMC, VTD, SCM, ASLA, and L1-APG

was 600 and 700, respectively. Our proposed tracker is implemented in MATLAB and
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runs at about 3 frames/sec with 640 particles. Appendix A contains a list of tracker

parameters used.

The state-of-the-art trackers were chosen keeping in view two important properties:

their performance according to the CVPR’13 benchmark [Wu et al., 2013], and their

ability to handle occlusions (partial and full) and abrupt motion variations. SCM and

ASLA both have top ranked performance on the CVPR’13 benchmark. SCM combines

a sparsity based classifier with a sparsity based generative model and incorporates an

occlusion handling mechanism, while ASLA is based on a local sparse appearance model

and is robust to partial occlusions. In L1-APG, the coupling of L1 norm minimization

and an explicit occlusion detection mechanism makes it robust to partial as well as

full occlusions. The integration of two motion models having different variances with

a mixture of template-based object models lets VTD explore a relatively large search

space, while remaining robust to a wide range of appearance variations. FragT was

chosen because its rich, patch-based representation makes it robust to partial occlusion.

SemiBoost was picked as it searches the whole image space once its tracker loses target,

and thus, it can re-locate the target after full occlusions. WLMCMC searches the whole

image space by combining an efficient sampling strategy with an annealing procedure

that allows it to capture abrupt motion variations quite accurately and re-locate the

target after full occlusions.

4.5.4 Comparison with competing methods

4.5.4.1 Quantitative Evaluation

Tables 4.1(a),(b) summarise tracking results obtained from image sequences in which

the target is occluded. The numbers in table 4.1(a) indicate the center location error (in

pixels) averaged over all frames of the sequence. In 5 out of 9 sequences, MTS-L tracked

the target more accurately than the competing methods. MTS-L reliably recovered the

target after severe occlusions by efficiently allocating particles at multiple prediction-

scales through motion models learned over multiple model-scales. VTD performed badly

in all 9 sequences because inappropriate appearance model updates during longer oc-

clusions cause drift from which it cannot recover. Although SemiBoost uses explicit

re-detection once the target is lost, its accuracy was low due to false positive detections.

With the ability to search the whole image space using an efficient sampling scheme,

WLMCMC produced the lowest error in the TUD-Campus and jogging sequences. Note

that, although WLMCMC searches the whole image space like SemiBoost, its perfor-

mance is far superior to SemiBoost in almost every sequence. This might be because

SemiBoost only does a sliding window based greedy search in a naive manner when
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it realizes invisibility of the target, while WLMCMC always searches the whole image

space with an advanced and efficient sampling based search strategy.

Moving to sequences containing partial occlusions (Fig. 4.7), SCM produced the lowest

error in the car sequence, while both SCM and L1-APG had the best performance in

the TUD-Crossing sequence. SCM uses a sparse based generative model that considers

spatial relationships among local patches within an occlusion handling scheme. L1-APG

employs a robust minimization model for achieving sparse representation that is also

influenced by an explicit occlusion detection mechanism. Thus, both these approaches

are quite effective in overcoming partial occlusions; they can identify the occluded part

of the target reliably, which is crucial for adaptive appearance models to stay valid

under such circumstances. In contrast, MTS-L and MTS-TS use a very simple, generic

appearance model (colour histogram), and no explicit occlusion handling mechanism. It

might be true that a more complex system complete with more advanced appearance

models would obtain a higher overall tracking accuracy. However, employing such a

system might complicate attribution of experimental results to the original hypothesis.

Table 4.1(b) reports the percentage of correctly tracked frames based on Pascal score

[Santner et al., 2010], and precision at a fixed threshold of 20 pixels. In terms of per-

centage of correctly tracked frames based on Pascal score, MTS-L maintains the same

performance as it showed in table 4.1(a), that it outperforms competing methods in 5

out of 9 sequences. Although the overall performance of MTS-L is unchanged, one of the

sequences in the list of 5 is replaced by another when compared to the list in table 4.1(a).

This is due to the following: MTS-L has the highest accuracy in the TUD-Campus se-

quence, and WLMCMC performs second best in this sequence, while exactly opposite

is observable in the toy1 sequence. According to the precision at a fixed threshold of 20

pixels, MTS-L loses performance by 1 sequence; it has better precision than the other

methods in 4 out of 9 sequences.

Tracking accuracy was also measured when the target was occluded and underwent

motion variation at the same time (Table 4.2(a) and Table 4.2(b)). MTS-L produced

higher accuracy than the other existing methods in both the sequences. The allocation

of particle sets with different spreads from multiple prediction scales lets MTS-L capture

an increased search space. VTD performed well in the squash sequence with the mean

center location error and precision of 20 pixels and 0.78, respectively as it integrates

two motion models of different variances, within an MCMC framework, to search a

large state space efficiently. WLMCMC produced the second best accuracy on ball1

as it searches the whole image space using an efficient sampling mechanism to capture

abrupt target motion. TNCV and TTS, produced mean center location error of 74 and 81

pixels, respectively in the ball1 sequence. These trackers use a fixed appearance model



Chapter 4. A Visual Tracker Operating Over Multiple Temporal Scales 89

T
a
b
l
e
4
.1
:

T
ra

ck
in

g
a
c
c
u

ra
c
y

in
th

e
p

re
se

n
c
e

o
f

o
c
c
lu

si
o
n

(a
)

M
ea

n
ce

n
tr

e
lo

ca
ti

o
n

er
ro

r
in

p
ix

el
s

is
g
iv

en
,

av
er

a
g
ed

ov
er

a
ll

fr
a
m

es
o
f

a
ll

v
id

eo
s

sh
ow

in
g

o
cc

lu
si

o
n
s.

E
a
ch

tr
a
ck

er
w

a
s

ru
n

fi
v
e

ti
m

es
a
n
d

th
e

re
su

lt
s

w
er

e
av

er
a
g
ed

.
T

h
e

b
es

t
re

su
lt

s
a
re

m
a
rk

ed
in

b
o
ld

.
T

d
en

o
te

s
th

e
p
re

d
ic

ti
o
n
-s

ca
le

s,
a
n
d
N

is
th

e
n
u
m

b
er

o
f

p
a
rt

ic
le

s
p
ro

p
a
g
a
te

d
fr

o
m
t
−
k

to
t

in
o
u
r

p
ro

p
o
se

d
m

et
h
o
d
.
N

is
fi
x
ed

a
t

2
0
,

a
n
d
N
t

is
th

e
to

ta
l

n
u
m

b
er

o
f

p
a
rt

ic
le

s
a
cc

u
m

u
la

te
d

a
t

ti
m

e
t

in
o
u
r

p
ro

p
o
se

d
m

et
h
o
d
.

T
h
e

n
u
m

b
er

o
f

p
a
rt

ic
le

s
u
se

d
in

b
a
se

li
n
e

tr
a
ck

er
s

w
a
s

eq
u
a
l

to
N
t
.

S
eq

u
en

ce
S
C

M
A

S
L

A
L

1
V

T
D

S
em

i
F

ra
g
T

W
L

T
N
C
V

T
R
W

T
T
S

M
T

S
-L

M
T

S
-T

S
T

N
t
=

N
×

T

ba
ll
2

7
6

7
1

7
1

6
6

7
8

1
0
6

3
7

9
1

7
1

1
2
5

1
7

1
6

3
2

6
4
0

T
U
D
-C

a
m
p

1
8
6

1
8
0

1
0
0

1
8
6

6
1

1
1
2

2
2

1
4
1

1
1
9

3
1

2
4

2
2

9
1
8
0

T
U
D
-C

ro
ss

2
6

2
6
3

6
2

5
5
0

4
3

7
5

1
0
6

2
5

2
1

2
5

5
0
0

P
E
T
S
2
0
0
1

6
1

6
3

6
0

8
3

1
1
4

6
7

9
0

4
3

1
3
1

1
1
2

2
5

2
1

3
2

6
4
0

P
er
so
n

9
1

8
0

1
0
3

8
5

1
7
7

8
4

2
5

9
0

3
3

9
5

1
0

8
2
0

4
0
0

P
E
T
S
2
0
0
9

3
5

1
3

8
1

9
4

2
9

1
0

9
1

7
5

3
7

5
6

7
6

1
4

2
8
0

ca
r

8
3
1

3
1

4
7

3
8

1
5

2
8

3
7

4
3

8
7

2
5

2
5

2
0

4
0
0

to
y1

8
8

8
5

1
1
1

9
8

9
9

1
0
7

3
0

7
4

1
3
4

7
6

2
1

2
2

3
0

6
0
0

jo
gg
in
g

1
1
0

1
0
4

4
5

7
0

3
0

9
4

1
9

2
7

2
4

1
0
0

2
5

2
4

2
0

4
0
0

(b
)

A
(B

):
A

-
th

e
p

er
ce

n
ta

g
e

o
f

co
rr

ec
tl

y
tr

a
ck

ed
fr

a
m

es
b
a
se

d
o
n

P
a
sc

a
l

S
co

re
[S

a
n
tn

er
et

a
l.
,

2
0
1
0
];

B
-

P
re

ci
si

o
n

a
t

a
fi
x
ed

th
re

sh
o
ld

o
f

2
0

p
ix

el
s.

P
a
sc

a
l
sc

o
re

is
co

m
p
u
te

d
b
y

a
ss

es
si

n
g

to
w

h
a
t

ex
te

n
t

th
e

tr
a
ck

in
g

te
m

p
la

te
ov

er
la

p
s

th
e

g
ro

u
n
d

tr
u
th

te
m

p
la

te
a
s

a
ra

ti
o
.

If
th

e
P

a
sc

a
l

sc
o
re

is
g
re

a
te

r
th

a
n

0
.5

in
a

ce
rt

a
in

fr
a
m

e,
th

a
t

fr
a
m

e
is

co
u
n
te

d
a
s

a
co

rr
ec

tl
y

tr
a
ck

ed
fr

a
m

e.
P

re
ci

si
o
n

is
co

m
p
u
te

d
b
y

d
iv

id
in

g
th

e
n
u
m

b
er

o
f

fr
a
m

es
,

w
h
er

e
es

ti
m

a
te

d
ta

rg
et

lo
ca

ti
o
n

w
a
s

n
o
t

b
ey

o
n
d

th
e

fi
x
ed

th
re

sh
o
ld

d
is

ta
n
ce

o
f

2
0

p
ix

el
s

o
f

th
e

g
ro

u
n
d

tr
u
th

,
b
y

th
e

to
ta

l
n
u
m

b
er

o
f

fr
a
m

es
in

a
v
id

eo
se

q
u
en

ce
.

T
h
e

b
es

t
re

su
lt

s
a
re

m
a
rk

ed
in

b
o
ld

.

