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Abstract 

 

Barium cycling in the ocean is associated with a number of processes, including the production and 

recycling of organic matter, freshwater fluxes, and phenomena that affect alkalinity. As a result, the 

biogeochemical cycle of barium offers insights into past and present oceanic conditions, with barium 

currently used in various forms as a palaeoproxy for components of organic and inorganic carbon storage, 

and as a quasi-conservative water mass tracer. However, the nature of the oceanic barium cycle is not fully 

understood, particularly in cases where multiple processes may be interacting simultaneously with the 

dissolved and particulate barium pools. This is particularly the case in coastal polar regions such as the West 

Antarctic Peninsula, where biological drawdown and remineralisation occur in tandem with sea ice 

formation and melting, glacial meltwater input, and potential fluxes from shelf sediments. 

Here, we use a high-precision dataset of dissolved barium (Bad) from a grid of stations adjacent to the 

West Antarctic Peninsula in conjunction with silicic acid (Si(OH)4), the oxygen isotope composition of water, 

and salinity measurements, to determine the relative control of various coastal processes on the barium 

cycle throughout the water column. There is a strong correlation between Bad and Si(OH)4 present in deeper 

samples, but nevertheless persists significantly in surface waters. This indicates that the link between 

biogenic opal and barium is not solely due to barite precipitation and dissolution at depth, but is 

supplemented by an association between Bad and diatom tests in surface waters, possibly due to barite 

formation within diatom-dominated phytodetritus present in the photic zone. Sea-ice meltwater appears to 

exert a significant secondary control on barium concentrations, likely due to non-conservative biotic or 

abiotic processes acting as a sink for Bad within the sea ice itself, or sea-ice meltwater stimulating non-

siliceous productivity that acts as a Bad sink. Meteoric water input, conversely, exerts little or no control on 
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local barium levels, indicating that glacial meltwater is not a significant coastal source of barium to the West 

Antarctic Peninsula shelf waters. 

 

Keywords: Barium; seawater; polar waters; trace metal; Antarctica; West Antarctic Peninsula; Pal LTER grid 

1. Introduction 

Records of dissolved and particulate barium (Ba) have been applied as proxies for several past and 

present oceanic variables and processes such as export production, alkalinity, and meltwater input (Hall and 

Chan, 2004; Jacquet et al., 2007; Lea and Boyle, 1989). The reliability of such proxies can be improved 

through an enhanced understanding of the oceanic Ba cycle. Current understanding of oceanic Ba dynamics 

is limited, particularly in regions where multiple factors may influence the dissolved barium pool.  

Barium is a bio-intermediate element found in trace concentrations (30-160 nM) in the ocean (Chan 

et al., 1976; Dehairs et al., 1980; Wolgemuth and Broecker, 1970). Sourced from continental weathering, the 

main input of barium to the oceans is fluvial run-off (Guay and Falkner, 1998). A secondary source is 

dissolved barium from hydrothermal vent systems, which is thought to precipitate locally (Edmond et al., 

1979; Von Damm et al., 1985).  

Dissolved barium (Bad) in the ocean has a biointermediate nutrient-like distribution, with low 

concentrations at the surface that do not reach complete depletion, and increased concentrations at depth. 

A connection between surface water depletion of Bad and phytoplankton productivity has been established 

by numerous observations throughout the global ocean (Esser and Volpe, 2002; Hoppema et al., 2010; 

Nozaki et al., 2001), although the exact nature of this biologically-related uptake is yet to be established. 

Very few, if any, marine organisms actively take up barium directly (Bertram and Cowen, 1997; Griffith and 

Paytan, 2012). Whilst there is evidence for the presence of barium within phytoplankton (Ganeshram et al., 

2003), either associated with organic material, incorporated into calcite (CaCO3) or celestite (SrSO4) tests 

(Bernstein and Byrne, 2004; Bernstein et al., 1992; Dymond and Collier, 1996; Lea and Spero, 1992), or 

adsorbed onto oxyhydroxides associated with opaline silica (Sternberg et al., 2005), the relative importance 

and viability of each of these associations is still under debate. 

The involvement of barium in biological processes is reflected in its co-variance in global ocean waters 

with silicic acid and alkalinity (Dehairs et al., 1980; Lea and Boyle, 1989). An important factor in the nutrient-

like behaviour of barium is thought to be the biologically-mediated nature of barium sulphate (barite) 

precipitation, which does not occur in bulk seawater because barite is undersaturated in most of the global 

ocean (Monnin and Cividini, 2006). It has been suggested that the formation of barite occurs by 

supersaturation resulting from elevated barium or sulphate within microenvironments created by decaying 

organic matter (Bishop, 1988; Dehairs et al., 1980). This causal link is supported by observations of the 

distribution of particulate barium in the water column (correlation with rates of oxygen consumption and 
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bacterial respiration (Dehairs et al. 1980; Bishop 1988; Jacquet et al. 2007; 2011; Thomas et al. 2011), 

association of barite crystals with bio-aggregates (Stroobants et al., 1991) and in sediments (correlation with 

organic carbon fluxes (Dymond and Collier, 1996; Dymond et al., 1992). The exact mechanism behind this 

precipitation, and the level of bacterial involvement, is still unclear (Gonzalez-Muñoz et al. 2012; Gonzalez-

Muñoz et al. 2003). 

As a result of its association with organic matter, biogenic barite has been established as a proxy for 

export productivity both in the modern ocean (Jacquet et al., 2007; Thomas et al., 2011) and in sediment 

cores representing past oceanic conditions (Nürnberg et al., 1994; Thompson and Schmitz, 1997). Records of 

the ambient marine concentration of dissolved barium (usually measured via the Ba/Ca ratio preserved in 

biogenic calcite or aragonite) can also yield pertinent information about past oceanic conditions, thanks to 

its co-variance with important parameters such as alkalinity, silicic acid, or riverine fluxes (Hall and Chan, 

2004; LaVigne et al., 2016; Lea and Boyle, 1989; Plewa et al., 2006). However, the current limited 

understanding of the oceanic barium cycle can make it difficult to distinguish the influences of these various 

processes on the barium stocks of the water masses investigated. 

Here, we investigate the controls on the distribution of dissolved barium in shelf-slope waters of the 

West Antarctic Peninsula (WAP), in order to improve our understanding of barium cycling in seawater and to 

improve the robustness of productivity proxy interpretations. Along the WAP, coastal processes such as sea 

ice formation and meltwater discharge can be observed alongside biological activity and ocean mixing, 

making it an ideal natural laboratory to study the relative controls that these processes exert on dissolved 

barium in seawater. 

