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I 

ABSTRACT 

Low carbon economy has emerged as an important task in China since the energy 

intensity and carbon intensity reduction targets were clearly prescribed in its recent 

Twelfth Five-Year Plan during 2011-2015. While the largest enterprises have 

undertaken initial initiative to reduce their energy consumption, small and medium-

sized enterprises (SMEs) will need to share the responsibilities in meeting the 

nation’s targets. However, there is no established structure for helping SMEs to 

reduce their efficiency gap and hence the implementation of energy-saving 

measures in SMEs still remains patchy. Addressing this issue, this thesis seeks to 

understand the critical barriers faced by SMEs and aims to develop proprietary 

methodologies that can facilitate manufacturing SMEs to close their efficiency gap. 

Process parameters optimisation is perceived to be an effective “no-cost” strategy 

which can be conducted by SMEs to realise energy efficiency improvement. A unique 

design of experiment (DOE) introduced by Dorian Shainin offers a simplistic 

framework to study process optimisation, but its application is not widespread and 

being criticised over its working principles. In order to address the inherent 

limitations of the Shainin’s method, it was integrated with the multivariate statistical 

methods and the signal-response system in the empirical study. The nature of the 

research aim also requires a theoretical approach to evaluate the economic 

performance of the energy efficiency investment. Hence, a spreadsheet-based 

decision support system (file SERP.xlsm) was created via dynamic programming (DP) 

method. 
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The main contributions of this thesis can be subdivided into empirical level and 

theoretical level. At the empirical level, a technically feasible yet economically viable 

approach called “multi-response dynamic Shainin DOE” was developed. An empirical 

study on the injection moulding process was presented to examine the validity of 

this novel integrated methodology. The emphasis has been on the integration of 

multivariate techniques and signal-response analysis. The former successfully 

identified the critical factors to energy consumption and moulded parts’ impact 

performance regardless of the great fluctuation in the impact response. The latter 

enables the end-user to achieve different performance output based on the 

particular intent. At the theoretical level, the “DP-based spreadsheet solution” 

provides a convenient platform to help the rationally-behaved decision makers 

evaluate the energy efficiency investments. A simple hypothetical case study on the 

injection moulding industry was illustrated how the decision-making process for 

equipment replacement can evolve over time. 

To sum up, both proprietary methodologies enhance the dynamicity in the 

optimisation process to support injection moulding industry in closing their 

efficiency gap. The study at the empirical level was limited by the absence of real 

industrial case study where it is important to justify the practicality of the proposed 

methodology. Regarding the theoretical level, the dataset for initial validation on the 

spreadsheet solution was not available. Finally, it is important to continue the future 

work on the research limitations in order to increase the cogency of the proprietary 

methodologies for common use in the industry. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Research Motivation 

To address the 2008 financial crisis, the central government of China publicly 

pledged to sustain an annual economic growth rate of 8%, which is well known as 

“baoba” policy1. While the economy of China is moving towards recovery, its 

economic growth model is not sustainable as it is heavily dependent on coal-based 

energy production. According to the National Bureau of Statistics of China [1], coal-

fired power stations had a share of 77.8% of the total electricity generation in 2011, 

which amounted to 2,474 million tonnes coal equivalent (MTCE). In the long run, 

there is an undeniable fact that the greenhouse gases (GHG) emitted from the fossil 

fuels combustion will worsen the climate change issue. While, in the short run, coal 

burning will augment the urban smog level which in turn causes human health 

problems. Newly revealed evidence shows that the life expectancies are 

approximately 5.5 years lower in Northern China due to an increased rate of 

cardiorespiratory mortality [2]. The main cause is attributed to the long-term 

exposure to air pollution in this region because of employing winter heating systems 

fired by coal.  

                                                      
1
 The direct translation of the word “baoba” in English is “maintain eight”. 
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In addition to the environmental and health problems, fossil fuels often encounter 

issues of resource scarcity and price volatility. Having realised the shortcomings of 

reliance on fossil fuels, China strives to expand its renewable energy capacity but 

recent estimates suggest that the renewables will still occupy a small portion of 

China's primary energy mix until 2035 (see Figure 1.1) [3]. Figure 1.1 implies that the 

renewable energy sectors are still not mature enough to handle the increasing 

energy demand in China for the next few decades. For this reason, improving energy 

efficiency has become an imperative task in China, not only to sustain its economic 

growth, but also to address global climate change issue. The economic model of this 

type is often called low carbon economy. 

 

 

 

 

 

 

Figure 1.1 – Total primary energy demand in China from 1980 to 2035. Source: [3] 

To successfully transform to a low carbon economy, some stringent policy strategies 

will be required. In this regard, the central government of China has already 

announced energy intensity reduction targets in its Eleventh Five-Year Plan (11th FYP) 

during 2006–2010, set to reduce the nation’s energy intensity by 20%. Energy 
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intensity is an important measure of the energy efficiency in a country’s economic 

structure, normally calculated in terms of total energy consumption per unit of gross 

domestic product (GDP). In order to achieve the target by the end of 2010, it was 

reported that the Chinese government despatched its negative enforcement 

mechanisms that culminated in socially and economically disruptive measures such 

as black-outs, shutting down of residential heating systems and forced closures of 

inefficient factories [4]. Even so, the eventual reduction rate achieved by 2010 was 

reportedly 19.1%. Evidently, these short-term measures cannot resolve the root 

causes of energy inefficiency, nor can they mitigate the nation’s energy intensity 

because they merely reduce the overall energy use without boosting GDP growth 

concurrently. Even though the previous target has not been met, the central 

government of China has set another two ambitious goals in its Twelfth Five-Year 

Plan (12th FYP) for the period of 2011-2015: to further cut the nation’s energy 

intensity by 16%, and for the first time in its FYP, to reduce the nation’s carbon 

intensity2 by 17% (see Table 1.1).  

Table 1.1 – Energy intensity and carbon intensity reduction targets in China’s 11th and 12th 

Five-Year Plan 

 11th FYP’s (2006-

2010) Target 

11th FYP’s Actual 

Result 

12th FYP’s (2011-

2015) Target 

Energy intensity 

(% reduction) 
20 19.1 16 

Carbon intensity 

(% reduction) 
Not set N/A 17 

 

                                                      
2
 Carbon intensity is defined as the amount of carbon by weight emitted per unit of GDP. 
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During the 11th FYP period, one of the key policies launched by the central 

government of China is the “Top 1,000 Enterprises Energy Efficiency Programme” 

(Top-1000 programme). The major target of the Top-1000 programme is to achieve 

an energy saving of nearly 100 MTCE in five years through the top 1,000 enterprises, 

which had been reported to have collectively consumed one-third of the nation’s 

total energy usage in 2004 [5]. Strict penalties would be imposed to those 

participating enterprises that did not fulfil their commitments assigned by the 

Chinese government. As a result of this policy, China's energy intensity was 

estimated to have decreased by 46% from 1996 to 2010 although its total industrial 

energy consumption increased by 134% at the same period [6].  

To further optimise the behaviour of energy consumers, a number of market 

mechanisms have been proposed in the 12th FYP to urge a transition from the 

energy-intensive and low value-added sectors, such as carbon tax, carbon emissions 

trading, energy and electricity price reform and so on [4]. While the energy-intensive, 

large-sized enterprises have undertaken initial initiative to enhance their energy 

efficiency through the Top-1000 programme during the 11th FYP period, there is 

greater importance to focus on the less energy-intensive, small and medium-sized 

enterprises (SMEs), so as to achieve the energy intensity and carbon intensity 

reduction targets set in the 12th FYP. The industrial structure in China is primarily 

made up of SMEs. Based on the data given by the National Bureau of Statistics of 

China [1], around 94.8% of the above-scale industrial enterprises3 are categorised as 

SMEs. Enterprises that fit this category in China are vital to its economy as they 

                                                      
3
 Above-scale industrial enterprises refer to those who own annual business revenue of more than 20 

million Chinese Yuan. 
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collectively contribute to approximately 57.7% of the total industrial output value in 

2011. In this context, it is important to scrutinise the manufacturing industry as it 

represents the largest energy consumer in China, accounting for 58% of the total 

energy usage in 2010 (see Figure 1.2). 

 

Figure 1.2 – Distribution of China’s energy consumption across different sectors in 2010 

based on China Statistical Yearbook 2012. Source: [1] 

From the perspective of business, the importance of improving energy efficiency is of 

two fold. First, companies can increase their profit margins via energy saving. Second, 

companies need to ensure that they comply with the governmental regulations 

pertaining to energy policies. Nevertheless, the implementation of energy-saving 

measures in SMEs remains patchy despite the fact that many of the relevant 

measures are allegedly cost-effective. This phenomenon is termed the “efficiency 

gap” in the energy efficiency literature which was first proposed by the Solar Energy 
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Research Institute (SERI) [7]. According to the definition by SERI, the efficiency gap 

refers to the difference between the levels of investment in energy efficiency that 

appear to be cost-effective based on engineering-economic models and the levels 

actually occurring. A number of causes to the efficiency gap are at play, but there is 

no established structure helping SMEs to initiate pertinent actions. For this reason, 

closing the efficiency gap in manufacturing SMEs forms the main motivation for this 

thesis since the longer-term challenges in the energy intensity and carbon intensity 

reduction targets lie on manufacturing SMEs.  

 

1.2 Research Scope 

The scope for this thesis was circumscribed specifically to plastic products industry, 

which is in conjunction with the previous collaborative project, called “Energy 

Efficiency in the Regional Ningbo Automotive Industry”. This project was conducted 

by the Division of Engineering at The University of Nottingham Ningbo China (UNNC). 

The overarching vision was to reduce cost and energy consumption in plastics 

manufacturing processes, while not reducing the quality of the final product. In 

summing up this project, the company under research collaboration was more 

willing to retrofit their existing machines rather than to invest on new machinery due 

to high initial cost and immature green technology at that time. 

In 2010, almost 99.85% of the enterprises in China's plastic products industry were 

classified as SMEs [8]. In the same year, China overtook Europe as the largest plastics 

production region in the world (see Figure 1.3) [9], where the total amount of energy 
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consumed by the plastic products industry was up to 20.975 MTCE [1]. Even so, it 

was reported that plastics consumption per capita in Asia is still much below the 

levels of mature industrial regions [9]. In this context, China is likely to see greater 

energy demand in the plastic products industry, while plastics consumption per 

capita in China is expected to grow with its GDP per capita in the future [10]. From 

the point of view in business, energy efficiency has become increasingly important in 

the plastic products industry since energy cost represents the third largest variable 

cost (after material and direct labour costs), whilst in some companies it is even the 

second largest variable cost [11]. In addition to the issue of rising energy costs, 

plastic products industry in China has to deal with more stringent environmental 

policies as well as the emerging competition from lower wage economies. 

 

 

 

 

 

Figure 1.3 – World Plastics Production 2010. Source: PlasticsEurope Market Research Group 

Injection moulding is the most commonly practiced method in China given the fact 

that it has the highest market share (40%) among all types of plastics processing 

machinery in 2009 [12]. According to China Plastic Machinery Industry Yearbook 

2010 [13], the percentages of exported and imported injection moulding machines 

respectively reached 42.62% and 64.73%, which are also the highest among plastics 
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processing machineries. Furthermore, almost one third of plastic products consumed 

worldwide are processed by injection moulding [14]. Considering the large scale of 

injection moulding sector in the plastic products industry, injection moulding was 

hence selected for the case study in this thesis.  

 

1.3 Research Aim and Objectives 

The main aim of this thesis was to develop proprietary methodologies that can 

facilitate manufacturing SMEs, particularly small and micro enterprises, to close their 

efficiency gap. The hypothesis raised here is that the potentials of a wide range of 

methodologies developed by the academic community cannot be easily practiced in 

the environment of SMEs. Following the review of literature, three research 

questions were posed which shaped the main research work in this thesis: 

i. Would there be a strategy with “no-cost investment” that can help 

manufacturing SMEs to implement energy efficiency project without capital 

expenditure? (See Section 2.2) 

ii. Which optimisation methodology would be the most appropriate solution to 

address the particular barriers facing SMEs? (See Section 2.4) 

iii. How would SMEs determine whether an energy efficiency investment 

decision can contribute to the economic performance within the company? 

(See Section 2.5) 
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To answer the above questions, the research aim was then expanded into eight 

primary objectives: 

i. To investigate the critical barriers that inhibit the implementation of energy 

efficiency investments which appear to be cost-effective particularly in the 

environment of SMEs. 

ii. To review a wide ranging of available energy-saving measures that can be 

adopted by the injection moulding industry.  

iii. To identify the most appropriate optimisation methodology that can be easily 

practiced in the environment of SMEs for energy efficiency improvement. 

iv. To develop a user-friendly and technically feasible optimisation methodology 

for which it can be easily practiced at the manufacturing shop floor.  

v. To demonstrate and verify the validity of the proposed methodology through 

the empirical study. 

vi. To optimise the energy efficiency during the injection moulding process 

whilst not deteriorating the quality of moulded parts. 

vii. To assist the decision makers in SMEs assess the energy efficiency 

investments. 

viii. To develop a decision support system that can be used interactively by 

personnel from different levels of expertise.  
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1.4 Research Approach 

In the opening discussion of what strategy is suitably applied by SMEs to handle 

energy efficiency barriers, the title of this thesis suggests that the “dynamic 

optimisation” is an effective strategy that will be demonstrated throughout the work. 

In economics, the term “dynamics” refers to how the companies adjust their 

resources and capabilities over time to varying circumstances [15]. Albeit inherently 

temporary, the dynamicity enables the companies to create a competitive advantage 

in order to stay ahead of the industrial trend and sustain their profitability. In this 

thesis, the meaning of “dynamic” is more subtle and specifically of two fold. First, it 

describes the signal-response system in which the response value is adjustable based 

on particular intent (see Section 3.6). Put another way, the response is said to have a 

“dynamic” characteristic. Second, it refers to the dynamic programming (DP) method 

that will be applied to create a spreadsheet-based decision support system (see 

Section 2.5). The term “dynamic” reflects the fact that the decisions are interrelated 

and subject to change over time. The former was used to address the first two 

research questions in an empirical way, while the latter was used to deal with the 

third research question theoretically.  

 

1.4.1 Empirical-level approach 

Optimising the process parameters is perceived to be a useful technique for 

enhancing the environmental attributes of manufacturing processes [16]. While 

there are a wide variety of optimisation methodologies, a unique design of 
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experiment (DOE) introduced by Dorian Shainin was adopted in this study (see 

Subsection 3.2.3). Despite the fact that Shainin’s method is not widespread and 

being criticised over its working principles, it can be developed into a more widely-

used strategy in process optimisation due to its ease of implementation. Addressing 

its inherent limitations, the multivariate statistical methods and the signal-response 

system were integrated into Shainin DOE. This novel integrated methodology is 

named as “multi-response dynamic Shainin DOE” (MRDSD) in this thesis. This study 

needs to overcome the multi-response problems effectively since reduction in 

process energy use does not necessarily imply a good product quality. To verify the 

proposed methodology, it was applied to reduce the energy consumption during 

injection moulding process with the assurance of impact performance. The inclusion 

of signal-response system is a promising approach in dealing with the trade-off 

situations based on different optimisation objectives.  

 

1.4.2 Theoretical-level approach 

Although process optimisation can be treated as a cost-effective alternative to 

improve the energy efficiency of manufacturing processes, it results in possible 

machine downtime and production disruption. Consequently, the companies might 

not be willing to adopt this approach due to the unforeseen risks and economic 

losses. In addition, whether this approach can outperform the benefits brought by 

the capital investment in energy-efficient equipment remains unclear. Due to the 

constraints on time and cognitive ability, the upper management is often satisfied 

with the status quo and hence the potential cost savings could easily be overlooked, 
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especially when the decision-making process is often in a top-down fashion. In this 

context, this thesis proposes to create a spreadsheet-based decision support system 

(DSS) via dynamic programming, which is called “DP-based spreadsheet solution” in 

this thesis. Due to the persistent absence of DP software packages, an Excel-based 

solution (file SERP.xlsm) was developed to solve the problem under consideration. 

Nevertheless, decision makers may not simply base their investment decisions on 

the DP solution. The reason is that the decision-making process is not only affected 

from the economic perspective but also from the behavioural perspective (see 

Subsection 2.2.2). 

 

1.5 Thesis Structure 

The whole thesis is comprised of six chapters and one appendix. Following the 

introductory chapter, the remaining chapters are summarised as follows: 

Chapter 2 provides a detailed review of the literature in order to identify the 

research needs and directions for this thesis. It first presents the much cited works 

regarding the barriers to energy efficiency. Subsequently, a range of energy-saving 

measures are reviewed before selecting the most implementable method in SMEs. 

This is followed by the study of various types of optimisation methodology and 

decision support system, in an attempt to address the barriers faced by SMEs in 

closing their efficiency gap. 
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Chapter 3 explicitly demonstrates the development of MRDSD. At the beginning, it 

carefully analyses the pros and cons in different kinds of experimental design. Next, 

the procedures in developing the proposed methodology through the integration of 

the multivariate statistical methods and the signal response system are clearly 

presented. 

Chapter 4 presents an empirical study to verify the validity of MRDSD. To summarise, 

this chapter clearly describes the experimentation set-up, selection of quality 

response and material, list of important variables, and the experimental outcomes. 

In short conclusion, the proposed methodology has proved to be an effective “no-

cost investment” strategy.  

Chapter 5 primarily illustrates the formulation of DP model for solving the stochastic 

equipment replacement problem and the development of the corresponding Excel-

based solution. A simple hypothetical example is demonstrated and the probable 

behaviours of the decision makers are discussed.  

Chapter 6 concludes the overall thesis work and summarises the findings from the 

research objectives. The main knowledge contributions are presented and some 

future studies are discussed in response to the limitations found in the empirical-

level and the theoretical-level approach. 
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CHAPTER 2  

REVIEW OF LITERATURE 

 

2.1 Introduction 

Energy efficiency has become an inevitable topic in China due to the launch of its 

Twelfth Five-Year Plan that emphasises the energy intensity and carbon intensity 

reduction targets. This policy has prompted many companies into action but there is 

no established structure to support SMEs in taking appropriate actions. In order to 

understand the main causes to the efficiency gap, this chapter first looks into the 

much cited literature regarding the barriers to energy efficiency in SMEs. The main 

highlight of this section is to identify the research needs and directions for this thesis. 

To do so, a range of energy saving measures for plastic injection moulding was 

reviewed. Some discussions were provided in selecting the energy saving option. To 

further assist decision makers in SMEs in decision management for energy efficiency 

investment, this section also presents the literature concerning decision support 

systems and operations research. 

 

2.2 Barriers to Energy Efficiency in SMEs 

Although there is abundant empirical and theoretical literature studying the barriers 

encountered in industrial energy efficiency, there is no consensus on which is the 
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most crucial barrier. The most probable explanation is that those studies were 

performed across different sectors, firm sizes or geographical regions. For example, 

Nagesha and Balachandra [17] identified limited financial resources and rational 

behaviour of business owner as the primary barriers to small industry (specifically 

foundry, brick and tile industry) in India. On the other hand, Thollander et al. [18] 

found that low priority of the energy efficiency issue is the major barrier among the 

manufacturing SMEs in Sweden. In particular to the Chinese context, Shi et al. [19] 

concluded that lack of economic incentive policies and lax environmental 

enforcement are the most important barriers to energy-efficient production in SMEs. 

A wide-ranging of energy efficiency barriers has been extensively discussed in the 

literature. Describing all these barriers that have appeared from time to time will be 

an “exhausting” enumeration process. The main objective of this section is not to 

create another piece of puzzle to the literature in this field, but to review the much 

cited literature so as to scrutinise the potential barriers at a macroscopic level. 

Taking into account the research aim, a prerequisite in this section is to distinguish 

different categories of SMEs in China and to understand the definition of SMEs in a 

more explicit way. 

 

2.2.1 Classification and definition of SMEs 

On 18th June 2011, the Ministry of Industry and Information Technology, the 

National Bureau of Statistics, the National Development and Reform Commission, 

and the Ministry of Commerce jointly promulgated China’s Regulations on the 
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Standards for Classification of Small and Medium-sized Enterprises [20]. In this 

classification system, SMEs are divided into three categories: medium, small, and 

micro. The upper and lower limit standards for each category are specified according 

to different industries. The particular standards for manufacturing industries are as 

follows: 

Table 2.1 – Classification standards for manufacturing SMEs in China [20] 

 Upper limit Medium Small Micro 

Manufacturing 

industry 

Staff headcount 

< 1,000  

or, 

annual revenue 

< 400m Yuan 

Staff headcount 

≥ 300  

and, 

annual revenue 

≥ 20m Yuan 

Staff headcount 

≥ 20  

and, 

annual revenue 

≥ 3m Yuan 

Staff headcount 

< 20  

or, 

annual revenue 

< 3m Yuan 

 

While it is compulsory to follow the conventional thresholds of staff headcount and 

annual revenue, the definition of SMEs also needs to take into account whether an 

enterprise is autonomous, a partner or linked [21]. This will provide a more realistic 

criterion to determine which category a particular enterprise falls within. Enterprises 

are considered autonomous if they are totally independent or they have a holding of 

less than 25% in other enterprises, or less than 25% of their holding is owned by 

others. There are exceptions for this 25% threshold such as universities, institutional 

investors, public investment corporations and non-profit research centres. Put 

another way, enterprises may still be considered autonomous even if more than 25% 

of their holding is owned by the stated organisations. The holding threshold for a 

partner enterprise is between 25% and 50%. When determining the SME status of a 

partner enterprise, a proportion of the other enterprise’s staff headcount and 

financial details must be added. Exceeding the 50% threshold indicates that an 
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enterprise is linked. For this case, all 100% of the linked enterprise’s data must be 

added in determining the SME status. For example, if enterprise A owns 51% of B, 

while C has a holding of 33% in A, the calculation for determining the status of 

enterprise A will be equal to 100% of A plus 100% of B plus 33% of C. The definition 

and calculation for these three different types of enterprise are summarised in Table 

2.2. 

Table 2.2 – Definition and calculation for an autonomous, a partner and a linked enterprise 

Type Definition Calculation 

Autonomous  Owns a holding of less than 

25% in other enterprises 

 Less than 25% is owned by 

other enterprises 

The autonomous enterprise’s data 

remains unchanged  

Partner  Owns a holding of 25% to 50% 

in other enterprises 

 25% to 50% is owned by other 

enterprises 

The proportion which reflects the 

percentage of the partner 

enterprise’s holding must be added 

Linked  Owns a holding of more than 

50% in other enterprises 

 More than 50% is owned by 

other enterprises 

All 100% of the linked enterprise’s 

data must be included 

 

 

2.2.2 Perspectives of barriers 

Despite the growing importance of energy efficiency investments, various types of 

barriers have reportedly inhibited companies from implementing these investments. 

According to the report prepared by Sorrell et al. [22], all these barriers to energy 

efficiency investments can be generally viewed from the economic, behavioural, and 
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organisational perspectives, as clearly displayed in Figure 2.1. These perspectives are 

further explained as follows. 

 

Figure 2.1 – Characterisation for the perspectives of barriers to energy efficiency 

improvement 

 

2.2.2.1 Economic perspective 

Jaffe and Stavins [23] as well as Golove and Eto [24] distinguished between the 

market barriers and market failures under the economic perspective. Based on their 

definition, the market barriers represent any factor which explains why energy 

efficiency technologies are neglected at a reasonable cost whereas the market 

failures refer to those market barriers which inhibit the market functioning and 

provide a justification for public policy intervention. One particular form of the 

market failures is information asymmetry where one party has better information 

access than the others [22]. Hannon et al. [4] pointed out that the economic market 
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failures will be a long-term challenge in Chinese SMEs as the conservative bank-

lending policies and governmental policies favour state-owned enterprises (SOEs). 

The concept of market barriers is subsequently subdivided into organisational failure 

and non-failure by Sorrell et al. [22]. The presence of organisational failure explains 

the influence of organisational structure on the end-use energy efficiency which 

could be mitigated through managerial tools. Two broad categories of organisational 

failure are (i) principal-agent relationships within organisations, and (ii) split 

incentives within organisations. A principal-agent relationship arises when the 

interests of the principal (e.g., the shareholders) rely on the agent (e.g., the financial 

department). For example, the principal may impose stringent payback criteria on 

certain energy efficiency investment while the agent is responsible to comparing and 

evaluating its relative economic performance. Non-failure describes the rational 

behaviour of the organisation on energy efficiency investments by considering the 

payback rate, capital budget and hidden cost. As described by Eyre [25], when 

customers are facing with two options, one with low capital costs and the other one 

with unclear operating costs, they may rationally go for the low capital option. 

 

2.2.2.2 Behavioural perspective 

From the behavioural perspective, the theory of bounded rationality portrays a more 

factual interpretation of human behaviour. This theory was first introduced by 

Herbert Simon in his work in 1955 [26]. He pointed out that given the limited 

cognitive capacity of humans, it is difficult for decision makers to identify and 
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evaluate all the possible alternatives. More explicitly, a number of assumptions 

which form the basis of bounded rationality can be summarised as follows [27]: 

i. It is impossible to enumerate all possible events and estimate the 

probabilities of all events. 

ii. Decision makers' preferences are not rational in terms of benefit 

maximisation. 

iii. Decisions spread out over time and sub-decisions are mutually dependent. 

iv. Attention and available information are vital in delimiting problems and 

strongly affects the subsequent decisions. 

Bounded rationality is often cited as one of the reasons for why energy efficiency 

measures have been overlooked. The reason is that organisations will tend to make 

satisfactory decisions based on experience or practice, instead of devoting more 

time and effort for the optimal solution due to the constraints on time, attention, 

resources as well as relevant expertise [22]. As a “solution” to bounded rationality, 

every organisation has a set of rules which specifies the routines for coordinating 

activities and managing decisions [28]. Even so, rules can be mistakenly obeyed or 

violated because of misjudgement on special incidents. In conjunction with the 

theory of bounded rationality, Kahneman and Tversky [29] presented the concept of 

loss aversion and risk aversion which explains the human's preference to 

circumventing losses and risks rather than acquiring gains. 

Another important concept from the behavioural perspective is the human 

dimension which relies more on social psychology rather than economics. Three 
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important examples listed in the report of Sorrell et al. [22] are the form of 

information, credibility and inertia. The effectiveness of information is not only 

affected by the information search costs but also the form of dissemination. For 

example, the information might not be explicit enough for the companies to fully 

understand and utilise it. Credibility of the source is the further dimension of 

information where the companies may find the information inconceivable or 

irrelevant. Inertia describes the phenomenon of reluctance to change in the 

individuals or companies. As stated by Stern and Aronson [28] (p. 69), “people resist 

change because they are committed to what they have been doing”. 

 

2.2.2.3 Organisational perspective 

Three particular concepts stemming from the organisational perspective are the 

organisational structure, organisational culture and power. Differences in 

organisational structure are reflected in the allocation of responsibilities which in 

turns impacts the organisations’ decision making capabilities [30]. For example, 

financial department might not have adequate capability to process information 

pertaining to energy efficiency and thus they may reject a potential investment. One 

of the key factors for a successful energy management is the creation of an 

organisational culture with real interest from the top-level management [31]. 

Without commitment from the top-level management, it is difficult to raise the 

company awareness in order to sustain a long-term achievement. For example, 

setting up a reward programme within the company will lead the staff to become 
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more proactive in taking actions for energy efficiency improvement. Power here 

refers to the authorisation of energy-related duties within an organisation. The 

barrier to energy efficiency might be a by-product of diverse roles assumed by 

individual departments where one department has more power than the other one 

[32]. It is not uncommon to see that energy management is often regarded as a 

peripheral agenda which is assigned to engineering or maintenance department, the 

status of which is normally low within a company hierarchy. These departments 

might not have sufficient power to initiate an immediate action for adopting energy-

saving measures.  

 

2.2.3 Barriers under economic theories 

The classification of barriers becomes more obfuscated when some of them can 

overlap in multiple perspectives. For example, Kostka et al. [33] carried out a survey 

based on questionnaires completed by 479 SMEs in Zhejiang Province, informational 

barrier was found to be the most crucial factor inhibiting energy efficiency 

improvement in SMEs. They defined the informational barrier as "lack of information 

and high transaction costs which hinder SMEs from adopting energy-efficient 

investments and technologies" [33] (p. 5). This explanation lies somewhat between 

the economic and behavioural perspectives because lack of information is 

categorised as market failure; whereas the theory of transaction cost economics 

explains that the existence of transaction cost is caused by bounded rationality (see 

Subsection 2.2.3.3).  
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Some studies even suggest that the barriers are interrelated. For example, Wang et 

al. [34] employed interpretive structural modelling (ISM) to analyse the 

interrelationships among energy efficiency barriers in China. They developed an ISM 

hierarchy to clearly illustrate these interrelationships and rank them accordingly. 

Based on their findings, barriers of highest importance were also found in 

overlapping perspectives such as lack of awareness (economic and behavioural) and 

lack of strategic planning (behavioural and organisational). 

Many studies have attempted to improve the explanation of barriers to energy 

efficiency by applying a number of economic theories. The four main theories found 

in the literature are neoclassical economics, agency theory, transaction cost 

economics, and behavioural economics [35]. This subsection is intended to 

understand these four different theories underlying the barriers to energy efficiency. 

 

2.2.3.1 Neoclassical economics 

Neoclassical economics covers a broad definition that has changed over time. In 

general, Dequech [36] claims that this theory can be characterised by the 

combination of the following features: 

i. It does not challenge the assumption of rationality about human decision-

making process and makes use of utility maximisation as the criterion of 

rationality. 

ii. It emphasises on equilibrium. 

iii. It disregards the existence of uncertainty. 
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Utility here refers to the perceived value of a good based on the decision makers’ 

preferences and attitudes towards risk, but the determination of utility functions is 

usually difficult and subjective [37]. There are a number of existing utility functions 

that can be utilised for decision analysis, such as expected utility, cardinal utility, and 

ordinal utility. 

 

2.2.3.2 Agency theory 

Agency theory is used to explain the principal-agent problem such as that mentioned 

in Subsection 2.2.2.1. This theory additionally encompasses information costs and 

opportunism in the neoclassical economics [35]. According to this theory, the 

agencies sometimes act opportunistically with information asymmetries in order to 

maximise their own benefits rather than those of the principals. 

 

2.2.3.3 Transaction cost economics 

The theory of transaction cost economics originated from the book “The Economic 

Institutions of Capitalism” (1985) authored by Oliver Williamson. This theory differs 

from the neoclassical economics in the fact that the former contains the behavioural 

assumptions [38]. Under this theory, human rationality is inherently bounded and 

therefore additional costs are unavoidably incurred when making an economic 

decision. The transaction cost might be used for gathering information, assuming risk, 

reaching decision, and so on. This theory is often applied to explain some 
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behavioural phenomena, not necessarily associated with the evident cases of 

undertaking transaction. 

 

2.2.3.4 Behavioural economics 

Behavioural economics rightly argues that decision-making is not only confined to 

the concept of bounded rationality but also systematically biased and descriptive 

[35]. For example, prospect theory suggests that individuals tend to be risk averse 

with respect to gains which gives rise to an asymmetrical S-shaped curve for the 

hypothetical value functions when evaluating outcomes, as illustrated in Figure 2.2 

[39]. This theory was advanced by Daniel Kahneman and Amos Tversky where the 

former had received Nobel Prize in Economic Sciences in 2002 by virtue of this 

theory. The main contribution of prospect theory is to describe and predict the 

“distorted” human behaviour rather than to characterise the rationally optimal 

behaviour.  

 

 

 

 

Figure 2.2 – Hypothetical value functions for gains and losses. Source:  [39] 

 

Value 

Outcome 
Gains Losses 



Chapter 2 

REVIEW OF LITERATURE 

26 

2.2.4 General taxonomy of barriers to energy efficiency 

Due to the blurring boundaries between neoclassical economics and agency theory, 

both theories will be combined as NA theory in this thesis. Likewise, due to the 

proximity between transaction cost economics and behavioural economics, the term 

TB theory is given to represent these two similar theories. In this sense, NA theory 

and TB theory can be distinguished from each other on a more distinctive basis.  

While the barriers to energy efficiency are frequently reinterpreted in numerous 

ways by different researchers, Sorrell et al. [35] alleged in their more recent report 

that most of the barriers can be generally subdivided into six types, i.e., risk, 

imperfect information, hidden costs, access to capital, split incentives, and bounded 

rationality. This report was prepared for the United Nations Industrial Development 

Organisation (UNIDO), which has collectively studied 160 works regarding energy 

efficiency, drawn from both academic and ‘grey’ literature. On the basis of this 

comprehensive report, the contributory mechanisms for each of the six specified 

barriers are elaborated in Table 2.3 in accordance to NA theory and TB theory. 

Table 2.3 – Taxonomy of barriers to energy efficiency based on economic theories 

Barriers Descriptions 

Risk 
NA theory:  

 Energy-efficient technologies carry higher technical risk caused by 

unfamiliarity; the probable technical disruption might result in a 

high discount rate for the relevant investment. 

 Energy efficiency investments are considered as irreversible 

because they are usually associated with building renovation, 

equipment installation or staff retraining. 

 Energy efficiency investments do not reflect high rate of return 

due to uncertainties over the potential benefit. 
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Table 2.3 (continued) 

Barriers Descriptions 

Risk 
TB theory:  

 Perceptions of risk are viewed differently by individuals and 

therefore the decision may deviate from the rational economic 

models. 

Imperfect 

information NA theory:  

 Insufficient information leads to underestimation of the benefit 

that can be brought by the energy efficiency investments. 

 The asymmetric or ambiguous information within energy service 

market4 is difficult to detect by the end-users and the underlying 

search cost is relatively high. 

TB theory:  

 The transaction costs involved in the acquisition of information 

might not be considered in the engineering-economic models. The 

relevant costs can be high due to incapability to process 

information or inadequate credibility of the source. 

 While energy efficiency investments can have the characteristics of 

search goods, experience goods or credence goods5, in most cases 

they are regarded as the credence goods. 

