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Abstract 

This thesis presents two models for optimizing and guiding the micro injection 

moulding process. The models are generated by the use of a mathematical procedure, 

an understanding of the process, and empirical data obtained from several sets of 

experiments.  

 

Micro injection moulding is a well-known process that is heavily used in the mass 

production of micro polymer parts. It is a very reliable process and apart from the 

initial investment required for manufacturing a mould, the process is very low cost. 

Furthermore, polymer developments have led to the process being suitable for the 

production of micro parts in equipment used in several industries such as medical, 

automotive, aerospace and sensing. Due to these important industrial applications, 

several quality criteria have been the subject of research in recent years. One of the 

main challenges in micro moulding is the modelling of the process in terms of 

polymer flow and accuracy. This is because current available models use PVT data 

(pressure, volume, temperature) that is used for modelling of conventional injection 

moulding. Furthermore, these models ignore several factors in micro moulding such 

as the high shear rates and 3D flow of the polymer melt. Moreover, modelling of the 

mechanical properties of the micro parts based on mathematical systems used for 

macro parts leads to large errors.  

 

This study proposes a new method for modelling the effect of process parameters on 

the dimensional accuracy and UTS (Ultimate tensile strength) of micro walls. This 

results in reduction of risk and cost, and optimization of the process. The “accuracy 

model” relates the dimensional error to four process parameters (polymer melt and 

mould temperature, and injection velocity and pressure), polymer characteristics 

(density, specific heat capacity and thermal conductivity) and a characteristic of the 

machine (plunger diameter). The “mechanical model” relates the part’s UTS to the 

same parameters as in the accuracy model. 

 

In order to develop the “accuracy model” an understanding of the effect of process 

parameters on dimensional accuracy and the polymers needs to be obtained. Several 

sets of experiments were conducted to investigate and establish this effect. Two 
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polymers, Polyoxymethylene (POM) and Polypropylene (PP), were used to conduct 

the study. The results showed that the polymer melt temperature had the highest 

effect, followed by injection pressure, injection velocity and mould temperature. 

Amongst these, injection velocity had an adverse effect on dimensional accuracy. 

Further analysis was done to investigate whether the effect was consistent for several 

sets of the parameters. Results of the experiments showed that while the effect was 

not linear, the trends obtained earlier were correct.  

 

The same procedure was applied to investigate the effect of process parameters on 

the UTS of the micro walls. Polymer melt temperature had the highest level of 

influence, followed by injection velocity, injection pressure and mould temperature. 

Increase in all parameters resulted in reduction of the UTS, except for the mould 

temperature.  

 

Next, the two models were developed through a method called dimensional analysis. 

Several dimensionless expressions were developed to form a general relationship 

between the parameters and the quality criteria. Then, the obtained results and data 

were used to find the constants and the specific form of the functions. The overall 

models were validated by a fresh set of selected experiments using an original brass 

insert.  

 

The achieved trends and models were validated experimentally, using a different 

mould insert with a micro channel with a different dimension. While the values for 

the dimensional error and UTS were different, the trends obtained before were 

correct for the new insert. The same trend was observed with the models. Again, 

predictions for PP parts had better agreement with experimental data compared to 

those of POM. In addition, the amount of error for the steel insert was higher, due to 

different thermal conductivity of the insert material and surface roughness of the 

micro channels. 
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ΔL Difference in length/ Dimensional error 

ΔP Change in pressure 

ΔT Change in temperature 

θ Temperature (Dimensional analysis) 

µ Viscosity 

µ0 Viscosity at ambient temperature 

µ(T) Zero shear rate viscosity at temperature T 

ρ Density 

σm Tensile strength of the polymer matrix 

σw Weld line strength 

σUTS Ultimate tensile strength of weld line 
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Chapter 1 Introduction 

In 2007, Germany’s Federal Ministry of Education and Research [1] stated that 

micro injection molding’s global market is growing at the rate of 15% annually and it 

will continue to grow in the near future. According to other studies there was an 

increase in the micro manufacturing market from $12 billion in 2005 to $24 billion in 

2009 [2]. In agreement with these estimates, in 2012 µIM’s market was valued at 

$308 million, and is still expected to have an annual growth at a rate of 14.2% to 

reach $763.6 million in 2019 [3, 4]. This growth is expected in the manufacturing of 

polymer and thermoplastic parts for applications in several industries such as medical 

and health care, telecom and fiber optics, automotive and micro drive systems and 

control [4]. µIM is becoming increasingly important amongst the available processes 

for production of micro electro mechanical systems (MEMS) and microsystems 

(MST). This is due to advantages such as optimisation and integration of functions in 

less space, and elimination of interface requirement, which increases the reliability of 

the system [5]. In addition, most other micro production processes such as micro 

machining, hot embossing and reaction injection molding are costly and time 

consuming, or have long cycle times [5-7]. Other advantages of µIM include high 

repeatability and reliability, versatility in polymer selection and cost effectiveness. 

Furthermore, µIM has a low cycle time which makes it an attractive choice for mass 

production [8, 9].  

 

µIM has growing applications in medical, automotive, aerospace, electronics and 

optics industries. Medical applications of micro injection moulding include micro 

fluidic devices such as pumps, valves, nebulizers, capillary analysis systems, devices 

for investigating living cells, pressure and flow sensors. Other medical applications 

include drug delivery and body monitoring systems, and DNA sequencing devices 

[6, 10].   

 

Applications of µIM in aerospace include the manufacturing of pressure sensors in 

flight control systems, cabin pressure monitoring and hydraulic systems. Automotive 

applications include airbags, vehicle dynamic control and navigation systems, engine 

air intake and tyre pressure sensors [2]. 
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 The most well known micro moulding products in electronics are CD, DVD and 

credit card holograms. Another range of micro moulded products are optical 

components such as spectrometers, lenses, optical switches, optical fiber connectors, 

waveguides, anti-reflective surfaces, optical gratings and photonic structures [6, 10, 

11]. Today, micro electronics are a prospective application of thermoplastics µIM. 

An example is the production of electronic circuits with critical dimensions as small 

as 10 µm [6].  

 

1.1 Motivation 

Considering the vast number of applications micro injection moulding has in several 

important industries, it is crucial that parts are manufactured with the highest quality 

possible. In fact, these products are pushing the boundaries of sizes of manufactured 

parts whilst requiring tight tolerances and high quality. The best example of this is 

the medical sector where products need to pass vigorous testing to be approved 

before use. The parts used in these products need to be made with great precision, 

and if they are not made to the required quality they cannot be used as they can cause 

failure of the device. Another industrial example is when parts are used in the 

aerospace industry as pressure sensors in cabin monitoring and hydraulic systems. If 

one of these parts fails the outcome could be catastrophic. These are only two of the 

many examples where achieving a high quality part is crucial to the successful 

approval of the product. 

 

Considering the importance of the quality of the parts in combination with 

increasingly higher production demand, there is a need for better understanding of 

the micro injection moulding process, and the effect it has on the quality of the parts. 

This study therefore focuses on establishing an understanding of the process and its 

effects on the quality of the replicated parts, and to model these effects in order to 

achieve high quality products in large volumes in a reliable and repeatable manner.  

 

To replicate a part, a mould has to be designed based on the customer’s specification 

and expectations. This is often a very expensive and time consuming task as many 

factors such as the runners and their size, gates and their locations and heating and 

cooling channels must be considered. After the design is complete, the mould has to 
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be manufactured. This is also very costly and there are many limitations and 

challenges in manufacturing the very small features. Once a mould is successfully 

made, several tests and experiments have to be carried out to investigate if a part or a 

specific feature can be replicated according to the customer’s needs. This often 

depends on the experience of the users. If the final results are not satisfactory several 

adjustments are required during this process. This iterative process has to be repeated 

until the satisfactory results are achieved; resulting in a costly and time consuming 

process to successfully replicate a micro part or a part with micro features.  

 

1.2 Aim and Objectives 

 

The aim of this project is to contribute to knowledge by developing a method to 

optimise the process of µIM in terms of dimensional error and ultimate tensile 

strength (UTS).  

 

This is done by developing two models which can be used to guide the optimisation 

and application of the µIM process, to achieve high quality parts with micro features 

in an efficient, reliable and repeatable manner. These models enable the estimation of 

the dimensional accuracy and the ultimate tensile strength of the micro moulded 

parts. In order to form these models, one must understand the effect of process 

parameters on these quality aspects. From this understanding, empirical models can 

be developed. These models will take several aspects into consideration: 

 

 Characteristics of the  product in order to measure the quality of the parts 

(dimensional accuracy and UTS) 

 Characteristics of the polymer (density, thermal conductivity and specific 

heat capacity) 

 Characteristics of the process (polymer melt and mould temperature, and 

injection velocity and pressure) 

 Characteristics of the µIM machine (plunger diameter) 
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To achieve the overall aim, the following objectives are required: 

A. Understanding the effect of process parameters on the dimensional 

accuracy of micro moulded parts 

 Selection of mould, inserts and features 

 Selection of a polymer 

 Conducting experiments with different combinations of process 

parameters in a systematic and logical manner 

 Measurement of the parts 

 Statistical analysis to understand the effect of process parameters 

on dimensional accuracy 

B. Understanding the effects of process parameters on UTS of the micro 

moulded parts 

 Selection of mould, inserts and features 

 Selection of a polymer 

 Conducting experiments with different combinations of process 

parameters  

 Tensile testing of the polymer parts 

 Statistical analysis to understand the effect of process parameters 

on dimensional accuracy 

C. Construction of mathematical models  

 Selection of the variables 

 Generation of a general mathematical model through dimensional 

analysis 

 Generation of the empirical data based on the results obtained 

from the previous two objectives 

 Generation of further empirical data and their implementation to 

form the final models 
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1.3 Thesis Structure 

The thesis is divided into eight chapters which are outlined below. 

 

Chapter 1 provides a brief introduction into µIM’s market and its importance. It also 

provides the motivation behind the work conducted in this study. The overall aim of 

the study and detailed objectives to achieve the aim are explained. 

 

Chapter 2 explains the general working principles of µIM, and its major differences 

with conventional IM. It also provides a detailed description of the most recent 

developments in the field of µIM. Finally the knowledge gaps related to this study 

are identified and listed. 

 

Chapter 3 provides a summary of the entire thesis and the work conducted in this 

study. The knowledge gaps are reviewed and the motivation and problem definition 

are explained. Next, the tackling of the knowledge gaps and contributions to the field 

are stated. Finally, the link between the contributions and the overall aim of this 

study are described. 

 

Chapter 4 begins by providing the motivation for the investigation of the effect of 

process parameters on the dimensional accuracy of the parts. Selection of different 

characteristics of the process are explained and examined. Additionally, the 

experiments and the method selected for conducting them are explained. 

Furthermore, the results of the experiments are presented. Finally, the results are 

analysed and discussed. 

 

Chapter 5 starts by providing an explanation for the importance of the investigation 

of the mechanical behavior of the parts, and the effect of the process parameters on 

them. Selection criteria for the process, features, and the experimental approach and 

methods are explained. This is followed by the presentation of the experimental 

results, and analysis and discussion. 

 

Chapter 6 begins with the selection and introduction of the method used for 

construction of the models. Selection of the variables and the reasons behind these 
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selections are then explained. The method is then applied to µIM and, more 

specifically, the defined problem in this study. At this point the general mathematical 

equations are formed. The results of the two previous chapters are then used to 

generate the required empirical data. This data is then used to complete the 

mathematical equations and form the final models. 

 

The experimental results and the final models are validated in Chapter 7. A case is 

introduced for manufacturing a product. The results obtained in chapters 4 and 5 are 

validated through further experiments. The constructed models in chapter 6 are also 

used to predict the dimensional accuracy and UTS of the product. A discussion of the 

models and their limitations is also provided in this chapter. 

 

Chapter 8 reviews the motivation behind this work, with a brief revision of the 

knowledge gaps and contributions. Conclusions are made on each of the 

contributions addressed in this study. Overall concluding remarks are made to link 

the three contributions and the overall impact on the µIM domain. Finally, areas for 

further research and future work are identified. 
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Chapter 2 Literature review 

The intention of this chapter is to provide a review of the state of the art and recent 

developments in the field of micro injection moulding. Firstly, a background into 

µIM and its development are provided. Then the development of µIM machines and 

the general working principle are explained. Differences between the types of 

machines are explained and specific operations of the one used in this study are 

described. This is followed by a summary of the mould making technologies. Effects 

of mould design and manufacture on part quality are explained and the polymers 

suitable for µIM are listed with their characteristics. Then the recent development in 

optimisation of the process and the effect of the process on the quality of micro 

moulded parts are provided. The research into modelling of the process and its 

effectiveness are presented and discussed. Finally, a summary of the knowledge gaps 

that are most relevant to the aim of this project are provided.  

 

2.1 Development of micro injection moulding 

The concept of miniaturisation has been around for many years. The importance of 

micro manufacturing and miniaturisation were introduced by Richard Feynman in 

1959 [12, 13]. Initially, he saw the need for production of units that can store 

information at a much higher rate and using less space; and also the need for 

technologies and machinery that could produce such devices. However, the concept 

of miniaturisation and making smaller products had already started in 1929 when 

Jaeger-Le Coultre produced the record for the smallest watch. Around the same time 

a new level of complexity had been reached for production of astronomical watches. 

L. Oechslin produced one such a device with 213 parts, which showed the movement 

of 6 planets [14]. This trend continued and miniaturisation developed until A. Beyner 

produced the thinnest watch in 1981. This watch had a thickness of 0.98 mm, which 

had a coil made of 7000 turns of a 10 microns diameter wire. Pinion axis was 

machined down to 70 microns and the gear had a pitch of 120 microns [14]. This was 

the time when the production of parts with smaller sizes had become increasingly 

important. However, most of these products were made by hand and the production 

depended heavily on the experience of the workers.  
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At the same time, silicon had become a very important material in the manufacturing 

of semiconductors; and as a result many technologies for processing silicon were 

developed. This development resulted in the production of micro electro mechanical 

systems (MEMS) and microsystem technology (MST) [15]. At this time, injection 

moulding (IM) was already developed and was used as an industrial process. This 

process became very attractive, especially after the development of polymers. 

Polymers are considerably less costly compared to silicon and do not need the 

expensive equipment that is required for the processing of silicon parts [16]. In 

addition, IM proved to be a very reliable technology for the mass production of 

polymer parts at low cost. Furthermore, unlike silicon, most cases the final product 

does not require any finishing operation [17].  

 

In the late 1980s as the need for miniaturisation increased, companies started to 

modify commercial IM machines to produce micro products. These machines were 

hydraulically driven and often had clamping forces of 25 to 50 t [18].  However, this 

technique had several problems such as the massive amount of wasted polymer 

compared to the part, and accurate control of the movement of the injection screw. In 

the mid- 1990s the first efforts were made by mechanical engineering companies and 

research institutes to develop machines that were specifically suitable for µIM [18]. 

This was the start of the development of µIM machines, which were developed to 

focus on manufacturing of real micro parts. 

 

2.2 Micro replication technologies 

Several technologies exist for manufacturing of micro products. The list includes 

direct methods such as laser ablation, laser cutting and stereolithography, 

photolithography, which have mostly been used for low scale production and 

prototyping [19]. However, much effort and resources in the commercial and 

research domain have been focused on mass replication technologies. Some studies 

[6, 19, 20] have compared micro replication technologies and the general agreement 

is that IM and µIM are the most suitable processes for mass production of micro 

polymeric parts.  
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2.2.1 Injection moulding 

IM is one of the most important and most commonly used technologies for 

production of polymer products [17]. The process involves heating of the polymer 

until it melts. The melt is then injected into a cavity which holds the features. The 

polymer melt in the cavity is then cooled until it solidifies and is finally ejected from 

the mould. In this process, each polymer requires a specific set of conditions to 

produce the optimal part. Figure 2-1 shows the schematics of the IM process. 

 

 

Figure 2-1- Schematics of the injection moulding process [21] 

The main reason for the attractiveness of this process is that it can produce polymer 

parts in a relatively short amount of time and is therefore cost effective. However, for 

manufacturing a specific part, a specific mould must be designed and manufactured. 

Each mould in turn requires a design based on its own characteristics. Depending on 

the cavities, heating and cooling channels have to be designed. Also, depending on 

the product and its characteristics, a demoulding system may be required. These 

steps result in a high initial investment cost. Therefore, this technique is only suitable 

for the mass production of micro parts. A comparison [6] of hot embossing and IM 

showed that hot embossing is less costly and more accurate for the manufacture of 

low to medium quantity of products. However, IM has clear benefits in mass 

manufacture of products due to its shorter cycle time. Therefore, different variations 
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of the IM process are used for manufacturing 32% (by weight) of all polymeric parts 

[22].  

 

2.2.2 Micro injection moulding process 

Several characteristics have been given in the literature [23-30] to define what a 

micro moulded part is. A general definition is given as polymer parts that have 

structures with dimensions in micro or nano range. Yao and Kim [23] suggested 

parts with overall dimensions of less than 1 mm, or a part with larger dimensions 

with tolerances in the range of 200 µm. Another suggestion [24] is parts that are 

manufactured by µIM with a weight of a few milligrams and tolerances of a few µm. 

A summary of these characteristics has been provided [31] and are accepted as: 

 

 “A part that weighs less than a milligram or it is a fraction of a polymer pellet, 

where a pellet can be approximated to be spherical in shape with an average 

diameter of approximately 3mm. 

 It is a part with micro structured regions, or more specifically, with wall 

thickness less than 100 microns. 

 It is a micro precision part, which is a part that can have any dimensions, but has 

tolerances in the micrometer range, or more specifically, between 2 to 5 

microns.”  

 

The general working principle in µIM is the same as IM. The polymer needs to be 

heated into a melt, the melt then has to be injected into a mould cavity and cooled. 

Then the final part is ejected from the mould. However, µIM cannot be described as 

the scaling down of IM [21]. While there is a large amount of information and know-

how in polymer processing, several differences and characteristics of the µIM 

process makes it different and more complicated than IM. For example, mould 

manufacturing techniques that can be used for production of cavities in µIM are 

different to those used for IM. These processes need to deliver features and cavities 

in much smaller ranges than in IM, which results in higher stresses applied to the 

mould surface. This is also reinforced by the effect of high temperatures generated as 

a result of material removal [32].  
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When dealing with micro parts, part quality and filling are very important. Because 

of the small dimensions, structures such as square shaped corners become especially 

difficult to fill [18].  

 

The other difference is in the injection of the polymer melt; because of the small 

dimensions of the runners and cavities shear stress increases as the injection velocity 

increases. This is especially important at the gates because of the small dimensions 

of the gates and the area that the material can go through. These factors increase the 

shear rates by a large factor; 41010 to 6105  /s in µIM compared to 10000 /s in 

conventional IM [33]; and also lead to increases in the stresses which could cause 

degradation of the material, which will adversely affect the mechanical properties of 

the polymer and the parts. 

 

A list of technological differences between µIM and conventional IM can be drawn 

from conducted studies. Martyn et al [34] provided a summary of these differences, 

which have since been extended by other studies [35, 36]: 

 

 Mold construction technology 

 Application engineering 

 Raw material variation 

 Precision technology 

 Nano-rheology 

 Process measurement 

 Product properties 

 Modelling of the molding process. 

 Different process parameters for high quality parts 

 Different control systems 

 

2.2.3 Micro injection moulding machines 

As explained in section 2.1, in the 1980s companies used IM machines to produce 

micro parts. Some development happened at the time to modify these machines so 

that they become more suitable for the production of micro parts. However, use of 

these machines led to large amounts of polymer waste. The size of the runners 
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compared to the actual part was massive. This however, was a necessity of the 

process. Since these machines were developed for IM and large parts, they were only 

able to have large metering size. Therefore, to compromise for the difference 

between the part and the metered polymer, the runner had to be designed to be large. 

In addition, the hydraulic systems used in these machines to control the metering size 

were not accurate enough for production of micro parts. The control of the 

movement of the screw and the clamping unit, which require very small tolerances, 

was also difficult and inaccurate. The level of required accuracy in the movement 

and tolerances can only be achieved by servo electric machines [37]. Furthermore, 

the identification of the switch over point (i.e. the point where injection pressure 

switches to holding pressure) based on the injection pressure led to inaccurate control 

of the amount of injected polymer. This point is now identified by the position of the 

plunger in µIM machines [38]. This results in more accurate control over the injected 

volume. Finally, the size of the µIM machine has to be smaller than that of the IM 

ones. This results in smaller parts in the injection unit, such as screw, barrel and 

nozzle, and lower clamping force. This in turn reduces the volume of the polymer 

required and energy consumption [18].  

 

To address these issues, and to produce real micro parts with the characteristics 

already mentioned, three concepts are developed. The first is a modification of a 

conventional IM machine, with a single step system. In this concept the sizes of the 

barrel and the screw are reduced to dimensions lower than 20 mm [18]. However, 

injection still happens through the movement of the screw. This creates several 

problems. First, the flow length is long and there is a large melt cushion. Thermal 

separation of the sprue and the melt cushion creates a cold material slug which 

becomes larger in every cycle. Also, control of the screw for very small shots is very 

difficult. For example for a 1 mg shot weight, a 14 mm screw has to move 5.6 µm. 

The schematic of this kind of machine is shown in Figure 2-2. 
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Figure 2-2- Machine with a single step system (Taken from [39] and modified) 

 

The second concept is one where the plasticising and injection units are separate. 

This concept used a plunger and a hot cylinder. The third concept is similar to the 

second, in that it has separate plasticising and injection units, with the difference that 

its plasticising unit has a screw instead of a plunger. The screw heats up the polymer 

by means of both thermal and mechanical energy. Therefore, it is more efficient than 

the plunger and the polymer is thermally more homogenous [40]. The plunger then 

injects the polymer into the cavity. This provides a more precise control of the 

amount of injected polymer compared to a large rotating screw [18, 40]. These two 

concepts are shown in Figure 2-3 and Figure 2-4 respectively. 

 

 

Figure 2-3- Plunger plasticising and injection system [41] 

Thermal separation of sprue and melt cushion creates a cold material slug at the nozzle 

Polymer melt
Screw

Sprue
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Figure 2-4- Screw plasticising and plunger injection system 

The concept shown in Figure 2-4 shows the one employed in Battenfeld 

Microsystem 50, which is used in this study. This machine addresses the issues and 

requirements that were discussed previously in this section. The operating procedure 

of the machine is: 

 

 Polymer pellets are heated to their melting point and moved into the dosing 

chamber by the extruder screw (Figure 2.4 a). 

 A shut off valve closes to ensure that the polymer melt cannot move back from 

the dosing chamber. 

 The predefined volume of the polymer melt is measured in the dosing chamber 

and pushed into the injection chamber by the metering piston (Figure 2.4 b). 

 The polymer melt is injected into the cavity by the injection plunger (Figure 2.4 

c). 

 Once the injection phase is finished, a holding pressure is applied through the 

movement of the plunger to compensate for the shrinkage. 

Extruder screw

Metering piston

Injection plungerNozzle

Stationary half of the 

mould

Moving half of 

the mould

Mould cavity

Heating element

Polymer melt

(a)

(b) (c)
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The main characteristics of Battenfeld Microsystem 50 are shown in Table 2-1. A list 

of commercially available machines for µIM and their characteristics are provided in 

Table 2-2. 

Table 2-1- Main characteristics of Battenfeld Microsystem 50 

Clamping force 50 kN 

Ejection force 1.2 kN 

Extruder screw diameter 14 mm 

Maximum screw speed 300 rpm 

Maximum shot volume 1.1 cm
3 

Injection plunger diameter 5 mm 

Maximum injection pressure 1050 Bar 

 

Table 2-2- List of commercially available machines for µIM [42] 

Manufacturer Model 

Clamp 

force 

(KN) 

Injection 

capacity 

(cm
3
) 

Injection 

pressure 

(Bar) 

Plasticization 

Injection 

velocity 

(mm/s) 

Lawton 
Sesame 

nanomolder 
13.6 0.082 3500 10mm Plunger 1200 

APM SM-5EJ 50 1 2450 14mm Screw 800 

Battenfeld 
Microsystem 

50 
56 1.1 1050 14mm Screw 760 

Nissei AU3 30 3.1 - 14mm Screw - 

Babyplast 
Babyplast 

6/10 
62.5 4 2650 10mm Plunger - 

Sodick TR05EH 49 4.5 1970 14mm Screw 300 

Rondol High force 5 50 4.5 1600 20mm Screw - 

Boy 12/AM 129 4.5 2450 12mm Screw - 

Toshiba EC5-01.A 50 6 2000 14mm Screw 150 

Fanuc 
Roboshot 

S2000-15A 
50 6 2000 14mm Screw 300 

Sumimoto SE7M 69 6.2 1960 14mm Screw 300 

Milacron Si-B17 A 147 6.2 2452 14mm Screw - 

MCP 12/90 HSE 90 7 1728 16mm Screw 100 

Nissei 
EP5 Real 

Mini 
49 8 1960 16mm Screw 250 

Toshiba NP7 69 10 2270 16mm Screw 180 
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2.2.4 Mould manufacture and material 

µIM of a product requires a mould to be designed and manufactured. Characteristics 

of the mould such as the design of gates and runners and the material used for them 

plays an important role in the quality of the product. Studies have been conducted on 

the effect of different design characteristics on the replication of micro parts.  

 

Zhang et al. [43] conducted a study on the effect of mould design on the replication 

of micro parts and concluded that quality of the replicated parts is very sensitive to 

the flow direction. Results showed that the features in the direction of the flow are 

replicated better. While the effect of the distance between the features was 

insignificant, the location and thickness of the substrate slightly influenced the filling 

of the cavities. However, Yang et. al [44] conducted a set of experiments on filling 

micro channels and results showed the opposite effect, with increased air trap in the 

features along the flow of polymer melt. This shows that the configuration of the 

features and their design are important factors in the filling of the cavities.  

 

The material of the mould also has an effect on different quality criteria. Jungmeier 

et al. [45] conducted an experiment on the effect of the mould materials on the 

mechanical properties of the parts. Three moulds made out of ceramic ( 2ZrO ), steel 

and polymer (PEEK) were used. The conclusion was that the ceramic mould showed 

the best replications due to its low thermal conductivity. The polymer insert was 

deformed due to the high temperature.  

 

Griffiths et al. [46] conducted an experiment to investigate the relationship between 

the filling of the cavities and the runner system design. Experimental results showed 

that filling of the micro cavities is sensitive to the size of the runners, due to changes 

in temperature and pressure as the polymer flows. This, however, is only true for 

certain polymers that are sensitive to a temperature decrease such as POM. 

 

 Yang et al. [47] and Griffiths et al. [48] also studied the effect of the tool surface 

roughness on the replication of micro parts. They showed that as the surface 

roughness of the mould inserts increased the flow length was reduced. Yang et al 

[47] also concluded that the effect of surface roughness could be reduced by using 
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higher melt temperature and injection velocity due to increased pressure of air 

trapped during the injection process. Experiments conducted by Griffiths et al [48]  

showed that at the same surface roughness higher settings of process parameters 

resulted in better filling of the cavities. This highlights the role that process 

parameters play in replication of micro parts. It shows that even under the same 

physical conditions, adjusting to the process parameters to optimised values can 

make a difference in the quality of the micro parts. 

 

Once the design is finished, a mould has to be manufactured. Several manufacturing 

technologies exist for the production of micro moulds. Selection of the technology 

depends on the required features and their sizes. This is because each particular 

technology can produce a range of sizes successfully. A list of common technologies 

is presented in Table 2-3. 

 

Laser machining is a very competitive process amongst the material removal 

techniques. It allows the fabrication of structures of about 10  m with aspect ratios 

of 10. The main drawback of this technology is that tight tolerances are difficult to 

make due to the size of the laser spot [21]. The smallest achievable spot is half the 

wavelength of the light [19, 49]. 

 

 Micro electro discharge machining (µEDM) can achieve structures with the width of 

15  m and it ensures the manufacturing of very complex geometries. A high voltage 

current applied between an anodic electrode and a cathode tool causes the removal of 

the metal. Cylindrical electrodes are used for drilling holes and tungsten wires are 

used for manufacture of complex geometries [50, 51]. The main drawback of this 

technology is that accuracy of the dimensions and surface roughness depends heavily 

on the vibration of the electrode. µEDM is suitable for the production of features 

bigger than 50 µm with tolerances in the range of 10 µm [21].  
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Table 2-3- Examples of mould manufacturing technologies (taken from [21] and modified) 

Technology 
Typical 

structure size 

Feature 

tolerance 

Aspect ratio 

[52] 

Wall 

roughness 

[53] 

Materials 

Ion Beam 

LIGA/2D 
0.1-0.5 µm 0.02-0.5 µm 1 -  

Focused Ion 

beam/2D&3D 
0.2 µm 0.02 µm - - Any 

X-ray 

LIGA/2D 
0.5 µm-1 mm 0.02-0.5 µm 10-100 < 20 nm 

Electroformable 

materials 

Electron Beam 

LIGA 
0.1-0.5 µm - 1-2 -  

UV LIGA/2D 2-500 µm - 1-10 -  

Femto-second 

Laser 2D/3D 
1 µm < 1 µm 1-10 - Any 

Excimer Laser 

2D/3D 
6 µm < 1 µm 1-10 

1 µm – 100 

nm 

Polymer, 

ceramics and 

metals  

Ultra short 

pulses 

ECM 2D/3D 

Few 

micrometers 
< 1 µm 8 -  

µEDM 2D/3D 10-25 µm 3 µm 10-100 0.3-1 µm 
Conductive 

materials 

Micromilling 

2D/3D 
25 µm 2 µm 10-50 

Few 

micrometers 

PMMA, 

Aluminium, 

Brass, Steel  

Deep UV 

resists 
- 2-3 µm 22 1 µm - 

Deep Reactive 

ion etching 
- < 1 µm 10-25 2 µm Silicon 

 

LIGA (Lithography, Electroplating, and Moulding) is another common process for 

manufacturing micro moulds. In this process layers of conductive materials are first 

coated onto a substrate, usually silicon wafer, for the electroplating step. X-Ray of 

UV sensitive polymer such as PMMA is then deposited on the layers. After placing 

the mask containing the geometry on the layer, the irradiation step starts. The part is 

obtained by dissolution of chemically modified material [21]. Figure 2-5 shows the 

schematics of the process.  
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The performance of this method greatly depends on the type of radiation. UV and X-

ray lithography are the most common radiations used in the manufacture of mould 

inserts [54, 55]. However, since UV is less costly, it is the preferred method in 

production of MEMS [54].  Nowadays, LIGA and LIGA like techniques are used for 

production of mould inserts with high aspect ratios [55]. Two main drawbacks exist 

with this technique. Firstly, LIGA cannot be used on conventional tooling materials 

such as steel [21]. Secondly, draft angles, which reduce the chance of damage during 

demoulding, are very difficult to produce [56].  

 

 

Figure 2-5- Schematics of LIGA process [21] 

 

Micro milling is a process often used for production of micro channels. Development 

of precise computer numerical controls (CNC), high speed spindles and hard material 

for cutting have made the manufacturing of micro features by the milling process 

possible. In this process the cutting tool moves in a predefined path and removes the 

unwanted material. The minimum achievable feature size depends on the size of the 

cutting tool used. At present the minimum cutting tool has a diameter of 30 µm. 

Similar to µEDM, this process is suitable for production of features larger than 50 

µm and tolerances of 10 µm. The main drawback of this process is that due to the 
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high spindle speed a large amount of heat is generated, which can melt the edges of 

the features. The generated heat can also cause expansion of the cutting tool and the 

work piece, which can result in removal of too much material or breaking of the 

cutting tool [57]. Therefore, an integrated cooling method is required.  

 

Focused Ion Beam (FIB) is a process that is sometimes used in mould manufacture. 

This process enables the production of sub-micron features. FIB involves 

bombardment of the work piece by ions with very high velocity and energy. When 

surface atoms receive high energy from the ions they are removed from the 

specimen. By scanning the ion beam in different directions and adjusting its 

parameters, the process can be used for milling. However, material removal by firing 

ions alone is often slow and results in inaccuracies and undesired topography [58]. 

Therefore, in most cases, gases such as Cl2, Br2, I2 and XeF2 are used to assist the 

process. The gas is injected toward the surface and under ion bombardment reacts 

with the substrate to produce volatile products which have higher or lower sputtering 

rate than the sample material [59]. 

 

While theoretically any material can be processed by FIB, best results are achieved 

when conductive amorphous materials are used. Multi crystalline materials are not 

suitable due to different orientation of their grains. Inserts with few micron sized 

features for µIM were fabricated by Zhange et. al. [60]. These were made on a bulk 

metallic glass composition of Zr47Cu45A18 and have depth of 2.24 µm, with height of 

1.91 µm and a range of width of 0.3 to 4 µm. Vladov et. al. [61] also produced 

features with dimensions of 7µm on Brass.  