S
eq

u
en

ce
S
C

M
A

S
L

A
L

1
V

T
D

S
em

i
F

ra
g
T

W
L

M
T

S
-L

M
T

S
-T

S

ba
ll
2

1
2
(0

.2
1
)

9
(0

.1
7
)

7
(0

.2
1
)

9
(0

.1
1
)

7
(0

.1
3
)

9
(0

.0
9
)

2
8
(0

.5
3
)

3
1
(0

.8
)

3
6

(0
.8

)
T
U
D
-C

a
m
p

1
4
(0

.1
7
)

1
0
(0

.1
4
)

1
9
(0

.2
1
)

2
5
(0

.2
5
)

3
8
(0

.3
4
)

2
7
(0

.2
7
)

4
6
(0
.6
1

)
5
5
(0

.5
7
)

5
7

(0
.4

6
)

T
U
D
-C

ro
ss

1
0
0

(1
)

9
9
(0

.9
)

1
0
0

(1
)

2
4
(0

.2
3
)

4
1
(0

.4
2
)

8
7
(1

)
2
5
(0

.2
3
)

6
1
(0

.5
9
)

6
9
(0

.6
5
)

P
E
T
S
2
0
0
1

2
3
(0

.3
3
)

2
3
(0

.2
7
)

2
2
(0

.2
5
)

2
0
(0

.2
5
)

1
7
(0

.2
)

1
6
(0

.3
1
)

1
9
(0

.5
2
)

5
8
(0

.6
5
)

6
6

(0
.7

)
P
er
so
n

4
5
(0

.4
6
)

4
4
(0

.4
5
)

1
0
(0

.1
2
)

4
3
(0

.4
5
)

2
0
(0

.2
)

3
8
(0

.4
1
)

4
9
(0

.8
6
)

7
9
(0

.9
3
)

8
0

(0
.9
4

)
P
E
T
S
2
0
0
9

2
6
(0

.3
6
)

3
6
(0

.7
)

2
1
(0

.2
6
)

2
1
(0

.2
1
)

2
7
(0

.4
5
)

6
5
(0

.7
3
)

7
(0

.2
3
)

7
0
(0

.9
7
)

7
1

(0
.9
6

)
ca
r

9
2

(0
.9
3

)
6
2
(0

.6
4
)

6
6
(0

.6
5
)

6
6
(0

.6
5
)

5
5
(0

.4
6
)

8
0
(0

.7
6
)

6
2
(0

.5
2
)

7
1
(0

.7
2
)

7
3
(0

.7
2
)

to
y1

1
8
(0

.1
9
)

1
9
(0

.2
)

1
5
(0

.1
5
)

1
6
(0

.1
8
)

1
6
(0

.1
8
)

3
(0

.0
9
)

4
9

(0
.8

)
4
3
(0

.8
)

3
8
(0

.7
8
)

jo
gg
in
g

2
1
(0

.2
2
)

2
2
(0

.2
2
)

2
1
(0

.2
1
)

2
2
(0

.2
2
)

6
0

(0
.6
1

)
2
1
(0

.2
1
)

4
2
(0
.6
1

)
2
0
(0

.4
4
)

2
1
(0

.4
5
)



Chapter 4. A Visual Tracker Operating Over Multiple Temporal Scales 90

(a) # 27 (b) # 47 (c) # 78

(d) # 27 (e) # 47 (f) # 78

(g) # 93 (h) # 108 (i) # 127

(j) # 93 (k) # 108 (l) # 127
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(m) # 49 (n) # 170 (o) # 181

(p) # 49 (q) # 170 (r) # 181

(s) # 191 (t) # 230 (u) # 315

(v) # 191 (w) # 230 (x) # 315

Figure 4.7: Tracking through multiple partial occlusions. MTS-
TS(magenta), MTS-L(cyan), SCM(green) FragT(white), SemiBoost(yellow), L1-

APG(blue), VTD(red), WLMCMC(black), and ASLA(purple).
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and maintain a reasonable coverage of the state space, which helped in overcoming

shorter occlusions.

Table 4.3 reports accuracy under abrupt motion variations; these variations are due

to unexpected motion of the target itself. Along with this rapid target motion, in

the deer sequence, there are distractors, regions bearing visual similarity to the target,

moving alongside the tracked target. ASLA outperforms every other method in the deer

sequence in all three evaluation metrics, while MTS-L achieves second best accuracy in

this sequence in terms of center location error. ASLA uses a local sparse appearance

model, which contains both spatial and partial information of the target and makes this

method more robust to surrounding clutter than MTS-L, which is based on a holistic

representation of the target. FragT tracks 66 percent of the frames successfully (in

terms of Pascal score) in the deer sequence. It exploits local appearance information,

which is in some sense similar to the local sparse appearance model of ASLA. In the

lemming sequence, both MTS-L and TTS perform equally well, however, MTS-L has

higher accuracy. This might be due to the fact that MTS-L generates better location

predictions compared to TTS since the former derives motion models from multiple

temporal scales whereas the latter depends upon a single-scale motion model. No other

tracker except WLMCMC showed comparable accuracy to MTS-L as they drift due to

incorrect appearance model updates and cannot recover. In the boy sequence, SCM

performs better than every other tracker and VTD shows second best result in terms

of all three evaluation metrics. MTS-L tracks 91 percent of frames correctly and shows

a precision of 0.99, achieving third best accuracy in terms of percentage of correctly

tracked frames and precision. Methods based on adaptive appearance models like SCM

and VTD show higher performance than the methods based on fixed (non-adaptive)

appearance models like MTS-L because the target undergoes out-of-plane rotation in

some parts of the sequence.

Note that MTS-TS performs only slightly better than MTS-L. In general, MTS-L pro-

duces an accurate approximation of the likely target path. When the target deviates

considerably from its predicted location, MTS-TS is a little more accurate; Eq.4.16a

spreads the particles more widely to compensate and the combination of the rigid predic-

tion with the flexible estimate (Eq.4.17) reduces the variation of the best state estimate

produced by the particles.

In Eq.4.17, the rigid prediction acts as a regularizer to reduce the variance of the flexible

estimate [Kristan et al., 2010]. This weighted combination of two different sources is

also similar in concept to the fusion mechanism in the Kalman Filter [Kalman, 1960].

In Kalman Filtering, the weights fusing prediction and measurement come from the

covariance associated with prediction’s and measurement noise [Kristan et al., 2010].
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Whereas in the two-stage model the weights are based on the visual likelihood scores

produced by the appearance model.

Fig. A.1 in Appendix A contains precision and success plots for MTS-L, FragT, L1-

APG, SemiBoost, VTD, SCM, WLMCMC, and ASLA for all fourteen sequences used.

Each precision plot reports precision at a range of thresholds starting from 0 to 50 pixels

with an increment of 5 pixels. Similarly, each success plot shows success rate at a range

of overlap thresholds beginning from 0 to 1 that is divided in 10 equal intervals.

According to precision plots in Fig. A.1, MTS-L has higher precision than the other

existing methods in six out of fourteen sequences within the threshold range of 0 to

20 pixels. In terms of success plots in Fig. A.1, MTS-L achieves higher success rate

than the other competing methods in three out of fourteen sequences within the overlap

threshold range of 0 to 0.8.

In another experiment the additional cost of the proposed method is quantified in number

of particles and is compared with a traditional particle filter with a number of particles

equivalent to this additional cost and the total number of propagated particles in the

proposed method.

The additional cost of the proposed solution (MTS-L) in terms of number of particles

at each time-point is:

a = (G× T ) + (G× V ). (4.18)

Where G is the cardinality of the set of motion models learnt at each time-point, T

denotes the number of prediction-scales, and V denotes the number of variables included

in the target state. G is fixed at 4 as mentioned in section 4.5.3. T is determined

according to the maximum expected duration (in number of frames) of occlusions in a

given sequence (see table 4.1). V is fixed at 3 as there are three elements in the target

state, x, y and s.

The first term in Eq. 4.18 denotes the cost of evaluating G×T state predictions based on

visual likelihood score, while the second term represents the cost of learning G motion

models.

Given the additional cost of MTS-L according to Eq. 4.18, the number of particles in a

traditional Particle Filter is set to ((G×T )+(G×V ))+Nt for comparison with MTS-L.

Where Nt is the total number of particles accumulated at each time-step in MTS-L and

it is defined in the caption of table 4.1. The traditional Particle Filter TRW is the colour

based Particle Filter from [Pérez et al., 2002], and uses a random-walk motion model.
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Fig. 4.8 compares the performance in terms of precision at a fixed threshold of 20 pixels

of MTS-L with TRW in five different sequences. The value of T for each sequence is

same as mentioned in table 4.1(a). As can be seen, MTS-L achieves improved precision

over TRW in all five sequences. This suggests that learning and propagation of tracking

information over multiple temporal scales improves tracking accuracy during occlusions

and non-constant target motion.
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Figure 4.8: Performance comparison in terms of precision at a fixed threshold of 20
pixels of MTS-L with a traditional Particle Filter with a number of particles requiring

the same amount of resources as MTS-L.

4.5.4.2 Qualitative Evaluation

Tracking is particularly difficult when the time between two consecutive occlusions is

small and there is a significant amount of clutter. In TUD-Campus, the tracked person

suffers two occlusions only 17 frames apart. Fig. 4.9 shows tracking results. MTS-L and

WLMCMC recover the target after both the first occlusion (frame # 18), and second

occlusion (frame # 40). In contrast, other methods fail due to incorrect appearance

model updates, or get distracted by the surrounding clutter. VTD and SCM lock onto

the person occluding the target in frame # 18 and keep tracking it for the rest of

the sequence. L1-APG, FragT, and ASLA drift and are not able to recover from the

occlusions (frame # 18,33, and 40). SemiBoost re-locates the target in frame # 24 and

40, but often detects false positives as shown in frame # 18, 33, and 48.

Occlusions of varying lengths are common in real-world tracking scenarios. In the person

sequence, a person moves behind several trees, and this sequence is shot with a moving
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(a) # 12 (b) # 18 (c) # 24

(d) # 12 (e) # 18 (f) # 24

(g) # 33 (h) # 40 (i) # 48

(j) # 33 (k) # 40 (l) # 48

Figure 4.9: Tracking results when the time difference between two con-
secutive occlusion is small (17 frames). MTS-TS(magenta), MTS-L(cyan),
SCM(green) FragT(white), SemiBoost(yellow), L1-APG(blue), VTD(red), WLM-

CMC(black), and ASLA(purple).
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camera. As illustrated in Fig. 4.10, L1-APG loses the target earlier than the other

methods and drifts into the background (frame # 212), and the other competing methods

except WLMCMC fail to re-capture the target after the first occlusion (frame # 227).

As WLMCMC searches whole image space, it re-acquires target after occlusions (frame

# 227, and frame # 433), and therefore performs better than the other competing

methods. However, it is also distracted by the surrounding clutter (frame # 328, and

frame # 458). In comparison to the competing methods, MTS-L accurately re-captures

the target after each occlusion, and is less prone to distractors (frame # 227, 328, and

458).

Video surveillance data often requires tracking through partial and/or full occlusions. In

the PETS 2001 Dataset 1 sequence (Fig. 4.11) the target (car) first stays partially oc-

cluded for 25 frames, and is then completely occluded for 31 frames by a tree. Moreover,

the target shrinks significantly after it re-appears as it is moving away from camera. Fig.

4.11 shows tracking results. All the methods track the target before it hides behind the

tree (frame # 46), but only WLMCMC and MTS-L recover the target when it re-appears

(frame # 93, and 178) after being fully occluded.

Fig. 4.12 shows another example of occlusion caused by a stationary object while track-

ing in an outdoor environment. Since the target is jogging, both its appearance and

the dynamics of background are changing. From Fig. 4.12 it can be seen that all the

methods except WLMCMC, SemiBoost, and MTS-L fail to recover the target after oc-

clusion (frame # 86). Although all three trackers, WLMCMC, SemiBoost, and MTS-L,

track the target till the end of sequence, SemiBoost shows the best accuracy (frame #

171, 259, and 307). SemiBoost can cope with the changing appearance as it adapts to

these variations with an online semisupervised boosting algorithm, while the other two

cannot since they use a fixed appearance model.

The ability of MTS-L to cope with simultaneous occlusion and non-constant target

motion was tested by making two challenging sequences: squash and ball1. In these

sequences, the target displays abrupt motion, accelerates, decelerates, changes direction

suddenly, and is completely occluded multiple times. Fig. 4.13(a-l) illustrates tracking

results on the squash sequence. MTS-L provides more accurate tracking in the squash

sequence than any other method. This is because the combination of learning models

over multiple model-scales and applying them over multiple prediction-scales creates a

rich and improved prior distribution that allows the algorithm to cover a relatively large

search space. VTD also performs quite well on this sequence (frame # 148, 237, and

243) because its combination of basic appearance and motion models allows capture

of appearance variations, and provides robustness against shorter occlusions and rapid

motion variation.
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(a) # 212 (b) # 227 (c) # 252

(d) # 212 (e) # 227 (f) # 252

(g) # 328 (h) # 433 (i) # 458

(j) # 328 (k) # 433 (l) # 458

Figure 4.10: Tracking results with occlusions of different lengths in an out-
door environment. MTS-TS(magenta), MTS-L(cyan), SCM(green) FragT(white),
SemiBoost(yellow), L1-APG(blue), VTD(red), WLMCMC(black), and ASLA(purple).