Hidden costs 
NA theory:  

 General overhead cost of energy management is considered as an 

important obstacle to the energy efficiency investments. 

 Some energy-efficient technologies may lead to production 

disruption, retraining of staff or additional maintenance cost. 

TB theory:  

 There is transaction costs associated with searching for 

opportunities, seeking approval for capital investment, tendering 

for renovation, and so on. Transaction costs may decline over time 

as a result of learning effects within the organisation. 

Access to 

capital NA theory:  

 SMEs often deal with difficulties in raising additional funds 

internally or externally because they have less credit-worthiness. 

 Asymmetric situation possibly exists between the risks and 

rewards of energy efficiency investments. 

 

                                                      
4
 Energy service market refers to the sector which provides a wide range of solutions for energy-

related business. 
5
 Search goods: consumers understand the product quality to a certain extent before making the 

procurement decision; experience goods: consumers only realise the product quality after the use; 
credence goods: consumers are unclear about the product quality even after the use. 
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Table 2.3 (continued) 

Barriers Descriptions 

Access to 

capital NA theory:  

 Companies sometimes are reluctant to borrow money from the 

loan finance as a result of perceived risk in increasing the 

debt/equity ratio known as "gearing". 

TB theory:  

 Fund raising from either internal or external sources may incur 

additional transaction costs. 

 Cost savings from energy efficiency investments are presumed to 

be small and hence they are not prioritised by top management. 

Split 

incentives NA theory:  

 Departments within an organisation may overlook energy 

efficiency improvement simply because they are not in charge of 

energy management. 

 The incentive structure in SMEs is more inclined to investments 

with rapid capital payback. 

TB theory:  

 The energy efficiency investments may be dealt by individuals or 

departments who only aim at minimising the investment costs but 

lack the relevant knowledge. 

 The presence of transaction costs is likely to reduce the incentive 

for energy efficiency improvement. 

Bounded 

rationality NA theory:  

 The concept of bounded rationality, which is opposed to the 

rationality assumption about human decision-making process, is 

beyond the boundaries of NA theory. 

TB theory:  

 Non-optimal decisions are made due to the constraints on time, 

attention, resources and the ability to process information. 

 The decision for making an investment relies heavily on the 

strategic objectives of the organisation; consequently the energy 

efficiency improvement might not be prioritised. 

 Organisations tend to solve problems by following existing rules or 

routines rather than developing a new method. 

 Individuals or companies are reluctant to change the status quo 

due to cognitive dissonance6, loss aversion or risk aversion. 

 

                                                      
6
 A phenomenal theory proposed by Leon Festinger in his book named “A Theory of Cognitive 
Dissonance” (1957), which states that human has an intention to maintain internal consistency which 
can give rise to irrational behaviour.  
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2.2.5 Discussions on the barriers to SMEs 

In this section, barriers to energy efficiency are classified into three perspectives 

(economic, behavioural, and organisational) and interpreted using two different 

combinations of economic theories (NA theory and TB theory). These classifications 

and interpretations suggest that companies do not simply make their investment 

decisions concerning energy efficiency based on economic factors. The TB theory has 

frequently been used to explain the existence of different barriers from the 

behavioural and organisational perspective. It would seem that unless relevant 

investments show high rates of return, a wide range of barriers may inhibit the 

company from realising energy efficiency improvement. This argument is plausible 

especially in the environment of SMEs where the investment costs could easily 

outweigh the saving potentials since their energy intensity is comparatively low.  

Continual investment is necessary for a company to compete in the marketplace [40]. 

With fewer internal assets than medium-sized enterprises, small and micro 

enterprises are far less capable of making capital investments on energy efficiency 

improvement. In addition, small and micro enterprises are at an apparent 

disadvantage in competing for bank loans because larger enterprises usually have a 

better record for debt repayment. Nonetheless, investment does not necessarily 

mean acquisition of fixed assets with high capital costs. What remains questionable 

is the extent to which such investment costs would be willingly assumed by SMEs. 

The answer to this question is subjective according to utility theory (see Subsection 

2.2.3.1) and might not be unanimous across different sectors, regions, and company 

sizes of SMEs category. In this context, the first research question arises here is: 
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would there be a strategy with “no-cost investment” that can help manufacturing 

SMEs to implement energy efficiency project without capital expenditure? Perhaps an 

ideal “no-cost investment” would not occur because hidden costs generally coexist 

alongside any action or decision based on NA theory and TB theory. These costs 

might include loss from production disruption or cost from hiring research personnel 

to conduct rigorous research on the cost-effectiveness of various investments. Small 

and micro enterprises could have been aware of the potentials of smaller energy 

efficiency projects, however, the number of staff is limited and their working time is 

often preoccupied with meeting production demand and maintaining product 

quality [41]. As a consequence of limited access to capital, expertise and time, small 

and micro enterprises tend to “behave rationally” and place energy efficiency 

projects at low priority. 

In practical terms, small and micro enterprises could benefit enormously from the 

collaboration with external research institutions such as universities as discussed in 

[42] by the author. This collaboration allows for comprehensive data collection and 

analysis because research institutions usually have sufficient research personnel, 

time resource and laboratory equipment. However, decision makers might have an 

early perception that this collaboration might not result in financial returns. 

Addressing this issue, this thesis assumes the role as "research institution" and aims 

to generate proprietary solutions to small and micro enterprises. The outcomes will 

then be disseminated to show that potential improvement in both economic and 

environmental performance can be achieved by means of “no-cost investment”.  
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2.3 Energy-saving Measures for Plastic Injection Moulding 

This section provides more information about the injection moulding process and 

discusses the key factors that affect the overall energy consumption. An injection 

moulding machine fundamentally consists of drive system, injection system, 

clamping system, mould system and control system. Injection moulding is known to 

be an intricate, nonlinear process, therefore the control system must be equipped 

with robust sensor or transducer technology [43]. A high-quality control system is 

capable of self-diagnosing and justifying the root causes of faulty operation. In fact, 

the advancement of injection moulding technology is mainly attributed to the ever-

enhancing control capability [44]. 

In general, one complete injection moulding process cycle can be divided into three 

distinct stages [45]: 

i. Plasticisation stage (screw recovery) where the plastic pellets are being 

melted and mixed inside the heating barrel by the shear action of the 

reciprocating screw. 

ii. Filling stage where the molten material is injected with a specified shot size 

into the closed mould unit under high injection pressure. 

iii. Packing and cooling stage where additional material is packed into the mould 

cavity to compensate for the volumetric shrinkage during solidification. 

Injection moulding is thus considered as an energy-intensive process, since it 

converts the solid plastic pellets into thermally homogeneous melt and then re-

solidifies the material by a series of operations [46]. When practiced in an industrial 
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scale, injection moulding is required to meet a wide range of requirements where 

the efficiency of which is highly dependent on various factors. In general, energy 

consumption during injection moulding process can be seen as a complex function of 

machinery, part design, plastic material, production rate, mould design, and process 

parameters. A range of energy-saving measures are reviewed in order to identify 

where and how improvements in energy efficiency can be made by the injection 

moulding industry. 

 

2.3.1 Development of energy-saving machinery 

There are two internationally recognised ways to designate the plastic injection 

moulding machines generally operated nowadays — the clamping tonnage and shot 

capacity [45]. The clamping tonnage, usually rated in tons, is the largest force that 

can be supplied by the machine to close the mould halves together. For example, 

Demag Systec 160-840 is a machine model which possesses a maximum clamping 

tonnage of 160 tons and a shot capacity of 840 units. While the injection moulding 

application is expanding, there appears to be a growing competition among machine 

manufacturers worldwide. In order to survive in the existing market, subjects such as 

computer integrated injection moulding, shortened cycle time, improved product 

quality, higher part complexity, and simplified mould changeover must always be 

prioritised [47]. Nowadays, when environmental compatibility issue becomes a hot 

topic, injection moulding machine manufacturers are also required to accommodate 

energy-efficient technology in their latest machine design. According to a European 
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project, Reduced Energy Consumption In Plastics Engineering (RECIPE) [48], almost 

59% of the overall energy usage in a typical injection moulding plant can be 

attributed to the machinery as shown in Figure 2.3. 

 

Figure 2.3 – Energy usage distribution in a typical injection moulding plant. Source: [48] 

 

2.3.1.1 Energy-saving drive systems 

Drive system is the primary energy consumer within an injection moulding machine 

as most energy are consumed by the drive unit during processing [48]. The drive unit 

delivers the necessary power for the operation of the injection and clamping units. A 

conventional hydraulic machine is highly inefficient because its hydraulic fluid 

operation is driven continuously at a fixed rate. The flow rate is simply manipulated 

by hydraulic oil re-circulation through pressure relief valves. Excessive fluid is 

throttled back to the hydraulic tanks, adding up energy waste and cooling system 

workload [48]. Energy requirements for different stages in one complete injection 

moulding cycle fluctuate to a large extent. As a result, there is considerable amount 
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of energy wasted from the conventional machine due to the fluctuating load 

demand is not accommodated accordingly. Choosing a hydraulically driven machine 

based on the peak load demand will result in large energy consumption. Therefore, 

installing an accumulator in the machine can handle the surging load demand during 

processing and mitigate the need of a larger hydraulic system [49]. 

The introduction of variable displacement pump (VDP) and variable speed drive (VSD) 

enable the machine operation to match with the varying load demand. In VDP 

system, the volume of fluid being pumped can be adjusted accordingly, reducing 

overflow losses. Whereas, VSD can alter the motor speed in accordance to the 

variable load and thus optimise the pump rate [48]. Other benefits of retrofitting old 

machines with VDP/VSD or purchasing new machines which contain VDP/VSD 

include reduced noise level, better process control as well as less overheating 

problems in the hydraulic system.  

In recent years, servo-driven machines have largely replaced conventional hydraulic 

machines owing to better energy efficiency. The servo drive does not require pilot 

flow or minimum system pressure and it does not consume energy in idling mode 

[50]. It receives command signal from the closed-loop speed controller and then 

transmits the signal to the hydraulic pump in order to produce hydraulic flow 

correspondingly. Further advantages of servo-drive system encompass faster 

response, longer equipment life and higher control precision. However, the servo-

driven machine is relatively more expensive and thus it is more feasible to be 

employed in precision injection moulding for manufacturing high-end plastic 

products [51]. 
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In hydraulically driven machines, electric pumps transfer energy to hydraulic fluid 

which is then transformed into useful mechanical work. Obviously, hydraulically 

driven machines have inherent inefficiencies attributed to several transfers of energy 

together with friction losses inside the hydraulic circuits. The launch of all-electric 

machines becomes the best energy-saving solution because the use of direct-drive 

technology greatly reduces idling loss and eliminates consumables such as hydraulic 

oil and filters [48]. According to the case studies presented in Cléirigh’s report [52] 

for Plastics Ireland, the percentage reduction in energy consumption can be up to 66% 

when a hydraulic machine is replaced with an all-electric machine. Moreover, many 

machine manufacturers claim that all-electric machines offer better start-up, higher 

precision, faster response, and lower noise level in comparison to hydraulic 

machines. However, the price of all-electric machines is generally higher than that of 

hydraulic machines. The introduction of hybrid machines hence fits into a niche 

market at an intermediate cost. A common hybrid machine features a hydraulic drive 

in the clamping system and a servo drive in the injection system [48]. The screw 

recovery stage consumes most energy in one complete cycle, thus “electrifying” the 

screw movement would provide the greatest savings in designing a hybrid machine 

[53]. 

 

2.3.1.2 Energy-saving injection and clamping systems 

The secondary form of energy consumed by injection moulding machine is the 

process heat. Depending on the type of drive system, barrel heating accounts for 20-

50% of the energy input to the machine operation [54]. Hence, improving injection 
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system can be treated as another alternative to energy-saving. First, screw design 

can be optimised to obtain homogeneous melt at uniform and lowest possible melt 

temperature, reducing specific energy consumption [55]. For example, Myers et al. 

[56] introduced a new injection screw design called Variable Barrier Energy Transfer 

(VBET) screw which possesses a unique flight geometry that can maximise the 

conductive melting mechanism. Second, insulating the heating barrel can achieve an 

energy saving of up to 15% without significant capital expenditure [57]. Energy can 

be lost easily as heat from the exposed barrel surfaces to the surrounding 

environment during injection moulding process. Therefore, a well-insulated heating 

barrel assembly not only reduces energy waste, but also enhance the start-up 

process, melt temperature control, and operational safety. In order to reduce the 

heat loss due to the physical contact between barrel surface and heater bands, 

Xaloy® Corporation designed a new barrel heating technology with non-contact 

induction called nXheat™, which allows direct heating through an interposed layer of 

thermal insulation [58]. 

In the aspect of the clamping system, the toggle clamp design is claimed to be able 

to offer an energy saving of up to 10% compared to direct hydraulic clamps, as a 

result of shorter cylinder stroke for mould movement [55]. Another main advantage 

of using toggle clamp is its capability of “self-locking” once mechanically extended. 

Nevertheless, the use of toggle mechanism can shorten the mould life because large 

clamp force is occasionally exerted on the mould unit [55]. Consequently, toggle 

operated clamp is often used in the small and medium-sized injection moulding 

machines. Direct hydraulic clamp is still preferred in particular for large-tonnage 
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machines in spite of large initial cost and oil leakage problem since it offers higher 

manoeuvrability. Jiao et al. [59] demonstrated a novel clamp design, specifically an 

internal circulation direct hydraulic two-platen clamping system, which has several 

advantages over toggle clamp design such as simpler mechanical structure, higher 

energy efficiency, higher moulding precision, and stronger mould adaptability. 

 

2.3.2 Improvements in part design and plastic material 

The part design has a direct relation to the selection of machine size as designated in 

clamping tonnage and shot capacity, which in turns results in an immense influence 

on the overall energy usage. The tonnage requirement is decided according to the 

required cavity pressure and the projected area of the mould cavity. A safety factor 

of about 10 to 20% is usually required in order to ensure no flashing (melt leakage) 

occurs at the parting-line area [46]. On the other hand, the shot capacity is 

determined by the product of the maximum injection pressure and the maximum 

injection volume [45]. Furthermore, the cooling time heavily relies on the part wall 

thickness. Some researchers [60, 61] thereby suggest that the minimisation of 

energy consumption during injection moulding process should be initiated at the 

product design stage. They developed a framework to estimate the necessary energy 

for producing an injection moulded part before going into real production. 

With regard to processing material, different types of plastic material have dissimilar 

properties like thermal conductivity, thermal diffusivity, temperature dependent 

viscosity, heat of crystallisation, rheological behaviour, characteristic cooling time, 
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and thus different specific energy requirement for processing. For example, Figure 

2.4 illustrates the characteristic cooling time and melt flow index (MFI) for different 

plastic material by assuming a wall thickness of 2 mm. MFI is a parameter empirically 

defined by the amount of plastic that can be extruded by the plunger driven by a 

weight through the heated die opening, with a standard opening of 2.095 mm and a 

length of 8 mm, usually expressed in grams per 10 minutes [62]. Viscosity of 

polymeric melt has an inversely-proportional relationship with MFI. In other words, 

materials with low MFI demand larger injection force by the screw to fill into the 

mould cavity because viscosity is the resistance to flow. Given the growing demand 

on energy efficiency, some advanced materials that require lower specific energy 

requirement have been developed. For examples, Dow® Post-metallocene Linear 

Low Density Polyethylene (P-mLLDPE) [63] which requires lower back pressure and 

Makrolon® series [64] which permits faster cycling with low viscosity. 

 

 

 

 

 

 

Figure 2.4 – Comparison of the melt flow index and the characteristic cooling time for 

different types of plastic materials with a wall thickness of 2 mm. Source: [65] 
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2.3.3 Maximisation of production rate  

Specific energy consumption (SEC), commonly calculated in unit of kWh/kg, is a 

useful measure to compare the efficiency of different machines with the similar task 

[66]. It is defined as the necessary input energy per unit mass of processing material. 

The measurement and monitoring of SEC can be conducted at either machine level 

or site level [48]. Machine SEC refers to the specific energy usage of a single machine 

unit while site SEC is a more comprehensive energy usage measurement for the 

whole manufacturing plant, including auxiliary equipment, building heating and 

lighting as well as other utilities. Several examples of auxiliary equipment that 

augment the power requirement for injection moulding process are dehumidifiers, 

granulators, conveyors and robotics. 

One frequent assertion about the reduction in SEC has been that higher production 

rate will result in lower SEC because the fixed energy demand is being amortised 

over a larger production volume. Gutowski et al. [67] deduced a general empirical 

equation to express the relationship between SEC and production rate as shown 

below: 

     
  

 ̇
            (2.1) 

where   ̇    production rate, kg/h; 

       fixed power, kW; 

and       variable energy per unit mass, kWh/kg. 

Equation 2.1 shows that production rate not only serves as an indicator of 

productivity, but also affects the SEC value. In general, the term    is required to 
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support the operation of the equipment features, while    represents the physics of 

the actual production process. For hydraulic injection moulding machine,    is the 

minimum power required to maintain the operation of hydraulic system, cooling 

system and other idling equipment; whereas    indicates the average energy being 

consumed per unit mass of processing material, which is closely related to the part 

design and plastic material. Qureshi et al. [68] conducted an empirical study to 

quantify Equation 2.1 by examining the energy consumption of hydraulic injection 

moulding machine. Their model successfully predicted the machine SEC value with 

an accuracy of up to 90%.  

On the other hand, Kent [11] generated a benchmark based on an investigation of 

114 standard hydraulic injection moulding machines of different sizes as displayed in 

Figure 2.5. The curve is a power law best fit to the data distribution which clearly 

illustrates that machine SEC generally reduces with increasing production rate. 

Nevertheless, simply comparing SEC values for assessing energy efficiency is a great 

pitfall because these values can be easily affected by the variation in production 

volume [11]. For example, RECIPE [69] learned that small-sized machines would lead 

to higher site SEC in comparison to large and medium-sized machines because larger 

machines offer higher production volume, resulting in lower SEC value. For this 

reason, it is vital to distinguish between the "temporary savings" and the "genuine 

efficiency". The category of product is a decisive factor on the production rate. 

Technical or precision parts with tight tolerance limits are normally associated with 

longer cycle time, and hence higher SEC. In contrast, general purpose items are 

usually fabricated in fast process cycle with lower SEC. 
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Figure 2.5 – Machine SEC vs. production rate for injection moulding. Source: [11] 

 

2.3.4 Optimisation of mould design and process parameters  

The influence of mould design and process parameters on the specific energy 

requirement of injection moulding process is not negligible [70]. There is a great 

potential to realise energy saving through the optimisation of mould design and 

process parameters. Optimisation of mould design normally takes place at the early 

stage of an injection moulding plan because making modification after the mould 

fabrication often entails a high expense. Comparatively, optimisation of process 

parameters is inexpensive and can be performed whenever necessary. 
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2.3.4.1 Mould design 

Injection moulding with well-designed lightweight mould is normally more efficient 

than the heavy duty mould [71]. Mould design variables such as the gating system, 

sprue geometry, and runner layout are significant to the overall energy usage. In 

every injection moulding cycle, the molten material is being injected into the mould 

cavity through a narrow entrance called gate. Sprue is a tapered channel where the 

melt first enters the mould from the injection nozzle. Runner system is needed 

particularly in the multi-cavity mould at which the melt is distributed from the sprue 

into multiple cavities. There are two kinds of runner system: cold runner system and 

hot runner system. The major discrepancy between these two systems is that the 

molten material remains in the hot runner system until the next shot, whereas in the 

cold runner system, the unwanted runner part will be formed together with the final 

moulding. Although the hot runner tooling is more expensive, it reduces the 

necessary shot weight, which in turn lowers the overall energy consumption [46]. 

The cooling system configuration is also an integral part of the mould unit where the 

channel design will dictate the cooling efficiency.  

 

2.3.4.2 Process parameters 

Process parameters affect the specific energy requirement to a certain extent but 

little research work has been carried out in this area [54]. Injection moulding is 

always regarded as a complex manufacturing process since it involves numerous 

parameters that affect the quality of the final product. Chen and Turng [72] suggest 

that all important parameters could be classified into three distinctive levels: level 1 
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for machine variables, level 2 for process variables, and level 3 for quality variables 

(see Table 2.4).  

Table 2.4 – Classification of variables for injection moulding process. Source: [72] 

Variables and Level Examples 

Level 1 – Machine 

variables Temperature:  

i. Barrel temperature (in several zones) 

ii. Nozzle temperature 

iii. Coolant temperature 

Pressure:  

i. Pack/hold pressure 

ii. Back (recovery) pressure 

iii. Maximum injection pressure 

Sequence and Motion:  

i. Clamp/fill/pack/hold/recovery/eject switchover point 

ii. Injection (ram) speed (constant or profiled) 

iii. Screw (rotation) speed 

iv. Shot volume and cushion (via screw displacement) 

Level 2 – Process 

variables Melt temperature (in the nozzle, runner, or mould cavity) 

Melt pressure (in the nozzle, cavity) 

Melt-front advancement 

Maximum shear stress 

Rate of heat dissipation and cooling 

Level 3 – Quality 

variables Part weight and part thickness 

Dimensional conformity (shrinkage and warpage) 

Sink marks 

Appearance and strength at the weld lines 

Other aesthetic defects: burn marks, gate blushes, surface texture 

 

Machine variables are independently controllable as they can be fine-tuned at the 

control panel unit within an acceptable range. When all settings have been carefully 

checked and optimised, the machine can be switched to fully automatic mode for 

long production run. Process variables are the combined result of machine variables, 
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processing material, machine and mould configuration. Profitability of the 

manufacturers is largely determined by the quality variables which are the final 

responses from both machine and process variables.  

Changing the process parameters of manufacturing operations has been identified as 

a technically and economically viable technique to reduce the environmental impact 

in terms of energy consumption [16]. This requires an empirical study to understand 

the relationships between process parameters, energy consumption, as well as the 

desirable quality responses. Merely reducing energy consumption without 

considering the product qualities is totally impractical. Nevertheless, there is 

insufficient quantitative information regarding the relationships among machine, 

process, and quality variables for injection moulding [72]. Studying the capricious 

interrelationships among these variables is a complicated process because the 

process dynamics could be governed by a set of equations. In addition, the quality 

variables in terms of aesthetic features are difficult to measure quantitatively. 

 

2.3.5 Energy Management Programme  

In addition to process parameters optimisation, there are many low-cost practices 

that can be implemented by the injection moulding industry to reduce energy 

consumption during processing, e.g., regularly checking cooling pipework, utilising 

heat recovery, reviewing mould performance and carry out routine maintenance. As 

most of these energy saving opportunities are mostly technical in nature, Figure 2.6 

illustrates that energy management programme will bring greater improvement 
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potentials in a long-term policy. According to the definition from the “Dictionary of 

Energy Efficiency Technologies” [73], energy management creates an energy 

awareness within an organisation and provides tools for reducing its energy 

consumption to a lower level. There are specific case studies well documented and 

promulgated to facilitate energy management in the plastic products industry [48, 57, 

71, 74]. Generally, the key elements of a successful energy management programme 

include [31, 48, 57, 73]: 

i. Commitment from the top management and well-developed strategies 

ii. Capital and operating budgets in relation to energy management 

iii. Delegation of responsibility to the well-trained personnel 

iv. Reporting and communication throughout all levels of the organisation 

v. Review and internal recognition for the project achievement 

vi. Continuous energy monitoring and assessment of energy efficiency 

investments 

 

 

 

 

 

Figure 2.6 – Energy savings potential against time. Source: [57] 
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2.4 Optimisation of Injection Moulding Process 

After scrutinising various energy-saving measures in Section 2.3, the first insight 

implies that energy efficiency may be improved through process parameters 

optimisation as a “no-cost investment” strategy. This lead to the second research 

question: which optimisation methodology would be the most appropriate solution 

to address the particular barriers facing SMEs? Various types of optimisation 

methodologies have been adopted by researchers to improve the quality of product 

or system. There is unlikely to be one best method that fits into all kinds of situation 

since each optimisation method has its own strengths and weaknesses. As a 

consequence, one of the main difficulties in the optimisation process is to select an 

appropriate method for a particular problem. The correct selection will heavily 

depend upon the nature of problem and the conditions of the end-users. This 

section aims to identify a technically feasible yet economically viable approach that 

can overcome the “rational behaviour” of the end-users in reducing energy 

consumption. Prior to selecting the most suitable method, a literature review on the 

recent optimisation methods is presented, particularly in the field of injection 

moulding process.  

 

2.4.1 Review of optimisation methodologies 

The injection moulding operation can be divided into three stages: first, running the 

injection moulding machine; second, utilising a prescribed set of parameters for a 

particular plastic material and mould unit to produce satisfactory parts; third, 
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optimising the operation so as to achieve better product quality and higher 

productivity [46]. Without adequate expertise, trial-and-error and one-factor-at-a-

time (OFAT) approaches are commonly applied at the shop floor for process 

optimisation. These approaches use unsystematic guesswork based on past 

experiences or suppliers’ recommendations until the desired result is achieved. At 

best, it gives satisfactory outcomes with several attempts but it does not provide 

insight into the root causes of the problem.  

In comparison to the trial-and-error or OFAT approach, design of experiment (DOE) 

is definitely a more organised method for conducting experimental study in 

determining the optimal solution. DOE is a series of experimentation where changes 

are purposely made to the input variables so that corresponding data can be 

collected and analysed by statistical methods, resulting in valid and objective 

conclusions [75]. Full factorial design, fractional factorial design, orthogonal design 

and Latin hypercube design are some classical examples of DOE (see more details in 

Subsection 3.2.1). For example, Annicchiarico et al. [76] employed half fractional 

factorial design to minimise the shrinkage problem whilst maximising the part mass 

in micro injection moulding. Taguchi method is a special form of DOE which basically 

makes use of orthogonal arrays and signal-to-noise (S/N) ratios to innovate and 

reinterpret the classical approach (see more details in Subsection 3.2.2). Orthogonal 

arrays can greatly reduce the number of experiments induced by the number of 

variables and their associated levels; while S/N ratios act as performance measures 

where the response means are compared to the variation. For example, Öktem [77] 

made use of Taguchi orthogonal arrays and analysis of variance (ANOVA) to 
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investigate the effect of the process parameters on the shrinkage problems during 

injection moulding process. 

In terms of analytical approach, a number of mathematical models have been 

established to describe various characteristics of injection moulding process such as 

filling and heating stage [46]. However, a general comprehensive mathematical 

model which can satisfy different operational conditions is not available due to the 

complexity of this process [78]. Therefore, computer-aided-engineering (CAE) 

simulation tools like C-Mold and Moldflow are often adopted by researchers to 

optimise injection moulding process. CAE simulation allows engineers to quickly 

modify the input parameters, run the simulation and then analyse the possible 

outcomes. Despite the fact that CAE simulation can minimise resource expenditure 

and production disruption, it can be a tedious and computationally costly task since 

iterative runs are often needed to achieve the best possible results. For that reason, 

researchers have integrated various optimisation methodologies with CAE tools to 

optimise injection moulding process. 

Dang [79] divided the simulation-based optimisation methods into direct discrete 

methods and metamodel-based methods as shown in Figure 2.7. According to his 

definition, direct discrete optimisation is an approach where explicit objective 

functions are formulated; whereas metamodelling optimisation is an approach 

where objective functions are approximated into a form of low order polynomials 

with acceptable accuracy. In direct approach, both gradient-based and non-gradient 

based optimisation techniques have been applied to optimise injection moulding 

process. For example, Turng and Peic [80] employed a gradient-based local 



Chapter 2 

REVIEW OF LITERATURE 

49 

optimisation algorithm called sequential quadratic programming (SQP) to search for 

the optimal point based on the steepest descent scheme. In some cases, genetic 

algorithm (GA) has been combined with gradient-based technique for process 

optimisation because GA is known to be a global optimisation algorithm while 

gradient approach tends to reach a local optimum. For example, Lam et al. [81] used 

GA/gradient hybrid method to optimise injection moulding conditions and showed 

that hybrid approach has better performance than the GA method alone. 

 

Figure 2.7 – Classification of simulation-based optimisation methods. Source: [79] 
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an ANN model which can accurately predict the shrinkage problem in injection 

moulded parts. Nevertheless, employing surrogate models can still be too costly 

because they are built based on the data obtained from previous simulations or 

experiments [86]. For example, ANN application requires considerable amount of 

training data from the real experiments for better estimations. The accuracy of 

surrogate models may need to be sacrificed in order to alleviate the computational 

effort, reducing the effectiveness of the surrogate models.  

Along with GA, self-adaptive evolution (SAE) and differential evolution (DE) are 

characterised as evolutionary algorithms (EAs), which mimic the Darwinian evolution 

in a way to evolve better solutions through genetic operations such as survival of the 

fittest (selection), recombination (crossover) and mutation [87]. Unlike those EAs, 

particle swarm optimisation (PSO) does not use crossover operators to exchange 

information but it is still regarded as EAs because it is population-based, fitness-

oriented and variation-driven [88]. Although integrating CAE simulation with EAs 

facilitates engineers in searching for optimal solutions, they are sometimes 

considered as not computationally efficient because a standard EA requires an 

adequate amount of fitness evaluations to achieve an optimal solution. Addressing 

this issue, Chen et al. [89] made use of Kriging model to replace the CAE simulation 

as the fitness function of PSO algorithm, and they were able to reduce 

computational cost effectively. All these EAs are also regarded as global optimisation 

algorithms which are capable of searching for global optimum with the presence of 

multiple local optima. Simulated annealing (SA) is another global optimisation 

technique that originates from the analogy with the physical annealing process in 
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which the energy is the objective function and the temperature is the control 

variable [90]. Turng and Peic [80] compared various global (i.e., SAE, DE, SA) and 

local (i.e., SQP) optimisation algorithms in terms of computational efficiency and 

effectiveness for injection moulding process. 

Other well-known methods that have been used for optimising plastic injection 

moulding process include case based reasoning (CBR), grey relational analysis (GRA) 

and fuzzy logic [91]. The fundamental idea of employing CBR is to solve a new 

problem based on the most similar case stored in the case library. As such, the 

performance of CBR system deeply relies on the accuracy in case retrieval. Zhao et al. 

[92] employed CBR to identify the initial process parameters for injection moulding. 

In GRA, an uncertain problem is managed with the use of grey relational coefficients 

which express the level of correlation between the desirable and actual 

experimental outcomes [93]. The optimal levels of process parameters can be 

obtained through the computation of the grey relational grade that corresponds to 

the performance characteristics. For example, Shen et al. [94] performed the 

Moldflow analysis in conjunction with GRA to find out the minimal warpage range 

for micro-injection moulding process.  

The adoption of fuzzy logic in industrial applications is generally attributed to two 

reasons [95]: first, it can deal with functional nonlinearities which are subjected to 

difficult mathematical modelling; second, it can strongly imitate the experience of a 

human operator. Chiang and Chang [96] integrated GRA with fuzzy logic (known as 

“grey-fuzzy logic”) to optimise multiple performance characteristics when 

manufacturing cell phone shell via injection moulding process. It is worth noting that 
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fuzzy logic together with other methodologies such as GA and ANN are often termed 

as soft computing in the field of computer science, which exploit the tolerance for 

imprecision, uncertainty to achieve tractability and low solution cost [97]. Soft 

computing could deal with optimisation problems in an approximate way to human 

reasoning. In contrast, hard computing requires a precisely stated mathematical 

model which is usually not available in the real world problems.  

Table 2.5 summarises all the above-mentioned works in chronological order where 

the optimisation methodologies, targeted product qualities and key results are 

presented concisely.  

Table 2.5 – Recent studies on process parameters optimisation for injection moulding 

Year and 

Authors 

Methods Targeted qualities  

(plastic material) 

Results and discussion 

2002,  

Turng & 

Peic [80] 

Fractional 

factorial 

DOE, SQP, 

SAE, DE, SA 

Linear or 

volumetric 

shrinkage of the 

test bar and cycle 

time (HDPE) 

 SAE showed better optimum compared 

to SQP in the first test. 

 DE and SA were capable of reaching 

the optimum in the second test. 

2004, 

Shen et al. 

[94] 

Taguchi DOE, 

GRA 

Part warpage of 

micro-injection 

moulding  (PP, PC, 

PS, POM) 

 PS material is the most suitable 

material used in micro-injection 

moulding. 

2006, 

Chiang & 

Chang 

[96] 

GRA, fuzzy 

logic, 

orthogonal 

DOE 

Welding line 

strength, shrinkage 

and warpage of 

mobile phone 

cover (PC/ABS) 

 Multiple targeted qualities were 

effectively improved together through 

the grey-fuzzy logic approach. 

 Mould temperature and injection 

pressure were found to be noticeable. 

2006, 

Kurtaran 

& 

Erzurumlu 

[82] 

Full factorial 

DOE, RSM, 

GA 

Part warpage of 

bus ceiling lamp 

base (ABS) 

 Warpage was improved by about 46%. 

 Packing pressure is the most influential 

parameter to warpage. 
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Table 2.5 (continued) 

Year and 

Authors 

Methods Targeted qualities  

(plastic material) 

Results and discussion 

2006, Lam 

et al. [81] 

GA/gradient 

hybrid 

approach 

Maximum shear 

stress and 

maximum cooling 

time of office tray 

(PP) 

 Minimising maximum shear stress 

required a high melt temperature and a 

long injection time. 

 Minimising maximum cooling time 

required a low mould temperature and 

a long injection time. 

2009, Gao 

& Wang 

[83] 

Kriging 

model, Latin 

hypercube 

DOE, SQP 

Part warpage of 

mobile phone 

cover (PC/ABS) 

 Warpage was reduced by 38%. 

 Injection time is the most critical 

factor. 

 Too short the packing time causes 

quality problem, conversely, it results 

in energy and material waste. 

2010, 

Altan [85] 

Taguchi DOE, 

ANN 

Shrinkage of the 

rectangular-

shaped specimens 

(PP/PS) 

 Packing pressure and melt temperature 

were found to be the most significant 

parameters for the PP and PS moulded 

parts respectively. 

 The generated ANN model is an 

efficient predictive tool for shrinkage. 