 

2.3 Polymer materials for µIM 

Polymers are classified depending on several criteria. However, an initial 

classification can be made depending on their chemical structure. Figure 2-6 shows 

this classification.  
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Figure 2-6- Polymer classification [17] 

 

Polymers are made out of linear or branched molecules. This is shown in Figure 2-7 

with the characteristics of each type of polymer. 

 

 

Figure 2-7- Depiction of the arrangement of long chain molecules in different polymers [17] 

 

There is no chemical connection between the individual macromolecules. Therefore, 

they can be remelted and reused several times [17]. Thermoplastics can be further 

differentiated to amorphous and semicrystalline polymers. Amorphous polymers are 

those in which the molecules are arranged at random. They can be easily identified 

by their transparency. Semicrystalline polymers are those with some areas arranged 

in a regular manner [17]. Schematics of these are shown in Figure 2-8. 
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Not cross 
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Amorphous Semicrystalline
Slightly cross 
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Strongly 
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Figure 2-8- Schematics of the arrangement of molecules in amorphous and semicrystalline 

polymers[17] 

Because the macromolecules are entangled, complete crystallisation is not possible 

and there are always amorphous regions between the crystalline areas. The 

proportion of crystalline regions to in relation to complete crystallisation is defined 

as the degree of crystallinity. The simpler the chain structure in a polymer, the higher 

the degree of crystallinity [17, 62]. 

 

2.3.1 Polymer processing 

Polymers and polymer processing are very important in the field of micro injection 

moulding because they have relatively low cost, and offer good mechanical and 

thermal strength, electrical insulation, optical transparency, chemical stability and 

biocompatibility. This is particularly important in the replication of micro fluidic and 

medical devices [5, 31]. Furthermore, polymers can be tailored to specific 

applications due to their specific properties as can be seen in a variety of publications 

[11, 21, 31, 33, 45, 63]. Polymers are good electrical insulators compared to similar 

materials such as silicon. They also offer good mechanical properties [31]. This is 

important because polymeric parts need to have high enough mechanical strength to 

not only withstand the ejection force, but also be able to function under mechanical 

load in certain applications such as gear teeth. 

 

In addition to the applications stated above, polymer processability is another 

important consideration. The flow process in IM mainly involves shear of the melt. 

Shear flow occurs when the polymer melt adheres to the adjacent surfaces. When one 

surface moves, the layers in between slide correspondingly and the melt is sheared. 
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Shear rate is calculated from the difference in velocity between the upper and lower 

surfaces. Shear flow of the polymer melt results in the application of shear stresses to 

the polymer melt. Shear stress is the necessary force to deform the material divided 

by the area. The proportionality factor between the shear rate and shear stress is the 

viscosity [17, 62].  

 

Polymer melts are considered non Newtonian fluids and experience what is referred 

to as shear thinning i.e. decrease in viscosity as shear rate increases. An explanation 

for shear thinning is that the distance between the molecules becomes higher, and 

they become less entangled and more oriented (higher degree of crystallinity). This 

allows them to be displaced more easily while forces are acting [17, 62]. Polymers 

go through severe operating conditions in µIM such as high temperatures and 

pressures. Therefore, flow properties radically change due to high shear rates [31]. 

Due to the small dimensions of the features in µIM, polymer viscosity has to be low 

enough for the melt to be able to fill the cavities. Therefore, depending on the size of 

the crucial features or tolerances in a product, the choice of polymer becomes a very 

important factor.  

 

Generally, polymers used in conventional IM can be used in µIM [64], however, 

Pakkanen et. al. [65] and Liou and Chen [66] found not all polymers present the 

same flow behaviours. In fact, different polymers showed different responses in flow 

direction and filling of the cavities. In addition, Yao et. al. [23] concluded that these 

polymers have to be researched again due to different flow properties and complexity 

of the melt flow behaviour in micro cavities. In particular the behaviour of semi 

crystalline polymers such as POM is of great interest and needs to be investigated 

[9]. A list of commonly used polymers in µIM is presented in Table 2-4. 
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Table 2-4- List of commonly used polymers in µIM (Taken from [6] and modified) 

Acronym Full name 
Temperature 

stability (ºC) 
Properties Structure 

COC 
Cyclo-olefine 

copolymer 
140 High transparency Amorphous 

PMMA Polymethylmethacrylate 80 High transparency  Amorphous 

PC Polycarbonate 130 High transparency Amorphous 

PS Polystyrene 80 Transparent Amorphous 

POM Polyoxymethylene 90 Low friction Semi crystalline 

PBT [67] 
Polybutylene 

terephthalate 
225 

High dimensional 

stability & 

mechanical 

properties 

Semi crystalline 

PFA 
Perfluoralkoxy 

copolymer 
260 

High chemical 

resistivity 
Semi crystalline 

LCP [68, 69] 
Liquid crystalline 

polymers 
325 

Good mechanical 

properties & 

Dimensional 

stability 

Semi crystalline 

PVC Polyvinlchloride 60 Low cost Amorphous 

PP Polypropylene 110 
Mechanical 

properties 
Semi crystalline 

PET 
Polyethylene 

terephthalate 
110 

Transparent, low 

friction 

Amorphous / Semi 

crystalline 

PEEK Polyetheretherketone 250 
High temperature 

resistivity 
Semi crystalline 

PA Polyamide 80-120 
Good mechanical 

properties 
Semi crystalline 

PSU Polysulfone 150 

Chemical and 

temperature 

resistivity  

Amorphous 

PVDF Polyvinylidenefluoride 150 
Chemically inert, 

Piezo electric 
Semi crystalline 

 

2.3.2 Solidification of polymers 

As heat is removed from polymer melt, the molecules lose their ability to move 

freely, which makes the melt more viscous. In semicrystalline polymers, at a 

temperature close to the melting temperature, the molecules start arranging 

themselves in crystalline and amorphous regions. At the start of crystallization, the 

material becomes soft and rubbery, yet not brittle. This is because the amorphous 

regions are still at a temperature higher than glass transition temperature. For 
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common semicrystalline polymers the degree of crystallinity is between 30 and 70%. 

[62]  

 

In injection moulding of thermoplastics, due to the heat needed for crystallisation 

more heat needs to be removed from the melt to solidify the part. Slow cooling rates 

result in high packing time and more pressure needs to be applied to reduce the 

shrinkage of the final part. This increases the cycle time. At high cooling rate, degree 

of crystallisation is reduced. This results in formation of larger amorphous regions, 

which after the process become more crystalline. This results in further shrinkage of 

the part and variation in dimensions of the final part. [62] 

 

Shrinkage of injection moulded thermoplastic parts is affected by volumetric 

shrinkage, flow induced residual stresses and orientation, flow induced 

crystallisation, and heat transfer [70]. Other factors include the polymer itself, 

processing parameter and the geometry of the mould [71]. Geometry can affect 

shrinkage in two ways. First, it can change the direction of flow which causes an 

orientation effect (amorphous or crystalline), resulting in shrinkage anisotropy [72]. 

Secondly, it can cause geometrical constraints such as ribs and walls[72]. Several 

studies have been conducted on the effect of processing parameters for several 

polymers in conventional injection moulding [70-73]. However, there does not seem 

to be many studies conducted on the effect of process parameters on the µIM micro 

parts, and a comparison of the results with CIM [74]. Due to the different degree of 

orientation and crystallisation in µIM and CIM, the results obtained from macro 

studies cannot be applied to micro parts [74].  Annicchiarico et. al [74] conducted a 

study to investigate the effect of five process parameters, Pinj, Ph, Tp, Tm and th on the 

shrinkage of micro moulded rectangular plates, both in the direction of the flow and 

perpendicular to it. Results showed that Tm had a significant effect on reducing 

shrinkage in the direction of the flow, while it caused increased shrinkage in 

direction perpendicular to the flow.  

 

2.3.3 Yield in polymers 

If a polymer is subject to high strain deformation, it deforms permanently (plastic 

deformation) and finally fails. Figure 2-9 shows the process of failure for a typical 
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polymer on a stress-strain curve. At low stress and strain the polymer behaves as a 

linear elastic solid. The point at which the linear behavior becomes non-linear is 

called the proportional limit. The local maximum at this point is the yield point. This 

point is the start of plastic i.e. permanent deformation. The stress at this point is the 

yield strength. Beyond the yield point the material stretches further which forms the 

plastic region. Further elongation of the polymer leads to rupture of the polymer. The 

stress at this point is strength at break [75].   

 

 

Figure 2-9- Failure in polymers [75] 

Some polymers such as PS fracture before or immediately after yield. Others such as 

PE can reach much higher strain. Unlike metals it is difficult to distinguish between 

the elastic (recoverable) and plastic (permanent deformation) strain. This is because 

the recovery of a polymer and its return to the original dimensions depends on the 

temperature and the recovery time. In general, the stress-strain behavior of a polymer 

depends on several factors such as processing parameters and micro structures of the 

polymer [75]. These are discussed further in Chapter 5. 

 

2.4 Effect of process parameters on the replication of micro 

moulded parts 

Several studies have been conducted to understand the effect of process parameters 

on the replication quality of the micro moulded parts. Each study has defined quality 

as specific criteria. In most cases these are flow length and filling of the cavity. 

Studies have also looked at the effect of process parameters on the mechanical 
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stability and strength of the micro parts. While the general agreement is that higher 

settings for the process parameters result in better replications, experiments have 

shown that there are limitations to this.  

 

Several process parameters can be investigated on a µIM machine. Zhang et. al. [60] 

conducted a set of experiments where a number of ridges and channels were 

replicated by HDPE. Injection velocity (Vinj), holding time (Th) and pressure (Ph), 

and melt and mould temperatures (Tp and Tm) were investigated. The study focused 

on the quality of the replications and sharpness of the parts and their height. The 

conclusion was that the main factor in the production of sharp edges was the 

direction of flow. The ridges aligned with polymer flow showed better edge 

definition. Regarding the height of the features, higher settings in Ph, Tm and Vinj 

showed significant positive effects. None of the other parameters showed significant 

effects apart from Vinj, which had a positive effect. All interactions also had no 

significant effect. In another study [76] Zhang et al investigated these factors to 

characterise the process during the filling stage. The quality criteria were cavity 

pressure and velocity. Vinj and Ph showed the highest positive effect on the velocity 

and the others were insignificant. Contradictory, Vinj showed a small effect on the 

cavity pressure and Ph and Tm had significant negative effect. The effects on the 

dimensions of the parts were not examined in this study.  

 

Chu et. al. [77] also conducted a similar study where the effect of  Vinj, Tp, Tm and 

packing velocity (Vp) on cavity injection pressure at different stages were examined 

for POM, HDPE and PC. Experimental results showed that Vinj had the highest 

influence on the investigated criteria for all three polymers. However, lower Vinj 

resulted in better repeatability for POM while the opposite was the case for HDPE 

and PC. The effects on the actual parts were not mentioned in the study.  

 

Park et. al. [78] investigated the effect of mould heating on the replication of the 

parts. A special localised heating method was used by high frequency induction to 

investigate the heating effect and suitability of the method. Mould heating proved to 

be a very important factor with the method improving replications by 300% and 38% 

in comparison with water heating and normal induction, respectively. In fact, mould 

heating has been the subject of several studies. The general agreement is that the 
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mould temperature in µIM needs to be increased considerably compared to 

conventional IM. Table 2-5 shows a comparison of the mould temperature used in 

µIM and IM for four semi-crystalline polymers. 

 

Table 2-5- Comparison of Tm in µIM vs. conventional IM (taken from [21] and modified) 

Polymer Tm in µIM (ºC) Tm in conventional IM (ºC) 

HDPE 125, 140, 150 30-60 

PBT 120 80 

POM 90 70-90 

PP 163 30-60 

 

Studies have shown that mould temperature needs to be close to or above the 

softening temperature of the polymer. [66, 79-81]. Generally, a fixed temperature 

lower than the polymer’s glass transition temperature can be used. However, the 

higher the aspect ratio, the more mould temperature has to increase [21, 82]. Figure 

2-10 shows a relationship between mould temperature and aspect ratio.  

 

 

Figure 2-10- Achievable aspect ratios in microstructures as a function of mould temperature [21]  

 

Fu et. al. [83] conducted a set of experiments with an amorphous polymer (COC) to 

manufacture a set of micro channels. Results showed that Tp had the highest 

influence on the width of the micro channels (68.36%) and all the other parameters 

(Tm, Vi, Pi, Ph, Th and cooling time (Tc)) had minor effects, between 0.03-9.5%; with 

Tm and Ph showing the highest effects. Pre heating the polymer in the hopper showed 
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the smallest effect with 0.01%. Kirchberg et. al. [84] also conducted experiments 

with three amorphous polymers, PC, PMMA and PS, to produce an array of micro 

lenses. The quality criteria used were the surface roughness and diameter of the parts. 

PMMA produced the best results in terms of dimensional variation; however, it also 

showed the highest surface roughness. The study does not explain the optimisation 

method for process parameter values. 

 

Yang et. al. [85] manufactured a set of micro ribs with aspect ratios of between 0.5 

and 2 with PP and PMMA. The study investigated the effect of Tp, Tm, Vinj, Ph, Th, 

aspect ratios (AR) and the choice of polymer. Results showed that Tp and Vinj had the 

highest effect on height and width for both materials. However, parts made with PP 

showed better height and width replication due to its higher melt flow index (300%) 

compared to PMMA. Replication quality deceased with increase in AR and distance 

from the gate. Tm also showed a significant effect for PMMA. However, Tm for PP 

did not have a significant influence. This is in agreement with a study by Griffiths et. 

al. [46] where mould temperature did not influence polymers with lower sensitivity 

to changes in temperature such as PP.  

 

µIM of a micro fluidic device, made out of PMMA, by Attia et. al. [86-88] showed 

that amongst the investigated parameters (Tm, Tp, Vinj, Ph and Tc) Ph, Tm and Vinj had 

the highest influence on the mass of the parts. However, Vinj alone was responsible 

for reducing the variation in mass. Increasing Vinj showed a negative effect on the 

part mass, however, it proved to have a positive effect on its variation. Dimensional 

variation of the part and the influence of parameters on it were not examined. Nebo 

et. al. [89] investigated the effect of Tp, Tm, Pinj and th on the mass of the parts for PP 

and HDPE. The conclusion was that th and Tp were the most influential factors in 

achieving the optimum mass for PP. None of the factors were shown to have a high 

influence on the mass of the parts made by HDPE. Bellantone et. al. [90] also 

conducted a similar study with POM and LCP, investigating the same process 

parameters. Results showed that Tm had the highest influence in reduction of the 

variability. Vinj for LCP and Th for POM had the highest effect on the mass of the 

parts. The other parameters also showed a relatively high effect. For POM, Tm had a 

negative effect on the mass, while for LCP Th had a negative effect on the mass, 

although the effect was very small. Further analysis of Ph showed a linear 
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relationship between Ph and the mass of the part and the filling length between Ph of 

500 and 1500 bar. This is shown in Figure 2-1111.  

 

Figure 2-11- Effect of Ph on the filling length and mass of the parts [90] 

 

Chen et. al. [91] investigated the effect of Tp, Tm, Vinj. and packing pressure (Pp) on 

dimensional accuracy of micro moulded micro channels for four amorphous 

polymers, PMMA, PC, PS and COC. Results showed that at higher settings for all of 

these parameters, COC produced parts with very close dimensions to the mould. PC 

also showed good replications at specific combinations. However, PMMA and PS 

showed poor dimensional accuracy.  

 

Sha et. al.’s [92] investigation of Tm, Tp, Vinj, Ph and air evacuation showed Tp and 

Vinj were the important factors in achieving higher aspect ratios for ABS and PP. For 

POM, Tm also showed high influence in addition to the other two parameters. 

Increase in Tm for PP and ABS did not result in better replication as they are not 

sensitive to changes in temperature. Air evacuation generally improved the 

replication quality. However, because it reduced the mould surface temperature it 

had a negative effect on parts made with POM. The same study by Packianather et. 

al. [93] with a different machine showed similar results. However, in this case the 

replicated AR was influenced by Vinj and Tp for PP. All parameters showed very high 

influence for ABS; and Tp, Tm and Vinj showed high influence for POM. This shows 
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that a change in the µIM machine results in different influences of the process 

parameters and their interactions. Yoon et. al. [94] also investigated the effect of Tm 

and Vinj on the AR of the replicated parts. Tm showed a significant effect in achieving 

higher AR, while Vinj had a positive influence, its effect was insignificant.  

 

A study by Mani et. al. [95] investigated the effect of three process parameters (Tp, 

Vinj and Pinj) on dimensional accuracy of micro walls made out of POM and LCP. 

Results showed that Pinj and Tp had the highest level of influence respectively. Vinj 

had a minor negative effect on the filling of micro channels. Shrinkage of the 

polymer parts was one of the factors stated in this study as a reason for dimensional 

variation. This is confirmed in the study conducted by Annicchiarico et. al [74]. 

 

Yang et. al. [96] investigated the effect of Tm, Pp and tp on the replication of micro 

channels with different dimensions made out of PMMA. Results indicated that Tm 

was the main factor affecting the replication quality. Pp and tp resulted in different 

behaviours based on the dimension of the channels. While for the 40 µm channels 

shape of the replicated parts generally improved, for the 10 µm channels the 

behaviour was more unpredictable and the replication quality changed depending on 

the specific settings.  

 

Tosello et. al. [9] also investigated the effect of Tp, Tm, Vinj and Pp on the filling of 

micro cavities made out of PS. The filling was investigated by using weld lines as 

flow markers. Experimental results showed that Tm and Vinj had the highest level of 

influence on the length of the filling.  

 

As can be seen from the review of these studies, most of the studies have focused on 

the filling and weight of the moulded micro parts. There are only a few studies that 

investigated the effect of process parameters on the dimensional accuracy of the 

micro parts. In addition, apart from the process parameters several other factors 

influence the quality of the parts. Not only different types of polymers, with 

amorphous and crystalline polymers exhibiting different behaviors, within each 

group polymers show different responses to the process parameters. Also, different 

combinations of process parameters have resulted in different polymer and filling 
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behaviors. Furthermore, using different µIM machines have caused the process 

parameters have different effects on the quality criteria.  

 

2.5 Effect of process parameters on the UTS of micro 

moulded parts 

Another quality criterion in µIM that is still under investigation is the mechanical 

property of micro moulded parts, specifically, the ultimate tensile strength (UTS) of 

the parts. Several factors can influence the UTS of a micro part. Some of the studies 

in this area have been explained below. Although the general agreement is that 

higher settings for process parameters result in better replication, in the case of UTS 

that is not the case.  

 

Xie et. al. [97] conducted a set of experiments with PP to investigate the effect of the 

parts’ cross section (semi-circle, trapezium and triangular) and three process 

parameters (Tp, Tm and Pinj) on the UTS of micro bars. Results showed that no matter 

the cross section, higher injection pressure lead to lower UTS. However, for the 

trapezium cross section, melt and mould temperature did not show any effect on the 

UTS. Whereas, for the other two shapes, higher mould and melt temperatures 

resulted in stronger UTS. The strength changed considerably for the semi-circular 

cross section.  

 

Pal et. al. [98] studied the effect of Pinj, Tp and th on the tensile properties of micro 

parts. Increase in injection pressure resulted in lower breaking strain due to more 

compactness of the structure which results in the formation of larger crystals. 

Increase in Tp and th resulted in higher breaking strain. However, increases in the 

mentioned parameters had the opposite effect on breaking stress. The effect on the 

Young’s Modulus (E) was not conclusive and changed during the course of the 

experiments. For all the three quality criteria, Pinj was shown to have the highest 

effect.  

 

Meister et. al. [99] investigated the effect of the size of micro tensile bars on their 

mechanical properties. A range of sizes were tested in this study for parts made out 

of PC, POM and PA by µIM.  Results showed that slow-crystalising polymers such 
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as PA showed high dependency of the tensile strength to the size of the parts, 

whereas fast-crystalising polymers such as POM and PC showed very little 

dependency to the size of the micro parts. The micro tensile bars were also 

manufactured by milling to compare the effect of the manufacturing process on the 

tensile strength. The milled parts showed higher tensile strengths compared to those 

made by µIM.   

 

In another study, Meister et. al. [100] investigated the effect of tensile test bars’ sizes 

and different mould materials on the tensile strength of the parts. In this study three 

mould materials were used, steel, a ceramic (ZrO2) and PEEK. Results showed that 

as the size of the parts was reduced, their strength was also reduced due to faster 

cooling and less favourable inner structure. However, by using mould material with 

low thermal conductivity, the reduction in TS was reduced.  

 

Xie et. al. [101] investigated the effect of combining nano fillers with PP on the 

UTS. Two nano fillers were used in the study, carbon nano fillers (CNF) and 

titanium dioxide (TiO2). Then each combination was used to manufacture the parts 

by µIM. The results of the UTS measurements were compared to those of pure PP. 

Results showed that at higher than 10wt% parts with CNF had lower UTS than pure 

PP, while the effect was reversed for TiO2. Effect of the process parameters on each 

combination was not investigated in the study. 

 

Barkoula et. al. [102] also investigated the effect of fibre fillers on the UTS of micro 

parts. In the study compression moulding (CM) and IM were also compared. Results 

showed that filling PP with fibre resulted in higher UTS. In regards to the 

manufacturing process, while IM resulted in lower fibre length, better and more 

efficient orientation of the fibres resulted in higher TS, compared to CM.  

 

In another study, Xie et. al. [103] investigated the effect of gate size dimensions on 

the strength of weld lines. PP and HDPE were used at different process parameters. 

Results showed different behaviors for each of the polymers. Generally, replications 

with gates with higher depth resulted in higher TS for PP. In terms of the effect of 

the process parameters, there seems to be a level at which the best results are 

achieved. Lower pressure, medium Vinj and Tp and high Tm resulted in the highest TS 
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for PP. As for HDPE, highest Pinj, lowest Vinj and medium Tm and Tp showed the best 

results with the gate with smallest depth.  

 

Wu et. al. [104] investigated the effect of Tm, Pp, Tp, Vinj, tp and injection acceleration 

(ainj) on the UTS of micro tensile bars with five different cross section areas. The 

polymers used in this study were PP and HDPE. The study also investigated the 

effect of weld lines on the UTS of the parts; and the effect of process parameters on 

the width of the weld lines. Experimental results showed that for parts without weld 

lines, process parameters do not greatly influence the UTS. The main factor in this 

case is the cross section area of the part. Parts with a higher cross section area had 

higher UTS. However, for parts with weld lines, the effect of process parameters on 

the UTS was significant. Tp, Tm, Vinj and Pp were shown to have the highest 

influence. The effect of the size of the parts was still evident; those parts with a 

higher cross section area had higher UTS. However, the reduction in the size of the 

micro bars was not as significant, compared to those without weld lines. In addition, 

a comparison of the UTS obtained from the experiments and those obtained by 

calculations from material datasheet showed a significant difference.  

 

Tosello et. al. [105] conducted a study on the effect of process parameters on the 

depth and width of the weld lines for PS.  Four process parameters were investigated 

to measure the dimensions of the weld lines, Tp, Tm, Vinj and Pp. Experimental results 

showed that depth of the weld lines was highly dependent on Tm and Vinj while the 

width only had high dependency to Tm. Increasing the mentioned parameters resulted 

in reduction of the size of the weld lines by 50% in both directions. While the UTS 

of the parts were not measured, reduction of the size of the weld lines is highly likely 

to increase the UTS. This confirms the finding of Wu et. al. [104] that if weld lines 

exist, process parameters play a crucial role in improving the UTS of the parts.  

 

Xie et. al. [8] conducted a similar study to investigate the effect of six processing 

parameters on the strength of weld lines for parts made out of PP. The six parameters 

were Tp, Tm, Pinj, Pp, Vinj and ejection temperature (Tejc). Experimental results 

showed that Pinj and Pp rarely had any effect on the UTS. Tm and Tp had the highest 

influence respectively with 42.4% increase and 19.59% decrease in the UTS. Vinj and 

Tejc showed the next highest level of influence. 
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Kuo et. al. [106] studied the effect of the process parameters and the size of micro 

parts on the UTS for ultra-high molecular weight PE. Two different parts were used, 

one with weld lines and one without. The findings were similar to those of Wu et. 

al.[104]. For those parts without a weld line the size of the micro tensile bar showed 

to have the highest effect on the UTS. The parts with higher cross section areas were 

shown to have higher TS. The introduction of weld lines caused a considerable 

reduction in the TS of the micro bars. In these cases, the process parameters were 

shown to have a high effect on the strength of the parts. The cross section of the parts 

still played an important role. Reducing the cross section of the part led to a 

reduction in the UTS. However, the UTS was reduced at a lower rate compared to 

those without weld lines.  Three process parameters, Tp, Tm and Vinj were also 

investigated to optimise the process parameters. However, from the study it is not 

clear which parameter had the highest effect on the UTS for different part sizes. The 

study also indicated that decrease of the UTS due to the polymer flow is more related 

to cross section size of the parts than the viscosity of the polymer.  

 

From the conducted literature review of the mechanical properties of micro parts, it 

can be observed that the effect of process parameters on the formation of weld lines, 

and more generally the UTS, is still an area under investigation. Different polymers 

have shown different behaviours under µIM. Different combinations of process 

parameters have resulted in different UTS achieved for the tensile bars. In addition, 

all the studies have been conducted for conventional dog bone geometries. The 

effects of different designs where micro bars are an integrated part of a product need 

to be investigated further. Furthermore, as several studies have confirmed, the UTS 

in micro products is dependent on the size of the features, and the results are 

considerably different to those estimated from polymer data sheets.  

 

2.6 Modeling in µIM 

This section of the chapter reviews the previous studies conducted in µIM; and 

consists of three sections. The first section explains the special requirements and 

considerations which need to be taken into account for modelling in µIM. The 

second section is a review of the modelling of the process in terms of the filling of 
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the cavities and polymer flow. The third section is concerned with the modelling of 

the mechanical properties of the micro moulded parts. 

 

Successful modelling of the µIM process and its characteristics has several major 

benefits [18, 107, 108]. It allows for visualisation of the flow of polymer and the last 

filled sections. In this method a number of short shots are performed to see the flow 

length and identify the defects in areas where the polymer flows to last. These 

defects include incomplete filling, voids and weld lines. Modelling the process can 

also assist in mould manufacturing. Mould design and manufacture are often very 

expensive and time consuming tasks. Successful modelling allows for investigation 

of the filling of the features, sprues, gating arrangements and flow paths before a 

mould has to be made; allowing any adjustments to be made before production of the 

mould. In addition, modelling can eliminate the need for expensive and time 

consuming experiments to identify the most influential process parameters, and their 

effect on a particular quality criterion. Furthermore, simulation can result in 

investigation of the post process properties of the parts such as shrinkage and 

wrapage.  

 

2.6.1 Requirements and considerations in modeling µIM 

The previous sections of this chapter reviewed the studies conducted for replication 

of high quality parts. Many variables are involved in the IM process such as the 

process parameters, the polymers and different designs of moulds; and each of these 

can affect the quality of the manufactured parts. Therefore, modelling IM has been a 

challenge. The non-Newtonian nature of polymers is an addition to the list, which 

further complicates the task of modelling. µIM also adds further challenges and 

restrictions to this task. As explained in section 2.2.2, µIM cannot be explained as the 

scaling down of the IM process. The reasons for this and the differences between the 

two processes were explained. Due to these differences, softwares developed for 

modelling IM cannot be used in µIM. Because of this several requirements have to 

be met and some factors have to be considered when developing models for µIM. A 

summary of these has been provided by [31]: 
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 In conventional IM, simulating the polymer melt flow as a 2D shape is common. 

This is done by using an approximation based on the Hele-Shaw approximation. 

However, this approximation is not suitable for modelling micro affects such as 

transverse pressure gradient. In addition, Hele-Shaw approximation simplifies the 

modelling of the flow in sharp corners and changes in the part thickness. 

Furthermore, it is not possible in µIM to simplify the shape of the flow to one 

between two walls [107]. 

 Certain effects that are often neglected in IM cannot be neglected in µIM due to 

the large surface to volume ratio. Some of the main factors are surface roughness, 

surface tension, heating of the melt due to friction, and cooling of the melt front 

due to heat transfer and heat loss. The heat transfer coefficient has been shown to 

have significant effect in µIM [109]. 

 The viscoelastic nature of the polymer melts has more significant effects in µIM. 

Flow of the polymer melt through very small areas such as gates increases the 

shear rate significantly. This increase results in the reduction of viscosity by a 

large factor, which may be different from those in data sheets. Some experiments 

have shown that a change in gate dimensions from 0.01625 to 0.00375 mm 

reduces some physical properties by 5-7 % [110]. 

 2D meshing elements commonly used in IM softwares results in over prediction 

of cavity filling. 

 Special processing conditions such as variotherm and air evacuation need to be 

considered.  

 

2.6.2 Modeling the polymer flow and cavity filling in µIM 

Since µIM gained popularity in development and manufacturing of micro products, 

modelling and simulation of the process has become an interesting research topic. 

Several institutes and research groups conducted studies on modelling of the µIM 

process or some of its aspects. In one of the early studies, Hill et. al. [111] attempted 

to simulate the µIM process to optimise the process and find the most important 

factors in filling the cavities and identify problems associated with wrapage and 

shrinkage. The Hele-Shaw approximation was used in this study. Results showed that 

the model over predicted the filling of micro cavities. The main reason for this is due 
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to over simplification of the geometry in which only surface effects on the top and 

bottom of the flow were calculated, and side and end effects were ignored.  

 

Piotter et. al. [18] conducted a study where experimental results were compared with 

a simulation of the filling through MOLDFLOW. The software was developed for 

prediction of flow in IM. Results showed that while MOLDFLOW can be used to 

investigate some qualitative criteria such as weld lines, it cannot be used for 

measuring the quantitative aspects of the quality of the part. In this particular study 

the simulation results over predicted the flow length compared to the experimental 

results. The likely reason for this was that the commercial software did not account 

for the microscopic effects on the flow of polymer. The conclusion was that there is a 

need for models that are specifically developed for µIM.  

 

In another study Yu et. al. [109] modelled the filling of micro channels by µIM 

through C-MOLD, which is a 2D simulation software. The conclusions were the 

same as the previous study. While the software simulated the direction of flow 

correctly, it over estimated the flow length and filling of the cavities. This was again 

due to the 2D nature of the commercial software and the fact that it did not account 

for the 3D flow, heat transfer and the change in the shape of the micro features.  

 

Around the same time, Yao et. al. [112] investigated the simulation of filling micro 

channels by investigating three main factors:  

 The change in viscosity as a result of change in the size of the features, 

 The wall slip effect, where polymer flow slips over a solid wall in micro cavities 

when shear rate exceeds a critical value, 

 The surface tension. 

Results showed that, for micro features made by PS, the surface tension was not an 

important factor in accurate modelling, however calculations had to include the 

micro viscosity effect and the wall slip effect to predict the filling of micro cavities.  

 

Further to these developments, a study by Hung et. al. [113] employed a 3D 

simulation of the polymer flow. The results were in agreement with experiments and 

showed that the teeth of the micro gear were the last place to fill. Therefore, 3D 

simulation became a popular research subject. However, 3D simulation also has 
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some limitations. One limitation is in the size of the features that these softwares 

could simulate. The other limitation is that these 3D packages ignore or simplify the 

heat transfer in µIM.  

 

A study by Ilinca et. al. [107] proposed a model for the filling of the cavities based 

on heat transfer equations. The mathematical results showed good agreement with 

the experimental results in predicting the length of the flow of the polymer. 

 

Since the success of 3D simulation methods were reported, finite element modelling 

became the focus of researchers in developing models and simulation methods. For 

example Shen et. al. [114] used a finite element method (control volume) to optimise 

the process parameters for several polymers. The Navier-Stokes equation was used 

for the formation of the model to predict the flow of PS, PC and PMMA. The 

conclusion was that mould temperature was the most important factor for these three 

polymers. Mathematical results were in agreement with the experimental data.  

 

In another study, Shen et. al. [115] used a finite element method (control volume) to 

optimise the process parameters for PP, PC, PS and POM. Mass, momentum and 

energy conservation equations for non-isothermal fluids were used to form the 

model. The study combined MOLDFLOW and Grey relational analysis to optimise 

the process parameters to achieve minimum wrapage. The results showed agreement 

between the mathematical model and the MOLDFLOW analysis. However, Grey 

relational analysis was faster and more efficient. PS showed the best performance in 

this study. 

