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Abstract In several regions north of the Antarctic Circumpolar Current (ACC), deep wintertime convec-
tion refreshes pools of weakly stratified subsurface water collectively referred to as Subantarctic Mode
Water (SAMW). SAMW ventilates the subtropical thermocline on decadal timescales, providing nutrients for
low-latitude productivity and potentially trapping anthropogenic carbon in the deep ocean interior for cen-
turies. In this work, we investigate the spatial structure and timescales of mode water export and associated
thermocline ventilation. We use passive tracers in an eddy-permitting, observationally-informed Southern
Ocean model to identify the pathways followed by mode waters between their formation regions and the
areas where they first enter the subtropics. We find that the pathways followed by the mode water tracers
are largely set by the mean geostrophic circulation. Export from the Indian and Central Pacific mode water
pools is primarily driven by large-scale gyre circulation, whereas export from the Australian and Atlantic
pools is heavily influenced by the ACC. Export from the Eastern Pacific mode water pool is driven by a com-
bination of deep boundary currents and subtropical gyre circulation. More than 50% of each mode water
tracer reaches the subtropical thermocline within 50 years, with significant variability between pools. The
Eastern Pacific pathway is especially efficient, with roughly 80% entering the subtropical thermocline within
50 years. The time required for 50% of the mode water tracers to leave the Southern Ocean domain varies
significantly between mode water pools, from 9 years for the Indian mode water pool to roughly 40 years
for the Central Pacific mode water pool.

1. Introduction

Deep winter convection north of the Subantarctic Front (SAF) of the Antarctic Circumpolar Current (ACC)
forms pools of highly oxygenated, weakly stratified (i.e., low potential vorticity) subsurface water collectively
referred to as Subantarctic Mode Water (SAMW) [McCartney, 1977; Hanawa and Talley, 2001]. Pools of
SAMW are found in each ocean basin, and their temperature/salinity properties vary with longitude. East-
ward of the Indian basin, we find progressively colder, fresher, and higher-latitude pools of SAMW, as the
formation regions tend to stay just north of the poleward-spiraling SAF [Hanawa and Talley, 2001; Sall�ee
et al., 2008a]. SAMW ventilates the Southern Hemisphere thermocline, providing nutrients that support low-
latitude productivity and sequestering anthropogenic carbon in the interior ocean [McNeil et al., 2001;
Sloyan and Rintoul, 2001; Sarmiento et al., 2004; Sabine et al., 2004; Khatiwala et al., 2009; Iudicone, 2010;
Talley, 2013]. Here ‘‘ventilation’’ refers to the detrainment of water and tracers (e.g., CO2) out of the surface
mixed layer into the ocean interior without returning to the mixed layer in subsequent years.

Ventilation is intimately tied up with the formation, circulation, and destruction of water masses [Robinson
and Stommel, 1959; Welander, 1959; Luyten et al., 1983; Speer and Tziperman, 1992; Primeau and Holzer, 2006;
Liu and Huang, 2012; Trossman et al., 2012]. In particular, understanding subtropical thermocline ventilation
requires a thorough consideration of how SAMW is created, subducted, and exported [Luyten et al., 1983;
Musgrave, 1990; Sloyan and Rintoul, 2001; Sall�ee et al., 2010]. SAMW is thought to be sourced by upwelled
Pacific Deep Water (PDW) and Indian Deep Water (IDW) that is advected into the SAMW formation regions,
where seasonal deep convection refreshes the subsurface SAMW pools [Speer et al., 2000; Lumpkin and
Speer, 2007; Talley, 2008]. Downes et al. [2011] further hypothesize that Upper Circumpolar Deep Water
(UCDW) and Antarctic Intermediate Water (AAIW) may be converted into SAMW by surface buoyancy fluxes.
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Observationally-constrained model estimates suggest that the spatially integrated and time-averaged
SAMW formation rate in the Southern Ocean surface layer is 7.9 Sv by air-sea buoyancy fluxes and 8.8 Sv by
diapycnal mixing [Cerovečki and Mazloff, 2015].

The subduction of SAMW occurs in relatively narrow regions, driven by lateral induction, eddy-induced
transport, and mean flow [Karsten and Marshall, 2002; Sall�ee et al., 2008b,2010; Sall�ee and Rintoul, 2011;
Sall�ee et al., 2012]. Once SAMW has been subducted out of the formation regions, some fraction of it ulti-
mately ends up in the deep interior ocean away from the mixed layer, where it is no longer in seasonal con-
tact with the atmosphere. Together, SAMW and AAIW contribute 8 Sv (1 Sv 5 106 m3/s) to the equatorward
volume flux across 30�S, with 6 Sv into the Indian and Pacific basins and 2 Sv into the Atlantic [Talley, 2008,
2013]. This is a significant fraction of the 13 Sv total volume flux that crosses 30�S in the upper cell of the
global meridional overturning circulation [Talley, 2013]. Small changes in the properties of SAMW and AAIW
can thus have a disproportionate effect on subtropical thermocline waters. Note that the equatorward vol-
ume flux is smaller than its formation rate due to recirculation in the gyres [Cerovečki and Mazloff, 2015].

The export pathways associated with distinct SAMW pools, as revealed by subsurface potential vorticity
minima, display notable spatial variability that can only be fully captured by three-dimensional representa-
tions of ocean circulation [Sall�ee et al., 2010; Herraiz-Borreguero and Rintoul, 2011]. The destruction of SAMW
by diapycnal mixing also displays significant regional variation [Cerovečki et al., 2013]. These regional differ-
ences are relevant for thermocline ventilation, the supply of nutrients to low-latitudes, and carbon seques-
tration [Sarmiento et al., 2004; Sabine et al., 2004; Khatiwala et al., 2009; Ito et al., 2010]. The export of SAMW
into the interior thermocline is not perfectly efficient, nor is it instantaneous; some fraction of subducted
SAMW may interact with the mixed layer well after it has initially been subducted. Although recent observa-
tional studies have found patterns of potential vorticity and anthropogenic carbon that highlight the broad
structure of several mode water export pathways, questions about the export timescales and efficiency of
export from various mode water pools remain [Sall�ee et al., 2010; Herraiz-Borreguero and Rintoul, 2011; Sall�ee
and Rintoul, 2011; Sall�ee et al., 2012]. In this context, export from a mode water pool is ‘‘efficient’’ if a large
fraction of tracer that is initialized in that pool ultimately ends up in the subtropical thermocline.

In this work, we examine the transport of SAMW from selected formation regions to where it ventilates the
subtropical thermocline. We are interested in (1) following the SAMW after it is formed up until it enters the
subtropics and (2) establishing the timescales and relative ‘‘efficiency’’ of the various SAMW export path-
ways. By the metrics used in this work, SAMW formed in the Southeast Pacific is especially efficient at venti-
lating the subtropical thermocline. We show that mode waters formed in the Indian basin and Central
Pacific are dominated by gyre dynamics, and mode waters formed in the Eastern Pacific and Atlantic basins
are more heavily influenced by the ACC. We identify broad export pathways for each pool, estimate SAMW
export and decay timescales, and identify the regions where the mode water tracers ultimately enter the
subtropics.

2. Model Setup and Experiment Design

In order to examine the transport from selected mode water formation regions to the subtropical thermo-
cline, we carry out a set of numerical passive tracer advection experiments. The passive tracers are initialized
in five mode water pools, defined using a combination of potential vorticity, potential density, and position
based criteria (see section 2.5), and advected for 50 years. A sponge layer, active near the northern bound-
ary of the model domain (24.7–26.5 �S), effectively absorbs tracers by relaxing the tracer concentration field
to zero with a 6 h restoring timescale. Our simulations follow single ‘‘pulses’’ of mode water from each for-
mation region to where they first enter the subtropics. We allow the tracer to enter and exit the mixed layer
throughout the experiment, since we are interested in following parcels that start as mode water, including
those parcels that are heavily influenced by the mixed layer and mixing with other water masses. The trac-
ers gradually lose their mode water characteristics as they are advected, but we refer to the tracers as
‘‘mode water tracers’’ in reference to where they are initialized.