2010, 

Chen et 

al. [89] 

Kriging 

model, PSO 

Deflection of 

printer upper 

cover along length 

direction and 

maximum injection 

pressure (PC) 

 Trade-off behaviour between 

deflection and maximum injection 

pressure existed. 

 The difference percentage between 

predicted results and simulation 

solutions was no more than 3.3%. 

2010, Li et 

al. [84] 

RBF Shrinkage 

evenness of the 

rectangular slab 

(HDPE) 

 Stronger global exploration 

performance could be improved by 

increasing the infill data properly. 

 An optimal packing profile was 

obtained which should be first constant 

and then ramped down. 

2011, 

Zhao et al. 

[92] 

CBR, 

empirical 

model, fuzzy 

logic 

Aesthetic defects 

of plastic part (PP) 

 Optimum process parameters were 

obtained to produce a satisfactory part 

without heavy dependence on the 

experience of skilled operators. 

2012, 

Öktem 

[77] 

Taguchi DOE, 

mathe-

matical and 

regression 

modelling 

Volumetric 

shrinkage of DVD-

ROM cover (ABS) 

 Melt temperature is the most 

statistically significant process 

parameter on the shrinkage. 
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Table 2.5 (continued) 

Year and 

Authors 

Methods Targeted qualities  

(plastic material) 

Results and discussion 

2013, 

Annicchia-

rico et al. 

[76] 

Fractional 

factorial 

DOE, 

desirability 

functions 

Part shrinkage and 

part mass of micro-

mould specimen 

(POM) 

 The optimised values were 

compromising results between 

shrinkage minimisation and mass 

maximisation. 

 Melt temperature, mould temperature 

and packing pressure were important 

parameters. 

 

 

2.4.2 Particular optimisation studies related to energy consumption 

A review of literature in the previous subsection has revealed that optimisation of 

injection moulding process has brought improvement in terms of product quality, 

cycle time or even associated computational time. However, energy consumption is 

seldom taken into consideration or seen as a by-product in the optimisation work. 

For example, Yin et al. [98] showed that lower part warpage can be obtained by 

increasing the packing pressure and packing time, meanwhile the energy 

consumption and production cycle were constrained in a particular range from the 

economic perspective. Ferreira et al. [99] utilised the mould design variables to 

optimise the cycle time, material waste, and pressure drop in injection moulding 

where all these targeted responses are directly correlated to the overall energy 

usage. Alternatively, Dawson et al. [100] introduced the use of energy monitoring in 

problem diagnosis and process quality control for injection moulding. They 

suggested that the variations in power and current provide valuable insight into the 

process and machine conditions which are likely to affect the qualities of the final 

product. 
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In the field of injection moulding, primarily focusing on energy reduction via 

aforementioned optimisation methodologies is not a novel practice. For example, 

Fernandes et al. [101] employed EA to optimise multiple responses in injection 

moulding, encompassing energy consumption in terms of maximum cavity pressure 

and pressure work. They concluded that all selected responses cannot be optimised 

at the same time. Nevertheless, a trade-off solution can be achieved based on the 

concept of Pareto frontiers. Lin [102] employed Taguchi DOE, single-factor 

experiment and ANN to optimise energy consumption with surface quality assurance. 

However, his work only took account of the injection parameters and the energy 

usage during injection stage. Pang [103] made use of CAE tools such as SolidWorks, 

Rhinoceros and Moldex3D along with analytical software such as Minitab and 

MATLAB to identify an optimal set of process parameters, which can minimise the 

part warpage and energy consumption concurrently. The main deficiency found in 

his work is the absence of empirical validation for the numerical results. A more 

recent study is provided by Lu et al. [104] in which the Taguchi method, ANOVA and 

the integration of ANN with GA-based lexicographic method were utilised to reduce 

the energy usage with pre-determined quality requirement. Their methodology 

successfully achieved energy saving in a laboratory scale test without unwanted 

deviation from the targeted part weight.  
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2.4.3 Discussions on the selection of optimisation method 

Even though there is an abundant literature related to the process parameters 

optimisation for injection moulding process, energy consumption is frequently 

overlooked in these optimisation studies. Some studies had made use of simulation-

based optimisation methods together with software packages to optimise energy 

consumption. In relation to the hypothesis made in the introductory chapter (see p. 

8), these methodologies are regarded as “over-academic” and too sophisticated to 

be applied in the milieu of SMEs. Simulation-based experiments are more suitable to 

be employed in laboratory tests or large manufacturing enterprises where research 

personnel, software packages and pertinent equipment are readily available. The 

efficacy of simulation-based experiments will be much reduced if it entails high 

computational costs. Eventually, the numerical results need to be validated through 

empirical studies.  

Recall that the problem at hand is how SMEs optimally and responsibly respond to 

the energy efficiency issue with “no-cost investment”. While barriers faced by SMEs 

are already multifaceted, the rationally-behaved decision makers tend to economise 

their time resources in order to focus on other strategic objectives rather than 

sophisticated optimisation problems. As such, SMEs might be more willing to 

optimise the process parameters based on their past experience, organisational 

procedures and routines. In this sense, empirical study via DOE will be a more direct 

approach to be practiced in SMEs. This forms the main aim in this thesis, which is to 

establish proprietary methodologies that can help SMEs to close their efficiency gap, 

since they might not devote more time to foster the relevant skills. The empirical-
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level approach with a well-articulated theoretical framework is explicitly developed 

and demonstrated in Chapter 3. 

 

2.5 Decision Management for Energy Efficiency Investments 

The preceding section thus far explores that “no-cost investment” strategy via 

process parameters optimisation could be considered as an alternative to realise 

energy efficiency improvement. Nonetheless, whether the “no-cost investment” is 

best suited to the company and can outperform the capital investment in energy-

efficient equipment, remains an open question. On the other hand, the energy-

efficient equipment has no guarantee for better economic performance because 

equipment replacement is often coupled with high initial expense, long payback time 

and unforeseen technical risk. This yields the third research question pertaining to 

the decision management: how would SMEs determine whether an energy efficiency 

investment decision can contribute to the economic performance within the company? 

This question is significant in actual practice because decision makers in SMEs may 

only pay particular attention to energy efficiency investments if the potential cost 

savings can be clearly examined. Problems of this type are commonly called 

equipment replacement problems in the operations research community. Small and 

micro enterprises might not know how to conduct a proper cost assessment for 

making an economically viable decision. This section thus looks over the literature of 

decision support systems and operations research in an attempt to solve the 

problem under consideration. 
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2.5.1 A brief retrospective of decision support systems 

Decision management is a complex task that needs some logic thinking techniques to 

deal with considerable amount of information. In the past few decades, economists, 

psychologists, operations researchers and management scientists have studied this 

topic from different perspectives. However, when dealing with “too much” 

information, the theory of bounded rationality (see Subsection 2.2.2.2) suggests that 

a surplus of information will result in a deficit of attention. This phenomenon puts an 

emphasis on the organisation’s ability to process information and make judgement 

for important decisions. In this regard, Simon et al. [105] pointed out that human 

decision-making process can be done by or in cooperation with intelligent machines 

in the information age. It implies that organisations nowadays have to build their 

competitive positions by figuring out how to integrate decision support systems (DSS) 

for decision making and problem solving. By definition, DSS is an interactive 

computer-based system or subsystem intended to help decision makers complete 

the decision-making process [106]. Making use of DSS is not only concerned with 

how to acquire the necessary information, how to perform the calculations, but 

more importantly to accurately evaluate the probabilities and potential output of the 

future events. Power [107] conducted a retrospective of DSS and he categorised DSS 

into five distinct types: model-driven DSS, data-driven DSS, communications-driven 

DSS, document-driven DSS, and knowledge-driven DSS. These different forms of DSS 

are briefly explained as follows [108]: 
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i. Model-driven DSS emphasises access to and manipulation of a quantitative 

model, especially algebraic, financial, optimisation or simulation models. It 

normally uses mathematical models to provide decision support. 

ii. Data-driven DSS emphasises access to and manipulation of time-series 

internal data and occasionally external and real-time data. It is usually more 

data-intensive than the model-driven DSS. 

iii. Communications-driven DSS uses network and communications technologies 

to recognise and solve decision-relevant collaboration problem. In this 

system, communication technologies are the dominant component. 

iv. Document-driven DSS uses computer storage and processing technologies for 

document retrieval and analysis. Large document database may include 

hypertext documents, images, sounds and videos. 

v. Knowledge-driven DSS is a man-machine system which consists of knowledge 

about a particular domain. This system can suggest or recommend actions to 

decision makers. 

In 1960s, researchers began systematically making use of DSS to assist decision 

management. For example, Scott-Morton [109] developed a Management Decision 

System to help marketing and production managers coordinate production planning 

for laundry equipment. Scott-Morton’s system was a form of model-driven DSS 

which studied how computers and analytical models could provide decision support 

to managers. Model-driven DSS normally does not require large database because it 

only uses limited data and parameters provided by the decision makers in solving a 
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problem [110]. The advent of personal computers has made potential development 

of model-driven DSS at a reasonably low cost such as spreadsheet-based DSS. 

Addressing the issue of disparate, multi-oriented and time variant data resources, 

Devlin and Murphy [111] first promoted the concept of data warehouse system. 

However, it was not until 1992 that the definition of data warehouse was clarified 

when Bill Inmon, who is known as the “father of the data warehouse”, published a 

book called “Building the Data Warehouse” [112]. Data warehouse acts as the 

central repositories of integrated data which allows data from disparate sources to 

be accessed and tailored to a specific setting by retrieval tools. Setting up a 

sophisticated data-driven DSS often leads to a need of building a data warehouse. 

One solution to analyse the accumulated historical DSS data in a large data 

warehouse is making use of on-line analytical processing (OLAP). OLAP software 

provides fast, consistent and interactive access to multidimensional data, it can be 

used to discover trends, analyse critical factors and perform statistical analysis [108]. 

Another powerful tool that emerged in the early 1990s for building DSS is data 

mining. Data mining, also known as database exploration, is applied to identify 

patterns in data and infer rules from them [108]. Following the introduction of data 

warehouse, OLAP and data mining, the rapid development of World Wide Web has 

promoted the demand of web-based DSS. Web-based DSS has reduced technological 

barriers and allows geographically dispersed companies to make decision-relevant 

information concurrently at a comparatively low expense. According to Power [108], 

web-based DSS can be model-driven, data-driven, communications-driven, 

document-drive, knowledge-driven, or a hybrid. 
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2.5.2 Review of operations research methods 

The introduction of operations research (OR) can be traced back to the World War II 

period when there was an exigent need to allocate limited resources to numerous 

military operations [113, 114]. According to the Operations Research Society of 

America (ORSA), “Operations research is concerned with scientifically deciding how 

to best design and operate man-machine systems, usually under conditions requiring 

the allocation of scarce resources.” In broad sense, OR techniques can be viewed as 

a collection of mathematical models and techniques used to solve complex 

management problems [114]. The process normally begins by carefully observing 

and studying a given problem, then the mathematical models which closely resemble 

the situation of the problem is constructed. To a certain extent, some forms of 

assumption or constraint are required in order to simplify the computational process, 

leading to a suboptimal solution. The next step is to validate the OR solution with 

some practical studies and it is followed by modification when necessary. 

The application of operations research has been widely applied in different 

industries to coordinate the decision-making process within an organisation. One 

important feature of OR is its broad viewpoint in the context of mathematics, 

statistics, economics, engineering, computer science, business administration, and 

even the psychological sciences [113]. Consequently, a comprehensive OR study 

usually requires an interdisciplinary team approach which is commonly referred to as 

“OR teams”. Given the complexity and uncertainty in real world problems, it is 

unlikely to ascertain particular OR solution to be the best solution because many 

unforeseen conditions might take place. Rather than keep optimising the solution, 
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“satisficing” is a more practical strategy to achieving a satisfactorily suboptimal 

solution. The term “satisficing”, introduced by Herbert Simon [115], describes the 

behaviour of decision makers in seeking a “good enough” solution when the ideal 

solution is improbable to be achieved. 

In order to select an appropriate decision management tool, it is necessary to review 

the fundamental concepts of operations research and the relevant methods. Two 

generic OR methods applied in the manufacturing field are mathematical 

programming (MP) and dynamic programming (DP). A variety of methods can be 

collectively categorised as MP methods where the relationships between decision 

variables are described precisely through mathematical formulation. On the other 

hand, DP is a mathematical technique used for optimising a sequence of interrelated 

sub-problems. More details for these two OR methods are further elaborated in the 

following subsections.  

 

2.5.2.1 Mathematical programming 

Mathematical programming is defined as a family of optimisation techniques which 

can either maximise or minimise a given algebraic objective function for a number of 

decision variables [116]. These objective functions are usually subjected to some 

specified constraints. The three most common MP techniques are linear 

programming, nonlinear programming and integer programming. 
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i. Linear programming (LP) 

As its name suggests, the mathematical formulation for LP model must be consisted 

of linear objective functions subject to linear inequalities, which are generally of the 

form 

                       (2.2) 

where   represents the variables and    is the coefficient vector for the constraint    

[117]. A normal optimisation criterion for LP problems is to either maximise or 

minimise the objective functions in which all the constraints must be satisfied. 

Approximations and assumptions are generally required to simplify the LP model so 

that it can be solved without great difficulty. An algebraic procedure called the 

simplex method is effective in solving large LP problems where sophisticated 

software packages are available. However, not all types of problem can be solved by 

LP method even with the most reasonable approximations. Another main limitation 

of this method is that all the mathematical coefficients must be deterministic.  

 

ii. Nonlinear programming (NP) 

When the approximations and assumptions do not hold true for LP model, NP 

method can be used to reflect the problem more accurately. NP can deal with 

maximisation or minimisation of a nonlinear objective function over a set of values 

delimited by several nonlinear equalities or inequalities [118]. In contrast to LP 

method, NP not only solves problems deterministically but also stochastically and 
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heuristically. The heuristic strategies are used whenever the former two techniques 

fail to solve some highly complicated optimisation problems. There is no single 

method that can solve different types of NP problem like the simplex method for LP. 

Nevertheless, there are some powerful software packages such as MINOS being 

developed to solve enormous NP problems with great computational feasibility. 

 

iii. Integer programming (IP) 

In many practical problems, the decision variables are required to be integer values 

such as the number of people or machines. The introduction of IP method solves 

these problems where one or a subset of variables in the mathematical model are 

restricted to assume only integer or discrete values [119]. In general, IP method can 

be subdivided into linear and nonlinear approach. Mixed integer programming (MIP) 

is needed in some settings for which only some of the variables are restricted to be 

integers. Alternatively, if IP model is confined to only binary variables (or 0-1 

variables), it is specifically called binary integer programming (BIP). Computer codes 

for building IP models are commonly available in MP software packages. However, 

the algorithms used for solving IP are generally less efficient than the simplex 

method [113]. The consistency and computational efficiency of IP models will 

become lower when the number of integer variables increases. 
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2.5.2.2 Dynamic programming 

When decision makers are required to make a sequence of interrelated decisions, DP 

method provides a procedural framework for determining the optimal combination 

of decisions after the original problem is converted into multistage sub-problems. 

Therefore, DP can be viewed as a recursive technique used to optimise the trajectory 

of the decision-making process rather than to find an optimum point [120]. In 

general, DP problems can be divided into deterministic problems and stochastic 

problems. In deterministic problems, the state of each stage is completely 

determined by the state and decision made at the previous stage [113]. The “state” 

here refers to various possible conditions in which the problem might be at each 

particular stage. The DP model tends to become computationally intractable when 

the number of state increases tremendously. Consequently, approximations or 

assumptions are frequently established in order to simplify the DP model. The main 

challenge in DP community lies in the fact that there is a persistent absence of 

commercial software packages for building and solving DP models. Although some 

DP problems can be solved by software packages such as LINGO, it can only handle 

relatively small and simple problems [116]. The DP models generated for real-world 

problems are usually consisted of specifically designed models rather than general 

framework. This makes it difficult to develop a general computer program that can 

solve all different types of DP problem [121]. Despite this difficulty, DP method has 

been widely applied to solve a variety of problems such as equipment replacement 

policy, capital resource allocation and batch replenishment problem. For example, 
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Zhou et al. [122] designed a DP based procedure to help manufacturers select 

energy saving options at different stages. 

 

2.5.3 Research opportunity in decision management 

The invention of decision support technologies is intended to provide managerial 

support in decision making and problem solving, it will continue to evolve in the 

future [123]. Recall that the objective of this section is to find a proper decision 

management tool to help small and micro enterprises assess the energy efficiency 

investments, provided that the “no-cost investment” might be a more cost-effective 

alternative. Addressing this issue, model-driven DSS will be a more understandable 

and easily built system using the information that reflects the situations of the 

enterprise. In this regard, spreadsheet package is the simplest technology which can 

be employed for building model-driven DSS. By definition, spreadsheet is a collection 

of cells displayed on a computer screen whose values can be changed and analysed 

[124]. For example, Microsoft Excel is probably the most ubiquitous and easily 

accessible spreadsheet package even in the environment of SMEs. DSS that uses 

spreadsheet package to provide decision support is generally termed a spreadsheet-

based DSS [125]. The most evident advantage in using spreadsheet-based DSS is the 

ease of which it can be implemented interactively by staff from all levels, including 

personnel with low level of expertise. As such, the design of the user interface is 

important to the success of a spreadsheet-based DSS so that it is accessible to non-

technical personnel. 
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In making a financial decision, a decision maker needs to concern about the decision 

made at earlier stage will influence the situations of subsequent stages. Actual 

manufacturing environments are dynamic and have many interacting elements, as a 

consequence, the interrelationships between decision variables usually cannot be 

expressed analytically with well-behaved functions [126]. In consideration of the 

intertwined sub-actions, the dynamic programming method in the operations 

research seems to provide an appropriate option in designing the spreadsheet-based 

DSS. First, DP model allows the problem to be subdivided into multiple stages which 

are interrelated and associated with probabilities. Second, DP model can contain a 

number of states that describe various possible situations at every stage. It should be 

noted here that a model-driven DSS is not totally the same as OR-based decision 

making system. According to Power and Sharda [127], the two characteristics that 

differentiate a model-driven DSS from the OR special decision study are: 

i. A model-driven DSS is made accessible to a non-technical specialist such as a 

manager through a user-friendly interface. 

ii. A specific DSS is designed for repeated use in the same or a similar decision 

situation. 

There is a promising research opportunity in creating a spreadsheet-based DSS via 

DP method for helping small and micro enterprises assess the energy efficiency 

investment. This system can be created in accordance to the specific circumstances 

of the problem and can be modified when necessary. The pertinent development of 

the decision support system, called “DP-based spreadsheet solution” in this thesis, is 
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explicitly presented in Chapter 5 for solving stochastic equipment replacement 

problem. 

 

2.6 Chapter Conclusions 

This study is specifically aimed at reducing the efficiency gap in SMEs, especially the 

small and micro enterprises. A review of literature shows that the existence of 

efficiency gap can be explained from the economic, behavioural, and organisational 

perspectives. In general, barriers to energy efficiency improvement are consisted of 

at least six factors, including risk, imperfect information, hidden costs, access to 

capital, split incentives, and bounded rationality. These barriers can be interpreted 

by two different combinations of economic theories, which are NA theory 

(neoclassical economics and agency theory) and TB theory (transaction cost 

economics and behavioural economics). In short, there appears to be no conclusive 

answer for which barrier is the most critical factor. Unless the energy efficiency 

investments show high rates of return, less energy-intensive SMEs might not be 

willing to invest in energy efficiency projects due to the presence of various barriers. 

To address these barriers, a “no-cost investment” strategy was proposed for which 

the manufacturing SMEs can implement energy efficiency project without capital 

expenditure.  

After reviewing a range of energy-saving measures for plastic injection moulding, 

process parameters optimisation was identified as a “no-cost investment” model 

that can help SMEs reduce process energy usage without high expense. There is a 
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rich literature concerning process parameters optimisation in the field of injection 

moulding. However, relatively little research exist to take energy consumption into 

account. In fact, most of these optimisation methodologies proposed by different 

researchers downplay the environment of SMEs. That is, those methodologies are 

“over-academic” and too sophisticated to be implemented by SMEs because they 

have neither sufficient access to expertise nor equipment. In this context, DOE 

method has been considered as a technically and economically viable approach for 

SMEs. To achieve the research aim, a simple and valid methodology that can 

improve the process energy efficiency without trading off the product quality must 

be established. 

Nevertheless, the efficacy of this “no-cost investment” strategy does not necessarily 

outweigh the capital investment in energy-efficiency technologies. Consequently, 

decision makers in SMEs need to conduct a proper cost assessment for making an 

economically viable decision. However, they might be incapable of processing too 

much information and make a proper judgement owing to the phenomenon of 

bounded rationality. For this reason, a spreadsheet-based decision support system 

was proposed in this thesis in order to facilitate the decision makers in SMEs assess 

the energy efficiency investment. 
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CHAPTER 3  

MULTI-RESPONSE DYNAMIC SHAININ DOE 

 

3.1 Introduction 

The main objective of this chapter is to further explore the second research question. 

In doing so, a user-friendly, non-resource-intensive, and statically valid optimisation 

methodology based on design of experiment was established. The proposed 

methodology mainly relies on the philosophy lying behind the Shainin® System 

where the core objective is to create a simplistic and cost-effective experimental 

study. In other words, the methodology can be easily practiced by the operating 

personnel in SMEs with minimal training time and resource expenditures. To address 

the inherent limitations of the Shainin approach, it was integrated with the elements 

of the multivariate statistical methods and the signal-response system. This novel 

integrated methodology is called “multi-response dynamic Shainin DOE” (MRDSD) in 

this thesis, where the term “dynamic” refers to the signal-response system. 

 

3.2 Design of Experiment 

Design of experiment (DOE) consists of a series of experiments for investigating the 

influence of factors on the response variables and thereby identifying the optimal 
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solution for the problem under study. DOE is relatively quick and easy to use for the 

development of new processes in which historical data are absent [128]. In general, 

there are three kinds of DOEs: classical DOE, Taguchi DOE and Shainin DOE. Classical 

DOE and Taguchi DOE have been extensively discussed and are easily accessible 

throughout the literature. In contrast, Shainin DOE is not well documented and 

receives scarce attention in the literature. The two main reasons are that Shainin 

DOE is legally protected and the originator did not publish any definitive book about 

the relevant method [129-131]. The most effective DOE method is subjected to 

considerable debate among the scholars. The debate remains inconclusive following 

the distinctive standpoints from the advocates of these three different DOEs. The 

method selection is unlikely to be proper if the inherent limitations of each method 

and the nature of problem are not well understood. Therefore, the objective of this 

section is to deliver the fundamental principles lying behind these DOEs and clarify 

why Shainin DOE can be developed into a more widely-used strategy in the milieu of 

SMEs. 

 

3.2.1 Classical DOE 

The classical approach is credited to Sir Ronald Fisher who first applied factorial 

experiments in the field of agriculture in 1920s. Factorial experiments can be divided 

into full factorial design and fractional factorial design. Full factorial experiments 

examine all possible combinations of every given level for a set of factors. The total 

number of full factorial experiments can be calculated by    where   is the number 
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of levels and   is the number of factors. Because the total number of experiments 

will increase exponentially as the number of factors increases, it will become more 

practical and cost-effective to carry out fractional factorial experiments. For example, 

half factorial designs      require only half of the treatments from their full factorial 

counterparts. Treatments (also known as “runs”) here refer to particular 

combinations of factor levels in a design of experiment. 

Despite that the number of experiments can be reduced, the main disadvantage of 

using fractional factorial designs is that the “confounding effects” exist between the 

individual factors and their corresponding higher-order interactions. For example, 

considering a full factorial design which accommodates three factors (A, B, C) and 

two levels (+: high level;  –: low level) as displayed in Table 3.1, there is a total of 

eight experimental runs (    ). Hence, its half factorial counterpart will only 

require four of the total runs. One question arises here is: which four of the 

treatments should be selected in order to maintain the validity of experimental 

outcomes?  

Table 3.1 – Contrasts for a 23 full factorial design 

Run 
Treat-

ment 

Contrast 

A B C AB AC BC ABC 

1 (1) – – – + + + – 

2 a + – – – – + + 

3 ab + + – + – – – 

4 b – + – – + – + 

5 bc – + + – – + – 

6 c – – + + – – + 

7 ac + – + – + – – 

8 abc + + + + + + + 
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The treatments selection is determined by the “defining contrast” which is generally 

of the highest-order interaction [128]. The highest-order interaction is selected 

because it is usually insignificant to the problems. The contrast for every individual 

effect and interaction is given in Table 3.1. Provided that the ABC interaction is 

selected to be the defining contrast, its corresponding contrast is given by “a + b + c 

+ abc – (1) – ab – bc – ac”. Herein, either the plus-sign terms or the minus-sign terms 

can be taken as the treatments for the half factorial experiment. Normally, the plus-

sign terms are chosen because of easier computational work. In this case, the chosen 

treatments are therefore “a, b, c, abc”. Now, the confounding effects can be clearly 

observed from the rows of Table 3.1 in grey highlight where contrast A is exactly the 

same as contrast BC, so is contrast B with contrast AC and contrast C with contrast 

AB. As such, using fractional factorial experiments will result in a confusing 

circumstance about whether the main effect is caused by individual factor or its 

higher-order alias. More details on the principles of factorial experiments can be 

found in the references [75, 132].  

Several common forms of the classical DOE include the completely randomised 

design, the randomised block design, and the Latin square design. The statistical 

tools such as ANOVA and regression analysis are often employed to analyse the data 

obtained from the experiments. Classical DOE normally uses two-level designs so 

that the critical factors can be identified earlier during the investigation [133]. 

Higher-level designs associated with some powerful tools such as RSM can be used 

to examine the nonlinear response function if the nonlinearity is significant. Put 

another way, classical DOE is more inclined to a sequential and iterative nature of 
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process learning. Another major disadvantage of using the classical DOE is that there 

is a need for non-technical specialists to learn the statistical knowledge and 

understand the concepts underlying the experimental designs before implementing 

it. Although the classical approach becomes more feasible nowadays with the aid of 

statistical software, the training time needed by the practitioners for thorough 

understanding is relatively long [134].  

 

3.2.2 Taguchi DOE 

Taguchi methodology was initiated by Genichi Taguchi in 1950s and has been largely 

employed for quality control in industrial sector. Taguchi [135] introduced a quality 

philosophy which describes that a reduction in the variation of product quality will 

reduce the loss imparted to society. Taguchi method is also called robust engineering 

as its primary objective is to minimise the effect of noise or uncontrollable factors in 

the quality control process. In other words, it helps engineers to identify an optimal 

combination of control factors that can enhance the functional robustness of the 

system. Ueno [136] presented a detailed case study about robust engineering for 

injection moulding process. 

There are three sequential phases in the Taguchi method: system design, parameter 

design and tolerance design. System design is a conceptual phase where engineering 

knowledge is needed to build a prototype with minimal deviation from the desirable 

values. Parameter design aims to identify an optimal set of process parameters that 

can minimise the variation caused by noise factors with the use of orthogonal arrays 
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and signal-to-noise (S/N) ratios. Finally, tolerance design makes use of narrower 

tolerance ranges for variation reduction when the parameter design does not 

satisfactorily achieve the target. 

Orthogonal array is an experimental design which can perform a balanced 

investigation for chosen factors at all available levels while not necessary to carry out 

a full factorial experiment. More explicitly, two factors are said to be orthogonal if all 

their level settings have the same amount of runs. There are eighteen orthogonal 

arrays designed by Taguchi that have been widely used for experimentation such as 

L8 (27), L9 (34), L16 (215), L32 (21 × 49) and so on [137]. The letter “L” in the notation of 

the form “Lm (nk)” indicates that orthogonal arrays are actually generalised Latin 

square design whereas the letters m, n, k, represent the number of experiments, 

number of levels, and number of factors respectively. Orthogonal arrays are adopted 

mainly because the number of experiments can be greatly reduced even though 

there are many factors being taken into consideration. For this reason, more factor 

levels are urged to be deployed in Taguchi DOE so as to investigate the probable 

existence of nonlinearity [128]. In S/N ratios, the signal indicates the desirable mean 

value whereas the noise represents the measure of variability. Three of the most 

common mathematical expressions for S/N ratios are the “nominal-the-best (NTB)”, 

“smaller-the-better (STB)”, and “larger-the-better (LTB)”. For example, S/N ratio for 

the NTB case is as shown below:  

           
 ̅

  
         (3.1) 

where  ̅ and    denote the sample mean and sample variance respectively. 
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Nair et al. [138] present considerable debate over the cogency of Taguchi DOE. 

Ironically, the major academic criticisms received by the Taguchi method are the use 

of orthogonal arrays and S/N ratios. Firstly, orthogonal arrays are criticised as being 

unscientific because they neglect the interaction effects [138]. Orthogonal designs 

are even more simplified than the common fractional factorial experiments and thus 

severely downplay the “confounding effects”. Unless the interaction effects are 

confirmed being unimportant, results from the orthogonal arrays can be misleading. 

Secondly, the use of S/N ratios is arguably invalid since the response mean and 

variance are stochastically independent of each other [139]. Combining the mean 

value and the measure of variation into a single objective function makes it difficult 

to distinguish whether the relevant factor is influential to the mean or the variation. 

In comparison, classical DOE performs these calculations in a separate way, giving a 

more statistically sound result.  

 

3.2.3 Shainin DOE 

As the Shainin® System7 is legally protected under Shainin LLC8 by its founder Dorian 

Shainin, there are two particular ways to learn about this methodology: (i) attend to 

Shainin's consultancy services; (ii) study the book authored by Keki R. Bhote and his 

son Adi K. Bhote [134]. Keki R. Bhote joined Motorola as a development engineer 

and adopted Shainin's consultancy services for a considerable period of time. He 

                                                      
7
 Under particular terms of use, the copyright or trademark symbol is labelled for every specific 

terminology in Shainin System but only for the first time the relevant term appears. 
8
 Disclaimer: This research has no any connection, financial or otherwise with Shainin LLC. All related 

discussions and borrowed ideas pertaining to Shainin DOE are based on the definitive book by Bhote 
and Bhote [134] unless otherwise specified. 
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played an important role for Motorola in winning the first Malcolm Baldrige National 

Quality Award in 1988 — a formal recognition of performance excellence for U.S. 

organisations. The father-son pair later were authorised to publish a book that 

explicitly discusses about the Shainin methodology. According to their contention, 

Shainin DOE is a simpler yet more powerful DOE strategy in comparison to the 

classical DOE and Taguchi DOE. The key concept lying behind the Shainin approach is 

the Pareto principle which describes that the variation problems in quality control 

are attributed to the “vital few” factors, not the “trivial many” [134]. Red X® is the 

term given to the most critical factor while Pink X™ and Pale Pink X™ correspond to 

the second-most and third-most important factor respectively [140]. Shainin devised 

a screening experiment called Variables Search™ to find out these factors from a list 

of suspected variables. The listed variables are ranked in the order of importance so 

that the key factors can be identified as earlier as possible without additional waste 

of time and material. Since the number of key variables is usually no more than four, 

another important feature of the Shainin approach is the emphasis on the use of full 

factorial experiments so as to get rid of “confounding effects”.  

The main advantage of using Shainin DOE is that it enables high involvement of staff 

from all levels because it does not need to deal with complicated statistical 

operations [134]. In contrast to the classical DOE and Taguchi DOE, the necessary 

training time for Shainin DOE is relatively short. In addition, Shainin DOE is more 

cost-effective because it requires a comparatively small sample size using the “best” 

and “worst” parts made from two opposite groups of set values [130] (see p. 82 and 

p. 88 in Section 3.3 concerning the use of small sample size). Despite the fact that 
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Shainin DOE is not well-known, some case studies [141-144] prove that this 

approach is less costly and can be easily executed in the environment of industry. 

Nevertheless, Shainin approach is being criticised for its effectiveness being 

exaggerated from the academic perspective.  

First of all, since Shainin DOE is legally trademarked, there is lack of specific 

dissemination of the relevant approach and the only definitive book written by 

Bhote and Bhote [134] is claimed to be hyperbolic and heavily biased [130, 131]. In 

spite of Shainin’s own claim about his method’s usefulness, Ledolter and Swersey 

[145] argue that variables search is statistically inefficient compared to the fractional 

factorial designs because it relies on engineering judgement a priori in arranging the 

rank of listed variables. The time needed for the variables search can be lengthy if 

the order of importance is not correctly ranked. Contrary to the advantage, Steiner 

et al. [130] makes a persuasive claim that there is a risk of using small sample size to 

identify the dominant factors because the sampling error or systematic error can 

result in an occurrence of outliers. Logothetis [146] states that Shainin DOE is only 

applicable to medium-to-high volume processes at which a high level of quality and 

stability has already been achieved. Another major drawback of Shainin DOE is that it 

does not characterise the relationships between important factors and quality 

responses [147]. This method merely attempts to identify the key factors of the 

quality problems but the improvement potentials cannot be observed and exploited.  
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3.2.4 Discussions on the selection of DOE 

Owing to various conditions, certain methodology that works well for one process is 

not necessarily suitable to the other processes. The factors that influence the 

decision of using a specific DOE strategy include the nature of problem, degree of 

optimisation required, time and cost constraints [133]. Based on the overview in the 

preceding subsections, some conclusions are drawn towards each approach. Firstly, 

classical DOE has the highest statistical validity with the aid of some statistical tools. 

As a result, it is also the most difficult approach as it involves complex statistics 

knowledge. Unless the statistical software is accessible and the necessary training 

time is short, it will not be widely practiced at the factory shop floor. Secondly, 

Taguchi DOE will be recommended only if the robustness to noise factors and small 

tolerance settings are prioritised in the study. If the interaction effects are significant 

to the process, the effectiveness of the Taguchi method will be greatly reduced due 

to the presence of the confounding effects. Lastly, Shainin DOE is the most easily 

understood method and therefore the associated training time is relatively short. 