 

Yu et. al. [109] developed a hybrid model to simulate the flow and heat transfer of 

polymer melt in a micro channel by using the Cross-WLF viscosity model [116]. The 

method solved the momentum equation for the flow field where the velocity is 

significant. The Hele-Shaw equation was used in all other locations. The study 

concluded that the wall slip effect was very important for accurate prediction of the 

filling. In addition, results revealed that the uncertainty in heat transfer in the micro 

channels contributed significantly to inaccuracies of the filling prediction.    
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Griffiths et. al. [35] used the same viscosity model as the aforementioned study and 

finite element to simulate the length of flow of polymer melt in a micro cavity. The 

generated model was validated by experiments using PP and ABS. Two approaches 

were used, a dual-domain flow analysis and a 3D analysis. Neither the 3D analysis 

nor dual-domain flow analysis agreed with the experimental results. The dual-

domain flow analysis overestimated the flow for both polymers. Whereas the 3D 

analysis underestimated the flow for PP, and depending on the process parameters, 

overestimated or underestimated the flow length for ABS. 

 

Kuhn et. al. [117] conducted a study to model the filling height of micro structures 

made out of  PC, PMMA and PP. The same Cross-WLF viscosity model was used to 

form the model and the validation was done through experimentation. Results 

showed that the general flow of the polymer in the main cavity was negligible 

compared to the flow in the micro structures. In addition, surface tension, wall slip 

and capillary forces showed to have little influence over the filling due to high 

pressure and shear rates occurring during the process. Mould temperature showed the 

highest influence during the filling. Experimental and modelling results did not show 

good agreements, even though the model showed correct trends and the correct 

relationship between process parameters and surface structures.    

 

Zhuang et. al. [118] also formed a model to investigate the filling of micro channels. 

The methods and equations used for IM were compared to those of 3D nature, with 

consideration of viscosity in micro channels and wall slip. Results confirmed that 

equations and models used in IM are not suitable for use in µIM. In addition, the 

viscosity profile obtained from the calculations shows that the viscosity in micro 

features is much smaller than those calculated by conventional viscosity models. 

Using the Navier slip equation, the coefficient of slip was calculated for each of the 

channels. 
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2.6.3 Modeling the UTS of parts manufactured by µIM 

A number of studies have investigated modelling of the UTS of micro injection 

moulded parts. Xie et. al. [8] used the Chebyshev polynomial coefficient equation to 

model the effect of process parameters on the strength of weld lines. The four 

process parameters used in the model are Tp, Tm, Tejc and Vinj. The following 

equation was obtained: 

 

𝐹𝑤𝑒𝑙𝑑 𝑙𝑖𝑛𝑒 = 50.403 − 0.0573𝑇𝑝 − 0.1038𝑇𝑚 − 0.0039𝑇𝑒𝑗𝑐

+ 0.00828𝑉𝑖𝑛𝑗 

Equation 2.1 

 

The model was validated through experimentation and the results showed that at the 

worst case, the difference between the experimental and predicted results were 21%.  

 

A similar study was done by Pal et. al. [98] in which the mechanical properties were 

modelled as a function of Pinj, Tp and th. Three models for breaking strain (εbreak), 

breaking stress (σbreak) and Young’s modulus (E) were obtained: 

 

휀𝑏𝑟𝑒𝑎𝑘 = −2781.94 + 4.65𝑃𝑖𝑛𝑗 + 9.96𝑇𝑝 + 106.89𝑡ℎ + 0.03𝑇𝑝
2

+ 6.45𝑡ℎ
2 − 0.02𝑃𝑖𝑛𝑗𝑇𝑝 − 0.77𝑇𝑝𝑡ℎ  

 

Equation 2.2 

𝜎𝑏𝑟𝑒𝑎𝑘 = 117.209 − 0.002𝑃𝑖𝑛𝑗 − 1.162𝑇𝑝 − 1.353𝑡ℎ + 0.003𝑇𝑝
2

− 0.04𝑡ℎ
2 + 0.009𝑇𝑝𝑡ℎ 

 

Equation 2.3 

𝐸 = 56.433 + 5.44𝑃𝑖𝑛𝑗 + 8.841𝑇𝑝 − 10.37𝑡ℎ + 25.417𝑃𝑖𝑛𝑗
2

+ 8.72𝑇𝑝
2 + 11.225𝑡ℎ

2 + 5.8𝑃𝑖𝑛𝑗𝑇𝑝 − 8.04𝑃𝑖𝑛𝑗𝑇ℎ

+ 8.257𝑇𝑝𝑡ℎ 

Equation 2.4 

 

In a study by Xie et. al. [101] effect of nano fillers in PP composites on the strength 

of weld lines of micro tensile bars was investigated and modelled. The assumption is 

the nano filler content is higher than 10% wt. The following empirical model was 

obtained: 
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𝛿𝑤 = 𝑎𝜑2 + 𝑏𝜑 + 𝛿𝑚 Equation 2.5 

 

Where δw is the weld line strength, φ is the nano filler concentration and δm is the 

tensile strength of the polymer matrix.  

 

2.7 Chapter summary and identification of knowledge gaps 

This chapter provides a detailed review of the studies and work done in the field of 

µIM. The chapter started with a brief history of miniaturisation and micro 

manufacturing. The process of IM was explained and the use of IM machines and 

techniques for production of micro parts was reviewed. The problems and difficulties 

with this method were mentioned and the development of new machines for µIM and 

their requirements were stated. A review of different types of machines and their 

components was presented in the next section. The method of optimisation of the 

machines and the need for them was reviewed and explained. Then mould 

manufacturing techniques and their capabilities were reviewed and some of these 

techniques were explained in more detail. Afterwards a list of polymers and their 

characteristics were presented. The next three sections, contained detailed 

information of the studies conducted in relation to the process of µIM and its effects 

on the quality of the parts, and modelling of these effects. Following the literature 

review, four main gaps were identified.  

 

2.7.1 Modelling of the effect of process parameters on Dimensional 

accuracy of the parts 

Different studies and authors have investigated a variety of quality criteria. However, 

most of the modeling studies have focused on the filling of micro cavities. Initially, 

many of these studies used simplified equations that were used for prediction of 

filling of cavities in IM. This resulted in overestimation of the filling compared to 

experimental results. Once this became clear, 3D finite element methods with a 

combination of wall slip effect, micro viscosity effect and surface tension were 

employed to model the process. While there have been many studies on modeling the 

polymer flow and filling of the cavities, there does not seem to be a report of a model 

that considers dimensional accuracy of the micro moulded parts. Such a model can 
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be used to assess whether a part can be made with the required accuracy, and 

eliminate the need for several expensive and time consuming experiments.  

 

2.7.2 Modelling of the effect of process parameters on UTS of the parts 

There have been very few studies on modelling the UTS of the parts in relation to the 

process. This area has recently become the subject of further research. A few studies 

have looked at the effect of some process parameters, however, often overlooked or 

ignored the polymers used in the experiments, and characteristics of the micro 

moulding machine. Therefore, there is a clear need for a model that considers the 

characteristics of the polymer and the machine been used in addition to the process 

parameters. The application of such a model is the same as that of the accuracy 

model described above. . 

 

2.7.3 Effect of process parameters on dimensional accuracy of the parts 

There have been many studies on the effect of process parameters on different 

quality criteria. Once more, most of these have been focused on the filling of the 

cavities or the general geometry of the parts compared to the mould insert. Some 

studies have also focused on the weight of the parts to investigate if a full shot has 

been achieved. However, very few studies have focused specifically on dimensional 

accuracy of the micro features. Furthermore, each of the studies has identified a 

different set of parameters as the most effective and influential. The variations are 

the result of different methods of investigation and experimentation, and also mould 

designs and polymers. Therefore, there does not seem to be an agreement on the 

most influential process parameters and how they affect the dimensional accuracy. 

The effect of the process parameters on dimensional accuracy must be identified to 

be able to construct a model.  

 

2.7.4 Effect of process parameters on UTS of the parts 

Effect of process parameters on the UTS of the micro tensile bars is an area that has 

been investigated extensively. However, these investigations have focused on parts 

that in most cases do not have weld lines or other defects. Since the elimination of 

weld lines is not always possible due to different designs, air gaps, etc., the effects of 

process parameters on the strength of weld lines, and subsequently on the UTS, have 

become a subject of ongoing research. However, all of these studies have 
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investigated conventional micro tensile bars (dog bones) and the effect of the overall 

shape of the part has not been considered. In addition, the studies have investigated 

different process parameters, and therefore have identified a different set of 

parameters for optimization of the UTS. Understanding these effects will be a crucial 

first step in construction and formation of a model that can predict the UTS of the 

parts in relation to the process parameters and characteristics of the polymers and 

machines.  

 

These four gaps are the subject of these studies and are addressed in Chapters 4, 5 

and 6. Chapters 4 and 5 investigate the effect of the process parameters on 

dimensional accuracy and the UTS, respectively. These are requirements for the next 

two knowledge gaps, the models, which are addressed in Chapter 6. The next 

chapter provides an explanation of the approach and methods that are used to address 

these gaps. 
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Chapter 3 Research approach 

3.1 Introduction 

µIM has become a very important process in the field of polymer processing and 

micro manufacturing, mainly due to its fast cycle time and its ability for mass 

production[5, 6]. Many polymer parts that are made today have applications in micro 

fluidic and medical devices, aerospace and automotive, and sensing and optical 

industries. These parts require very tight tolerances and have to be made with great 

accuracy and strength. For example, micro gears are widely used in medical devices. 

Since most of these devices require invasive surgeries to be implemented inside a 

human body, it is crucial that they function without any failure, so the accuracy of 

the gear tooth is very important. If the size of the gear teeth is not within the required 

tolerances or the teeth break due to the force applied on them, the device can fail and 

this will require the device to be taken out of the patient’s body and a new device 

installed, requiring further surgeries. This is only one of many examples where part 

accuracy is vital to the functionality of a product.  

 

Extensive research was conducted on the µIM domain, and was presented in the 

previous chapter. From the literature review conducted several knowledge gaps were 

identified. One of the main challenges is to predict whether a product can be 

manufactured with the required accuracy and properties specified by the customer. 

This highlights the need for a model which can predict the outcome of the µIM 

process for the production of a specific component. Models and simulation tools 

exist for conventional injection moulding, such as MoldFlow, C-MOLD and Fluent; 

which can predict the flow of polymer melt in the cavity. In the previous chapter it 

was identified that due to factors such as the consideration of flow as 2D, simplified 

PVT data, considerably higher shear rates and different viscosities in micro 

dimensions, these tools cannot be used for µIM [107, 109, 110]. Studies [18, 111] 

showed that  using them results in over prediction of the filling length. There are 

only a few studies investigating modelling the process in regards to the mechanical 

properties of the parts. These studies are very limited to specific polymers and 

process parameters [8, 98]. As a result, the focus of this research is to generate 

models that will enable the prediction of the accuracy of the replicated parts and its 

UTS; based on the parameters used in the moulding machine, the polymer and the 
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machine itself. Such a model will be useful for the µIM industry. µIM technicians 

and product engineers could use this model to predict whether a part with certain 

dimensions and tolerances can be manufactured with the process; and what 

parameters and what levels are required to manufacture a part within the acceptable 

tolerances. Furthermore, once it is established if the part can be made, the UTS 

model can predict if the part will be able to withstand the force during its operational 

life cycle. This eliminates the uncertainties in production feasibility and removes the 

need for the expensive and tedious tasks of designing and manufacturing a mould to 

test the possibility of manufacturing a part. 

 

3.2 Problem definition 

The problem definition for this work is designed based on the literature review, the 

industrial application, and the current state of the art in µIM domain. 

 

To produce a part by µIM, a mould has to be designed. A design engineer receives 

product specifications from the customer and designs the mould based on what the 

product is, its size and specifications. Mould design is an expensive and time 

consuming task which requires several considerations such as the design of runner 

systems in terms of geometry and size, location and size of the gates, cooling and 

heating systems, location of sensors and their connection to the electrical system for 

receiving feedback. The design is sent to a machining technician, usually as a CAD 

file, the mould is then manufactured, which is a very expensive task. There are many 

limitations in terms of technologies that can produce moulds with micro features 

with different dimensions [21]; and the processes available to do this are often time 

consuming and costly. If at any stage there is a problem with the mould or the 

available technologies to the technician, feedback has to be sent to the designer to 

make adjustments to the drawing files. Once the mould is manufactured, several sets 

of experiments have to be done to ensure that a part can be manufactured with the 

required accuracy, stability and specifications that the customer demands. This 

process is time consuming and could sometimes fail as the outcome is not known. If 

the parts are manufactured, a quality engineer needs to confirm that the parts are 

made in accordance with the customer demand. If they are not, depending on the 

specific problem, feedback goes to the designer for redesign of the mould, the mould 
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manufacturer for adjustments or re-making, or the moulding technician to make 

adjustments to the process. All this is an iterative process and needs to be repeated 

until the product with the required tolerances and mechanical specifications can be 

manufactured. If one of the engineers or technicians cannot deliver what is required, 

then the feedback means that the previous task has to be repeated and details 

adjusted. The most severe case is when complete set of adjustments need to be made 

from the design stage. The iterative nature of this process makes it very tedious and 

expensive. Figure 3-1 below shows the schematics of the current process.  

 

 

Figure 3-1- µIM Domain Overview 

A model that can predict the accuracy of a replicated micro part and their mechanical 

properties is valuable to the µIM industry and the manufacturing domain. A model 

will reduce the need for experimentation with different combinations of process 

parameters and polymers. It also eliminates the need to rely on the level of expertise 

of the machine operators. This means that some of the risky, costly and time 

consuming iterative process can be eliminated. Therefore, the aim of this work is to 

address this challenge by constructing a model that will predict the accuracy of 

replicated micro parts and a model that can predict a mechanical property of a 

micro part. In these models the dependent variables are the dimensional accuracy 

and UTS of the parts. The independent variables are a set of characteristics from the 

process, the polymer and the machine used.  
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Several studies [18, 111-115] have been conducted, trying to model the µIM process. 

These do not consider factors such as the size of the cavities and runners, and the 

much higher shear rates that the flow goes through compared to conventional IM. 

Because these factors significantly change the viscosity of polymer and its physical 

properties, using these methods results in overestimation of the flow length [109, 

110].  In order to understand the µIM process, it is important to distinguish between 

micro and macro injection moulding. The limitations of models used for 

conventional IM are mainly due to the fact that conventional fluid mechanics and 

PVT equations cannot be applied in micro scale. Although the general concept of 

reducing the viscosity to make the polymer flow easier is valid here, µIM cannot be 

described as scaling down of the IM process because of the differences between 

micro and macro IM (this was addressed in Chapter 2). There are also very few and 

limited models that can predict the mechanical properties of a product. Constructing 

a model based on the fluid mechanics equations which consider the effect of all the 

process parameters at once, and also the 3D flow of the polymer melt is a 

complicated task, which is not a reasonable objective for this work due to limitations 

of time and equipment. Therefore, a method is identified and used in this study 

which does not have the complexities and shortcomings discussed above. 

 

This is done by investigating three main areas: 

 

 Effect of process parameters on the dimensional accuracy of replicated 

features for the selected polymers 

 Effect of process parameters on the mechanical characteristic of the features 

for the selected polymers 

 Construction of the “Accuracy” and “Mechanical” models based on the 

characteristics of the process, polymers and the machine 

 

3.2.1 Requirements and assumptions 

The definition of the boundary conditions is a crucial task for establishing the scope 

of any model. The establishment of this boundary provides the guidelines for which 

sizes and features this model is valid.    
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Due to the large number of polymers that can be used for µIM and the time required 

to experiment with all of them, the number of polymers used in this study has to be 

restricted. Once this is done the polymers themselves need to be selected. Polymer 

selection is an important decision in micro injection moulding. This is because 

different polymers have different mechanical, chemical and flow characteristics and 

their use depends on the application of the component. For example, some polymers 

cannot be used for medical and micro fluidic applications due to their chemical 

composition and the possibility of contamination.  

 

In addition to the application of the product, other factors need to be considered. 

Generally, a polymer has to have certain characteristics to be suitable for µIM. One 

of the most important characteristics is the manufacturability of the polymer. 

Polymers go through severe operating conditions in micro injection moulding such as 

high temperature and pressure. Polymers must have low viscosity and thus good 

flowability. This is important because, where the type of polymer does not depend on 

the application of the product, polymers with  lower viscosity are preferred. This is 

because lower viscosity leads to better flow, filling and higher accuracy in the final 

product. High mechanical strength is also important so that the part can withstand the 

ejection forces and stresses due to demoulding. Also high strength is crucial in 

mechanical applications such as in the use of micro gears and filters. Polymers must 

also be compatible with the mould material. Polymers containing aggressive 

chemicals can cause corrosion of the mould which leads to the mould having a rough 

surface. Generally, standard thermoplastic polymers used in IM can be used in µIM, 

provided some manufacturability criteria are met [64].  

 

As mentioned before, it is not possible to consider the use of all polymers in this 

study. While the aim is to generate models that can be applied to all polymers, 

perhaps with specific constants for each polymer, this study focuses on formation of 

the models based on two polymers that are commonly used in the field of µIM. 

These polymers are PP and POM. PP is widely used in manufacturing of polymeric 

parts. Its low melt viscosity makes it very attractive in manufacturing of micro parts 

by µIM. It has high tensile strength and elasticity module. Applications include 

manufacture of micro electrical and electronic components, optics and automotive 

industries. Its medical applications include manufacture of drug delivery systems and 
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micro centrifuge tubes used in the fields of medical research and diagnostics. POM 

has high melt flow index, high toughness, hardness and stiffness, and is a good 

electrical insulator. It has good chemical resistance and does not crack easily under 

stress. POM has applications in the automotive, electrical appliances and electronics 

industries. It is also used in the medical industry with parts of inhalers and insulin 

pens been made from POM. 

 

The other aspect in the construction of the models is the selection of process 

parameters and the values used for them. The boundary values for the process 

parameters are selected primarily based on polymer manufacturers’ 

recommendations. However, other studies and initial experiments prove that in 

certain cases values above or below the recommendations have to be used. This is 

because lower values result in premature freezing of the polymer melt and short 

shots. Higher values result in an increase of shear rates and burning of the polymer 

which causes deformation of the mechanical properties of the polymer and the end 

product. Therefore, the values for process parameters are selected based on screening 

of the process and its results, in addition to the manufacturers’ recommendations. An 

important note must be made in regards to the process parameters. The assumption 

here is that the values set on the machine, are those that the polymer experiences 

during the filling process. 

 

Also, in order to generate the models the features for the experiments have to be 

defined. Unfortunately, it is not possible to conduct experiments on all possible 

shapes and features as this study has a limited amount of time and resources 

available. Therefore, a feature has to be selected for this study. The selected feature 

is a micro wall. These are made by filling the cavities which have the shape of a 

micro channel. This feature is selected for two main reasons. First of all, micro walls 

have a wide range of industrial applications. For example, micro walls are used in 

micro fluidic and medical devices, micro filters and micro heat exchangers. 

Secondly, the micro walls used in this study are formed in a very similar shape to 

what is known as a dog-bone shape. There is a thin micro wall in the middle and 

large solid sections at either ends of the wall. This is useful in that it allows the same 

parts that will be used for dimensional accuracy analysis to also be used for 

mechanical testing. This is very important because the results of both accuracy and 
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mechanical experiments need to be compared so that the effect of a process 

parameter on each can be identified clearly. A different feature, or one with a 

different shape, results in a different flow of polymer and therefore the results would 

not be comparable. It is also important to use the same mould design as different 

mould designs lead to differences in polymer flow; resulting in incomparable flows 

and molecular formation. 

 

In order to fully understand the effect of process parameters on the accuracy of micro 

parts and their mechanical properties, a range of dimensions need to be considered. 

This is also crucial in the formation of any model for either dimensional accuracy or 

mechanical stability. A model has to be valid and applicable to a range of polymers 

and a range of feature sizes. The size of the features in this study are selected based 

on what has been studied in the literature, the industrial applications of different sizes 

and the capability of the micro milling machine available to this project. Micro walls 

used in this study have a height of 100 micro meters and their width varies between 

60 and 212 micro meters. 

 

3.2.2 Definition of project objectives 

The main aim of this work is to generate two models which will predict the 

quality of micro moulded parts. Quality here is defined in two terms, dimensional 

accuracy and UTS. To do this it is crucial to establish a relationship between the 

quality criteria, the polymer and the process. In this study a relationship is 

developed mathematically, which will enable the formalisation of a model. The 

general relationships are then expanded through experiments, to complete the 

objective of this study. The result is a mathematical function that relates the specific 

quality criteria to characteristics of the polymer, the process and the product. 

 

There are three main knowledge gaps related to these models and µIM in general. 

The first is to understand the effect of process parameters on the polymer and its 

viscosity, and subsequently the effect of process parameters on the dimensional 

accuracy of the replicated parts. This area is still under investigation by many 

researchers. This will lead to the formalisation of the effect of process parameters on 
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dimensional accuracy for the selected design and features. The results are then used 

to construct the accuracy model.   

 

The second is to understand the effect of process parameters on a mechanical 

property of the parts, specifically UTS. The result is the formalisation of the effect 

of process parameters on the strength of the features. These results are used in 

formation of the mechanical model.   

 

The third gap is the models themselves. Forming the models through experimental 

results alone will result in very limited models which can only be used for the 

specific conditions used in this study. These models cannot be used for other sizes, 

polymers and processing conditions. This is due to the fact that change in features 

and their size, polymers and processing conditions result in different flow 

characteristics, and therefore, different dimensional accuracy and UTS. However, 

forming the models through theoretical equations is a complex task that is beyond the 

scope of this study. Therefore, this work will propose a method in which 

experimental results are used in a set of equations which are formed by using the 

“law of dimensional homogeneity”. The results are two mathematical functions 

which can be used to predict the dimensional error and UTS of the parts as 

functions of polymer properties and the process parameters. 

 

In summary there are three main objectives, which are also shown in Figure 3-2: 

 

 Identification of the effect of process parameters on the dimensional accuracy 

of the micro moulded parts; 

 Identification of the effect of process parameters on the UTS of the micro 

moulded parts; 

 Construction and formation of empirical models to predict the dimensional 

error and UTS of the micro moulded parts. 

 

The first two are used as inputs to the final models. The results of the first section are 

used in analysis of the accuracy and how the process can affect it, and how the 

process parameters are used in the model. The results from the second section are 
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used in the analysis of the UTS of the parts and how the process parameters are 

applied in the mechanical model. 

 

 

Figure 3-2- Project objectives 

 

3.2.3 Definition of the research hypothesis 

The definition of the hypothesis is the main focus of this chapter and sets the scene 

for this thesis. The main aim of this research is to generate models that can predict 

the quality of a replicated part in terms of dimensional accuracy and mechanical 

property. The relationship between the quality of the replicated parts and the process 
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parameters is an area which is still under investigation by researchers. The main 

premise of the hypothesis is that conducting several sets of experiments will 

provide empirical data, which in conjunction with dimensional analysis, can be 

used to formalize a model which provides the relationship between the process 

parameters, polymer properties and the accuracy of a replicated part and its 

UTS.  

 

In the scenario that the empirical models can be used for generating the models, one 

must consider the variables and their importance in each of these models. To 

generate the accuracy model, the first step is to understand which parameters need to 

be included in the model. To do this the effect of process parameters on the 

dimensional accuracy of the parts must be clearly understood. In addition, the 

level of influence and interactions between the process parameters needs to be 

identified. Since there are several variables included in the model from the process, 

the polymer and the product, this step is crucial. The hypothesis is that by 

conducting a controlled set of experiments and using statistical analysis on the 

dimensional accuracy of each polymer and process parameter combination, the 

level of influence of each parameter and its interactions with the other 

parameters or variables can be identified. This understanding is then used and 

applied in the construction of the accuracy model. 

 

To generate the mechanical model again the parameters need to be carefully selected, 

so that the results can be compared with those of accuracy. If the effect reinforces 

those of the accuracy analysis, it can be said that the same changes in the parameters 

will improve or worsen the quality of the part. However, if the effects of process 

parameters on the accuracy and UTS are contradictory, a compromise between 

accuracy and mechanical quality needs to be made when manufacturing a part. In 

this context, the application of the part is likely to be the deciding factor. If the part 

undergoes sever operating conditions (in the context of micro manufacturing) then 

mechanical properties are likely to be more important. However, if great accuracy 

and very tight tolerances are required dimensional accuracy will be more dominant 

factors. Therefore, the analysis in this section needs to include the process 

parameters that are used in the previous section. The next step is to identify the effect 

of process parameters on the UTS. Similarly, the hypothesis is that by conducting a 
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controlled set of experiments and using statistical analysis on the UTS of each 

polymer and process parameter combination, the level of influence of each 

parameter and its interactions with the other parameters or variables can be 

identified. This understanding is valuable and is used when constructing the 

mechanical model. 

 

Once the effect of process parameters are understood and clearly identified, the 

construction of the models becomes possible. This is the main aim of this work. The 

first step in this process is to construct a general mathematical function for each of 

the quality criteria. This function needs to be applicable to all shapes, features and 

designs in the domain of µIM. Then the effect of process parameters and their level 

of influence and interactions will be included to form the predictive models. The 

hypothesis here is divided into two parts. First, is that by using a technique called 

“dimensional analysis” the general mathematical function can be formed. In this 

function dimensional error and UTS are the outputs of the equations. The inputs are 

the characteristics of the process and polymers. The second part of the hypothesis is 

that by using the results of the previous two sections the function can be 

simplified and completed with its constants. The combination of the general 

function with consideration of the influence of the parameters, and empirical data 

obtained from experiments, results in the formation of the final predictive model. 

 

In summary, the research hypothesis requires three main elements which will 

contribute knowledge to the field of µIM. These are  

 

 To identify the effect of process parameters on dimensional accuracy of 

micro parts; 

 To identify the effect of process parameters on UTS of micro parts;  

 Empirical models which can predict the dimensional accuracy and 

UTS of a replicated part. 
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3.2.4 Research methodology 

The work presented in this thesis is a result of a systematic methodology presented in 

Figure 3-3.  

 

The first step toward completing this work was to conduct an extensive literature 

review of the µIM domain. This literature review resulted in establishing the current 

state of the art in the field. The other part of researching the field was to identify the 

applications of µIM and the challenges that the industry faces. The industrial 

challenges in conjunction with the academic work presented in the literature review 

provided a starting point to establish a problem definition. 

 

The problem definition provides a clear view of the domain which enables the 

identification of a clear set of research requirements. This provides a set of 

conditions for which the hypothesis is valid for. The other outcome of the problem 

definition was the identification of the research objectives which were extrapolated 

from the knowledge gaps in the literature. The combination of these provides the 

basis for the definition of the hypothesis.  

 

The hypothesis for this work was broken down into three main sections which are the 

contributions of this research work to the knowledge in the µIM domain. The first 

was to identify the effect of process parameters on dimensional accuracy of micro 

moulded parts. This forms the basis for the selection of the variables used in the 

accuracy model and their level of importance. The second gap is to identify the effect 

of process parameters on the UTS of the replicated parts; which forms the basis for 

understanding and selecting the variables used in the mechanical model. The final 

contribution, which is the main aim of the work, is to construct the models which 

enable the prediction of dimensional accuracy and the UTS of a replicated part.  

 

Identification of the effect of process parameters is done through conducting a set of 

controlled experiments. In these experiments the process parameters are varied 

methodically and systematically, to investigate their effect on the dimensional 

accuracy and the UTS of the moulded parts. For each combination dimensional 

accuracy is measured and compared with results from other combinations. The 
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overall results are then analysed through statistical analysis to investigate the effect 

of each process parameter in the dimension of the parts, the level of influence and the 

interactions of each parameter with the other parameters. 

 

The two predictive models are formed in two stages. The first is to generate a 

mathematical function that shows a general relationship between the output 

(dimensional accuracy or UTS) and the inputs (process parameters and polymer 

properties). This general relationship will be true for parts of any feature or size. The 

limitation is that the constants of the equation and the form of the relationship for 

each of the variables in the equation will be unknown, and are likely to vary if the 

shape and sizes, or mould designs change drastically. Once the general mathematical 

function is constructed, the constants of the equations can be developed through use 

of empirical data generated based on the experiments. The combination of the 

mathematical equations and the incorporation of the empirical data presents the final 

predictive models. 

 

Once the three knowledge gaps are addressed and the predictive models are 

completed, they need to be validated. A set of controlled experiments will be 

conducted with a different mould insert and a different polymer to those used in the 

study. For the first two contributions, the aim is to show that the same trend in the 

effect of process parameters is present. It is important to note that the aim is not to 

prove the same values for accuracy and UTS will be obtained, but to show that the 

trend will be the same. The third contribution is validated by inputting the values for 

the process parameters and polymer properties in the model and showing that the 

general equations are correct. For this contribution, the same polymers in the study 

are used on a different mould insert to show that the constants and the equations are 

accurate. 

 

The final stage of this work is making concluding remarks on the results of the 

experiments, the predictive models and their applications, and the relevance of each 

of the contributions when considering mass production of a part in an industrial 

environment. 
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Figure 3-3- Research Methodology Overview 

 

3.2.5 Identification of the effect of process parameters on dimensional 

accuracy of micro moulded parts 

To identify the effect of process parameters on the accuracy of micro moulded parts, 

a set of controlled experiments are conducted. This is the first step in formation of 

the accuracy model. For the model to be comprehensive, features with a range of 

dimensions must be investigated.  
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Micro walls have a variety of applications in the field of micro manufacturing. They 

are extensively used in the production of micro fluidic devices for drug delivery 

systems, DNA sequencing and blood separation devices, micro filters and micro heat 

exchangers. Therefore, they have been chosen the main focus of this study.  

 

To produce micro walls formed from polymers a mould insert is required with micro 

channels. The inserts for these experiments are made out of brass and the process 

used for manufacturing them is micro milling. Brass is widely used for 

manufacturing mould inserts. This is because it has a good thermal conductivity and 

has low cost compared to other metals. It is also easy to machine, reducing the 

chance of damaging the micro milling machine. In addition, since the metal can be 

machined easily, less stress is applied to the mould during the process and less heat is 

generated (compared to other metals such as steel). This reduces the chances of the 

mould insert being damaged during mould manufacturing. 

 

In this study, the width of the channels varies from 155 to 211 µm. This enables the 

effect of different dimensions of the features on the behaviour of the polymer melt 

and the filling of the cavities to be investigated. The length of the channels is 2 mm 

and their depth is 300 µm. 

 

Two level full factorial Design of Experiment is used to conduct these experiments. 

Table 3-1 shows the inputs and outputs for micro injection moulding experiments. 

 

Table 3-1- Input and output parameters for the Micro injection moulding experiments 

Inputs: machine parameters Output 

Injection velocity, Injection 

pressure, Melt temperature, 

Mould temperature 

Dimensional accuracy of the 

width of the micro walls 

 

 

The outputs are measured by an SEM microscope. The accuracy is measured by 

calculating the error (ΔL).This value is calculated by first measuring the mould 

dimensions (Lm). Then the polymer parts are measured to investigate the width of the 

micro walls (Lp). The difference between these two dimensions is the error (ΔL). 
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This value is used in the accuracy model as the dependent variable (output of the 

model).  

 

Once the values are obtained the process is investigated by statistical analysis. The 

method used for statistical analysis is ANOVA (Analysis Of Variance) which is 

widely used in experimental analysis. This analysis uses main effect and Pareto plots. 

The main effect plot shows the effect each variable (process parameter) has on the 

response, which in this case is dimensional accuracy. Pareto analysis is used to 

investigate which process parameter, or interaction, has the highest effect on 

dimensional accuracy. For this purpose computer software called Minitab is used. 

This software is widely used in designing experiments and analysing their results. 

One of its main functions is to enable the user to investigate the effect of several 

factors on a response and show this in a graphical form which is easy to understand. 

The results of these experiments are used to construct the predictive accuracy model.  

 

3.2.6 Identification of the effect of process parameters on the ultimate 

tensile strength of micro moulded parts 

To identify the effect of process parameters on the UTS of micro moulded parts, a set 

of controlled experiments are conducted. This is the first step in formation of the 

mechanical model. For the model to be comprehensive, features with a range of 

dimensions must be investigated.  

 

Any results obtained in this section must be comparable to the results in the previous 

section. While accuracy and UTS are two different quality criteria, they both have to 

be considered when manufacturing a product by µIM. This is why the trends 

obtained from both sets of experiments need to be compared. Process parameters 

could have a different effect on the accuracy and mechanical properties of the parts. 