Chapter 4. A Visual Tracker Operating Over Multiple Temporal Scales 100

(a) # 16 (b) # 27 (c) # 46

(d) # 16 (e) # 27 (f) # 46

(g) # 63 (h) # 93 (i) # 178

(j) # 63 (k) # 93 (l) # 178

Figure 4.11: Tracking results in a surveillance environment. MTS-
TS(magenta), MTS-L(cyan), SCM(green) FragT(white), SemiBoost(yellow), L1-

APG(blue), VTD(red), WLMCMC(black), and ASLA(purple).
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(a) # 44 (b) # 63 (c) # 86

(d) # 44 (e) # 63 (f) # 86

(g) # 171 (h) # 259 (i) # 307

(j) # 171 (k) # 259 (l) # 307

Figure 4.12: Another example of occlusion in an outdoor environment.
MTS-TS(magenta), MTS-L(cyan), SCM(green) FragT(white), SemiBoost(yellow), L1-

APG(blue), VTD(red), WLMCMC(black), and ASLA(purple).
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(a) # 68 (b) # 125 (c) # 148

(d) # 68 (e) # 125 (f) # 148

(g) # 194 (h) # 237 (i) # 243

(j) # 194 (k) # 237 (l) # 243
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(m) # 182 (n) # 322 (o) # 364

(p) # 182 (q) # 322 (r) # 364

(s) # 429 (t) # 597 (u) # 785

(v) # 429 (w) # 597 (x) # 785

Figure 4.13: Tracking results in case of abrupt motion variations and fre-
quent occlusions. MTS-TS(magenta), MTS-L(cyan), SCM(green) FragT(white),
SemiBoost(yellow), L1-APG(blue), VTD(red), WLMCMC(black), and ASLA(purple).
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The ball1 sequence is more challenging because the target is occluded partially and

completely for variable time periods. Six samples of the tracking results are shown

in Fig. 4.13(m-x), with frame numbers 182, 322, 364, 429, 597, and 785. None of the

trackers except MTS-L and WLMCMC is able to track the target throughout, and MTS-

L shows the best performance in this sequence. This is because the cluster of particles

propagated from several previous time-points through models generated over different

model-scales lets MTS-L capture correct modes of the complex target distribution, to

be estimated in these conditions. WLMCMC shows robustness against occlusions and

abrupt motion variations to some extent, but when the target changes appearance it

can be distracted by an object (in the scene) whose appearance is similar to the fixed

target model as it searches the whole image space (frame # 364, and 785).

(a) # 31 (b) # 32 (c) # 31 (d) # 32

(e) # 341 (f) # 365 (g) # 341 (h) # 365

Figure 4.14: A comparison of tracking results between MTS-L(cyan), TNCV(blue),
TRW(magenta), and TTS(white) during rapid motion variation, and occlusion.

Fig. 4.14 demonstrates a comparison between MTS-L, TNCV, TRW, and TTS in two

cases: a target displaying rapid motion, and are completely occluded. Frame # 31, and

32 show rapid movement of the target towards the left. The competing trackers lose

the target, while MTS-L tracks it. Efficient search with particles of different spreads

around the likely paths of the target, which are defined by motion models belonging

to several previous time-points and generated over different model-scales, lets MTS-L

cover the increased search space generated by this rapid motion variation. Frame # 341,

and 365 display the target before and after full occlusion, respectively. TRW, TTS fail
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to re-capture the target after occlusion in Frame # 364. In contrast, the presence of

at least one valid set of particles propagated from some previous time-step by a motion

model derived from an appropriate model-scale allows MTS-L to reliably recover the

target.

4.5.5 Analysis of the Proposed Framework

4.5.5.1 Without Multiple Prediction-Scales

The proposed tracker was tested without employing multiple prediction-scales. For this

purpose, MTSWPS-L was designed. MTSWPS-L stands for MTS-L without employing

multiple prediction-scales. In MTSWPS-L, the target state is predicted only 1 frame

ahead i.e. T = 1. For evaluation, at first, the number of particles in MTSWPS-L was

kept equal to Nt and the process noise σxy was same as used for MTS-L between two

consecutive time-steps. To analyze further, later, both the number of particles Nt and

the process noise σxy were doubled and tripled. Fig. 4.15 reveals the performance of

the proposed method with and without multiple prediction-scales in five video sequences

involving occlusions. As can be seen, MTSWPS-L has poor performance compared to

MTS-L in all 5 sequences even after increasing the sampling effort and the process noise

by three times of the original. Therefore, it can be said that operation over multiple

prediction-scales allows the proposed method to reliably handle occlusions in a principled

way.
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Figure 4.15: Performance of the proposed framework with and without multiple
prediction-scales.
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4.5.5.2 Without Multiple Model-Scales

The proposed tracker was also analyzed without learning over multiple model-scales.

MTSWMS-MX denotes the proposed method in which a linear motion model is learned

over model-scale X only. As a result, there is no need to select models from each of

the previous time-steps at the current time-step since only 1 model is learned over a

single model-scale. As can be seen in Fig. 4.16, MTS-L has superior performance

over MTSWMS-M2, MTSWMS-M3, MTSWMS-M4, and MTSWMS-M5 in all nine se-

quences. This suggests that by constructing motion models over multiple model-scales

MTS-L maintains a richer description of the target’s path than is possible with a single

scale model. Furthermore, this diverse set of models produces motion priors that ulti-

mately develop into a rich prior distribution required for reliable recovery of tracking

after occlusions.

Fig. 4.16 shows results from three different kinds of sequences. The first four sequences

contain abrupt motion variations, next three involve occlusions and abrupt motion vari-

ations, and the last two comprise of occlusions and smooth motion variations. Trackers

based on shorter scale models generally outperform trackers based on longer scale mod-

els in the lemming, toy2, boy, and deer sequences. However, there is no such ranking

pattern in other sequences. This might be because in these sequences the target state is

predicted over multiple prediction-scales and the search is performed with particle sets

having different spreads.
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Figure 4.16: Performance of the proposed framework with and without multiple
model-scales. MTSWMS-M2, MTSWMS-M3, MTSWMS-M4, and MTSWMS-M5 de-
note the proposed method in which a linear motion model is learned only over model-

scale 2,3,4, and 5, respectively.
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4.5.5.3 Varying the Degrees of (Polynomial) Motion Models

The performance of the proposed tracker was also tested by varying the degrees of

the polynomial motion models used. MTS-Z, MTS-L, and MTS-Q denote the proposed

method applied over a zero-order, first-order, and second-order polynomial motion mod-

els, respectively. The model-scales used for MTS-L were as mentioned earlier. For

MTS-Q they ranged from 6 to 9 frames, because more data points (estimated states)

are required in case of a second-order polynomial to avoid the risk of overfitting. In

MTS-Z, the state Xt of the target at time t is predicted by adding (Gaussian) noise to

the state at time t − 1. The noise levels in MTS-Z were adjusted to produce the best

tracking performance.
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Figure 4.17: Performance of the proposed framework with different degrees of poly-
nomial motion models.

Fig. 4.17 reveals the performance of MTS-Z, MTS-L, and MTS-Q in five different

sequences. As the state predictions made by the second-order polynomial are often

inaccurate during rapidly varying target motion, MTS-Q shows worst performance in

the deer and Squash sequences. However, MTS-Q outperforms MTS-Z in situations

where target motion is relatively smooth and occlusions are longer. This is because

state predictions made by just adding noise to the single (recently estimated) state

can only account for the radical acceleration of the target, and are not accurate enough

when the target is moving in a straight line. In contrast, a first-order polynomial motion

model (linear motion model), learned over different model-scales, can capture a range

of variation in the target motion by generating accurate state predictions both during
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smooth and non-constant motion. So, MTS-L shows better performance over MTS-Z

and MTS-Q in each sequence.

4.5.5.4 Fixed Number of Prediction-Scales

The proposed framework was evaluated by keeping the number of prediction-scales (the

T parameter) fixed in all those videos that involve occlusion or motion variations and

occlusions. The aim is to observe the sensitivity in terms of performance of the proposed

framework to the T parameter. For evaluation, T is fixed to 32 (frames) for all the videos.

T is set to 32 as the expected maximum duration of occlusion in each video is less than

32 frames. Please note that the maximum length of occlusion in most of the videos is not

the same, and it shows considerable variation. N , the number of particles propagated

from time t− k to time t, was the same (fixed to 20) as mentioned in tables 4.1(a) and

4.2(a). Fig. 4.18 shows the performance of the proposed framework with and without

fixed number of prediction-scales in eleven video sequences. It can be seen that the

performance of the proposed framework does not deteriorate much even when fixing T

to a certain number.
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Figure 4.18: Performance of the proposed framework with and without fixed number
of prediction-scales (T parameter). For MTS-L(fixed T ), the value of T is set to 32
for all video sequences, and for MTS-L(without fixed T ), the value of T for each video

sequence is same as shown in tables 4.1(a), and 4.2(a).

The notable decrease in accuracy for MTS-L(fixed T ) in the Pets’09 and TUD-Campus

sequences when compared to MTS-L(without fixed T ) is due to the following. When the

proposed tracker predicts further into the future i.e. T becomes larger, the likelihood
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of meeting false-positives increases as the number of inaccurate predictions and the

spread of particles around some inaccurate prediction become higher. Since the actual

maximum duration of occlusion is half of (or even smaller than) the fixed value of T in

both these sequences, MTS-L(fixed T ) gets distracted by the surrounding clutter more

often than MTS-L(without fixed T ) during partial or full occlusions.

4.5.5.5 Potential Drawbacks

The experimental results reveal the robust performance of the proposed method during

occlusions. However, the proposed method is susceptible to failure when faced with long

duration occlusions. At very large prediction scales, the spread of the particles would be

so large that they might miss the target when it becomes visible after staying occluded

for a very long time.

Another interesting case is the presence of a visually similar object close to the tracked

target when it re-appears after occlusion. If the estimated states during the period of

occlusion are not nearer to the true target states, then the corresponding learned motion

models can make inaccurate state predictions. As a result, the proposed tracker can be

distracted by a visually similar object. This is due to the fact that the proposed method

uses a naive model-selection criterion, which is based on the likelihood of a very simple

appearance model and selects one motion model from each of the T previous time-points.

Furthermore, the proposed tracker just allocates a fixed number of particles around state

predictions without taking into account their location in the target distribution.

4.6 Conclusion

This chapter proposes a tracking framework capable of handling occlusion and abrupt

motion variation by exploiting multiple temporal scales. This is achieved by learning

motion models over multiple model-scales and applying those over multiple-prediction-

scales. A simple strategy, based on the visual likelihood score of a fixed appearance

model, is used to select one motion model from each of the previous time-steps. The

search around the predicted states is accomplished by propagating particles from the

several previous time-points. After combining sufficient sets of particles at each time-

point, it is assumed that at least one set will be valid and allow recovery from occlusion

and robustness to non-constant motion. It is important to note that these particle sets

are not, however, simply spread widely across the image: each represents an estimation

of the posterior probability from some previous time-point, predicted by a motion model

generated over an appropriate model-scale.
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The proposed framework was compared to the other methods that either are capable of

handling occlusion and abrupt motion variation or have shown good performance on the

CVPR’13 [Wu et al., 2013] benchmark. Quantitative and qualitative evaluation show

that the proposed framework has superior performance over the competing methods on

the both publicly available benchmarks and some new video sequences.