The root causes can be readily identified with the use of a screening experiment 

called variables search. However, this tool also receives criticisms over its working 

principles. In Section 3.3, several major drawbacks concerning the variables search 

highlighted in the literature are being debated as implausible.  

Table 3.2 provides some important comparisons for rapid identification of the most 

appropriate DOE strategy for a specific purpose. 
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Table 3.2 – Important comparisons for three different kinds of DOE 

Type of DOE Classical DOE Taguchi DOE Shainin DOE 

Ease of implementation Low Medium High 

Sample size Large Medium Small 

Statistical validity High Low Medium 

Training time Long Medium Short 

Engineering judgement required No No Yes 

Factor-response relationship Yes No No 

Identification of root causes Yes No Yes 

Presence of confounding effects Yes/No9 Yes No 

Rapid process understanding No Yes Yes 

Robustness to noise factors No Yes No 

Screening experiment No No Yes 

Tolerance settings No Yes No 

 

Recall that the specific objective in this thesis is to improve the energy efficiency of 

injection moulding process in the environment of SMEs. Injection moulding is a 

medium-to-high volume manufacturing process where interrupting the production 

run for conducting experiment may seem impractical. Therefore, the DOE strategy 

must be user-friendly with relatively short implementation time. Classical DOE is 

statistically sophisticated and hence it is not suitable for the stated objective, 

because SMEs especially small and micro enterprises might have limited access to 

expertise or reluctance to learn. The interrelationships among variables are 

important for the injection moulding process. Since Taguchi DOE does not take 

interaction effects into account, it is also not recommended in this study. Under 

these circumstances, Shainin DOE seems to provide the best solution for the stated 

objective as it allegedly has high ease of implementation and short training time. The 

                                                      
9
 For classical DOE, the occurrence of confounding effects depends upon the types of the chosen 

factorial experiments. Confounding effects are precluded in the full factorial experiments. 
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following sections will further discuss the dispute over the inherent limitations of 

Shainin DOE and demonstrate how it can be developed into a more useful strategy. 

 

3.3 Variables Search 

Shainin advocates using full factorial experiments in order to avoid the confounding 

effects. As mentioned in Subsection 3.2.1, full factorial designs will not be practicable 

provided that too many factors are taken into consideration. Therefore, Shainin 

introduces four useful tools to eliminate the unimportant factors. These tools 

include the Multi-vari Chart™, Components Search™, Paired Comparisons™ and 

Variables Search™ [134]. Multi-vari chart is used to investigate the pattern of 

variation whether it is positional, cyclical or temporal. In analysing the multi-vari 

chart, simple values like the mean and the range are used to identify the type of 

variation in abundant dataset [142]. Components search and paired comparisons are 

similar to each other where the good parts and bad parts are coupled together to 

observe the potential sources of variation. The good and bad parts are selected 

based on the corresponding parameters for the problem [142]. The main difference 

between both tools is that components search is only suitably applied for elements 

which can be disassembled and reassembled, whereas paired comparisons can be 

used for any other circumstances. Lastly, the main function of variables search is to 

identify the most critical factors from a list of suspected variables. Variables search is 

generally divided into four main phases. The main focus of this section is to explicitly 

discuss the working principles behind the variables search since the doctrines 
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established in the book by Bhote and Bhote [134] do not provide thorough 

knowledge background.  

 

3.3.1 Phase one: List of variables and test of significance 

In the Shainin terminology, Green Y® refers to the quality characteristic that is 

important to the customer [140]. To ensure customer satisfaction, it is vital to 

determine the Red X factor and put it into right level in order to achieve a desirable 

Green Y value. Given that the few key factors are not readily identified, a list of 

suspected variables can be suggested based on engineering knowledge, past 

experiences, references from the literature or perhaps a brainstorming session. As 

noted earlier, these variables are arranged in descending order of importance so as 

to complete the search process as fast as possible. The number of experiments in the 

next phase will be increased if the ranking of variables is not adequately correct. 

Nevertheless, the variables “prearrangement” provides an early idea on the 

dominant causes to the Green Y. 

Shainin emphasises the need to conduct an economical design of experiment using 

small sample size. Therefore, each variable is only assigned to two levels, i.e., “best 

level (+)” and “marginal level (–)”, which are perceived to contribute to either 

targeted or deviated Green Y value respectively [134]. Two types of experiment are 

performed in the phase one: all-best experiment, where all variables are set at their 

best levels; and all-marginal experiment, where all variables are swapped to their 

marginal levels. The advantage of using these two opposite combinations of set 
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values is that the Green Y values will be substantially different and hence the key 

factors can be more identifiable with small sample sizes [130]. Both types of 

experiment are repeated twice and the sequence of running all these six 

experiments should be randomised. The randomisation can reduce the biased 

readings caused by noise or uncontrollable factors [134].  

The test of significance exploited in this phase is the     ̅ ratio test where    is the 

difference between the medians of the output values from the all-best and all-

marginal experiments whereas  ̅ is the average range of these two different types of 

experiment. This test allows the end-users to check whether the correct variables 

with the correct levels have been selected. According to the test criterion, if the 

absolute value of     ̅ ratio is greater than or equal to 1.25:1, it indicates that 

variables search can proceed to the next phase. Otherwise, it is necessary to revise 

and rectify the list of variables. This procedure is similar to the hypothesis testing for 

which it is used to implicitly assume the conformity of the test results to a specified 

value.  

However, the test criterion of |    ̅|   1.25:1 is not adequately persuasive based 

on the decision limits set in the phase two which will be discussed later. This 

situation is illustrated in Figure 3.1 where there might be an overlapping region 

between the “best” and “marginal” values, as indicated by the grey region between 

the blue and red dotted lines. If certain observation value falls within this region, it 

will become difficult to determine whether it is a “best” value or a “marginal” value. 

In order to make these two separate regions more distinguishable, the test criterion 

for     ̅ ratio will be readjusted in the next subsection. 
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Figure 3.1 – Illustration of the probable blurring region in the test of significance 

 

3.3.2 Phase two: Separation of unimportant factors 

The main purpose of the phase two is to separate the important variables from the 

unimportant ones using the decision limits. The decision limits resemble the 

construction of control limits for univariate control charts in statistical process 

control (SPC). Let   represent the median values, the decision limits are calculated 

by 

                 
 ̅

  
        (3.2) 

where the subscript   or   represents the all-best or all-marginal experiments 

correspondingly. The t-distribution is used because the population variance is 

unknown. In order to produce a non-biased result, one less degree of freedom (DOF) 

is taken from each type of experiment; hence there are a total of four DOFs in this 

case. From the t-distribution table, the t-value for a 95% two-sided confidence 

interval with four DOFs is equal to 2.776. 

The process standard deviation is estimated by dividing the average range  ̅ by the 

statistical constant    because small sample size is used. When sampling from a 

normally distributed population, the relative range       is correlated to the 

0 2 4 6 8 10 12 14

Best

Marginal

  

𝐷𝑚 



Chapter 3 

MULTI-RESPONSE DYNAMIC SHAININ DOE 

85 

sample size [128]. The statistical constant    represents the mean value of the 

relative range  . The exact value of    for Equation 3.2 is somewhat confusing since 

there appear two different values from the literature. According to the table of 

“Factors for Constructing Variables Control Charts” (see Appendix 1), the value of    

is equal to 1.693 based on three observations10. On the other hand, Bhote and Bhote 

[134] adopted an alternative value of 1.81 in their book but they did not exemplify 

any relevant source for this specific value. For this reason, the value of 1.693 was 

suggested to be employed in this study. To redefine the     ̅ ratio in the phase one, 

it can be noted from Figure 3.1 that the    value must be no less than the total 

distance of the given decision limits (Equation 3.2), so that the boundaries of the 

“best region” and the “marginal region” will not be overlapping. This implies that the 

minimum    value must be twice as much as the latter portion of Equation 3.2, that 

is11, |    ̅|   3.28. 

By following the order of importance, the first variable in the all-best experiment is 

swapped from its best level to its marginal level. Likewise, in the all-marginal 

experiment, the first variable is swapped from its marginal level to its best level. If 

the output response lies outside the decision limits, it confirms that the first variable 

and its associated interaction effects are significant to the targeted Green Y. 

Otherwise, this variable can be deemed as unimportant and eliminated from the list 

of variables. The pair of opposite tests is rerun for the subsequent variables in the 

list until two or three important variables are identified. Clearly, the number of 

                                                      
10

 Since the average range  ̅ is used, there are three observations for each type of experiment 
respectively. 
11

 Given     2(       ̅   ), thus,     ̅   2(2.776/1.693) = 3.28 (see Appendix 1 for the value of   ) 
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experiments in the phase two heavily depends on how well the listed variables are 

ranked in the phase one. 

 

3.3.3 Phase three: Capping run 

Capping run serves as a validation stage to verify that all the important variables 

identified from the separation phase are truly dominant to the Green Y. In the first 

validation test, all the important variables in the all-best experiment are maintained 

at their best levels while the rest are adjusted to their marginal levels. The second 

validation test is totally contrary to the first test where all variables are swapped to 

their opposite levels. For the capping run case, if the outcomes do not lie within the 

decision limits given by Equation 3.2, it indicates that the search of important 

variables is not yet accomplished. In consequence, phase two has to be rerun for the 

subsequent variables in the list until another important variable is spotted. Usually, 

there will be no more than four variables found to be significant [134]. If no results 

fall outside the decision limits in the next capping run, it confirms that all the 

unimportant variables have been successfully separated from the list. 

 

3.3.4 Phase four: Factorial analysis 

The function of the factorial analysis is to quantify the main effect of each important 

variable and the interaction effects among them. This phase does not require any 

new physical experiment, the factorial analysis is carried out based on the data 
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generated from the previous phases [134]. At the end of this phase, the Red X, Pink X 

and Pale Pink X would be readily identified. Shainin also recommends using an 

interaction plot to check whether or not the interaction between important variables 

does exist. If the lines in the interaction plot are parallel to each other, this depicts 

that there is no interaction between variables. However, the interaction plot is 

limited in describing to which extent the parallelity between variables can be 

considered as “no interaction”. In addition, this graphical tool is seen as redundant 

work since the interaction effects are already quantified and examined in the 

factorial analysis. Hence, it is suggested that the interaction plot is exempted in this 

study, further simplifying the proposed methodology. 

 

3.3.5 Discussions on the variables search 

As discussed in Subsection 3.2.3, Shainin DOE receives several criticisms despite the 

claims of its advantages over the other methods. An overview of variables search in 

this section however finds that some of the arguments do not seem plausible. First 

of all, the variables search will be less efficient than the fractional factorial 

experiments if the engineering judgement does not offer satisfactory outcomes 

[145]. The necessary number of experimental runs in the variables search will be 

increased if the order of importance is not arranged well. Nevertheless, the variables 

“prearrangement” provides early and useful clues in identifying any significant cause 

to the desirable or deviated Green Y values. In comparison, it is required to complete 

all the treatments given in the fractional factorial designs before running factorial 
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analysis. Moreover, fractional factorial experiments are effective only if the 

interaction effects are totally insignificant. 

Secondly, small sample size does not guarantee the correctness of results due to the 

possible occurrence of outliers [130]. This situation is in fact mitigated by the use of 

median values instead of the mean values in the variables search. In some cases, the 

outliers are unlikely to be pinpointed and thus the resulting average range  ̅ will be 

too wide. If that happens, the     ̅ ratio test in the phase one will certainly be 

rejected if  ̅ value is too large. As such, it is necessary to rerun the phase one until 

the test criterion is satisfied. In the phase two, although the occurrence of outliers 

will cause misperception about the significance of the relevant variables, the pair of 

opposite tests can ensure that at least one of the two tests will not have an outlier 

problem. The reason is that the probability of outlier occurrence is small, and thus 

the probability of two consecutive outliers occurring is much smaller. Moreover, the 

capping run stage will further examine the results obtained from the separation 

phase, assuring the correctness of the variables search process. 

Thirdly, some researchers [131, 146] criticise Shainin DOE for being statistically 

invalid. However, this section has demonstrated that the variables search process 

actually contains some statistical concepts. The test of significance (phase one) and 

the decision limits (phase two) are correspondingly analogous to the hypothesis 

testing and control chart monitoring. Additionally, the capping run will validate the 

test results and the factorial analysis will quantify the main effects on the targeted 

Green Y. Shainin’s main idea is to create a methodology which can be easily 

understood and implemented by the end-users, therefore the statistical tools are 
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transformed into four-phase procedures in the variables search. This step-by-step 

framework allows the staff from all levels to practice a “simple-and-valid” 

experimental technique. 

 

3.4 Integration of the Multivariate Statistics  

The decision limits (Equation 3.2 on p. 84) used in the phase two of variables search 

address process monitoring from the univariate perspective, that is, only one 

response will be taken into consideration. In present days, multivariate analyses are 

playing more important roles in quality engineering practice because very often 

there is more than one response needed to be controlled simultaneously. Statistical 

methods used for simultaneous process monitoring of multiple responses are 

collectively known as multivariate statistics [148]. In fact, the word “multivariate” 

not only gives the meaning of “many variables”, but also implies that these variables 

might be correlated [149]. If the targeted responses are not independent of each 

other, using univariate analysis to control these responses separately may yield an 

erroneous result. This situation will be explained and illustrated in Subsection 3.4.2. 

In this regard, although Shainin DOE can readily identify the underlying causes for a 

single response, there is a need to bridge its gap in the field of multi-response study.  

This section aims to integrate Shainin’s variables search with the multivariate 

statistical methods. However, the major difficulties in the application of multivariate 

statistics are that it usually involves complex mathematical formulae and difficult-to-

interpret results. Even with the advent of advanced computing power nowadays, the 
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complicated multivariate problems can be resolved within seconds, the necessary 

operating skills, training time, and access to software packages might not be 

available in the environment of SMEs. Multivariate statistics can be more widely 

practiced if the relevant methods are easily understood and implemented. For this 

reason, Hotelling’s T2 statistic is tailored to bivariate statistic in this study where two 

highly prioritised responses will be taken into account. This section starts with a 

literature review regarding multi-response optimisation study by means of DOE. 

Next, some mathematically rigorous multivariate techniques documented in the 

statistical literature are overviewed before integrating some appropriate 

multivariate methods into the variables search. At last, three generalised outcomes 

that might be attained from the “bivariate variables search” are clearly discussed. 

 

3.4.1 Multi-response optimisation via DOE 

Design of experiment has been largely applied for solving single-response problems. 

An effective multi-response optimisation methodology can be demanding, therefore, 

engineering judgement is often included to solve such complex problems. For 

example, Reddy et al. [150] applied Taguchi DOE to separately determine the 

optimal levels of control factors for multiple responses. They suggested using 

engineering judgement to resolve the trade-off situations if found. However, the 

engineering knowledge is often subjective in nature and contradictory results could 

be reached by different engineers [151]. To deal with the uncertainty in engineering 

judgement, weight assignment has been adopted by many researchers to define the 
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relative importance of each response. For example, Besseris [152] devised a 

weighted multi-response optimisation method based on Taguchi’s orthogonal arrays 

and super-ranking concept which can reduce multiple characteristics to a single 

response. Nevertheless, assignment of the weighting terms also relies on the 

engineers’ subjective judgment and hence it leads to a certain degree of ambiguity 

when selecting weight. Another reported technique of decreasing the uncertainty 

caused by engineering judgement is data envelopment analysis (DEA). Liao and Chen 

[153] utilised DEA based ranking approach to optimise multi-response problem via 

Taguchi method. The DEA approach has somewhat low practicality at the factory 

shop floor since it involves many mathematical models. 

Logothetis and Haigh [154] as well as Pignatello [155] incorporated regression 

analysis with the Taguchi method to optimise multiple responses in a multiple-

univariate or one-response-at-a-time manner. This approach does not solve the 

problem in an efficient way, nor does it take into account the possible correlations 

among the responses. Overlooking these correlations may easily lead to an incorrect 

judgment because the variation in one response might have a direct influence to the 

variation in the other response. Furthermore, the critical factors found in the 

univariate approach might not be as same as that found in the multivariate approach 

[156]. Hsieh et al. [157] employed the regression analysis and desirability function to 

optimise the multi-response problem with the use of Taguchi’s dynamic system (see 

Section 3.6 for more details on Taguchi’s dynamic system). Desirability function, 

which represents the degree of achieving a particular target within the interval [0,1], 

is a useful technique for analysing the multi-response problem [158]. Similarly, the 
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main disadvantage of this technique is that it requires some advance knowledge in 

mathematical formulation. Thus, it cannot be easily understood and practiced at the 

factory shop floor.  

Some researchers also apply soft computing methods for multi-response 

optimisation. Li et al. [159] designed an integrated method via ANN, GA, and 

desirability function to optimise the manufacturing process associated with multiple 

responses. ANN was used to build the fitness function for predicting the response 

value whereas GA was used to identify the optimal combination of parameters based 

on the fitness function. Antony et al. [160] proposed a four-phase procedure to solve 

multi-response problem through the use of neuro-fuzzy model and Taguchi DOE. 

They made use of neuro-fuzzy model to convert multiple S/N ratios into a single 

performance index called multiple response statistics (MRS) in a way to determine 

the optimal level for each factor. Using soft computing simulation methods enables 

engineers to conduct experiments without interrupting the production run. However, 

as discussed previously in Subsection 2.4.3, the simulation-based experiments might 

not be suitable to SMEs where research personnel and necessary software are not 

readily available. 

In selecting a multi-response optimisation method, the users should understand the 

principles and limitations lying behind the method [156]. Most of the 

aforementioned studies utilise Taguchi DOE to deal with multi-response problems. 

As presented in Subsection 3.2.2, there are two main inherent limitations in the 

Taguchi method: (i) the existence of confounding effects when using orthogonal 

arrays; (ii) S/N ratios are claimed to be statistically incorrect. In the following 
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subsections, a proprietary optimisation methodology for the empirical study is 

developed based on the elements of multivariate techniques and Shainin DOE. 

 

3.4.2 Multivariate statistical methods 

In comparison to other well-known methods such as DOE, RSM and regression 

analysis, multivariate statistical methods are much less known in quality engineering 

[149]. One of the major concerns in the application of multivariate statistics is that 

non-statisticians may find it difficult to understand and analyse the multivariate data 

due to the mathematical complexity. Therefore, simplifying the multivariate 

statistical methods will usually be of great help particularly to the non-statisticians. 

First of all, it is essential to understand why monitoring multiple responses 

individually through univariate approach might yield erroneous outcomes. This 

situation is illustrated in Figure 3.2 and further explained as follows. 

 

 

 

 

 

 

Figure 3.2 – Elliptical control region for two quality characteristics 
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Suppose that two quality responses    and    are taken into consideration. If both 

characteristics are monitored individually, the control region will be a two-

dimensional plot in a rectangular shape. The boundaries for this rectangular region 

are basically formed by the control limits of these two different characteristics. In 

this case, the observation is said to be in control if it falls within the control region. 

However, the observation is sometimes misleading since an actual control region for 

two characteristics are reported to be elliptic in nature [128] (see explanation in 

Subsection 3.4.3.1). For example, when the control region is Ellipse α, the 

observation point X in Figure 3.2 is considered as in control even though it lies 

outside the rectangular region. Put another way, the multivariate control region can 

identify an out-of-control state for certain observation while the individual control 

regions do not. Notice that the major and minor axes of Ellipse α are parallel to the 

corresponding plot axes, this implies that both characteristics are independent of 

each other and the covariance between them is equal to zero [128]. If the two 

characteristics are positively correlated, a large portion of the observations will fall 

within the control region of Ellipse β. On the contrary, if the two characteristics are 

negatively correlated, the shape of the control region will be similar to that of Ellipse 

γ. Clearly, the multivariate control region will be more effective in detecting the out-

of-control states when the correlation between responses cannot be neglected. 

Harold Hotelling is considered as a pioneer in the field of multivariate statistics with 

his well-recognised paper in 1947 [161], where he constructed multivariate control 

charts based on T2 distribution. As stated by Jackson [162] (p. 21), any application of 

multivariate quality control is required to fulfil four conditions: (i) to check whether 
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the process is in control; (ii) to specify the overall Type I error, that is, the probability 

of an observation lying outside the control limits when the process is set at the 

standard level; (iii) to take into account the correlations among the responses under 

consideration; (iv) to identify the assignable causes to the out-of-control states. 

Hotelling’s T2 control chart is a common way to check the first condition, that is, 

whether or not the multivariate data is under control. 

In order to construct the Hotelling’s T2 control chart, it is a prerequisite to 

understand the Student's t-distribution. Suppose that a random sample of size   has 

a sample mean  ̅ and a sample variance   , and is normally distributed with a 

population mean   and an unknown variance   , it is known that its sampling 

distribution with     degrees of freedom is given by 

 ̅  

  √ 
     .          (3.3) 

Equation 3.3 forms the basis of Hotelling’s T2 distribution where its multivariate 

counterpart can be expressed as  

   ( ̅   )  (    )   ( ̅   )(  )  ( ̅   ).     (3.4) 

When    is generalised to   characteristics, there appears two column vectors12 in 

Equation 3.4, that is ( ̅   ). By transposing the first column vector into row vector, 

this yields an inner product (or scalar product) as follows: 

    ( ̅   )    ( ̅   )        (3.5) 

where   is represented by the following matrix equation: 

                                                      
12

 A column vector indicates the dimension of a matrix system with m rows and 1 column, the 
notation of which is m×1. On the other hand, a row vector has a notation of 1×m. 
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   .       (3.6) 

After computing Equation 3.6, the symmetrical matrix of variance-covariance for   

characteristics will look as below: 

  

[
 
 
 
  
    
     

 

    
    

  
      

  
   

 ]
 
 
 

        (3.7) 

where the sample variance for i-th characteristic with   observations is given by 

  
  

 

 
∑ (     ̅ )

  
   ;        (3.8) 

and the covariance between i-th and j-th characteristics is calculated from 

    
 

 
∑ (     ̅ )(     ̅ )
 
   .       (3.9) 

For small sample sizes where    30, the sample size   in Equation 3.8 and Equation 

3.9 should be replaced with     in order to obtain an unbiased statistical result 

and to better estimate the population. 

Hotelling’s T2 statistic given by Equation 3.5 can be seen as a measure of the distance 

between the responses’ values and their means. After computing the T2 values, one 

can check whether the process is in control by establishing a control limit. Besides 

that, the correlations between the responses are taken into account in the form of 

variance-covariance matrix. As such, it can be said that Hotelling’s T2 statistic 

satisfies the first three conditions described by Jackson [162]. However, the fourth 

condition which is in relation to the interpretation of the out-of-control states is 

much more difficult to handle especially when the number of responses increases. 
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More details in determining the control limits and interpreting the out-of-control 

states will be presented as follows. 

 

3.4.2.1 Determination of the upper control limits 

Hotelling’s T2 distribution has the same shape as the F-distribution [149], that is, 

   
 (   )

   
                          (3.10) 

where          denotes that the proportion to the right on the F-distribution is  , 

with   DOFs in the numerator and     DOFs in the denominator. Equation 3.10 

acts as the upper control limits (UCL) in the multivariate control charts, which is 

important for hypothesis testing. The lower control limits (LCL) is usually set to zero 

because the observation values close to mean will lead to a very small T2 value.  

Alt [163] showed that when   samples of size   are used to estimate the mean and 

standard deviation, Equation 3.10 can be modified into the following form: 

    
 (   )(   )

        
             .                (3.11) 

Generally there are two distinct phases in using the multivariate control charts for 

process monitoring. Equation 3.11 is used as the UCL in the phase one where the 

objective is to obtain a set of in-control signals so that a more robust control limits 

can be set up in the phase two for future monitoring process [164]. Therefore, phase 

one is sometimes known as “retrospective analysis”. The UCL used in the phase two 

is slightly different from Equation 3.11 where it is multiplied by a factor of 

(       ), it yields 
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 (   )(   )

        
             .                (3.12) 

Lowry and Montgomery [165] show that the F-approximated UCL will be 

approaching the chi-square value   
  when a large number of samples is used. On the 

other hand, if the number of samples is small, Tracy et al. [166] point out that it can 

easily lead to incorrect judgement with the use of F-UCL. Therefore, they developed 

a special T2 statistic for individual observations (the subgroup size is 1, that is,    1) 

based on the beta distribution, as given by 

    
(   ) 

 
       (     )                  (3.13) 

where        (     )   represents the upper   percentile of a beta distribution with 

parameters     and (     )  . If the beta distribution table is not readily 

available, it can be calculated from the relationship between the beta distribution 

and the F-distribution as shown below: 

       (     )   
(  (     ))          

  (  (     ))          
               (3.14) 

 

3.4.2.2 Interpretation of the out-of-control states 

If the Hotelling’s T2 value for certain multivariate observation calculated by Equation 

3.5 exceeds the given UCL, it indicates that the process is out of control. One 

question arises here that is how to interpret which of the   characteristics (or which 

subset of them) has caused the out-of-control signal. Many researchers address 

these problems and develop a variety of approaches for interpreting the assignable 

causes to the out-of-control states, however, a general method like Hotelling’s T2 is 
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still not available [167]. Some of the popular interpretation methods are reviewed as 

follows in chronological order. 

In 1987, Murphy [168] proposed a method to investigate the out-of-control signal by 

dividing it into two partitions, that is, 

 ̅  ( ̅ ( )  ̅ ( ))                  (3.15) 

where  ̅ ( ) represents    subset of the   characteristics which is suspected to have 

caused the signal and  ̅ ( ) contains the remaining    characteristics. In his method, 

a   
  value and a    

  value are calculated based on  ̅  and  ̅ ( ) respectively, and 

then the difference     
     

  is considered. If   value is large, the hypothesis 

for which the    subset has caused the out-of-control state is rejected. According to 

the paper by Das [169], this method does not perform well when the characteristics 

have a highly negative correlation. 

In 1991, Doganaksoy et al. [170] proposed using the univariate t-statistic to rank the 

most possible characteristics that have caused the out-of-control state, which is 

defined by 

  ( ̅       ̅     )[   (    
       

  )]
    

               (3.16) 

where  ̅      and  ̅      represent the sample mean and reference sample mean of 

the i-th characteristic respectively;     indicates the estimated variance of the 

characteristic from the reference sample, and   is the sample size. Das [169] pointed 

out that the effectiveness of this method will reduce if the correlation between 

characteristics is low. 
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In 1995, Mason, Tracy and Young [171, 172] devised a cause selecting procedure by 

decomposing the T2 statistic into   independent components, each of which can 

reflect its corresponding contribution to the overall T2 statistic. Often referred as 

“MYT decomposition method” in the statistical literature, the general decomposition 

of the T2 statistic for   characteristics is given by 

     
      

                
 .                (3.17) 

The first term in Equation 3.17 is unconditional term whereas the rest are 

conditional terms. More specifically, one of the   characteristics can be randomly 

selected as unconditional term. Subsequently, any of the (   )  remaining 

characteristics is selected to condition on the first selected characteristic. This 

procedure is repeated by selecting any of the (   ) remaining characteristics to 

condition on the first two selected characteristics, and so on. Eventually, there will 

be    different partitions that can yield the same overall T2 statistic. The main 

disadvantage of MYT decomposition method is the numerous computations involved 

in the conditional terms especially when the number of characteristics is large [173]. 

In addition, this method does not perform well when the correlation between 

characteristics is high [169]. 

In 1996, Runger et al. [174] provided a relatively simpler approach by considering all 

subsets of characteristics. In their method, the T2 statistic is decomposed into two 

components in which the contribution of each individual characteristic can be 

defined by 

    
    

 ,                          (3.18) 
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where   
  gives the statistic value for all characteristics except the i-th one. Larger 

the    value denotes that the corresponding characteristic is more significant in a 

given multivariate observation. The main advantage of using this decomposition 

method is that the calculations can be easily performed using standard software 

packages [164]. 

 

3.4.3 Bivariate variables search 

As can be seen from Equation 3.5, computing Hotelling’s T2 value requires the 

knowledge of matrix algebra, it will become more computationally complex when 

dealing with more characteristics. As such, the multivariate analysis is effective only 

if it is not restricted from the computing power. However, one important objective 

of using variables search is to establish an empirical study which can be easily 

applied and understood by non-statisticians. Therefore, variables search integrated 

with the multivariate analysis should be easy to understand and conduct, especially 

for the end-users in SMEs. Considering the computation of bivariate T2 statistic is not 

too complex, this study will thus only take two highly prioritised responses into 

account. In this case, the order of importance for the list of variables will be ranked 

according to the primary response. Although both quality responses are not 

prioritised equivalently, the bivariate variables search will be designed in a way that 

the perplexed weighting terms are precluded. 
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3.4.3.1 Calculating the bivariate T2 value 

Given that two responses    and    are under investigation, where sample variances 

are indicated by   
  and   

  respectively, and the covariance between them is 

denoted by    , the bivariate T2 value under these conditions is as shown below (see 

Appendix 2 for formula derivation): 

   
 

  
   
     

 [  
 ( ̅    )

    
 ( ̅    )

      ( ̅    )( ̅    )].           (3.19) 

Note that if Equation 3.19 is depicted graphically, it will look akin to the control 

ellipses as shown in Figure 3.2 depending on the sign of covariance. There are four 

transformation steps to incorporate Equation 3.19 with the elements of Shainin DOE: 

i. The sample means  ̅  is substituted by   , which represents the primary 

Green Y value obtained in the separation stage; whereas  ̅  is substituted by 

   which is of secondary importance. 

ii. The population means   is replaced with the medians   from the all-best or 

all-marginal experiments. 

iii. The sample variances    are approximated by ( ̅      )
 
 for a sample size 

of three as explained in Subsection 3.3.2. 

iv. The covariance    
  is replaced with the adjusted covariance    

 . 

This yields the bivariate T2 value as follows: 

   
 (     ) 

 ̅ 
  ̅ 
  (     )    

  [ ̅ 
 (     )

   ̅ 
 (     )

   (     )    
 (   

  )(     )]                        (3.20) 
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Note that the adjusted covariance    
  is computed from 

   
   | ̅  |                   (3.21) 

where  ̅   corresponds to the average covariance from both types of experiment. 

The adjusted covariance is employed here because the covariance computed from a 

small sample might lead to an incorrect perception about the actual relationship 

between responses. The use of adjusted covariance will help redefine the sign of 

covariance based on the outcomes from the all-best and all-marginal experiments. 

More specifically,    
  will be given a “+”sign if both responses are found to have a 

positive relationship, that is, the variations in both responses are in the same 

direction. Otherwise, a “–” sign is assigned to    
  when a negative relationship is 

spotted. This adjustment is statistically rational because covariance is significant in 

defining the directions of variation but limited in describing the relatedness between 

responses [175]. 

 

3.4.3.2 Determining the upper control limit 

The F-distribution, beta distribution or chi-square value is not appropriate to be 

utilised as the UCL for the bivariate variables search. The main reasons are, with the 

use of small sample size, the F-UCL value will be too large whereas the β-UCL and 

chi-square values will be too small. Using these control limits will easily lead to 

judgement error when the T2 value is neither too large nor too small. A brief 

comparison between the F-UCL, β-UCL and chi-square values is provided in Table 3.3, 

given that    0.01, 0.05 and    2. F-UCL values are computed based on Equation 
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3.10 whereas β-UCL values are computed based on Equation 3.13 and Equation 3.14. 

On the other hand, chi-square values are directly determined from the chi-square 

distribution table. 

Table 3.3 – Different multivariate UCL values for    0.01, 0.05 and    2 

  
   0.01    0.05 

F-UCL β-UCL chi-square F-UCL β-UCL chi-square 

1   9.21   5.99 

2   9.21   5.99 

3 19998.00  9.21 798.00  5.99 

4 297.00 2.25 9.21 57.00 2.24 5.99 

5 82.19 3.17 9.21 25.47 3.04 5.99 

 

Clearly, there is a necessity to establish a suitable control limit for the bivariate 

variables search. To do so, Equation 3.20 is used to determine the UCL by taking the 

squared distance at which the lower or higher end of the decision limits (Equation 

3.2) is reached by one response whereas the other one is located at the median level. 

In other words, one response is assumed to be nearly out of control from the 

univariate perspective whilst the other one has perfectly reached the median value. 

The in-control range is hence said to be equivalent to a 95% two-sided confidence 

interval with four DOFs in the t-distribution table. In this case, the final form of the 

UCL for the bivariate variables search is given by (see Appendix 2 for formula 

derivation): 

    
 (     )  ̅ 

  ̅ 
 

 ̅ 
  ̅ 
  (     )  ̅  

 .                 (3.22) 

Equation 3.22 represents the bivariate counterpart of univariate UCL, whose value 

relies on the average range  ̅ of the all-best and all-marginal experiments. In the 
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separation stage (phase two), if both T2 value from the pair of opposite tests fall 

below the computed UCL, this indicates that the relevant variable and its associated 

interaction effects, are confirmed as unimportant and hence it can be eliminated 

from the list. Conversely, if any T2 value lies above the UCL, it implies that the 

process is out of control and the relevant variable is presumed to be significant to 

the bivariate statistic. While for the capping run stage (phase three), if the T2 value 

falls below the UCL, it confirms that the separation stage is successful and all the 

significant factors have been identified. 

 

3.4.3.3 Interpreting the out-of-control state 

Next, the interpretation method provided by Runger et al. [174] is modified here for 

interpreting which characteristic has contributed more to the out-of-control state. 