2. Materials and Methods 

Seawater samples were collected from stations covering the Palmer Long Term Ecological Research 

(PalLTER) grid (Fig. 1) during annual cruises of the ARSV Lawrence M. Gould in two consecutive austral 

summers: LMG11-01 (2nd January 2011 – 6th February 2011) and LMG12-01 (30th December 2011 – 7th 

February 2012). Water was sampled either from surface water using a trace metal-clean towfish or at depth 

using Niskin bottles deployed on a CTD (Conductivity-Temperature-Depth) rosette. Dissolved barium 

concentration data reported here are publicly available within the PAL-LTER data system (dataset 

#266): http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets. 

2.1 Dissolved barium 

The dissolved barium concentrations of 0.2 µm filtered (Acropak-200, Pall) seawater samples were 

analysed using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) (Klinkhammer 

and Chan, 1990). Samples were prepared for isotope dilution (ID) as follows: 250 µL aliquots of seawater 

were spiked gravimetrically with 200 µL of a 135Ba-enriched solution (10 µg/mL 135Ba, Inorganic Ventures, 
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Christiansburg, VA, USA,  gravimetrically diluted to 0.013 µg/mL 135Ba [96 nM] using high purity 3% HNO3) to 

achieve a 138Ba/135Ba ratio of 0.7 - 1.0 to minimise error propagation (Klinkhammer and Chan, 1990). The 

concentration of the spike solution was calibrated via reverse isotope dilution using a commercial Ba natural 

standard solution from High-Purity Standards. Spiked solutions were then diluted 20 times with high purity 

3% HNO3 and homogenised.  

Isotope ratios (138Ba/135Ba) were measured in spiked samples using a Thermo-Finnigan Element XR 

(Cardiff University) or Element-1 (Rutgers University) ICP-MS in low resolution mode, with dissolved barium 

concentrations subsequently calculated using Eq.1. A mass bias correction coefficient (K) was calculated each 

time samples were analysed by measuring the ratio of 138Ba/135Ba in a 1 ppb Ba natural standard solution 

prepared in 5% (v/v) seawater (NASS-6 seawater standard of 5 ppb ± 0.15 Ba), and comparing this to the 

average natural ratio reported in the literature (10.88) (Eq. 2). The isotope ratio determined in this solution 

varied between 10.5 and 11.1, with measured uncertainty across each sample run never exceeding 1.5% 

(2*RSD). This uncertainty was consistently less than the mass bias determined for each sample run, which 

was on average a 1.9% deviation from the literature value. 
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Where:   Concsample = concentration of barium in sample 

 Concspike = concentration of barium in spike 

 m = mass 

 R = ratio of 
138

Ba/
135

Ba in sample, spike, or natural standard 

 f = abundance of 
135

Ba in spike or natural standard 

 K = mass bias correction coefficient for dilute seawater 

  (
           

                
)   (2) 

 

Blank solutions of 3% (v/v of concentrated reagent) HNO3 in 18.2 MΩ∙cm water were analysed to 

correct for background barium signal from the introduction system of the ICP-MS (135Ba blank counts <0.1% 

of seawater sample counts; 138Ba blank counts <1% of seawater sample counts), and a set of consistency 

standards were measured at regular intervals (see Table 1). A correction for any seawater matrix effects was 

applied to the blank measurements by monitoring the sensitivity of a natural standard solution in 3% HNO3 

vs. a natural standard solution in 5% seawater, before the blanks were subtracted from sample counts.  

Sample preparation and measurements were split between the Department of Marine and Coastal 

Science at Rutgers University, NJ, and the School of Earth and Ocean Sciences at Cardiff University. At 

Rutgers a Thermo-Finnigan Element-1 (SEM detector only) was used for ICP-MS analysis, whilst at Cardiff an 

Element XR was used (dual mode SEM with Faraday detector), with the same counting mode method used 
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on both instruments. Seawater standards of comparable barium concentration to the samples show a long 

term external reproducibility of ±2% or better across all analytical runs at both facilities (2*RSD), and the 

same solutions measured repeatedly at both institutions show agreement within 1% (Table 1). Within each 

analytical run, reproducibility of these seawater standards was 1.1% or better. High precision analyses were 

necessary for discerning relatively subtle Ba gradients; the full range of Ba concentrations in this study is 70 -

105 nM, with the majority of data points falling at 78 - 85 nM. 

2.2 Dissolved inorganic nutrients and primary productivity 

Dissolved inorganic nutrients (silicic acid, phosphate, and nitrate plus nitrite) were analysed at the 

Marine Biological Laboratory (Woods Hole, MA) using a Lachat Quickchem 8000 nutrient analyser. The data 

are available at http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets?action=summary&id=27  † 

(See Ducklow et al. (2013) and references therein for further information on the provenance of these 

datasets). 

Direct quantification of primary productivity was calculated at a small number of sites in 14C-labelled 

deck incubation experiments. Data and methodology overview are available at 

http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets?action=summary&id=41#overview ‡ (Oscar 

Schofield). 

2.3 Water mass fractions 

Seawater samples were analysed for the ratio of stable oxygen isotopes at the Natural Environment 

Research Council Isotope Geosciences Laboratory (NIGL) at the British Geological Survey. Samples were 

equilibrated with CO2 (Epstein and Mayeda, 1953) using a VG Isoprep 18, with 18O/16O ratios then measured 

on a SIRA 10 mass spectrometer. Results were reported in standard δ18O notation, with reference to a 

standard (Vienna Standard Mean Ocean Water [VSMOW]).  

At sample sites with measured values of salinity and δ18O, a three-end-member mass balance is used 

to derive the fractions of sea-ice melt, meteoric water, and Circumpolar Deep Water (CDW). This mass 

balance calculation is based on the de-coupled behaviour of salinity and δ18O in the different freshwater 

sources: sea-ice melt, and freshwater of meteoric origin (glacial melt plus precipitation). Developed by 

Östlund & Hut (1984) for the Arctic, this mass balance (Eq. 3) is implemented at the West Antarctic Peninsula 

by Meredith et al. (2008, 2010, 2013, this issue). 

 

fSI + fMW + fCDW = 1 

(SSI * fSI) + (SMW * fMW) + (SCDW * fCDW) = S  (3) 

(δSI * fSI) + (δMW * fMW) + (δCDW * fCDW) = δ 

                                                           
†
 Accessed 22/10/2014 

‡
 Accessed 13/10/2014 
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where fSI, fMW, and fCDW are the fractions of sea-ice melt, meteoric water, and CDW, respectively, that 

we seek to determine; SSI, SMW, and SCDW are the respective salinities of the end members; and δSI, δMW, and 

δCDW are their corresponding δ18O values. The quantities S and δ are the measured values of salinity and δ18O 

at the sample site. The salinity and δ18O values assigned to each end member are: 34.73 and +0.1‰ for 

CDW; 7 and +2.1‰ for sea-ice melt; and 0 and -16‰ for meteoric water, respectively (Meredith et al. 2008; 

2010; 2013). The resulting derived freshwater fractions are reported here as percentages: sea-ice melt 

fraction (%SI), and meteoric water fraction (%MW), with typical errors of <1% on point values (Meredith et 

al. 2013). The majority of this 1% error is due to uncertainty on the values attributed to end-members, and 

can therefore be considered to be systematic across the dataset.  