Experiments were conducted to analyze the performance of the proposed tracker by

including and excluding multiple temporal scales, varying degrees of polynomial motion

models, and keeping the number of prediction-scales fixed. Results show that operation

over multiple prediction-scales allows reliable recovery of a target after occlusion. They

reveal that the construction of models over multiple model-scales allows handling of

variable motion better than any single scale model and their application over multiple

prediction-scales supports occlusion handling. In addition, a linear motion model might

be more suitable than zero or second order (polynomial) motion model in utilizing the

true potential of learning over multiple model-scales. Also, the proposed tracker shows

good performance even after keeping the number of prediction-scales the same in nearly

all the sequences.

Although the proposed tracker has shown good performance in solving the two outstand-

ing problems in visual tracking, its accuracy may be further improved by exploring its

two major components: search method, and model selection criterion. In the context

of the proposed framework, the search method seeks the optimal target state around

a number of state predictions made by selected motion models, and the model selec-

tion criterion chooses some subset of motion models from the space of available motion

models at each time. The role of search method is important because it is required to

locate and refine possible local maxima in a complex distribution in an efficient man-

ner. The current formulation simply allocates fixed number of particles with different

spreads around state (selected) predictions without considering their locations in the

target distribution. The role of model selection criterion is even more crucial since it

should choose models whose predictions are close to the possible mode of the target

distribution, and yet small in number. The current selection strategy picks one mo-

tion model from each of the previous time-points, based on a likelihood score, without

considering that predictions from some previous time-point might be inaccurate and

should be ignored completely. The next chapter generalizes a search method to find the

best possible target state around multiple competing hypotheses (state predictions), and

studies the problem of model-selection to develop a new selection strategy.



Chapter 5

A Generalized Search Method,

and a New Model Selection

Criterion

In the preceding chapter, the power of multiple temporal scales of motion model gen-

eration and application to deal with visual tracking problems was investigated. The

proposed tracker demonstrated promising performance in overcoming occlusions and

abrupt motion variations. However, it is important to note that this tracker uses a

very simple search method, and a naive motion model-selection strategy. As a result, it

might not always be able to reach the true solution, can be wasteful in terms of sampling

efficiency, and vulnerable to distractors.

As a first step towards solving the aforementioned problems, and to gain a further

insight into the proposed tracking framework (MTS), this chapter explores the two

main components of MTS: the search method, and the model selection criterion. In

particular, a search method is generalized to estimate the best target state around

multiple competing hypotheses generated in this framework, and the problem of model

selection is studied to devise a new selection criterion. Here, the search method has to

locate local maxima around the multiple competing hypotheses (state predictions) in

an efficient manner, and the model selection criterion needs to pick a small number of

hypotheses that are close to the likely modes of the target distribution.

Section 5.1 generalizes a search method, originally proposed to search a fixed grid of

equal sized cells, to cells of variable size and location formed around the predictions

generated by motion models in MTS. The modified framework, which is based on this

new search method, is compared to the original instantiation of MTS, which utilizes

111
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particle filters, and performance is reported in Section 5.1.4. Section 5.2 first defines

the model selection problem in the context of MTS, then formulates a new (motion)

model selection criterion, and finally employs the generalized search method to estimate

target state. In Section 5.2.3, the performance of MTS with this new selection strategy

is compared to MTS with the existing model set reduction method (proposed in Chapter

4).

5.1 A Generalized Search Method for Multiple Competing

Hypotheses in Visual Tracking

Generally speaking, a tracking algorithm either estimates the correspondence and target

detection jointly, or performs detection in each frame followed by a data association

stage [Yilmaz et al., 2006]. Here, the methods belonging to the first category are under

discussion that use a matching function and a search strategy to jointly estimate the

target track and target region.

The matching function weighs how well a certain hypothesis matches the target model,

while the search strategy finds the optimal hypothesis through maximising or minimis-

ing an objective function, which itself is a function of the matching function. In this

section, a search method is generalized to obtain the best hypothesis from multiple com-

peting hypotheses arbitrarily positioned in the search space. These hypotheses are state

predictions generated by motion models in MTS (the tracking framework proposed in

Chapter 4).

Two different search strategies are commonly used by visual trackers: gradient descent

and stochastic methods. Gradient descent methods [Comaniciu et al., 2003],[Yang et al.,

2005] remain popular due to their fast convergence rate and low computational cost, but

can become trapped in local modes of the filtering distribution due to e.g. background

clutter or rapid motion of a target. Stochastic methods such as particle filters (PF)

[Pérez et al., 2002],[Isard and Blake, 1998a],[Li et al., 2008] have enjoyed much success

in tracking, as they can handle non-Gaussianity and multi-modality of a target distribu-

tion. PF is computationally impractical for the high dimensional spaces typically found

in multi-object tracking. In the recent past, many methods [Cappé et al., 2007] have

been proposed to reduce the computational expense and improve the efficiency of PF.

Among them, Markov Chain Monte Carlo (MCMC) methods gained popularity as effi-

cient search methods [Khan et al., 2005],[Smith et al., 2005]. While simulating a target

distribution with deep local maxima these methods can, however, become stuck at a

local maximum, leading to an inaccurate Bayesian inference. This is also known as the

local trap problem.
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Adaptive MCMC algorithms [Roberts and Rosenthal, 2009] provide an automatic way

of tuning the proposal variance to maintain a certain acceptance rate of the sampler,

and thus can better mix between different modes of a target distribution. However, they

do not provide a systematic way of escaping local maxima. Kwon and Lee [Kwon and

Lee, 2008], combined the Wang-Landau Monte Carlo method with the MCMC method

to escape local maxima in a complex target distribution, searching in a regular grid that

divides the image space in a number of equally sized cells. Towards a similar goal, a

Stochastic Approximation Monte Carlo (SAMC) based tracking algorithm was proposed

by [Zhou et al., 2012] to search for the optimal target state in a regular grid.

An important ingredient of visual tracking is the motion model. Visual tracking frame-

works have typically made use of a single general purpose motion model like Random

Walk (RW) or Nearly Constant Velocity (NCV) as it is hard to come up with an accu-

rate motion model for various tracking scenarios. Although they are general, they can

result in poor tracking accuracy in situations where a target can display complex motion

variations.

To capture different ways a target can move, some attention has been given to the

notion of multiple motion models. [Isard and Blake, 1998b] learned a few distinct motion

models, and a fixed finite state machine relating transitions among them from ground

truth data. Instead of learning from some offline data, Kwon and Lee [Kwon and Lee,

2011] sampled motion models from a pool, generated by utilizing the recent sampling

history, to enhance the accuracy and efficiency of the state sampling process. Kristan et

al. [Kristan et al., 2010] designed a two-stage dynamic model to improve the accuracy

and efficiency of the bootstrap particle filter in handling various target motions. To

handle complex target motion and occlusions, the tracker proposed in the previous

chapter combines motion models learnt and applied over multiple temporal scales with

an extension of the bootstrap particle filter. For a detailed review of the prior work on

multiple motion models in visual tracking, please refer to Chapter 2 of this thesis.

Trackers employing multiple motion models such as the proposed framework (MTS)

produce multiple competing hypotheses or state predictions as illustrated in the first

row of Fig. 5.1. The question then becomes how to search for the optimal target state

given these predictions. Here, the search is modelled by assigning each state prediction

a certain area in state space, which is called a cell. The size of this cell is proportional

to the uncertainty attached with its corresponding prediction, and its position in space

depends on an estimator such as a motion model. The second row of Fig. 5.1 describes

this problem in a 3D state space. It is believed that the occurrence of the problem of

how to search around multiple competing hypotheses generated by multi-scale motion
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Figure 5.1: Graphical Illustration of the search problem in the proposed
framework. The proposed framework generates multiple competing hypotheses or
state predictions. The aim is to find the best target state from these predictions. Fig.
5.1(a) shows multiple state predictions in 3D state space at time t-1 and time t. We
propose to model our search by allocating each state prediction a certain area, which
we call a cell, in state space. The size of this cell is proportional to the confidence of its
corresponding prediction. Fig. 5.1(b) shows cells of variable size in 3D state space at
time t-1 and time t, where each cell is formed around a certain state prediction. The
question of how to search for the optimal target state in these variable sized cells raises

the possibility of a broader range of search strategies that can be introduced.
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models in visual tracking invites the possibility of a wider range of search strategies for

finding the optimal target state.

To search for the best target state in this scenario, a sampling based search method

is generalized, which integrates the Wang-Landau Monte Carlo method and MCMC

method (WLMCMC sampling) [Kwon and Lee, 2008] although other density exploration

methods such as [Zhou et al., 2012] can also be generalized. WLMCMC operates on a

regular grid of equal sized cells. Here, it is generalized to arbitrarily placed cells of

variable size. In [Kwon and Lee, 2008], the Wang-Landau method estimates the Density

of States (DOS) term, which denotes the extent to which cells have been explored, and

this term is used to generate moves to cells that have not been explored enough. This

allows discovery of local maxima in specific cells, while jumping between them. The

likelihood term in MCMC causes this method to spend more time in cells that contain

highly probable target states. With this term, the method expends more samples around

the current local maximum, which has already been well explored.

5.1.1 Bayesian Tracking Formulation

The aim is to find the best state of the target at time t given observations up to time t.

The state at time t is given by Xt = {Xx
t , X

y
t , X

s
t }, where Xx

t , Xy
t , and Xs

t represent the

x,y location and scale of the target, respectively. The posterior distribution p(Xt|Y1:t),

given the state Xt at time t and observations Y1:t up to t, is estimated using the Bayesian

formulation

p(Xt|Y1:t) ∝ p(Yt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1, (5.1)

where p(Yt|Xt) denotes the observation model, and p(Xt|Xt−1) is a motion model. Now

the best state of the target X̂t is obtained using Maximum a Posteriori (MAP) estimation

over the Nt particles which approximates the posterior distribution p(Xt|Y1:t):

X̂t = arg max
X

(i)
t

p(X
(i)
t |Y1:t) for i = 1, ..., Nt, (5.2)

where X
(i)
t is the ith particle.

The analytical solution to Eq.5.1 is intractable in practice if the filtering distribution is

non-Gaussian. Conventional tracking frameworks typically use a single motion model

such as Random Walk and a fixed sampling based search strategy like Particle Filter

to approximate p(Xt|Y1:t) [Dellaert et al., 1999, Jia et al., 2012, Koller-Meier and Ade,

2001, Mei et al., 2011, Ross et al., 2008]. Here, the framework being discussed builds

motion models over multiple temporal scales and applies them multiple frames ahead,
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and thus, generate multiple competing hypotheses or state predictions. For such cases,

PF [Pérez et al., 2002] and Metropolis Hastings (MH) [Hastings, 1970] are infeasible,

and a broad range of search strategies needs to be explored. PF and MH depend upon

a single motion model and operate on a first-order Markov assumption [Dellaert et al.,

1999, Khan et al., 2005, Kwon and Lee, 2010, Mei and Ling, 2009, Ross et al., 2008].

5.1.2 A Multiple Temporal Scale Framework

This section briefly overviews the proposed framework (MTS), which was proposed in

Chapter 4, to reveal the source of hypotheses around which the best target state is to

be sought.

MTS learns motion models at different model-scales, and applies those models at mul-

tiple prediction-scales. The application of learned models at multiple prediction-scales

generates multiple competing hypotheses or state predictions at each time point. To

search for the best target state, MTS extends PF [Arulampalam et al., 2002], in which

a fixed particle set with a certain spread is allocated around each state prediction.

To capture possibly complex motion patterns, MTS learns linear motion models at

different model-scales. A linear motion model is represented by M. M is learned at a

given model-scale separately for the x-location, y-location, and scale s of the target’s

state.

Let Zm = {x̂n}n=t
n=t−m+1 represent a sequence of recently estimated x-locations of target

states at model-scale m. Given M learned at model-scale m at time t, for x-location of

target state it is written as:

x̃n = φmx̂t + τmx̂tn, (5.3)

where τ is the slope, φ the intercept, and x̂t denotes that the model parameters have

been learnt using a sequence of recently estimated x-components of target states whose

last member is x̂t. Model parameters are learnt using Weighted Least Squares (WLS)

method as described in section 4.3.2 of chapter 4. Eq. 5.3 is same as Eq. 4.13 and Eq.