2.1. The Southern Ocean State Estimate (SOSE)
At minimum, numerical tracer experiments must be driven by a velocity field. Experiments can be further
constrained by using temperature, salinity, and associated mixing/convection fields, which may be used in
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mixing parameterization schemes. The Southern Ocean State Estimate (SOSE) offers one such set of fields
[Mazloff et al., 2010]. SOSE is a collection of state estimate products that are constructed by bringing a
numerical ocean circulation model (MITgcm) into consistency with a suite of available observations, includ-
ing data from Argo floats, satellite altimetry, and hydrographic profiles. SOSE approaches consistency by
iteratively reducing a measure of disagreement between the model and observations using an adjoint
method [Mazloff et al., 2010]. The adjoint method is used to map out how the initial conditions and the sur-
face forcing (e.g., wind stress, atmospheric temperature) can be perturbed to reduce the disagreement
between the model and observations over the length of the simulation. The result is a physically realistic
estimate of the state of the ocean, as well as a set of initial conditions and surface forcings that have been
optimized to produce the best agreement between ocean observations and the model state. Due in part to
the computationally intensive nature of the 4D-Var optimization process and the sparsity of multidecadal
observational data in the Southern Ocean, the SOSE products typically only cover a few years (at present,
the available periods are 2005–2007, 2008–2010, and 2005–2010).

2.2. Offline Tracer Advection: A Potential Bias
One approach for driving a numerical tracer experiment is to use the SOSE ocean velocity and hydrography
files on repeat, looping the same multiyear period over and over again. In this approach, the tracer advec-
tion equations are solved ‘‘offline,’’ i.e., the velocity and hydrography are read in as inputs to the tracer
advection equation as opposed to being explicitly calculated alongside the tracer concentrations. This off-
line approach works well for many applications, especially for studies that fall within the 3 or 6 year range
of the SOSE products. However, the ventilation of the subtropics via Southern Ocean mode water pools is a
decadal-to-centennial scale process [Primeau and Holzer, 2006; Trossman et al., 2012]. Since the ocean state
may drift over any given 3 or 6 year period, tracers simulated over many decades can experience rapid
‘‘jumps’’ each period as the physical fields transition from the end of the forcing record to the beginning
(e.g., from the end of 2009 to the start of 2007). Most offline tracer advection setups use linear interpolation
to transition between the discrete velocity and temperature fields used as inputs, which helps to minimize
(but does not completely remove) the discontinuous ‘‘jump’’ between the end of one forcing file period and
the start of another. These jumps can introduce spurious vertical mixing in the tracer fields as the hydrogra-
phy rapidly shifts in an artificial fashion, distorting the vertical distribution of the tracers. The impact of
these jumps on tracer fields will be further explored in an upcoming companion paper. For this paper, we
will use an alternative strategy for driving the tracer fields, described below.

2.3. Our Approach: Online Tracer Advection
In this work, we use an alternative to the ‘‘offline’’ approach in which we explicitly solve for the model
dynamics (e.g., velocity, potential temperature, salinity) and the passive tracer fields simultaneously. We will
call this alternative the ‘‘online’’ approach. The ‘‘online’’ approach is more computationally expensive than
the ‘‘offline’’ method and may be subject to some drift during model spin-up, but it does not rely on linear
interpolation between discrete velocity input fields and does not suffer from the discontinuous jump prob-
lem described in the previous section. The online approach also requires a full model setup, i.e., the setup
must be able to solve for the dynamics as well as integrate the advection-diffusion equation for passive
tracers. Multidecadal online runs of eddy-permitting regional models are feasible on modern, high-
performance computing platforms.

2.4. BASSOON
Here we describe the online modeling framework used in this work, called the British Antarctic Survey/
SOSE ONline model, or BASSOON. BASSOON is a configuration of the Massachusetts Institute of Technology
general circulation model (MITgcm) that is closely related to the numerical model setup used to generate
the SOSE products [Marshall et al., 1997a,1997b; Mazloff et al., 2010]. Although the BASSOON setup is ‘‘realis-
tic’’ in terms of its bathymetry and forcing, it should not be used as a future projection of the current ocean
state. Instead, it is an eddy-permitting representation of quasi-steady Southern Ocean circulation that is
broadly similar to the modern ocean.

To construct BASSOON, we started with the MITgcm setup used to generate SOSE for the years 2007–2009.
This setup consists of (i) a set of initial conditions for temperature, salinity, and velocity, (ii) surface forcing
fields (e.g., zonal and meridional winds) and freshwater input from the continents, (iii) bathymetry, (iv) the
configuration of the discrete model grid, and (v) a set of physical parameters (e.g., viscosity). Note that the

Journal of Geophysical Research: Oceans 10.1002/2016JC011680

JONES ET AL. MODE WATER EXPORT 6560



initial conditions and surface forcing fields have been opti-
mized using the 4D-Var process as described in section 2.1.
The BASSOON setup was kept as close as possible to the
model setup used to generate SOSE, which is a model with
1/6� horizontal resolution, 42 vertical levels of varying thick-
ness (i.e., thinner surface layers and thicker deep ocean
layers), and a 900 s time step. Additional model parameters
for diffusivity, viscosity, and bottom drag are listed in Table
1. We use biharmonic horizontal diffusivity and viscosity,
harmonic horizontal viscosity, and harmonic vertical diffu-
sivity and viscosity. Vertical mixing is represented by the

K-profile parameterization (KPP) scheme, which in our setup mixes both momentum and tracers near the
surface [Large et al., 1994]. For more details, see Mazloff et al. [2010]. The changes between the SOSE setup
and BASSOON are described below.
2.4.1. Surface Forcing
The 4D-Var optimization process used to generate SOSE perturbs a set of 6 hourly ERA-Interim atmospheric
forcing fields (i.e., shortwave and longwave radiation, surface pressure, precipitation, specific humidity at
2 m above the sea surface, air temperature at 2 m, and both zonal and meridional winds at 10 m) in order
to minimize the mismatch between the ocean model state and ocean observations (see section 2.1). The
results of this optimization process are available on the SOSE website (http://sose.ucsd.edu/).

To construct a suitable set of surface forcing fields for conducting multidecadal BASSOON runs, we start
with the 6 hourly SOSE optimized fields for 2007–2009 (iteration 60) and remove the 3 year linear trend at
each location in longitude/latitude. The resulting fields have the same variability as the SOSE-adjusted fields
on time scales shorter than 3 years. Some inter-annual variability persists, and the impact of this inter-
annual variability can be seen in the surface fields (e.g., sea ice volume, not shown). The de-trended 3 year
surface forcing fields are looped indefinitely, which allows for multidecadal runs.
2.4.2. Subgrid Scale Parameterization
Hallberg [2013] demonstrated that eddy mixing parameterization schemes can suppress resolved eddies,
e.g., by artificially smoothing out gradients associated with resolved mesoscale features. Like the SOSE-
generating setup, BASSOON does not use any subgrid scale eddy parameterizations for lateral mixing (both
setups use biharmonic horizontal diffusivity and viscosity, harmonic horizontal viscosity, and harmonic verti-
cal diffusivity and viscosity). In the regions most relevant to our study (i.e., north of the ACC), the first baro-
clinic deformation radius is of order 20 to 50 km away from topographic shelves, which is roughly 1.0 to 2.5
horizontal grid box widths; larger mesoscale features (typically of order 100 km, 3–5 times the deformation
radius in the midlatitudes) are fully resolved and are not artificially suppressed (see supporting information)
[Chelton et al., 1998; Hallberg, 2013]. In shallow seas (e.g., the Patagonian Shelf, Campbell Plateau, along the
Australian and South African coasts), the first baroclinic deformation radius is less than 1 km and is not
resolved, so eddy-driven tracer mixing in these areas may be biased toward weak values. The resulting
mesoscale eddy variability of the 1/6� SOSE configuration, on which BASSOON is based, compares favorably
with the AVISO optimally interpolated satellite altimetry product [Mazloff et al., 2010, Figure 1]. The agree-
ment is weaker in shallow seas.
2.4.3. Sea Ice
Many models with a Southern Ocean are prone to the formation of extremely large (>105 km2) open-ocean
sensible-heat polynyas that are associated with unrealistically deep mixed layers and the destruction of sta-
ble salt stratification [Timmermann and Beckmann, 2004; Timmermann and Losch, 2005; Heuz�e et al., 2013;
Stossel et al., 2015; Kjellsson et al., 2015]. In order to prevent model drift and to discourage the formation of
large-scale polynyas and the onset of the associated runaway positive feedback loop, we used surface salt
restoring to monthly mean SOSE climatology (from the 2005–2010 product, iteration 100) with a 30 day
relaxation timescale. Much longer relaxation timescales (e.g., 4 months) do not prevent the formation of
polynyas and the subsequent runaway vertical mixing/ice melt positive feedback loop.
2.4.4. Validation
BASSOON is allowed to spin-up for 10 years, after which we find that most of the adjustment in the relevant
depths for mode waters (200–1000 m) has occurred. The deep ocean will continue to adjust well after the
spin-up period, which is seen as a slight change in the density structure. The northern boundary is restored