This modification allows the end-users to use simpler calculation work in analysing 

the bivariate statistic. Based on Equation 3.4,   
  is reinterpreted as the statistic 

value for the i-th characteristic, that is, 

  
  

 ( ̅    )
 

  
 ,        .               (3.23) 

After integrating Equation 3.23 with the elements of Shainin DOE through the similar 

transformation procedures of Equation 3.19, it becomes 

  
  

 (     ) (     )
 

 ̅ 
 ,         .              (3.24) 
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Suppose that    is approaching the lower or higher end of the corresponding 

decision limits (Equation 3.2), Equation 3.24 will be approximated to a value of 23.12 

(see details in Appendix 2). If the computed   
  value is larger than this specified 

value, it implies that the relevant variable and its associated interaction effects are 

significant to    from the univariate perspective. At first glance, a larger   
  value 

indicates a more significant contribution from response    to particular bivariate 

statistic. However, simply comparing the difference between   
  values may not yield 

a reliable result. The reason is that the relative contributions of different 

characteristics to the overall T2 value will not be equivalent since they have dissimilar 

    ̅ ratio (see Subsection 3.3.1). To determine the relative importance between    

and   , the calculation of       ratio is derived from Equation 3.24 as follows: 

  

  
 |(

     

 ̅ 
) (

 ̅ 

     
)|
   

.                  (3.25) 

When an out-of-control state occurs, assume that the observation values    in the 

all-best experiment will be approaching the median values of the all-marginal 

experiment, or vice-versa, the decision limits for the       ratio test can hence be 

approximated by 

      
|    ̅| 

|    ̅| 
 and       

|    ̅| 

|    ̅| 
.                 (3.26) 

Clearly, the       ratio test is not applicable for the in-control situation. Provided 

that |    ̅|  is larger than |    ̅| , there are three possible outcomes that can be 

deduced from the       ratio test: 



Chapter 3 

MULTI-RESPONSE DYNAMIC SHAININ DOE 

107 

i. If            , it indicates that the primary response    is the dominant 

response to the bivariate statistic.  

ii. If                  , it indicates that the relative importance of    and    

is somewhat equivalent. 

iii. If            , the relevant variable along with its associated interaction 

effects can be eliminated from the list because the secondary response    is 

more important to the bivariate statistic, unless further investigation on    is 

interested. 

Notice that when |    ̅|  is smaller than |    ̅| ,    is the dominant response if 

           , contrariwise,    is the dominant response if            .  

 

3.4.4 Generalised outcomes of bivariate variables search 

Optimisation of multi-response problems does not necessarily produce a solution in 

which all targeted responses are satisfactorily optimised. In general, there will be 

three possible outcomes that can be achieved from the bivariate variables search, 

that are, win-win solution, trade-off situation and no conflict, as expounded below: 

i. Win-win solution can be achieved when all targeted responses can be 

optimised simultaneously provided that the correlation between responses 

does not make them contradict with each other. This type of correlation is 

termed “favourable correlation” in this study. Normally, all responses will 

satisfy the tests of significance with the initial combination of all-best and all-

marginal settings.  
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ii. Trade-off situation refers to the case where the potential improvement for 

particular response will be compromised by the deterioration of the other 

response. In such case, the responses are said to have an “adverse 

correlation”. The test criterion for the tests of significance might not be met 

initially and the most likely factors need to be switched from their best level 

to the marginal level, and vice versa.  

iii. No conflict occurs when each response has a completely different set of 

significant factors. Hence, all targeted responses can be optimised 

independently. 

 

3.5 Full Factorial Designs 

An important step in Shainin DOE is to include all the significant variables identified 

from the variables search process in the full factorial experiment. Shainin advocates 

using the full factorial designs mainly because it does not confound the main effects 

of individual variables with the corresponding interaction effects. This study suggests 

using the 2k full factorial designs in which only two levels will be assigned to each 

variable. Although two-level factorial designs will only consider the linear effects in 

the factor-response relationship, it will work quite well when the nonlinearity is not 

significant. Moreover, full factorial experiment with two-level designs is more 

economical and feasible from a business point of view. 

Two important principles of experimental design should be emphasised when 

running the factorial experiment, that are, randomisation and replication [132, 134]. 
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The randomisation can minimise the biased results caused by noise or uncontrollable 

factors such as ambient temperature and humidity. In other words, the 

experimenter can ensure the analytical work is less affected by the uncontrolled 

changes during the course of the experiment. For some variables which are hard to 

manipulate, they can be restricted to only one or few changes in the randomisation 

process. By replication it means each treatment in the experimental design should 

be carried out for more than one time, depending on the available cost and time. 

The average value will provide a more accurate result to the experimenter. 

Recall that one of the major disadvantages in the Shainin approach is that it does not 

characterise the relationships between factors and responses (see Subsection 3.2.3). 

Addressing this issue, the signal-response system will also be integrated into Shainin 

DOE as further discussed in Section 3.6. The signal-response system enables the end-

users to achieve a range of output values by changing the level of a specified factor 

called signal factor. In this regard, the Red X factor is treated as the signal factor 

whereas other significant factors are made as the control factors. The number of 

level for the signal factor is assigned according to the need of study. On the other 

hand, the control factors are accommodated in an inner array with two-level designs: 

“+” sign for higher level and “–” sign for lower level. Note that it should not be 

confused with the “best level (+)” and “marginal level (–)” used in the variables 

search process. The level settings for the inner array do not necessarily follow the 

previous settings used in the variables search. At least, new potential level settings 

should be tested in order to further examine the achievable optimal solution. Table 

3.4 displays a modified full factorial designs when two control factors are 
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accommodated and four levels are assigned to the signal factor in the signal-

response analysis.  

Table 3.4 – Full factorial designs for the signal-response system 

Run 
Control factor Signal factor, A 

B C I II III IV 

1 – –     

2 + –     

3 – +     

4 + +     

 

 

3.6 Signal-Response System 

The two general types of the signal-response system are the measurement system 

and the multiple target system [132, 176]. Measurement system is an estimation 

process for certain quantity of interest which may include sampling, sample 

preparation, calibration and actual measurement process. For example, the Charpy 

impact tester is a form of measurement system. On the other hand, multiple target 

system is a system whose response value can be manipulated by adjusting the level 

of a signal factor. Injection moulding machine is classified as a multiple target system 

where the qualities of interest in the moulded parts can be varied through process 

settings.  

Given the varying demands in many optimisation studies, there is an increasing 

importance to incorporate the concept of the signal-response system. The signal 

response system is sometimes known as the “dynamic system” because the 

response value is adjustable according to the particular intent of different period. In 
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contrast, the simple response system is considered as a “static system” where the 

targeted response is set to achieve a specified value as closely as possible. An ideal 

signal-response relationship can be described by a simple linear regression model as 

follows [177]: 

                         (3.27) 

where   and   represent the response and signal factor respectively while   

indicates the system sensitivity and   denotes the random error. The random error is 

assumed to be normally distributed with a zero mean and an error variance   , that 

is,    (    ) . The error variance is also known as the system dispersion. 

Depending on the circumstances, the system sensitivity can be as large as possible, 

as small as possible, or as close to target value as possible. On the other hand, small 

system dispersion is always desirable because it implies a more consistent outcome. 

Wasserman [178] considered the influence of control factors on the system 

sensitivity and system dispersion as illustrated in Figure 3.3, Equation 3.27 was thus 

re-expressed as 

   ( )   ( ).                  (3.28) 

 

 

 

 

Figure 3.3 – An illustration of the signal-response system 

System Signal factor, M Response, y 

Noise factors, ϵ 

Control factors, x 
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A critical step in evaluating the signal-response relationship is to select a suitable 

performance measure for a given problem. There are two distinctive types of 

modelling strategy: performance measure modelling (PMM) and response function 

modelling (RFM). More details on these two modelling strategies are provided in the 

following subsections based on the work of Miller and Wu [176]. 

 

3.6.1 Performance Measure Modelling 

The main procedures of running the PMM approach are as follows: 

i. For each combination of control factor levels, the performance measure 

value is computed based on the response values obtained from different 

combinations of signal and noise factor levels. 

ii. The performance measure values obtained in the first stage is modelled as a 

function of the control factors. The optimal combination of control factor 

levels is then determined from the fitted model. 

Taguchi's dynamic parameter design is a clear example of PMM approach. The 

performance measure applied in this system is the dynamic signal-to-noise ratio, 

which converts the system sensitivity   and the system dispersion    into a single 

performance measure, as given by 

      (
  

  
).                  (3.29) 

After computing the dynamic S/N ratio based on the response values, the second 

stage involves the adjustment of the sensitivity  , which is computed as a function of 
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the control factors. Taguchi [177] suggested using the appropriate levels of the 

significant control factors to maximise the dynamic S/N ratio. The main purpose of 

doing so is to ensure the system being robust over the uncontrollable factors. 

However, the maximisation of this ratio has an effect of maximising    as well as 

minimising   . Even though the latter effect is considered necessary, the former 

effect might result in an unwanted result that is outside the specification limits. 

Further discussions on the limitations of the dynamic S/N ratio in optimising the 

signal-response system can be found in [179]. 

According to Miller and Wu [176], the major drawback found in the PMM approach 

is that direct modelling of the performance measure only provides information on 

how control factors influence the overall performance of the system. It does not 

provide useful clues on how these factors influence the signal-response relationship 

and hence the information for further system improvement is missing. For this 

reason, the PMM approach is not suitable to be adopted in this study. 

 

3.6.2 Response Function Modelling 

Miller and Wu [176] introduced a more powerful modelling strategy called RFM 

which does not suffer from the limitation in the PMM approach. RFM approach 

makes use of response values to characterise the signal-response relationship as a 

function of the control and noise factors. Likewise, this approach can be stated in a 

two-stage procedure: 
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i. For every combination of control and noise factor levels, a regression model 

is fitted into the response values over a range of signal factor levels. 

ii. Separate fitted models are derived for the system sensitivity   and the 

system dispersion    as functions of the control and noise factors. Then, the 

performance measure is computed with respect to these models and the 

optimal control factor settings can thus be determined. 

Depending on the essential features of the signal-response relationship, the general 

polynomial regression models for the first stage can be written as follows [179]: 

 (     )    (   )    (   )      (   ) 
 .             (3.30) 

In the second stage, the fitted models for the system sensitivity   and the system 

dispersion    are constructed based on the average main effects of the control and 

noise factors as well as their interactions. Through the use of ANOVA, the system 

dispersion    can be divided into lack-of-fit component   
  and pure error 

component   
  for further analysis. This may yield the response values with the 

least variability if the optimal control factors are used. 

In comparison to PMM, RFM provides useful information on how to manipulate the 

control factors so as to further improve the system performance. Therefore, RFM 

approach is integrated into Shainin DOE to add dynamicity in the optimisation study. 

Perhaps a more important concern is the inclusion of RFM analysis will complicate 

the proposed methodology and hence reduce the practicality at the factory shop 

floor. However, the regression modelling techniques used for estimating the system 

sensitivity and system dispersion will not augment too much complexity in 
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conducting the analytical work. Because in general the regression analysis and 

ANOVA can be easily performed by means of Microsoft Excel tools or statistical 

software such as Minitab or SPSS. 

 

3.7 Chapter Conclusions 

To sum up this chapter, a stepwise optimisation methodology named as “multi-

response dynamic Shainin DOE” (MRDSD) was developed for the empirical study, 

which contains several significant features such as simplicity, novelty, validity, and 

usefulness. First of all, Shainin DOE was adopted mainly because it offers a more 

cost-effective and user-friendly strategy in comparison to the classical DOE and 

Taguchi DOE. Secondly, Shainin DOE was innovated with two useful techniques due 

to its inherent limitations: (i) a novel bivariate variables search was devised based on 

the multivariate statistical methods; (ii) the signal-response system was integrated 

into Shainin DOE to enhance the dynamicity in the optimisation process. Thirdly, in 

the aspect of statistical validity, it has been explained that variables search contains 

statistical rigor through the use of the test of significance, separation process, 

capping run, and factorial analysis. The proposed bivariate variables search can 

readily identify the dominant factors to two highly prioritised responses. The 

univariate decision limit may not be able to satisfy this criterion because it does not 

consider the correlation between responses. In addition, this approach does not 

suffer from the potential ambiguity in selecting the weighting terms as seen in the 

conventional multi-response optimisation study. Lastly, this novel integrated 
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methodology will be exceptionally useful for non-statisticians to conduct multi-

response optimisation without dealing with complex computational work. The step-

by-step procedures as illustrated in Figure 3.4 can be easily understood and 

implemented by the operating personnel with limited statistical knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – The framework of multi-response dynamic Shainin DOE  
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CHAPTER 4  

EMPIRICAL STUDY AND ANALYSIS  

 

4.1 Introduction 

Having described and explained the proposed optimisation methodology (MRDSD) in 

the previous chapter, this chapter presents an empirical study on the injection 

moulding process in the laboratory scale, so that some valid results can be generated 

before disseminating the potential solution to SMEs. Through the use of bivariate 

variables search, factors such as barrel temperature, mould temperature and cooling 

time were found to be significant to both qualities of interest: specific energy 

consumption and Charpy impact strength in polypropylene parts. This study showed 

that regardless of great fluctuations in impact strength data, the proposed 

methodology successfully identified the critical factors based on the multivariate 

techniques. In addition, the signal-response analysis via response function modelling 

demonstrated that the end-user could achieve different performance output targets 

specified by the customer or the manufacturer’s intent.  
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4.2 Experimentation Apparatus and Set-up 

The main objective of this empirical study is to optimise the energy efficiency of the 

injection moulding process through the proposed empirical-level approach (MRDSD), 

while not affecting the targeted quality of the final product. An energy balance 

approach is useful in studying the energy efficiency of different systems in the 

injection moulding machine. For example, this approach can be used to determine 

the pressure losses from the drive system, friction and heat losses from the injection 

system, or momentum transfer losses from the mould system. However, such level 

of detail was not required in this laboratory-scale study because the energy 

measurement was directly taken at the power supply terminal for the injection 

moulding machine [40, 46]. This is a measurement of the total energy consumption 

by the whole machine unit. Energy balance approach is more suitable for medium to 

larger manufacturing sites. In place of the energy balance, the energy efficiency 

during processing was estimated in terms of specific energy consumption (see 

Subsection 2.3.3). 

The first step in this empirical study was to set up an energy monitoring system on 

the injection moulding machine. At the factory shop floor, a non-invasive sub-

metering system can be employed to estimate the energy consumption of the 

production machines [71]. In this study, a simple data logger system was set up on 

the injection moulding machine for energy measurement. To set up the data logger 

system, a three-phase, four-wire power transducer (input: 380V, 5A) and three 

current transformers were installed on the main power switch of the machine as 
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shown in Figure 4.1. A three-phase, four-wire power transducer was required 

because the machine was connected to a three-phase AC power supply terminal. The 

voltage ports of the power transducer were directly connected to the power supply, 

while the current was converted to an acceptable range by the current transformers 

(200A/5A) before being transferred to the power transducer through wires coiled 

around the current ports. With these wire connections, the power transducer is able 

to transform the instantaneous power measurement into a voltage signal. The 

power transducer used here is the WB9128 series made by Mianyang Weibo 

Electronic Co., Ltd where the maximum rated output voltage signal is 5V. The output 

voltage signal is delivered to the Grant SquirrelView 2020-1F8 data logger. The 

Squirrel 2020 series data logger is a computer-linked data acquisition system which 

can take up to 20 readings per second on one channel. 

 

 

 

 

 

 

 

Figure 4.1 – The three-phase four-wire electrical connections in the energy monitoring 

system 
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The injection moulding machine adopted in this study was a Haitian Mars Series 

MA1200/370 model, featuring a dynamic servo-drive system and an externally 

installed mould cooling system. The built-in power supply for the mould cooler is 

directly connected to the same power supply terminal for the machine. It indicates 

that the energy consumed by the mould cooler is also measured by the energy 

monitoring system concurrently. Figure 4.2 displays the set-up of the energy 

monitoring system on the Haitian machine. Although servo system offers better 

energy efficiency in comparison to conventional drive system, it does not imply that 

there is no room to further improve the energy efficiency. There is still a possibility 

to generate energy saving through process parameters optimisation. Table 4.1 lists 

out some of the important technical specifications of the Haitian machine employed 

in the experiment. 

 

Figure 4.2 – Set-up of the energy monitoring system on Haitian Mars Series MA1200/370 

injection moulding machine 
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Table 4.1 – Technical specifications of Haitian Mars Series MA1200/370 and mould cooler 

Machine Property Unit Value 

Clamp tonnage kN 1200 

Clearance distance between tie bars mm 410 × 410 

Shot size cm3 214 

Injection pressure MPa 171 

Injection rate (PS) g/s 117 

Heater power kW 9.75 

Pump motor power kW 13 

Mould cooler power kW 6 

 

Assume that the injection moulding machine is a balanced three-phase system, the 

total power dissipated in the three-phase system is the sum of the powers dissipated 

in its three phases [180]. As such, the output voltage signal from the power 

transducer can be reconverted into an actual power reading according to Equation 

4.1 based on the user manual of the power transducer: 

  
    

    
(       )             (4.1) 

where       instantaneous power consumption, kW; 

         output voltage from power transducer, V; 

         maximum rated output voltage of power transducer (5V); 

      phase voltage to injection moulding machine (380V); 

      maximum rated input current of current transformer (200A); 

and         power factor (   0.1). 

The computation of energy consumption is executed through SquirrelView software 

by accumulating the power readings taken in every second over several injection 
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moulding cycles. The energy data can then be directly downloaded to the computer 

via an electrical cable for further analysis. 

 

4.3 Selection of Green Y and Material 

Recall that the first procedure in the proposed methodology is to define the Green Y, 

which represents the quality response that must be optimised. Specific energy 

consumption (SEC), in unit of kWh/kg, was treated as the primary response    in this 

study. Each time the parametric settings were changed, five moulded parts along 

with their associated energy data were collected and the corresponding mass of the 

five moulded parts was measured. Notice that the energy data collection was only 

started when two conditions were satisfied: (i) the machine settings had reached a 

steady state; (ii) the “soak period” was not too lengthy. The moulded parts made 

before the steady state must be discarded since they might not truly reflect the 

effects of the particular parametric settings. “Soak period” refers to the duration in 

which the injection screw stays with the newly charged material after the 

plasticisation process. During this “soak period”, additional melting is generated due 

to conductive heating from the heated barrel. This results in the formation of melt 

film which can affect the subsequent feeding performance because thicker melt film 

will reduce the shear rates [46]. 

Another important objective of this empirical study is to verify the validity of the 

proposed methodology in using small sample size. As stated in Subsection 3.3.5, 

small sample size may lead to incorrect outcomes due to the possible occurrence of 



Chapter 4 

EMPIRICAL STUDY AND ANALYSIS 

123 

outliers. For this reason, the Charpy impact strength (CIS) was chosen as the 

secondary response   . The results obtained from the Charpy impact test are often 

widely scattered even with the most careful test procedures because impact 

strength is not an inherent material property [181]. Given such circumstance of great 

fluctuations in impact data, it is useful to examine the validity and applicability of the 

proposed methodology. 

The mould unit employed here was a four-cavity type B ISO mould which can 

produce 80mm × 10mm × 4mm impact test bars as shown in Figure 4.3. This type of 

test bars is called “type 1 test specimens” according to ISO 179-1:2010 [182]. Before 

running the Charpy impact test, the test specimens were conditioned for at least 16 

hours at a room temperature of 23±2°C and a relative humidity of 50±2% in 

accordance to ISO 291:2008 [183]. The Charpy impact test was performed according 

to ISO 179-1/1eA [182]. The term “1eA” indicates that the type 1 test specimen is 

subject to edgewise (e) impact test with a notch tip radius of 0.25±0.05mm (A). The 

CIS results were computed by dividing the energy required to break the notched 

specimen by the surface area at the notch section in unit of kJ/m2. Due to the high 

variation in CIS data, all twenty specimens cut from the five collected moulded parts 

were tested, and the arithmetic mean of the CIS results was calculated and taken as 

the final value. Nevertheless, the CIS results cannot be directly applied to the part 

design because it does not represent the true energy required to break the specimen, 

but only a measure of the notch sensitivity in different plastic materials [184].  

Polypropylene (PP) material was chosen since it is commonly used more than any 

other single polymer in the automobile parts which usually require an excellent 



Chapter 4 

EMPIRICAL STUDY AND ANALYSIS 

124 

impact strength [185]. The particular type of the plastic material used in this study 

was impact copolymer PP7684KN supplied by ExxonMobil™, which is designed for 

small and large injection moulded parts. The pertinent datasheet for this plastic 

material is provided in Appendix 3. 

 

 

 

 

 

Figure 4.3 – Feature of the four-cavity type B ISO mould 
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particular relation to the energy usage of injection moulding process were reviewed 

and this provides a useful basis for “engineering judgement”. The relevant research 

was pioneered by Nunn and Ackerman [186] where they formulated a 

thermodynamic model which divides the main energy usage into melting and filling 
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Ribeiro et al. [188] further expand the thermodynamic model in a more empirical 

way, which also includes the idling power, cooling power, cooling time, and the 

efficiency index for melting and filling stage: 

     
   (       )       ̅    

 
   (           )    (4.2) 

where       mass of injection shot; 

       specific heat of the polymer; 

       melt temperature; 

         ambient temperature; 

      degree of crystallisation; 

       heat of fusion for 100% crystalline polymer; 

  ̅    average injection pressure; 

         shot volume; 

      efficiency index for melting and filling; 

       cooling time; 

          machine power in idle; 

and          average power consumption of the cooler. 

The cooling time dominates in one complete cycle of injection moulding process. It 

can vary from few seconds to several minutes depending upon the processing 

material, part thickness and type of product. Insufficient cooling time can result in 

dimensional defects such as ejector imprints and increased after-shrinkage [189]. 

Conversely, excess cooling time causes energy waste due to machine idling. 
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Therefore, it is essential to determine an economically acceptable cooling time 

without degrading the moulded parts. Stelson [190] studies all the available 

equations for estimating the cooling time for injection moulding process and 

concludes that the most theoretically correct formula for a plate-like part is given by 

   
  

   
  [ (

     

     
)]        (4.3) 

where       part thickness; 

      thermal diffusivity of the polymer; 

       melt temperature; 

       mould temperature; 

       ejection temperature; 

and     {
    

      
 based on mid-plane temperature or average temperature. 

In view of the above studies, process parameters such as melt temperature, mould 

temperature, cooling time and injection pressure were highlighted as important 

factors to energy consumption. Other parameters such as screw rotational speed, 

back pressure and injection speed might have impact on SEC to a certain extent; 

therefore they were also included in the experimental study. The order of 

importance was arranged in accordance to the time profile of the listed variables 

because energy consumption has a linear relationship with the processing time. 

Barrel temperature and mould temperature were ranked at the top of the list since 

the heating barrel and mould cooler keep operating during the whole process. Next, 

cooling time was ranked at the third place as it is always dominant in one complete 
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process cycle. The plasticisation stage normally takes longer time and presumably 

consumes more energy in comparison to the injection stage. Hence, screw rotational 

speed and back pressure were ranked ahead of injection speed and injection 

pressure. The following subsections provide more details on the corresponding “best 

(+)” and “marginal (–)” levels for each variable listed above. 

 

4.4.1 Barrel temperature 

In this study, the term “barrel temperature” is used instead of “melt temperature” 

because the setting values on the machine can only be regarded as a reference, but 

not the actual temperature of the melt inside the barrel. If the barrel temperature is 

set too low, it increases the melt viscosity and thereby results in pressure losses. In 

addition, the friction induced during injection even causes a steeper rise in melt 

temperature, leading to local thermal overloads and a risk of mechanical damage in 

the material [45]. If the barrel temperature is set too high, it will result in thermal 

degradation, higher dimensional variation and poorer mechanical properties [189]. 

There are five separate zones in the heating barrel of a Haitian MA1200/370 

machine: feed zone, transition zone, metering zone, nozzle and long nozzle. The melt 

formation mostly occurs at the transition zone as a result of the shear action and 

conductive heat transfer, while the screw rotates and compresses the plastic pellets 

against the inside wall of the heating barrel. The molten material builds up in the 

metering zone and is ready for injection into the mould cavity through the nozzle. 

When setting the barrel temperature, it is advisable to gradually increase the 



Chapter 4 

EMPIRICAL STUDY AND ANALYSIS 

128 

temperature values as the melt travels along the screw unit [185]. The temperature 

profile for PP material as shown in Figure 4.4 was adopted as the reference. The 

lowest temperature range values (as indicated by the red line in Figure 4.4) were set 

as the best level because lower barrel temperature results in lower energy 

consumption. Since the melt temperature of PP material generally ranges from 

220°C to 280°C [189], the extreme value of 280°C was taken as the marginal level. 

For PP mouldings, the impact strength will deteriorate when the melt temperature 

goes up [46]. The best and marginal values applied in the five separate zones are 

clearly tabulated in Table 4.2.  

 

 

 

 

 

 

 

  

Figure 4.4 – Barrel temperature profile for high crystallinity polypropylene material. Source: 

[185] 

Table 4.2 – The best and marginal values for barrel temperature in the five separate zones of 

Haitian machine 
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4.4.2 Mould temperature 

The lowest mould temperature that can be provided by the mould cooler adopted in 

this study is no less than the temperature of the input water. The average 

temperature of the input cooling water was approximately 22°C during the empirical 

study. Therefore, the lowest range of mould temperature was 25-30°C because the 

water will be slightly heated up inside the mould cooler. The mould temperature 

range suggested for PP material lies within 40-80°C according to the user manual of 

Haitian machine [191]. Since higher mould temperature requires higher energy 

demand, 40°C was taken as the best level while 80°C was treated as the marginal 

level. Regarding the mechanical properties, lower mould temperature can bring 

higher impact strength in PP mouldings because the material can cool more rapidly 

and form a finer crystalline structure [46]. 

 

4.4.3 Cooling time 

As can be seen from Figure 4.5, the cycle time can be separated into filling time (tf), 

packing time (tp), cooling time (tc) and recovery time (tr). Although the cooling 

process begins right after the material filling into the mould, the manipulation of 

cooling time only starts after the packing stage. Theoretically, the minimum cooling 

time can be calculated using Equation 4.3. Given that the thermal diffusivity of PP 

material is approximately 0.096mm2s-1 and the ejection temperature is set at 60°C, 

the necessary cooling time based on average temperature is approximately equal to 

30s. Using shorter cooling time can help reduce energy loss due to machine idling. In 



Chapter 4 

EMPIRICAL STUDY AND ANALYSIS 

130 

order to examine the minimum achievable cooling time, half of the estimated 

cooling time, i.e. 15s, was used as the best level whilst 30s was set as the marginal 

level instead.  

 

 

 

 

 

 

Figure 4.5 – Breakdown of cycle time for injection moulding process. Adapted from: [192] 
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mechanical damage to the machine. Therefore, an average value of 50rpm was used 

as the best level while a higher value of 75rpm was set as the marginal level.  

Back pressure is needed to achieve a sufficient level of melt homogeneity during 

plasticisation stage. If the back pressure is too high, it will bring a risk of thermal 

degradation due to frictional heating [45]. According to the Haitian machine 

manufacturer’s recommendation, it is not necessary to apply the back pressure for 

processing the pure PP material unless under poor melting conditions. For this 

reason, the best level was set at 0bar whereas the marginal level was set at 10bar 

since the energy usage increases directly with the back pressure. 

  

4.4.5 Injection speed and injection pressure 

Injection speed is the average speed of the melt as it passes through the critical 

cross-sectional area. The critical portion of the test specimens is the one on which 

the impact test will be conducted. The injection speed was calculated according to 

Equation 4.4 based on ISO 294-1:1998 [193]. 

   
  

    
          (4.4) 

where        injection speed, mm/s; 

       cavity volume, mm3; 

      number of cavities; 

      critical cross-sectional area, mm2; 

and       injection time, s. 



Chapter 4 

EMPIRICAL STUDY AND ANALYSIS 

132 

The mould unit has four cavities, and the cavity volume, critical cross-sectional area 

can be calculated based on Figure 4.3. By assuming an injection time of 0.5s, an 

injection speed of approximately 15mm/s was obtained from the calculation. As 

higher injection speed consumes more energy, the injection speed was doubled and 

used as the marginal level, i.e. 30mm/s. If the injection speed is set too fast, it will 

result in voids and thermal degradation which in turn affect the mechanical 

properties [189]. 

The injection pressure should be set at an appropriate level so that the injection 

speed limit can be reached, otherwise, the actual injection time will remain 

unaltered even though changes are made to the injection speed [189]. In this study, 

an injection pressure of 15bar was used as the best level while the marginal level 

was set at 30bar because higher injection pressure would result in higher energy 

consumption. If the injection pressure is set too high, it could lead to thermal 

degradation and burn marks on the finished part due to frictional heating on the 

material when passing through the gate [45]. 

 

4.4.6 Packing pressure and packing time 

During the packing stage, there is usually a residual amount of molten material left 

at the screw front. This is called the melt cushion which exerts certain amount of 

pressure on the solidifying material inside the mould, enabling material packing as 

well as preventing backflow. The energy consumption during the packing stage was 

reportedly small (only up to 5%) [48, 70]. For this reason, packing pressure and 



Chapter 4 

EMPIRICAL STUDY AND ANALYSIS 

133 

packing time were excluded from the list of variables. However, it is still necessary to 

set the packing parameters correctly so as to avoid sink marks, flashing or other 

visible defects. Packing pressure is adjusted to about 60% of the required injection 

pressure whereas packing time is set at nearly 30% of the cycle time [189]. 

 

4.4.7 Summary of important variables 

In brief, seven variables were suspected to be significant towards reducing SEC. 

Following the order of importance, they are, respectively: barrel temperature, mould 

temperature, cooling time, screw rotational speed, back pressure, injection speed, 

and injection pressure. Each process variable was assigned to a “best (+)” level and a 

“marginal (–)” level for PP material based on the literature, datasheet, equipment 

user manual or manufacturer’s recommendation. The eventual list of variables is 

summarised in Table 4.3 along with the corresponding best and marginal values. The 

influence of ambient factors (or noise factors) was precluded in this study as the 

injection moulding process was carried out at a room temperature of 20±1°C and a 

relative humidity of 68±2%.  

Table 4.3 – List of variables for SEC in descending order of importance 

Rank Variables 
Values (for PP material) 

Unit Best (+) Marginal (–) 

1 Barrel temperature (BT) °C 220 280 

2 Mould temperature (MT) °C 40 80 

3 Cooling time (CT) s 15 30 

4 Screw rotational speed (SS) rpm 50 75 

5 Back pressure (BP) bar 0 10 

6 Injection speed (IS) mm/s 15 30 

7 Injection pressure (IP) bar 15 30 
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4.5 Results and Discussions for Bivariate Variables Search 

After highlighting all the suspected variables, the next procedure is to carry out the 

bivariate variables search process based on the procedural and theoretical 

frameworks as established in Section 3.3 and Section 3.4. At the end of this section, 

the significant factors to both SEC and CIS would be readily identified before 

proceeding to the full factorial experiment and the signal-response analysis. 

 

4.5.1 Tests of significance 

As mentioned in Section 4.3, SEC was labelled as    as it represents the more 

desirable response whereas CIS was denoted by   . The bivariate variables search 

was started by carrying out three all-best and three all-marginal experiments in a 

randomised order. The results from these two types of experiments are respectively 

displayed in Table 4.4 and Table 4.5. Notice that the random orders for running the 

all-best and all-marginal experiments are indicated in parentheses for convenient 

reading.  

Table 4.4 – Results of all-best experiments 

Run 
Variables    

SEC, kWh/kg 

   

CIS, kJ/m2 BT MT CT SS BP IS IP 

1(1) + + + + + + + 0.6008 6.1250 

2(4) + + + + + + + 0.6545 6.7219 

3(6) + + + + + + + 0.6448 6.7016 

Median        0.6448 6.7016 

Range        0.0537 0.5969 
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Table 4.5 – Results of all-marginal experiments 

 

For   , the difference between the medians    was equal to 0.4992kWh/kg and the 

average range  ̅ was equal to 0.0505kWh/kg. Thus, the value of |    ̅|  was equal 

to 9.89:1, which was far greater than 3.28:1, indicating that there was no necessity 

to rectify the list of variables in Table 4.3. On the other hand, the    for    was 

equal to 2.5391kJ/m2 whereas  ̅ was equal to 0.5555kJ/m2. Hence the value of 

|    ̅|  was equal to 4.57:1, which implied that both responses have the similar 

best and marginal levels for the listed variables. In other words, SEC and CIS were 

found to have a favourable correlation because a decrease in SEC will lead to a 

proportional increase in CIS. Therefore, it can be expected to achieve a win-win 

solution (as discussed in Subsection 3.4.4) provided that both responses have the 

same significant factors. Otherwise, there will be no conflict if they have totally 

different set of significant factors. 

 

4.5.2 Separation process 

In this phase, the covariance     for the all-best and all-marginal experiments was 

first calculated based on Equation 3.9 (see p. 96) with a sample size of    . 

Run 
Variables    

SEC, kWh/kg 

   

CIS, kJ/m2 BT MT CT SS BP IS IP 

4(2) – – – – – – – 1.1106 4.0813 

5(3) – – – – – – – 1.1579 4.1625 

6(5) – – – – – – – 1.1440 4.5953 

Median        1.1440 4.1625 

Range        0.0473 0.5140 
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Subsequently, the average covariance was calculated and the resultant value was 

adjusted to a “–” sign since both responses were found to have a negative 

relationship. The calculation of the adjusted covariance    
  is shown in Table 4.6. 

Table 4.6 – Calculation of the adjusted covariance 

 

 

Next, a pair of opposite tests was carried out by swapping the level of variables 

according to the order of importance. The measurement data for both responses are 

provided in Table 4.7. To separate the unimportant variables from the list, a 

Hotelling’s T2-chart was set up with the following four steps: 

i. T2 values were computed according to Equation 3.20 (see p. 102). 

ii. The upper control limit was determined based on Equation 3.22 (see p. 104). 

iii. The contribution of each response   
  was estimated according to Equation 

3.24 (see p. 105). 

iv. The       ratio test was established by calculating the range of     based on 

Equation 3.26 (see p. 106). 

Since |    ̅|  was larger than |    ̅|  in the tests of significance, if            , 

it indicates that the relevant variable along with its associated interaction effects is 

negligible on    (refer to Subsection 3.4.3.3 for detailed explanation). Table 4.8 

clearly displays the calculation results for the separation phase. 