If the analysis shows different trends then the deciding factor is likely to be the 

application of the product, and whether accuracy or mechanical stability is more 

important. With this in mind, the experiments for this chapter have been designed to 

use the same variables as those in the previous one. The mould and the insert are the 

same. This is to ensure that the flow of polymer is the same for both of these 

experiments. Differences in polymer flow can result in different filling properties 
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both in terms of accuracy and the solidification and arrangement of the polymer 

molecules. UTS of a part depends heavily on its cross sectional dimensions. If the 

channels have bigger or smaller dimensions UTS will change. Therefore, the mould 

insert used for these experiments is the same as that in the previous chapter. The 

process parameters are also the same as before for the reasons mentioned above. 

 

Two level full factorial design of experiment is used to conduct these experiments. 

Table 3-2 shows the inputs and outputs for UTS experiments. 

 

Table 3-2- Input and output parameters for the UTS experiments 

Inputs: machine parameters Output 

Injection velocity, Injection 

pressure, Melt temperature, 

Mould temperature 

Ultimate tensile strength of 

the micro walls 

 

 

In this section, the output is measured by a machine that is specifically designed to 

conduct pull tests for the purpose of calculating UTS of a part. 

 

Once the values are obtained the process is investigated by statistical analysis. The 

method used for statistical analysis is ANOVA. Main Effect and interaction plots, 

and Pareto Charts will be produced by using Minitab to perform the analysis and 

visualise the effect and interactions of each parameter.   

 

The results of the analysis will be the starting point for developing the predictive 

mechanical model.  

 

3.2.7 Generation of the accuracy and mechanical models 

The need for a model, the reasoning behind why the current models are not suitable 

for µIM and their limitations were discussed and explained in Chapter 2. Therefore, 

the focus of this study is to propose a method for developing two models for 

predicting the dimensional accuracy and UTS of micro moulded parts.  
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Forming the model based on conventional fluid mechanics and PVT data does not 

yield correct predictions. Developing a purely empirical model is a task which 

requires an enormous amount of experiments and is a massive undertaking. Even if 

this was done it is likely that the resulting model could only be used for the specific 

features, polymers and parameter values used in the experiments used to generate the 

empirical data. Therefore, this study employs a method called “dimensional analysis” 

to form a general mathematical model that can be used for any product made by 

µIM. This method is often used to develop a mathematical function between several 

variables where their relationship is unknown. The method is based on the “law of 

dimensional homogeneity” and states that in explaining a physical phenomenon, the 

dimensions of each expression in the function must be the same. Dimensional 

analysis uses this law by attempting to form a function where all of the expressions 

are dimensionless. This method is specifically useful in this study due to the 

complexity of modelling the flow of polymer in µIM; and also different flows due to 

different designs; which both result in different qualities of the parts.  

 

To perform this method a set of variables have to be selected. The selection in this 

study is done so that characteristics from the process, the polymer and the product 

are all included. Process parameters that were used in the previous two chapters are 

used as characteristics of the process. Density, specific heat capacity and thermal 

conductivity are the selected characteristics of the polymer; and the selected 

characteristic of the parts for the accuracy model is the dimensional accuracy of the 

width of the micro walls, and for the mechanical model is their UTS.  

 

Once dimensional analysis is performed, a general function can be obtained for 

accuracy and UTS. However, the constants and specific form of each expression 

(polynomial, 2
nd

 order, 3
rd

 order, etc.) will be unknown. The results from the 

previous two chapters are used to find these unknowns.  

 

Due to limited time and resources, and the complexity of the investigated field, it 

would be outside the scope of this study to ensure that the models work for all 

features, sizes and designs. However, to ensure that the model is comprehensive for 

the quality of the micro walls the features are designed with a range of dimensions. 

The micro channels on the mould are designed to have three different dimensions 
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which provide three micro walls in one part. All these are produced in one shot so 

that the injection conditions are the same.  

 

3.3 Definition of the validation method 

The definition of validation methods in any research requires an analysis of the 

domain. The proposed models target a domain which is quite vast, complex and 

expensive to validate for all existing features, sizes and polymers. Complete 

validation of the model even with only one of these inputs requires several years of 

studies and several sets of experiments with different features, not to mention 

different mould designs and manufacturing techniques, polymers and moulding 

machines. Therefore, a simple validation method is proposed.  

 

Each of the three contributions will be validated by experimental means. The first 

contribution will be validated by using a different mould insert which has the same 

features with a different dimension. The design of the mould remains the same so 

that the flow of the polymer remains the same. The two polymers used in Chapter 4 

will be employed here to validate the findings and the trends identified and discussed 

in those chapters. The process parameters and the values will be the same as used in 

the previous chapters so that the results can be comparable. Clearly, the values for 

the dimensional accuracy of the width of the micro walls will most likely be different 

from those achieved in the original studies. However, the trend and behaviour of the 

polymer under the same conditions, although the size of the channel is different, will 

be validated.   

 

The second contribution is validated in the same fashion. The mould and its design 

remain the same so that the flow of polymer does not differ from the original 

experiments. The two polymers used in Chapter 5 will be investigated here with a 

micro wall of different dimensions. The results will be compared with those obtained 

in the original experiments, to ensure that regardless of the size of the channels the 

polymers and the process behave in the same manner. A third semi-crystalline 

polymer is also used to show that polymers from the same family will present the 

same behaviour under mechanical load. The same process parameters and values 

used in the original study are used in this section of the validation. Again, the values 
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for UTS will surely be different due to the fact that the cross sectional dimensions of 

the micro walls are different. However, what is important is the validation of the 

trend that the changes in process parameters cause. 

 

The third contribution, the two models, will also be validated by experimental means. 

A controlled set of experiments will be conducted to produce new parts with 

different dimensions. The mould insert in this section will have micro channels with 

different dimension from the original studies. However, it must be noted that this 

dimension is close to the range selected previously. If the dimensions are changed 

significantly, while the general model will still be valid, the constants and form of 

each expression may not remain the same. To validate the models the two polymers 

that were used previously will be employed. This is to ensure that the constants for 

the polymers remain the same. Firstly, the new micro walls are produced on the 

machine with a set of values for the process parameters. The parts are then measured 

and the pull tests conducted as before. Once the results are obtained, the values will 

be included in the model to obtain a number for the dimensional error and the UTS 

of the micro walls. These results are then compared to validate the two models. 

 

3.4 Chapter summary 

This chapter provides an overview of the research methodology and explains the 

motivation behind this work. It provides a summary and introduction into the field of 

µIM and the main challenges that this work addresses. The chapter presents the 

definition of the problem that this thesis addresses and formalises a research 

approach. The gaps in the knowledge are identified and objectives of the study are 

explained in detail. The hypothesis for addressing the problem is described, detailing 

the contributions to knowledge and how this work addresses them. Each knowledge 

gap is then defined clearly and a framework for addressing it is explained. Finally, a 

validation method is proposed for each of the contributions to show that they are 

valid, not only to this study, but to the wider field of µIM. 
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Chapter 4 Effect of process parameters on the 

dimensional accuracy of micro injection moulded 

parts 

4.1 Introduction 

Micro injection moulding is becoming increasingly important in the production of 

polymer micro parts. This is due to its ability to mass produce micro parts with a 

very short cycle time [5-9]. Many polymer parts that are made by micro injection 

moulding have industrial applications in industries such as medical devices, 

automotive, aerospace and defense. This means the quality of the moulded parts and 

their dimensional accuracy is of utmost importance.  

 

The importance of predicting dimensional accuracy of the micro moulded parts and 

how a model can help in reduction of the uncertainties in production of the parts was 

reviewed in Chapter 1 and Chapter 2. To produce such a model, the effect of 

process parameters and the level of their influence must be examined. This chapter 

therefore focuses on investigating the effect of process parameters on the accuracy of 

micro moulded parts. This is done by conducting a controlled set of experiments on 

features with different sizes. The micro features are then examined by a microscope 

to measure their dimensional accuracy in relation to the original mould insert. Once 

this is identified, statistical analysis (ANOVA) is deployed to provide an insight into 

the effect the process parameters have on the specific features. The analysis shows 

the impact each parameter has on the accuracy of the parts, positive or negative. It 

also shows the interactions between the parameters and how combinations of them 

affect the parts and their accuracies. The results of the statistical analysis are then 

explained and their implications are discussed to make general recommendations on 

how parts with higher accuracies can be manufactured. 

 

4.2 Design of experiments 

To understand the effect of process parameters on the accuracy of the replicated part 

a set of experiments are designed and conducted. The intention of these experiments 

is to identify the role that process parameters play in the replication of the features 
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and their accuracy. These experiments are explained below. Firstly, the justification 

for the experiments and the reasoning behind the setup is explained. Then the 

experimental setup is described and results of the experiments are presented. Finally, 

the results are discussed and the main findings of the chapter are presented. 

 

4.2.1 Selection of process parameters 

To understand the role that process parameters play on the replication of a part the 

parameters affecting the accuracy of the part must be identified and investigated. The 

accuracy of a replicated part depends on the flow of the polymer melt in the runners 

and cavities. Flow of liquids is often characterized by the viscosity of the flow. 

Viscosity is the measure of a fluid’s resistance to shearing flows, where adjacent 

layers flow parallel to each other at different velocities [119]. The higher the 

viscosity the more resistance there is against the flow of the liquid. This is shown in 

Figure 4-1.  

 

 

Figure 4-1- Fluid viscosity 

 

Viscosity is defined as 

 

𝜏 = 𝜇
𝑑𝑉

𝑑𝑥
 

Equation 4.1 
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where τ is the shear stress (which is defined as 𝐹 𝐴⁄ , µ is viscosity, V is velocity, x is 

distance, and 𝑑𝑉
𝑑𝑥⁄  is the shear rate. 

 

In this section four of the parameters that can be directly changed on the machine and 

have great influence on the viscosity of polymer melt flow are discussed. These are 

injection pressure, injection velocity, polymer melt temperature and mould 

temperature. 

 

Several studies have been conducted to investigate the effect of pressure on the 

viscosity of a polymer melt. Studies have shown that at pressures under 500 bar the 

effect is negligible. However, at pressures of above 500 bar, such as those in µIM, 

the effect becomes significant [120] and as pressure increases, so does viscosity [17, 

120]. This is supported by Equation 4.1. Considering τ = F/A, at the same shear rate, 

increasing pressure leads to increase in viscosity. This can also be explained by the 

structure of the polymer and the effect of processing parameters on them. In the 

equilibrium state, flexible polymer chains take the shape of random coils, creating 

entanglements with each other. The motion of the coils is affected by the presence of 

groups of atoms attached to the backbone. The presence of these groups or their 

interactions leads to low flexibility of the polymer chains. This makes the structures 

highly susceptible to increased level of intermolecular interactions during the flow. 

Therefore, reduction of the volume between the molecules, due to increased pressure 

or decreased temperature, results in the rise of intermolecular friction, which is 

viscosity [121, 122]. In addition, the effect of pressure on viscosity of a polymer melt 

can be seen through the Barus equation [121, 123]: 

 

 µ= µ0 exp(βP)   
 

Equation 4.2 

 

Where µ is the viscosity of the polymer melt, µ0 represents viscosity at ambient 

pressure, P is pressure and β is the pressure constant. Based on this equation, as 

pressure increases so does the viscosity of a polymer melt.  
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Velocity is also an important factor in the calculation of the viscosity of a polymer. 

Equation 4.3 [124] shows the relationship between shear rate and injection velocity. 

  

𝛾 = 8𝑉 𝐷2

𝑑3⁄  Equation 4.3 

 

Where V is injection velocity, D is the injection plunger diameter and d is the radius 

of the flow channel. Assuming D and d are constant, increase in injection velocity 

results in an increase in shear rate. In micro injection moulding, the polymer melt is a 

non-Newtonian fluid and undergoes shear thinning, meaning viscosity decreases as 

shear rate increases and vice versa. Since increase in velocity increases shear rate, it 

results in reduced viscosity. However, increase in injection velocity results in more 

difficult air evacuation [36, 125]. This demonstrates how injection velocity plays a 

role in the flow of the melt and the accuracy of the replicated part. Injection velocity 

also helps in faster movement of the polymer melt and may assist in faster filling of 

the cavities. Faster movement of the polymer melt also results in heating the polymer 

melt as a result of the increased shear rate. This is useful in that it does not allow 

premature freezing of the polymer. 

 

Temperature also has an effect on viscosity. There is no generalized model that 

defines the relationship between temperature and viscosity for polymers. However, 

an empirical model has been developed which is shown in Equation 4.4 [62]. This 

equation is especially suitable for the purpose of this study because it is commonly 

used for semi crystalline polymers. 

 

𝜇0(𝑇)

𝜇0(𝑇0)
= 𝑒𝑥𝑝 (

𝐸0

𝑅
(

1

𝑇
−

1

𝑇0
)) 

Equation 4.4 

 

Where E0 is the activation energy of the polymer, R is the ideal gas constant, T is the 

temperature, T0 is a reference temperature,
 
µ0(T) and µ0(T0) are zero shear rate 

viscosities at temperatures T and T0. Since E0, T0, R and µ0(T0) are constant at the 

reference temperature, increases in temperature (T) cause a reduction in viscosity.  
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In µIM, the volume to surface ratio is very small, so the polymer starts to freeze as 

soon as it hits the surface of the mould and freezes very quickly after contact. This 

means the mould tool needs to be at a temperature at which it stops the polymer 

freezing prematurely and ensures complete filling of the cavity. Therefore, mould 

temperature becomes an important parameter in micro injection moulding. There is a 

general agreement that high mould temperature is one of the parameters that 

enhances the quality of the part. However, excessively high temperature will result in 

degradation of the polymer, which can adversely affect the mechanical and thermal 

properties of the part. It also causes gasification of the mould which will result in the 

formation of gas bubbles and bulges in the micro part. Excessively high temperature 

will also result in an unnecessary long cycle time and increase cost and lead time. 

 

In µIM, it is crucial to reduce the viscosity of the polymer melt. Lower viscosity 

results in better flow of polymer melt in the runners and cavities, and reduced chance 

of premature freezing and incomplete filing of the mould cavity. Therefore, viscosity 

greatly affects the filling of the cavities, and hence, dimensional accuracy of the 

parts. Viscosity is affected by variation of the above parameters. Each of them has a 

different effect on viscosity and the accuracy of a part. Therefore, this study focuses 

on four process parameters: polymer melt temperature (Tp), mould temperature (Tm), 

injection velocity (Vinj) and injection pressure (Pinj). The focus of this chapter is to 

determine the influence of these four parameters on the accuracy of the part and the 

extent of it. 

 

4.2.2 Experimental design 

For the purpose of this study an approach is required to investigate the process 

parameters and their effect simultaneously. This is because in addition to 

investigating the effect of each parameter individually, their combined effect needs 

to be studied. This is due to the fact that variation in combinations of process 

parameters results in changes in accuracy [84, 95]. A design of experiment (DOE) 

approach was used to conduct this study. This approach was selected because it 

allows the investigation of all the selected parameters simultaneously and their main 

effect on the output, which in this study is the dimensional accuracy. Thus it is 

possible to systematically investigate the process variables and their effect on part 
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quality. In particular, process settings and characteristics that affect the part can be 

identified so that the process and product can be improved [126]. Factorial designs 

are widely used in the industry when several factors are involved and their effects 

need to be identified on a response. Full factorial designs are used when the 

combined effects of parameters are investigated; and fractional factorial designs are 

used to reduce the size of large DOE studies and for process monitoring and 

screening [127]. Full factorial designs are those where experiments are conducted 

based on all the possible combinations of variations in the factors. Fractional 

factorial designs are selected based on specific methods (e.g. Taguchi) to screen a 

process. 

 

For the purpose of investigating the effect of process parameters on the accuracy of 

the parts two levels, 1 (lower) and 2 (higher), were selected for the four factors. Two 

levels are selected because the analysis is intended to show the effect of an increase 

or decrease of each parameter. Thus, Taguchi’s L16 Orthogonal Array was used in 

this study; this is shown in Table 4-1. The table shows all the possible combinations 

of variations of process parameters by changing one or more of them in a given 

combination. For example in Run 1, all the factors are set at the lower level. Then 

one of them is changed to the higher factor in Run 2 (Pinj); two factors have changed 

in Run 4 (Pinj and Vnj) and so on until the last run (Run 16) were all the factors are set 

at the higher level. This ensures that the effect of process parameters and their 

combinations on the response (dimensional accuracy) is captured for all possible 

variations. 
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Table 4-1- Taguchi’s Orthogonal Array for investigation of Tp, Tm, Vinj and Pinj 

Run 
Factor 

Tp Tm Vinj Pinj 

1 1 1 1 1 

2 1 1 1 2 

3 1 1 2 1 

4 1 1 2 2 

5 1 2 1 1 

6 1 2 1 2 

7 1 2 2 1 

8 1 2 2 2 

9 2 1 1 1 

10 2 1 1 2 

11 2 1 2 1 

12 2 1 2 2 

13 2 2 1 1 

14 2 2 1 2 

15 2 2 2 1 

2
4
=16 2 2 2 2 

   

4.2.3 Selection of features  

Unfortunately, it is not possible to conduct experiments on all possible shapes and 

features as this study has a limited amount of time and resources available. 

Therefore, a feature had to be selected for this study. The selected feature is a micro 

wall. These are made by filling the cavities which have the shape of a micro channel. 

Micro walls have a wide range of industrial applications. They are used in 

applications such as micro fluidic and medical devices, micro filters, micro heat 

exchangers; with dimensions in the range of tens of microns to sub millimeters [83, 

85, 91]. 

 

4.2.4 Mould design 

Several factors need to be considered in the design of a mould. The importance of 

design and its effects on the replication of the parts was investigated and explained in 
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Chapter 2. The mould used in this study is designed to have short runner systems. 

Smaller runners mean that the polymer has to flow a shorter length. This means the 

conditions of the polymer melt are as close to the settings as possible. In addition, it 

reduces the frictional forces between the polymer melt and the surface of the runner; 

resulting in the polymer retaining more of its velocity. Higher velocity also creates 

more shear rate. This is shown in Equation 4.5, which is the definition of shear rate. 

 

𝛾 =
𝑑𝑣

𝑑𝑥
 

Equation 4.5 

 

Where γ is shear rate, v represents velocity and x represents the distance travelled by 

the melt. Due to the shear thinning effect, as shear rate increases viscosity decreases; 

this assists the filling of the cavities. High velocity also increases shear heating 

which could maintain the temperature of the melt. Shorter flow length also means 

that the polymer temperature remains close to the initial settings. This is because 

there is less heat transfer between the polymer melt and the surface of the mould, as 

explained by Equation 4.6 [128].  

 

𝑞 = 𝑈𝐴𝛥𝑇 Equation 4.6 

 

Where q is the rate of heat transfer, U is the coefficient of heat transfer, A is the 

surface area between the polymer and mould wall and ΔT is the temperature 

difference between the polymer and the mould. The smaller the area (A), the smaller 

the heat transfer between the polymer (higher temperature) and the mould (lower 

temperature); which results in smaller overall heat loss. As explained previously by 

Equation 4.4, higher temperature results in reduction of viscosity which enhances the 

filling of the cavities and accuracy of the moulded micro parts. 

 

A smaller runner system also ensures that pressure remains as close to the original 

setting as possible. Pressure drop occurs as a result of frictional forces between the 

polymer melt and the surface of the mould. Pressure drop in the channel can be 

expressed as Equation 4.7 [128].  
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𝑓 =
∆𝑃

𝜋𝑟2

2𝜋𝑟∆𝐿
1
2 𝜌𝑉2

 

Equation 4.7 

 

Where V is the velocity of the fluid, ρ is the density of the fluid, r is the radius of the 

channel, ΔL is the length the polymer travels, ΔP is the pressure drop and f is the 

friction factor. Solving Equation 4.7 for ΔP gives 

 

∆𝑃 =
𝑓𝜌𝑉2∆𝐿

𝑟
 

Equation 4.8 

 

From Equation 4.8 reduction in the length of flow (ΔL) reduces pressure drop. 

 

Short runner system also has the added bonus that most of the polymer is used for 

production of the part and less polymer is wasted.  

 

4.3 Experimental set up 

Experiments in this study are conducted on a Battenfeld Microsystem 50. This is a 

three stage commercial machine that is being widely used in the field of µIM. 

Advantages of three stage machines and the details of the operation of the particular 

machine used in this study were discussed in Chapter 2. The configuration of the 

machine has not changed so that the results of the experiments are valid for the 

commercial machine and can be used by any operator. 

 

4.3.1 Mould and insert 

The experiments conducted in this study focus on replication of polymeric micro 

walls. For production of these parts three micro channels were manufactured on a 

Brass pin, using the KERN Evo micro milling machine. Each channel is designed to 

have a specific width. This is to investigate the effect of process parameters on 

different sizes of channels. Heights of all channels are designed to be 100 microns 

and the width varies in the range of 151 to 212 microns.  

 

Schematics of the pins and the dimensions of the channels are shown in Figure 4-2 

and Table 4-2.  
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Figure 4-2- Schematics of the Brass pins 

 
Table 4-2- Width of the channels on the Brass pins 

Pin and Channel 
Pin 1 

W1 W2 W3 

Width (µm) 212.14 189.59 155.57 

 

Due to the design and set up of the mould and inserts all channels are filled with the 

same shot. This allows multiple experiments to be conducted simultaneously. Figure 

4-3 shows the picture of the mould and inserts. 

 

2 mm

1 mm

0.5 mm 0.5 mm

W3 W2 W1
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Figure 4-3- Picture of the mould (a) assembled mould and (b) pin inserts 

 

The mould consists of three parts; a square housing, a circular insert, and the two pin 

inserts (pin A and pin B). The pins are located inside the circular insert. Four 

rectangular section alignment pins are also used to ensure the alignment of the fixed 

and the moving halves of the mould. Air evacuation channels are also placed on 

either side of the insert. Figure 4-3 (b) shows the schematics of the part on the mould 

and the location of the pins inside the circular insert. Six ejector pins are used for the 

demoulding of the part. Two of these are on the runner and each part has two on the 

dented section on either side. These are shown in Figure 4-4. Figure 4-5 shows the 

actual polymeric part made with POM. The first one shows the shape of the overall 

part with the runner system (as in Figure 4-3 (b)). The second shows the single part 

once the runners are removed and the third shows a picture of the channels taken by 

the Hitachi S-2600N scanning electron microscopy.  

 

Alignment Pins
Air Evacuation 

Channels

Square HousingCircular Insert

(a) (b)

Pin A
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Figure 4-4- Location of the ejector pins on the mould 

 

Figure 4-5- Moulded part produced in POM 

 

In the moulded part in Figure 4-5 the top piece is the part with the micro channels 

across the circle in the middle; and the middle section which forms the shape of a 

cross is the runner system. The polymer is injected in the middle to ensure the flow 

of the polymer melt is as uniform as possible. In this study one pin (pin A, shown in 

Figure 4-3) is used with three channels and the other section (Pin B) is covered with 

a blank pin.  

 

Several sections of the part can be used to investigate the accuracy of the parts. For 

example the length and width of the overall part, the diameter of the circle, the 

thickness of the part, the dimensions of the legs (small dented sections on the mould) 

Location of the 

Ejector pins

Gate

Runner

Sprue
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and the width of the micro channels. The focus of this study is on the accuracy and 

replication of the micro channels in the middle of the circle. To determine the 

influence of the process parameters the dimensions of the features on the mould and 

the replicated part are compared. A drawing of the part without the channels is 

shown in Figure 4-6. 

 

 

Figure 4-6- Schematics of the part and its dimensions 

 

4.3.2 Materials 

The materials used in this research are polyoxymethylene (POM) and Polypropylene 

(PP). POM is a semi crystalline polymer which has high toughness, hardness and 

stiffness, and is a good electrical insulator. It is a good chemical resistant and does 

not crack easily under stress [77]. POM has applications in the automotive, electrical 

appliances and electronics industries. It is also used in the medical industry and part 

of inhalers and insulin pens are made from POM [129]. PP is widely used in 

manufacturing of polymeric parts. Its low melt viscosity makes it very attractive in 

the manufacture of micro parts by µIM. It has high tensile strength and elasticity 
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modulus. Applications include manufacture of micro electrical and electronic 

components, optics and automotive industries. Its medical applications include 

manufacture of drug delivery systems and micro centrifuge tubes used in the fields of 

medical research and diagnostics [8]. 

 

For the purpose of this study the polymer was purchased from Ticona and its specific 

grade is POM Hostaform® C27021 TF [129]. This grade of POM has high resistance 

to thermal and oxidative degradation. It is used for the production of parts with 

sliding combination applications with very low coefficient of friction such as gear 

wheels. In molten form it has very low viscosity which makes it a suitable material 

for micro injection moulding. The grade of PP used is CPPP SW75AV from Carmel-

Olefines, which has high melt flow rate and low viscosity. Properties and operating 

conditions for the polymers are shown in Table 4-3 and Table 4-4. 

 

Table 4-3- Properties of POM and PP 

Property Value 

POM PP 

Density (g/mm
3
) 1.41 0.9 

Thermal conductivity (W/mmK) 310 2067 

Specific heat capacity (J/gK) 2.3 2.62 

Melt flow index (190˚C) (g/10min) 33.84 65 

 

Table 4-4- Operating conditions of POM and PP 

Process parameter Manufacturer’s recommended value 

POM PP 

Melt Temperature (Tp) (ºC) 190-230 190-300 

Mould Temperature (Tm) (ºC) 80-120 60-90 

Injection Pressure (Pinj) (Bar) 60-120  600 

Injection Velocity(Vinj) (mm/s) 100-300  500 

 

All values for the parameters were selected based on the manufacturer’s 

recommended values for applications in micro injection moulding, based on Table 

4-4 and screening of the process. The selected values for the mould and melt 
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temperature are the minimum and maximum temperatures. Injection velocity and 

pressure are selected based on the capabilities of the machine used in this study. 

Table 4.5 shows the highest and lowest values used.  

 

Table 4-5- Process parameters for POM and PP 

Factor 
Low level High level 

POM PP POM PP 

Tp (ºC) 200 190 225 220 

Tm (ºC) 85 60 120 90 

Vinj (mm/s) 350 350 500 500 

Pinj (Bar) 600 600 800 800 

 

Combination of the values in Table 4-5 and Taguchi’s L16 Orthogonal Array used in 

designing these experiments (Table 4-1) results in formation of Table 4-6. This table 

shows the values of each process parameter for each combination. Initial 

experimentation at the very beginning of this study showed that the holding pressure 

has minimal effect on the accuracy of the part. This is in agreement with some 

studies previously conducted by other researchers on similar features [85, 90], which 

was already presented in Chapter 2. Therefore, holding pressure is set at 1000 bar. 

Injection time and holding time were set at one and five seconds respectively.  Shot 

volume is set at 160 mm
3
. For each parameter combination, 20 samples are 

produced. The first ten are discarded to ensure that the process is stabilized and the 

following ten samples are used for measurements and analysis. 
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Table 4-6- Taguchi L16 OA design for investigating the effect of process parameters on 

dimensional accuracy 

Run 

Factor 

Tp Tm Vinj Pinj 

POM PP POM PP POM PP POM PP 

1 200 190 85 60 350 350 600 600 

2 200 190 85 60 350 350 800 800 

3 200 190 85 60 500 500 600 600 

4 200 190 85 60 500 500 800 800 

5 200 190 120 90 350 350 600 600 

6 200 190 120 90 350 350 800 800 

7 200 190 120 90 500 500 600 600 

8 200 190 120 90 500 500 800 800 

9 225 220 85 60 350 350 600 600 

10 225 220 85 60 350 350 800 800 

11 225 220 85 60 500 500 600 600 

12 225 220 85 60 500 500 800 800 

13 225 220 120 90 350 350 600 600 

14 225 220 120 90 350 350 800 800 

15 225 220 120 90 500 500 600 600 

2
4
=16 225 220 120 90 500 500 800 800 

 

4.3.3 Measurements 

For each combination of process parameters, three samples were randomly selected 

and measured using the Hitachi S-2600N scanning electron microscope (SEM). The 

measurement tool was calibrated, using other standard samples with known 

dimensions. All three micro walls are measured on each sample. For each micro wall 

three measurements are selected in a manner to cover the length of the channel. Once 

dimensions are obtained they are compared with the dimensions of the channels in 

the mould. The value of the difference between the mould channels and polymeric 

micro walls’ dimensions shows the error (ΔL = Lm – Lp). The highest error for a 

channel is selected as the error for that channel. Figure 4-7 shows the location that 

the three measurements were performed. 
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Figure 4-7- Measurement points for each part 

4.4 Results 

This section is designed to show the effect of process parameters on dimensional 

accuracy of the micro moulded parts. This is done graphically with the aid of 

statistical analysis software called Minitab.  To do the statistical analysis, maximum 

values for dimensional error from the measurements is used. This is done with 

consideration for constructing the accuracy models. Since these results are used to 

develop the models empirically, this ensures that the values obtained from the 

models represent the worst case scenario. However, it must be mentioned that the 

measurement values for the micro walls in each batch are very close to each other. 

To illustrate this, an example is given below. Figure 4-8 shows the three 

measurements performed for the second micro wall made out of POM in a randomly 

selected batch (7
th

 process parameter combination). The value that results in the 

highest dimensional error is the first one (165 µm). The average of the measurements 

for this batch is 168.3 with a standard deviation of 3.3. Considering the machine has 

an error value of 5 µm and the human error made in aligning the boundary of the 

measurements arrows, the maximum dimensional error can be used with high degree 

of confidence as the dimensional error for analysis. 
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Figure 4-8- Three measurements of the dimension of the 2nd micro wall made out of POM 

 

4.4.1 Accuracy of the replicated micro walls 

Figure 4-9 shows the dimensional error for each micro wall made out of POM, for 

each combination of the process parameters. The micro walls in the figure are 

arranged from the one with the highest width (number 1) to the lowest width 

(number 3).  

 

Figure 4-10 shows the dimensional error for each micro wall made out of PP, for 

each combination of the process parameters. The arrangement of the number of 

micro walls is the same as Figure 4-9 (i.e. highest width is number 1 and lowest 

width is number 3).  
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Figure 4-9- Dimensional error for each process parameter combination for POM (µm) 

 

 

Figure 4-10- Dimensional error for each process parameter combination for PP (µm) 
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4.4.2 Statistical analysis  

Once the errors are obtained, statistical analysis is performed to show the effect of 

process parameters on the dimensional accuracy of each channel. To do this an 

ANOVA method (Analysis Of Variance) is used. This method is widely used in the 

industry to simultaneously investigate the effect of several factors on a response. For 

this purpose, Main Effect Plots and Pareto Charts are used. Main Effect Plots show 

the effect of a factor on a response. Pareto Charts show the level of influence of a 

certain factor or its interactions with other factors. To achieve these plots Minitab is 

used. This software is commercially available and is extensively used in the industry 

for designing and analysing experiments. In this study, the factors are the four 

selected process parameters and the response is dimensional error.  

 

Figure 4-11 to Figure 4-16 show the Main Effect Plots and Pareto Charts for 

channels 1, 2 and 3 made out of POM. It can be seen from the Main Effect Plots that 

polymer melt temperature (Tp) had the highest effect on improving the dimensional 

accuracy of the micro walls. This is evident by the slope of the line between the two 

points. Injection pressure (Pinj) had the next greatest effect. Melt temperature (Tm) 

also had a positive effect on dimensional accuracy; however, this effect was 

considerably less than the previous two factors. Injection velocity (Vinj) also showed 

a small effect, however, with a negative effect on accuracy. Pareto charts in the 

figures also show the same effect and level of interactions between the four 

parameters. 
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Figure 4-11- Main effects plot for micro wall 1 made out of POM 

 
Figure 4-12-Pareto plot for micro wall 1 made out of POM 
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Figure 4-13- Main effect plot for micro wall 2 made out of POM 

 

 
Figure 4-14-Pareto plot for micro wall 2 made out of POM 
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Figure 4-15- Main effect plot for micro wall 3 made out of POM 

 

 

Figure 4-16-Pareto plot for micro wall 3 made out of POM 

 

Figure 4-17 to Figure 4-22 show the Main Effect Plots and Pareto Charts for 

channels 1, 2 and 3 made out of PP respectively. It can be seen from the Main effect 

plots that polymer melt temperature (Tp) had the highest effect on improving the 

dimensional accuracy of the micro walls. This is evident by the slope of the line 

between the two points. This is followed by injection pressure (Pinj). Melt 

temperature (Tm) also had a positive effect on dimensional accuracy; however, this 

effect was considerably less than the previous two. Injection velocity (Vinj) also 

showed a small effect, however, with a negative effect on accuracy. Pareto Charts in 
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the figures also show the same effect and level of interactions between the four 

parameters. 