Table 1. Parameters Used in the Online Model
Setup

Advection Scheme
Third-Order

Direct Space Time

Isopycnal diffusivity 10 m2/s
Vertical diffusivity 1025 m2/s
Biharmonic horizontal diffusivity 1010 m4/s
Vertical viscosity 1024 m2/s
Horizontal viscosity 10 m2/s
Biharmonic horizontal viscosity 1010 m4/s
Linear bottom drag 1023 m2/s
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to a prescribed profile, which helps to prevent excessive long-term drift. The dynamics and seasonality of
BASSOON are broadly consistent with the observed state of the Southern Ocean. The mean transport of the
Antarctic Circumpolar Current over the 50 year simulation period is 133 Sv (1 Sv 5 106 m3 s21), with a stan-
dard deviation of 4 Sv. This compares well with the observed mean transport of 134 613 Sv [Whitworth,
1983; Whitworth and Peterson, 1985; Rintoul et al., 2001; Thompson, 2008]. There is a linear trend of 20.1
Sv/yr, which reflects the longer term shift in water mass location and properties (i.e., the model is only

Figure 1. Annual mean potential vorticity (1/ms, log 10 scale) in BASSOON after the 10 year spin-up period, projected onto r1 potential
density surfaces (kg/m3). The two solid lines are the 90 Sv and 130 Sv contours of the annual mean barotropic streamfunction after the 10
year spin-up period (1 Sv 5 106 m3/s).
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quasi-stationary). The sea ice area (i.e., the integral of sea ice concentration) has a mean value of 1:03107

km2 and a large seasonal variability with amplitude 1:63107 km2, which compares very well with observa-
tional and model estimates [Holland et al., 2014; Comiso, 2015]. There is no significant linear trend in sea ice
area or volume, which is largely due to the strong sea surface salinity restoring.
2.4.5. Model Setup Caveats
BASSOON is an ocean model that is designed to remain in a quasi-steady state for several decades. This is
obviously an idealization of the real ocean, which of course does not necessarily stay in a quasi-steady state
on decadal timescales. It would be useful to investigate the effects of changing surface forcing patterns
(e.g., changes in SAM or ENSO) on the structure of the mode water export pathways. Due to both the
regional setup and the online nature of our runs, we can only run tracer experiments for a few decades
before the ‘‘re-entrance’’ problem (e.g., reentrance of mode water due to gyre circulation) becomes relevant.
Although the primary focus of our work is on the initial export of mode waters out of the model domain, it
would be instructive to run a complementary set of experiments in a global model.
2.4.6. Potential Vorticity Structure
Since mode waters are weakly stratified, one can use anomalously low values of potential vorticity as a
proxy for mode waters. The interior ocean potential vorticity structure in the spun-up BASSOON state
compares favorably (see Figure 1) with observationally-derived climatological PV structure in sufficient
detail for our large-scale study [Sall�ee et al., 2010; Herraiz-Borreguero and Rintoul, 2011]. In the Indian
Ocean and south of Australia, a large mode water pool extends from just north of the Antarctic Circum-
polar Current to the northern edge of the model, sweeping westward in a broad pattern (Figures 1b and
1c). The PV gradually increases along this northwestward track, as the mode water mixes with surround-
ing water masses on its way out of the model domain. A similar westward-spreading mode water pool is
found in the Central Pacific Ocean, north of the ACC (Figure 1d). The Central Pacific pool spreads west-
ward up to the New Zealand coast, where it splits into a northward branch that leaves the Southern
Ocean and a westward branch that spreads south of Australia. In the Eastern Pacific, a mode water pool
and export path are found close to the southern tip of South America, spreading rapidly northward and
westward (Figure 1e). This pool is situated close to an important region of formation and export of
Antarctic Intermediate Water (AAIW), which sits slightly deeper than the mode water (not shown). Final-
ly, in the Atlantic sector, we find a pool of mode water within the contours of the Antarctic Circumpolar
Current (Figure 1f). This Atlantic mode water pool is thought to be largely composed of mode water that
formed upstream of Drake Passage in a region of deep mixed layers and advected onto the Scotia Sea
by the intense zonal flow of the ACC [Sall�ee et al., 2010].

In Figure 2, we plot three cuts of annual mean potential vorticity after the 10 year spin-up period in den-
sity/depth and latitude. The mode water pools sit below the surface layer, which refreshes the mode
water pools in winter and re-stratifies in the spring and summer, isolating the mode water pools from
the surface. The mode water pools in the cuts are located between 200 and 500 m, north of the steeply
sloping density surfaces of the ACC. The cuts also reveal weakly stratified waters south of 50�S, as well as
everywhere below roughly 1500 m [Talley, 2013]. We find that the position of the density surfaces
changes little after the 10 year spin-up due to the strong restoring conditions at the surface and north-
ern boundary.

2.5. Experiment Design
After the 10 year spin-up period, we identify several mode water pools using a combination of criteria
involving potential vorticity, potential density referenced to 1000 dbar (r1), latitude, and longitude (see Fig-
ure 3 and Table 2). The initial sizes of the passive tracer patches are small, since the patches must satisfy all
of the criteria given in Table 2 (except for the transport, which is diagnosed). The tracers in the Indian and
Pacific basins are initialized just north of areas of deep winter mixed layers, which is barely downstream of
the mode water formation regions. The Australian tracer location is north of the ACC and just south of a
patch of deep winter mixed layers around Tasmania. The Atlantic tracer is not especially close to deep
mixed layer, indicating that this mode water pool may be formed and refreshed from upstream of Drake
Passage or the Falkland Islands. The Indian, Australian, and Central Pacific tracers are initialized in more
‘‘gyre like’’ contours, and the Eastern Pacific and Atlantic are initialized on more ‘‘ACC like’’ contours.

We initialize tracer in the locations shown in Figure 3, effectively ‘‘tagging’’ several SAMW pools. The tracers
are initialized on 1 January, i.e., in Austral summer when the mixed layers are relatively shallow. We advect
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the tracer, temperature, and salinity using a third-order direct space-time scheme for consistency with how
temperature and salinity are advected in the SOSE model setup of Mazloff et al. [2010]. After the initial 10
year model spin-up period, tracers are initialized and then advected for an additional 50 years. The model
tracer output consists of five different sets of three-dimensional tracer concentration fields (one set of fields
for each tracer experiment) and several physical/model fields (e.g., temperature, salinity, stratification
dq=dz). We place a sponge layer between 26.5 �S and the northern edge of the model at 24.7 �S with a 6 h
e-folding timescale, such that any tracer that reaches this sponge layer is rapidly removed from the model
domain. We focus our attention on how mode waters first make their entrance to the subtropics (i.e., cross-
ing 26.5 �S and getting absorbed by the sponge layer). In a global ocean domain, mode waters may of
course cross this arbitrary dividing line many times. We save this ‘‘re-entrance problem’’ for future study.
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of the same quantity. Values are shown at three different longitudes, 80 �E, 220 �E, and 320 �E. The dashed lines in the left column correspond to the five density surfaces shown as solid
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2.6. Vertical Spreading
For consistency with temperature and salinity mixing in the SOSE setup, we impose (1) a vertical diffusion coef-
ficient of Kz51025 m2s21 and (2) additional vertical mixing due to mixed layer convection via KPP. In order to
better understand the vertical spreading of the tracers, we fit each tracer distribution about its center of mass
in longitude and latitude to a Gaussian profile in density, i.e., f ðr1Þ5Aexp ½2ðr12bÞ2=c2�, where A, b, and c are
fitting parameters. The tracers do spread out quickly in density space (i.e., A and c change rapidly) due in part
to the action of KPP, but the tracer center of mass stays on the same density surface (i.e., b1 changes by� 1%
over the first 4 years of the experiment). The results of the fitting and a few animations of how the tracer
spreads in the vertical can be found in the supporting information. The tracers are allowed to interact with the
vertical mixing parameterization scheme (i.e., KPP), which explains some of the observed vertical spreading.