3.1 and it is repeated here to make the chapter self-contained.

These models are learned at each time t, and a set of these models is represented by

M
j=1,...,|Mt|
t , where |.| is the cardinality of the set. Each model predicts target state

l(x̃, ỹ, s̃) at T prediction-scales.

Suppose there are T sets of motion models available at time t, one from each of T

previous time-steps. Each set of models at time t is represented by its corresponding set

of predictions. The most suitable motion model from each set is selected as follows.
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Let us denote G = |Mt|, and let lkt = {lj,kt |j = 1, ..., G} represent a set of states predicted

by G motion models learnt at time t − k, where lj,kt denotes the predicted state by jth

motion model learned at kth previous time-step. As k = 1, ..., T , there are T sets of

predicted states at time t. Now the most suitable motion model Rk
t is selected from

each set using the following criterion:

l̂kt = arg max
lj,kt

p(Yt|lj,kt ) (5.4)

where l̂kt is the most suitable state prediction from the set lkt , and p(Yt|lj,kt ) measures

the visual likelihood at the predicted state lj,kt . In other words, l̂kt is the most suitable

state prediction of the most suitable motion model Rk
t . After this selection process, the

T sets of motion models are reduced to T individual models.

There exist T most suitable state predictions at time t, and it is required to search for

the best possible target state around these predictions (see the top row of Fig. 5.2).

The search is modelled by allocating each state prediction l̂kt a certain area in the state

space, which is called a cell. The size of this cell is equivalent to the uncertainty attached

to its corresponding hypothesis (see the bottom row of Fig. 5.2). For instance, the size

of the cell around l̂kt will be 2× σx × k pixels, and 2× σy × k pixels, respectively. Along

the third dimension, scale, the uncertainty would be σs × k around the predicted state

l̂kt . Here σx, σy, and σs are the standard deviations of a zero-mean Gaussian noise acting

on translation x and y, and scale s between two consecutive time-steps, respectively.

Note that the cell size corresponding to the prediction generated from time t − 1 is

smaller compared to the cell size corresponding to the prediction originated from time

t− 2. It is assumed here that uncertainty in the (motion) information, which is coming

from several previous time-steps to time t, increases with temporal distance from the

current time-step t.

Given T cells of variable size, which might overlap, the aim is to search for the best

target state X̂t in these cells. An intuitive and pragmatic approach would be to visit all

the cells to some extent, and spend more time in those where there are highly probable

target states. Moreover, these cells can be far apart in space. Sampling based search

methods such as the MH algorithm [Hastings, 1970], used conventionally in tracking

frameworks, cannot be used here. While searching a large area with large proposal

variance, the MH algorithm has the tendency to become stuck in local maxima. With

a smaller variance, it would require many samples to search a large area, and again get

trapped in a local maximum if there are deep valleys between the different modes of

the target distribution. WLMCMC sampling is generalized in the next section to solve

these problems.
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Figure 5.2: (Top row) There exists T (most suitable) state predictions at time t, and
it is required to search for the best target state around these predictions. (Bottom row)

The search is modelled by allocating each state prediction a certain area (cell).

The original instantiation of MTS extends bootstrap PF to allocate a fixed number of

particles with a certain spread around each state prediction (as shown in Fig. 5.3) to

obtain X̂t. This spread is equal to the uncertainty associated with the corresponding

state prediction computed as described above.

5.1.3 A Generalized WLMCMC sampling

WLMCMC sampling was introduced by [Kwon and Lee, 2008] to search for the target

in a whole image after dividing it into a fixed grid of equal sized cells (see Fig. 5.4). It

is composed of the Wang-Landau estimation and Markov Chain Monte Carlo (MCMC)

method. Wang-Landau estimation is a Monte Carlo algorithm that was introduced in
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Figure 5.3: Graphical representation of the search pattern in the original
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Figure 5.4: Division of a state space into a fixed grid of equal sized cells. A
3D state space divided into a fixed grid of equal sized cells at time t-1 and time t.



Chapter 5. A Generalized Search Method, and a New Model-Selection Criterion 120

the physics literature for calculating the density of states (DOS) by performing a set of

random-walks in different energy cells [Wang and Landau, 2001].

5.1.3.1 Wang Landau Monte Carlo (WLMC) method

The aim is to estimate the DOS score for every cell, where the DOS score is high for a cell

if it contains highly probable target states. As it is intractable to accurately calculate

the DOS score for every cell, the WLMC sampling approximately estimates it through

Monte Carlo simulation [Wang and Landau, 2001]. The energy landscape of a large

and/or high dimensional space may contain multiple competing local maxima [Zhou

et al., 2012]. In such cases, it is extremely difficult to accurately calculate DoS due to

the exponential growth of configuration states and a non-existence of analytic solution to

the complex distribution over this large and/or high dimensional space. Sampling-based

solutions such as Metropolis algorithm [Metropolis et al., 1953] are prone to trapping in

local modes, and thus, results in poor sampling efficiency and convergence far from the

true solution [Zhou and Bhatt, 2005],[Zhou et al., 2012]. WLMC algorithm provides an

efficient way to approximately estimate it as it solves the DoS estimation and sampling

problem in one go [Wang and Landau, 2001].

This method maintains a histogram h, and each bin of this histogram corresponds to a

specific cell Ck
t . When Ck

t is visited, its bin count h(Ck
t ) is increased by 1, and its DOS

score g(Ck
t ) is modified by multiplying by a modification factor f > 1.

g(Ck
t )← g(Ck

t ) ∗ f, (5.5)

where g(Ck
t ) is initially set to 1 for all k. As the simulation progresses, the random-walk

generates a semi-flat histogram. A histogram is considered semi-flat if the value of the

lowest bin is larger than 80% of the average value of all bins in h [Wang and Landau,

2001]. The semi-flat histogram denotes that the method has explored all the cells to at

least some degree. Now the method performs the next random-walk in a coarse-to-fine

manner to obtain more accurate DOS estimates. For this, the f factor is reduced to

f ←
√
f and the histogram is reset to h = {0, 0, 0, , |Ct|}. Where |Ct| is the number of

cells at time t, and is equal to the number of bins in histogram h. The method continues

until the histogram becomes semi-flat again; then restarts the random-walk with a finer

modification factor. The algorithm terminates when the modification factor becomes

close to 1 or the number of iterations reaches a pre-defined value.
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5.1.3.2 Proposal Step

The proposal step defines how the transition from the current state to a new state will

occur based on some previous knowledge of target motion. In this case, the previous

knowledge of target motion is that it can move from the current cell to any of the cells

within one proposal step. The proposal density is defined as

Q(X
′
t; Xt) = Qc(X

′
t). (5.6)

Qc proposes a new state X
′
t in two stages. In the first stage, a cell Ck

t is chosen randomly

from the T available cells to obtain diverse states. In the second stage, the x-location

and y-location of X
′
t are uniformly drawn from the chosen cell Ck

t , and the scale part of

X
′
t is proposed by adding zero-mean Gaussian noise with standard deviation σs × k to

the scale part of l̂kt . A Gaussian noise is added to the scale part of the predicted state

l̂kt to propose a new scale for X
′
t since it is assumed that the scale does not vary much

around the predicted state.

5.1.3.3 Acceptance Step

The acceptance ratio decides whether the proposed state is accepted or not using the

likelihood ratio between the proposed state X
′
t and the current state Xt

a = min

[
1,

p(Yt|X
′
t)Q(Xt; X

′
t)

p(Yt|Xt)Q(X
′
t; Xt)

]
, (5.7)

The WLMCMC algorithm integrates the density of states term with the acceptance

ratio in Eq. 5.7. Let D be a mapping function from the state Xt to the cell Ck
t , which

contains the state Xt.

D : Xt → Ck
t (5.8)

Then the acceptance ratio becomes

a = min

1,
p(Yt|X

′
t)

1

g(D(X
′
t))
Q(Xt; X

′
t)

p(Yt|Xt)
1

g(D(Xt))
Q(X

′
t; Xt)

 , (5.9)

where g(D(X
′
t)) denotes the density of states in the cell which contains X

′
t.

Eq. 5.9 has two important advantages over Eq. 5.7. The first is that it provides a

systematic way for a Markov Chain to escape local maxima and capture the global
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maximum. This is required because the cells could be positioned far apart from each

other in state space. And in these situations, the Markov Chain has a higher probability

of meeting local maxima. The second advantage of Eq. 5.9 is that it enables the Markov

Chain to spend more time around local maxima, while guaranteeing to explore all the

cells to some degree. Again, this is desirable in this scenario because there could be any

number of cells containing highly probable target states, and this should be discovered

by visiting each of them to some degree.

The DOS score g(D(X
′
t)) in Eq. 5.9 is calculated exactly in the same way as described

in subsection 5.1.3.1. For instance, if a state proposed by Eq. 5.6 is accepted by the

acceptance ratio in Eq. 5.9, and the state belongs to cell Ck
t , then the DOS score of

the cell g(Ck
t ) is modified by the factor f , and its bin count h(Ck

t ) is increased by 1.

Otherwise, the same procedure is applied to the cell which contains the current state.

Fig. 5.5 graphically illustrates the steps involved in a single iteration of generalized

WLMCMC, and Algorithm 2 details relevant steps of the generalized WLMCMC method

given variable sized cells, where each cell is formed around a certain state prediction.

Algorithm 2 Generalized WLMCMC method for variable sized cells.

Input: A set of variable sized cells at time t: Ct =
{
Ck
t |k = 1, ...T

}
Output: Best state of the target at time t: X̂t

Initialize the DOS score for each cell g(Ck
t ) = 1, and the bin count for each cell h(Ck

t ) = 0,
where k = 1, ..., T .
Set f = 2.7
for q = 1 to N, where N is the total number of particles

- Given the current state Xq
t , propose a new state X

′
t using the Eq. 5.6.

- Use Eq. 5.9 to compute the acceptance ratio.
- if the proposed state is accepted then set Xq+1

t to X
′
t, else set Xq+1

t to Xt.
- g(D(Xq+1

t ))← g(D(Xq+1
t )) ∗ f

- h(D(Xq+1
t ))← h(D(Xq+1

t )) + 1
- If h is semi-flat then reset h(Ck

t ) = 0,∀k and f ←
√
f .

end
Compute the best state X̂t using Eq. 5.2.
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Figure 5.5: Graphical illustration of the steps involved in a single iteration
of generalized WLMCMC.

5.1.4 Experimental Details and Results

5.1.4.1 Data

Eleven video sequences were used for the experimental evaluation. Seven are pub-

licly available (PETS 2001 Dataset 1 1, TUD-Campus[Andriluka et al., 2008], TUD-

Crossing [Andriluka et al., 2008], Person[Dihl et al., 2011], car [Wu et al., 2013], Per-

son2 2, and PETS 2009 Dataset S2 3) and four are our own (squash, ball1,ball2, and

toy1 ).

1PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/
2Person2 is available from http://www.iai.uni-bonn.de/ kleind/tracking/
3PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/
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5.1.4.2 Experimental Settings

The multiple temporal scale framework (MTS) based on generalized WLMCMC is de-

noted by MTS-GWL. MTS-GWL was compared to the original instantiation of MTS,

which is based on the bootstrap Particle Filter and is denoted by MTS-PF, and seven

state-of-the-art trackers. The state-of-the-art trackers are WLMCMC [Kwon and Lee,

2008], Visual Tracking Decomposition (VTD) [Kwon and Lee, 2010], Fragment-based

Tracker (FragT) [Adam et al., 2006], Sparsity-based Collaborative Model (SCM)[Zhong

et al., 2012], Adaptive Structural Local Sparse Appearance Model (ASLA)[Jia et al.,

2012] Real-Time Robust L1-Tracker using Accelerated Proximal Gradient (L1-APG)

[Bao et al., 2012], and Semisupervised Boosting Tracker (Semi) [Grabner et al., 2008].