Type of experiment     

All-best 0.01278 

All-marginal 0.00136 

Average covariance,  ̅   0.00707 

Adjusted covariance,    
  -0.00707 
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Table 4.7 – Measurement data in the separation phase 

 

 

Table 4.8 – Bivariate T2-chart for the separation phase 

 

In Table 4.8, the resultant T2 values from Run 7 and Run 8 show that barrel 

temperature was presumed to be significant to both responses. However, the       

ratio in Run 8 was less than       which implies that the contribution of    was not 

significant enough. It can also be noted in Run 8 for the   
  value of which was less 

than 23.12, denoting that    actually lied within its univariate decision limit. Next, 

the significance of mould temperature could not be confirmed because one T2 value 

(Run 10) fell below the UCL. Therefore, the opposite tests were rerun for the next 

important variable, i.e. cooling time, before going into the capping run phase. Since 

both T2 values obtained in Run 11 and Run 12 were found above the UCL, it could be 

confirmed that cooling time was a significant factor to both responses. Overall, the 

Run 
Variables    

SEC, kWh/kg 

   

CIS, kJ/m2 BT MT CT SS BP IS IP 

7 – + + + + + + 0.8012 5.4719 

8 + – – – – – – 1.0761 6.5641 

9 + – + + + + + 0.7530 5.2000 

10 – + – – – – – 1.0741 4.9753 

11 + + – + + + + 0.7908 4.4188 

12 – – + – – – – 0.8825 5.5266 

Run 
Hotelling’s

   
UCL 

Out-of-

control 

Contributions Importan-

ce of      
    

            

7 82.49 48.35 ✓ 82.48 42.14 1.40 0.46-2.16 ✓ 

8 217.7 48.35 ✓ 15.55 160.7 0.31 0.46-2.16 ✘ 

9 63.49 48.35 ✓ 39.47 62.84 0.79 0.46-2.16 ✓ 

10 20.34 48.35 ✘ 16.47 18.41 0.95 0.46-2.16 N/A 

11 145.3 48.35 ✓ 71.87 145.2 0.70 0.46-2.16 ✓ 

12 260.3 48.35 ✓ 230.6 51.86 2.11 0.46-2.16 ✓ 
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contribution of    can be said as potent as that generated by    as most       ratios 

were found inside the     range. 

 

4.5.3 Capping run  

In the previous phase, barrel temperature, mould temperature and cooling time 

were presumed to be significant to both responses. The capping run phase was 

performed to validate the importance of these variables where the resultant values 

are given in Table 4.9. Subsequently, the corresponding T2 values were computed as 

shown in Table 4.10. Both T2 values were found below the UCL and this confirmed 

that these three variables were important to both responses. Here, it could be said 

that the order of importance was arranged satisfactorily since all three important 

variables were ranked at the top of the list. The remaining four variables can thus be 

eliminated from the list when running the full factorial experiments. Because both 

responses have a favourable correlation with the same key factors, a win-win 

solution can be achieved at the end of the experimental study. 

Table 4.9 – Measurement data in the capping run 

 

 

Table 4.10 – Bivariate T2-chart for the capping run 

Run 
Variables    

SEC, kWh/kg 

   

CIS, kJ/m2 BT MT CT SS BP IS IP 

13 + + + – – – – 0.6539 5.9719 

14 – – – + + + + 1.0981 4.6125 

Run 
Hotelling’s

   
UCL 

Out-of-

control 

Contributions Importan-

ce of      
    

            

13 25.47 48.35 ✘ 14.84 0.28 7.29 0.46-2.16 N/A 

14 7.53 48.35 ✘ 5.64 7.10 0.89 0.46-2.16 N/A 
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4.5.4 Factorial analysis 

After having identified the key factors, factorial analysis was carried out to quantify 

the main effects of each factor and the interactions among them. All data generated 

from the previous phases were utilised in the factorial analysis. As can be seen in 

Table 4.11, cooling time was identified as the Red X factor for SEC while barrel 

temperature and mould temperature were the Pink X and Pale Pink X factor 

respectively.  

Table 4.11 – Results of factorial analysis for SEC 

 

 

Key Variables    

SEC, kWh/kg 
Median 

BT MT CT 

+ + + 0.6008 0.6545 0.6448 0.6539 0.6494 

– + + 0.8012       0.8012 

– – + 0.8825       0.8825 

+ – + 0.7530       0.7530 

+ – – 1.0761       1.0761 

+ + – 0.7908       0.7908 

– + – 1.0741       1.0741 

– – – 1.1106 1.1579 1.1440 1.0981 1.1273 

 BT MT CT BT×MT BT×CT MT×CT 
BT×MT× 

CT 

 + + + + + + + 

 – + + – – + – 

 – – + + – – + 

 + – + – + – – 

 + – – – – + + 

 + + – + – – – 

 – + – – + – + 

 – – – + + + – 

Mean (+) 0.8173 0.8289 0.7715 0.8625 0.9010 0.9135 0.9205 

Mean (–) 0.9713 0.9597 1.0171 0.9261 0.8877 0.8751 0.8681 

Effects -0.1540 -0.1308 -0.2456 -0.0636 0.0133 0.0384 0.0524 

 
Pink  

X 

Pale Pink 

X 

Red  

X 
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Next, it is worth running the factorial analysis for CIS since it has the same important 

factors as SEC. The results given in Table 4.12 show that the BT×MT×CT interaction 

was the Red X factor while the MT×CT interaction and cooling time were the Pink X 

and Pale Pink X factor respectively. As mentioned in Section 3.2, subjectively 

overlooking the interaction effects will lead to a wrong interpretation of the 

experiment outcomes. If fractional factorial designs are used instead, it is necessary 

to deem whether the individual factor or its corresponding higher-order alias is the 

real important factor.  

Table 4.12 – Results of factorial analysis for CIS 

 

Key Variables    

CIS, kJ/m2 
Median 

BT MT CT 

+ + + 6.1250 6.7219 6.7016 5.9719 6.4133 

– + + 5.4719       5.4719 

– – + 5.5266       5.5266 

+ – + 5.2000       5.2000 

+ – – 6.5641       6.5641 

+ + – 4.4188       4.4188 

– + – 4.9753       4.9753 

– – – 4.0813 4.1625 4.5953 4.6125 4.3789 

 BT MT CT BT×MT BT×CT MT×CT 
BT×MT× 

CT 

 + + + + + + + 

 – + + – – + – 

 – – + + – – + 

 + – + – + – – 

 + – – – – + + 

 + + – + – – – 

 – + – – + – + 

 – – – + + + – 

Mean (+) 5.6491 5.3198 5.6530 5.1844 5.2419 5.7071 5.8698 

Mean (–) 5.0882 5.4174 5.0843 5.5528 5.4954 5.0302 4.8674 

Effects 0.5609 -0.0976 0.5687 -0.3684 -0.2535 0.6769 1.0024 

   
Pale Pink 

X 
  

Pink 

X 

Red 

X 
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4.5.5 Further confirmation experiments 

The use of engineering judgement a priori had successfully reduced the necessary 

number of experiments. In order to verify the validity of the experimental results, 

some confirmation experiments were conducted to further examine the influence of 

the unimportant factors to both responses. These trials are not necessary to be 

carried out at the factory shop floor because it will result in additional use of time 

and material. The experimental results and the resultant T2 values are presented 

respectively in Table 4.13 and Table 4.14. 

Table 4.13 – Measurement data in the confirmation experiments 

 

 

Table 4.14 – Bivariate T2-chart for the confirmation experiments 

Run 
Variables    

SEC, kWh/kg 

   

CIS, kJ/m2 BT MT CT SS BP IS IP 

13 + + + – + + + 0.5844 5.8219 

14 – – – + – – – 1.1677 4.8266 

15 + + + + – + + 0.6382 6.5766 

16 – – – – + – – 1.1466 4.8625 

17 + + + + + – + 0.6558 6.5438 

18 – – – – – + – 1.1733 4.8250 

19 + + + + + + – 0.6598 6.8469 

20 – – – – – – + 1.1927 3.9141 

Run 
Hotelling’s

   
UCL 

Out-of-

control 

Contributions Importan-

ce of      
    

            

13 120.0 48.35 ✓ 12.30 21.57 0.76 0.46-2.16 ✓ 

14 44.25 48.35 ✘ 1.89 12.29 0.39 0.46-2.16 N/A 

15 1.98 48.35 ✘ 0.15 0.44 0.58 0.46-2.16 N/A 

16 30.30 48.35 ✘ 0.02 13.66 0.04 0.46-2.16 N/A 

17 0.70 48.35 ✘ 0.41 0.69 0.77 0.46-2.16 N/A 

18 49.62 48.35 ✓ 2.89 12.23 0.49 0.46-2.16 ✓ 

19 4.84 48.35 ✘ 0.76 0.59 1.14 0.46-2.16 N/A 

20 9.12 48.35 ✘ 8.00 1.72 2.16 0.46-2.16 N/A 
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In Table 4.14, out-of-control signals could be observed in Run 13 and Run 18 despite 

the fact that no value was found outside the univariate decision limits (all the 

associated   
  values were less than 23.12). For clarity, Run 13 was the all-best 

experiment except screw rotational speed, whereas Run 18 was the all-marginal 

experiment except injection speed. The explanation for Run 13 would be 

exceptionally important since the corresponding T2 value was much higher than the 

UCL and the contribution of    could not be ignored. With a favourable correlation, 

the SEC value is expected to be high while the CIS value is low. However, a relatively 

low SEC value had caused an out-of-control state in the bivariate statistic. This 

implies that high screw rotational speed does not consume much energy but it will 

result in poorer impact strength in the moulded parts. If the univariate decision 

limits were applied here, it would be unlikely to screen out the out-of-control signal 

in Run 13. Nevertheless, screw rotational speed and injection speed were not 

considered in the full factorial experiment since their influence on SEC was not 

significant (both   
  values were less than 23.12). 

 

4.6 Full Factorial Experiment 

From the factorial analysis, cooling time was identified as the most important single 

factor to both SEC and CIS. Cooling time was thus chosen as the signal factor while 

barrel temperature and mould temperature were treated as the control factors in 

the full factorial experiment. The full factorial designs as shown in Table 3.4 (p. 110) 

was used at this stage. The lowest cooling time employed previously was 15s. Here, 
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the cooling time was varied between 5s and 15s with a 5-second increment in order 

to determine the minimum achievable cooling time for reducing idle loss. Likewise, 

for the control factors, a lower barrel temperature of 200°C and a lower mould 

temperature of 30°C were investigated along with their initial “best levels” used in 

the bivariate variables search. In every single treatment of the full factorial designs, 

three SEC measurements were taken so as to obtain a more accurate test result 

based on the average value. The complete datasheet of the full factorial experiments 

for SEC is provided in Appendix 4. Obviously, the average SEC goes up when the 

cooling time increases as can be observed in Table 4.15 and Figure 4.6.  

Table 4.15 – Full factorial experiments for SEC in unit of kWh/kg 

Row 
Control factor Signal factor: CT, s 

BT, °C MT, °C 5 10 15 

1 200 30 0.4473 0.5018 0.5688 

2 220 30 0.4693 0.5164 0.6047 

3 200 40 0.4494 0.5041 0.5752 

4 220 40 0.4835 0.5328 0.6119 

 

 

Figure 4.6 – Average SEC values versus cooling time 
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Next, all twenty specimens moulded from every single treatment were examined in 

the Charpy impact tests. The complete datasheet of the full factorial experiments for 

CIS can also be found in Appendix 4. Table 4.16 summarises the arithmetic mean of 

CIS values whereas Figure 4.7 presents the data distribution of CIS with one standard 

deviation against cooling time. The findings show that CIS generally decreases with 

increasing cooling time. This phenomenon could possibly be explained by the fact 

that the morphology of the crystalline structure grown in the moulded part is highly 

affected by the temperature history and cooling times [46]. However, there is a gap 

in the existing literature concerning the relationship between the cooling time and 

the moulding’s impact performance. Minor changes in the cooling time may cause 

major variations in crystal formation which in turn affects the mechanical properties 

of the moulded part. The impact performance might be degraded by the internal 

stresses induced in the moulded part when it is “stuck” inside the mould unit for a 

longer period.  

Table 4.16 – Full factorial experiments for CIS in unit of kJ/m2 

Row 
Control factor Signal factor: CT, s 

BT, °C MT, °C 5 10 15 

1 200 30 6.3189 5.0804 4.8740 

2 220 30 5.8725 5.2925 5.0915 

3 200 40 6.2678 5.3449 4.9024 

4 220 40 5.8720 5.4867 4.9266 
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Figure 4.7 – Distribution of CIS values with one standard deviation against cooling time 

At the end of this stage, it can be clearly observed from Figure 4.6 and Figure 4.7 

that a win-win solution can be simply achieved using a shorter cooling time because 

it not only reduces SEC value, but also results in higher CIS value at the same time. At 

first, it might seem that the Row 1 settings provide the most optimal solution as it 

requires the lowest SEC value while not compromising the CIS performance. 

However, the signal-response analysis demonstrated in the next section will suggest 

a different solution based on response function modelling. 

 

4.7 Response Function Modelling Analysis 

The first step of RFM analysis involved fitting a suitable regression model for    and 

   in the full factorial experiments. Since straight lines can be satisfactorily fitted into 

the response values as illustrated in Figure 4.6 and Figure 4.7, the following simple 

linear regression models were adopted:  
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                        (4.5) 

                        (4.6) 

where coefficients    and    characterise the system sensitivity of order 0 and 1 

respectively. Through the regression modelling, the values for these coefficients 

were estimated as given in Table 4.17. In the next step, the main and interaction 

effects of the control factors on these coefficients were computed. It should be 

noticed that the symbol “+” and “–” in the RFM analysis denote the higher level and 

lower level correspondingly. 

Table 4.17 – Estimated values for the system sensitivity 

Row 
Control Factors Regression Coefficients 

BT MT BT×MT                         

1 – – + 0.385 0.0121 6.87 -0.144 

2 + – – 0.395 0.0135 6.20 -0.078 

3 – + – 0.384 0.0126 6.87 -0.137 

4 + + + 0.414 0.0128 6.37 -0.095 

Mean   0.395 0.0128 6.58 -0.114 

BT   0.0200 0.0008 -0.5850 0.0540 

MT   0.0090 -0.0001 0.0850 -0.0050 

BT×MT   0.0100 -0.0006 0.0850 -0.0120 

        

By averaging out the main and interaction effects, the fitted models of the 

regression coefficients for    are given by 

                                             

                                                 (4.7) 

 

whereas for   , 

                                               

                                              (4.8) 
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where      when the corresponding factor is set at lower level; and      

when the higher level is used instead.  

In order to reduce the variation in CIS data, the system dispersion    was divided 

into lack-of-fit component   
  and pure error component   

  via ANOVA for further 

analysis as presented in Table 4.18. 

Table 4.18 – Estimated values for the system dispersion in the Charpy impact tests 

Row 
Control Factors Lack-of-Fit and Pure Error Component 

BT MT BT×MT   
      

    
      

  

1 – – + 3.550 1.2669 0.618 -0.4813 

2 + – – 0.479 -0.7361 0.303 -1.1940 

3 – + – 0.770 -0.2614 0.774 -0.2562 

4 + + + 0.102 -2.2828 0.566 -0.5692 

Mean    -0.5033  -0.6252 

BT    -2.0122  -0.5129 

MT    -1.5375  0.4250 

BT×MT    -0.0092  0.1999 

        

It is especially important to analyse the pure error component   
  as it represents 

the part-to-part variation in the response data. By averaging out the estimated 

values in Table 4.18, the fitted model for     
  is given by 

    
                                       .   (4.9) 

 

Table 4.18 shows that the Row 2 settings (BT: 220°C; MT: 30°C) yield the lowest part-

to-part variation. This condition can also be observed from Figure 4.7 where the 

response data in Row 2 show better consistency in comparison to others. The 

possible explanation for larger variation in CIS response data when using lower 

barrel temperature (200°C) is the occurrence of inhomogeneous melt and thus the 

crystal formation in the moulded part is subject to larger variation. 
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The advantages of including the signal-response system with RFM analysis are 

explicitly demonstrated in this section. First, the relationships between the key 

factors and targeted responses can be clearly observed and exploited for quality 

improvement. From this empirical study, it was found that both SEC and CIS values 

could be optimised simultaneously using a lower level of cooling time. Second, RFM 

analysis provided some useful clues on how to manipulate the control factors for 

improving the system performance. At first sight, Row 1 settings seems to provide 

the best solution if the purpose is merely to reduce SEC value. However, when the 

fluctuation in CIS response data is considered, Row 2 settings can provide a more 

compromising solution where higher barrel temperature can help reduce variation in 

CIS response data although it requires higher SEC. Furthermore, the regression 

models can be used to generate result predictions for different levels of signal factor. 

For example, Row 4 settings are totally the same as those of Run 11 in the variables 

search (see Table 4.7 on p. 137) except the cooling time. After computing the system 

sensitivity for SEC according to Equation 4.7, a cooling time of 30s is substituted in 

Equation 4.5 for estimating the corresponding SEC value. Table 4.19 compares the 

empirical value from the variables search with the estimated value based on the 

regression model for SEC. The small percentage difference shows that the regression 

analysis for SEC is highly accurate.  

Table 4.19 – Comparison between the empirical study and the regression model for SEC 

SEC, kWh/kg 

Empirical study Regression model % Difference 

0.7908 0.7980 0.9 
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4.8 Conclusions of Experiment 

The empirical study demonstrated that the specific energy consumption of the 

injection moulding process could be optimised concurrently with the moulded part’s 

Charpy impact strength (win-win solution). Through the use of bivariate variables 

search, cooling time was identified as the most significant factor to both qualities of 

interest. The derived regression models based on response function modelling 

method enable the end-users to achieve a range of output performance based on 

the specific intent. More importantly, this empirical study showed that regardless of 

great fluctuations in impact strength data, the bivariate variables search was able to 

identify the critical factors for both responses. The weakness of using univariate 

decision limits was pointed out through the confirmation experiments, proving the 

necessity of integrating the multivariate techniques in studying the multi-response 

problems. The proposed methodology also showed high ease of implementation due 

to the fact that no sophisticated statistical knowledge was needed for processing 

data. This allows non-statisticians to easily apply the proposed methodology in the 

quest for energy efficiency improvement at short notice. Moreover, the optimal 

solution can be attained with minimal resource expenditures since the proposed 

methodology only requires small sample size. As a conclusion, MRDSD can be 

employed as an effective “no-cost investment” strategy in the environment of 

manufacturing SMEs to reduce their efficiency gap. 
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CHAPTER 5  

DP-BASED SPREADSHEET SOLUTION 

 

5.1 Introduction 

Having addressed the first and second research question, this chapter attempts to 

deal with the third research question in a theoretical way. In short, the primary 

cause of energy consumption in the manufacturing industry is normally attributed to 

the production machines. Therefore, replacing the old and inefficient equipment 

with the energy efficiency technology is the most straightforward method for energy 

saving. However, there are various barriers that inhibit SMEs from implementing 

energy efficiency investments such as lack of access to capital or information. 

Making a financial decision for the energy efficiency investments can be a 

complicated process due to the stochastic nature of the problem, especially in 

consideration of the long-term benefit. In order to better manage the decision-

making process, this chapter develops a spreadsheet-based decision support system 

via dynamic programming for solving the stochastic equipment replacement 

problem. The following sections explain in detail the procedures in developing the 

spreadsheet solution and these are summarised as follows: 

i. Defining and investigating the problem 

ii. Formulating the dynamic programming model 
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iii. Deriving the spreadsheet solution 

iv. Exploring large dataset via Markov chains 

v. Preparing to implement the solution 

 

5.2 Defining and Investigating the Problem 

In SMEs, particularly small and micro enterprises, the cost consideration always 

dominates in the decision-making process for capital investments. As a result, the 

capital-intensive energy saving options will easily be negated because of limited 

access to financial resources. Although decision makers should, in principle, evaluate 

every available option carefully before making any decision, Stern and Aronson [28] 

argue that people tend to rationalise and follow their previous decisions related to 

energy use where this tendency becomes greater for more expensive and 

irreversible investments (cannot be resold). For the energy efficiency investments, 

Golove and Eto [24] highlighted that there are at least two key differences from the 

other investments. First, investments in most energy-efficient equipment are highly 

illiquid and normally irreversible. Second, energy efficiency investments are often 

associated with hidden costs or transaction costs which are poorly captured by the 

engineering-economic analyses, such as costs for searching information, equipment 

installation costs, and so on. It is therefore imperative to conduct a cost assessment 

prior to making any financial decision. An effective cost assessment is concerned 

with collecting information for decision making, performance assessment and future 

planning [40]. The first thing to recognise in this section is to understand the 
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problem under investigation. To do this, the status quo of the green technologies 

and the technical cost analysis in particular relation to the injection moulding 

industry are reviewed in the following subsections. 

 

5.2.1 Status quo of green technologies 

The majority of energy consumed by the injection moulding machine during 

processing is through the drive system [48]. As mentioned in Section 2.3.1.1, the two 

most prevalent drive systems in the current market are hydraulic servo-drive system 

and all-electric drive system, which have many advantages over conventional 

hydraulic or pneumatic drive system. There are also hybrid machines being 

introduced into the niche market where both hydraulically and electrically driven 

systems are adopted concurrently. While the selection of drive system may seem 

very intuitive, the advantages of these three different drive systems are reportedly 

debatable. The final selection of the drive system often depends on various 

considerations such as the category of product, technological capability, personal 

preferences, financial budget as well as local electricity cost [53].  

Manufacturers of high-precision, electronic or medical products have a preference 

for employing all-electric machines which are perceived to offer better repeatability 

and cleaner operation (oil-free). Many manufacturers are still in favour of hydraulic 

machines mainly because of their already matured applications, especially for 

producing large-size parts such as car bumpers. Accumulator-assisted hydraulic 

machine can deliver a large shot weight into the mould unit under a consistent 
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pressure. In comparison, electric drives are still not suitable for large-sized machines 

due to the inherent instabilities in the toggle clamp configuration [187]. Moreover, 

injection moulding that involves multi-material processing requires a multi-barrel 

injection system which is usually driven and controlled hydraulically [53]. This is a 

considerably new area to all-electric machines. Lower capital investment is another 

main reason for using hydraulic machines. Nonetheless, the cost difference between 

hydraulic machines and all-electric machines had allegedly declined from 40% to 10-

20% in recent years [194]. All-electric machines are advocated mainly because they 

have greater advantage in terms of energy efficiency. However, some machine 

manufacturers claim that the actual energy savings are exaggerated by comparing 

the latest all-electric machines with much older hydraulic machines [53]. The 

electricity cost in different region is reported to have influenced the tendencies in 

machine selection as well. Manufacturers associated with low electricity cost will 

show more concerns for increasing production volume rather than improving energy 

efficiency [53]. 

 

5.2.2 Technical cost analysis 

Technical cost modelling is an approach to cost estimating in which each of the 

elements that contribute to the overall cost is estimated individually [46]. Through 

the technical cost approach, the complexity of the cost analysis problem can be 

reduced to individual estimates based on the physics of the manufacturing process. 

In general, the technical cost analysis can be divided into two types of cost elements: 

variable costs and fixed costs. Variable costs represent those cost elements which 
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are independent of the production volume whereas fixed costs refer to those of 

which the price per piece of produced part will reduce with the production volume. 

More details on these elements in the field of injection moulding are further given as 

follows. 

 

5.2.2.1 Variable cost elements 

For most plastics processing enterprises, including injection moulding, the three 

largest variable cost elements include the material, direct labour and energy [11]. 

These are also the major costs for operating an injection moulding machine. The 

operating cost will not remain unchanged over time because it is highly dependent 

on various factors as explained below. 

 

i. Material cost 

The material cost is commonly regardless of production volume unless the material 

price is given a discount rate by the supplier for a very large purchase order. The part 

design is not a single factor to the material cost because the scrap losses must also 

be taken into account. Depending on various situations, scrap losses in the injection 

moulding process can be resulted from the runner waste, grinding waste, material 

changes, and oil contamination.  
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ii. Direct labour cost 

Direct labour cost per piece of produced part is very difficult to estimate accurately 

because it is not always variable. The total cost for the direct labour can be seen as a 

complex function of the time rate wage, bonus, subsidy, allowance, overtime 

payment and certainly number of direct labour [46]. The labour productivity is an 

important factor to largely determine the extent to which such benefits would be 

willingly paid by the employers. 

 

iii. Energy cost 

As described in Subsection 2.3.3, energy use during processing itself can be 

subdivided into fixed energy and variable energy where the former can be reduced 

over a large production volume. Normally, the longer a machine is put in service, the 

lower is its energy efficiency and hence the higher is its variable energy. The 

economic performance of the equipment will likely differ either considerably or 

slightly from its initial ratings. 

 

5.2.2.2 Fixed cost elements 

Fixed costs are typically consisted of capital investments at one time. For this reason, 

these costs are amortised over the production volume in a given period of time. 

Three of the most common fixed cost elements for most plastics production 

processes are the equipment cost, overhead cost and maintenance cost. 
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i. Equipment cost 

Here, the equipment cost does not only signify the purchase price of the main 

injection moulding machine, but also the auxiliary equipment such as dehumidifiers 

and granulators. In terms of energy efficiency investments, the new equipment could 

be referred to a brand new all-electric machine, servo-driven machine, or retrofitting 

the existing equipment with the aforementioned green technology such as VBET 

screw and nXheat™ (see Subsection 2.3.1.2). The new equipment does not 

necessarily or significantly outperform the existing equipment but SMEs might not 

have sufficient ability to process these information. As pointed out by Hewett [195], 

the difficulty in processing information related to energy efficiency investments 

usually arises from three reasons. First, energy efficiency products and services are 

purchased very infrequently. Second, if the efficiency ratings of the equipment are 

considered in the purchase decision, it might be difficult for consumers to evaluate 

the corresponding performance. Third, the rate of change in energy efficiency 

technology is rapid relative to the purchase interval. 

 

ii. Overhead cost 

Overheads are the indirect costs that usually vary with the production volume. These 

costs are very also called the transaction costs or the hidden costs. Energy efficiency 

investments are considered as irreversible because they are usually associated with 

various transaction costs for processing information. Information is not costless and 

the search costs can be regarded as a subset of transaction costs that will be 
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incurred when selecting the available green technology in the market. Search costs 

can be generally divided into cognitive costs (or internal costs) and external costs 

[196]. Cognitive costs are internal to the purchasers which are influenced by the 

consumers' ability to cognitively process information. These costs may include costs 

for sorting information, costs for assuming risk or costs for reaching decisions. On 

the other hand, external costs are exogenous and beyond purchasers’ direct control. 

For example, external search costs might be incurred for replacing malfunctioned 

equipment, negotiation with potential suppliers or seeking approval for capital 

expenditure. 

 

iii. Maintenance cost 

The maintenance cost for the equipment is also very difficult to estimate accurately 

because the maintenance work is often unscheduled [46]. In part, the maintenance 

cost is incurred in response to the equipment that has malfunctioned. Therefore, the 

manufacturers are required to investigate the corresponding probability of breaking 

down the equipment in order to better estimate the maintenance cost. A simple way 

to estimating maintenance cost is to equally divide the overall cost over a certain 

period. 
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5.3 Formulating the Dynamic Programming Model 

The main purpose of this section is to reformulate the essence of the problem into a 

series of algebraic equations via dynamic programming (DP). DP method involves 

dividing a larger problem into a sequence of interrelated sub-problems. In practice, 

there appears to be no easy answer to build the DP model because most practical 

problems are often described in an imprecise and inconsistent way. For this reason, 

a better approach is to start with a simpler model and then gradually shift towards a 

more comprehensive model that more closely represents the practical problem 

[113]. This includes determining such things as the objective functions, reasonable 

assumptions, appropriate constraints, probability distribution, and possible policy 

decision. This section starts with the introduction of the fundamental principles 

underlying the DP method. Subsequently, the formulation of the final DP model will 

be explicitly discussed. More specifically, the DP model was designed for solving the 

stochastic equipment replacement problem (SERP) in order to better manage the 

decision-making process on the energy efficiency investments. All the mathematical 

notations used in the following DP formulation are self-explanatory. 

 

5.3.1 Characteristics of dynamic programming problems 

The principal characteristics of a DP model include the stage, state variables, 

decision variables, contribution functions and transformation functions. These 

characteristics were described in Table 5.1 based on the operations research 

literature [113, 116, 197] by directly analysing the problem under consideration. 
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Table 5.1 – Characteristics of dynamic programming model associated with problem 

descriptions 

Characteristics of DP model Descriptions of SERP 

i. The problem can be subdivided into 

  stages where a policy decision is 

required at each stage. 

SERP can be divided into a finite number of 

stages that correspond to the time frame 

of the problem, e.g., years, quarters or 

months.  

ii. The beginning of each stage is 

associated with a number of state 

variables,   , which represent 

various possible conditions where 

the problem might be at each 

particular stage. The subscript   

indicates a given stage where 

         . 

In this study, the state variables for SERP 

are referred to the number of available 

equipment at each stage. This is the most 

important evolved idea that has changed 

the classical equipment replacement 

problems found in the literature [116, 121, 

197], which make use of the “age of the 

machine” as the state variables. 

iii. Decision variables,    are relevant 

quantifiable decisions where the 

respective values are to be 

determined. 

There is either one decision variable or a 

subset of decision variables at each stage. 

For example, the operating cost and 

maintenance cost being considered. 

iv. Contribution functions   (  ) 

provide corresponding values via 

mathematical functions of the given 

decision variables at each stage. 

In SERP, the contribution functions will 

generate the total estimated cost at each 

stage. 

v. Transformation functions 

    (     ) determine how the 

policy decision transforms the 

current state to a state associated 

with the beginning of the next 

stage. 

The number of available equipment is 

subject to change according to the optimal 

decision made at each stage.  

 

A common DP model is formed by the networks of these five fundamental elements 

as illustrated in Figure 5.1. By its nature, DP method is concerned with making a 

sequence of interrelated decisions that are optimal to the overall problem rather 

than suboptimal solutions which are only best at particular stage. This is known as 

the “principle of optimality” in the DP literature, introduced by Bellman [198] 
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(Chapter 3) which states that “An optimal policy has the property that whatever the 

initial state and initial decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision.” The DP 

model is designed to achieve an optimal value function   (  ), which is the most 

desirable total function value from stage   to stage  , given that the state at stage   

is   . In other words, the optimal decision for each of the remaining stages will only 

depend on the current state, provided that every previously chosen decision is 

already an optimal solution.  

 

 

 

 

Figure 5.1 – Graphical illustration of a dynamic programming model. Source: [197] 

The correctness of a DP model can be examined by proving that every possible state 

is considered and the principle of optimality is satisfied by a recursive relationship 

(or called recurrence equation) [197]. DP models can be solved by either forward 

recursion or backward recursion for which both can reach the same optimum 

solution. Although the forward approach may seem more mathematically logical, the 

backward approach is more widely adopted in the DP literature because it is 

perceived to be more computationally efficient [121]. In backward recursion, the 

recurrence equation relates the contribution function at stage   to the optimal policy 

decision at stage    . For deterministic problems, the recurrence equation can be 

written as 
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  (  )    (     
 )      (    )       (5.1) 

where   
  denotes the optimal policy decision at stage  . Equation 5.1 is widely 

known as the Bellman’s equation or optimality equation in the DP community. The 

optimality equation shows that if the optimal value at stage     is known, it can be 

solved by moving one stage backwards to add up the value given by the contribution 

function at stage  . When the backward recursion is used, the stage computations 

begin from the final stage where a boundary condition needs to be established. The 

optimal value for the entire DP problem will be yielded at the terminating stage, i.e. 

the initial stage. 

The advantage of using DP method is its ability to achieve an optimum solution by 

searching through all function values given by every possible state variable. 

Consequently, the number of necessary computations will grow exponentially as the 

number of state variables increases. This phenomenon is termed the “curse of 

dimensionality” by Bellman [199] in 1950s. This reason is often cited for why DP is 

not practicable for many complex problems. In general, there are three types of 

curse of dimensionality [200]:  

i. State space: If the state variable    (                   ) possibly has   

dimensions and each of them can take up   possible values, there might be a 

total of    different states. This situation can be illustrated by the simple 

diagram in Figure 5.2 where the node (   ) denotes the state   at stage  . 

Assume that each arc represents a recursive relationship that relates a 

particular state to the next possible state, the number of possible arcs linking 
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the nodes will increase exponentially if each state variable contains more 

dimensions and values.  

 

 

 

 

 

 

Figure 5.2 – Simple network representation of state space with four stages 

ii. Outcome space: If the random variable    (                   ) 

might have   dimensions and each of them might result in   values, then 

there might be a total of    outcomes. 

iii. Action space: If the decision vector    (                   ) might have 

  dimensions and each of them might result in   values, then there might be 

a total of    outcomes. 

A common difficulty in using DP method is to develop an ideal model that can 

properly represent a specific problem. From the standpoint of computational 

efficiency, some approximations and assumptions are required so that the DP 

computation will become more tractable. Nevertheless, these might shift the model 

away from the real-world conditions. As such, a practical DP model must be simple 
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enough for computation work yet remains a valid representation of the problem 

under consideration. 

 

5.3.2 Dynamic programming model for SERP 

In this subsection, the overall structure of SERP will become more comprehensible 

through the mathematical formulation. Suppose that a company is examining the 

equipment replacement problem over a period of time where it can be divided into 

  stages (           ). The optimal decision is assumed to be made at the 

beginning of each stage, where the stage can be customised either in years, quarters 

or months, depending on the need of company. In SERP, decision makers might 

encounter uncertain situation in which they need to decide whether to buy the new 

equipment without knowing if the old equipment will break down during the whole 

period. Although the future situation is unforeseen, it is still possible to estimate the 

outcomes for certain decision through the use of probability distributions [201].  