2.7. Tracer-Weighted Diagnostics
Tracer-weighted properties help quantify when and where changes in water mass properties take place
during tracer transport [e.g., Qu et al., 2013; Wang et al., 2014]. For instance, tracer-weighted potential tem-
perature �h can be used as a proxy for tracer heat content:

hðtÞ5

ð
/hdVð
/dV

; (1)

where / is a tracer field and the integral is over a volume V [Wang et al., 2014]. The time series hðtÞ gives us
information on how the tracer heat content changes as the tracer (which represents a particular collection

Figure 3. The size and placement of the initial tracer patches, indicated by white contours and letters. The color scales show (a) JJA mixed
layer depth [m], calculated by integrating the stratification dq=dz from the surface down to zml, where Dq5qðzmlÞ2qðz50Þ50:03 kg/m3,
and (b) annual mean vertically integrated transport (Sv). The two solid lines are the 90 Sv and 130 Sv contours of the annual mean baro-
tropic streamfunction after the 10 year spin-up period.

Table 2. Characteristics of Tracer Initial Condition Sitesa

Basin Lat (N) Lon (E) z (m) r0 (kg/m3) r1 (kg/m3) Log10(PV) (1/ms) W (Sv)

Indian [–42, 240] [90, 92] [300, 400] [26.5, 26.7] [31.0, 31.2] [–12.5, 211.0] 186
Australian [–48, 246] [130, 132] [400, 500] [26.7, 26.9] [31.2, 31.4] [–12.5, 211.0] 180
C. Pacific [–50, 246] [200, 250] [150, 600] [26.7, 26.9] [31.2, 31.4] (–1,–11.0] 186
E. Pacific [–51, 249] [270, 272] [300, 500] [26.9, 27.0] [31.4, 31.6] (–1,–11.0] 137
Atlantic [–45, 243] [305, 307] [300, 500] [27.0, 27.2] [31.6, 31.8] [–11.5, 210.25] 196

ar1 is used for selection; r0 and W are shown only for reference.
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of water mass parcels) mixes with other water masses and interacts with the mixed layer. Here we use
tracer-weighted properties to better understand how mode water is altered as it makes its way from the for-
mation regions to the subtropical thermocline.

In this paper, the interpretation of tracer-weighted properties (e.g., potential temperature, salinity) is
complicated by the fact that tracer is removed from the northern domain of the model. That is, the
removal of tracer by the sponge layer introduces bias into tracer-weighted properties. Using a glob-
al ocean domain would resolve this problem, but using a global domain is not always feasible or
desirable. We need a method for estimating the uncertainty introduced by tracer removal in a
regional ocean model with a sponge layer at the northern edge. Below, we introduce one such
method.
2.7.1. Estimating Uncertainty in Tracer-Weighted Properties
We have a tracer field /, a removal field R (e.g., the cumulative removal histogram representing the action
of the sponge layer near the northern edge of the model domain), and various physical fields f (e.g. poten-
tial temperature, salinity, depth, potential vorticity). In general, tracer-weighted properties are given by vol-
ume integrals over the global ocean domain:

�f 5

ð
global

/fdVð
global

/dV
5

ð
global

/fdV

Uglobal
; (2)

which can be split into a volume integral inside the model domain (‘‘in’’) and a volume integral outside the
model domain (‘‘out’’),

�f 5
1

Uglobal

ð
in
/fdV1

ð
out

/fdV

� �
5fin 1fout : (3)

We can calculate fin , but we cannot explicitly calculate the second term, as it lies outside of our model
domain by definition. Instead, we define fout as an error term weighted by the total amount of tracer con-
tained in the model domain:

fout 5ðf06Df Þ 12
Uin

Uglobal

� �
; (4)

where Uin5
Ð

in/dV and Uglobal5
Ð

global/dV . At the beginning of the simulation, all of the tracer is in the mod-
el domain and the uncertainty term vanishes. As tracer leaves the model domain, �f asymptotes to f06Df .
So how should we choose f0 and Df ? We can interpret Df as the removal-weighted standard deviation at
the northern boundary:

ðDf Þ25
1ð

nb
RdV

ð
nb
ðf 2f0Þ2RdV ; (5)

where f0 is the removal-weighted expected value:

f05
1ð

nb
RdV

ð
nb

RfdV : (6)

This method effectively ‘‘freezes’’ the value of f as the tracer is removed from the domain, within an error
term determined by the spread of f about f0 at the northern edge of the model domain.
2.7.2. Tracer Moments and Eccentricity
Moments of the tracer distribution, which are useful for characterizing the shape and properties of the trac-
er patches, are given by:

Mpqr5
X
i;j;k

xp
i yq

j zr
k/ðxi; yj; zkÞDV ; (7)

where / is the tracer concentration and DV5DxDyDz is the volume element. Central moments of the tracer
distribution are then:
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lpqr5
X
i;j;k

ðxi2�xÞpðyj2�yÞqðzk2�zÞr/ðxi; yj ; zkÞDV ; (8)

where ð�x ; �y ;�zÞ5ðM100;M010;M001Þ. For a two-dimensional tracer distribution (e.g., a column sum, r 5 0), the
covariance matrix C is:

C½/ðx; yÞ�5 1
l00

l20 l11

l11 l02

" #
: (9)

The eccentricity e of the tracer distribution is determined by the eigenvalues k1 and k2 of the covariance
matrix C:

e5

ffiffiffiffiffiffiffiffiffiffiffiffi
12

k2

k1

s
: (10)

3. Highlighting Mode Water Export Pathways

In our numerical experiments, five mode water tracers track the transport of SAMW after it has been formed
by deep wintertime convection. Some of these pathways ultimately involve export out of the Southern
Ocean, which in our setup is represented by a tracer-removing sponge at the northern boundary of our
model domain (i.e., 24.7–26.5 �S). Since the tracers are removed at the northern boundary, our model setup
does not capture the possible re-entrance of mode water back into the Southern Ocean domain once it
crosses 26.5 �S. However, our setup does feature mesoscale eddies, deep convection (via KPP mixing), and
decadal timescales. As mode water tracers are advected, we diagnose tracer mixing with the surrounding
water masses and with the mixed layer, since we are interested in following the full export history of water
parcels (up to removal between 24.7 and 26.5 �S) that are formed in the chosen mode water pools. Parcels
that are formed as mode water may come into contact with the surface more than once during their
export.