In terms of search methods, MTS-PF, SCM, ASLA and L1-APG are based on parti-

cle filters, FragT and Semi utilize dense sampling methods, WLMCMC and VTD use

MCMC. The minimum and maximum number of samples used for WLMCMC, VTD,

SCM, ASLA, and L1-APG was 600 and 640, respectively. The minimum and the maxi-

mum size of the cell in terms of half width and half height in image space were 1 pixel

and 30 pixels, respectively. For MTS-PF and MTS-GWL, model-scales of 2,3,4, and 5

frames were used, and at each model-scale a linear motion model was learned. MTS-PF

and MTS-GWL utilized the HSV colour histogram as the observation model and Bhat-

tacharyya coefficient as the distance measure [Pérez et al., 2002]. The list of tracking

parameters is given in Appendix A.

5.1.4.3 Experimental Results

Table 5.1 reports tracking accuracy of 9 trackers on 11 video sequences in terms of centre

location error (in pixels), percentage of correctly tracked frames based on Pascal score

[Santner et al., 2010], and precision at a fixed threshold of 20 pixels. The first nine

videos involve occlusions of varying lengths, and the last two contain both occlusions

and rapid motion variations.

According to center location error criterion, out of eleven sequences, MTS-GWL im-

proved the accuracy of MTS-PF in four sequences and it revealed the same performance

as MTS-PF in four sequences. Likewise, in terms of Pascal score and precision, MTS-

GWL performed better than MTS-PF in eight out of eleven sequences. It is important

to note that both the methods use same number of particles, and the only difference

between them is the search method. Given multiple cells of variable size formed around

state predictions, MTS-GWL produces more samples from the cells with a higher prob-

ability of containing local maxima that increases the likelihood of reaching the global
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Figure 5.6: Comparison of tracking consistency over five runs between MTS-
GWL and MTS-PF with and without occlusions. Each bar in this figure is a
standard deviation (in pixels) calculated over a set of five mean center location errors
(in pixels). Each mean value in this set is computed by averaging the centre location

error over all frames (with or without occlusion) for a video sequence.

maximum. In other words, the method provides a statistical way to reach global opti-

mum of the likelihood function through combining efficient multiple-range random-walks

with the MCMC method in a principled way. On the other hand, MTS-PF just allocates

a fixed number of particles with a certain spread around each state prediction, and thus

so is more likely to miss the global maximum.

Fig. 5.6 shows a comparison between MTS-PF and MTS-GWL in terms of tracking

consistency over five runs with and without occlusions on five different sequences. The

improved consistency of MTS-GWL over MTS-PF under both situations suggests that

while the proposed framework has the potential to handle occlusions, its tracking con-

sistency can be improved further with a sophisticated search method such as generalized

WLMCMC.

The target faces occlusions of different lengths in the ball2 sequence. Fig. 5.7(a) shows

tracking results of MTS-PF, and MTS-GWL in this sequence. Although both the meth-

ods recover the target after occlusion (frame # 128, and frame # 129), MTS-GWL

provides more accurate tracking than MTS-PF. Similarly, the target is occluded twice

in the TUD-Campus sequence. MTS-GWL is slightly more accurate than MTS-PF in

tracking the target as shown in Fig. 5.7(b).
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(a) frame # 128, 129, and 216 of ball2 sequence.

(b) frame # 21, 26, and 28 of TUD-Campus sequence.

(c) frame # 32, 92, and 282 of squash sequence.

Figure 5.7: Tracking results of MTS-PF(cyan) and MTS-GWL(magenta) in ball2,
TUD-Campus, and squash sequences.

It is difficult to maintain accurate tracking when a target undergoes both abrupt motion

variations and shorter occlusions. Fig. 5.7(c) displays tracking results of MTS-PF, and

MTS-GWL in the squash sequence. MTS-GWL achieves better accuracy than MTS-PF

in tracking a target with large motion uncertainty (frame # 32, frame # 92, and frame

# 282).

5.1.5 Discussion

Thus far, a search method has been generalized to find the best possible target state

around multiple competing hypotheses. These hypotheses are state predictions gener-

ated in the proposed multiple temporal scale framework (MTS). The search is modelled



Chapter 5. A Generalized Search Method, and a New Model-Selection Criterion 128

by assigning a certain area in state space, which is called a cell, to each state prediction.

To search for the best target state in these cells, WLMCMC sampling is generalized to

cells of variable size and location.

Experimental evaluation showed that the generalized search method improves the perfor-

mance of the proposed framework to some extent compared to its original instantiation,

which is based on the extension of Particle Filter. The generalized search method en-

hances performance since it is more principled than its counterpart in finding the global

optimum of the likelihood function.

On the other hand, it is also important to understand why there was not a substantial

improvement in performance. The success of the search component in MTS is largely

dependent on the locations of state predictions in the state space. If a majority of the

predictions are completely off-target i.e. far away from the true modes of the target

distribution, and out of the remaining ones, none of them is located very close to the

true target state, then the search method might not be able to reach the global solution.

In cluttered environments these off-target predictions can be even more threatening,

if they are located close to an object whose appearance is very similar to the tracked

target.

The success of a search method is also contingent on the appearance model. Since MTS

uses a fixed, and a very simple appearance model, it might not stay valid when the target

appearance is varying. In such cases, despite the accurate state predictions, the search

method would never be able to estimate the true underlying posterior distribution, and

would result in a sub-optimal solution.

For the search method to converge to the true underlying posterior distribution, the state

predictions should lie close to the true modes of this distribution, and the appearance

model should match closely the true target appearance. Therefore, the role of MTS,

model selection criterion is increasingly important. Recall, the current selection criterion

in MTS picks one model (prediction) from each of the several previous time-steps using

a visual likelihood score. It is simple and efficient, but ignores the fact that predictions

from some previous time-point might be inaccurate and should be rejected completely.

To be able to devise a new model selection criterion, it is important to first underline

the dimensions of (motion) model space and choose some subset of variables to simplify

the model selection problem. In this regard, Section 5.2 explores MTS further by first

developing an understanding of the model selection problem, and then proposing a new

selection criterion.
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5.2 A New Model Selection Criterion

Tracking frameworks employing multiple motion models such as MTS may generate mul-

tiple competing hypotheses (state predictions) at a given time. These state predictions

can also be considered motion priors that guide search toward the correct modes of the

target distribution. However, these state predictions are not all equally accurate; some

of them might lie in non-target regions. Under these circumstances, it might be appro-

priate to reject completely off-target predictions, find structure in those remaining, and

utilize representative ones to define search regions. Ideally, these search regions should

be close to the local modes of the target distribution, far away from the distractors, and

small in number.

This section investigates the model selection problem in the context of MTS, and devel-

ops a new motion model selection criterion. This is achieved by exploring the possible

dimensions of the motion model space to develop an understanding of the model selection

problem. Then, a new selection criterion is developed.

5.2.1 Model Selection Problem

In modern scientific enterprise, model selection is the task of choosing a statistical model

from a set of candidate models, given data. It is an important task because it saves

computer and analyst time. A general principle for selection is given by Occam’s razor

[Blumer et al., 1987]. This states that given candidate models of similar explanatory

power, the model with minimum complexity is most likely the best to select.

A model selection criterion is expected to balance goodness-of-fit (how well the model fits

the data) with simplicity (small number of degrees of freedom). More complex models

will better fit the data than any other in the candidate set, but the additional parameters

may not reveal anything of interest. For instance, a 5th order polynomial will exactly

fit 4 points, but those 4 points might be randomly distributed around a straight line.

Keeping in view the importance of model selection, many selection criteria have been

proposed. Among several methods proposed for model selection, Akaike Information

Criterion (AIC) [Akaike, 1974], Bayesian Information Criterion (BIC) [Schwarz et al.,

1978], Bayesian Model Averaging (BMA) [Madigan and Raftery, 1994], and Bayes Factor

(BF) [Kass and Raftery, 1995] are the most well-known.

The model selection problem to be discussed here has similar purpose i.e. to deselect

poor motion models, whose predictions are located far away from the true target state,

but the nature of the problem is different. In the proposed framework (MTS), T sets

of motion models are available at time t, one from each of the T preceding time-steps.
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Each set of models at time t is represented by its corresponding set of predictions. Every

prediction is a point in a 3D state space composed of position and scale. Each available

model (prediction) at time t has three associated variables: x, y position and scale s.

In fact, it is important to note that each motion model was generated over an appro-

priate model-scale at some previous time-step. This means that there are a further

three variables associated with each motion model available at the current time-step

t. These three additional variables are: model-scale, prediction-scale, and prediction-

history. Model-scale is the sequence of states over which a model was generated, and

prediction-scale is the previous time point at which this model was learned e.g. [t− 3].

Prediction history is a sequence of future predictions made by a model before approach-

ing the current time t (e.g. a model learned at time [t− 3] would have predicted target

state at time [t− 2], and [t− 1] before time t). Fig. 5.8 illustrates the three additional

variables. With this, the model space in the model selection problem has six dimensions

at time t: x, y position, scale s, model-scale, prediction-scale, and the prediction-history.

Now, the question is how to select a subset of models from this model space that are

located close to the true target state, and what should be the cardinality of this subset.
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A sequence of generated predictions by a model 
learned at time t-T before approaching time t

t-T+2

Figure 5.8: Graphical Illustration of three additional dimensions of model space in
the model selection problem.

In the initial attempt, considering the full model space (all six dimensions) for the devel-

opment of a new model selection criterion might be a complicated task. The next section

picks three dimensions, position and scale, to reduce the complexity of the problem.
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5.2.2 A New Motion Model Selection Criterion

This section proposes a new motion model selection strategy, utilizing the locations of

predictions made by available motion models at the current time t in 3D state (position

and scale) space. The aim is to define search regions that are close to the true target

state.

Selection is achieved in two steps. In the first step, state predictions with very low

visual likelihood score are rejected quickly by an automatically chosen threshold. This

threshold is generated by examining the density of the variable that represents visual

likelihood score of the state predictions corresponding to available motion models. In the

second step, the remaining state predictions are spatially clustered to identify possible

prediction classes. To model search, two areas in state space, called cells, are assigned

to each cluster. One is associated with the cluster center and, the other to the member

of this cluster with highest visual likelihood score. The size of these cells is proportional

to the within cluster standard deviation. Creation of two cells per cluster allows the

proposed criterion to exploit both the motion and the appearance cues to capture local

maxima of the target distribution.

Let Ut = {uq
t |q = 1, ..., G× T} be the set of state predictions available at time t, where

G = |Mt| is the number of motion models learnt at each (previous) time-step, and T is

the number of prediction-scales. Each uq
t is weighted using the observation model, and

the corresponding likelihood scores are represented by Vt = {vq
t |q = 1, ..., G× T}.

5.2.2.1 Rejecting Low Visual Likelihood State Predictions

This step is based on the assumption that not all the state predictions are accurate

enough, and should not be searched for the target state. It filters out state predictions

that have a very low visual likelihood score with an automatically selected threshold.

This threshold is decided by examining the density of a random variable, whose examples

are visual likelihood scores of state predictions. Note that visual likelihood score is chosen

over other cues like motion for this task because it is considered most reliable (in terms

of producing false positives).

Let p(vt) = 1
Zh

∑Z
q=1K(

vt−vqt
h ) be the kernel density estimate (KDE) of the (one-

dimensional) random variable Vt, whose examples are visual likelihood scores of state

predictions. Where K(.) is the Gaussian kernel, h is the bandwidth, and Z = G × T .

Fig. 5.9 shows an example KDE of a random variable that is a mixture of three normal

distributions.
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Figure 5.9: Kernel density estimate and histogram of a random variable which is a
mixture of three normal distributions.

Threshold point: Here, 50% of the total density is 
captured

Figure 5.10: Threshold point selected on capturing 50% of the total density of a
random variable, which is a mixture of three normal distributions.