The meteoric water fraction comprises freshwater input from glacial meltwater and from 

precipitation; quantitative separation of these components would require an additional conservative 

freshwater tracer to be measured, and such measurements are not available at this time. It should be noted, 

however, that the mean meteoric water budget at the WAP is believed to be dominated by glacial melt. This 

is consistent with rates of precipitation over the glacier catchments at the WAP being higher than mean 

rates of precipitation directly into the ocean, combined with the effect of the glaciers in delivering the 

accumulated freshwater directly into the ocean at the coast (Meredith et al. 2013). Whilst temporal 

variability in meteoric water may be influenced by changes in direct precipitation, the differences in 

precipitation over the relevant periods prior to the 2011 and 2012 years are small (Fig. 12 of Meredith et al., 

this issue). 

3. Results 

3.1 Distribution of dissolved barium 

The spatial distribution of dissolved barium (Bad) in surface samples across the PalLTER grid shows 

similar patterns across the two years studied (Fig. 2). In both 2011 and 2012 concentrations of dissolved 

barium are higher on the shelf, dropping to lower levels at the majority of stations over the continental slope 

(bathymetric division of PalLTER stations between continental shelf and slope after Martinson et al. (2008)). 

The exceptions to this are stations over the slope in the southern lines of the grid (000 and -100 Lines), which 

show a continuation of the higher Bad concentrations observed on the shelf. This general pattern of 

distribution in the surface waters can also be observed in the silicic acid data (Fig. 2). 

Despite these general similarities, there are distinct differences between the findings of the two 

years. Compared with the 2012 measurements, surface values of dissolved barium in 2011 are slightly but 

consistently elevated across the shelf, with particular highs in the area south-west of Marguerite Bay, and a 

distinctive low from the outer shelf across the shelf break in the northern peninsula region. 
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Two depth profiles from 2012 show the vertical distribution expected of a bio-intermediate element, 

with depleted surface values and enrichment at depth (Fig. 3). Concentrations of Bad are higher in the 500m 

water column at the 200.100 site (on the shelf) than corresponding depths at the 200.160 site (over the 

continental slope), though the profile follows a similar shape. Two samples taken within 70 m of the bottom 

at 200.100 are distinctly elevated relative to the rest of the profile.  Below 1000m at the continental slope 

site, the water column is significantly enriched in Bad, exhibiting Bad concentrations approximately 5 nM 

higher than equivalent records of Bad concentrations measured in the Drake Passage in 2008 (Roeske and 

Rutgers van der Loeff, 2012) (Fig. 3a).  

The changing Bad concentration from the open waters of the Drake Passage to the shelf waters of the 

PalLTER is examined by constructing an artificial section from the compilation of depth profiles from the 

Drake Passage (PS71/236 and PS71/230 from Polarstern cruise ANT-XXIV/3, Roeske and Rutgers van der 

Loeff, 2012) and LTER depth profiles (Sites 200.100 and 200.160), with the caveat that these profiles were 

collected in different years (2008 and 2012 respectively). Following the  34.7 isohaline along this section, Bad 

increases from approximately 82 nM at one of the open water sites (PS71/230) to approximately 88 nM on 

the slope (PalLTER station 200.160) and approximately 91 nM over the shelf (PalLTER station 200.100). 

3.2 Inter-year variability in surface distribution 

The inter-year variability observed is quantified by a simple calculation of the surface ΔBad (Bad
2012 - 

Bad
2011) at each of the stations that were sampled in both years, along with the inter-year variability of other 

key parameters such as silicic acid and water mass fractions (denoted by Δ). The locations of underway 

stations were not identical between years, but were sufficiently close to warrant inclusion in this analysis.  

    There is a significant positive correlation between ΔBad
 and ΔSi(OH)4 (r

2=0.462; p=4.9*10-5; 

ΔSi(OH)4 co-efficient=0.196; n=29), whilst a less distinct negative relationship is observed between ΔBad and 

the fraction of sea-ice melt present (Δ%SI) (r2=0.316; p=0.0012; Δ%SI co-efficient=-1.75; n=30) (Fig. 4). No 

significant relationship is found between ΔBad and the inter-year variance of meteoric water input (Δ%MW) 

(r2=0.016; p=0.49; Δ%MW co-efficient=0.709; n=30). 

3.3 Dissolved barium and silicic acid 

The full data set (2011 surface samples; 2012 depth and surface samples) shows a strong positive 

correlation between dissolved barium and silicic acid (Si(OH)4) (Fig. 5), following a linear regression model 

similar to that observed elsewhere in the Southern Ocean and adjoining basins (Table 2), but with a lower 

slope coefficient and a higher intercept at zero Si(OH)4. In the case of the PalLTER dataset this regression is 

heavily reliant on the relatively few depth values available, although a significant yet more scattered positive 

relationship still exists when surface samples are considered independently (Table 2). When dissolved 

barium values are normalised to an average salinity (33.5) a small component of this coupled variation is 

removed, but the relationship remains significant. 



8 
 

A large amount of scatter exists around this Bad/Si(OH)4 relationship, which is examined through the 

calculation of a BaSi
Residual value for each data point. The BaSi

Residual value quantifies the deviation of the Bad
 

measurement from the overall Bad/Si(OH)4 regression of the dataset (Eq. 4). Positive BaSi
Residual values 

indicate that the Bad measured is higher than predicted by silicic acid values, whilst negative BaSi
Residual values 

signify that Bad is lower than predicted. 

 

BaSi
Residual = Bad

Measured – ((Si(OH)4
Measured * 0.21) + 69.2)) (4) 

 

Surface plots of these BaSi
Residual values identify several areas of interest (Fig. 2). In the 2011 plot the area 

adjacent to and southwest of Marguerite Bay is highlighted by very high values, corresponding to an 

anomalous pairing of high Bad relative to Si(OH)4 measurements in this region. The 2012 plot reveals lower 

BaSi
Residual values overall, but with significant lows around Marguerite Bay and at certain points along the 

coast (400 and 600 line transects).  

3.4 Productivity indicators 

Primary productivity in this region is considered to be dominated by diatoms (Ducklow et al., 2007). 