 

 

Figure 4-17- Main effect plot for micro wall 1 made out of PP 

 

 
Figure 4-18-Pareto plot for micro wall 1 made out of PP 
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Figure 4-19- Main effect plot for micro wall 2 made out of PP 

 

 
Figure 4-20-Pareto plot for micro wall 2 made out of PP 
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Figure 4-21- Main effect plot for micro wall 3 made out of PP 

 

 
Figure 4-22-Pareto plot for micro wall 3 made out of PP 

 

Since the effects of these parameters on dimensional accuracy are not likely to be 

linear they are further investigated. For each process parameter a set of values are 

investigated for POM and PP. Again, the range for temperature starts where 

complete micro walls are produced and stops where flash is formed excessively. For 

injection pressure and velocity the range starts from where a complete set of three 

micro walls are manufactured and stops just before the machine’s maximum 
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Figure 4-23-Effect of polymer melt temperature on dimensional accuracy of micro walls at 

Tm=120, Vinj=350 and Pinj=800 

 

Figure 4-23 shows the effect of polymer melt temperature on dimensional accuracy 

of the micro walls. While the trend is not linear, it does show that as melt 

temperature increases, dimensional error decreases. This is not true for either 

polymer in the case of the parts produced at 230˚C. This is likely due to the flash 

formed on the part. In fact at this temperature, flash is visibly at an extreme case. 

This means some of the polymer volume that was intended to be injected in the 

mould cavity has leaked and this causes the reduction in dimensional accuracy.   

 

Figure 4-24 shows the effect of mould temperature on dimensional accuracy of the 

micro walls made out of POM and PP. The figure shows that while the drop in 

dimensional error is not linear, the trend obtained earlier is correct and increasing 

mould temperature reduces error for all micro walls. It must be noted that the error 

values fall at a higher gradient for micro wall 2 compared to micro wall 1 and at an 

even higher gradient for micro wall 3. This shows that at smaller feature sizes, mould 

temperature becomes even more important and results in better and more accurate 

realization of micro parts. However, this is not true in the case of PP as PP is less 

sensitive to changes in temperature.  

 

0

2

4

6

8

10

12

14

16

18

20

190 195 200 205 210 215 220 225 230

D
im

en
si

o
n
al

 E
rr

o
r 

(µ
m

)

Polymer melt Temperature (˚C)

Error for micro wall 1 POM Error for micro wall 2 POM

Error for micro wall 3 POM Error for micro wall 1 PP

Error for micro wall 2 PP Error for micro wall 3 PP



Chapter 4 Effect of process parameters on the dimensional accuracy of micro injection moulded parts 

100 
 

 
Figure 4-24- Effect of mould temperature on dimensional accuracy of micro walls at Tp=225, 

Vinj=350, Pinj=800 

 

Figure 4-25 shows the effect of injection pressure on dimensional accuracy of micro 

walls made out of POM and PP. Results show that while dimensional accuracy does 

not fall in a linear manner, the trend shown in statistical analysis is correct and as 

injection pressure increases, dimensional accuracy generally improves. The trend 

shows that as pressure becomes higher, initially and at lower pressures the drop in 

error is at a higher gradient. As the pressure becomes higher, dimensional error 

reduces at a smaller gradient.  

 

 

Figure 4-25- Effect of injection pressure on dimensional accuracy of micro walls at Tp=225, 

Tm=120 and Vinj=350 
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Figure 4-26 shows the effect of injection velocity on dimensional accuracy of micro 

walls made out of POM and PP. The values are selected by monitoring the process. 

Results are in agreement with the trend obtained from statistical analysis. Increase in 

injection velocity results in an increase in dimensional error. Nevertheless, it must be 

mentioned that this increase is very small.  

 

 

Figure 4-26- Effect of injection velocity on dimensoinal accuracy of micro walls at Tp=225, 

Tm=120 and Pinj=800 

 

4.5 Discussion 

4.5.1 Effect of process parameters 

Experimental results showed that generally as the injection pressure and melt 

temperature increased, the error was reduced. Figure 4-11 to Figure 4-22 confirm 

this trend and show that melt temperature and injection pressure have the highest 

effects. Both factors cause improvements on the dimensional accuracy of the micro 

walls. Interactions between polymer melt temperature and injection pressure also 

showed to have high influence on the reduction of dimensional error (Pareto Plots). 

However, the same trend cannot be observed when injection velocity is increased. 

These trends are present in most cases for both PP and POM.  

 

Based on equation 4.4 as the temperature of the polymer melt increases, viscosity 

decreases. This results in easier flow of polymer melt in the channels and therefore 

results in increased dimensional accuracy.  
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Pressure also had a significant effect on accuracy. The Main Effect Plots in the 

figures shows that as pressure was increased, dimensional error significantly 

decreased. The primary effect that increasing injection pressure has is that the 

polymer melt fills the cavities better and more fully. This is likely to be the main 

cause for the increase in accuracy. Increasing the injection pressure also has an effect 

on viscosity. Higher injection pressure increases the force on the polymer melt. 

Therefore, as the polymer is going through the gate and travels into the cavities, 

frictional forces increases which result in higher shear rate and shear heating of the 

polymer. This increase in melt temperature reduces the viscosity in the channels 

which results in better filling of the cavity. This is in agreement with what is stated in 

the literature, that once the size of the features enters the micro range, shear rates 

increase by a large factor; and while the principle is the same, equations used in 

conventional injection moulding (e.g. Equation 4.2) do not apply [21, 33].  

 

In agreement with the literature, an increase in the mould temperature also had a 

positive effect on the dimensional accuracy of the moulded parts. Since the surface to 

volume ratio in µIM is high, the rate of heat transfer between the mould wall and the 

polymer melt is high; therefore the polymer loses its temperature very quickly and its 

viscosity increases. A higher mould temperature reduces the heat loss and therefore 

the melt temperature remains high. This assists with keeping the viscosity lower and 

results in better flow and filling of the cavity. It must be noted that as the size of the 

micro channels decreases, mould temperature becomes more important. This is 

evident in the Main effect plots and Pareto charts. This is because as the size of the 

mould cavity is reduced, the surface to volume ratio becomes higher and freezing 

occurs faster. Therefore higher mould temperatures are necessary as the size of the 

features, here micro channels, decreases. Furthermore, Figure 4-24 shows that the 

error values fall at a slightly higher gradient for micro wall 2 compared to micro wall 

1; and yet even at a higher gradient for micro wall 3 compared to the other two. This 

shows that at smaller feature sizes, mould temperature becomes even more important 

and high mould temperatures result in a better and more accurate realization of micro 

parts. However, this is not true in the case of PP. This is because PP’s viscosity and 

flow is less sensitive to changes in temperature.  
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Injection velocity’s influence on dimensional accuracy of the micro walls is 

unexpected. The effect of injection velocity can be explained by Equation 4.3. 

Increase in injection velocity causes increase in shear rate. This reduces the polymer 

melt’s viscosity and results in better flow of the melt in the channels. However, 

results show that as injection velocity increases so does dimensional error. It is well 

known that as injection velocity increases air evacuation and ventilation becomes 

more difficult and incomplete filling may occur [36, 125]. Thus increasing the 

injection velocity in this study may have resulted in incomplete filling of the micro 

channels, hence, increase in dimensional error. It must be mentioned that the values 

shown in Figure 4-26 are those obtained using the best of the other three conditions 

(higher melt and mould temperature, and injection pressure) and therefore the effect 

of velocity is even lower. However, a look at the numbers in Figure 4-9 and Figure 

4-10 shows that at lower conditions, and especially lower melt temperature, 

velocity’s negative effect is more evident. Nevertheless, the negative effect is still 

very small (around 2.8% on average). 

 

4.5.2 Effect of polymer type 

Dimensional variation can happen as a result of the shrinkage of the polymer melt 

when it cools down. In this experiment POM and PP were used which are semi 

crystalline polymers. Crystalline polymers are well known for the high strength of 

bonding between the molecules which results in more shrinkage [63]. When the parts 

are removed crystallization may have already happened or it may happen at a later 

time which results in a decrease or increase in dimensions of the part respectively. 

Adjusting to correct holding pressure can reduce the amount of shrinkage and result 

in higher accuracy. In fact, a few studies have shown that holding pressure is an 

important factor in filling micro cavities. The effect on dimensional accuracy could 

be the subject of further studies.   

 

The polymers themselves also showed an effect on dimensional accuracy. Results 

showed that PP performed with higher accuracy in all cases (Figure 4-9, Figure 4-10 

and Figure 4-23 to Figure 4-26). PP generally has lower viscosity than POM. The 

melt flow rate for the specific grade of PP used in this study is 65 g/10min and 33.84 

g/10min for POM. The higher melt flow rate shows that PP has a lower viscosity and 
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flows easier in the channels and therefore can fill the channels better, which results in 

better dimensional accuracy. Figure 4-23 to Figure 4-26 show the best operating 

range for POM and PP. These are summarised in Table 4-7 below. This range of 

values results in the smallest variation in dimensional accuracy. These are also 

shown in Figure 4-27 and Figure 4-28. 

 

Table 4-7- The best range of operating conditions for POM and PP 

Process Parameter POM PP 

Melt Temperature (Tp) (ºC) 215-225 210-225 

Mould Temperature (Tm) (ºC) 105-120 85-95 

Injection Pressure (Pinj) (Bar) 600-1000  700-1000 

Injection Velocity(Vinj) (mm/s) 350-500 350-450 

 

 

Figure 4-27- Optimum range of process parameters for POM 

195 205 215 225 235 245
400

500

600

700

800

900

1000

1100

1200

Polymer Temperature (Degrees Celcius)

In
je

c
ti
o
n
 V

e
lo

c
it
y
 (

m
m

/s
)

195 200 205 210 215 220 225 230 235 240 245
400

500

600

700

800

900

1000

1100

1200
90 100 110 120 130 140

200

300

400

500

600

700

Mould Temperature (Degrees Celcius)

In
je

c
ti
o
n
 P

re
s
s
u
re

 (
B

a
rs

)

Optimum 

range

In
cr

ea
se

 i
n

 f
la

sh

In
cr

ea
se

 i
n

 

d
im

en
si

o
n

al
 

er
ro

r/
sh

o
rt

 s
h

o
t



Chapter 4 Effect of process parameters on the dimensional accuracy of micro injection moulded parts 

105 
 

 
Figure 4-28- Optimum range of process parameters for PP 

 

4.5.3 Effect of mould geometry 

Finally, the smaller channels were shown to have higher percentage of dimensional 

error in most cases. As explained before, as the features become smaller the surface 

to volume ratio increases resulting in faster loss of heat and solidification of the 

polymer melt. This leads to higher viscosity which results in higher dimensional 

error. Also, as the entrance of the channels becomes smaller it becomes more 

difficult for the polymer to enter and flow inside the channel. This leads to faster 

temperature loss and increased viscosity, leading to increased error.  

 

4.6 Chapter summary 

The subject of investigation in this chapter was the effect of four process parameters 

on dimensional accuracy of micro moulded micro walls. The investigated process 

parameters are polymer melt temperature, mould temperature, injection velocity and 

injection pressure.  

 

The experiments to understand the effects were designed based on Taguchi’s Design 
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heavily on the viscosity of the melt. Based on this, the process parameters that affect 

the viscosity of the melt were selected. Two polymers, PP and POM, were selected 

based on their applications and uses in the µIM domain. In addition, these are two 

polymers with low viscosity and good flowability. The design of the mould used in 

the study was also discussed in the chapter.  

 

A full factorial design was used to investigate the effect of process parameters on the 

replication’s dimensional accuracy. For each polymer the values were selected based 

on data from the literature review, the polymer data sheets and initial 

experimentations and investigations. The experiments were conducted on a 

Battenfeld Microsystem 50. Ten parts were made for each set of process parameter 

combinations. The widths of the micro walls were selected as the quality criterion. 

Measurements were conducted on a scanning electron microscope. Once the 

measurements were completed, the widths of the polymer parts were compared to the 

width of the micro channels on the mould insert. The difference is considered as the 

error, which is used for analysis.  

 

Minitab 16 was used to conduct the statistical analysis. The effect of each process 

parameter on the dimensional accuracy was investigated individually by using main 

effect plots. The software also allows for investigation of the interactions between 

the process parameters by generating interaction plots. In addition, a Pareto analysis 

was done to understand which parameter had the highest effect on the dimensional 

accuracy.  

 

Results showed that polymer melt temperature is the most influential factor in 

achieving higher dimensional accuracy, followed by injection pressure and mould 

temperatures. Injection velocity showed to have a negative influence on the 

dimensional accuracy of the width of the micro walls. The polymers themselves 

showed a high level of influence. PP parts showed better accuracy due to the fact that 

it has a lower viscosity compared to POM. The size of the channels also played a 

role, decreasing the width of the channels resulted in higher percentage of 

dimensional error. These results were confirmed by investigating each process 

parameter at several values to ensure that while the effect is not linear, the trends are 

still correct. 
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The results obtained from the experiments, together with the understanding of the 

interactions and influence of process parameters, are used in Chapter 6, where they 

are used in the generation of an empirical model that predicts the dimensional error 

in relation to the process parameters. 
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Chapter 5 Effect of process parameters on the UTS 

of the micro injection moulded parts 

5.1 Introduction 

The importance and applications of µIM for manufacture of micro polymer parts 

were reviewed and explained in Chapter 1 and Chapter 2. Due to the importance of 

micro products and their applications and the ever increasing use of µIM, the demand 

for higher quality and reproducibility has increased over the past years. One of the 

quality criteria that is still the subject of research and studies is the ultimate tensile 

strength (UTS) of the micro products. Generally, UTS of the parts depends on the 

polymer, mould design and the process [8]. Optimised selection of the process 

parameters can have a significant effect on the morphological and mechanical 

properties of the micro parts. Currently, this is the subject of experiments conducted 

based on trial and error. Therefore part of the focus of this study is devoted to the 

development of an empirical model that can be used for prediction of the UTS of a 

micro part. The applications and importance of such a model was also reviewed. 

 

To produce such a model, the influence of process parameters on the UTS of the part 

must be identified. Therefore, this chapter focuses on investigating the effect of 

process parameters, their interactions and level of influence, on the UTS of micro 

walls. This is achieved by conducting several experiments on features with different 

sizes, and also with different polymers. To obtain the values for the UTS a 

mechanical testing machine is used to perform the “pull tests”. Once the tests are 

complete and a value is obtained for each process parameter combination, statistical 

analysis (ANOVA) is performed to provide an insight into the effect the process 

parameters have on the UTS. The analysis shows the impact each process parameter 

has individually and also the level of interactions the parameters have. It also 

provides the means to understand the level of influence each process parameter, or 

combinations of them, have on the UTS. Finally, the results are explained and their 

implications discussed.  
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5.2 Design of experiments 

To understand the role of process parameters in variation of the UTS of the micro 

parts a set of experiments are designed and conducted. The intention of these 

experiments is to investigate and identify the influence of each process parameter, its 

interactions with other process parameters and the level of influence on the UTS. 

Firstly the logic behind the experimental design is explained. This is followed by the 

experimental set up; presentation of the results of experiments. Finally, the results 

are discussed and the findings of the study are presented. 

 

5.2.1 Selection of process parameters 

To understand the role that the process of µIM plays on the variation of the UTS of 

the parts, the effect of each process parameter on the mechanical properties of the 

polymer parts need to be identified. The strength of the micro parts depends heavily 

on the orientation of the molecules, the bonding strength between them and how the 

crystals are formed in a polymer part. Direction of the flow determines the 

orientation of the molecules. If the molecules are oriented in the direction of the 

force, UTS is improved. The opposite effect is also true; if the molecules are oriented 

in the transverse direction, UTS is reduced. The crystalline structure is also an 

important factor in mechanical behaviour of the parts and specifically the UTS. 

Increased degree of crystallinity results in increased UTS. However, large spherulites 

reduce the strength of the part. Selection of the process parameters clearly needs to 

address this. The investigated process parameters need to be considered in a manner 

that their effect on orientation and formation of crystals can be investigated. In this 

section, four of the process parameters that can be directly changed on the machine 

and influence the mechanical properties of polymers are discussed. It is important to 

note that these parameters need to be selected in a manner that the results are 

comparable to those of the previous chapter (dimensional accuracy). These 

parameters are polymer melt temperature (Tp), mould temperature (Tm), injection 

velocity (Vinj) and injection pressure (Pinj).  

 

Polymer melt and mould temperature are two very important factors in determining 

the mechanical properties of micro parts. This is because the temperature of the melt 

and the mould determine how quickly the temperature of the polymer decreases. 



Chapter 5 Effect of process parameters on the UTS of micro injection moulded parts 

113 
 

Loss of temperature, or cooling, is considered an important factor in the formation of 

the crystals in polymer parts. Faster cooling of the polymer melt means that the 

movement of the molecules is restricted in time and therefore smaller crystals are 

formed. Slower cooling of the polymer melt allows the molecules to move and orient 

in any direction. This results in the formation of large spherulites which reduces the 

UTS of the part.  

 

Injection velocity and pressure also affect the mechanical properties of the polymer 

parts. Higher injection velocity and pressure also increase the UTS due to the higher 

concentration and compactness of the polymer molecules and therefore, higher 

degree of crystallinity.   

  

In addition to what was explained above, the four process parameters are selected so 

that a comparison of the effect on UTS and accuracy can be done. This is crucial 

because if the process parameters’ effects on the mechanical behaviour and accuracy 

of the part are not the same a solution must be found for manufacturing the final 

product. Therefore, the experiments were designed to investigate the same process 

parameters.  

 

5.2.2 Experimental design 

To understand the effect of process parameters on the UTS of the manufactured 

micro part a method has to be deployed to allow for simultaneous investigation of all 

the process parameters and their interactions and influences. To do this Taguchi’s 

design of experiments is used. This method is commonly used in industrial 

applications where a response has to be investigated based on the effect of several 

factors. In this chapter, the response is UTS of the micro parts and the factors are the 

four process parameters (Tp, Tm, Vinj and Pinj). This method is selected because it 

allows both the effect of the process parameters independently and the effect 

interactions between them to be investigated. Thus the process variables and their 

effects on the UTS are systematically investigated.  

 

For the purpose of this study, a two level full factorial design was used. In the design, 

a low and high level are used to investigate the effect of an increase or decrease in 
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each of the process parameters. Since there are four factors Taguchi’s L16 

Orthogonal Array (24) was formed. This allows for the investigation of sixteen 

different combinations of process parameters. This ensures that the effect of process 

parameters and their combinations on the UTS are captured for all possible variations 

and outcomes. 

 

5.2.3 Selection of features 

The proposed study could be conducted on a wide range of micro wall dimensions. 

However, it is out of the scope of this study to investigate all possible sizes due to 

restriction of time and resources. Therefore specific features have to be selected for 

experimentation. The features used in this study are micro walls which are used 

extensively in industrial applications such as the production of micro heat exchangers 

in micro fuel cells, micro fluidic devices and micro filters [83, 85, 91]. Micro walls 

also allow for the comparison of the results of the UTS and dimensional accuracy 

studies. A different feature results in a different flow of polymer melt in the cavity. 

This changes the formation of the crystals and orientation of the molecules. 

Therefore, a comparison between the two studies would be very difficult. In addition, 

the feature was selected due to its resemblance to a “Dog-bone” micro bar. Dog-bone 

shape bars are specifically used for the measurement of UTS of a specific material, 

or the investigation of the process variations. These parts have a straight bar in the 

middle and two thicker sections on either sides of the bar. The thicker sides are used 

for gripping the part in the tensile testing machine and UTS is measured for the 

middle section. Figure 5-1 shows the schematics of the modified part used in this 

study. The full picture of the part and its relation to the mould was shown in Figure 

4-3 to Figure 4-5. 
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Figure 5-1- Schematics of a tensile test bar 

 

While the part in this study is not exactly in the shape of the tensile test bar, it is very 

similar in that the circular section in the middle holds the micro walls and the outer 

section of the overall part is a thicker section that can be used for gripping the part. 

The use of this part also allows for comparison of the results with other studies to see 

what effect the overall design of the part has. To conduct the pull test on a specific 

channel, the other channels and the sides of the part on the diameter of the circle 

(perpendicular to the micro walls) are cut. This is done after the part is loaded on the 

machine and is gripped firmly so that no stresses apply to the micro walls during the 

set up. The thicker section of the circle will guarantee that the stresses applied to the 

micro walls during the set up and gripping are kept at a minimum level. Dimensions 

of the micro walls are presented in Table 5-1. 

 

Table 5-1- Dimensions of the micro walls used for tensile testing 

Micro wall Length (µm) Width (µm) Height (µm) 

1 1590 212.14 100 

2 2000 189.59 100 

3 1590 155.57 `100 

 

Thick sections 

for gripping the 

bar

Micro wall for 

measuring the 

UTS
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5.2.4 Mould design 

Design of the mould plays an important role in the mechanical behaviour of the final 

micro moulded product. As explained before, direction of the flow has a very high 

influence on the orientation of the molecules, and subsequently on the UTS. Gate 

design is another factor that affects the UTS of the parts. The number and location of 

gates dictates the flow of the polymer melt and its direction [103]. These could result 

in formation of “weld lines”. Weld lines are formed when two flow fronts meet. 

They reduce the UTS because the formation of the molecules at weld lines and their 

orientation are different to the rest of the parts. This is because when the two melt 

fronts meet, under high pressure and velocity, the impact results in movement of the 

molecules in different directions and ultimately different orientations. This results in 

the formation of large spherulites and reduction of the UTS. However, when the flow 

is only in one direction, the arrangement and orientation of the molecules is also in 

one direction. This difference is shown in Figure 5-2. Therefore, where possible, 

weld lines should be avoided.  

 

Figure 5-2- a) orientation of molecules without weld lines, b) orientation or molecules in a weld 

line 
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5.3 Experimental set up 

The experiments in this study are conducted using a Battenfeld Microsystem 50. This 

is a three stage micro injection moulding machine which is widely used in industrial 

manufacturing of micro moulded products. The three stage machines, their working 

principles and their advantages over other types were explained and examined in the 

Chapter 2.  

 

5.3.1 Mould and insert 

The mould and the inserts used to conduct these experiments are the same as the one 

used in Chapter 4 (Figure 4-2, Figure 4-3 and Figure 4-4). Subsequently the parts 

produced have the general shape as that of Figure 4.6. The main reason for this is to 

ensure that the effects of process parameters on the dimensional accuracy and UTS 

can be compared.  

 

If any aspect in the design of the mould is different to that of the previous chapter, 

even if the feature has the same geometry, the flow characteristics will be different. 

These characteristics include shear rates at the gates and through the runners and 

cavities, viscosity of the melt, ejection characteristics such as force and its effect. As 

mentioned before, design of the mould and the direction of the flow have significant 

effects on the mechanical behaviour of the parts. Therefore, for a clear and valid 

comparison of the results it is absolutely crucial that the mould and its inserts to be 

exactly the same as in Chapter 4. .  

 

While the flow of the polymer melt in one direction is desirable, it is not always 

possible. In a condition where weld lines exist, they are likely to be the cause of 

failure in a part.  

 

The mould used in this study has one gate for each part. However, due to the flow of 

the polymer in different directions around the circular section in the middle, the 

micro walls are formed from two directions. This is identified by producing parts 

with short shots. Therefore, this study focuses on investigating the effect of process 

parameters on the strength of the weld lines for micro walls with different 
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dimensions. Figure 5-3 shows the flow of the polymer melt around the circular 

section and in the channels. 

 

 

Figure 5-3- Direction flow in the mould’s micro channels 

 

5.3.2 Materials 

In Chapter 2 a list of commonly used polymers in µIM was presented. It was also 

explained that due to different characteristics of polymers, and different chemical 

and physical properties, their flow behavior is different. This was also investigated in 

Chapter 4. Different flow characteristics, such as viscosity, resulted in different 

accuracies in the final products. Therefore, to be able to clearly and viably compare 

the results of mechanical testing and dimensional accuracy, it is important to use the 

same polymers. As a result, the two polymers used in the previous chapter are 

employed to conduct these studies, these are POM and PP. The properties of these 

two polymers were presented previously (Table 4-3). The values used for the process 

parameters are those shown in Table 4-7 to ensure minimal variation in the 

dimensions of the micro walls. Table 5-2 shows the combination of values for the 

conducted experiments. 
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Table 5-2- Taguchi L16 OA design for investigating the effect of process parameters on UTS 

Run 

Factor 

Tp Tm Vinj Pinj 

POM PP POM PP POM PP POM PP 

1 215 210 105 85 500 400 700 700 

2 215 210 105 85 500 400 1000 1000 

3 215 210 105 85 650 600 700 700 

4 215 210 105 85 650 600 1000 1000 

5 215 210 120 95 500 400 700 700 

6 215 210 120 95 500 400 1000 1000 

7 215 210 120 95 650 600 700 700 

8 215 210 120 95 650 600 1000 1000 

9 225 220 105 85 500 400 700 700 

10 225 220 105 85 500 400 1000 1000 

11 225 220 105 85 650 600 700 700 

12 225 220 105 85 650 600 1000 1000 

13 225 220 120 95 500 400 700 700 

14 225 220 120 95 500 400 1000 1000 

15 225 220 120 95 650 600 700 700 

2
4
=16 225 220 120 95 650 600 1000 1000 

 

5.3.3 Tensile strength testing 

For each of the process parameter combinations three random parts are selected. 

Firstly, these parts are measured using a Hitachi S-2600N scanning electron 

microscope (SEM). This machine is calibrated using a set of features with known 

dimensions. Once these measurements are done, the testing of the UTS is done using 

an Instron 5969 tensile testing machine. This machine is widely used to conduct pull 

tests for determining the UTS of a product. Pull tests are conducted at the rate of 1 

mm/s. Two parts are used to measure the UTS for each micro wall. UTS is 

considered the tensile strength under at the maximum load.  
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As mentioned in section 5.2.3 the parts used in this study are not exactly the shape of 

a conventional dog-bones used for this purpose. However, they have the same 

characteristics as there are two large sections on either side of the micro walls.  

 

5.4 Results 

This section of the chapter provides the results obtained from tensile testing and 

shows the effect of process parameters on the UTS of the micro walls. This is done 

graphically with the aim of statistical analysis software Minitab. The values used for 

statistical analysis are the minimum UTS obtained from the measurements. 

Considering that these results are used to develop the UTS models empirically, the 

minimum values are used to ensure that the models consider the worst case scenario. 

However, it must be noted that the values are very close to each other, considering 

machine error of 10%. To put the values used in the context of mean and standard 

deviation a random batch is selected (7
th

 combination of process parameters). Figure 

5-4 shows the measurements taken from the machine. The first two are 

measurements for micro wall 1, the second two are for micro wall 2 and the third two 

are measurements taken for micro wall 3.  

 

Figure 5-4- UTS measurements for the micro walls made out of POM 

 

The values are presented in Table 5-3. As it can be seen the values used compared to 

the mean values, and the standard deviation is well below the machine error of 10%. 
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Table 5-3- UTS values obtained for micro walls made out of POM 

 UTS (MPa) 

Micro wall number 

1 2 3 

Measurement 1 31.78 33.74 34.17 

Measurement 2 34.61 31.74 31.62 

Mean 33.19 32.74 32.89 

Standard deviation 2.00 1.41 1.80 

 

5.4.1 Typical UTS curve of replicated micro walls 

This section provides an example of the UTS curves for POM and PP and compares 

the curves and the values with an example in literature review for POM and PP parts 

made with. Figure 5-5 shows a comparison of the results obtained with two studies. 

The first is a study of tensile bars made with conventional injection moulding [99]. 

The process conditions for both these cases are very similar to those in the current 

study. Unfortunately as mentioned in the literature review, studying the effect of 

process parameters on UTS of POM micro bars is a new area and a study with 

similar processing conditions with similar dimensions could not be found. However, 

a comparison of the results for micro and conventional injection moulding shows 

relatively similar curves. However, the values for UTS are nearly twice as much in 

CIM than those in µIM. As explained in the literature, this is due to the dimension of 

the cross section of the bars in the two studies. Also, the parts produced in the 

mentioned study are made under the conditions that do not have weld lines.  
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Figure 5-5- Comparison of the results obtained with conventional and micro injection moulding in 

the literature for POM 

 

Figure 5-6 shows a typical UTS curve for micro bars made out of PP in this study 

and an example in the literature [103]. As it can be seen from the figures, the values 

for UTS are in a similar range. Stress-strain curves for the study were not available.  

 

 

Figure 5-6- Comparison of the results obtained with micro injection moulding in the literature for 

PP 
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Figure 5-7 shows the UTS for each micro wall made out of POM, for each 

combination of the process parameters. The micro walls in the figure are arranged 

from the one with the highest width (number 1) to the lowest width (number 3). 

 

Figure 5-8 shows the dimensional error for each micro wall made out of PP, for each 

combination of the process parameters. The arrangement of the number of micro 

walls is the same as Figure 5-7 (i.e. highest width is number 1 and lowest width is 

number 3).   

 

 

Figure 5-7- UTS for each process parameter combination for POM (MPa) 
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Figure 5-8- UTS for each process parameter combination for PP (MPa) 

 

5.4.2 Statistical analysis  

Once the UTSs are obtained statistical analysis is performed to show the effect of 

each process parameter on the mechanical behavior of each channel. To do this an 

ANOVA method (Analysis Of Variance) is used. This method is widely used in the 

industry to investigate the effect of several factors on a response simultaneously. For 

this purpose, Main effect plots and Pareto charts are used. Main effect plots show the 

effect of a factor on a response. Pareto charts show the level of influence of a certain 

factor or its interactions with other factors. To produce these plots Minitab was used. 

This software is commercially available and is extensively used in the industry for 

designing and analysing experiments. In this study, factors are the four selected 

process parameters and the response is dimensional error.  

 

Figure 5-9 to Figure 5-14 show the Main effect plot and Pareto chart for micro walls 

1, 2 and 3, made out of POM. It can be seen from the Main effect plot that polymer 

melt temperature had the highest effect on the UTS of the micro walls. This is 

evident by the slope of the line between the two points. Pareto analysis also confirms 

this by showing that factor A (Tp) has the highest effect. The next most influential 

factor is the injection velocity. This order is reversed for the third micro wall. 

Injection pressure has a low effect on UTS in all cases. Mould temperature also has a 
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low effect for UTS in all cases, with the difference that mould temperature is the 

only parameter that has a positive effect on the UTS.  

 

 

Figure 5-9- Main effect plot for micro wall 1 made out of POM 

 

Figure 5-10-Pareto plot for micro wall 1 made out of POM 
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Figure 5-11- Main effect plot for micro wall 2 made out of POM 

 

Figure 5-12- Pareto plot for micro wall 2 made out of POM 
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Figure 5-13- Main effect plot for micro wall 3 made out of POM 

 
Figure 5-14- Pareto plot for micro wall 3 made out of POM 

 

Figure 5-15 to Figure 5-20 show the Main effect plot and Pareto chart for micro 

walls 1, 2 and 3, made out of PP. It can be seen from the Main effect plot that 

polymer melt temperature had the highest effect on the UTS of the micro walls. 

Pareto analysis also confirms this by showing that factor A (Tp) has the highest 

effect. The next most influential factor is the injection velocity followed by injection 

pressure. The only parameter that has a positive effect on UTS is mould temperature, 

as was the case with POM. However, mould temperature seems to have a lower 

effect than seen with POM, this is because PP is less susceptive to changes in 

temperature.  
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Figure 5-15- Main effect plot for micro wall 1 made out of PP 

 

 
Figure 5-16- Pareto plot for micro wall 1 made out of PP 
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Figure 5-17- Main effect plot for micro wall 2 made out of PP 

 

 
Figure 5-18- Pareto plot for micro wall 2 made out of PP 
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Figure 5-19- Main effect plot for micro wall 3 made out of PP 

 

 
Figure 5-20- Pareto plot for micro wall 3 made out of PP 

 

Similar to Chapter 4, for each of the process parameters a set of values are selected 

to ensure that the trends obtained are correct and the non-linearity does not change 

the general trend. The values are selected based on Table 4-7 to ensure minimum 
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Figure 5-21 shows the effect of polymer melt temperature on the UTS of the micro 

walls. While the trend is nonlinear, the drop in UTS shows that the trend obtained 

from statistical analysis is correct for both polymers.  
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Figure 5-21- Effect of polymer melt temperature on UTS at Tm=100, Vinj=550 and Pinj=700 

 

Figure 5-22 shows the effect of mould temperature on UTS of the three micro walls 

for POM and PP. Again, while the effect is nonlinear, it shows that as mould 

temperature increase, so does UTS.  

 

 
Figure 5-22- Effect of mould temperature on UTS of micro walls at Tp=215, Vinj=550 and 

Pinj=700 
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Figure 5-23- Effect of injection pressure on UTS of micro walls at Tp=215, Tm=100 and Vinj=550 

 

Figure 5-23 shows the effect of injection pressure on the UTS of the micro walls. In 

the case of both materials, the trend shows a slight decline in UTS as pressure 

increases. The variation in UTS is particularly small for PP. 