3.1. Horizontal Structure of Export Pathways
In this section, we examine the lateral structure of the mode water tracer distributions. We analyze the spa-
tial structure of the export pathways using depth-integrated cumulative tracer amounts in each grid column
over the 50 year simulation (Figure 4), and we use the Cunningham streamfunction to analyze geostrophic
circulation on isopycnals (Figure 5) [Cunningham, 2000; McDougall, 1989]. Note that this streamfunction is
only an approximation to the geostrophic flow on density surfaces, as the exact streamfunction on an iso-
pycnal does not exist [Sall�ee et al., 2010]. Broadly speaking, the potential patterns reveal several possible
mode water export routes (i.e., contours that intersect the northern boundary of the domain) that are con-
sistent with those reported in Sall�ee et al. [2010]. In Figure 6, we plot time series of the total amount of trac-
er between 200 - 1300 m. The basin edges defined somewhat arbitrarily as Indian (20E, 146E), Pacific (146E,
60W), and Atlantic (60W, 20E). Below, we discuss each tracer experiment in turn.
3.1.1. Indian Mode Water
Over the course of the 50 year experiment, the bulk of the tracer initialized in the Indian Subantarctic Mode
Water pool (i.e., initialization site ‘‘a’’ in Figure 3) stays confined to the Indian basin or is removed by the
sponge layer in the Indian sector. The broad structure of this export pathway is influenced by the mean cir-
culation of the subtropical Indian gyre (see Figures 5b and 5c). The total concentration between 200 and
1300 m drops by 21% in the first year due to vertical mixing between the surface ocean and the mode
water pool (Figure 6a). The tracer is initialized in a mode water pool that is annually de-stratified by deep
winter mixed layers, so we expect some of the tracer to get ‘‘mixed out’’ of the mode water pool in the first
winter following the initialization of the tracer (it may also be ‘‘mixed back in’’ in following winter deep-
convection events). Over the first 5 years after initialization, the patch spreads out primarily in longitude
due to the influence of the ACC; the eccentricity of the tracer patch, calculated from the eigenvalues of the
covariance matrix of the tracer distribution (equation (10)), increases from 0.8 to just over 1.0. As the tracer
spreads out in latitude, its southern end is sheared further by circumpolar flow, but only a vanishingly small
fraction of the tracer ends up poleward of the Subantarctic Front. After the first 5 years, the total amount of
tracer in the Southern Ocean model domain decays exponentially, with an e-folding timescale of roughly 7
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Figure 4. (a-e) Column-integrated histograms of the tracer distributions for each of the 50 year tracer advection experiments. Each
color map has been scaled by the maximum concentration of each tracer, which is different for each experiment. Initial tracer loca-
tions are indicated by green diamonds. The thick solid lines show the tracer-weighted center of mass for the first 10 years of each
experiment. For the Australian plot, the center of mass for just the Indian basin (i.e., Pacific basin tracer masked out) is shown in black,
and the center of mass for the Pacific basin (i.e., Indian basin tracer masked out) is shown in green. The center of mass for the Atlantic
tracer is shown in green for clarity on a red background. The thin gray lines are contours of the Cunningham geostrophic potential
with a reference pressure of 1000 dbar on selected potential density surfaces. The black dashed line shows the location of the sponge
layer.
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years (see 6a). Once the tracer reaches South Africa, the Agulhas current (dominated by ring-like eddies)
transports a small fraction of the tracer from the Indian basin to the Atlantic basin (roughly 2% of the Indian
mode water tracer ends up in the Atlantic via this route). The tracer-weighted center of mass moves from
(91�E, 41�S) to (70�E, 33�S) over the first 13 years of the experiment, after which the center of mass shifts
southward and eastward as tracer is removed by the sponge layer.

Figure 5. Cunningham geostrophic streamfunction (1 Sv = 106 m3/s), derived from annual mean temperature and salinity data using the
Gibbs Seawater Toolbox (GSW), with respect to 1000 dbar on several density surfaces between 30.8–31.8 kg/m3 (Cunningham, 2000). The
two solid lines are the 90 Sv and 130 Sv contours of the annual mean barotropic streamfunction.
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3.1.2. Australian Mode Water
SAMW formed just south of Australia (i.e., initialization site initialization site ‘‘b’’) is heavily influenced by the
ACC (Figure 4b) and is split between two basins. By year 3 of the experiment, the tracer is partitioned equally
between the Indian and Pacific basins (i.e., 42% of the initial tracer in the Indian basin below 200 m, 42% of the
initial tracer in the Pacific basin below 200 m, and the remaining 16% in the surface waters above 200 m). The
bulk of the Australian mode water tracer is ultimately removed from the Indian basin more rapidly than from
the Pacific basin, but the tracer ends up highlighting export pathways in all three basins due to the close prox-
imity of its formation region to the ACC. The portion of the tracer that stays in the Indian basin flows westward
and follows a path similar to that of the Indian SAMW. The tracer that flows eastward to the Pacific basin gradu-
ally shifts northward away from the ACC, highlighting a portion of the Pacific export pathway. Most of the trac-
er that flows eastward into the Pacific goes south of New Zealand and Campbell Plateau; only a small fraction
flows north of New Zealand. A small fraction (less than 10%) of the tracer ends up in the Atlantic basin and
exits the domain via the sponge layer there. After an initial 10 year redistribution among the basins, the total
amount of tracer in the domain from the Australian pool decreases at a nearly linear rate of 19% per decade.
3.1.3. Pacific Mode Waters
The two Pacific mode water tracers (i.e. the Central Pacific and Eastern Pacific tracers, initialization sites ‘‘c’’
and ‘‘d’’ on Figure 3) both stay largely confined to the Pacific basin, although the Eastern Pacific export path-
way is more rapid than the Central Pacific pathway, as indicated by the relative motion of the centers of
mass and the relative tracer removal timescales. The center of mass of the Central Pacific tracer moves
northward and westward toward New Zealand, from (215�E, 48�S) to (211�E, 42�S) over the first 7 years after
initialization. The center of mass of the Eastern Pacific mode water tracer moves much further northward
over the first 7 years after initialization, from (270�E, 50�S) to (250�E, 40�S). The eccentricities of both tracers
stay between 0.96 and 1.0 from year 5 onward, indicating elliptical patterns that are stretched out in longi-
tude by strong zonal flow. The pathways followed by both the Central Pacific and Eastern Pacific mode
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Figure 6. Time series of the total amount of tracer between 200 and 1300 m in each ocean basin, relative to the initial amount. Panels (a)-(e) correspond to tracers initialized at the five
sites shown in panel (f).
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water tracers are broadly consistent with the relative geostrophic flow on 31.4r1 and 31.6r1 (Figure 5). The
Eastern Pacific tracer (initialization site ‘‘d’’) reaches the sponge layer at 26.5 �S several years earlier than the
Central Pacific tracer (initialization site ‘‘c’’), even though the Eastern Pacific tracer is initialized poleward of
the Central Pacific tracer. From year 15 onward, the Eastern Pacific tracer is removed at a faster rate than
the Central Pacific tracer (Eastern Pacific 32% per decade; Central Pacific 18% per decade). A small fraction
of the Eastern Pacific tracer also ends up in the Atlantic and Indian basins much faster (peak concentration
at roughly 5 years in the Atlantic and 9 years in the Indian) than the Central Pacific tracer (concentration
increases slowly over 2–3 decades). The Eastern Pacific SAMW is found near a formation region of Antarctic
Intermediate Water (AAIW) located off the western tip of South America, which is consistent with previous
studies [e.g., Sloyan and Rintoul 2001, Herraiz-Borreguero and Rintoul, 2011]. The densest SAMW has some
overlap with AAIW, so the mechanisms for AAIW export in this region are likely to also impact the export of
densest SAMW.
3.1.4. Atlantic Mode Water
Finally, tracer initialized in the Atlantic mode water pool (i.e., site ‘‘e’’) starts in the ACC and is rapidly spread
around the Atlantic, Indian, and Pacific basins. The eccentricity of the column-integrated tracer increases
from 0.70 to 0.98 within the first year of the experiment due to the shearing effect of the ACC. The concen-
tration maximum can be followed around the basins in order to estimate a rough transport timescale
between them (Figure 6). The concentration of Atlantic SAMW peaks in the Indian basin roughly 5 years
after tracer initialization. Peak concentration is then seen in the Pacific basin roughly 9.5 years after initiali-
zation and in the Atlantic basin roughly 13 years after initialization. There is a secondary peak in Indian
basin concentration at 18 years, and a secondary peak in the Pacific after about 22 years. After 25 years, it is
difficult to detect the tracer maximum as a distinct peak in the time series data. Throughout the tracer
advection experiment, tracer is removed from the domain through the northern sponge layer at a rate of
15% per decade, mostly in the Atlantic basin.