As diatoms are siliceous organisms it is common to consider levels of silicic acid in surface waters as 

representative of the relative abundance of diatom populations across an area. Higher levels of surface silicic 

acid may result from low uptake, indicating lower levels of diatom productivity, and vice versa. However, in 

the 2011 and 2012 surface datasets from this area there is no significant correlation between silicic acid and 

primary productivity (R2=0.01; p=0.54; n=35), or silicic acid and Chl-a (R2=0.01; p=0.52; n=44). This suggests 

that surface silicic acid levels may not be a suitable indicator of diatom productivity, or that non-siliceous 

forms of productivity were dominant at this time. Both measured primary productivity in surface waters 

(R2=0.30/0.27; p<0.01; n=30) and Chl-a (R2=0.22/0.46; p<0.01; n=40) exhibit significant negative correlations 

with other macronutrients (phosphate; nitrate plus nitrite respectively). 

3.5 Dissolved barium and water mass fractions 

As well as significant variation in the dissolved barium distribution, the two years studied exhibit very 

different regimes of freshwater input (Fig. 6). The 2012 data are dominated by a higher sea-ice melt input, 

focussed in the region adjacent to and southwest of Marguerite Bay, and at certain sites along the coast to 

the northeast (400 and 600 Lines). Variations in the meteoric water contribution reveal a contrast between 

gentle gradients perpendicular to the coast in the 2012 data, and localised areas of higher meteoric water 

concentrations in 2011. Given the general similarity of precipitation inputs preceding the cruises in these 

two years (Meredith et al., this issue), the differences are most likely due to localised changes in glacier 

discharge, though some impact of precipitation changes cannot be excluded. 
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The behaviour of the Bad distribution in relation to salinity also differs between the two years, 

indicating that variation in Bad is not merely a feature of ion concentration or dilution (i.e. not a result of 

conservative processes). A large portion of the data for 2011 and 2012 define a similar trend of varying Bad 

values over a narrow range or salinity, which is relatively high for the location. A subset of both datasets 

then deviate from this main trend; in 2011 sample sites close to the coast record constant Bad values as 

salinity decreases, in 2012 a larger subset (defined by sample sites in Marguerite Bay and the southwest, and 

those close to the coast) record Bad values decreasing slightly with salinity (Fig. 7). 

Linear regression modelling between the derived meteoric water fraction (%MW) and Bad indicates 

that %MW is significantly correlated with Bad, particularly for the 2011 sample set (2011 data: r2=0.23, 

p=0.0017, %MW co-efficient=2.29, n=41; 2012 data: r2=0.097; p=0.024; %MW co-efficient=1.19; n=52). 

However, this correlation appears to be an artefact produced by two subsets of data, with most off-shelf 

sites having consistently low Bad and %MW, whilst on-shelf sites exhibit a variation in %MW that is not 

accompanied by any predictable change in Bad (Fig. 8). Off-shelf sites from the southern lines of the grid (000 

and -100 Lines) in 2012 also exhibit this broadly shelf-like behaviour. 

In the 2012 data, areas of low BaSi
Residual values (around Marguerite Bay and at certain points along the 

coast) appear to correspond with sites of high sea-ice melt input. These observations are corroborated by 

the appearance of a slight negative correlation between 2012 BaSi
Residual values and the contribution of sea-

ice melt (r2=0.24, p<0.01, %SI co-efficient=-0.92, n=52) (Fig. 9a). 

3.6 Vertical mixing 

The extent to which upper-ocean vertical mixing has affected the water column at the stations is very 

difficult to quantify directly, although systematic collection of the necessary measurements has been 

initiated for the WAP (Brearley et al., this issue). In the absence of these mixing data, the impact of mixing on 

the structure of the water column can be estimated by calculating the mixed layer depth, defined here as 

the depth at which the potential density anomaly of the water column exceeds 0.05 kg m-3 of the surface 

value (Clarke et al., 2008). An alternative way to quantify the degree of water column stratification is to 

calculate the density difference between several different depth ranges (Hendry et al., 2010). Whilst the 

former method provides an upper limit to the current depth to which the ocean is actively mixing, the latter 

represents the strength of the stratification present in the ocean, which at the WAP is known to be 

influenced by the level of upper-ocean homogenisation the previous winter (Venables et al., 2013). 

Estimates of stratification from both of these methods were compared to silicic acid and dissolved barium 

distribution across the LTER grid, and show no significant correlation. 
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4. Discussion 

4.1 Biological cycling as a primary control on the surface dissolved barium distribution 

Although mainly dominated by diatoms and cryptophytes, the phytoplankton assemblage of the WAP has 

been shown to display complex spatial and temporal variations, with regional contributions from 

haptophytes and flagellates (Huang et al., 2012). However, studies of phytoplankton community structure at 

the LTER have consistently reported high abundances of diatoms and cryptophytes relative to other groups, 

with diatoms dominating most of the offshore, southern coast and southern shelf areas (Garibotti et al., 

2003; Huang et al., 2012; Kozlowski et al., 2011; Moline et al., 2004). It is therefore reasonable to assume 

that any biologically mediated removal of barium from surface waters in this region would be influenced by 

diatom productivity, and that silica cycling may play an important role in controlling Bad in the water column.  

 In accord with previous observations, the Bad distribution across the PalLTER grid co-varies with 

silicic acid concentrations (Fig. 2). A strong positive correlation (r2=0.71; p<0.01 [significance is considered 

throughout at 99% confidence limits]; Fig. 5) between Bad and Si(OH)4 is observed when samples from the 

whole water column are considered, with much of the relationship defined by a limited number of samples 

from intermediate and deeper waters. This agrees with previous suggestions that the strong association 

between barium and silicic acid is sustained by samples at depth. These distributions may result from a 

similarity in inorganic dissolution behaviour between biogenic opal and barium, coupled with large scale 

ocean circulation (Horner et al., 2015; Jacquet et al., 2007; Jeandel et al., 1996). However, direct links have 

been suggested between the marine silicic acid and barite cycles, with studies in the Southern Ocean 

reporting higher levels of barite particulates observed in diatom-dominated regions, potentially due to the 

catalytic effects of sinking diatom frustules on barite precipitation (Bishop, 1988; Dehairs et al., 1991; 

Stroobants et al., 1991).  