A very simple procedure is adopted to select a threshold ηt for rejecting the state pre-

dictions. Given the KDE of Vt, take the point along the x-axis as ηt at which e% of

the density is captured after starting from the maximum value of Vt. e is the fraction

of the total density of random variable vt to be considered for selecting the threshold

ηt. It lets the selection of ηt by taking into account the shape of the density associated

with the (random) variable vt. That is, as p(vt) can take arbitrary shapes, the aim is to

select a threshold point representative of this density. Fig. 5.10 illustrates the threshold
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Figure 5.11: Six different prediction classes identified by K-Harmonic Means (KHM)
in Dt. Only x and y locations of the target state are shown here.

point selected to capture 50% of the total density of a random variable.

Given threshold ηt, vq
t , which is the qth instance of Vt, is rejected if

vq
t < ηt. (5.10)

Otherwise it is selected. The set of selected predictions generated by this procedure is

denoted by Dt.

5.2.2.2 Spatial Clustering

The aim of spatial clustering is to discover possible prediction classes in the set of

selected predictions Dt. These potential prediction classes will then lead towards the

establishment of search regions of different sizes in the state space.

The K-Harmonic Means (KHM) method is used to cluster Dt into K prediction classes,

where K =
√
Z. KHM is chosen over K-means as it is insensitive to the initialization of

centers [Zhang et al., 2001]. Recall, each instance of Dt is a state prediction lkt (xt, yt, st).

Fig. 5.11 displays 6 different motion classes (clusters) discovered by KHM in Dt.

Within-cluster-variance is a measure of compactness of a cluster. Here, it is interpreted

as how confident the predictions belonging to this cluster are about the true target state

according to the motion cue. In other words, if the predictions are tightly clustered,

then there is a high likelihood of target being present according to motion information

in the vicinity of these predictions.
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5.2.2.3 Formation of Search Regions

The set of cluster centers identified in section 5.2.2.2 is denoted by Ωt = {Ω1, ...,ΩK},
where K is the total number of clusters. The search is modeled by assigning each cluster

center Ωm, and the member (state prediction) of this cluster having maximum visual

likelihood score a certain area in the state space, which is called a cell. The size of this

cell is proportional to the sum of within-cluster-standard-deviation of this cluster and the

standard deviation of the zero mean Gaussian noise acting on target state between two

consecutive time-steps. For instance, the cell size around the center of mth cluster and

the (visually) highest weighted member of this cluster would be 2×(STD(Dt,Ω
m
x )+σx),

and 2×(STD(Dt,Ω
m
y )+σy). Along the third dimension, scale, the uncertainty would be

(STD(Dt,Ω
m
s )×γ4)+σs. Where STD(Dt,Ω

m
x ), and STD(Dt,Ω

m
y ), and STD(Dt,Ω

m
s )

return the within-cluster-standard-deviation along x, y, and s dimensions of data, Dt,

that belongs to cluster centered on Ωm. σx, σy, and σs are the standard deviations of

the zero mean Gaussian noise acting on x, y, and s part of the target state between

two consecutive time-steps, respectively. Algorithm 3 details relevant steps of this new

motion model selection criterion.

Note that the formation of cells around both the cluster center and the (visually) highest

weighted member of this cluster allows the proposed criterion to exploit both motion and

appearance information to locate local modes of the target distribution. The cell size

is linked to the within-cluster-deviation of a cluster since this measure reflects motion

uncertainty around the center of the cluster.

With K clusters, the total number of cells are 2 × K. The set of these variable sized

cells is represented by Ct =
{
Cf
t |f = 1, ...2×K

}
. To search for the best target state

X̂t in these cells, the generalized Wang-Landau Markov Chain Monte Carlo proposed in

section 5.1 is used. Search for the optimal target state is also possible by initializing a

local optimizer such as the Mean Shift algorithm [Comaniciu et al., 2000], or initiating a

Markov Chain such as the Metropolis Hastings algorithm [Hastings, 1970] at the center

of each cell. However, these local search methods can be computationally expensive. In

addition, their application in this scenario would not allow the comparison of this new

selection criterion with the one used in section 5.1.

4 γ is a weighting factor, and is empirically set to 0.01 in all the experiments.
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Algorithm 3 A New Motion Model Selection Criterion

Input: A set of state predictions at time t: Ut = {uq
t |q = 1, ..., G×T}, and their visual

likelihood scores at time t: Vt = {vq
t |q = 1, ..., G× T}.

Output: A set of variable sized cells at time t: Ct =
{
Cf
t |f = 1, ...2×K

}
, where K is

the number of clusters.

Rejecting low visual likelihood state predictions:
- Estimate the probability density function (PDF) of Vt using KDE.
- Choose threshold ηt as the point along the x-axis of PDF at which e% of the density

is captured after starting from the maximum value of Vt.
- Threshold Vt to get the set of selected predictions Dt.

Spatial Clustering:
- Cluster Dt into K motion classes (clusters). The set of cluster centers is represented

by Ωt = {Ω1, ...,ΩK}.
Formation of Search Regions:
for m = 1 to K, where K is the total number of cluster

- Allocate a cell to Ωm (the cluster center).
- Allocate a cell to the (visually) highest weighted prediction of the cluster centered

at Ωm.
end
- Return the set of variable sized cells Ct =

{
Cf
t |f = 1, ...2×K

}
.

5.2.3 Experiments and Results

5.2.3.1 Image Sequences used for Evaluation

Eleven video sequences were used for experimental evaluation. Out of eleven, seven are

publicly available (PETS 2001 Dataset 1 5, TUD-Campus[Andriluka et al., 2008], TUD-

Crossing [Andriluka et al., 2008], Person[Dihl et al., 2011], car [Wu et al., 2013], Per-

son2 6, and PETS 2009 Dataset S2 7) and remaining four are our own (squash, ball1,ball2,

and toy1 ).

5.2.3.2 Description of Trackers and Experimental Settings

The multiple temporal scale framework (MTS) based on the new model selection cri-

terion is denoted by MTS-MS. MTS-MS is compared to the MTS-GWL, which is an

instantiation of the MTS based on the existing model-set reduction method. Note that

the only difference between MTS-MS, and MTS-GWL is the way the model selection

takes place, and they both utilize generalized WLMCMC for searching the best target

state.

5PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/
6Person2 is available from http://www.iai.uni-bonn.de/ kleind/tracking/
7PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/
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For MTS-MS and MTS-GWL, the minimum and the maximum size of the cell in terms

of half width and half height in image space were 1 pixel and 30 pixels, respectively, and

model-scales of 2,3,4, and 5 frames were used, and at each model-scale a linear motion

model was learned. MTS-MS and MTS-GWL utilized the HSV colour histogram as the

observation model and Bhattacharyya coefficient as the distance measure Pérez et al.

[2002]. The value of e, which is the percentage of total density to be captured for

selecting threshold ηt, was set to 50.

5.2.3.3 Results

Fig. 5.12 reports performance comparison between MTS-MS and MTS-GWL in terms

of percentage of correctly tracked frames based on Pascal score. Overall, the difference

in the accuracy of two methods is not substantial in almost all sequences. However,

MTS-MS performed better than MTS-GWL in four out of eleven sequences, whereas

MTS-GWL had higher accuracy than MTS-MS in five out of eleven sequences. Both

MTS-MS and MTS-GWL performed equally well in two sequences.
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Figure 5.12: Performance comparison between MTS-MS and MTS-GWL in terms of
percentage of correctly tracked frames based on Pascal score.

Fig. 5.13 plots performance comparison between MTS-MS and MTS-GWL in terms of

precision at a fixed threshold of 20 pixels. Again, there is not a considerable difference

in the accuracy of two methods in almost all sequences, but MTS-GWL showed slightly
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improved performance than MTS-MS in seven out of eleven sequences. MTS-MS had

only little higher accuracy than MTS-GWL in two out of eleven sequences.
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Figure 5.13: Performance comparison between MTS-MS and MTS-GWL in terms of
precision at a fixed threshold of 20 pixels.

Although there was not a substantial difference in the performance of MTS-GWL and

MTS-MS, MTS-GWL performed slightly better than MTS-MS in most of the sequences.

This might be due to the fact that while rejecting models, the new selection criterion

employed in MTS-MS takes into account just the appearance information, which is based

on a very simple appearance model. Besides, it ignores the prediction-scale information

attached to every model, which might somehow compensate for the errors in the ap-

pearance information. In contrast, the existing selection criterion used in MTS-GWL,

naively capitalizes prediction-scale information. It selects one model from each of the

previous time-points, and is not fully reliant on the appearance information.

MTS-MS was analyzed by varying the values of e%, which is the percentage of total

density to be captured for selecting threshold η, to observe its impact on the performance.

Fig. 5.14 plots accuracy of MTS-MS at e = 30%, e = 50%, e = 70%, and e = 100% in

terms of center location error (CLE), percentage of correctly tracked frames based on

Pascal score (CDR), and precision at a fixed threshold of 20 pixels (Precision). It can be

seen that according to all three evaluation metrics, MTS-MS achieves higher accuracy

at smaller values (30% and 50%) of e in comparison to the larger values (70% and 100%)

of e. For instance, MTS-MS at e = 30%, and e = 50% outperformed MTS-MS at e =
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Figure 5.14: Performance of MTS-MS upon varying e values in terms of CLE, CDR,
and Precision.
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Figure 5.15: Performance summary of each e value in terms of CDR, CLE, and
Precision. Each bar in this figure shows the number of sequences out of total (7)
sequences the corresponding e value achieved higher accuracy than the other e values.

70%, and e = 100% in 5 out of 7 sequences in terms of CDR, and in all 7 sequences in

terms of CLE and precision as displayed in Fig. 5.15. This might be due to the fact

that large e values allow more state predictions and so increases search space. In such

cases, the search method struggles to, or may not, reach global optimum with limited

number of particles. In brief, it might be true that not all the predictions are equally

accurate. Therefore, some of them should be deselected before defining cells in order to

make search more accurate and efficient.

5.2.4 Discussion

MTS-MS displayed encouraging results, but it is important to understand why it did

not improve the performance of the proposed framework (MTS) substantially i.e. in

comparison to MTS-GWL. Firstly, MTS-MS is not capable of resolving visual ambigui-

ties when a target changes appearance, since a fixed, simple appearance model is used.

In other words, the new selection criterion does not have a mechanism to verify the

presence of true target in these circumstances. In fact, it relies on visual appearance

score to deselect some of the models (predictions) in the first stage, which makes it more

sensitive to visual ambiguities. Furthermore, it derives motion information, extracted

via spatial clustering, in a naive manner that does not help in overcoming visual ambigu-

ities. Secondly, MTS-MS cannot prevent search in far-away non-target regions while the

target is occluded. This is because the new selection criterion gives very high priority

to the appearance information. It has no other reliable cues e.g. motion to bring on a
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par with the appearance information to improve in these cases. Although the capability

to avoid distraction to non-target regions during occlusion is a difficult task to achieve

in practice, it can substantially improve the accuracy of the proposed framework.

5.3 Conclusion

In the beginning of this chapter, a search method was generalized to estimate the best

target state around the state predictions generated in the proposed framework (MTS).

These state predictions are produced by motion models learned and applied over multiple

temporal scales. The search is modelled by assigning a certain area in state space, called a

cell, to each state prediction. To search for the best target state in these cells, WLMCMC

sampling was generalized to cells of variable size and location. Experimental evaluation

revealed that the proposed framework (MTS) based on generalized WLMCMC (MTS-

GWL) performed slightly better than the proposed framework based on the extension

of particle filters (MTS-PF).

The experimental evaluation of MTS-GWL also gave a pointer to the fact that the

effectiveness of a search method in the context of MTS relies on the location of state

predictions in the state space. To gain further insight into the proposed framework and

as a first step towards overcoming drawbacks in MTS, the model selection problem in the

context of MTS was defined, and a new motion model selection criterion was proposed.