3.2. Vertical Structure of Export Pathways
Each mode water tracer is initialized in a pool of low PV. The mode water pools are refreshed each winter
by deep convection, which tends to mix tracer in the vertical direction. This convectively-driven vertical mix-
ing acts in addition to down-gradient mixing brought about by the imposed background vertical diffusivity
(1025 m2/s) and numerical diffusion. Thanks to this diapycnal mixing and intense surface convection, we
should not expect the tracers to stay perfectly confined to density surfaces.

In Figure 7, we plot the cumulative tracer distribution over the course of the 50 year experiment in a 108

section in longitude about the time-mean center of mass of each tracer. The Indian mode water tracer
mostly stays confined between 31.0 and 31.2r1, spreading northward and ultimately reaching the sponge
layer. The influence of vertical mixing can be seen in the spread of the tracer and the fraction that reaches
the surface. The Australian mode water tracer can either be followed using its Indian basin center of mass
or its Pacific basin center of mass. In the Indian basin, deep convection induces diapycnal mixing, but the
bulk of the tracer stays between 31.2 and 31.4r1. In the Pacific basin, the relative influence of the mixed lay-
er is smaller and the diapycnal tracer spread is smaller. The Central Pacific tracer largely stays between 31.2
and 31.6r1, and the histogram is dominated by the bulk of tracer that slowly moves away from the initializa-
tion site. The Eastern Pacific tracer histogram is spread much further northward, as the Eastern Pacific
export pathway is more rapid than the Central Pacific pathway.

In Figure 8, we plot the vertical partitioning of tracers with depth over the course of the 50 year experiment.
In each of the experiments, a fraction of each tracer (less than 20–30% of the initial amount) ends up in the
upper 200 m due to interactions with the mode water tracers and the mixed layer. The fraction of the initial
tracer located below 500 m increases over the first 10 years as the tracers are subducted, guided by isopyc-
nals that slope downward toward the equator. The fraction of tracer below 500 m could be considered rea-
sonably well ‘‘subducted’’ below the mixed layer, and the fraction below 1000 m is completely subducted.
The fraction of total tracer below 1000 m increases in each experiment (Figure 8f). The subducted tracer will
ventilate the deep thermocline via export hotspots.

3.3. Mode Water Decay
As SAMW advects, it mixes with the surrounding water masses and thereby gradually loses its characteristic
density range and anomalously low potential vorticity. In order to quantify the timescales over which
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SAMW changes density class, we calculate the fraction of tracer that is lighter than SAMW (<31:0r1), in the
SAMW density range (31.0–31.8r1), or denser than SAMW (>31:8r1) (Figure 9). Over the first decade of
each experiment, we find average SAMW density decay rates between 2–5%/yr relative to the initial tracer
in each experiment (Indian - 5.0%/yr; Australian - 2.0%/yr; Central Pacific - 1.6%/yr; Eastern Pacific - 1.4%/yr;
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Figure 7. Tracer distribution histograms for each of the 50 year tracer advection experiments. Each color map has been scaled by the max-
imum concentration of each tracer, which is different for each experiment. Initial locations are indicated by green diamonds. The black sol-
id lines are r1 potential density surfaces (30.8–32.0 kgm23, every 0.2 kgm23). The tracer concentrations and potential densities are
averaged in 108 wide swaths about the longitudes of the tracer centers of mass. (b) Only includes Australian tracer located in the Indian
basin, and (c) only includes Australian tracer located in the Pacific basin.
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and Atlantic - 3.5%/yr). During this time period, mode water loss in the Indian and Central Pacific is large-
ly due to transformation into lighter density classes, whereas mode water loss in the Atlantic is nearly all
due to transformation into denser classes. Australian losses are dominated by transformation into lighter
classes, and in the Eastern Pacific loss is roughly equal parts transformation into lighter and denser
classes.

After 10 years of advection, sponge layer removal contributes to SAMW loss in all five tracer experiments.
One way to adjust for this effect is to scale the amount of tracer in a density class by the total amount of
tracer found in the model domain (Figure 9f). In order to estimate SAMW decay timescales, we fit two-term
exponential models to each SAMW time series (R2 > 0:9 in all five cases), where each time series has been
scaled by the remaining tracer in each experiment. We find e-folding SAMW decay timescales between 50–
20 years (Indian—76 years; Australian—84 years; Central Pacific—118 years; Eastern Pacific—50 years;
Atlantic—69 years). These multidecadal timescales are broadly consistent with other estimates of SAMW
lifetime [e.g., Primeau and Holzer, 2006; Trossman et al., 2012]. Note that nearly all of these timescales are
longer than the duration of our simulation; this analysis assumes that decay rates will continue to be well-
represented by a double exponential model well beyond the 50 year simulation.

3.4. Export Hotspots
Once tracer hits the northern boundary of the model domain (24.7–26.5 �S), it is removed by a sponge layer
(i.e., the tracer field is relaxed to zero with a timescale of about 6 h). We use this removal as a proxy for ther-
mocline ventilation. In this section, we examine the longitudes, depths, and timescales on which the mode
water tracers are removed in order to discuss how mode water origin water parcels ultimately cross 26.5 �S.
These results must be interpreted in the context of our choice of model domain, i.e., the timescales and
removal will be different with a different choice of northern boundary. In Figure 10, we plot timeseries of
the cumulative amount of tracer that is removed by the sponge layer in the upper ocean (i.e., above the
200 m depth, where 200 m is chosen as it is well below the shallow subtropical mixed layer), the cumulative
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Figure 8. (a-e) Time series of the vertical distribution of tracer, relative to the initial amount of tracer used in each experiment. The initial tracer locations are shown in Figure 6f. (f) The
fraction of the remaining tracer that is found below 1000 m over the course of each experiment.
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amount removed by the sponge layer in the interior ocean (i.e., below 200 m), and the total tracer in the
Southern Ocean domain.

Over the course of a 50 year tracer transport experiment, we find that less than 15% of each mode water
tracer crosses 26.5 �S above 200 m, which is one measure of the efficiency with which the mode water
pools ventilate the subtropical thermocline (i.e., a small percentage implies efficient subduction). The
Eastern Pacific pathway is especially efficient, with less than 10% removed from or remaining in the
upper 200 m by year 50. The time required for 50% of a chosen mode water tracer to be removed from
the Southern Ocean domain varies greatly across initialization sites (i.e., 9 years Indian, 27 years Austra-
lian, 37 years Central Pacific, 25 years Eastern Pacific, 47 years Atlantic), reflecting the different latitudes
of the initialization sites, the relative importance of circumpolar (i.e., ACC) and gyre-like circulation, and
regional circulation variability.

In Figure 11, we plot the cumulative removal of tracer by the sponge layer over the course of the 50 year
experiment. The bulk of the tracers are removed at depths below their initialization depths, which is consis-
tent with geostrophic flow guided by isopcynals that slope downward toward the equator. Also, the bulk of
the tracers are removed to the west of the tracer initialization sites, which is consistent with large-scale sub-
tropical gyre circulation in these regions. One exception is the Atlantic tracer, which is dominated by the cir-
cumpolar flow of the ACC. The Atlantic tracer is largely removed in the boundary current east of South
America, but most of it has not yet been removed by the end of the experiment. The contrasting removal
patterns of the two Pacific basin tracers reflect strong regional differences in their export pathways. The
Central Pacific tracer follows a slow gyre circulation and has time to spread westward before interacting
with the sponge layer. By contrast, the Eastern Pacific tracer rapidly moves up the coast of South America
during the first decade of its advection, so it does not have time to spread as far west before removal. Nev-
ertheless, there is some overlap between the Central Pacific and Eastern Pacific removal patterns, indicating
that the two pathways are not totally distinct.