The overall Bad-Si(OH)4 relationship in this region is defined by the depth samples, whilst the surface 

sites that comprise the majority of the dataset display a lower degree of variability in both Bad and Si(OH)4 

distribution. However, the relationship between the two parameters does not de-couple entirely in surface 

waters as has been observed in other regions of the Southern Ocean (Jacquet et al., 2007). Considered 

independently of the depth profiles, the surface PalLTER dataset still displays a significant, though highly 

scattered, positive correlation (r2=0.27; p<0.01; see Table 2) between Bad and Si(OH)4 (Fig. 5). Conversely, 

surface Bad shows no significant correlation with the other macronutrients nitrate and phosphate. This 

indicates that the association between Bad and Si(OH)4 in surface waters is not related directly to biological 

uptake or the cycling of organic material. Whilst the high level of interannual variability in the surface Bad 

distribution can be largely accounted for by variability in surface concentrations of Si(OH)4 (Fig. 4a), this 

variability does not seem to be linked to estimates of primary productivity, but instead may indicate the 

varying balance between the removal of Si(OH)4 from surface water via sinking biogenic opal, and recycling 
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between biogenic opal and Si(OH)4 in surface waters. Low concentrations of surface Si(OH)4 may reflect a 

local dominance of sinking over surface recycling, possibly due to the formation of heavier diatom tests in 

response to iron limitation (Hutchins and Bruland, 1998; Timmermans and van der Wagt, 2010). 

It is possible that, rather than silicic acid concentrations indicating increased diatom productivity or 

export, the covariance of silicic acid and dissolved barium could result instead from a coincident 

replenishment of surface stocks via upwelling. However, the lack of correlation between the surface 

variability of these parameters and estimates of water column stratification (mixed layer depths and density 

differences, see Section 3.6) make such a scenario unlikely in this case, as any increased vertical mixing in the 

vicinity of these higher surface concentrations should be detectable using such methods. It is likely that 

vertical mixing does play a role in Bad cycling, but long-term mixing rates are not currently well-constrained 

by observations except in a few specific locations (such as the Rothera Oceanographic and Biological Time 

Series site [RaTS] Brearley et al., this issue). 

In addition to the association between Bad and Si(OH)4, there is a notable lack of correlation 

between Si(OH)4 and the other macronutrients in surface waters (phosphate: r2=0.25; p=0.023. nitrate plus 

nitrite: r2=0.03; p=0.79). This could result from relatively shallow remineralisation of phosphate and nitrate, 

allowing them to be mixed back into the surface layer. Whilst a large proportion of biogenic opal is recycled 

in surface waters (>50% in the Southern Ocean (Tréguer and De La Rocha, 2013)), the exported fraction 

dissolves deeper in the water column. Whilst the association between Bad and silicic acid at depth is well 

established, the association observed here in surface waters, albeit weaker, suggests that in this diatom-

dominated region, the phase carrying Bad from surface waters to the mesopelgic depths of barite 

precipitation is associated with silicic diatom frustules rather than with organic matter. Bad has been found 

to associate with iron oxyhydroxides adsorbed onto diatom cell surfaces is laboratory cultures (Sternberg et 

al., 2005), which could cause the surface correlation observed if this occurred on a large scale. However, no 

significant levels of iron have been found on the surfaces of Southern Ocean phytoplankton cells (Twining 

and Baines, 2013), making it unlikely that such a mechanism could have a large impact on Bad distributions.  

It is more likely that Bad is associated with biogenic opal-dominated phytodetritus within the euphotic layer 

through barite precipitation (Horner et al., 2015) that may be catalysed by the presence of diatom frustules 

(Bishop, 1988; Stroobants et al., 1991). This would explain the positive correlation observed between Bad 

and Si(OH)4 in surface waters, with low concentrations of both occurring when the sinking and export of 

biogenic opal dominates over surface recycling, providing within its phytodetrital microenvironments 

conditions for the precipitation of barite. 

The lower slope and higher intercept value of the surface Bad-Si(OH)4 linear regression model implies 

that in surface waters Bad is less variable in relation to silicic acid than it is in deeper waters, with the 

processes that govern Bad distributions differing between surface waters and the deeper water column. 
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There are several mechanisms that could explain this deviation by altering the ratio of Ba:Si in surface 

waters, such as differences in phytoplankton ecology (varying the extent to which Bad and/or silicic acid are 

removed from the surface), or additional abiotic processes leading to variation in the Ba:Si removal ratio. 

Processes may also be at work that alter the Ba:Si ratio in deeper waters that are relatively isolated from the 

surface, such as differences in the saturation state of the water column with regards to barite (influencing 

the regeneration ratio of Ba:Si), or variation in epibenthic fluxes. Different combinations of these 

mechanisms have been employed by previous authors to explain the geographical variation observed in the 

Bad-Si(OH)4 relationship (Hoppema et al., 2010; Jacquet et al., 2007; Jeandel et al., 1996). The high density 

spatial coverage and biogeochemical gradients of the PalLTER dataset makes it ideal for testing the potential 

additional controls on surface uptake. 

 4.2 Identifying a coastal source of dissolved barium 

As well as variation in surface uptake, the distribution of Bad will be influenced by any local changes to 

the sources of barium along the peninsula. Therefore it is necessary to assess through which processes 

barium is transported into the WAP coastal system. The general distribution of surface Bad (Fig. 2) indicates a 

coastal source that enriches waters on the shelf, with concentrations decreasing away from the coast as 

shelf waters mix with the Bad-poor waters of the Antarctic Circumpolar Current. In near-continent settings 

elsewhere this coastal enrichment could be attributed to fluvial input. The bulk of the barium weathered 

from continental rock is transported fluvially in the dissolved phase, causing the high surface concentrations 

of Bad routinely recorded at river mouths (Martin and Meybeck, 1979; Viers et al., 2009). The levels of Bad in 

these regions are increased by estuarine desorption of barium from river-borne sediments in the river/ocean 

mixing zone (Guay and Falkner, 1998; Hanor and Chan, 1977; Nozaki et al., 2001).  

However, along the coast of the WAP continental freshwater input is restricted to glacial meltwater 

and precipitation, which plays an important role in the physical and biological dynamics of the water column. 

As well as releasing low salinity water to the coastal system, meltwater from glaciers may be enriched in 

terrigenous material acquired through contact with bedrock and dust accumulation (Raiswell et al., 2008; 

Sherrell et al., 2015). The input of this terrigenous material to marine waters can affect turbidity and light 

attenuation (Schloss et al., 2002), as well as being a potential source of macro and micronutrients. 

Differences in the presence of surface meltwater have been linked to variations in phytoplankton biomass 

both near- and offshore, probably as a result of water column stabilisation (Dierssen et al., 2002). Increased 

productivity has been observed surrounding free-drifting icebergs in the Weddell Sea in conjunction with 

evidence for the dispersion of entrained terrigenous particles (Smith et al., 2007) suggesting that glacial ice 

may also provide a source of trace metals that can stimulate primary production. Studies in Marian Cove 

(King George Island) have also shown that melting glaciers can be responsible for enriching coastal waters 

with macronutrients, trace elements, and rare earth elements (Kim et al., 2015). 
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Specific data regarding the barium content of glacial meltwater are sparse, and studies have shown 

that the solute and particulate composition of such waters can be highly variable (Mora et al., 1994). 