 

Figure 5-24 shows the effect of injection velocity on UTS of the micro walls. Again, 

while the effect is not linear, the trend obtained from statistical analysis is correct and 

as injection velocity increases, there is a steady decline in UTS. 

 

 

Figure 5-24- Effect of injection velocity on UTS of micro walls at Tp=215, Tm=100 and Pinj=700 
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5.5 Discussion 

5.5.1 Effect of process parameters 

Experimental results show that generally, an increase in polymer melt temperature, 

injection velocity and injection pressure lead to a decrease in the UTS of the micro 

walls. However, increasing the mould temperature results in higher UTS. These 

results are evident in the main effect plots. From these plots and the Pareto charts, it 

can be seen that injection velocity, melt temperature and mould temperature have the 

highest effects on the UTS of the parts respectively. Injection pressure has little 

effect on the UTS.  

 

The characterisation of the UTS in this study is highly dependent on the 

characterisation of the weld lines created in the parts as a result of the mould design. 

Higher melt temperature results in easier movement of the polymer molecules in a 

direction. Therefore, the molecules have more freedom of orientation. This is 

reinforced by the fact that the higher temperature results in slower cooling of the 

part. This causes the formation of large spherulites which is the reason for reduction 

of the UTS. In addition to this, because of the higher level of freedom in movement, 

the molecules are more likely to orientate in different directions at the point of 

contact between the two flow fronts. Because of the non-uniform orientation of the 

molecules the strength of bonding between them is smaller and this reduces the UTS. 

However, the lower melt temperature allows for faster cooling of the parts and 

restricts the movement of the molecules. Therefore, there is less time for the 

molecules to move and they are more likely to have an orientation that is more 

uniform. This is also true at the point of contact where the weld line is formed. 

 

Effect of injection velocity can also be explained by its effect on the formation of 

weld lines. Increased injection velocity causes the molecules to move faster. At the 

point of contact between the two flow fronts, when the molecules come in contact 

with each other, they are more likely to orientate in different directions. This again 

reduces the bonding strength between the molecules and causes the part to break 

under lower force. Therefore, the UTS is reduced at higher injection velocities.  
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At higher mould temperatures polymer melt freezes at a slower rate, which result in 

lower viscosity. This means that the two polymer front meet when the polymer 

molecules are free to move and the molecules to bond. This results in stronger 

bonding of the two polymer fronts and higher UTS. Mould temperature had a smaller 

effect on the UTS of the PP parts. This is because PP is less susceptible to change in 

temperature. 

 

5.5.2 Effect of polymers 

Comparison of the two materials shows that parts made out of POM have higher 

UTS. These are shown in Figure 5-21 to Figure 5-24. In all cases, micro walls made 

out of POM have considerably higher UTS than those made out of PP. This could be 

contributed to the fact that molecules in PP can flow more easily and thus orientate in 

more directions than POM. In addition, a comparison of the yield strength of POM 

with other polymers shows that at higher temperatures, it has higher strength. This is 

shown in Figure 5-25. 

 

 

Figure 5-25- comparison of the yield strength of POM and PP [129] 

 

5.5.3 Effect of mould geometry 

The size of the micro channels did not have an effect on the UTS of the parts. This is 

because the channels with higher cross section area broke at a higher maximum load 

and those with smaller cross section failed at a lower maximum load.  
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The value of the UTS for the channels is considerably lower than those provided by 

polymer manufacturer. This is in agreement with other studies and shows that when 

calculating the UTS for micro parts, the effect of the processing conditions need to 

be considered and conventional tests cannot be used.  

 

5.6 Chapter summary 

The effect of process parameters on the UTS of micro walls was investigated in this 

chapter. Four process parameters were selected for the investigation. These were 

polymer melt temperature, mould temperature, injection velocity and injection 

pressure. These factors were selected because of the effect each of these have on the 

mechanical behavior of polymers. In addition, to make a comparison of the effects 

with the previous chapter it was necessary to investigate the same parameters. To 

investigate the effect of process parameters Taguchi’s Design of Experiments was 

employed in order to identify the effects simultaneously.  

 

The features used in this chapter are the same as those used in Chapter 4. This is to 

ensure that the flow of the polymer melt inside the features remains the same. This is 

important for making a comparison as changes in the flow direction could cause 

different effects on the parts. For the same reason, the design of the mould remains 

the same.  

 

A full factorial DOE was employed to conduct the experiments. Battenfeld 

Microsystem 50 was used to manufacture the parts. Ten samples were made and 

discarded in order to allow for stabilisation of the process. The following ten samples 

were made for data collection. The quality criterion here was the UTS of the micro 

walls. The values for process parameters were selected based on the results of the 

previous chapter to ensure that dimensional variation in the channels remained at a 

minimum level. The pull tests were conducted on an Instron 5969 machine for each 

of the micro walls.  

 

Minitab 16 was used to conduct the statistical analysis to identify the effect of the 

four process parameters. Effects of individual parameters were investigated using 
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Main effect plots. Pareto charts were used to identify the effect of interactions 

between the parameters, and the strength of the influence of the parameters.  

 

Results showed that an increase in injection velocity and polymer melt temperature 

had the highest effects on reducing the UTS, while increasing the mould temperature 

resulted in increased UTS. Injection pressure had a negative effect, however, the 

effect was not significant. These were confirmed by investigating each process 

parameter individually at several values.  

 

Micro walls made out of POM proved to have higher strengths.  

 

The understanding obtained in this chapter and the level of interactions and 

influences presented in the results are used in the next chapter in formation of a 

model that can predict the UTS of micro walls. 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 
 

 

 

 

 





Chapter 6 Empirical modelling of dimensional accuracy & UTS of micro moulded parts 

139 
 

Chapter 6 Empirical modelling of dimensional 

accuracy & UTS of micro moulded parts  

6.1 Introduction 

Extensive research was conducted on the µIM domain and several knowledge gaps 

were identified and presented in Chapter 2. One of the main challenges in this field 

is to predict if a part can be made and with what dimensional accuracy and what 

mechanical properties. This highlights the need for a model that can predict the 

accuracy of a micro moulded part and its mechanical properties, based on the process 

parameters and the polymer used to manufacture it. Models and simulation tools 

exist for conventional IM such as MouldFlow and C-MOLD, which can predict the 

flow of a polymer inside a mould insert cavity. These models were reviewed and it 

was concluded that they are not suitable for µM. The reasons for this and the 

important factors resulting in differences in the results were examined and explained 

[107, 109, 110]. The same arguments are applicable in modelling of the UTS of the 

parts. Although there have been some studies [8, 98] in modelling of the tensile 

strength in relation to a specific part, they have focused on specific polymers. 

Therefore, the focus, and the main contribution of this study is to generate a model 

that can predict the accuracy of a micro moulded part and one that can predict its 

UTS. In these models dimensional accuracy and UTS are functions of the process 

parameters used, the machine, and the polymer used. Such models are useful because 

they reduce the need to conduct enormous number of experiments to investigate if a 

part can be made to the required accuracy and mechanical properties. This will 

significantly reduce the cost and effort required to develop or manufacture a product. 

 

This chapter describes the work undertaken in this study to generate these models. 

Firstly the parameters and requirements of the model are identified based on the 

results of previous studies, the product and machine. A method is then identified to 

find a relationship between the parameters. This method is then employed to create 

general models in the form of mathematical equations. Then the results of 

experiments are used to find the constants of the equations, and create a model 

specifically for the problem definition of this study. This is shown in Figure 6-1. 
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Figure 6-1- Formation of models based on machine, polymer and product characteristics 

 

Different mould designs, runners, gate dimensions and features result in different 

accuracies. However, due to limited time and resources it is out of the scope of this 

work to investigate all these factors. Therefore, the mould used for the purpose of the 

experiments, is that used in the previous chapters with the same geometry as shown 

in Figure 4-6; and the set up and design of the mould used is that shown in Figure 

4-3. This is so that the empirical analysis that is used in this chapter is in 

synchronization with the previous chapters.  

 

First, the method for construction of the model is identified and introduced and the 

reasoning behind the application of this method for the purpose of this study is 

explained. Applying the method to µIM provides a general mathematical model, 

which can then be tailored to the problem definition of this study, by using empirical 

data. 

 

6.2 Dimensional analysis 

6.2.1 Nature of dimensional analysis 

In investigating a physical phenomenon researchers often try to form equations using 

mathematical analysis. The reason for this is that analytical equations are correct for 

any system of units. This results in each group of terms in the equation having the 

same dimensional representation. This is the law of dimensional homogeneity. This 

law can be used to form equations where a relationship between several variables is 
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unknown. By using a procedure called dimensional analysis a set of dimensionless 

groups can be formed and a relationship between them can be formed. The advantage 

of this method is that the number of experiments required to find the relationship is 

greatly reduced [130]. This reduces the cost and time that one has to spend to be able 

to form the required function. An example is employed here to explain the 

advantages of dimensional analysis over a purely empirical approach. This is to 

determine a relationship between five variables of Y, X, Z, O and B, where Y would 

be stated as a function of the other four variables. 

 

Y=f (X, Z, O, B) 

 

To determine the mathematical relationship between the variables empirically, an 

enormous number of experiments have to be conducted. This is because only one 

variable can be changed at a time to achieve many plots. A possible solution can be 

seen in Figure 6-2 where Y is plotted against X for various values of Z. However, 

each diagram corresponds to a specific value of O and B.  

 

 

Figure 6-2- Plots required forming an equation between Y and X 
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In addition, depending on the nature of the experiments and the physical phenomena 

being modelled, several conditions for each of the variables need to be considered 

(e.g. limits on the values). Thus approaching this problem with experiments alone is 

a very time-consuming and costly investigation.  

 

Dimensional analysis allows for a general equation to be formed analytically. This 

general equation would be valid because the same unit system is used for all groups 

of expressions in the equation. Going back to the above example, assuming two 

dimensionless groups of  𝜋1 =
𝑌

𝐵𝑂𝑍
 and 𝜋2 =

𝑂𝐵𝑋

𝑍
 exist, a plot can be formed 

between the two expressions, where 

 

𝜋1 = 𝑓(𝜋2) 

 

Therefore, 

𝑌

𝐵𝑂𝑍
= 𝑓(

𝑂𝐵𝑋

𝑍
) 

 

Where the function f is unknown. This is shown in Figure 6-3.  

 

 

Figure 6-3- Plot of the two dimensionless numbers 

 

While the nature of the function between π1 and π2 is not known having values for 

each of the variables in π2 gives a value for π1. This makes it much less costly and 

time consuming to obtain a function between the variables. In addition, since the 



Chapter 6 Empirical modelling of dimensional accuracy & UTS of micro moulded parts 

143 
 

groups are dimensionless, the function is correct for any physical phenomena. To be 

able to form a relationship between the variables through dimensional analysis the 

number of dimensionless groups needs to be identified.  

 

6.2.2 Buckingham’s π Theorem 

Buckingham’s π Theorem is used to identify the number of dimensionless groups 

required to find a relationship between several variables. According to Buckingham’s 

π Theorem, “the number of independent dimensionless groups that may be employed 

to describe a phenomenon known to involve n variables is equal to the number n-r, 

where r is usually the number of basic dimensions needed to express the variables 

dimensionally” [130, 131]. There are two main systems of basics dimensions. The 

first is MLTθ which represents mass, length, time and temperature. The second is 

FLTθ which represents force, length, time and temperature. In this study the former, 

which is more commonly used in SI systems, is used. In the previous example, there 

are five variables so n=5; and assuming the basic dimensions are MLT (meaning 

none of the variables contain the basic dimension of temperature θ), r=3. Therefore, 

two dimensionless groups are required to form the equation. Buckingham’s π 

theorem states that there can be no more dimensionless groups that can be employed. 

Any other group developed, can be derived mathematically from the two already 

formed.  

 

However, the computation of r is not always correct based on the theorem [130]. For 

instance in stress analysis where problems include force and length, two expressions 

are required based on FLTθ (F and L) and three based on MLTθ (M, L and T). 

Nevertheless, there is a procedure that can be used for determining the correct value 

of r. The variables Y, X, Z, O and B are listed on a horizontal axis and the basic 

dimensions (e.g. M, L and T) are listed on a vertical one, such as Figure 6-4. The 

numbers for each variable are then added below them and in front of the dimension. 

These are the power of each basic dimension for the particular variable. Based on the 

figure, variable Y has the dimensions of  𝑀𝑇2

𝐿⁄  while O has the dimensions of 𝐿2𝑇. 
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Figure 6-4- Dimensions of variables for calculation of “r” 

 

The matrix that is formed from these numbers is called the “dimensional 

matrix”[130]. For the example above, this matrix is  

[
1 0 3

−1 −2 1
2 1 1

    
0 1
2 1
1 1

] 

The determinant of a matrix can only be calculated if it has the same number of rows 

and columns. Therefore, the above matrix has to be squared up, by adding two rows 

of zeros, so the determinant can be obtained. However, the determinant of such a 

matrix is zero. The size of the next smaller matrix that has a determinant other than 

zero is the rank of the dimensional matrix. In the above example, the next square 

matrix with the determinant other than zero is one with three rows and columns. 

Several possibilities exist for this example. However, if the first three rows are 

assumed, the determinant becomes 

|
1 0 3

−1 −2 1
2 1 1

| = 6 

making the rank of the dimensional matrix three. The correct value of r in 

Buckingham π’s theorem is equal to the rank of the dimensional matrix [130]; in this 

case three.  

 

Once the number of required dimensionless groups is identified, the groups 

themselves can be formed. Firstly, a set of repeatable and non-repeatable variables 

have to be selected. Each non-repeatable variable can only exist in one dimensionless 

group. This is because if several variables exist in several groups at the same time, 

forming a function or a plot becomes considerably more difficult. Once repeatable 

and non-repeatable variables are selected, the dimensionless groups of π1, π2, … πn 

can be calculated. For each π one non-repeatable and the repeatable variables are 

M

L

T

Y X Z O B

1 0 3 0 1

-1 -2 1 2 1

2 1 1 1 1
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used to form the group. The power of the non-repeatable variable is kept as one and 

the other variables have unknown powers of a, b, c, etc. However, the powers can be 

calculated by writing the dimension of the variables in the groups. These powers are 

then found by adding the powers for the same basic dimensions and making them 

equal to zero. Then solving the equations will provide the value of the powers. Once 

the dimensionless groups are formed, one becomes a function of the others: 

 

π1=f (π2, π3, …) 

 

In the example in Figure 6.3, a dimensionless group with variables Y, B, O and Z is 

formed, where Y is the non-repeatable variable and the other three are repeatable. 

Based on Figure 6.3 each of the variables has the following dimension:  

 

𝑌 ≡ 𝑀𝐿−1𝑇2 

𝐵 ≡ 𝑀𝐿𝑇 

𝑂 ≡ 𝐿2𝑇 

𝑍 ≡ 𝑀3𝐿𝑇 

 

Y has the power of one and B, O and Z have the powers a, b and c respectively. 

Therefore π1 is 

 

𝜋1 = 𝑌𝐵𝑎𝑂𝑏𝑍𝑐 

 

The value of the powers is calculated by replacing each variable with its dimensions.  

 

𝑌𝐵𝑎𝑂𝑏𝑍𝑐 ≡ (𝑀𝐿−1𝑇2)(𝑀𝐿𝑇)𝑎(𝐿2𝑇)𝑏(𝑀3𝐿𝑇)𝑐 

 

For π1 to be dimensionless the sum of the powers for each basic dimension has to be 

zero. Therefore, 

 

L: −1 + 𝑎 + 2𝑏 + 𝑐 = 0 

M: 1 + 𝑎 + 3𝑐 = 0 

T: 2 + 𝑎 + 𝑏 + 𝑐 = 0 
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Solving these equations gives the values for a, b and c. This results in identification 

of the dimensionless expression of π1.  

 

It must be noted that while this method is widely used for determining the 

relationship between several variables, it does not seem to have been applied for 

modelling in CIM. This could be due to the fact that PVT data and conventional 

equations used for analysis of the flow and viscosity can successfully be applied to 

CIM, due to the considerably larger dimensions of the features and runners in CIM. 

Even application of the technique for modelling and determination of polymer 

viscosity has been limited to parts with dimensions considerably larger than those 

investigated in this study. This seems to be the first time this technique is used for 

modelling dimensional accuracy and UTS in µIM. 

 

6.3 Use of dimensionless analysis in construction of the 

empirical model for dimensional accuracy of µIM parts 

In this section the procedure for formation of the empirical accuracy model is 

explained. Firstly, a general model is formed based on the procedure explained 

above. Then the constants and powers of the general equation are explained. These 

are calculated based on empirical data obtained from the planned experiments. 

 

6.3.1 Construction of the general accuracy model 

Dimensional analysis is used in this study to form the model for predicting the 

dimensional accuracy of micro moulded parts. In this model change in dimension of 

the parts is a function of the process parameters and characteristics of the machine, 

and the physical properties of polymers. Advantages of dimensional analysis in 

creation of a model over purely empirical methods were discussed earlier in the 

chapter. In this section the application of dimensionless analysis and Buckingham’s π 

theorem to µIM is described.  

 

The selected variables from the process, machine, polymer and product are shown in 

Figure 6-5. 
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Figure 6-5- Variables used in formation of the accuracy model 

 

Effect of viscosity on the filling of the cavities and on the dimensional accuracy of 

micro moulded parts was discussed in Chapter 4. Therefore, the main factor in 

selection of the variables is the effect they have on viscosity. The variables selected 

from the process, are those investigated in Chapter 4. These are polymer melt 

temperature at the nozzle (Tp), injection velocity (Vinj), injection pressure (Pinj) and 

mould temperature (Tm). There are several characteristics of the machine that can be 

considered for the purpose of this model, however in this case characteristics have 

been selected on the basis that they affect the viscosity of the polymer. Equation 5.3 

shows that viscosity of the polymer is affected by the plunger diameter (Dp). 

Moreover, plunger diameter is one of the common factors in the characterisation of a 

µIM machine.  Transfer of heat between the melt and the mould wall also affects the 

viscosity of the melt. Loss of heat from polymer melt reduces its temperature and 

results in an increase in viscosity. Therefore, the physical characteristics of the 

polymer, considered in the model, are density (ρ), specific heat capacity (Cp) and 

thermal conductivity (k). Melt throughput (Q) and viscosity (µ) are also considered 

in this model. Several sections of the part can be considered and used to measure the 

dimensional error. However, the width of the micro channels in the middle are those 

with the smallest micro dimensions. The width of the micro channels are also the 

only section of the part that vary in the part produced in this study. This is a necessity 

ΔL= f (Tp, Tm, Q, P, Dc, ρ, µ, k, Cp) 

Process

Injection Pressure

Injection Velocity

Melt Temperature

Mould 

Temperature

Product µIM Machine Polymer

Plunger DiameterChannel Width

Density

Viscosity

Melt Throughput

Thermal 

conductivity

Specific Heat 

Capacity

Dimensional analysis

Buckingham’s π Theorem Dimensional Matrix Dimensional Calculations

Mathematical Accuracy Model
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for the model if it is to cover a range of dimensions. Therefore, the selected 

characteristic of the part is the width of the channels (Dc).  

 

In order to simplify the model and reduce the number of variables, some of the 

variables are put together. Injection velocity and plunger diameter are represented by 

the melt throughput in the model. Melt throughput is defined as  

 

𝑄 =
𝜋𝑉𝐷𝑝

2

4
                                                                          Equation 6.1 

 

And dimensional error is represented as 

 

∆𝐿 = 𝐿𝑚 − 𝐿𝑝                                                                                            Equation 6.2 

 

where Lm is the width of the channel on the pin (mould inserts) and Lp is the width of 

the channel on the moulded part.  

 

The variables used in the proposed model and their dimensions are summarised in  

Table 6-1. 

 

Table 6-1- Variables used in the accuracy model and their dimensions 

Variable Notation Dimension 

Dimensional error ΔL L 

Polymer melt temperature Tp θ 

Mould temperature Tm θ 

Melt throughput Q L
3
T

-1 

Injection pressure P ML
-1

T
-2 

Channel width Dc L 

Polymer density ρ ML
-3 

Viscosity µ ML
-1

T
-1 

Polymer’s thermal conductivity k MLT
-3

θ
-1 

Polymer’s specific heat capacity Cp L
2
T

-2
θ

-1 
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The general equation is, 

 

ΔL= f (Tp, Tm, Q, P, Dc, ρ, µ, k, Cp)                                                            Equation 6.3 

 

There are nine variables with four basic dimensions (M, L, T and θ). According to 

Buckingham’s π Theorem the number of dimensionless groups is six (10-4=6) which 

are π1, π2, π3, π4, π5 and π6. Due to the fact that Buckingham’s π Theorem may not 

result in correct value for “r”, one must validate the number of dimensionless groups 

by formation of the dimensional matrix. This is shown below in Figure 6-6. 

 

 

Figure 6-6- Dimensions of the variables in µIM accuracy model 

 

The dimensional matrix is then 

 

Following the method introduced previously, the least number of columns and rows 

that result in a determinant of a number other than zero is clearly four (e.g. last five 

rows). Therefore, the rank of the dimensional matrix, and the value of r, is four. So 

six dimensionless groups (n-r=10-4=6) are required to form the mathematical 

equation that predicts the dimensional error as a function of the other eight variables. 

This confirms that in this case Buckingham’s π theorem was correct. 

 

ΔL Tp Tm Q P Dc ρ µ k Cp

L 1 0 0 3 -1 1 -3 -1 1 2

M 0 0 0 0 1 0 1 1 1 0

T 0 0 0 -1 -2 0 0 -1 -3 -2

θ 0 1 1 0 0 0 0 0 -1 -1

1 0 0 3 -1 1 -3 -1 1 2

0 0 0 0 1 0 1 1 1 0

0 0 0 -1 -2 0 0 -1 -3 -2

0 1 1 0 0 0 0 0 -1 -1
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Once the number of dimensionless groups is identified one can form them by 

dimensional analysis. The six dimensionless groups require six non-repeatable 

variables. These are selected in a manner to isolate the process parameters, 

dimensional error and a polymer characteristic. These variables are Tp, Tm, Q (which 

includes the injection velocity) and P from the process, ΔL as the output of the model 

and K from the polymer. Therefore, there are four repeatable variables; Dc, Cp, µ and 

ρ. Each of the non-repeatable variables exists in one dimensionless group, with the 

four repeatable ones. Therefore, π1 is calculated as: 

 

𝜋1 =  ∆𝐿𝐷𝑐
𝑎𝜌𝑏𝜇𝑐𝐶𝑝

𝑑  ≡ 𝐿 𝐿𝑎  (𝑀𝐿−3)𝑏 (𝑀𝐿−1𝑇−1)𝑐 (𝐿2𝑇−2𝜃−1)𝑑 Equation 6.4 

 

Since π1 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: 1 + 𝑎 − 3𝑏 − 𝑐 + 2𝑑 = 0                                                                      Equation 6.5 

M: 𝑏 + 𝐶 = 0 Equation 6.6 

T: −𝑐 − 2𝑑 = 0 Equation 6.7 

θ: −𝑑 = 0    Equation 6.8                                                                           

 

By solving the above equations, values for d, c, and b are zero and 𝑎 = −1. 

Therefore,  

 

𝜋1 =  ∆𝐿𝐷𝑐
−1𝜌0𝜇0𝐶𝑝

0 

𝜋1 = ∆𝐿
𝐷𝑐

⁄  Equation 6.9 

 

This procedure is then carried out for each of the non-repeatable variables to form 

the dimensionless groups. So π2 is calculated as: 

 

𝜋2 =  𝑇𝑝𝐷𝑐
𝑎𝜌𝑏𝜇𝑐𝐶𝑝

𝑑  ≡ 𝜃 𝐿𝑎 (𝑀𝐿−3)𝑏 (𝑀𝐿−1𝑇−1)𝑐 (𝐿2𝑇−2𝜃−1)𝑑 Equation 6.10 

 

Since π2 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: 𝑎 − 3𝑏 − 𝑐 + 2𝑑 = 0                                                                      Equation 6.11 
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M: 𝑏 + 𝐶 = 0 Equation 6.12 

T: −𝑐 − 2𝑑 = 0 Equation 6.13 

θ: 1 − 𝑑 = 0    Equation 6.14                                                                         

 

solving these equations gives, 𝑑 = 1, 𝑐 = −2, 𝑏 = 2 and 𝑎 = 2. Therefore, 

 

𝜋2 =  𝑇𝑝𝐷𝑐
2𝜌2𝜇0

−2𝐶𝑝
1 

𝜋2 =
𝑇𝑝𝐷𝑐

2𝜌2𝐶𝑝

𝜇2
 

Equation 6.15 

π3 is calculated as: 

 

𝜋3 =  𝑇𝑚𝐷𝑐
𝑎𝜌𝑏𝜇𝑐𝐶𝑝

𝑑  ≡ 𝜃 𝐿𝑎 (𝑀𝐿−3)𝑏 (𝑀𝐿−1𝑇−1)𝑐 (𝐿2𝑇−2𝜃−1)𝑑 Equation 6.16 

 

Since π2 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: 𝑎 − 3𝑏 − 𝑐 + 2𝑑 = 0                                                                      Equation 6.17 

M: 𝑏 + 𝐶 = 0 Equation 6.18 

T: −𝑐 − 2𝑑 = 0 Equation 6.19 

θ: 1 − 𝑑 = 0    Equation 6.20                                                                         

 

solving these equations gives, 𝑑 = 1, 𝑐 = −2, 𝑏 = 2 and 𝑎 = 2. Therefore, 

 

𝜋3 =  𝑇𝑚𝐷𝑐
2𝜌2𝜇0

−2𝐶𝑝
1 

𝜋3 =
𝑇𝑚𝐷𝑐

2𝜌2𝐶𝑝

𝜇2
 

Equation 6.21 

 

π4 is calculated as: 

 

𝜋4 =  𝑄𝐷𝑐
𝑎𝜌𝑏𝜇𝑐𝐶𝑝

𝑑 

≡ (𝐿3𝑇−1) 𝐿𝑎 (𝑀𝐿−3)𝑏 (𝑀𝐿−1𝑇−1)𝑐 (𝐿2𝑇−2𝜃−1)𝑑 

Equation 6.22 

 

Since π3 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 
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L: 3 + 𝑎 − 3𝑏 − 𝑐 + 2𝑑 = 0                                                                      Equation 6.23 

M: 𝑏 + 𝐶 = 0 Equation 6.24 

T: −1 − 𝑐 − 2𝑑 = 0 Equation 6.25 

θ: −𝑑 = 0    Equation 6.26                                                                         

 

Solving these equations gives, 𝑑 = 0, 𝑐 = −1, 𝑏 = 1 and 𝑎 = −1. Therefore, 

 

𝜋4 =  𝑄𝐷𝑐
−1𝜌1𝜇−1𝐶𝑝

0 

𝜋4 =
𝑄𝜌

𝜇𝐷𝑐
 

Equation 6.27 

 

π5 is calculated as: 

 

𝜋5 =  𝑃𝐷𝑐
𝑎𝜌𝑏𝜇𝑐𝐶𝑝

𝑑  

≡ (𝑀𝐿−1𝑇−2) 𝐿𝑎 (𝑀𝐿−3)𝑏 (𝑀𝐿−1𝑇−1)𝑐 (𝐿2𝑇−2𝜃−1)𝑑 

Equation 6.28 

 

Since π4 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: −1 + 𝑎 − 3𝑏 − 𝑐 + 2𝑑 = 0                                                                      Equation 6.29 

M: 1 + 𝑏 + 𝐶 = 0 Equation 6.30 

T: −2 − 𝑐 − 2𝑑 = 0 Equation 6.31 

θ: −𝑑 = 0    Equation 6.32                                                                        

 

Solving these equations gives 𝑑 = 0, 𝑐 = −2, 𝑏 = 1 and 𝑎 = 2. Therefore, 

 

𝜋5 =  𝑃𝐷𝑐
2𝜌1𝜇−2𝐶𝑝

0 

𝜋5 =
𝑃𝐷𝑐

2𝜌

𝜇2
 

Equation 6.33 

 

π6 is calculated as: 

 

𝜋6 =  𝐾𝐷𝑐
𝑎𝜌𝑏𝜇𝑐𝐶𝑝

𝑑  

≡ (𝑀𝐿𝑇−3𝜃−1) 𝐿𝑎 (𝑀𝐿−3)𝑏 (𝑀𝐿−1𝑇−1)𝑐 (𝐿2𝑇−2𝜃−1)𝑑 

Equation 6.34 
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Since π5 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: 1 + 𝑎 − 3𝑏 − 𝑐 + 2𝑑 = 0                                                                      Equation 6.35 

M: 1 + 𝑏 + 𝐶 = 0 Equation 6.36 

T: −3 − 𝑐 − 2𝑑 = 0 Equation 6.37 

θ: −1 − 𝑑 = 0    Equation 6.38                                                                         

 

Solving these equations gives,𝑑 = −1, 𝑐 = −1, 𝑏 = 0 and 𝑎 = 0. Therefore, 

 

𝜋6 =  𝐾𝐷𝑐
0𝜌0𝜇−1𝐶𝑝

−1 

𝜋6 =
𝐾

𝜇𝐶𝑝
 

Equation 6.39 

 

If the calculations are performed correctly, π1, π2, π3, π4, π5 and π6 must be 

dimensionless.  To validate that the performed equations are correct, dimensions of 

each of the groups is calculated: 

  

𝜋1 = ∆𝐿
𝐷𝑐

⁄ ≡  𝐿
𝐿⁄ = 1 

𝜋2 =
𝑇𝑝𝐷𝑐

2𝜌2𝐶𝑝

𝜇2
≡ 𝜃𝐿2

𝑀2

𝐿6

𝑀−2

𝐿−2𝑇−2

𝐿2

𝑇2𝜃
= 1 

𝜋3 =
𝑇𝑚𝐷𝑐

2𝜌2𝐶𝑝

𝜇2
≡ 𝜃𝐿2

𝑀2

𝐿6

𝑀−2

𝐿−2𝑇−2

𝐿2

𝑇2𝜃
= 1 

𝜋4 =
𝑄𝜌

𝜇𝐷𝑐
≡

𝐿3

𝑇
𝐿−1

𝑀

𝐿3

𝑀−1

𝐿−1𝑇−1
= 1 

𝜋5 =
𝑃𝐷𝑐

2𝜌

𝜇2
≡

𝑀

𝐿𝑇2
𝐿2

𝑀

𝐿3

𝑀−2

𝐿−2𝑇−2
= 1 

𝜋6 =
𝐾

𝜇𝐶𝑝
≡

𝑀𝐿

𝑇3𝜃

𝑀−1

𝐿−1𝑇−1

𝐿−2

𝑇−2𝜃−1
= 1 

 

Therefore, all groups are dimensionless.  

 

Based on Buckingham’s π Theorem, one of the dimensionless groups is a function of 

the other four. Since the objective here is to calculate the dimensional error as a 
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function of the other variables π1 is the one isolated on the left side of the equation. 

Therefore,  

 

π1= f (π2, π3, π4, π5, π6)  Equation 6.40 

 

This means the general accuracy equation is 

 

∆𝐿

𝐷𝑐
= 𝑓(

𝑇𝑝𝐷𝑐
2𝜌2𝐶𝑝

𝜇2
,
𝑇𝑚𝐷𝑐

2𝜌2𝐶𝑝

𝜇2
,

𝑄𝜌

𝐷𝑐𝜇
,
𝑃𝐷𝑐

2𝜌

𝜇2
,

𝐾

𝜇𝐶𝑝
) 

Equation 6.41 

 

6.3.2 Obtaining the nature of “f” based on empirical data 

Dimensional analysis was used in the previous section to develop a mathematical 

model for the calculation of the dimensional error, for polymer parts that are 

manufactured by µIM. This model is correct for any geometry and design. This 

section focuses on using empirical data from Chapter 4 to form a model that is 

correct for the specific design and geometry used in this study.  

 

Since the six expressions (π1 to π6) are dimensionless, any mathematical operation 

involving these will result in a dimensionless number. Inverting the last three 

expressions gives 

 

∆𝐿

𝐷𝑐
= 𝑓(

𝑇𝑝𝐷𝑐
2𝜌2𝐶𝑝

𝜇2
,
𝑇𝑚𝐷𝑐

2𝜌2𝐶𝑝

𝜇2
,
𝐷𝑐𝜇

𝑄𝜌
,

𝜇2

𝑃𝐷𝑐
2𝜌

,
𝜇𝐶𝑝

𝐾
) 

Equation 6.42 

 

Since the function f is unknown, the expressions inside can be combined by any 

mathematical operation [132]. The product of π2, π4, π6 on one hand and π3 and π5 on 

the other hand gives: 

 

𝜋1 = 𝑓(𝜋7, 𝜋8)  Equation 6.43 

 

∆𝐿

𝐷𝑐
= 𝑓(

𝑇𝑝𝜌𝐶𝑝
2𝐷𝑐

3

𝑄𝐾
,

𝑇𝑚𝜌𝐶𝑝

𝑃
)  

Equation 6.44 
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At this point experimental data is used to find the nature of the function f. In the 

expression above π1 represents the dimensional error, π7 represents the polymer 

temperature and π8 represents injection pressure. Since mould temperature and 

injection velocity had very little effect (Figure 4-24 and Figure 4-26) the assumption 

is that they are constant. The values are those that resulted in the smallest 

dimensional error (120 ˚C and 350 mm/s). This is why they are included within the 

expressions and are not isolated (unlike the melt temperature and injection pressure). 