Time (yr)
0 10 20 30

F
ra

ct
io

n 
of

 in
iti

al
 tr

ac
er

0

0.2

0.4

0.6

0.8

1
Indian

Total
Lighter
SAMW
Denser

Time (yr)
0 10 20 30

F
ra

ct
io

n 
of

 in
iti

al
 tr

ac
er

0

0.2

0.4

0.6

0.8

1
Australian

Total
Lighter
SAMW
Denser

Time (yr)
0 10 20 30

F
ra

ct
io

n 
of

 in
iti

al
 tr

ac
er

0

0.2

0.4

0.6

0.8

1
Central Pacific

Total
Lighter
SAMW
Denser

Time (yr)
0 10 20 30

F
ra

ct
io

n 
of

 in
iti

al
 tr

ac
er

0

0.2

0.4

0.6

0.8

1
Eastern Pacific

Total
Lighter
SAMW
Denser

Time (yr)
0 10 20 30

F
ra

ct
io

n 
of

 in
iti

al
 tr

ac
er

0

0.2

0.4

0.6

0.8

1
Atlantic

Total
Lighter
SAMW
Denser

Time (yr)
0 10 20 30

F
ra

ct
io

n 
of

 to
ta

l t
ra

ce
r

0

0.2

0.4

0.6

0.8

1
SAMW fraction

IND
AUS
C PAC
E PAC
ATL

(a) (b) (c)

(d) (e) (f )

Figure 9. (a-e) Time series of the proportion of each mode water tracer that is less dense than SAMW (‘‘lighter,’’ <31:0r1), in the SAMW density range (31.0–31:8r1), or more dense than
SAMW (>31:8r1), relative to the initial amount of tracer used in each experiment. The initial tracer locations are shown in Figure 6f. (f) The SAMW fraction of each mode water tracer (sol-
id lines) and the fraction denser than SAMW (dashed lines), relative to the total amount of remaining tracer in the model domain.
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3.4.1. Analysis
In this section, we examine tracer-weighted quantities for signatures of mixing and advection. All of the
tracer-weighted centers of mass (COM) get deeper over the first 10 years of the experiment (Figure 12a).
The COM generally progress northward, with the exception of the Atlantic tracer, which over the first
decade stays roughly constant (within 2 degrees latitude) as much of the tracer is advected around the ACC
Figure 12b). There is no ‘‘error’’ (Df ) in latitude because the tracer-weighted latitudes are effectively frozen
at 26.5 �S as tracer exits the Southern Ocean domain.

The Indian tracer gets warmer and saltier as it moves northward, becoming less dense overall through diapycnal
fluxes. The Australian tracer gets denser by roughly 0.1 kg/m3 as it cools and freshens, mixing with the Indian
Deep Water (IDW). The regional contrast between the Indian and Australian tracers indicates that the Indian pool
is closer than the Australian pool to the ‘‘upwelling’’ region (i.e., where SAMW mixes back up to the surface). How-
ever, more than 80% of the Indian tracer is removed below 200 m, which is a high percentage relative to the oth-
er tracers. The Indian tracer is possibly more likely to upwell faster than the Australian tracer once it crosses
north of 26.5 �S, but it is still a relatively efficient pathway for the initial export into the subtropical thermocline.

Both the Central Pacific and the Eastern Pacific centers of mass stay roughly constant in density (within 0.02 kg/
m3), indicating that they are relatively well-insulated from the mixed layer and in a region where diapycnal mix-
ing is weak or isotropic. The Central Pacific patch gets cooler and fresher, while the Eastern Pacific patch gets
warmer and saltier. The regional contrast between the Central and Eastern Pacific is consistent with the Eastern
Pacific tracer’s relatively more rapid progression to lower latitudes, where it can mix with lighter waters. The
Atlantic tracer density stays within 0.02 kg/m3 of its starting value over the first decade of the simulation; it gets
considerably warmer and saltier as it mixes with the Algulhas waters off the coast of South Africa.

4. Discussion

In this work, we performed numerical tracer initialization experiments to map out the export pathways of
Subantarctic Mode Water (SAMW) and to better understand the associated ventilation of the subtropical
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Figure 10. Total amount of tracer in the Southern Ocean domain for each experiment (black solid lines), fraction of tracer removed above 200 m (green dashed lines), and the fraction
of tracer removed below 200 m (blue solid lines).
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thermocline. We found considerable regional variability in the patterns, timescales, and efficiencies of
SAMW export, set in part by the relative influence of the Antarctic Circumpolar Current (ACC) and the sub-
tropical gyres. The spatial structure of the export pathways is broadly consistent with the mean geostrophic
circulation, which in the gyres is constrained by basin-scale pressure gradients [Iudicone et al., 2007]. Export
from the Indian and Central Pacific mode water pools are primarily driven by large-scale gyre circulation,
whereas the Australian and Atlantic pools are heavily influenced by the Antarctic Circumpolar Current.
Export from the Eastern Pacific mode water pool is driven by a combination of a deep eastern boundary
current and subtropical gyre circulation. The tracer distributions and removal maps presented in this paper
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(i.e., Figures 4 and 11) indicate the broad regions where we expect northward export, neglecting recircula-
tion/re-entrance, to occur.

Export of the Indian mode water tracer (i.e., initialization site ‘‘a’’ in Figure 3) is dominated by the subtropical
Indian Ocean Gyre; it is minimally affected by the strong zonal circulation of the ACC. In the global ocean,
this exported SAMW upwells together with the denser Indian Deep Water (IDW) and joins with thermocline
water coming through the Indonesian Throughflow before returning to the ACC [Talley, 2013, references
therein]. We find relatively little mode water tracer in the Pacific and Indian basins after 50 years, as most of
it has been removed by the sponge layer. In the global ocean, the Indian mode water that eventually is
found in the other basins may first be carried through the return flow of the shallow Indian basin overturn-
ing circulation.

The Australian mode water tracer (i.e., initialization site ‘‘b’’ in Figure 3) is heavily affected by the ACC. The
tracer is split into two separate patches that advect into both the Indian and Pacific basins. The bulk of this
tracer crosses 30�S just east of Australia, following the subsurface West Australian Current. The remaining
tracer stays largely confined to the ACC and does not exit the model domain over the 50 year experiment.
Considering the Indian and Australian mode water tracers together, we suggest that the ‘‘youngest’’ mode
water (i.e., the mode water with the most recent contact with the atmosphere and surface mixed layer)
exported from the Indian basin into the Pacific primarily comes from the Australian pool (i.e., initialization
site ‘‘b’’) and not from the Indian pool (i.e., initialization site ‘‘a’’).

The two Pacific basin export pathways highlighted by the tracers have remarkably different structures. The
Central Pacific mode water tracer (i.e., initialization site ‘‘c’’ in Figure 3) is removed relatively slowly
from the basin by the action of the South Pacific gyre. The bulk of this tracer (i.e., more than 90%) remains
in the Pacific basin and is removed east of its formation region. In the global ocean, this SAMW mixes with
upwelling PDW in the subtropics to become thermocline water [Talley, 2013]. The thermocline water formed
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Figure 12. Tracer-weighted mean quantities for the five tracer advection experiments. Shown are (a) depth, (b) latitude, (c) potential density, (d) potential vorticity, (e) potential tempera-
ture, and (f) salinity. Shading indicates the uncertainty introduced by removal via the sponge layer at the northern edge of the domain. Tracer above 200 m is masked out, so these
values reflect ocean interior properties.
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in the Central Pacific makes
its way through the Indone-
sian Throughflow and joins
the poleward flow in the
Indian basin.

The Eastern Pacific mode
water tracer (i.e., initialization
site ‘‘d’’ in Figure 3) quickly
advects equatorward, follow-
ing the southern part of the
Humboldt Current System
along the west coast of South
America, before joining the
subtropical gyre. The export

route of this Eastern Pacific mode water is closely related to (and has some overlap with) the AAIW export path-
way discussed in Iudicone et al. [2007]. Approximately 5 years into the experiment, roughy 20% of the initial East-
ern Pacific mode water tracer has been advected through the ACC and is found in the Atlantic basin, which
suggests that a fraction of mode water formed in the Eastern Pacific can make its way to the Atlantic mode
water pool (i.e., initialization site ‘‘d’’ in Figure 3). The Atlantic mode water tracer stays largely confined to the
ACC over the course of the experiment; it is largely ‘‘trapped’’ in the circumpolar flow and highlights a relatively
inefficient pathway for getting mode waters out of the Southern Ocean.