Attempts to characterise the trace element export of alpine glaciers have found that in these environments 

barium is present in significantly lower concentrations than in global stream waters (bulk glacial meltwater in 

the region of 5 nM Bad; average world stream water in the region of 145 nM Bad) (Fortner et al., 2009; 

Mitchell et al., 2001). This Fig. is also significantly lower than surface coastal Bad values reported from this 

study (70 - 85 nM), so if the content of WAP glacial meltwater is comparable then it may act to dilute local 

Bad concentrations rather than enriching them. Given the relatively high load of suspended sediment 

transported in glacial meltwater, it is possible that this could include a high concentration of adsorbed 

barium. However, this would be expected to desorb into the dissolved pool fairly quickly upon mixing with 

seawater, as is seen in desorption of barium from riverine sediment loads in estuaries, which we do not 

observe. 

The data from the PalLTER show a significant, though highly scattered, positive trend between the 

derived meteoric water fraction (%MW) and Bad for both of the years studied (Fig. 8). However, these trends 

appear to be an artefact of two spatial subsets within the data: off-shelf sites with a low meteoric water 

component and low Bad values, and on-shelf sites where Bad variation is not linked to %MW. This 

interpretation is further supported by the lack of a consistent co-variance between Bad and salinity (Fig. 7) 

indicating that trace element input from glacial meltwater is not responsible for the Bad enrichment 

observed in the WAP shelf waters. There is some indication from surface distributions that areas with 

pronounced glacial meltwater input in 2011 may be associated with anomalously high Bad measurements 

(Fig. 2 and Fig. 6). It is possible that when fluxes of meltwater are sufficiently high, they may lead to localised 

Bad enrichment. 

Previous studies of the distribution of marine Bad have reported significant barium enrichment in 

bottom waters, potentially a result of recycling of particulate barium phases from pelagic sediment 

(Hoppema et al., 2010; Jacquet et al., 2004). Barium is delivered to the sediment in various reactive forms: as 

particulate barium sulphate (barite), incorporated in celestite or calcite tests, and adsorbed onto Fe-Mn 

oxyhydroxides and organic matter. The release of Ba2+ from these solid phases during early diagenesis can 

saturate pore waters with respect to barium sulphate, creating a sharp concentration gradient at the 

sediment/seawater interface. This could lead to a diffusive flux of Bad to the overlying water column. There 

is evidence for such epibenthic Bad fluxes in pore water profiles from the Arabian Sea and the Equatorial 

Pacific (Paytan and Kastner, 1996; Schenau et al., 2001), and benthic incubation experiments that have 

directly measured barium fluxes from sediments (McManus et al., 1998, 1994). The existence of comparable 

Bad fluxes from the shelf sediments adjacent to the WAP could be responsible for observed enrichment of 

the overlying shelf waters. However, this hypothesis is difficult to test conclusively without more extensive 
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sampling of shelf bottom waters. The apparent increase of Bad concentrations observed along isopycnals 

from the open waters of the Drake Passage to the slope and shelf waters of the WAP indicates that Bad 

addition is taking place on the shelf. However, as these Bad records were not collected in the same year, this 

comparison is not conclusive. The dissolution of particulate barium phases within shelf sediments could lead 

to a flux of barium from the sediment to bottom waters on the shelf. These fluxes are a plausible source of 

barium to coastal waters, and could be responsible for the observed Bad-Si(OH)4 relationship if both silicic 

acid and barium were diffusing from benthic sources with a relatively low Ba:Si ratio, lowering the regression 

slope relative to other regions of the ocean whilst still enriching shelf waters with Bad.  

  4.3 Sea ice formation as a secondary control on the surface dissolved barium distribution 

As discussed above, the observed correlation between barium and silicic acid is not consistent 

throughout the water column, breaking down to some degree in surface waters. Additional abiotic factors 

must exist that influence variation in the uptake ratio of barium to silicic acid or the saturation state of barite 

in the water column. It is possible to investigate such abiotic processes, and how they may exert a secondary 

influence on the surface Bad distribution, by using BaSi
residual values (see Section 3). Likely candidates to cause 

variation in the Bad concentration unrelated to biological productivity are the spatial and interannual 

variations in the coastal freshwater regime. As discussed in section 4.1, the meteoric water fraction (%MW) 

appears to have little impact on Bad distributions spatially in either 2011 or 2012. This is borne out by a lack 

of any significant co-variance between %MW and BaSi
Residual values (2011 surface dataset: r2=0.079; p=0.079; 

n=40. 2012 surface dataset: r2=0.028; p=0.233; n=52). 

In contrast, the fraction of sea-ice melt (%SI) present at sites in 2012 exhibits a significant negative 

correlation with BaSi
residual values (r2=0.235; p=0.00026; SI% co-efficient=-0.92; n=52) (Fig. 9a), suggesting that 

higher fractions of sea-ice melt are associated with lower dissolved barium concentrations than predicted by 

silicic acid levels, and vice versa. The surface plots of %SI and BaSi
residual (Fig. 2 and Fig. 6) reveal that in 2012 

the high %SI values recorded around Marguerite Bay and the southwest section of the PalLTER grid, plus at 

the coastal sites of the 400 and 600 lines, correspond to similarly distributed low BaSi
residual values. A 

correlation with anomalously low barium concentrations suggests that fluxes of sea-ice melt to surface 

coastal waters dilute the stock of Bad present to a greater degree that they dilute the silicic acid stocks.  

The concentrations of Bad found in sea ice (10 - 40 nM (Lannuzel et al., 2011)) are significantly lower 

than the seawater values reported here, so some degree of dilution would be expected from mixing with 

sea-ice meltwater. However, the disproportionate dilution of Bad relative to silicic acid suggests that there 

may be processes occurring within the sea ice that remove Bad, causing resultant meltwater to have a lower 

Ba:Si ratio than the seawater it formed from.  

This dilution signal can be seen in a significant though highly-scattered positive correlation between 

the 2012 BaSi
residual values and salinity (r2=0.154; p=0.004; n=51) (Fig. 9b). Assuming the BaSi

residual values to be 
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due to changing concentrations of Bad only, the slope of this relationship (1.92) represents an approximately 

2.4% change in Bad for a 3% change in salinity, indicating that this Bad depletion is a pure dilution signal 

rather than a result of non-siliceous productivity stimulated by the sea-ice melt. Mechanisms such as abiotic 

barite precipitation in supersaturated brine channels, adsorption onto sea-ice algal cells, or biotic 

precipitation of barite associated with the degradation of algal communities within sea ice, have been 

proposed as potential pathways linking the presence of sea ice with observed barium depletion in polar 

surface waters (Falkner et al., 1994; Hoppema et al., 2010). Carson (2008) found that dissolved barium 

concentrations in sea ice brines from Adelaide Island (WAP) ranged widely from surface water 

concentrations, and preliminary work on further samples from the same site show Bad exhibiting variation 

along salinity gradients that is distinct from its behaviour in seawater (Pyle et al., unpublished). Sea ice has 

been found to contain high levels of particulate barium (up to 3000 pM in East Antarctic pack and fast ice 

(Lannuzel et al., 2011) and 7000 pM in Scotia Sea brown ice (Stroobants et al., 1991)), which supports the 

possibility that high levels of barite precipitation may be occurring within sea ice, removing barium from 

solution.  