Three pressures of 400, 600 and 800 bar are selected for both polymers. For each of 

these pressures, the polymer melt temperature is varied within the range that avoids 

short shots and flash formations (These were obtained in Chapter 4). The expression 

that includes dimensional error (π1) is located on the Y- axis and the expression that 

includes the polymer melt temperature (π7) is located on the X- axis. Three curves 

are obtained for each micro wall. These are shown for the injection pressure of 600 

bar in Figure 6-7. It can be seen that while change in Dc moves the points forward on 

the X-axis, it does not seem to have a large effect on the dimensional accuracy. 

Therefore, the effect on dimensional accuracy is mainly due to polymer melt 

temperature and injection pressure. The figure shows that for each channel 

dimension, the error moves up on the Y-axis, however, the distribution of the data 

points (and therefore, the equation for each channel) remains the same. The 

equations will have different constants. This movement on the Y-axis is explained by 

the fact that π1 is the percentage error. Since the value of ΔL is very close for the 

three channels, it is expected that the smaller channel has a higher percentage error. 

Therefore, Dc can be removed from π7 and added as a constant to the overall 

equation. However, to keep the expression dimensionless, Dc is replaced with Dp 

which is the plunger diameter. This also assists in keeping the X-axis values the same 

for all the pressures.  
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Figure 6-7- Effect of micro channel dimension on dimensional accuracy of the micro walls at 

Pinj=600 bar 

 

For each dimension of micro wall a set of data is used and a best fit line is drawn to 

find the closest function. For this purpose, the curve fitting function of MATLAB is 

used. The micro walls are first investigated separately to ensure that the form of the 

function is the same for all of them. The two polymers are also investigated 

separately due to their different flow characteristic. 

 

The equations with smallest statistical error (smallest SSE and R
2
 closest to 1) are 

shown for micro walls 1, 2 and 3 made out of POM in Figure 6-8, Figure 6-9 and 

Figure 6-10 respectively.  

 

Figure 6-8- Best fit for micro wall 1 accuracy data for POM 
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Figure 6-9- Best fit for micro wall 2 accuracy data for POM 

 
Figure 6-10- Best fit for micro wall 3 accuracy data for POM 

 

It can be seen from the figures that for different values of π8 (injection pressure), all 

lines have an exponential form (𝜋1 = 𝑎𝐸𝑋𝑃(𝑏𝜋7)). However, to obtain an overall 

function for all the micro walls, a parameter “c” needs to be added to compensate for 

the displacement of the data points on the Y-axis. Therefore, the overall function has 

the form of 𝜋1 = 𝑎𝐸𝑋𝑃(𝑏𝜋7) + 𝑐. Since change in “a” and “b” is the result of 

change in injection pressure, they can be written as a function of π8. “c” can be 

expressed as a function of injection pressure and channel dimension, 𝐷𝑐. To keep “c” 

a dimensionless number, it is written as a function of π8 and 𝑙 =
𝐷𝑐

𝐷𝑝
⁄ , where Dp is 

the plunger diameter and has a value of 0.005 (m). For “a”, “b” and “c” the best 

fitting functions with smallest statistical errors are of 2
nd

 order polynomial shape.  
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These for “a” and “b” are shown in Figure 6-11. In this figure, “a” and “b” are 

calculated as functions of π8. However, “c” (movement in Y direction) is also a 

function of the channel dimensions and therefore is expressed as 𝑐 = 𝑚𝜋8
2 + 𝑛𝜋8 +

𝑝, where “m”, “n” and “p” are 2
nd

 order polynomial functions of 𝑙 =
𝐷𝑐

𝐷𝑝
⁄   (e.g. 

𝑚 = 𝑞1𝑙2 + 𝑞2𝑙 + 𝑞3). The calculations are available in Appendix E. 

 

Figure 6-11- Calculation of constants "a" and "b" for all micro walls made out of POM 

 

The final model for estimation of dimensional accuracy for POM is shown in 

Equation 6.45. 

 

𝜋1 = (−1.783 × 107𝜋8
2 + 2.546 × 105𝜋8 − 767.9)𝐸𝑋𝑃((2.465𝜋8

2 −

0.03267𝜋8 + (2.723 × 10−5))𝜋7) + ((−1.562 × 107𝑙2 + 1.214 × 106𝑙 −

2.337 × 104)𝜋8
2 + (2.609 × 105𝑙2 − 2.04 × 104𝑙 + 395.8)𝜋8 + (−963.6𝑙2 +

73.59𝑙 − 1.388))  

Equation 6.45 

 

The same method is applied to PP. However, the results of dimensional accuracy for 

PP shows that at the injection pressure of 800 bar, the data points show a steeper 

decline compared to the other two. This is true for all three micro walls and is shown 

in Figure 6-12, Figure 6-13 and Figure 6-14. This proves that the behavior of the 

polymer at the pressure of 800 bar is different from those below (400 and 600 bar). 

Therefore, this case needs to be modelled differently. The modelling procedure is the 

same as the one used for POM. For each set of data points the best curve is 
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calculated through curve fitting function of MATLAB. The constants are obtained in 

the same manner too.  

 

 

Figure 6-12- π1 vs π7 for different pressures for micro wall 1 made out of PP 

 

 

Figure 6-13- π1 vs π7 for different pressures for micro wall 2 made out of PP 
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Figure 6-14- π1 vs π7 for different pressures for micro wall 3 made out of PP 

 

The modelling procedure is the same as the one used for POM. The derivation of the 

equations for PP is shown in Appendix E. The final model for Pinj of 400 and 600 bar 

is shown in Equation 6.46; and for Pinj of 800 bar is shown in Equation 6.47. 

 

𝜋1 = (−2.514 × 104𝜋8 + 180.6)𝐸𝑋𝑃((0.04693𝜋8 − 0.8964 × 10−3)𝜋7) +

(−3403 (
𝐷𝑐

𝐷𝑝
)

2

+ 114.1 (
𝐷𝑐

𝐷𝑝
) + 1.2789) 𝜋8 + (43.78 (

𝐷𝑐

𝐷𝑝
)

2

− 3.62 (
𝐷𝑐

𝐷𝑝
) +

0.07476)  

Equation 6.46 

𝜋1 = (7.984 × 105)𝐸𝑋𝑃(−0.001626𝜋7) + (27.17(
𝐷𝑐

𝐷𝑝

)2 − 2.429(
𝐷𝑐

𝐷𝑝

)

+ 0.05415) 

Equation 6.47 

 

6.4 Use of dimensionless analysis in construction of the 

empirical model for UTS of µIM parts 

In this section the procedure for formation of the empirical mechanical model is 

explained. Firstly, a general model is formed based on dimensional analysis. The 

powers and constants are calculated based on empirical data obtained from the 

planned experiments. 
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6.4.1 Construction of the general UTS model 

Advantages of using dimensional analysis were discussed at the beginning of this 

chapter. This method was used for the generation of a model which predicts the 

dimensional error. The same method is applied in this section to generate a model 

which predicts the UTS of a micro wall based on characteristics from the part, 

moulding machine, polymer and the process. The selected variables are shown in 

Figure 6-15.  

 

 

Figure 6-15- Variables used in formation of the mechanical model 

 

The variables used in formation of the mechanical model are the same as those used 

to form the accuracy model, with the exception of viscosity. While direction of flow 

affects the mechanical properties of a part, viscosity does not play a major role. A 

study by Kuo et. al. [104] showed that the change in the UTS due to the flow is 

related to the cross section of the micro bars rather than the viscosity of the polymer 

melt. It was also determined in Chapter 5 that the size of the micro walls did not 

have an effect on the UTS. Therefore, compared to the accuracy model, viscosity of 

the polymer melt and channel dimension are removed from the variables. The 

process parameters that were selected before are used here. Effect of melt and mould 

temperatures (Tp and Tm), injection velocity (Vinj) and pressure (Pinj) on the UTS of 

σUTS = f (Tp, Tm, Q, P, Dc, ρ, k, Cp)
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the micro walls were discussed and analysed in Chapter 5. Due to the importance of 

these characteristics and the fact that these are the main parameters that can be 

changed on the machine these have to be included in the model. In addition, the same 

parameters as were used in the accuracy model have to be used to ensure that the 

results and effects of these parameters can be compared. Due to the effect of 

temperature on the UTS, thermal conductivity (k), specific heat capacity (Cp) and 

polymer density (ρ) are included in the model. Melt throughput (Q) is also 

considered in the model to include injection velocity and the plunger diameter. The 

variables and their dimensions are summarised in Table 6-2.  

 

Table 6-2- Variables used in the mechanical model and their dimensions 

Variable Notation Dimension 

Ultimate Tensile Strength σUTS ML
-1

T
-2

 

Polymer melt temperature Tp θ 

Mould temperature Tm θ 

Melt throughput Q L
3
T

-1 

Injection pressure P ML
-1

T
-2 

Polymer density ρ ML
-3 

Polymer’s thermal conductivity k MLT
-3

θ
-1 

Polymer’s specific heat capacity Cp L
2
T

-2
θ

-1 

 

The general equation is 

 

σUTS = f (Tp, Tm, Q, P,  ρ, k, Cp)                                                           Equation 6.48 

 

The method for calculation of the dimensionless groups is the same as the one used 

for the accuracy model. Details of the calculations and the explanation are provided 

in Appendix F. 

 

The general mechanical equation is 

 

𝜎𝑈𝑇𝑆

𝑃
= 𝑓(

𝑇𝑝𝜌𝐶𝑝

𝑃
,
𝑇𝑚𝜌𝐶𝑝

𝑃
,

𝐾

𝑃
1

4⁄ 𝜌
3

4⁄ 𝐶𝑝𝑄
1

2⁄
) 

Equation 6.49 
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6.4.2 Obtaining the nature of “f” based on empirical data 

A general mathematical model was developed in the previous section for the 

calculation of the UTS. In this section, the nature of function f is found based on 

empirical data from Chapter 5.  

The product of the last two expressions gives 

 

𝜋1 = 𝑓(𝜋2, 𝜋5)  Equation 6.50 

 

Which is 

 

𝜎𝑈𝑇𝑆

𝑃
= 𝑓(

𝑇𝑝𝜌𝐶𝑝

𝑃
,
𝑇𝑚𝐾𝜌

1
4⁄

𝑃
5

4⁄ 𝑄
1

2⁄
) 

Equation 6.51 

 

The method that was employed to find the relationship for the accuracy model is also 

used here. The nature of the function f and the constants of the equations are 

calculated using empirical data.  

 

As explained in Chapter 5, the value of UTS is a property of the polymer itself and 

the selected values for process parameters. The size of the micro walls does not make 

a difference in the UTS because the micro walls with the higher cross section area 

require a larger amount of maximum force to break. Those with the smaller cross 

section area require a smaller force and this variation in force results in the UTS to 

be the same for all micro channels. Therefore, MATLAB calculations are only 

performed for one of the micro channels to obtain a relationship that relates UTS to 

the process parameters and the polymer properties. The procedure is the same as 

those used for obtaining the accuracy models. The two process parameters that show 

the smallest effect (injection pressure and mould temperature) are considered at their 

optimum levels and injection velocity and polymer melt temperature are used as 

variables. Several velocities (between 350 to 700 mm/s) are investigated in intervals 

of 50 mm/s, at three different melt temperatures for each polymer (215, 220 and 225 

for POM and 210, 215 and 220 for PP). Based on calculations performed by 

MATLAB, the best equation with the smallest error is a 2
nd

 order polynomial 

equation where π1 (the expression with UTS) is on the Y-axis and π6 (the expression 



Chapter 6 Empirical modelling of dimensional accuracy & UTS of micro moulded parts 

164 
 

with velocity) is on the X-axis. The general form of the equation is 𝜋1 = 𝑎𝑧2 + 𝑏𝑧 +

𝑐 where the normalised function “z” is defined as 𝑧 = (𝜋5 − 𝜇)/𝜎. In this instance µ 

is the average of the data points and σ is the standard deviation. These values for 

POM and PP functions are generated automatically by MATLAB. 𝑍𝑃𝑂𝑀 = (𝜋5 −

1.0977 × 10−5)/1.1129 × 10−6 and 𝑍𝑃𝑃 = (𝜋5 − 5.1791 × 10−5)/5.2507 × 10−6. Since the 

constants of the equations are different due to the change in melt temperature, “a”, 

“b” and “c” are obtained as a function of π2 (the expression with melt temperature). 

The method used is the same as that employed for calculation of the accuracy 

models. Details of calculations and figures are available in Appendix G. The final 

models are shown in Equation 6.52 for POM and Equation 6.53 for PP.  

 

𝜋1 = (−92222𝜋2
2 + 1882.1𝜋2 − 9.6217)𝑍𝑃𝑂𝑀

2 + (2.469.3𝜋2
2 − 49.255𝜋2 +

0.32821)𝑍𝑃𝑂𝑀 + (2.7498𝜋2
2 − 5755.5𝜋2 + 30.542)  

Equation 6.52 

 

𝜋1 = (−55713𝜋2
2 + 829.77𝜋2 − 3.0998)𝑍𝑃𝑃

2 + (−88233𝜋2
2 + 1249.3𝜋2 −

4.3728)𝑍𝑃𝑃 + (1.7854𝜋2
2 − 2798.4𝜋2 + 11.1)  

Equation 6.53 

 

6.5 Experimental validation with the Brass insert 

To ensure that the above models yield correct results with good accuracy, four sets of 

parameters are selected for the manufacture of the micro walls and testing of the 

models. These are shown below in Table 6-3 for POM and Table 6-4 for PP. 
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Table 6-3- validation of the accuracy model for POM using the brass insert 

 Tp Tm Vinj Pinj Model 

(µm) 

Experimental 

(µm) 

Difference 

(µm) 

Micro 

wall 1 

POM 

1 200 120 350 800 16.69 16.97 0.28 

2 225 120 350 800 7.44 7.07 0.37 

3 200 120 350 600 23.55 23.57 0.02 

4 225 120 350 600 9.71 10.37 0.66 

Micro 

wall 2 

POM 

1 200 120 350 800 16.68 17.15 0.47 

2 225 120 350 800 8.42 8.52 0.1 

3 200 120 350 600 22.68 22.83 0.15 

4 225 120 350 600 10.31 10.18 0.13 

Micro 

wall 3 

POM 

1 200 120 350 800 15.11 16.82 1.71 

2 225 120 350 800 8.33 7.04 1.29 

3 200 120 350 600 21.49 23.23 1.74 

4 225 120 350 600 11.33 10.07 1.26 

 

Table 6-4-validation of the accuracy model for PP using the brass insert 

 Tp Tm Vinj Pinj Model 

(µm) 

Experimental 

(µm) 

Difference 

(µm)  

Micro 

wall 1 

PP 

1 190 90 350 800 8.53 7.07 1.46 

2 220 90 350 800 0.60 0.47 0.13 

3 190 90 350 600 10.24 10.37 0.12 

4 220 90 350 600 3.10 3.77 0.66 

Micro 

wall 2 

PP 

1 190 90 350 800 7.83 7.37 0.46 

2 220 90 350 800 0.74 0.49 0.25 

3 190 90 350 600 9.72 10.09 0.37 

4 220 90 350 600 3.34 3.79 0.45 

Micro 

wall 3 

PP 

1 190 90 350 800 7.01 7.12 0.10 

2 220 90 350 800 1.2 1.42 0.22 

3 190 90 350 600 9.06 10.58 1.52 

4 220 90 350 600 3.83 3.77 0.06 
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The UTS models are also validated in the same manner. The results are shown below 

in Table 6-5.  

 

Table 6-5- Selected values for testing the UTS model 

 Tp Tm Vinj Pinj Model 

(MPa) 

Experimental 

(MPa) 

Difference 

(MPa) 

POM 1 215 120 500 700 39.52 38.72 0.8 

2 215 120 650 700 28.03 31.78 3.75 

3 225 120 500 700 34.88 32.92 1.96 

4 225 120 650 700 23.19 26.06   2.87 

PP 1 210 95 400 700 19.04 18.99 0.05 

2 210 95 600 700 14.46 15.75 1.29 

3 220 95 400 700 14.27 15.52 1.25 

4 220 95 600 700 9.98 10.83 0.85 

 

6.6 Discussion 

6.6.1 Accuracy models 

Two models were developed to estimate the effect of process parameters on the 

dimensional accuracy of micro parts. For each polymer a separate model was 

developed due to the fact that POM and PP behave differently under the same 

processing conditions. While both are semi crystalline polymers, they have very 

different melt flow rates (PP’s melt flow index is 92% higher than POM) and 

therefore, viscosity of PP is greatly reduced under the same processing conditions. 

This allows for considerably better filling of the cavities and significant reduction of 

the dimensional error. This can be confirmed by looking at the results of dimensional 

accuracy of the two polymers in Chapter 4 (Figure 4-9 and Figure 4-10). Since the 

physical and rheological properties of the two polymers are different, one single 

model cannot be developed for both. While the general shape of the equations is the 

same (exponential), the constants are different.  

 

In modelling the effect of process parameters for PP, it was observed that at the 

pressure of 800 bar, the constants of the equations were significantly different and an 
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attempt to form one single equation would result in significant error for all micro 

walls. Therefore, this case was separated from the other pressures. This could be 

explained by the fact that PP has a very low viscosity and at higher pressures, the 

polymer fills the cavity at a higher rate. Therefore, as the temperature was increased 

the combination of increasingly lower viscosity and higher pressure, resulted in 

faster decline in dimensional accuracy. The same behavior could be repeated for 

POM. However, since POM has higher viscosity this phenomenon would probably 

happen at a considerably higher pressure (which is not available on the machine used 

in this study, since the highest injection pressure can be applied at 1050 bar).  

 

The models were experimentally validated with the brass inserts for all micro walls 

and polymer, considering the constraints and limits that were explained in the 

chapter. The difference between the results from the models and experimental 

measurements was well below 1µm in most cases. At the worst case, the difference 

was 1.74 µm (this is for the cases where the dimensional error is in the range of 20+ 

µm).  

 

6.6.2 UTS models 

Two models were also developed for estimation of the UTS of the micro walls. The 

same method deployed for accuracy models was used for modelling the UTS. The 

models have a 2
nd

 order polynomial shape. The two polymers behaved similarly in 

regards to the effect of process parameters. This was shown in Chapter 5 and the 

figures and form of the equations confirmed this. The constants of the equations are 

however different for each of the polymers. The models were experimentally 

validated and the highest error was around 10% for POM (case 2 and 4). This could 

however be the error from the testing machine.  

 

6.6.3 Application of the models  

The aim of the study was to develop a methodology for modelling the effect of 

process parameters on dimensional accuracy and UTS of the micro parts. The models 

were experimentally validated, and the results showed that they successfully 

predicted dimensional accuracy and UTS with small errors. However, it must be 

noted that several factors were not considered in the models. Firstly, viscosity of the 
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polymer melt was eliminated in the calculation of the πs for both accuracy and UTS 

models. This is due to the fact that, as explained in the literature review, the viscosity 

of polymer melt in µIM cannot be accurately calculated. Attempts to constructing the 

models with approximation of viscosity resulted in large errors. However, this could 

not ignore the fact that the results of dimensional error and UTS were very different 

for POM and PP. This is due to the fact that the two polymers have different flow 

behaviors, and their crystallinity and structure are different. Therefore, one single 

model cannot be developed for both polymers in either dimensional error or UTS. It 

must be noted that modelling of viscosity and UTS even in large cavities is often 

done on polymer basis and a general relationship does not exist.  

 

The other main factor that was not considered in this study is the design of the 

mould. Since design of the mould can change stresses applied to the polymer melt 

and its flow behavior, it has a significant effect on the characteristics of the final 

product. However, investigation of the effect of mould design on quality of the micro 

moulded parts requires consideration of several factors such as size and shape of the 

runners, size, shape and location of the gates, and configuration of the part cavities in 

relation to the polymer melt flow and its direction. However, investigating even one 

of these factors is a massive undertaking, and outside of the scope of this work due to 

restriction of time and resources. Therefore, this study focused on one design.  

 

The third main factor that was not considered in the study is the flash formed on the 

parts as a result of the polymer melt escaping the mould cavity. Quantifying the flash 

on the parts can be useful in finding minima for dimensional error. Also, if all the 

polymer melt is injected in the cavity, the final part can be made with higher 

mechanical strength. This is especially evident in the results obtained in Chapter 4 

for polymer melt and mould temperature as dimensional error reaches a minimum 

value and then increases as the flash in formed around the micro walls (Figure 4-23 

and Figure 4-24). 

 

Therefore, it must be mentioned that for the models to be fully applicable in 

industrial scale, these factors must be considered. Design of the mould and its 

characteristics, and its effect on part quality must be quantifiably verified and 

included in the model. The same is applied for quantifying the size of flash formed 
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on the parts and the amount of polymer that does not entre the part cavity. Also, 

calculation of the melt viscosity and characterization of the polymer melt flow are 

important factors that need to be included in the models to accurately identify the 

length of the flow and filling of the cavities.  

 

It must be mentioned that while these are the short comings of the models, they can 

be successfully used to predict the UTS and dimensional error of the micro walls 

manufactured with the current design, within the range of dimensions investigated. 

Experimental validation of the models showed that they can be used to estimate these 

two quality factors with very good confidence.  

 

6.7 Chapter summary 

This chapter presents a method with which the models for predicting the dimensional 

accuracy and UTS are constructed. The method used for constructing the models is 

dimensional analysis. This method is widely used by researchers in explaining a 

physical phenomenon where a relationship between a set of variables is unknown. 

The method is employed to find a relationship between the two quality factors 

investigated in this study, dimensional accuracy and UTS, and several variables 

which involve characteristics of the process, the polymers and the micro moulding 

machine. The objective is to simply find a mathematical relationship between the 

quality criteria and four process parameters (polymer melt and mould temperature, 

injection velocity and injection pressure), polymer density, specific heat capacity and 

thermal conductivity, and the machine’s plunger diameter.  

 

By using dimensional analysis, several expressions are formed which can be related 

to the dimensional accuracy and UTS. However, the specific function that relates 

these expressions together must be found by using empirical data. This is done by 

using the results from the previous two chapters (Chapter 4 for the accuracy model 

and Chapter 5 for the UTS model). 

 

For each of the three micro walls, a plot of the dimensionless groups is produced and 

then they are combined through numerical operations. This is done for each of the 

polymers separately because they have very different characteristics and the range of 

the data obtained is very different.  
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Once the models are produced, they are validated by experimental means. A set of 

randomly selected values for the process parameters are used to perform experiments 

on the brass pin and obtain the UTS and dimensional accuracy. Then the results of 

these two were compared with the calculations from the models. The calculated 

results showed to have close agreement with the experimental ones.  

 

The models are further validated in Chapter 7, where a different insert with different 

channel dimension is used. This is done in the third section of the next chapter.  
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Chapter 7 Validation 

7.1 Introduction 

The definition of a validation method for any model requires analysis of the model’s 

domain. The models proposed in this study target a domain that is vast and 

complicated. Several factors such as mould design, runners and gates, features, 

polymer and many others can affect the dimensional accuracy and UTS of a micro 

moulded part. To validate the models for even one of these factors requires a massive 

amount of time and resources, both financially and in terms of labour. Therefore, a 

simple method of validation is proposed for each of the contributions. These are 

explained in the following sections. 

 

The importance of µIM and its applications in the field of polymer micro 

manufacturing were discussed in Chapter 1 and Chapter 2. A literature review was 

conducted to examine and understand the current developments in the field. From the 

review and the researched application areas of micro moulding it was concluded that 

the quality of the parts replicated with this technology are of high importance. Since 

achieving the quality criterion is currently done by means of experimentation this 

study focuses on modelling the effect of process parameters on two quality aspects, 

the dimensional accuracy and UTS of micro moulded parts. Firstly, the effects of 

process parameters on these two aspects were investigated by means of 

experimentation. The results were then interpreted through the use of statistical 

analysis, and specifically the ANOVA method. The second step involved the 

construction of the general mathematical equations for the purpose of relating the 

quality criteria (dimensional accuracy and UTS) to the process parameter. These 

equations also use the characteristics of the polymer and the micro moulding 

machine to make a more thorough relationship. Then the most influential process 

parameters were investigated further and in more detail to study their relationship 

with the appropriate quality aspect. Once this relationship was determined, the final 

model with the powers and constants of each variable was completed. 

 

This chapter focuses on validating the approach and the final models by considering 

a scenario for manufacturing a product by µIM. The approach for validation of each 

contribution is explained and the results are compared with those obtained in the 



Chapter 7 Validation 

174 
 

previous three chapters. The focus of the first two sections of the validations is on 

proving that the effects of process parameters shown in Chapter 4 and Chapter 5 

are the same regardless of the specifications of the product. The third section of the 

validation focuses on the assessment of the two models in Chapter 6 for 

determination of the dimensional accuracy and UTS.  

 

7.2 Validation of the effect of process parameters on the 

dimensional accuracy of µIM parts 

This section focuses on the effect of process parameters on the dimensional accuracy 

of micro moulded parts. In this scenario, a different mould insert is used to 

investigate the effects obtained in Chapter 4.  

 

Changes in design result in significant changes in the flow of the polymer melt. This 

in turn results in different flow characteristics such as viscosity, shears rates, and 

frictional forces which all affect the filling of the cavities, and therefore, the 

dimensional accuracy of the final product. As a result, it is important to stress that the 

design of the mould must remain the same in order to verifiably investigate the effect 

of process parameters for different parts and polymers. The mould inserts however 

are changed to produce a product with different dimensions. These inserts have the 

same general shape as the brass pins. However, they are made out of stainless steel 

and are manufactured by Wire EDM. The dimension of the channels is 150 µm. The 

two polymers used previously in the study are used here. This is intended to allow 

the general trend of the effect of parameters to be studied, even under conditions 

where some of the part characteristics are changed (i.e. mould material and 

dimension). A polymer with different morphology is likely to behave differently 

under the conditions of this study.  

 

To validate the trends obtained in Chapter 4 a set of new and controlled experiments 

are conducted. The method for conducting the experiments is the same as before. To 

ensure that all the effects for different process parameters combinations are captured 

Taguchi’s design of experiment is employed. The four process parameters used 

previously (Tp, Tm, Vinj and Pinj) are varied. A two level full factorial design is 
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employed, which results in 2
4
=16 different combinations. These are the same values 

used in Table 4-6. 

 

Once the parts are manufactured, the same method of measurement is applied to 

them to determine the variation in dimension. The first 10 parts are discarded in 

order to allow for stabilization of the process and the following 10 are used for data 

analysis. Three random parts out of 10 are selected for measurement. Three sections 

of each micro wall are measured to determine the dimensional error. The 

approximate point of measurements for each micro wall was shown in Figure 4-7. 

The highest error for a part is selected as the dimensional error for that part. Figure 

7-1 and Figure 7-2 show the dimensional errors for POM and PP respectively. 

 

 

Figure 7-1- Dimensional error for each process parameter combination for POM (µm) 
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Figure 7-2- Dimensional error for each process parameter combination for PP (µm) 
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effect and Pareto charts for POM and PP. The analysis shows that the polymer melt 
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accuracy. Furthermore, and more importantly, stainless steel has a thermal 

conductivity of 16 w/mk compared to 110 w/mk for Brass. This means the polymer 

melt retains considerably more of its temperature when it comes in contact with the 

mould. This stops it from freezing and ensures that the polymer flows easier in the 

micro channels, which results in better dimensional accuracy. It must also be 

mentioned that in investigation of the effect of process parameter on the dimensional 

accuracy the size of the channels and their range was one of the assumptions. If the 

size of the micro channels on the mould changes drastically, i.e. become much 

smaller (e.g. 10 µm or smaller) polymer flow behavior will change. In that case, 

correct adjustment of the mould temperature is likely to have a much higher effect 

than those seen here. This is because the surface to volume ratio becomes much 

smaller and therefore the polymer melt will freeze much faster if the mould is not 

sufficiently warm.  

 

 

Figure 7-3- Main effect plot for micro wall made out of POM 
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Figure 7-4- Pareto plot for micro wall made out of POM 

 

 

Figure 7-5- Main effect plot for micro wall made out of PP 
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Figure 7-6- Pareto plot for micro wall made out of PP 
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The mould insert used to conduct these experiments are the same as the previous 

section. The design and set up of the experiments are the same as those in Chapter 

5. Two level full factorial design is employed to conduct the experiments. The values 

for the process parameters are the same as those used in Table 5-2. 

 

For each combination ten parts are produced and selected for data collection. These 

parts are collected after stabilisation of the process. 

 

Once the parts are produced an Instron 5969 machine is used to conduct the tensile 

testing. Three random parts are selected to conduct the tests. The lowest value 

obtained from the tests is the selected UTS for the particular combination of process 

parameters. Figure 7-7 and Figure 7-8 show the results obtained for each 

combination for POM and PP respectively.  

 

 

Figure 7-7- UTS for each process parameter combination for POM (MPa) 
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Figure 7-8- UTS for each process parameter combination for PP (MPa) 
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Figure 7-9- Main effect plot for micro wall made out of POM 

 

 
Figure 7-10- Pareto plot for micro wall made out of POM 
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Figure 7-11- Main effect plot for micro wall made out of PP 

 

Figure 7-12- Pareto plot for micro wall made out of PP 
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chapter is to show that the final equations are correct and can be used for any micro 

channels within the proposed mould design. The effect of mould design on the 

accuracy and UTS of the micro walls was already discussed in the previous two 

sections.  

 

For the validation of the models, stainless steel inserts with dimensions of 150 µm 

are used. For each polymer five combinations of variables are selected to investigate 

the models. In all cases the characteristic of the part (width) will remain the same. 

The variables for the four process parameters and the characteristics of the polymer 

change. The mentioned characteristic of the machine (plunger diameter) remains the 

same throughout the validation. This is because during the period of this study only 

one machine was available (Battenfeld Microsystem 50 with plunger diameter of 5 

mm).  

 

To validate the models, the values for process parameters and polymers’ constants 

are entered in the equations and dimensional accuracy and UTS are calculated. 

Additionally, the micro walls on the new inserts are formed with the polymers and 

parameter combinations. Then measurements and tensile testing are performed to 

measure the experimental values. The calculated and experimental results are then 

compared. Table 7-1 and Table 7-2 show the four parameter combinations and the 

calculated and experimental values of dimensional accuracy and UTS for each 

polymer.  

 

As it can be seen from Table 7-1 the calculated dimensional errors from the models 

and measurements from the experiments are in good agreements. However, the 

difference between the model and experimental values for POM are higher than 

those obtained from the brass insert (Table 6-3). This is due to the use of an insert 

with a different material (stainless steel). Steel has a considerably lower thermal 

conductivity and therefore, the polymer retains its temperature for longer, which 

results in better filling of the micro channels and reduction of dimensional error. 

Mould insert material was not a parameter in the original model. This is the source of 

error between the model calculations and the experimental values. The difference for 

PP is considerably less. This is because PP has a large range of melting temperature 

and therefore is less susceptible to variation in the polymer melt temperature. 
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Therefore, the mould insert is not likely to have very large effect on its flow. 

Furthermore, the surface roughness of the micro channels in the brass and steel micro 

channels is different; and lower for the steel insert. This is another factor that affects 

the polymer flow and was not considered in the models. 

 

Table 7-1- Comparison of calculated and experimental dimensional error for POM and PP 

Polymer & Process 

combination 

Error (µm) Difference 

(µm) Model Experimental 

POM (Tp, Tm, Vinj, Pinj) 

200, 120, 350, 600 21.27 18.88 2.39 

200, 120, 350, 800 14.71 13.95 0.76 

225, 120, 350, 600 11.48 10.05 1.43 

225, 120, 350, 800 8.17 5.67 2.5 

PP (Tp, Tm, Vinj, Pinj) 

190, 90, 350, 600 8.95 8.92 0.03 

190, 90, 350, 800 6.89 5.87 1.02 

220, 90, 350, 600 3.90 3.89 0.01 

220, 90, 350, 800 1.28 1.17 0.11 

  

Table 7-2 shows a comparison of the calculated UTS from the models and those 

obtained from the experiments. The difference shown in numbers is the result of 

using the steel insert. It was explained that the lower thermal conductivity of the 

mould insert results in lower UTS of the micro parts. Mould material was not 

considered in the models and the models are generated based on the brass inserts. 