One relatively simple metric of SAMW ‘‘export efficiency’’ consists of how much mode water tracer (i.e., trac-
er initialized in the mode water formation regions) remains in a chosen domain as a function of time. In our
numerical experiments, more than 50% of each mode water tracer reaches the subtropical thermocline
(defined as absorption by the sponge layer between 24.7 and 26.5 �S) within 50 years. The Eastern Pacific
pathway is an especially efficient mode water export route, with roughly 80% entering the subtropical ther-
mocline within 50 years. The time required for 50% of the mode water tracers to leave the Southern Ocean
domain varies significantly between mode water pools, from 9 years for the Indian mode water pool to
roughly 38 years for the Central Pacific mode water pool. The removal timescales and distributions are sum-
marized in Table 3.

4.1. Future Changes in SAWM
SAMW and AAIW are relatively sensitive indicators of anthropogenic climate change in coupled climate
models [Banks et al., 2000, 2002; Banks and Bindoff, 2003; Stark et al., 2006]. Understanding the time-
scales and spatial patterns of thermocline ventilation via SAMW and AAIW will help us understand how
surface ocean signals of climate change may ultimately propagate into the subtropical thermocline. For
instance, repeat hydrography sections indicate that in the 2000s, Southern Hemisphere thermocline oxy-
gen increased due to stronger wind forcing and ventilation [Talley et al., 2016]. Many coarse resolution
models project a decrease in the subduction of SAMW and AAIW under climate change, due to increased
surface warming and freshening [Downes et al., 2010]. Given that the subtropical portions of the export
pathways are relatively well insulated from the surface, their response to anthropogenic forcing will lag
far behind that of SAMW and AAIW subduction. If equatorward export rates and pathways remain rela-
tively steady under climate change, then decreased SAMW/AAIW subduction suggested by Downes et al.
[2010] will result in a thinning of those water masses in subtropical latitudes and an associated decrease
in nutrient export and anthropogenic carbon sequestration in the subtropical thermocline. More
detailed studies with representations of the marine nutrient and carbon cycles are required to better
understand how nutrient export and carbon sequestration may be impacted by anthropogenic forcing.
Furthermore, the ‘‘transition region dynamics’’ between the ACC and the subtropical gyres that allow
some fraction of mode waters to separate from the ACC and join the gyres remains poorly understood. A
particular area of interest is how these mechanisms contrast with inter-gyre exchange processes in the
Northern Hemisphere [Pedlosky, 1984; Schopp and Arhan, 1986; Chen and Dewar, 1993; Iudicone et al.,
2007].

Table 3. Summary of Tracer Advection Results

Basin
Initial

Latitude (S)
Removal

Timescale (Years)

Remaining
in Basin

(10 Years)

Removed
Above 200 m

(50 Years)

Removed
Below 200 m

(50 Years)

Indian 41 9 41% 10% 83%
Australian 47 27 38% 10% 65%
C. Pacific 48 37 81% 13% 51%
E. Pacific 50 25 92% 7% 77%
Atlantic 44 47 35% 8% 46%

aAll tracer fractions are given as percentages of the initial amount of tracer in each experi-
ment. The removal timescale is the time required for at least 50% of the initial tracer to be
removed from the model domain. The column labeled ‘‘remaining in basin’’ refers to the
basin in which the tracer was initialized, 10 years into the experiment. The sum of the last
two columns gives the total amount removed by the sponge layer at the northern edge of
the domain, 50 years into the experiment.
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4.2. Effects of Unresolved Eddies
Turbulent mixing along isopycnals likely influences SAMW advection and erosion [Musgrave, 1990; Trossman
et al., 2012; Abernathey and Ferreira, 2015]. BASSOON is an eddy-permitting model; in the open ocean north
of the ACC, where most of our tracer advection occurs, larger mesoscale features are fully resolved and do
not suffer from artificial smoothing from over-parameterization [Hallberg, 2013]. However, because BAS-
SOON does not use any subgrid scale parameterization schemes (except for vertical mixing by KPP), it
neglects sub-mesoscale effects and the smallest mesoscale features. In shallow, near-coastal shelves and
plateaus, where the baroclinic deformation radius is not resolved, eddy mixing may be biased toward weak
values, which may impact export timescales and pathways. In our numerical experiments, this bias is
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Figure 13. (a-e) Particle trajectories traced out after 10 years of advection. (f) Particle initial locations of experiments shown in Figures
13a–13e.
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particularly relevant for (i.) the portion of Indian Mode Water tracer that advects into the Atlantic basin via
the Agulhas current, (ii.) the portion of Australian and Central Pacific tracers that advect over Campbell Pla-
teau and generally around New Zealand, and (iii.) the portion of the Atlantic tracer that advects over the
Patagonian Shelf. It would be instructive to perform SAWM tracer release experiments using modeling envi-
ronments with various mesoscale and sub-mesoscale eddy parameterization schemes [e.g., Fox-Kemper
et al., 2011; Jansen and Held, 2014] and observationally informed data products [e.g., Abernathey and
Marshall, 2013; Waterhouse et al., 2014; Whalen et al., 2015].

4.3. Comparison With Numerical Float Advection
In order to illustrate the robustness of the broad structure of the export pathways (i.e., to show that they are
not tracer artifacts), we also advected floats (using the MITgcm ‘‘flt’’ package) using an offline 20 year veloci-
ty data set extracted with 5 day averages from an online run of BASSOON. We plot the cumulative trajectory
histogram in Figure 13. The float patterns are broadly similar to those followed by the tracers (Figure 4) and
outlined by the mean flow (Figure 5). The Indian basin floats mostly stay confined to the Indian basin,
although some do reach the Agulhas Current and advect into the Atlantic basin. The Australian floats are
heavily influenced by the ACC And spread across all three basins. The Central Pacific floats largely follow
the gyre, while the Eastern Pacific floats quickly move up the coast of South America before spreading out
westward via the subtropical gyre. The Atlantic floats largely stay in the ACC, ending up in all three basins.

5. Conclusions

Subantarctic Mode Water (SAMW) is an important mode water class for subtropical thermocline ventilation,
which impacts anthropogenic carbon sequestration and the export of nutrients to lower latitudes. The
export of mode water displays significant regional variability, heavily influenced by the regional structures
of the mean geostrophic circulation. More than 50% of each mode water tracer reaches the subtropical
thermocline within 50 years, but the Eastern Pacific pathway is especially efficient, with roughly 80% enter-
ing the subtropical thermocline within 50 years. The time required for 50% of the mode water tracers to
leave the Southern Ocean domain varies significantly between mode water pools (see Table 3 for a summa-
ry). Export from the Indian and Central Pacific mode water pools is primarily driven by large-scale gyre circu-
lation, whereas the Australian and Atlantic pools are heavily influenced by the Antarctic Circumpolar
Current. Export from the Eastern Pacific mode water pool is driven by a combination of deep boundary cur-
rents and subtropical gyre circulation. Additional work focusing on anthropogenic carbon sequestration
and nutrient export would be a welcome addition to this study.
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Erratum

In the originally published version of this manuscript, there were errors in Figure 5 and its caption. The fig-
ure caption should have been published as: Cunningham geostrophic streamfunction (1 Sv = 106 m3/s),
derived from annual mean temperature and salinity data using the Gibbs Seawater Toolbox (GSW), with
respect to 1000 dbar on several density surfaces between 30.8–31.8 kg/m3 (Cunningham, 2000). The two
solid lines are the 90 Sv and 130 Sv contours of the annual mean barotropic streamfunction.

In addition to the change to Figure 5, the following reference has been added: Cunningham, S. A. (2000),
Circulation and volume flux of the North Atlantic using synoptic hydrographic data in a Bernoulli inverse, J.
Marine Res., 58, 1–35. In addition, the reference ‘‘Montgomery, R. (1937), A suggested method for represent-
ing gradient flow in isentropic surfaces, Bulletin of the American Meteorological Society, 18 (210)’’ has been
removed.
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