There is no indication of a similar relationship in the 2011 data, possibly because of a lower flux of 

sea-ice melt in this year. The average contribution of sea-ice melt to sample sites (%SI) was an order of 

magnitude lower in 2011 (0.085%) than in 2012 (0.56%), with the difference even more apparent in 

coastal/shelf sites (0.035% in 2011, 0.56% in 2012). The freshwater regime in 2011 was dominated by 

meteoric water fluxes, which appear to have a negligible influence on barium distributions. In order to test 

this idea, multiple regression analysis was performed using the independent variables of interyear variance 

in Si(OH)4, %SI and %MW to determine the dependent variable ΔBad. As can be seen in Table 3, both 

ΔSi(OH)4 and Δ%SI were shown to be significant predictors, whilst Δ%MW has no significant effect. 

5. Conclusions 

This high resolution dataset of the distribution of dissolved barium across the PalLTER grid shows that 

there is a clear relationship between dissolved barium and silicic acid in the water column studied. This 

relationship is robust not only with depth, but also across the surface waters of the PalLTER grid, and the 

high level of inter-year variability exhibited by the Bad distribution between 2011 and 2012 correlates with 

the high inter-year variability of silicic acid concentrations. The persistence of the Bad/Si(OH)4 relationship in 

these diatom-dominated surface waters is in contrast to the total breakdown of the relationship observed in 

other regions. It is possible that the removal of Bad from surface waters is facilitated by the presence of 

diatoms, either by adsorption of Bad onto particulates associated with diatoms, or via barite precipitation 

within diatom-dominated phytodetritus in the euphotic zone.  Higher levels of biogenic opal export from 

surface waters (relative to recycling within the mixed layer) therefore lowers both surface silicic acid 



16 
 

concentrations and Bad concentrations, adding another dimension to the link between barium and silicic acid 

cycling. 

Our new data also reveal that a coastal source of barium enriches the shelf waters before they mix 

with barium-depleted ACC waters at the shelf break. This coastal flux of barium is not attributed to glacial 

meltwater input, which appears to have no consistent impact on the dissolved barium distribution. The 

enrichment of shelf waters may be due to an epibenthic flux of barium from shelf sediments, but further 

investigation of sediment pore waters and depth profiles will be necessary to establish this.  

Non-conservative processes acting during the formation of sea ice also act as a secondary control on 

the removal of barium from the surface layer. When high levels of sea-ice melt dominate the freshwater 

regime of the coastal waters of the WAP, local surface concentrations of dissolved barium are significantly 

lowered. 
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Captions for main text Fig.s and tables: 

 

Fig. 1 - Map showing the Palmer Long Term Ecological Research grid (PalLTER) covering waters adjacent to 

the West Antarctic Peninsula. Black circles and crosses indicate surface sample sites from cruises LMG11-01 

(02/01/2011 – 06/02/2011) and LMG12-01 (30/12/2011 – 07/02/2012): red filled circles represent stations 

occupied in both years, crosses/open circles stations occupied only in 2011/2012 respectively. Location of 

two depth profiles at grid stations 200.100 and 200.160 in 2012 shown by filled black squares. Grid lines are 

labelled from -100 to 600, stations denoted by grid line plus approximate kilometres from the base tangent 

of the grid (e.g. 200.100 – station 100km along grid line 200). Grey squares indicate the location of Palmer 

Station on Anvers Island and the Rothera Station on Adelaide Island. 

 

Fig. 2 – Surface distributions across the PalLTER: a. Dissolved barium concentrations (Bad, nM) in 2011; b. 

Dissolved barium concentrations (Bad, nM) in 2012; c. Silicic acid concentrations (µM) in 2011, dotted line 

shows the division between the continental shelf and slope, after Martinson et al. 2008, MB - Marguerite 

Bay; d. Silicic acid concentrations (µM) in 2012; e. and f. Barium residual values (BaSi
Residual = Bad

measured – 

((Si(OH)4
measured * 0.21) + 69.2))) for 2011 and 2012 respectively. 
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Fig. 3 - a. Depth profiles of dissolved Ba (nM) at PalLTER station 200.100 (filled circles) and station 200.160 

(filled squares), horizontal error bars set at 1% to reflect the most conservative reproducibility of Ba 

determination in comparable seawater standards across these analytical runs. Depth profiles of dissolved 

barium from the Drake Passage from Roeske and Rutgers van der Loeff (2012), PS71/230-3 (open triangles) 

[lat -60.1077°N long -55.2821°E] and PS71/236-3 (open diamonds) [lat -58.9704°N long-58.1388°E], 

horizontal error bars within symbol size. b. Depth profiles of silicic acid (µM) at PalLTER station 200.100 

(filled circles) and station 200.160 (filled squares). 

 

Fig. 4 – a. Scatter plot of ΔBa against ΔSi(OH)4, indicating difference in these variables between 2011 and 

2012 on a station by station basis. Zero lines are shown for reference. Dotted line indicates the linear 

regression model fit to all data (r2=0.462; p=4.9*10-5; ΔSi(OH)4 co-efficient=0.196; n=29); b. Scatter plot of 

ΔBa against the Δ%SI , indicating difference in these variables between 2011 and 2012. Dotted line indicates 

the linear regression model fitted to all data (r2=0.316; p=0.0012; Δ%SI co-efficient=-1.75; n=30). 

 

Fig. 5 - Dissolved barium (nM) vs. silicic acid (µM) for seawater samples across the PalLTER grid. Filled circles 

represent surface samples from 2011; open circles represent surface samples from 2012; crosses represent 

depth samples from 2012. Dotted line indicates the linear regression model fit to all of these samples 

(r2=0.71; p=2.9*10-33; Si(OH)4 co-efficient=0.210; n=117). Ba errors shown are set to 2%, which is the most 

conservative estimate of uncertainty assessed using the long term external reproducibility of two 

comparable seawater standards (see Table 1).  

 

Fig. 6 – Surface distributions of freshwater mass fractions (as calculated in section 2.3) across the PalLTER. 