This is the source of the difference between the experimental and calculated UTS for 

the steel insert. However, because PP is less affected by change in temperature, the 

results have much smaller error than those of POM. 
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Table 7-2-Comparison of calculated and experimental UTS for POM and PP 

Polymer & Process 

combination 

UTS (MPa) Difference 

(MPa) Model Experimental 

POM (Tp, Tm, Vinj, Pinj) 

215, 120, 400, 700 39.52 32.62 6.9 

215, 120, 650, 700 28.03 26.86 1.17 

225, 120, 400, 700 34.88 28.82 6.06 

225, 120, 650, 700 23.19 23.09 0.1 

PP (Tp, Tm, Vinj, Pinj) 

210, 95, 400, 700 19.04 18.79 0.25 

210, 95, 600, 700 14.46 15.18 0.72 

220, 95, 400, 700 14.27 15.50 1.23 

220, 95, 600, 700 9.98 11.75 1.77 

 

7.5 Chapter summary 

This chapter was intended to validate all the three contributions, the experimental 

results and the empirical models obtained for dimensional accuracy and UTS. For 

this purpose a set of experiments were designed. These experiments are intended to 

validate the trends and calculations obtains in the previous three chapters.  

 

To do a comprehensive validation, a new steel mould insert was used with micro 

channels that have different but close dimension to those used in the brass insert. 

Once the results were obtained they were compared with those from the previous 

chapters and any differences and discrepancies were examined and explained. 
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Chapter 8 Conclusions & Future work 

8.1 Thesis summary 

The work has delivered a new method for modeling of the effect of process 

parameters on the dimensional accuracy and ultimate tensile strength (UTS) of micro 

parts. These models support the aim of optimizing the process of manufacturing 

micro parts by enabling the estimation of these two important quality criteria. The 

models are achieved as a result of using several methods that are employed in the 

field and also developed in this project. These address specific knowledge gaps 

identified in the literature. The models and methods were developed empirically with 

the help of experiments designed specifically for this purpose. The main 

experimental work consists of manufacturing micro walls with different dimensions 

in micro range, using the Battenfeld Microsystem 50 micro moulding machine. Two 

polymers were used in the development of the models, POM and PP. This work was 

supported by visualization and measurements performed on a scanning electron 

microscopy (SEM) and tensile strength analysis using an Instron 5969 pull test 

machine. The acquired data was analysed using a variety of software such as Excel, 

MATLAB and Minitab.  

 

The models were developed with assumptions and limitations in mind. First of all, 

the design of the mould remains the same throughout the study to ensure similar flow 

of polymer melt for all analysis. Secondly, the dimensions of the features are kept 

within a certain range and do not change drastically. This is again to ensure that the 

behavior of the polymer melt does not vary heavily. Thirdly, the developed models 

can only be employed for semi crystalline polymers. Use of amorphous polymers 

will most likely change the flow properties and so may vary considerably from the 

results predicted by the models developed in the study. All equipment used in this 

study is commercially available and used in industrial applications. All the good 

practice, guides and recommendations are followed strictly to ensure the realisation 

of high quality parts. 

 

The developed models and methods in this thesis were experimentally validated for 

different dimensions of the features used in this work. Since the proposed models 

address a field that is both vast and complex it would have been beyond the scope of 
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this study to validate them for all polymers and features. In addition, the high cost of 

mould design and manufacture also prevented the specific models from been 

validated for other mould designs.  

 

The key findings and results from this thesis are presented in the following sections. 

 

8.2 Knowledge contributions 

The research guided by the originally defined aim and objectives has delivered 

several main contributions to knowledge, which are summarised below. 

 

8.2.1 Effect of process parameters on the dimensional accuracy of micro 

moulded micro parts 

The effect of the process parameters on dimensional accuracy of micro parts was 

investigated to understand the behavior of the polymers in response to variation in 

four process parameters. These four parameters are polymer melt temperature, mould 

temperature, injection velocity and injection pressure. The width of the micro walls 

was varied to investigate the behavior of the polymer melt in different sizes of 

channels. Statistical analysis showed that polymer melt temperature is the most 

influential parameter in enhancing the dimensional accuracy of the parts. This was 

followed by injection pressure and mould temperature. Increase in these three 

parameters was shown to have a positive effect on the dimensional accuracy.  

However, increase in injection velocity was shown to reduce the dimensional 

accuracy. Nevertheless, this effect was small (5% at most). The choice of polymers 

also had a significant effect on the dimensional accuracy. Use of PP caused the range 

of error to fall about 50% in most cases compared to POM.  

 

Overall, the chapter provides a methodology for obtaining empirical data that can be 

used for the development of a model to relate the process parameters to dimensional 

accuracy of the micro parts. Furthermore, a process window was established for 

optimisation of the process based on empirical data. The process window shows the 

range of these four parameters where the smallest error can be achieved.  
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8.2.2 Effect of process parameters on the ultimate tensile strength (UTS) 

of micro moulded micro parts 

The effect of process parameters on the strength of weld lines was investigated. The 

same four process parameters (polymer melt temperature, mould temperature, 

injection velocity and injection pressure) were used. This was done to be able to 

compare and investigate whether variation in the parameters would have a similar or 

the opposite effect on the strength of the micro parts. Statistical analysis showed 

polymer melt temperature has the highest effect on the strength of the weld lines. 

This is followed by injection velocity and mould temperature and injection pressure 

in most cases (in one case, the second micro wall made by PP, injection pressure was 

shown to have a higher influence than mould temperature). However, the effect of 

mould temperature and injection pressure was below the statistical threshold in all 

cases. Furthermore, increase in all process parameters showed a negative effect, 

except mould temperature which showed a minor positive effect. The polymers were 

shown to have a significant influence on the UTS. POM was shown to have two 

times the UTS compared to PP under the same processing conditions.  

 

In summary, the chapter provides a method for obtaining empirical data that can be 

used for developing a model for estimating the UTS of the micro walls. 

 

8.2.3 Empirical modeling of dimensional accuracy and the ultimate 

tensile strength (UTS) 

Two models were developed for estimation of dimensional error and UTS of micro 

walls. The models were generated based on a combination of dimensional analysis 

and empirical data. A link was established between specific polymer properties and 

some process parameters to estimate the dimensional error and UTS of the micro 

walls. The investigated polymer properties were density, specific heat capacity and 

thermal conductivity; and they were linked to polymer melt and mould temperature, 

and injection pressure and velocity. The accuracy of the PP at pressure of 800 bar 

showed to have a different behavior to pressures of 400 and 600 bar. Therefore, a 

separate model was developed for this case. The threshold pressure at which the 

behavior changes requires further investigation. 
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All models were validated experimentally, using a different mould with a different 

channel dimension. A comparison of the experimental values and those generated 

through calculations with the accuracy model showed very good agreement for the 

brass pin. However, use of a steel insert resulted in higher error between the 

calculated and experimental results; which is the result of change in the mould 

material.  

 

8.2.4 Concluding remarks 

In respect to the first two contributions it must be noted that, with the exception of 

mould temperature, the other process parameters have the opposite effect on the two 

quality criteria investigated in this work. This requires a careful consideration of the 

process parameters and their values when making the parts. This is especially crucial 

in the case of the polymer melt temperature and injection velocity, which were both 

shown to have a considerable effect on the dimensional accuracy and the UTS.  

 

The use of polymers also presents a similar case. The micro walls made by PP 

proved to have considerably smaller dimensional error, however, they also had a 

significantly lower UTS. While the use of a specific polymer is likely a requirement 

of the customer, the application needs to be considered. Employment of the parts in 

different applications and definition of the most important criterion must dictate the 

settings on the machine and selection of the values of the process parameters. Mould 

material also showed a similar case and resulted in significant effect on both 

dimensional accuracy and the UTS of the micro parts.   

 

8.3 Future work 

The research presented in this thesis has been completed and the proposed models 

and methods have been validated experimentally, thus achieving the projects’ aim 

and objectives. The research has also identified new opportunities for further 

investigation that could build on the results of this work.  

 

Investigation of the effect of process parameters is an area that is being pursued by 

many researchers. Further investigation of other polymers will assist in 

understanding the effect of process parameters on the flow of the polymers. In this 
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instance, there are several other parameters that can be investigated. The list includes 

parameters such as holding pressure, holding time, ejection force and ejection 

temperature. Also realisation of other features with considerably smaller dimensions 

in the micro range is of interest.  

 

In respect to the effect of process parameters on the UTS of micro parts, further 

parameters can be investigated. Most studies have focused on the investigation of PP, 

POM and HDPE. Further polymers can also be investigated. Furthermore, the 

ejection stage of the process is a part that requires further investigation.  

 

In regards to the two proposed models, further enhancement is possible by the 

developments mentioned earlier in this section. The proposed models do not include 

several factors such as mould design, properties of the mould inserts, other features, 

sizes and polymers due to restriction of time and resources.  

 

Investigation of the effect of mould design on part properties, their formalisation and 

inclusion in the models can enhance the performance of the models considerably. 

Also, further characterisation of the process in terms of polymer melt flow, flash 

formation, air evacuation, ejection phase, shrinkage and wrapage, and their addition 

to the models will make them more comprehensive. Other types of polymers, namely 

amorphous polymers and those reinforced by other materials such as glass and fibre, 

need to be investigated and included in the models.  

 

To conclude on this section, all the above mentioned future work would further 

expand the proposed models, and enhance their performance, resulting in better and 

more accurate prediction of the properties of the micro parts. Consequently, this 

ensures a more optimised process in the manufacture of high quality parts in a 

repeatable and reliable manner. The ultimate goal would be to develop a 

comprehensive and integrated software tool which can predict the optimised values 

for a combination of process parameters in accordance with the product 

specification.   
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Appendix A POM & PP Datasheets 

Figure A-1 and Figure A-2 show the datasheets for specific grades of PP and POM 

used in this study. Since the information regarding PP’s physical data is not available 

online, it was obtained over a phone conversation with the manufacturer. 

  

 
Figure A-1-PP datasheet 
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Figure A-2- POM datasheet 
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Appendix B Battenfeld operating procedure 

Battenfeld Microsystem 50 was used to conduct all the experiments in this study. 

Figure B-1 to Figure B-3 show the panels used for control of the machine. The 

operating procedure and the order of actions followed are detailed below: 

 

1. Turn on the main switch. 

2. Operate the safety doors (open and close) (Figure B-3). 

3. Operate the emergency stops (activate and release) (Figure B-3). 

4. Enter “log in” details 

5. Remove drier from the hopper. 

6. Insert polymer pallets. 

7. Screw the drier back on the hopper. 

8. Turn on the motor (Figure B-3). 

9. Turn on the heaters (Figure B-3). 

10. Set the desired temperature values in the temperature setting interface (Figure 

B-2). 

11. Set other processing parameters in their respective setting interface (injection 

velocity, injection pressure, volume, holding pressure, holding time, injection 

time) (Figure B-2). 

12. Once the desired temperatures are achieved, machine can be operated. 

13. Put the robot arm in home position (Figure B-3). 

14. Pull ejectors back (Figure B-3). 

15. Ensure mould cavity is aligned (Figure B-3). 

16. Empty degraded polymer from the injection chamber by purging some of the 

polymer (Figure B-3). 

17. Use the injection piston to empty the injection chamber (Figure B-3). 

18. Once the chamber is empty of any polymer, push the piston in forward 

position (Figure B-3). 

19. Pull polymer melt in the dosing chamber by operating the dosing piston 

(Figure B-3). 

20. Put the machine in automatic mode (Figure B-3). 

21. Push the mould forward to start the production cycle (Figure B-3). 

22. Process parameters can be changed during the operation. 
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23. Each time a new set of parameters are entered, discard the first 10 parts. 

24. Use the following 10 parts for analysis and data gathering. 

25. Once experiments are finished, stop the automatic operation by selecting the 

manual mode. 

26. Polymer can be changed by performing step 4 and further experiments can be 

conducted following the operating procedure. 

27. Once the experiments are fully completed remove the polymer pallets from 

the hopper. 

28. Empty the injection chamber by purging the remaining polymer melt. 

29. Preferably use a purging agent or PP to ensure the chamber is empty of 

sensitive engineering polymers such as POM as they can degrade quickly and 

burn. 

30. Turn off the heaters (Figure B-3). 

31. Turn off the motor (Figure B-3). 

32. Log out of the account. 

33. Turn the machine off from the main. 

 

 

Figure B-1- Microsystem 50's overall control panel 

 

Settings

Operations
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Figure B-2- Microsystem 50's settings panel 

 

 
Figure B-3- Microsystem 50's operations panel 
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Appendix C Surface roughness measurements 

This section provides the analysis done on a surface roughness measurement 

machine “Veeco”. For each channel three locations are measured, left, middle and 

right side of the channels. This is done for all the three micro channels used in this 

study and the one used for validation on the steel pin. The average of the three 

measurements is considered the surface roughness of that micro channel. Results are 

presented below in Table C-1. 

 

Table C-1- Surface roughness measurements for each micro channel 

Pin/ Channel Sa left 

(µm) 

Sa middle 

(µm) 

Sa right 

(µm) 

Sa average 

(µm) 

Brass, Channel 1 0.656 0.343 2.862 1.286 

Brass, Channel 2 0.251 0.205 0.352 0.270 

Brass, Channel 3 1.305 1.460 3.136 1.967 

Steel 0.335 0.213 0.209 0.252 
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Appendix D Instron 5969 operating procedure 

Instron 5969 was used to conduct the pull tests in this study. The operating procedure 

and the actions followed are listed below: 

 

1. Turn on the machine and the computer. 

2. Enter details of the specimens for the test (dimensions of the width and 

depth). 

3. Select a load and the maximum load (50 N) and the rate of elongation (1mm/s 

in this study).  

4. Put the part in the fixture. 

5. Cut the edges. 

6. Ensure that initial elongation and force are set to zero. 

7. Start the test. 

8. After the test is done, open the fixture and remove the part. 

9. To conduct a pull test on the next specimen, repeat from Step 4. 
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Appendix E Calculation of the accuracy model for 

POM & PP 

Calculations for POM: 

The general shape of the equations is 𝜋1 = 𝑎𝐸𝑋𝑃(𝑏𝜋7)), where each micro channel 

has different values for “a” and “b”. However, “a” and “b” are different due to 

change in temperature (π8). To reduce the error of the calculations, the “a” and “b” 

are considered for all equations (still as a function of π8). To make a general model 

for all the micro channels, a constant “c” is defined which is the function of π8 and 

𝑙 =
𝐷𝑐

𝐷𝑝
⁄ . To achieve each of these constants, the values for each micro channels 

are plotted against π8 and the function with the least error is calculated through the 

curve fitting function in MATLAB. The results are shown below: 

 

Calculation of “a”, “b” and “c” 

a: Linear model Poly2: 

𝑎 = −1.783e + 007𝜋8
2 + 2.546e + 005𝜋8 − 767.9     

Goodness of fit: 

  SSE: 1.682e-024 

  R-square: 1 

******************************************* 

b: Linear model Poly2: 

𝑏 = 2.465𝜋8
2 − 0.03267𝜋8 +2.723e-005 

Goodness of fit: 

  SSE: 2.613e-038 

  R-square: 1  

******************************************* 

c: 𝑐 = 𝑞1𝜋8
2 + 𝑞2𝜋8 + 𝑞3 

where the constants are calculated as 2
nd

 order functions of l: 

 

q1: Linear model Poly2: 

𝑞1 = −1.562e + 007𝑙2 + 1.214e + 006𝑙 − 2.337e + 004 
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Goodness of fit: 

  SSE: 2.404e-022 

  R-square: 1 

******************************************* 

q2: Linear model Poly2: 

𝑞2 = 2.609e + 005𝑙2 − 2.04e + 004𝑙 +395.8 

Goodness of fit: 

  SSE: 4.097e-027 

  R-square: 1 

******************************************* 

q3: Linear model Poly2: 

𝑞3 = −963.6𝑙2 + 73.59𝑙 − 1.388 

Goodness of fit: 

  SSE: 1.595e-031 

  R-square: 1 

******************************************* 

Replacing the constants gives the following final equation: 

𝜋1 = (−1.783 × 107𝜋8
2 + 2.546 × 105𝜋8 − 767.9)𝐸𝑋𝑃((2.465𝜋8

2 − 0.03267𝜋8

+ (2.723 × 10−5))𝜋7)

+ ((−1.562 × 107𝑙2 + 1.214 × 106𝑙 − 2.337 × 104)𝜋8
2

+ (2.609 × 105𝑙2 − 2.04 × 104𝑙 + 395.8)𝜋8 + (−963.6𝑙2 + 73.59𝑙 − 1.388)) 
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Calculations for PP: 

 

Calculations for Pinj of 400 and 600 bar 

Figure E-1, Figure E-2 and Figure E-3 show the functions with the smallest error for 

micro walls 1, 2 and 3.  

 

Figure E-1- Best fit for micro wall 1 accuracy data for PP (Pinj of 400 and 600 bar) 

 

 
Figure E-2- Best fit for micro wall 2 accuracy data for PP (Pinj of 400 and 600 bar) 
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Figure E-3- Best fit for micro wall 3 accuracy data for PP (Pinj of 400 and 600 bar) 

 

Calculation of “a”, “b” and “c” 

a: Linear model Poly1: 

𝑎 − 2.514e + 004𝜋8 + 180.6     

Goodness of fit: 

  SSE: 8.583e-028 

  R-square: 1 

******************************************* 

b: Linear model Poly1: 

𝑏 = 0.04693𝜋8 − 0.0008964 

Goodness of fit: 

  SSE: 1.175e-038 

  R-square: 1 

******************************************* 

c: 𝑐 = 𝑞1𝜋8 + 𝑞2 

where the constants are calculated as 2
nd

 order functions of l: 

 

q1: Linear model Poly2: 

𝑞1 = −3403𝑙2 + 114.1𝑙 + 1.279    

Goodness of fit: 

  SSE: 6.903e-031 

  R-square: 1 

1 1.05 1.1 1.15 1.2 1.25

x 10
4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

7


1

PP3

 

 

experimental data (p=600bar)

final equation (p=600bar)

experimental data (p=400bar)

final equation (p=400bar)



        Appendix E 

223 

 

******************************************* 

q2: Linear model Poly2: 

𝑞2 = 43.78𝑙2 − 3.62𝑙 +0.07476 

Goodness of fit: 

  SSE: 6.372e-034 

  R-square: 1 

******************************************* 

Replacing the constants gives the following final equation: 

𝜋1 = (−2.514 × 104𝜋8 + 180.6)𝐸𝑋𝑃((0.04693𝜋8 − 0.8964 × 10−3)𝜋7) +

(−3403 (
𝐷𝑐

𝐷𝑝
)

2

+ 114.1 (
𝐷𝑐

𝐷𝑝
) + 1.2789) 𝜋8 + (43.78 (

𝐷𝑐

𝐷𝑝
)

2

− 3.62 (
𝐷𝑐

𝐷𝑝
) +

0.07476)  

 

 

Calculations for Pinj of 800 bar 

The same method is used to find an equation for the pressure of 800 bar for PP. As 

explained previously in this section, PP behaves differently at this temperature and 

therefore, requires a model with different constants. Figure E-4 below shows that the 

form of the equation is the same as before (exponential). However, the constants for 

the equation are different.  

 

 

Figure E-4- Best fit equations for all three micro walls made out of PP (Pinj of 800 bar) 
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Calculation of “a”, “b” and “c” 

The general form of the equations is: 

𝜋1 = 𝑎𝐸𝑋𝑃(𝑏𝜋7) + 𝑐 

Where “a” and “b” for micro channel 1 are: 

 

General model Exp1: 

𝜋1 = 7.984e + 005𝐸𝑋𝑃(−0.001626𝜋7) 

Goodness of fit: 

  SSE: 1.5e-005 

  R-square: 0.9885 

******************************************* 

Since the pressure is at a constant value of 800 bar, the constant “c” is a function of l. 

Linear model Poly2: 

𝑐 = 27.17𝑙2 − 2.429𝑙 + 0.05415    

Goodness of fit: 

  SSE: 1.585e-035 

  R-square: 1 

******************************************* 

Replacing the constants gives the following final equation: 

𝜋1 = (7.984 × 105)𝐸𝑋𝑃(−0.001626𝜋7) + (27.17(
𝐷𝑐

𝐷𝑝

)2 − 2.429(
𝐷𝑐

𝐷𝑝

)

+ 0.05415) 
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Appendix F Calculation of the dimensionless 

groups for the UTS model 

There are eight variables with four basic dimensions (M, L, T and θ). According to 

Buckingham’s π Theorem the number of dimensionless groups is four (8-4=4) which 

are π1, π2, π3, π4 and π5. Due to the fact that Buckingham’s π Theorem may not result 

in correct value for “r”, one must validate the number of dimensionless groups by 

formation of the dimensional matrix. This is shown below in Figure F-1. 

 

Figure F-1- Dimensions of the variables in µIM mechanical model 

 

The dimensional matrix is then 

 

Following the method introduced previously, the least number of columns and rows 

that result in a determinant of a number other than zero is clearly four (e.g. last four 

columns). Therefore, the rank of the dimensional matrix, and the value of r, is four. 

So four dimensionless groups (n-r=8-4=4) are required to form the mathematical 

equation that predicts the UTS as a function of the other seven variables. This 

confirms that Buckingham’s π theorem was also correct in this case. 

 

σUTS Tp Tm Q P ρ k Cp

L -1 0 0 3 -1 -3 1 2

M 1 0 0 0 1 1 1 0

T -2 0 0 -1 -2 0 -3 -2

θ 0 1 1 0 0 0 -1 -1

-1 0 0 3 -1 -3 1 2

1 0 0 0 1 1 1 0

-2 0 0 -1 -2 0 -3 -2

0 1 1 0 0 0 -1 -1
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Once the number of dimensionless groups is identified one can form them by 

dimensional analysis. The four dimensionless groups require four non-repeatable 

variables. These are UTS Tp, Tm and K (as a polymer characteristic). Therefore, there 

are four repeatable variables; Q, Cp, P and ρ. Each of the non-repeatable variables 

exists in one dimensionless group, with the four repeatable ones. Therefore, π1 is 

calculated as: 

𝜋1 =  𝜎𝑈𝑇𝑆𝑃𝑎𝜌𝑏𝐶𝑝
𝑐𝑄𝑑  

≡ (𝑀𝐿−1𝑇−2) (𝑀𝐿−1𝑇−2)𝑎  (𝑀𝐿−3)𝑏 (𝐿2𝑇−2𝜃−1)𝑐(𝐿3𝑇−1)𝑑 

Equation F.1 

 

Since π1 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: −1 − 𝑎 − 3𝑏 + 2𝑐 + 3𝑑 = 0                                                                      Equation F.2 

M: 1 + 𝑎 + 𝑏 = 0 Equation F.3 

T: −2 − 2𝑎 − 2𝑐 − 𝑑 = 0 Equation F.4 

θ: −𝑐 = 0    Equation F.5                                                                           

 

By solving the above equations, values for d, c, and b are zero and 𝑎 = −1. 

Therefore,  

 

𝜋1 =  𝜎𝑈𝑇𝑆𝑃−1𝜌0𝐶𝑝
0𝑄0  

𝜋1 =
𝜎𝑈𝑇𝑆

𝑃
 

Equation F.6 

 

π2 is calculated as: 

𝜋2 =  𝑇𝑝𝑃𝑎𝜌𝑏𝐶𝑝
𝑐𝑄𝑑  

≡ (𝜃) (𝑀𝐿−1𝑇−2)𝑎  (𝑀𝐿−3)𝑏 (𝐿2𝑇−2𝜃−1)𝑐(𝐿3𝑇−1)𝑑 

Equation F.7 

 

Since π2 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: −𝑎 − 3𝑏 + 2𝑐 + 3𝑑 = 0                                                                      Equation F.8 

M: 𝑎 + 𝑏 = 0 Equation F.9 

T: −2𝑎 − 2𝑐 − 𝑑 = 0 Equation F.10 

θ: 1 − 𝑐 = 0    Equation F.11                                                                           
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By solving the above equations, value for d is zero, 𝑎 = −1 and = 𝑐 = 1 . Therefore,  

 

𝜋2 =  𝑇𝑝𝑃−1𝜌1𝐶𝑝
1𝑄0 

𝜋2 =
𝑇𝑝𝜌𝐶𝑝

𝑃
 

Equation F.12 

 

π3 is calculated as: 

𝜋3 =  𝑇𝑚𝑃𝑎𝜌𝑏𝐶𝑝
𝑐𝑄𝑑  

≡ (𝜃) (𝑀𝐿−1𝑇−2)𝑎  (𝑀𝐿−3)𝑏 (𝐿2𝑇−2𝜃−1)𝑐(𝐿3𝑇−1)𝑑 

Equation F.13 

 

Since π3 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: −𝑎 − 3𝑏 + 2𝑐 + 3𝑑 = 0                                                                      Equation F.14 

M: 𝑎 + 𝑏 = 0 Equation F.15 

T: −2𝑎 − 2𝑐 − 𝑑 = 0 Equation F.16 

θ: 1 − 𝑐 = 0       Equation F.17                                                                          

 

By solving the above equations, values for d, c, and b are zero and 𝑎 = −1. 

Therefore,  

 

𝜋3 =  𝑇𝑚𝑃−1𝜌1𝐶𝑝
1𝑄0 

𝜋3 =
𝑇𝑚𝜌𝐶𝑝

𝑃
 

Equation F.18 

 

π4 is calculated as: 

𝜋4 =  𝐾𝑃𝑎𝜌𝑏𝐶𝑝
𝑐𝑄𝑑  

≡ (𝑀𝐿𝑇−3𝜃−1) (𝑀𝐿−1𝑇−2)𝑎  (𝑀𝐿−3)𝑏 (𝐿2𝑇−2𝜃−1)𝑐(𝐿3𝑇−1)𝑑 

Equation F.19 

 

Since π4 is a dimensionless number, the sum of the powers for M, L, T and θ should 

be zero. Therefore, 

 

L: 1 − 𝑎 − 3𝑏 + 2𝑐 + 3𝑑 = 0                                                                      Equation F.20 

M: 1 + 𝑎 + 𝑏 = 0 Equation F.21 

T: −3 − 2𝑎 − 2𝑐 − 𝑑 = 0 Equation F.22 
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θ: −1 − 𝑐 = 0    Equation F.23                                                                          

 

By solving the above equations, 𝑎 = − 1
4⁄ , 𝑐 = −1, 𝑑 = − 1

2⁄  and 𝑏 = − 3
4⁄ . 

Therefore,  

 

𝜋4 =  𝐾𝑃−1
4⁄ 𝜌−3

4⁄ 𝐶𝑝
−1𝑄−1

2⁄  

𝜋4 =
𝐾

𝑃
1

4⁄ 𝜌
3

4⁄ 𝐶𝑝𝑄
1

2⁄
 

Equation F.24 

 

 

If the calculations are performed correctly, π1, π2, π3, π4 and π5 must have dimensions 

of one.  To validate that the performed equations are correct, dimensions of each of 

the groups is calculated: 

 

𝜋1 =
𝜎𝑈𝑇𝑆

𝑃
≡

𝑀𝐿−1𝑇−2

𝑀𝐿−1𝑇−2
= 1 

𝜋2 =
𝑇𝑝𝜌𝐶𝑝

𝑃
≡ 𝜃

𝑀

𝐿3

𝐿2

𝑇2𝜃

𝑀−1

𝐿−1𝑇−2
= 1 

𝜋3 =
𝑇𝑚𝜌𝐶𝑝

𝑃
≡ 𝜃

𝑀

𝐿3

𝐿2

𝑇2𝜃

𝑀−1

𝐿−1𝑇−2
= 1 

𝜋4 =
𝐾

𝑃
1

4⁄ 𝜌
3

4⁄ 𝐶𝑝𝑄
1

2⁄
≡

𝑀𝐿

𝑇3𝜃

1

𝑀
1

4⁄ 𝐿−1
4⁄ 𝑇−2

4⁄

1

𝑀
3

4⁄ 𝐿−9
4⁄

1

𝐿2𝑇2𝜃

1

𝐿
3

2⁄ 𝑇−1
2⁄

= 1 

 

Therefore, all groups are dimensionless. 

 

Based on Buckingham’s π Theorem, one of the dimensionless groups is a function of 

the other four. Since the objective here is to calculate the UTS as a function of the 

other variables π1 is the one isolated on the left side of the equation. Therefore,  

π1= f (π2, π3, π4)  Equation F.25 

This means the general mechanical equation is 

𝜎𝑈𝑇𝑆

𝑃
= 𝑓(

𝑇𝑝𝜌𝐶𝑝

𝑃
,
𝑇𝑚𝜌𝐶𝑝

𝑃
,

𝐾

𝑃
1

4⁄ 𝜌
3

4⁄ 𝐶𝑝𝑄
1

2⁄
) 

Equation F.26 
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Appendix G Calculation of the UTS models 

It was already established in Chapter 5 that the dimension of the micro walls (or 

micro channels in the mould cavity) does not affect the UTS of the micro parts. 

Therefore the size of the micro walls is not a variable in these calculations. To find a 

general model, dimensional analysis was used to find a general relationship 

(Appendix F). The final expressions were formed in a way to isolate the UTS (π1), 

polymer melt temperature (π2) and injection velocity (π5). Then a plot of π1 against π5 

was formed for at different π2s. The general function was formed through 

MATLAB’s curve fitting function. The function with the smallest statistical error 

was a 2
nd

 order polynomial function for both POM and PP. The function therefore 

was: 

 

𝜋1 = 𝑎𝜋5
2 + 𝑏𝜋5 + 𝑐 

 

Where “a”, “b” and “c” are functions of π2 (polymer melt temperature). To reduce the 

error of the calculations, a normalisation function z was defined where, 

 

𝑍𝑃𝑂𝑀 = (𝜋5 − 1.0977 × 10−5)/1.1129 × 10−6  

𝑍𝑃𝑃 = (𝜋5 − 5.1791 × 10−5)/5.2507 × 10−6 

 

Therefore the general function becomes 

 

𝜋1 = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 

 

The figures and calculation of constants for each polymer are shown below. 

 

Calculations for POM: 

Figure G-1 shows the functions and the shape of the line for the fitted data for UTS 

of micro walls made out of POM. The calculation of constants “a”, “b” and “c” as 

functions of π2 are shown below. 
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Figure G-1- UTS data fit for micro walls made out of POM 

 

Calculation of “a”, “b” and “c” 

a: Linear model Poly2: 

𝑎 = −92222𝜋2
2 + 1882.1𝜋2 − 9.6217 

******************************************* 

b: Linear model Poly2: 

𝑏 = 2469.3𝜋2
2 − 49.255𝜋2 + 0.32821 

******************************************* 

c: Linear model Poly2: 

𝑐 = 2.7498e + 005𝜋2
2 − 5755.5𝜋2 + 30.542 

******************************************* 

Replacing the constants gives the following final equation: 

𝜋1 = (−92222𝜋2
2 + 1882.1𝜋2 − 9.6217)𝑍𝑃𝑂𝑀

2 + (2.469.3𝜋2
2 − 49.255𝜋2 +

0.32821)𝑍𝑃𝑂𝑀 + (2.7498𝜋2
2 − 5755.5𝜋2 + 30.542)  
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1 =  -0.018641*z
2
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Calculations for PP: 

Figure G-2 shows the functions and the shape of the line for the fitted data for UTS 

of micro walls made out of PP. The calculation of constants “a”, “b” and “c” as 

functions of π2 are shown below. 

 

Figure G-2- UTS data fit for micro walls made out of PP 

 

Calculation of “a”, “b” and “c” 

a: Linear model Poly2: 

𝑎 = −55713𝜋2
2 + 829.77𝜋2 − 3.0998 

******************************************* 

b: Linear model Poly2: 

𝑏 = −88233𝜋2
2 + 1249.3𝜋2 − 4.3728 

******************************************* 

c: Linear model Poly2: 

𝑐 = 1.7854e + 005𝜋2
2 − 2798.4𝜋2 + 11.1 

******************************************* 

Replacing the constants gives the following final equation: 

𝜋1 = (−55713𝜋2
2 + 829.77𝜋2 − 3.0998)𝑍𝑃𝑃

2 + (−88233𝜋2
2 + 1249.3𝜋2 −

4.3728)𝑍𝑃𝑃 + (1.7854𝜋2
2 − 2798.4𝜋2 + 11.1)  
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1 =  -0.010373*z
2
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2
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