Certainly, the first order of manufacturing industry is to ensure that the number of 

equipment can satisfy the production demand that will vary with time. Only after 

satisfying the demand, the company can decide whether to purchase the new 

equipment or to keep the old equipment. Ascertaining the appropriate time for a 

purchase decision is critical in energy efficiency investments due to the rapid change 

in innovation and price in the technology-oriented market. Decision makers can 

constantly review the pricing history and predict the price trend of the equipment, 

or access the relevant information directly from the supplier. The operating cost and 
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maintenance cost of the equipment are also random variables, depending on how 

long it has stayed in service. Normally, the operating cost and maintenance cost of 

the existing equipment can be estimated from the data stored in the management 

information system of the company. On the other hand, the corresponding data for 

the new equipment can be obtained from the supplier. The main input data that 

define the DP model for SERP are given and explained as follows. Notice that the 

notations in bold letters represent the systems of matrices where the superscript   

and   denote new equipment and old equipment respectively. 

   (  
    

 )          (5.2) 

where   
     demand on the number of new equipment at stage  ; 

   
     demand on the number of old equipment at stage  ; 

   (  
    

 )          (5.3) 

where   
     number of new equipment before making any decision at stage  ; 

   
     number of old equipment before making any decision at stage  ; 

   (  
    

 )          (5.4) 

where   
     number of new equipment purchased at stage  ; 

   
     number of old equipment sold at stage  ; 

   (  
    

 )          (5.5) 

where   
     purchase price of new equipment (positive value13) at stage  ; 

   
     selling price of old equipment (negative value) at stage  ; 

                                                      
13

 Positive value indicates the amount to be paid by the company; whereas, negative value indicates 
the amount to be received by the company. 
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   (  
    

 )          (5.6) 

where   
     expected operating cost of new equipment at stage  ; 

   
     expected operating cost of old equipment at stage  ; 

   (  
    

 )         (5.7) 

where   
     expected maintenance cost of new equipment at stage  ; 

   
     expected maintenance cost of old equipment at stage  . 

To sum up, the decision variables of this problem can be generically represented by 

   (                 ).        (5.8) 

There are two main sources of uncertainty considered in this problem. First, the 

probability of breaking down of an old equipment,   
 . If failure occurs, the company 

has an option of salvaging the malfunctioned equipment at   
  (negative value). 

Hence, the expected selling price of the old equipment can be computed by 

  
  (    

 )  
    

   
 ,     

    
 ;     (5.9) 

where   
  denotes the selling price of an old equipment that is in working condition. 

Second, the operating cost of the new equipment,   
 . This data highly depends on 

the information provided by the equipment supplier. In consideration of the 

inexorable properties of degrading efficiency, the operating cost of the new 

equipment can be estimated by 

  
   ̇                     (5.10) 
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where   ̇    initial operating cost of new equipment; 

      efficiency index of new equipment per stage. 

A comprehensive DP model must ensure that all possible variables are taken into 

consideration. However, the classical equipment replacement problems in the DP 

literature never consider the internal transaction costs (e.g. information search 

costs). If the DP models do not reflect the existence of these costs, the decision 

makers may unintentionally overstate the potential investment for a particular 

technology. For this reason, the DP model here will also take total internal 

transaction costs into account. Moreover, this DP model will include several types of 

exogenous information such as random changes to production demands, fluctuation 

in equipment market prices, variation in operating costs and maintenance costs. The 

final market prices of the equipment can be fluctuating due to the costs incurred for 

equipment delivery, installation or removal. The most likely exogenous change to the 

operating costs is caused by local electricity tariff adjustment. In this thesis, the 

probable change in operating cost can be internal to the company since the 

optimisation methodology proposed in Chapter 3 (i.e., MRDSD) can be applied to 

reduce energy consumption and achieve cost savings. The exogenous information 

for this DP model is represented by the notation  ̂  and it is assumed to arrive at the 

beginning of each stage, that is, 

 ̂  ( ̂   ̂   ̂   ̂ )                  (5.11) 

where   ̂     random change to the demand on the number of equipment at  

    stage  ; 

  ̂     fluctuation in purchase or selling price at stage  ; 
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  ̂     variation in operating cost of new or old equipment at stage  ; 

and  ̂     variation in maintenance cost of new or old equipment at stage  . 

In summing up, several equations that make up the final decision variables would be 

 ̃      ̂ ;                    (5.12) 

 ̃      ̂ ;                    (5.13) 

 ̃      ̂ ;                    (5.14) 

 ̃      ̂ .                   (5.15) 

The state variable for this problem is defined by the number of available equipment 

that remains from the previous stage, which is 

   (        )                   (5.16) 

where    indicates the policy decision (or action command) at stage  , that is either 

to keep the existing equipment or to execute equipment replacement. More 

specifically, the state variable is determined by 

   {
                               

(  
    

    
 )                  

                (5.17) 

where    must satisfy two constraints. First, the company is required to ensure the 

demand on the number of equipment is met, i.e.,     ̃ . Second, old equipment 

will only be sold provided that   
    

 , put another way, the company cannot sell 

more old equipment than what they have. Furthermore, Equation 5.17 implies that 

any new equipment purchased at stage   can only be used at stage    . This 

assumption is reasonable because the equipment procurement, fabrication and 
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installation procedures normally take time. The transformation function which yields 

the state for the next stage is thus given by 

     {
                        
 ̅                   

                 (5.18) 

where   ̅  (  
    

    
    

 ). Because the company can possibly accommodate 

up to a certain number of equipment, Equation 5.18 must satisfy one assumption, 

i.e.,          . 

The contribution function for this DP model is used to calculate the total estimated 

cost at each stage, which is expressed by 

  (       ̂ )       ̃ 
   ̃  ̃ 

  (    )   ̃ 
     ̅  ̃ 

              (5.19) 

where    {
                       
                   

 

The presence of matrix transpose in Equation 5.19 indicates that this contribution 

function is written in terms of inner product (or scalar product) of matrices. The first 

term yields the summation of purchase cost and selling cost if the policy decision is 

to carry out equipment replacement, i.e.,     . Note that    is precluded in the 

second term, this implies that the policy decision will not influence the total 

operating cost because it directly relies on the production demand. One important 

assumption made here is that when there are new and old equipment waiting to be 

used at certain stage, new equipment will be in priority use for satisfying the 

demand. Lastly, the third and fourth term give the total maintenance cost for which 

it is affected by the number of new and old equipment after every policy decision. 
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Aside from the need of satisfying random demands, the main goal for SERP is set to 

achieve the minimum expected cost within   stages. Therefore, the optimal value 

function of the DP model can be written as  

  (  )     (  (       ̂ )       (    ))              (5.20) 

where   represents the expected value which yields the weighted average of all 

possible values [200]. Equation 5.20 exhibits the feature of backward recursion. This 

means that the computation process begins from stage    , under the assumption 

that the computational work for all previous stages has been completed. Lastly, the 

boundary condition for the initial stage can be set as zero, which is 

    (    )   .                  (5.21) 

 

5.3.3 Discussions on the derived DP model 

At first sight, the above DP model may appear to be a deterministic DP problem in 

the sense that, the possible state at a particular stage resulting from the previous 

decision is predetermined by the state variables at the previous stage. However, the 

state in this DP problem is not completely determined by the policy decision and 

state variables from the previous stage. Note that the operating cost of new 

equipment at each stage will remain unknown until the final DP solution is achieved. 

Put another way, the company cannot determine the operating cost of new 

equipment before every optimal decision for equipment replacement is made at 

each stage. The above DP model can thus be categorised as stochastic problem since 

it is associated with an uncertainty for what the next state will be. 
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As mentioned in Table 5.1, the derived DP model differs from the classical 

equipment replacement problems in terms of the state variable. The state variable 

employed here is the number of available equipment left from the previous stage, 

but not the “age of the machine” as proposed in the literature [116, 121, 197]. 

Although this evolved idea has caused the DP model somewhat more complicated, it 

can better represent the practical problem. In the manufacturing industry, the 

production machines are fixed assets that are rarely replaced unless the company is 

considering a strategic upgrade. Therefore, the company might not have recorded 

the associated cost for every existing machine at each age. In place of the age details, 

the company may need to consider the equipment replacement problem from a 

larger viewpoint based on the number of equipment, where the associated cost can 

be estimated from the historical data. The only difficulty that will happen in this 

“evolvement” is the necessity to consider all possible states in the DP computation 

because the policy decision at each stage is not predetermined. In spite of that, this 

stochastic DP model does not suffer from the three curses of dimensionality, 

because the model features relatively small state spaces (a finite number of 

equipment), only a pair of actions (to keep or to replace), and easily computable 

expectations (known probability distributions).  

Equation 5.20 is a fairly classical optimality equation, but solving it via manual 

computation is usually a tedious and time-consuming task. As such, the decision 

makers in SMEs are not necessarily willing to apply the DP model although it can 

facilitate them in making decision. Fortunately, the advent of multifaceted 

spreadsheet software can be used as an effective platform for solving DP models 
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[116, 121]. The development of a specific DP-based spreadsheet solution in response 

to the derived DP model is expounded in the next section. 

 

5.4 Deriving the Spreadsheet Solution 

The main objective of this section is to present the Excel algorithms that form the 

DP-based spreadsheet solution. Microsoft Excel spreadsheet package is adopted 

considering the fact that it is ubiquitous and easily accessible even in the 

environment of SMEs. The development of the final Excel algorithms had undertaken 

a series of evolvement process to better represent the derived DP model in Section 

5.3. In part, some efforts are given to improve the user interface of the spreadsheet 

solution so as to enable the end-users to implement it without any difficulty.  

 

5.4.1 User interface for the Input Worksheet 

The construction of the Excel spreadsheet solution (file SERP.xlsm) begins by setting 

up the Input Worksheet. There are six important criteria in the Input Worksheet 

(cells C7:C12) as shown in Figure 5.3. These criteria include the maximum number of 

stages,  , maximum number of equipment,     , number of available equipment at 

stage 1, total internal transaction costs, initial operating cost of new equipment,  ̇, 

and efficiency index of new equipment per stage,  . The functions of these criteria 

will be described whenever they appear in the following formulations.  
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Figure 5.3 – Criteria column in the Input Worksheet 

The Input Display Table is where the end-users need to enter the necessary input 

data for the decision variables (Equation 5.8) and the exogenous information 

(Equation 5.11) at every stage. The maximum default value for the number of stage 

is set at 10 initially. The adjustment procedures given in Appendix 6 allow the end-

users to flexibly modify the user interface when more than 10 stages will be required. 

In the Input Worksheet design, yellow cells indicate the input cells where the users 

have to key in the necessary information, while the white cells represent the 

calculation cells where the resultant values will be calculated from the input cells. 

For example, in Figure 5.4, row 22 provides the computed values based on Equation 

5.12 with the Excel formula     (         ). 

 

 

Figure 5.4 – Rows for “demand” calculation in the Input Display Table 

 

 A B C 

6 Criteria   

7 Maximum number of stages, T   

8 Maximum number of equipment, rmax     

9 Number of available equipment at stage 1     

10 Total internal transaction costs     

11 Initial operating cost of new equipment, ṅ     

12 Efficiency index of new equipment per stage, η     

 A B C 

19 Demand   

20 Demand on the number of equipment, at   

21 Exogenous change to demand, ât    

22 Final demand on the number of equipment, ãt    
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5.4.2 Excel algorithms for stage computations 

Solving the contribution function (Equation 5.19) and the optimal value function 

(Equation 5.20) is much more complicated since the stage computations generated 

by the Excel algorithms have to exhibit the nature of the assumptions or constraints 

established in the DP model. The stage computations require a form of “lookup table” 

to find out the optimal value for each possible state. In order to serve this purpose, 

some of the important Excel functions that make up the algorithms for stage 

computations are listed and briefly described in Appendix 5.  

The combination of INDEX-MATCH function was adopted instead of the HLOOKUP 

function (or VLOOKUP function) due to two inherent limitations of the latter. First, all 

data has to be tabulated in a standard table form, this means that the HLOOKUP 

function is unable to return a value from a different table array. Second, HLOOKUP 

function uses approximation that is nearest to and less than the lookup value. In this 

case, HLOOKUP function might give an incorrect result if the data is not arranged in 

the ascending order, as it stops looking up the remaining values right after the “most 

approximated” value is identified. For certain cases, the “most approximated” value 

is not less than the lookup value. As a consequence, this will also result in a false 

value even if the data is sorted accordingly. 

Note that the contribution function (Equation 5.19) is expressed in a compact form 

by means of matrices. As such, keying the whole optimal value function (Equation 

5.20) using Excel functions might be too lengthy to fit into one single cell. In addition, 

finding and fixing the syntax errors in a long Excel formula can be tedious. Given 
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these considerations, the stage computations for all possible states were subdivided 

into five worksheets, which are respectively denoted by “p”, “n”, “m”, “Ct” and “Vt”, 

where each function is clearly described in Table 5.2. 

Table 5.2 – Function of each worksheet for stage computations 

Worksheet Descriptions 

“p” To calculate the summation of purchase price (positive) and selling price 

(negative) at each stage associated with certain policy decision. The 

calculation is based on the portion      ̃ 
  in Equation 5.19. 

“n” To calculate the total expected operating cost of new and old equipment 

at each stage based on the premise that the new equipment will be in 

priority use. The calculation is based on the portion  ̃  ̃ 
  in Equation 

5.19. 

“m” To calculate the total expected maintenance cost of new and old 

equipment at each stage associated with certain policy decision. The 

calculation is based on the portion (    )   ̃ 
     ̅  ̃ 

  in Equation 

5.19. 

“Ct” To sum up the calculations from Worksheet “p”, “n” and “m” for every 

possible state at each stage, and exhibit the backward recursion in the 

optimal value function. The algorithms in this worksheet also contain the 

assumptions and constraints that manipulate the stage computations. 

“Vt” To identify the optimal policy decision at each stage which yields the 

minimum estimated cost for every possible state based on the computed 

values from Worksheet “Ct”. 

 

Each worksheet for stage computations contains an Input Display Table and a Stage 

Computations Table. In the Stage Computations Table (starting from row 50 as 

shown in Figure 5.5), each row describes a possible state where column A, B, C, D 

respectively indicate the total number of equipment before decision,   , number of 

new equipment,   
 , number of old equipment,   

 , and action command,    (“0” to 

keep and “1” to replace). The maximum default value for    is set at 10 initially. If 
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     , the end-users are required to modify the user interface according to the 

adjustment procedures given in Appendix 6. 

 

Figure 5.5 – The first three rows in the Stage Computations Table 

Recall that the computation process begins from Equation 5.21 in backward 

recursion. Therefore, column E in the Stage Computations Table which corresponds 

to the stage     is keyed in with a zero value. Subsequently, only the Excel 

algorithms in cell F51 on each worksheet are presented and described as follows 

since column F represents the stage   while row 51 denotes the first possible state 

variable. In Worksheet “p”, the algorithm for summing up the purchase price and 

selling price is written in this manner: 

           (                                     (              )).  

           (5.22) 

To illustrate the operation of Equation 5.22, suppose that a maximum of four stages 

is given to the problem as defined in cell C7 under criteria column (see Figure 5.3). A 

value of “4” will be returned to cell F50 as indicated by the red box in Figure 5.6. 

Since the action command given in cell D51 is “0”, a zero value will be returned to 

cell F51. If let the action command be defined as “1”, the MATCH function will first 

return the relative position in row 17 (indicated by the green box) that matches the 

value specified in cell F50. Next, the INDEX function will return the value located at 

 A B C D E 

50 Total number of equipment before decision, rt rt
N rt

O kt  

51 0 0 0 0 0 

52 0 0 0 1 0 
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the relative position in row 24 (indicated by the blue box), which corresponds to the 

number of new equipment purchased,   
 . The same procedure will be repeated to 

return the relevant values from row 27, 35 and 40 for the final purchase price per 

unit,  ̃ 
 , number of old equipment sold,   

 , and final selling price per unit,  ̃ 
 , 

respectively. Note that the   symbol in the Excel algorithm is used to fix either the 

rows or columns so that they will not be subject to change when the algorithm is 

being dragged to the following cells. In order to avoid the redundant work, the 

description for the same INDEX-MATCH function that appears in the following Excel 

algorithms will not be reiterated. 

 

Figure 5.6 – Illustration of stage computations in Worksheet “p” 

Recall that the new equipment will be put in priority use whenever there are new 

and old equipment waiting to be used at certain stage. Therefore, the algorithm in 

Worksheet “n” for computing the total expected operating cost will look relatively 

complicated, as given by 

 

 

 

 A B C D E F 

17 Stage, t 1 2 3 4 5 

       

24 Number of equipment purchased, xt
N      

       

50 Total number of equipment before decision, rt rt
N rt

O kt 5 4 

51 0 0 0 0 0  

52 0 0 0 1 0  
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   (          (             (              ))       

     (                     (              ))   

     (                  (              )))   

  (          (             (              ))         

     ((            )               (              ))).             (5.23) 

Refer to Figure 5.7, the IF functions in Equation 5.23 will ensure that only new 

equipment will be used if   
   ̃ . That is, when the number of new equipment 

given in cell B51 (indicated by the purple box) is more than or equal to the final 

demand on the number of equipment (indicated by the blue box). Otherwise, the 

expected operating cost will be attributed to all new equipment and a necessary 

number of old equipment (denoted by              in Equation 5.23). 

 

Figure 5.7 – Illustration of stage computations in Worksheet “n” 

Regarding the computation of the total expected maintenance cost, the 

corresponding algorithm is entered in Worksheet “m” as follows: 

      ((                 )               (              ))  

     ((                 )               (              )).             (5.24) 

 A B C D E F 

17 Stage, t 1 2 3 4 5 

       

22 Final demand on the number of equipment, ãt      

       

50 Total number of equipment before decision, rt rt
N rt

O kt 5 4 

51 0 0 0 0 0  

52 0 0 0 1 0  
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After the stage computations from the three preceding worksheets are done, 

Worksheet “Ct” will sum up all the resultant values and exhibit the backward 

recursion by adding the optimal value obtained from the previous stage 

computations. Moreover, this worksheet also establishes the constraints upon the 

state variables in a way to manipulate the stage computations. Since the whole 

algorithm serving these purposes is too lengthy to be explained at one time, it is 

subdivided into constraint portion and recursion portion here. Firstly, the algorithm 

for the constraint portion is written in this manner: 

   ((          (     (               )      (              )))

            

(  (  (     (        (                 )      (              ))      

     (                       (              ))   )                  (5.25) 

The first IF function in Equation 5.25 represents the constraint           as 

described in Subsection 5.3.2. This algorithm will return a value of “1+E09” whenever 

the constraint is not satisfied. That is, when the number of equipment is larger than 

the maximum number of equipment that can be accommodated by the company, as 

defined in cell C8 under criteria column (see Figure 5.3). A large positive value is used 

to indicate an infeasible value in the spreadsheet since the optimal value function is 

designed to look for the minimum value at each stage. The second IF function is used 

to set up the constraints     ̃  and   
    

 . The OR function will ensure that a 

value of “1+E09” will be returned if either of these constraints is not satisfied. 

Secondly, the algorithm for the recursion portion is written as follows: 
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  (                       (            ((          (    

 (               )      (              )))           )   

     (                       (              ))   ))))).            (5.26) 

Equation 5.26 sums up the previous calculations from Worksheet “p”, “n”, “m”, and 

exhibits the backward recursion by adding the optimal value at stage 5 with a given 

state from Worksheet “Vt”. To illustrate the backward recursion, assume that the 

current state at stage 4 is    (   ) with action command “0”. In this case, the 

state variable at stage 5 will remain the same as that of stage 4 since no equipment 

replacement will be done. Refer to Figure 5.8, cell F55 in Worksheet “Ct” (indicated 

by the red box) is required to exhibit the recursive relationship with the optimal 

value computed in Worksheet “Vt”. To do this, the first INDEX-MATCH function in 

Equation 5.26 is designed to return the optimal value in cell E55 (indicated by the 

green box) where its relative position has to match with the total value given by the 

second and third INDEX-MATCH function. In Equation 5.26, the second INDEX-

MATCH function yields the relative position for the total number of equipment based 

on the action command while the third INDEX-MATCH function provides the 

corresponding number of new equipment. It should be noted that the third INDEX-

MATCH function is multiplied by a value of “2”. This will ensure that the correct 

number of rows will be returned from Worksheet “Vt” because the optimal value for 

each possible state is displayed once in every two rows (indicated by the blue boxes). 
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(Stage Computations Table in Worksheet “Ct”) 

(Stage Computations Table in Worksheet “Vt”) 

Figure 5.8 – Illustration of the recursive relationship between Worksheet “Ct” and 

Worksheet “Vt” 

Lastly, the stage computations in Worksheet “Vt” are very simple since its function is 

only to determine the minimum value out of the two action commands for each 

possible state from Worksheet “Ct”. For example, the algorithm in cell F53 as 

indicated by the purple box in Figure 5.8 is given by 

    (          ).                  (5.27) 

 

5.4.3 Excel algorithms for output display 

The initial calculation mode for the Excel spreadsheet solution (file SERP.xlsm) is 

switched to the manual mode. This requires the end-users to press the F9 key to 

initiate the stage computations. Following the stage computations based on input 

data, the resultant values will be summarised in the Output Display Table in Output 

 A B C D E F 

50 Total number of equipment before decision, rt rt
N rt

O kt 5 4 

53 1 0 1 0 0  

54 1 0 1 1 0  

55 1 1 0 0 0  

56 1 1 0 1 0  

50 Total number of equipment before decision, rt rt
N rt

O Min 5 4 

53 1 0 1 Min 0  

54 1 0 1  0  

55 1 1 0 Min 0  

56 1 1 0  0  
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Worksheet. To illustrate the algorithms for displaying output, suppose that the 

current state variable at stage 4 is    (   ).  

Refer to Figure 5.9, the algorithm for showing the optimal policy decision at stage 4 

is written in cell E26 (indicated by the blue box) in this manner: 

   (     (      (                (                 )   )   

     (               )        )

      (      (                (                 )   )   

     (               )        )    ).               (5.28) 

It should be noticed that both INDEX functions in Equation 5.28 contains the similar 

algorithms. The only discrepancy is that the former returns the computed values 

from Worksheet “Ct” (indicated by the red boxes) whereas the latter returns the 

corresponding optimal values from Worksheet “Vt” (indicated by the green box). If 

the value in the upper red box is equal to the value in the green box, the IF function 

will return a value of “0” to the blue box which indicates that the policy decision is 

“to keep”. Otherwise, a value of “1” will be returned, denoting that the policy 

decision is “to replace”.  

The OFFSET function in Equation 5.28 is used to return a reference range to column 

A in a specified number of rows and columns. The number of rows is indicated by the 

value “0” which implies that the reference range is fixed in row; while the number of 

columns is provided by the first MATCH function. Because the MATCH function 

returns the relative position of the given stage in Worksheet “Ct” and Worksheet 

“Vt”, it is required to minus one position in order to obtain the exact number of 



Chapter 5 

DP-BASED SPREADSHEET SOLUTION 

182 

columns to be returned by the OFFSET function. The second MATCH function returns 

the relative position of the particular state from the Stage Computations Table. 

(Stage Computations Table in Worksheet “Ct”) 

(Stage Computations Table in Worksheet “Vt”) 

(Output display table in the Output Worksheet) 

Figure 5.9 – Illustration of the algorithm for showing the optimal policy decision 

The next step is to determine the state variable at each stage in terms of the number 

of available equipment as shown in Figure 5.10. The number of old equipment at 

stage 1 will be provided by the end-user as defined in cell C9 under criteria column 

(see Figure 5.3). The number of new equipment at stage 1 is presumed to be zero. To 

determine the state variable at stage 2, the algorithm is written in cell C22 (indicated 

by the red box) as follows: 

   (                      (               

                   (                    )))               (5.29) 

 A B C D E F 

50 Total number of equipment before decision, rt rt
N rt

O kt 5 4 

53 1 0 1 0 0  

54 1 0 1 1 0  

50 Total number of equipment before decision, rt rt
N rt

O Min 5 4 

53 1 0 1 Min 0  

54 1 0 1  0  

16 Stage      

17 Stage, t 1 2 3 4 5 

       

25 Optimal policy decision      

26 Keep or replace (0 or 1)      
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The IF function in Equation 5.29 will maintain the same value as the state variable at 

stage 1 if the policy decision is to keep, otherwise, the new state variable will be 

calculated according to the number of equipment purchased and sold. The 

algorithms for calculating the new state variable is similar to Equation 5.29. 

 

Figure 5.10 – Rows for displaying the state variable in the Output Display Table 

An important aspect of the Output Worksheet is that it creates circular references in 

the spreadsheet solution which will be clearly demonstrated as follows. Recall that 

the operating cost of new equipment can only be estimated using Equation 5.10 (on 

p. 165). The initial operating cost of new equipment and the relevant efficiency index, 

 , is respectively defined in cell C11 and cell C12 under criteria column (see Figure 

5.3). Supposing a new equipment is purchased at stage  , it will only be used at stage 

    with an initial operating cost as suggested by the equipment supplier. At each 

subsequent stage, its operating cost is estimated to increase by the reciprocal of the 

efficiency index, i.e.,    . In fact, the operating cost of new equipment can only be 

estimated provided that the policy decision for every stage has been completely 

determined. As a consequence, the circularity occurs because the policy decision is 

in turn affected by the operating cost of new equipment as illustrated in Figure 5.11. 

To resolve the circularity in the Excel spreadsheet, the iterative calculation is enabled 

 A B C D E F 

21 Number of available equipment (state)      

22 Total number, rt      

23 Number of new equipment,  rt
N 0     

24 Number of old equipment,  rt
O      
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until the maximum iterations has reached 100 times (default value) or the maximum 

change is less than the minimum input cost value. 

 

Figure 5.11 – Circular references in the DP-based spreadsheet solution (file SERP.xlsm) 

Based on the optimal policy at stage 1, the algorithm for estimating the operating 

cost of new equipment at stage 2 is written in cell C28 as follows: 

   (             (                (         )       )     ).      (5.30) 

The IF function in Equation 5.30 will return the initial operating cost if the number of 

new equipment at stage 2 is zero. If the value is nonzero, the average operating cost 

of new equipment at stage 2 will be calculated from the existing new equipment and 

the newly purchased equipment at stage 1, where the former will be affected by the 

efficiency index. After the computation of Equation 5.30, the resultant value will be 

returned to the Input Worksheet for subsequent stage computations so as to 

determine the optimal policy at stage 2.  

Lastly, the algorithm for showing the minimum estimated cost at each stage is the 

same as the latter INDEX function in Equation 5.28, which returns the corresponding 

Stage 
computations in 
Worksheet “n”  

Computed 
value in 

Worksheet 
“Ct” 

Optimal value 
in Worksheet 

“Vt” 

Optimal policy 
decision in the 

Output 
Worksheet 

Operating 
cost of new 

equipment in 
the Input 

Worksheet  
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optimal values from Worksheet “Vt”. After all the DP stage computations are fully 

completed, the total estimated cost which includes the total internal transaction cost 

given in cell C10 under criteria column (see Figure 5.3), will be displayed in cell B31 

as shown in Figure 5.12. 

 

Figure 5.12 – Rows for displaying the minimum estimated cost in the Output Display Table 

 

5.4.4 Discussions on the spreadsheet solution 

Once the spreadsheet solution is ready, the company can carry out a retrospective 

test by comparing the hypothetical performance of the DP solution with the 

historical data. This process of testing is useful to validate the correctness of the DP 

model. However, a frequent bottleneck in using the DP method is that much of the 

needed data will not be available for testing the model at the beginning [113]. In 

particular relation to this study, the shortage of data can be attributed to the low 

priority placed on the energy efficiency issue or the existing information system is 

outdated. Usually, a careful validation of the DP solution requires exhaustive 

practical study for which a considerable amount of time will be needed. This has 

resulted in a typical question in the DP community, that is, whether to apply the DP 

solution immediately or to carry out some validating works in advance in order to 

improve the level of accuracy in the DP model.  

 A B C D E 

29 Minimum estimated cost     

30 Minimum estimated cost     

31 Total estimated cost (including internal cost) 0    
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In the absence of data validation, the “optimal solution” derived from the DP model 

is barely a well-approximated suboptimal solution. Supposing the rough dataset is 

used, the company can get an early idea of what scenario will arise based on the 

spreadsheet solution. This will increase the confidence of the decision makers in 

making certain financial decision because the spreadsheet solution allows the end-

users to tailor a decision-making process in which the necessary information is 

unavailable initially. Another implication of using the rough dataset is that the 

company may need to make a strategic decision in a reasonable period of time, 

regardless of whether this will affect the ultimate optimum for the problem. As 

stated in Subsection 2.5.2, “satisficing” is a more practical strategy in the 

optimisation process if there is little chance to warrant better solution. The company 

should always consider the cost-benefit balance in the optimisation process. When 

faced with more information and uncertain situations, the decision makers may 

negate the final DP solution but they can learn and provide useful ideas that can be 

used to improve the spreadsheet solution. There is always more to learn and 

improve, either in the DP model, Excel algorithms, user interface, or the input data. 

 

5.5 Exploring Large Dataset via Markov Chains 

The previous discussions thus far have implied that the DP solution is not necessarily 

the optimal solution because the data for initial investigation might not be available. 

However, this is not always the case especially when the problem is not that too few 

data is available but there is an abundant set of data. In this particular study, some 
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of these concerns come from the huge historical data stored in the company 

information system, such as the operating cost and maintenance cost. To better 

represent the stochastic nature of the historical data, Markov chains can be applied 

to provide a more appropriate probability model. A stochastic process is said to be a 

Markov process if the occurrence of a future state depends only on the current state 

of the process [121]. The operating cost and maintenance cost in SERP seem to fit 

this description well, because the equipment condition at certain stage normally 

impacts the corresponding costs at the subsequent stage. This section begins with 

some general descriptions of the Markovian properties. Next, the integration of 

Markov chains into the spreadsheet solution (file SERP.xlsm) is demonstrated. 

 

5.5.1 Introduction to Markov chains 

Named after Andrey Markov, the mathematical expression for a Markov chain is 

usually written as follows [121]: 

     {      |    },                         .       (5.31) 

where the random variables   represent the family of states and   indicates the 

stage. The conditional probabilities given by Equation 5.31 are also known as the 

one-step transition probabilities in which a common way of expression is to use the 

matrix notation as shown below: 

  

     
 
 
 
 

             

[

      
      

    
    

  
      

  
    

]                (5.32) 
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In Equation 5.32, the rows denote the state   at stage   while the columns denote 

the state   at stage    . It is the matrix notation of this form known as the so-called 

Markov chain. It should be noticed that ∑        for           because the 

probability of an event can never be more than 1. 

In addition to the one-step transition probabilities, there is also an existence of  -

step transition probabilities that can be written in terms of Chapman-Kolomogorov 

equation [121], that is, 

         ,        .              (5.33) 

After a sufficient number of transitions, the conditional probabilities in Equation 5.33 

will reach a steady state where the state transition will no longer be dependent on 

the initial state of the system. The conditional probabilities for this situation can be 

described by 

                        (5.34) 

where ∑      . Equation 5.34 implies that the conditional probabilities   will 

remain unaltered even after one transition. For this reason, it is called the steady-

state probabilities. The expected number of transitions for the conditional 

probabilities to reach a steady state can be calculated by 

    
 

  
,            .               (5.35) 

The Markov chains might contain a considerable number of states but the following 

subsection will only take account of a finite number of states associated with 
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stationary transition probabilities. The stationary property implies that the transition 

probabilities will always be the same regardless of the stage or time. 

 

5.5.2 Integration of Markov chains 

Suppose that a company has installed a computer-based information system to 

collect all the necessary data for the old equipment on an on-going basis. Without 

too much complexity, the equipment condition can be generally classified into three 

possible states as represented by   , that is, 

   {
                           
                               
                           

                (5.36) 

Through the statistical analysis on the historical data, the company might have 

observed how the equipment condition changes from stage to stage. This situation 

can be transformed into a Markov chain which reflects the conditional probabilities 

of each possible transition from one state to a particular state: 

  

             
 
 
 
[
         
         
         

]                 (5.37) 

Equation 5.37 shows that if the equipment condition at stage   is good (state 1), 

there is a probability of     it will stay the same at stage    , a probability of     it 

will become fair (state 2), and a probability of     it will deteriorate to the poor 

condition (state 3).  
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Provided that the statistical analysis has also found that the operating cost and 

maintenance cost vary with the equipment condition, this will result into two 

identical Markov chains. Let     and     represent the average operating cost and 

maintenance cost given state from   to  , the corresponding Markov chains can be 

represented by: 

  

             
 
 
 
[
         
         
         

];     

             
 
 
 
[
         
         
         

]            (5.38) 

As such, the expected operating cost of old equipment   
  and the expected 

maintenance cost of old equipment   
  at each stage can be calculated by 

  
  [   ][  ] ;     

  [   ][  ]               (5.39) 

where          . It must not be confused here that the index   and   in Equation 

5.39 represent the stage and the matrix transpose respectively. The term   indicates 

the initial condition of the equipment, that is,  

  {
[   ]                          
[   ]                             
[   ]                          

               (5.40) 

 

5.5.3 Excel algorithms for Markov chains 

Concerning the computations, the MMULT function and TRANSPOSE function in 

Microsoft Excel (see Appendix 5) can be used to compute Equation 5.39. However, 

there is an absence of an Excel function that can raise a single matrix to the power of 
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 . In order to conveniently compute the  -step transition probabilities in Equation 

5.39, a user defined function was created in the Excel spreadsheet solution (file 

SERP.xlsm) with syntax “=MPOWER(array, power)” (see Appendix 7 for more details). 

The computations of Markov chains are resolved in a separate worksheet called 

Markov Chains Worksheet, where the end-users can enter the necessary data for 

Markovian properties, such as Equation 5.37 and Equation 5.38, in the arrays as 

shown in Figure 5.13. 

 

Figure 5.13 – Arrays for Markovian properties in Markov Chains Worksheet 

The Excel algorithms for computing Equation 5.39 is written in this manner: 

      (     (                  (               ))   

         (     (                      ))).              (5.41) 

After the computations in Markov Chains Worksheet are completed, the resultant 

values have to be copied to row 41 for   
  and row 44 for   

  in the Input Worksheet 

for subsequent DP stage computations. Similarly, Markov Chains Worksheet requires 

adjustment if the end-users need to handle more than 10 stages in the computations.  