The new model selection criterion proceeds through two stages: rejection of state pre-

dictions with low visual likelihood scores, and spatial clustering. The rejection stage

deselects some of the state predictions by automatically deciding a threshold since it be-

lieves that the surroundings of some predictions are not worth searching. The remaining

predictions are spatially clustered to find possible groupings and remove redundancy.

While establishing search regions, both appearance and motion information is utilized

by assigning a cell to both each cluster center and to its highest weighted likelihood

member.

Experiments were conducted to observe the impact of varying the e% parameter on

the performance of MTS based on the new selection criterion (MTS-MS). e% is the

percentage of the total density to be captured for selecting threshold η. Smaller values

of e% revealed better results compared to larger values of e%. This suggests that it might

be advantageous to reject some of the predictions before further processing (clustering

and defining search regions) since not all of them are equally accurate.

The experimental evaluation of MTS-MS showed comparable results to MTS-GWL, but

did not outperform MTS-GWL. MTS-MS is not robust to distractors while the target
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is occluded and/or when it changes appearance. This is because it completely relies on

appearance likelihood scores to filter predictions in the early stage of model selection.

Furthermore, it lacks availability of some other cues e.g. motion to resolve appear-

ance ambiguities while selecting models. Chapter 6 proposes some potential directions

through which the aforementioned problems in MTS can be addressed.



Chapter 6

Conclusions and Future Work

The chapter begins by describing a summary of achievements and contributions made

in this thesis (Section 6.1). Though the work presented in this dissertation provides a

new perspective on key problems in visual tracking, there remains several limitations in

the proposed approaches. Section 6.2 discusses these limitations and a few unaddressed

topics. It further describes several possible ways through which they can be approached,

and highlights potential future research directions.

6.1 Summary and Contributions

The thesis proposes and evaluates the idea of visual tracking over multiple temporal

scales, and then further explores the proposed tracking framework. Three important

questions arose from notion of visual tracking over multiple temporal scales. Chapters

3 and 4 address these questions and Chapter 5 explores some important components of

the proposed tracking framework, resulting in important contributions to the field.

The three questions considered here are the following. (1) If a set of models, built

over multiple temporal scales, is used, can better prediction performance be achieved

compared to any single model from this set? (2) Is it possible to utilize the models

generated from multiple time histories to predict possible target state multiple time-

points ahead (in the future) to deal with occlusions? (3) Is it possible to select the most

suitable model from the set of models and incorporate this into a tracking framework?

To address the first question, Chapter 3 introduced the practice of using ground truth

data to evaluate the potential benefits of learning models over multiple temporal scales.

In particular, experiments were performed assessing the usefulness of each of the models

to predict motion and appearance in the ground truth data of several image sequences.

142
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The study concluded that the prediction performance improves both, in case of motion

and appearance, if a set of models, extracted from multiple temporal scales, is used

along with a capability to select the most suitable one at each time-point. It was also

observed that in the case of appearance prediction, this improvement in performance is

not substantial when seen in comparison to motion prediction.

After observing the advantages of having a set of multi-scale models Chapter 4 attempted

to answer questions 2, and 3. It proposed a visual tracker working over multiple tem-

poral scales overcoming occlusions and abrupt motion variations. Motion models were

learned from the target history at different temporal scales and applied over multiple

temporal scales in the future. To estimate the posterior, the bootstrap particle filter was

extended to propagate particles into the future at multiple temporal scales, guided by

these motion models. Experiments were carried out to compare the performance of the

proposed method with competing methods on both publicly available image sequences

and some new sequences introduced in this thesis. The competing methods included best

performing methods according to [Wu et al., 2013], and trackers capable of handling oc-

clusions and abrupt motion variations. Results revealed that the proposed framework

displayed better performance than the other methods in handling occlusions and rapid

motion variations.

To understand the role of important components of the proposed tracking framework,

and as an initial attempt towards further ameliorating its performance, Chapter 5 gener-

alized a search method for multiple state predictions generated in multiple motion model

frameworks, and proposed a new way of selecting motion models using their state pre-

dictions. First, a search method, which was originally proposed to search in a fixed grid

of equal sized cells, was generalized to cells of variable size and location. The cells are

formed around the predictions generated by motion models in the proposed framework.

Experimental results showed that the proposed framework with the generalized search

method performed somewhat better than the proposed framework based on the exten-

sion of particle filters. Although this improvement in performance is not substantial, this

study has identified a new way of searching around multiple competing hypotheses in

visual tracking. To investigate the role of model-selection in the context of the proposed

framework and in the hope of further improving its performance, in the second half of

Chapter 5 a novel motion model-selection technique was proposed. The proposed frame-

work with this new model-selection technique did not outperform the original framework

relying on the original existing model-set reduction method. However, this investigation

exposed a few drawbacks, some of which this new model-selection technique could not

address, in the proposed framework and their impact on the performance. Section 6.2

discusses those drawbacks in detail and underscores some relevant unaddressed topics.
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6.2 Drawbacks, Unaddressed Topics and Future Work

Though the work described in this thesis has proposed a new framework for tackling

two important problems in visual tracking and tried to further improve this framework,

there remain some drawbacks and unaddressed topics. This section briefly underlines

them and outlines several possible research directions through which they might be

approached.

6.2.1 Distractors during Occlusion

The tracker proposed in Chapter 4 can jump to distractors while the target is occluded.

Distractors are non-target regions in an image that are visually similar to the tracked

target. During occlusions, the target observation is very weak or completely missing.

Some off-target state prediction(s), which might be located close to a distractor, can lead

the search to estimate the best target state upon or around this distractor. Off-target

state predictions are located far away from the true target state. They are typically

generated by motion models belonging to some previous time-point that is just a long

way in time from the current time-point.

The aforementioned drawback can not only decrease tracking accuracy, but may in-

troduce problems when the target re-appears after occlusion. Some or all of the state

estimations during occlusions might be poor due to the drift of the tracker to non-

target regions. Consequently, the motion models learned at time-points with poor state

estimations would produce further off-target state predictions. These off-target state

predictions may reduce the sampling efficiency of the search method. In the worst case

scenario, the tracker can jump to distractors, when these off-target state predictions are

located near distractors and the target changes appearance significantly.

One possible way to minimize the drift of the tracker away from the true target dur-

ing occlusions is to improve the model-selection mechanism of MTS. If there were no

state predictions lying close to distractors, it is quite unlikely that the search would be

confused by the distractors. While choosing predictions when the image-based obser-

vation is weak or completely unavailable, the model-selection strategy, could be made

to weight (trust) motion cues higher than appearance cues. The appearance cue is the

visual likelihood score produced by the appearance model. Motion cues can be based

on how reliable (close to the estimated target states) the state predictions from each

motion model were over some time-period.
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6.2.2 Revisiting Motion Model Selection

As discussed, it might be possible to enhance the performance of the proposed tracker

by improving its motion model selection criterion. Looking back at the motion model

selection scheme of chapter 4, Eq. 4.11 selects one motion model from each of the

previous time-points by maximising visual likelihood scores corresponding to the state

predictions generated from a given previous time-point.

Target motion is subject to variability over time and it might be that the motion models

generated during period of occlusion are poor. In these situations, it is imperative to

deselect off-target state predictions as these could lie on or close to distractors. These

off-target predictions are more likely to be generated from those previous time-points

that are farthest in time from the current time-point. The selection criterion in chapter

4 just takes into account the visual likelihood scores of the state predictions while se-

lecting models. This makes it vulnerable to false positives as there could be one or more

non-target regions bearing visual similarity to the tracked target. It does not distinguish

between the predictions produced from the recent and the farthest time-points. Conse-

quently, it is prone to selecting off-target predictions nearby distractors when the visual

likelihood scores of these off-target and the on-target predictions are not very different.

On-target predictions lie very close to the true target state.

A simple way to improve the existing model-selection criterion (based on Eq. 4.11) is to

incorporate a penalty term that increases with time1. This penalty term would be higher

for the state predictions produced from the time-point farthest in time from the current

time-point and vice versa. It is based on the assumption that the state predictions from

recent previous time-points are usually more accurate than the ones from the farthest

time-points. This is not a strict assumption for the reasons described in the previous

paragraph. With this penalty term, the visual likelihood scores of the state predictions

from the farthest time-points should be much higher and not just the same than the

state predictions from the recent ones to increase their odds of getting selected. As a

result, the chances of picking false-positives will be reduced.

One potential way forward to include this penalty term is to have it in the inverse

relationship with the visual likelihood score. With this formulation, the score for the

model selection will be based on the ratio of visual likelihood score to this penalty term

instead of just the visual likelihood score.

1While doing this the constraint of selecting at least one motion model from each previous time-point
might have to be relaxed
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6.2.3 Long-term Occlusions

The proposed tracking framework (MTS-L) in Chapter 4 has shown robustness towards

full occlusions of different time-periods. However, it is susceptible to failure when faced

with very long-terms occlusions (>40 frames). The key reason behind this inability to

recover after long-term occlusions might be the unreliability of motion information. The

longer the prediction-scales over which the motion models have to predict, the less likely

it becomes that the true motion of the target will evolve according to the motion models.

Another reason for failure might be that at very large prediction-scales, the spread of

the (few) particles would be so large that they can completely miss the true mode of the

target distribution.

A potential direction of research may be to investigate longer model-scales for learning

motion models than the ones currently used. Their predictions over large prediction-

scales might be more reliable than the shorter-scale models under long-term occlusions.

6.2.4 Capturing Appearance Variations

The implementations examined here use a fixed appearance model, which is built from

information contained in the first frame of a tracking sequence. It may not stay valid

when the target appearance varies considerably over the course of the sequence. If

there exists considerable difference between the target model and the actual appearance

of the target, the search method may not output an optimal solution. Under these

circumstances, the accuracy of predictions by the motion models might become lower

and may affect tracking accuracy. So, making the proposed framework adaptive to

appearance variations may further improve its performance.

One possible solution to this extension would be to maintain an appearance pool, such

as those proposed by [Kwon and Lee, 2010],[Park et al., 2012] while tracking. This

appearance pool typically comprises target templates, and potentially covers possible

aspects of the target appearance in the tracking sequence.

To track a frame, the following procedure will be adopted. Each template from this pool

will be used by the search method to estimate the best target state corresponding to each

template. To select the tracking result from these best target states, the deformation

cost [Hong and Han, 2014] between the image observation associated with each best

target state and the template (from the pool) corresponding to this best target state

will be computed. The state with the minimum cost will be the tracking result at this

frame.
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6.2.5 Revisiting Poorly Tracked Frames

While tracking with the proposed framework (MTS), there would be some frames which

have not been tracked properly. In other words, these are frames in which the estimated

target state is far from the true target state. This might be due to the motion and/or

appearance model used to track such frames being considerably different from the op-

timal models required to track these frames. The motion models learned from these

frames can be erroneous, causing propagation of large tracking errors to other frames.

Moreover, the tracking results of these frames would lower the overall tracking accuracy

in a given image sequence. Re-visiting these frames for re-tracking once you have access

to the video information beyond these frames might result in their proper tracking.

One potential way to minimize the impact of poorly tracked frames is to isolate and

then re-track them. In other words, the motion information from these frames will be

down-weighted when it is propagated to subsequent frames, and such frames will be

re-visited later after they have been tracked for the first time.

A simple method to identify poorly tracked frames might be following. Quantify how

much the tracking result in a frame is similar to the previous appearances of the target.

This score will then be used to down-weight the motion information from such frames.

Poorly tracked frames having scores below than a pre-specified or dynamically chosen

threshold will be nominated for re-tracking. PatchMatching as used by [Hong et al.,

2013],[Hong and Han, 2014] can be employed in the first attempt to re-track nominated

frames.
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Figure A.1: Precision and success plots for MTS-L, FragT, L1-APG, Semi-
Boost, VTD, SCM, WLMCMC, and ASLA in fourteen sequences used in

chapter 4.
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