Meteoric water and sea-ice melt fractions are presented as percentages, with a systematic error of ±1% on 

all absolute values. a. Fraction of meteoric water (%MW) in 2011; b. Fraction of meteoric water (%MW) in 

2012; c. Fraction of sea-ice meltwater (%SI) in 2011; d. Fraction of sea-ice meltwater (%SI) in 2012. 

 

Fig. 7 – Dissolved barium (Bad) (nM) vs. salinity across the PalLTER surface samples. Filled light grey circles 

represent shelf stations; filled dark grey squares represent off-shelf stations. Ba errors shown are set to 2%, 

which is the most conservative estimate of uncertainty assessed using two comparable seawater standards 

(see Table 1). 

 

Fig. 8 – Dissolved barium (Bad) (nM) vs. meteoric water fraction, determined via oxygen isotopes, across the 

PalLTER in surface samples. Filled light grey circles represent shelf stations; filled dark grey squares represent 

off-shelf stations, un-filled squares represent off-shelf stations from 000 and -100 lines. Dotted lines indicate 
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the linear regression model fit to all of these samples (2011: r2=0.23; p=0.0017; %MW co-efficient=2.29; 

n=41. 2012: r2=0.097; p=0.024; %MW co-efficient=1.19; n=52). Ba errors shown are set to 2%, which is the 

most conservative estimate of uncertainty assessed using two comparable seawater standards (see Table 1). 

Uncertainty on the meteoric water fraction is ±1%, but this is not displayed as the majority of the error can 

be attributed to uncertainty on end-member values, and is therefore be systematic across the dataset and 

should not affect the significance of the linear regression model.  

 

Fig. 9 – a. BaSi
residual vs. fraction of sea-ice melt (%) for 2012 surface data. Dotted line indicates the linear 

regression model fitted to all data (r2=0.235; p=0.00026; SI% co-efficient=-0.92; n=52); b. Scatter plot of 

BaSi
residual against salinity for 2012 surface data. Dotted line indicates the linear regression model fit to all 

data (r2=0.154; p=0.004; n=52). Uncertainty on the sea-ice melt fraction is ±1%, but this is not displayed as 

the majority of the error can be attributed to uncertainty on end-member values, and is therefore be 

systematic across the dataset and should not affect the significance of the linear regression model.  

 

Table 1 - Reproducibility of standards in the Rutgers and Cardiff University laboratories where samples were 

measured. Values given are 2*relative standard deviation (2*RSD). Errors from In-house Standard 1 and 2 

(from the Southern Ocean and Amundsen Sea respectively) are considered applicable to PalLTER samples, as 

the average dissolved barium concentrations are the most comparable.  

 

Table 2 – Linear regression models applied to Bad-Si(OH)4 in Antarctic adjacent waters. All studies included 

both depth and surface samples, excepting entry for ‘WAP surface’ which includes only surface samples from 

this study. 

 

Table 3 – Multiple regression analysis (r2 of model =0.631; significance f of model =1.3*10-5) of the inter-year 

variance (2012-2011), with three independent variables: ΔSi(OH)4, Δ%MW, and Δ%SI, predicting the inter-

year variance in the dissolved barium distribution. 

 

Supplementary Fig. captions: 

 

Supplementary Fig. 1 – Map showing the location of depth profiles used to compare variation in Bad 

concentration with depth on and off the continental shelf. Stations 200.100 and 200.160 are part of the 

PalLTER dataset analysed for this study, collected in austral summer 2012. PS71/236 and PS71/230 are from 

Roeske and van der Loeff (2012) collected in austral autumn 2008 (PS71/236 collected on 05/04/2008 [lat -

58.9704°N long-58.1388°E]; PS71/230 collected on 02/04/2008 [lat -60.1077°N long -55.2821°E]).  
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Supplementary Fig. 2 – Surface distributions across the PalLTER for 2011 (left hand column) and 2012 (right 

hand column): a. Nitrate plus nitrite concentrations (NOx) (µM); b. Phosphate concentrations (PO4) (µM); c. 

Salinity; d. Temperature (°C). 

 

Supplementary Fig. 3 - a. Sea-ice melt fraction (%) vs. silicic acid (µM) for 2011 and 2012, showing no 

correlation between the variables (2011: r2=0.05, p=0.18, n=40; 2012: r2=0.07, p=0.064, n=52); b. Sea-ice 

melt fraction (%) vs. dissolved barium (nM) for 2011 and 2012, showing no correlation between the variables 

(2011: r2=0.01, p=0.57, n=41; 2012: r2=0.03, p=0.21, n=52). Ba errors shown are set to 2%, which is the most 

conservative estimate of uncertainty assessed using two comparable seawater standards (see Table 1). 

Freshwater fraction errors are not displayed, as the majority of the 1% error on absolute values can be 

attributed to uncertainty on end-member values, and will therefore be systematic across the dataset. 

 

Supplementary Fig. 4 – Surface plots showing values for primary production (mg/m³/day) at selected 

stations in the PalLTER grid. Colour scale from purple (lowest values) – blue – green – yellow – orange – red – 

pink (highest values); a. 2011; b. 2012. 
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Tables: 

Table 1: 

Standard: 
In-house 

Standard 1 
In-house 

Standard 2 
NASS-5 NASS-6 

Rutgers 

2*RSD 1.63% 2.07% 2.46% 2.84% 

n 27 27 27 26 

Average [Ba](nM) 74.1 83.2 37.1 49.7 

Cardiff 

2*RSD 1.29% 1.76% 1.53% 1.22% 

n 23 23 22 23 
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Average [Ba] (nM) 73.7 83.8 37.0 49.5 

 

Table 2: 

Location Slope co-efficient Intercept at zero SiO
4
 R

2

 p-value Reference 

N. Indian Ocean 0.56 38.2 - - 
Jeandal et 

al. 1996 

S. Indian Ocean 0.25 64.5 - - 
Jeandal et 

al. 1996 

145°E PFZ-AZ 0.23±0.01 64.1±0.7 0.72 <0.001 
Jacquet et 

al. 2007 

145°E SAF-PFZ 0.31±0.01 58.7±0.8 0.91 <0.001 
Jacquet et 

al. 2007 

Prime Meridian 0.2645 59.368 0.909 - 
Hopemma 

et al. 2010 

Weddell Sea 0.2322 66.227 0.806 - 
Hoppema et 

al. 2010 

WAP all 0.21 69.2 0.716 <0.001 This study 

WAP surface 0.14 72.8 0.266 <0.001 This study 

 

Table 3: 

 
Co-efficients Standard Error t Stat P-value 

Intercept -0.034 0.503 -0.0675 0.946 

ΔSiO
4
 0.17 0.0379 4.61 0.0001 

Δ%MW -0.84 0.716 -1.17 0.252 
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Δ%SI -1.3 0.398 -3.28 0.003 

 

 

 