 

 A B C D E 

6 Markovian Properties     

7 Input Markov chains ↓→ Conditional probabilities, P 

8 Conditions of the equipment, Xt  1 2 3 

9 1     

10 2     

11 3     

12 Initial condition of the equipment, I      
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5.6 Preparing to Implement the Solution 

After an acceptable DP model has been developed and the corresponding 

spreadsheet solution has been established, the next step is to implement and test 

the system if the system is to be used repeatedly. In this section, the ability of the 

DP-based spreadsheet solution to assess the energy efficiency investment is 

illustrated in a simple hypothetical example. 

 

5.6.1 Hypothetical stochastic equipment replacement problem 

Suppose that an injection moulding company needs to determine the replacement 

policy for the energy-efficient equipment over the next five {5} years. The company 

currently owns five {5} hydraulic injection moulding machines and the maximum 

number of equipment that can be accommodated at the shop floor is ten {10}. The 

current annual energy cost for operating each machine is approximately 100,000 

Yuan. It is expected to increase by 5% per year due to machine's aging effect and 

electricity tariff adjustment. Through the application of MRDSD, the company 

successfully reduce their annual operating cost by 10% without capital expenditure. 

The annual maintenance cost for each machine is assumed to be kept at 10,000 Yuan 

over the five-year period. 

According to the efficiency ratings of the all-electric machines, the annual operating 

cost and annual maintenance cost can be reduced by 50% in spite of the high initial 

cost and an inexorable efficiency reduction rate of 5%. However, the company 
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cannot simply make the capital investment on the all-electric machines due to 

limited access to capital resources. Moreover, decision makers often encounter 

various uncertainties in the practical environment such as hidden costs (internal 

transaction costs) and random changes to production demand. Therefore, the 

decision makers can employ the DP-based spreadsheet solution in order to get a 

better understanding of how investment decisions should evolve over time. The goal 

is to find the minimum estimated cost that might be incurred throughout the five-

year period. For simplicity, all the necessary input data in the spreadsheet are 

tabulated in Table 5.3 where all the relevant costs are in unit of Chinese Yuan. 

Table 5.3 – Input data of the hypothetical case study in the Input Worksheet 

 

Criteria 

Maximum number of stages, T 5 (year)    

Maximum number of equipment, rmax 10     

Number of available equipment at stage 1 5     

Total internal transaction costs 10000 (Yuan)    

Initial operating cost of new equipment, ṅ 50000     

Efficiency index of new equipment per stage, η 0.95     

Stage      

Year 1 2 3 4 5 

Demand      

Demand on the number of equipment, at 5 5 5 5 5 

Exogenous change to demand, ât 0 1 1 1 1 

Data for new equipment      

Number of equipment purchased, xt
N 1 2 3 0 0 

Purchase price, pt
N 100000 100000 100000 100000 100000 

Fluctuation in purchase price,   tN 5000 5000 5000 10000 10000 

Change in operating cost,   tN 0 0 0 0 0 

Maintenance cost of new equipment, mt
N 5000 5000 5000 5000 5000 

Change in maintenance cost,   tN 1000 1000 1000 1000 1000 
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Table 5.3 (continued) 

 

The criteria for the iterative calculation were set at 100 for the maximum iterations 

and 500 for the maximum change. The spreadsheet solution (file SERP.xlsm) only 

took 11 iterations to complete the stage computations. The resultant values are 

clearly displayed in Table 5.4. 

Table 5.4 – Computed values from the Output Worksheet 

Data for old equipment      

Number of equipment sold, xt
O 0 0 2 3 0 

Selling price, qt
O -30000 -28000 -26000 -24000 -22000 

Salvage value, gt
O -15000 -14000 -13000 -12000 -11000 

Probability of equipment failure, zt
O 0.2 0.2 0.25 0.25 0.3 

Fluctuation in purchase price,   tO 2000 2000 2000 2000 2000 

Operating cost of old equipment, nt
O 100000 105000 110250 115763 121551 

Change in operating cost,   tO -10000 -10500 -11025 -11576 -12155 

Maintenance cost of old equipment, mt
O 10000 10000 10000 10000 10000 

Change in maintenance cost,   tO 2000 2000 2000 2000 2000 

Stage      

Year 1 2 3 4 5 

Demand      

Final demand on the number of equipment, ãt 5 6 6 6 6 

Number of available equipment (state)      

Total number, rt 5 6 8 9 6 

Number of new equipment, rt
N 0 1 3 6 6 

Number of old equipment, rt
O 5 5 5 3 0 

Optimal policy decision      

Keep or replace (0 or 1) 1 1 1 1 0 

Operating cost of new equipment      

Operating cost of new equipment, nt
N 50000 50000 50877 51777 54503 

Minimum estimated cost      

Minimum estimated cost 2879987 2258987 1448487 652680 363016 

Total estimated cost (including internal cost) 2889987     
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According to the spreadsheet solution, the optimal policy decision includes 

purchasing new equipment at the beginning of year 1, 2, and 3, as well as selling old 

equipment at the beginning of year 4 and 5. In other words, the company should 

make the capital investment on the all-electric machines although the purchase price 

is almost the same as the annual operating cost of the existing hydraulic machines. 

The total estimated cost for the five-year planning horizon is 2.89 million Yuan. It 

should be noticed that if a value of “1+E09” is returned to the total estimated cost, it 

implies that the stage computations are infeasible because either of the constraints 

is not satisfied (see p. 178). 

 

5.6.2 Discussions on the implementation of DP solution 

The advantage of the spreadsheet solution is the ease of implementation at which it 

can be readily used by non-technical personnel. However, it should be concerned 

that the DP solution generated is only optimal with respect to the derived DP model. 

There is no guarantee that the DP model can lead to the best possible solution 

because there are too many uncertainties associated with the real-world problems. 

In fact, there is not only one single definitive model that can solve a particular 

problem. Even if the DP model is well formulated and tested, the given outcomes 

can only be regarded as a good approximation rather than an ideal solution for the 

problem [113].  

Another advantage of the spreadsheet solution is that it allows the end-users to 

rapidly observe the changes in the DP solution when testing different input data. In 
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doing so, decision makers can assess the potential investment at short notice and 

increase their confidence in making financial decisions. Nevertheless, the eventual 

implementation of DP solution will highly rely on the strategic priority of the top 

management in the company. Because decision makers cannot wait until after the 

fact to initiate action, this is what makes the spreadsheet solution only a theoretical-

level approach. In order to “gloss over” the potential limitations in the theoretical-

level approach, it is useful to understand the judgement bias in decision 

management from the behavioural perspective. 

To see this point, the optimal DP solution suggested by the above hypothetical 

example is to replace the old equipment over the five-year planning period. This 

implies that the investment in all-electric machines is cost-effective in closing the 

efficiency gap. Nevertheless, the decision makers might not base their investment 

decisions on the DP solution. A common way to interpret this bewildering situation 

can be referred to the utility theory (see Subsection 2.2.3.1). Under this theory, the 

rate of return from the relevant investment may not outweigh the perceived value 

of the decision makers’ preferences and attitudes towards risk. Another 

interpretation for this situation is the phenomenon of bounded rationality (see 

Subsection 2.2.2.2). Decision makers tend to be risk averse relative to gains when 

making a capital investment. In this regard, the prospect theory (see Subsection 

2.2.3.4) can be applied to approximate the hypothetical value functions about the 

cognitive bias with respect to gains and losses. This study is not intended to further 

scrutinise the decision analysis from the behavioural perspective. It is simply beyond 

the scope of this thesis to analyse it in depth. 
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5.7 Chapter Conclusions 

In summing up this chapter, a theoretical-level approach called “DP-based 

spreadsheet solution” (file SERP.xlsm) was successfully created using Excel 

algorithms, in an attempt to help SMEs address the stochastic equipment 

replacement problem. The advantage of this spreadsheet solution lies in the fact 

that it is quick and easy to use for personnel from different expertise levels. 

Although the spreadsheet solution can only be treated as a reference solution, it acts 

as a convenient tool for running an immediate cost assessment on the potential 

energy efficiency investments. Through the use of rough dataset, it is important to 

recognise that the need is for enough relevant information to initiate action. On the 

other hand, the inclusion of Markovian properties is to better exhibit the stochastic 

nature of the problem when dealing with huge historical data. The DP solution 

enables the decision makers to understand how they should base their financial 

decision on different input data over time, adding dynamicity and flexibility to the 

capital investment process. Nonetheless, there may still be a judgement bias on 

decision implementation resulting from the behavioural perspective. 
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CHAPTER 6  

CONCLUSIONS AND OUTLOOK 

 

6.1 Thesis Conclusions 

In order to address the three research questions raised in this thesis (see p. 8), an 

empirical-level approach and a theoretical-level approach were developed for 

helping manufacturing SMEs, especially small and micro enterprises, in energy saving. 

The empirical-level approach is consisted of a novel integrated methodology called 

“multi-response dynamic Shainin DOE” whilst the theoretical-level approach is a 

spreadsheet-based decision support system based on dynamic programming model. 

This thesis shows how these two proprietary methodologies can enhance the 

dynamicity in the optimisation process to support injection moulding industry in 

closing their efficiency gap. In other words, through the use of these methodologies, 

manufacturers possess dynamic capabilities to adapt their limited resources over 

time for energy efficiency improvement. Therefore, it can be concluded that the 

main research aim was successfully achieved. To see this point clearly, the main 

findings from the eight primary research objectives (see Section 1.3) which formed 

the key structure of this thesis are presented as follows: 

i. The barriers to energy efficiency can be explained from the economic, 

behavioural, and organisational perspectives; however, there appears to be 
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no conclusive answer for which barrier is the most critical one among 

different sectors, firm sizes or geographical regions. 

ii. After reviewing a range of energy-saving measures for injection moulding, 

process parameters optimisation was identified as a potential “no-cost 

investment” strategy that can be adopted by SMEs. 

iii. In comparison to simulation-based methodologies, design of experiment 

provides a relatively simple, practical, and yet statistically valid tool that may 

support SMEs to improve their energy efficiency in an economical way. 

iv. A stepwise optimisation methodology named as “multi-response dynamic 

Shainin DOE” was developed, which combines several notable features such 

as simplicity, novelty, validity, and usefulness. 

v. The empirical study demonstrated that regardless of great fluctuations in the 

response data, the proposed methodology was able to identify the critical 

factors to the targeted responses. 

vi. The inclusion of signal-response system was able to reduce the specific 

energy consumption during the injection moulding process with the 

assurance of moulded parts’ impact strength. 

vii. A dynamic programming model was specifically designed for solving the 

stochastic equipment replacement problem which greatly differs from the 

classic examples found in the DP literature. 

viii. A DP-based spreadsheet solution (file SERP.xlsm) with user-friendly interface 

was created to solve the stage computations involved in the derived DP 

model. 
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6.2 Knowledge Contributions 

In brief, the key contributions of this thesis can be subdivided into empirical level 

and theoretical level: 

i. Contribution at the empirical level  

Process parameters optimisation was proposed to be a useful strategy for 

“no-cost investment” in energy efficiency improvement. However, the 

research hypothesis (see p. 8) is said to be plausible when most optimisation 

methodologies developed by the academic community downplays the 

environment of SMEs. As a consequence, these methods are not easily 

transferred to industrial practice. In this regard, MRDSD has proved to be a 

simple and valid methodology that can replace the imprecise routines 

practiced in SMEs. The originality of the proposed methodology comes from 

the fact that the inherent limitations of Shainin DOE are resolved by 

integrating the multivariate statistical methods and the signal-response 

system into it. The purpose of integrating the multivariate techniques is to 

replace the univariate decision limits used in the variables search, which have 

apparent weakness in solving the multivariate problems (see Subsection 

3.4.2). Recall that one notable limitation found in the Shainin approach is that 

the factor-response relationship is overlooked in the analysis (see Subsection 

3.2.3). In this regard, the inclusion of signal-response system enhances the 

dynamicity in the optimisation process. Therefore, the proposed 

methodology is capable of achieving different output performance based on 
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varying objectives over time. In consideration of the large amount of SMEs in 

the Chinese context, if this methodology can be disseminated across many 

enterprises, it can be confidently envisaged that even small improvement in 

energy efficiency can have a big impact in terms of environmental 

performance.  

 

ii. Contribution at the theoretical level  

Although dynamic programming has been widely adopted in solving 

industrial problems, there is a persistent absence of commercial software 

packages for solving DP problems. Unless the DP stage computations can be 

easily and quickly solved, there might not be a wide acceptance among SMEs 

in using it for making decision and solving problem. The DP-based 

spreadsheet solution (file SERP.xlsm) developed in Chapter 5 provides a 

convenient tool for the decision makers in SMEs to understand how 

investment decisions on energy efficiency technology should evolve over 

time. This increases the dynamicity in the decision-making process. One main 

advantage of the spreadsheet solution is the ease with which it can be readily 

used by personnel from different level of expertise. The derived DP model 

and the corresponding Excel algorithms extend the existing knowledge with 

respect to the classic equipment replacement problems in the DP literature. 

In spite of the acknowledged limitations in the DP solution, there is a great 

potential in using it to optimise the decision-making process pertaining to 

energy efficiency investments at short notice.  
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6.3 Limitations and Future Work 

This thesis work provided an initial exploration of an empirical-level approach and a 

theoretical-level approach that would enable SMEs to close their efficiency gap. 

Nevertheless, there are some limitations associated with this work that require 

significant further investigation. Concerning the empirical-level approach, there are 

two main limitations needed to be addressed in the future: 

i. No industrial case study was conducted based on the empirical-level approach.  

Although a careful empirical study for statistical validation was carried out, a 

real case study is important to justify the practicality of the proposed 

methodology. For example, to examine the degree of acceptance to which it 

can be persuasively claimed as a “user-friendly” method. This validating 

procedure must be taken in order to better disseminate the methodology to 

the potential end-users in SMEs. 

 

ii. No economic analysis was established to study the economic performance 

actually achieved. 

In addition to the ease of implementation, the corresponding economic 

performance is also vital so that it can lay claim for being “cost effective”. 

While the “no-cost investment” strategy seems possible, it can only be 

successful if this methodology is not only technically feasible but also 

economically acceptable. Such economic analysis tends to be more complex 

in industrial practice since it might encounter economic losses due to 
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machine downtime and production disruption. For these reasons, future 

work should be focussed on setting up industrial collaboration, collecting 

field data, analysing the practicality, and disseminating the useful outcomes 

in the form of case studies to the relevant industry. 

 

Next, several parts of the theoretical-level approach deserve more comprehensive 

future studies: 

i. The dataset for initial validation on the DP-based spreadsheet solution (file 

SERP.xlsm) was not available.  

As discussed earlier, the real-world problems contain many uncertainties 

which cannot be completely approximated by the DP model. In consequence, 

the spreadsheet solution can only offer a reference solution to the decision 

makers. Through the validation work, it will help to increase the confidence in 

the decision makers to implement the given outcomes. In consideration of 

the SMEs’ environment, the validation work can be conducted in a university-

enterprise collaborative relationship so that the spreadsheet solution can 

better reflect the real-world problems. At the same time, it is hoped that the 

end-users will be willing to provide some useful suggestions for further 

improvement and share their findings with other companies in due course. 
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ii. The user interface might not look “smart” enough.  

Not only do all the stage computations involved in the DP model need to be 

quickly solved, but the spreadsheet solution also needs to enable the 

potential end-users to easily make use of it. Because SMEs represent the 

potential end-users of this spreadsheet solution, any difficulty in using it will 

make it impossible to be widely spread. For this reason, it is important to 

investigate under what circumstances the features of the spreadsheet 

solution will encourage or discourage the end-users from using it. This 

behavioural question has not been extensively studied in the context of 

spreadsheet-based decision support system. 

 

iii. The derived DP model is not consisted of a general framework that can solve 

different types of problem.  

While the DP research community is striving to search for a general class of 

algorithms that can work reliably on different types of DP problem [200], the 

DP model derived in this thesis considers a fairly specific equipment 

replacement problem with a well-articulated structure. At some point, after 

this specific DP model has undertaken a series of testing and improving 

process, a set of post-optimality analyses must be conducted to check 

whether the DP model can solve all the problems of the similar type. 

Subsequently, the more powerful spreadsheet solution should be 

disseminated for public use. With certain confidence, it can be envisaged that 
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some algorithmic breakthroughs could possibly form the basis of a 

patentable work. 

 

iv. There are many uncertain scenarios which may arise during the decision 

implementation stage caused by different behaviour of the decision makers.  

This kind of situation can be further examined through “decision analysis” 

which is also under the area of operations research. Due to the scope 

governing this thesis work, the decision analysis was inevitably excluded but 

it is worth further study in the future. This is exceptionally important because 

the barriers from the behavioural perspective are comparatively less well 

understood and often tentatively descriptive. 
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Appendix 1 

Factors for constructing variables control charts. Source: [164] 

  
Observations 

in Sample, n 

Chart for Averages Chart for  Standard Deviations Chart for Ranges 

Factors for Control 

Limits 

Factors for 

Center Line 
Factors for Control Limits 

Factors for 

Center Line 
Factors for Control Limits 

A A2 A3 c4 1/c4 B3 B4 B5 B6 d2 1/d2 d3 D1 D2 D3 D4 

2 2.121 1.880 2.659 0.7979 1.2533 0 3.267 0 2.606 1.128 0.8865 0.853 0 3.686 0 3.267 

3 1.732 1.023 1.954 0.8862 1.1284 0 2.568 0 2.276 1.693 0.5907 0.888 0 4.358 0 2.574 

4 1.500 0.729 1.628 0.9213 1.0854 0 2.266 0 2.088 2.059 0.4857 0.880 0 4.698 0 2.282 

5 1.342 0.577 1.427 0.9400 1.0638 0 2.089 0 1.964 2.326 0.4299 0.864 0 4.918 0 2.115 

6 1.225 0.483 1.287 0.9515 1.0510 0.030 1.970 0.029 1.874 2.534 0.3946 0.848 0 5.078 0 2.004 

7 1.134 0.419 1.182 0.9594 1.0423 0.118 1.882 0.113 1.806 2.704 0.3698 0.833 0.204 5.204 0.076 1.924 

8 1.061 0.373 1.099 0.9650 1.0363 0.185 1.815 0.179 1.751 2.847 0.3512 0.820 0.388 5.306 0.136 1.864 

9 1.000 0.337 1.032 0.9693 1.0317 0.239 1.761 0.232 1.707 2.970 0.3367 0.808 0.547 5.393 0.184 1.816 

10 0.949 0.308 0.975 0.9727 1.0281 0.284 1.716 0.276 1.669 3.078 0.3249 0.797 0.687 5.469 0.223 1.777 

11 0.905 0.285 0.927 0.9754 1.0252 0.321 1.679 0.313 1.637 3.173 0.3152 0.787 0.811 5.535 0.256 1.744 

12 0.866 0.266 0.886 0.9776 1.0229 0.354 1.646 0.346 1.610 3.258 0.3069 0.778 0.922 5.594 0.283 1.717 

13 0.832 0.249 0.850 0.9794 1.0210 0.382 1.618 0.374 1.585 3.336 0.2998 0.770 1.025 5.647 0.307 1.693 

14 0.802 0.235 0.817 0.9810 1.0194 0.406 1.594 0.399 1.563 3.407 0.2935 0.763 1.118 5.696 0.328 1.672 

15 0.775 0.223 0.789 0.9823 1.0180 0.428 1.572 0.421 1.544 3.472 0.2880 0.756 1.203 5.741 0.347 1.653 

16 0.750 0.212 0.763 0.9835 1.0168 0.448 1.552 0.440 1.526 3.532 0.2831 0.750 1.282 5.782 0.363 1.637 

17 0.728 0.203 0.739 0.9845 1.0157 0.466 1.534 0.458 1.511 3.588 0.2787 0.744 1.356 5.820 0.378 1.622 

18 0.707 0.194 0.718 0.9854 1.0148 0.482 1.518 0.475 1.496 3.640 0.2747 0.739 1.424 5.856 0.391 1.608 

(continued overleaf) 
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Observations 

in Sample, n 

Chart for Averages Chart for  Standard Deviations Chart for Ranges 

Factors for Control 

Limits 

Factors for 

Center Line 
Factors for Control Limits 

Factors for 

Center Line 
Factors for Control Limits 

A A2 A3 c4 1/c4 B3 B4 B5 B6 d2 1/d2 d3 D1 D2 D3 D4 

19 0.688 0.187 0.698 0.9862 1.0140 0.497 1.503 0.490 1.483 3.689 0.2711 0.734 1.487 5.891 0.403 1.597 

20 0.671 0.180 0.680 0.9869 1.0133 0.510 1.490 0.504 1.470 3.735 0.2677 0.729 1.549 5.921 0.415 1.585 

21 0.655 0.173 0.663 0.9876 1.0126 0.523 1.477 0.516 1.459 3.778 0.2647 0.724 1.605 5.951 0.425 1.575 

22 0.640 0.167 0.647 0.9882 1.0119 0.534 1.466 0.528 1.448 3.819 0.2618 0.720 1.659 5.979 0.434 1.566 

23 0.626 0.162 0.633 0.9887 1.0114 0.545 1.455 0.539 1.438 3.858 0.2592 0.716 1.710 6.006 0.443 1.557 

24 0.612 0.157 0.619 0.9892 1.0109 0.555 1.445 0.549 1.429 3.895 0.2567 0.712 1.759 6.031 0.451 1.548 

25 0.600 0.153 0.606 0.9896 1.0105 0.565 1.435 0.559 1.420 3.931 0.2544 0.708 1.806 6.056 0.459 1.541 

For n > 25. 

  
 

√ 
     

 

  √ 
    

 (   )

    
 

     
 

  √ (   )
       

 

  √ (   )
 

      
 

√ (   )
        

 

√ (   )
 



APPENDICES 

 

 

230 
 

Appendix 2 

Derivation of the bivariate T2 value 

Suppose that there are two responses under investigation,    and   , for a sample 

size of   with sample variances   
  and   

 , and the covariance between them is 

represented by    . Under these circumstances, Equation 3.5 (p. 95) is expanded into 

Equation 3.19 (p. 102) as follows: 
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Derivation of the upper control limit 

The upper control limit (UCL) for the bivariate variables search is derived from 

Equation 3.20 (p. 102), that is, 
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Let            
 ̅ 

     
 and      , this gives  

   
 (     ) 
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]                

After simplifying the above algebraic expression, Equation 3.22 (p. 104) is obtained 

as given below: 
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Determination of the contribution to the T2 value 

The contribution of the particular response to the overall T2 value is computed 

according to Equation 3.24 (p. 105). If    is replaced with the lower or higher end of 

the corresponding decision limit, this yields 
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Appendix 3 

ExxonMobil™ PP7684KN polypropylene impact copolymer datasheet14 

 

 

 

                                                      
14

 The information presented on this datasheet was retrieved from www.exxonmobilchemical.com.  

Product Description 

A high crystallinity, high impact copolymer resin with medium melt flow rate and excellent 

processing attributes. It is designed for injection moulded small and large appliance parts. 

General 

Features ▪ Fast Moulding 

Cycle 

▪ Good Processability ▪ High Stiffness 

 ▪ Good Heat Aging 

Resistance 

▪ High Impact 

Resistance 

▪ Low Warpage 

Uses ▪ Appliances ▪ Crates ▪ Packaging 

 ▪ Consumer 

Applications 

▪ Industrial 

Applications 

▪ Tool/Tote Box 

Appearance ▪ Natural colour   

Form ▪ Pellets   

Processing Method ▪ Compounding ▪ Injection Moulding  

Physical Typical Value 

(English) 

Typical Value (SI) Test Based On 

Melt Mass-Flow 

Rate (MFR) 

(230°C/2.16kg) 

20g/10min 20g/10min ASTM D1238 

Density 0.9g/cm3 0.9g/cm3 ExxonMobil Method 

Mechanical Typical Value 

(English) 

Typical Value (SI) Test Based On 

Tensile Strength at 

Yield (51mm/min) 

3540psi 24.4MPa ASTM D638 

Tensile Stress at 

Yield 

3520psi 24.3MPa ISO 527-2/50 

Elongation at Yield 

(51mm/min) 

4.4% 4.4% ASTM D638 

Tensile Strain at 

Yield 

3.4% 3.4% ISO 527-2/50 

Tensile Modulus 191000psi 1320MPa ISO 527-2/1 

    

http://www.exxonmobilchemical.com/
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Mechanical Typical Value 

(English) 

Typical Value (SI) Test Based On 

Flexural Modulus - 

1% Secant 

  1.3mm/min 187000psi 1290MPa ASTM D790A 

  13mm/min 214000psi 1480MPa ASTM D790B 

Flexural Modulus 

(2.0mm/min) 

181000psi 1250MPa ISO 178 

Impact Typical Value 

(English) 

Typical Value (SI) Test Based On 

Notched Izod 

Impact (23°C) 

2.7ft·lb/in 150J/m ASTM D256A 

Notched Izod 

Impact Strength 

  ISO 180/1A 

  -40°C 1.9ft·lb/in2 4.0kJ/m2  

  -18°C 2.2ft·lb/in2 4.6kJ/m2  

  23°C 4.0ft·lb/in2 8.4kJ/m2  

Charpy Notched 

Impact Strength 

  ISO 179/1eA 

  -30°C 1.9ft·lb/in2 3.9kJ/m2  

  -20°C 2.3ft·lb/in2 4.8kJ/m2  

  0°C 3.1ft·lb/in2 6.6kJ/m2  

  23°C 4.8ft·lb/in2 10kJ/m2  

Gardner Impact  

(-29°C, 3.18mm) 

201in·lb 22.7J ASTM D5420 

Thermal Typical Value 

(English) 

Typical Value (SI) Test Based On 

Heat Deflection 

Temperature 

(1.80MPa) 

125°F 51.5°C ISO 75-2/A 

Heat Deflection 

Temperature 

(0.45MPa) 

199°F 93.0°C ISO 75-2/Bf 

Deflection 

Temperature 

Under Load at 

66psi – Unannealed 

221°F 105°C ASTM D648 
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Appendix 4 

Results of full factorial experiments for SEC in unit of kWh/kg 

Row 
Control factor Signal factor, CT (s) 

BT (°C) MT (°C) 5 10 15 

1 
200 30 

0.4548 

0.4745 

0.4127 

0.4954 

0.5229 

0.4871 

0.5605 

0.5867 

0.5591 

Average 0.4473 0.5018 0.5688 

2 
220 30 

0.3900 

0.4777 

0.5402 

0.5120 

0.5242 

0.5131 

0.5595 

0.6399 

0.6148 

Average 0.4693 0.5164 0.6047 

3 
200 40 

0.4475 

0.4712 

0.4296 

0.4750 

0.5388 

0.4984 

0.5760 

0.6004 

0.5492 

Average 0.4494 0.5041 0.5752 

4 
220 40 

0.4810 

0.4976 

0.4718 

0.4788 

0.5765 

0.5432 

0.6382 

0.5858 

0.6116 

Average 0.4835 0.5328 0.6119 

(Summarised in Table 4.15 on p. 143) 

 

Results of full factorial experiments for CIS in unit of kJ/m2  

Row 
Control factor Signal factor, CT (s) 

BT (°C) MT (°C) 5 10 15 

1 200 30 

7.4217 

5.6016 

5.2033 

6.2033 

5.6587 

6.4627 

6.6361 

6.6940 

6.3473 

6.5494 

6.4338 

6.5783 

6.4627 

5.8589 

5.5161 

6.6940 

7.1007 

6.3761 

6.2321 

6.3473 

4.7791 

6.2033 

5.6302 

4.1894 

5.8016 

4.3573 

6.3761 

6.0883 

4.4415 

5.6016 

6.2321 

5.0899 

4.0498 

4.4415 

3.5218 

4.5257 

4.4696 

4.9202 

5.5161 

5.3738 

5.8875 

5.1466 

6.6651 

5.0616 

5.5446 

5.5731 

5.7158 

4.4415 

4.6101 

5.8302 

3.9940 

4.3854 

5.0050 

5.5446 

5.3738 

4.4696 

3.4665 

4.1894 

3.5495 

3.0255 

 Average 6.3189 5.0804 4.8740 

 Standard deviation 0.5361 0.8295 0.9369 

(continued overleaf) 
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Row 
Control factor Signal factor, CT (s) 

BT (°C) MT (°C) 5 10 15 

2 220 30 

5.7158 

6.3185 

6.2321 

6.4916 

5.3738 

6.0883 

6.0022 

6.0309 

5.8875 

5.0616 

6.8390 

6.1170 

5.8875 

6.0883 

6.3185 

5.7730 

6.0596 

4.6382 

4.9767 

5.5491 

5.8589 

5.6873 

6.2609 

5.7730 

4.9767 

6.1745 

4.8073 

5.0050 

4.4977 

4.7509 

4.6663 

4.8355 

6.1458 

6.4338 

5.2601 

5.4307 

4.9767 

4.7791 

4.8637 

4.6663 

5.1466 

4.3294 

4.8355 

4.8919 

4.7227 

5.8875 

5.4876 

4.2453 

4.8355 

4.6382 

4.6101 

5.1183 

5.8016 

5.8016 

5.2317 

5.4022 

5.7730 

5.0616 

5.0899 

4.9202 

 Average 5.8725 5.2925 5.0915 

 Standard deviation 0.5354 0.6223 0.4842 

3 200 40 

4.6382 

5.5446 

5.4307 

5.4022 

6.2897 

6.0022 

6.7520 

6.6651 

5.2033 

4.9767 

5.5446 

6.0596 

7.6854 

6.8390 

6.7520 

6.3473 

7.2464 

7.9206 

7.3632 

6.6940 

5.1466 

4.5820 

5.8589 

4.8355 

4.4415 

4.5820 

4.7791 

4.6663 

5.6873 

5.2601 

4.9484 

5.6016 

6.4050 

6.1170 

5.2601 

5.3738 

5.6587 

5.5446 

6.3473 

5.8016 

4.7509 

3.1354 

4.8637 

5.4876 

5.2033 

5.6587 

6.6361 

3.1354 

3.4112 

5.5161 

6.2321 

5.3738 

6.6072 

5.7730 

4.0777 

3.9940 

3.9661 

4.3573 

5.0616 

4.8073 

 Average 6.2678 5.3449 4.9024 

 Standard deviation 0.9207 0.5961 1.0575 

4 220 40 

5.3738 

5.5446 

5.6302 

5.2885 

4.6945 

6.4916 

6.3761 

5.2885 

5.0050 

5.6587 

5.8875 

5.7730 

6.3185 

6.3473 

5.3453 

7.3924 

6.2321 

5.5161 

6.1458 

7.1298 

5.5161 

4.5538 

5.4307 

5.3453 

6.2609 

5.4591 

6.3185 

5.5446 

4.9202 

4.5538 

4.5820 

3.9104 

5.9735 

5.4876 

5.2601 

6.4338 

6.0022 

6.5783 

5.9735 

5.6302 

5.3453 

5.5446 

6.1458 

4.9484 

5.7730 

4.8355 

5.1466 

5.4307 

5.7158 

5.2885 

2.9705 

5.4876 

4.9484 

5.4022 

3.9383 

3.8826 

3.7436 

3.5218 

5.2885 

5.1749 

 Average 5.8720 5.4867 4.9266 

 Standard deviation 0.6827 0.7102 0.8530 

(Summarised in Table 4.16 on p. 144) 
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Appendix 5 

Important Excel functions for the spreadsheet solution (file SERP.xlsm) 

Excel Function Syntax Descriptions 

=IF(logical_test, [value_if_true], 

[value_if_false]) 

The IF function returns one value if the specified 

condition is met, otherwise, it will return the other 

value. 

=OR(logical1, [logical2], …) The OR function is combined with the IF function in 

the spreadsheet algorithms. Thus, it can return one 

value if any argument is true or the other value only if 

all arguments are false. 

=INDEX(array, row_num, 

[column_num]) 

The INDEX function returns a value from a range of 

cells according to the row and column number 

indexes. 

=MATCH(lookup_value, 

lookup_array, [match_type]) 

The MATCH function looks up a specified value in a 

range of cells, and then returns the relative position of 

that value in the range. The MATCH function is 

combined with the INDEX function in the spreadsheet 

solution. Thus, it can return a value from a range of 

cells which has matched with the relative position of a 

specified value in the other range. 

=OFFSET(reference, rows, cols, 

[height], [width]) 

The OFFSET function returns a reference (either a 

single cell or a range of cells) to a range that is a given 

number of rows and columns from a given reference. 

The number of rows and the number of columns to be 

returned can be specified by entering “height” and 

“width”.  

=MMULT(array1, array2) The MMULT function returns the matrix product of 

two arrays. The resultant matrix product has the same 

number of rows as “array1” and the same number of 

columns as “array2”. 

=TRANSPOSE(array) The TRANSPOSE function converts a row of cells as a 

column of cells, or vice versa. If an array has a 

dimension of m×n, the resultant matrix will have a 

dimension of n×m. 
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Appendix 6 

Spreadsheet adjustments for larger problems 

The Excel spreadsheet solution (file SERP.xlsm) is set in protected mode initially so 

that the end-users are neither able to edit the user interface nor can they modify the 

Excel algorithms. Whenever necessary, the end-users can easily switch from the 

protected mode to edit mode by clicking "Unprotect Sheet" button on “Review” tab. 

There are two conditions for which the end-users are required to switch off the 

protected mode and edit the spreadsheet. First, when the end-users need more than 

10 stages since the maximum number of stage is set at 10 initially. In this case, the 

following modification steps must be performed before running the stage 

computations: 

i. Go to Input Worksheet. 

ii. Highlight the last column of cells in the necessary table and drag the fill 

handle  across the columns as many as are needed, as illustrated in 

Figure A1. 

iii. Click the “Edit Next” button at the top of the Input Display Table to start 

editing all the necessary tables in the next worksheet.  

iv. Repeat step ii and iii until the Output Worksheet has been edited. 

 

Figure A1 – Spreadsheet adjustment for problems that contain more than 10 stages 

 A B C  J K 

16 Stage      

17 Stage, t 1 2  9 10 

18 <Description, e.g., 2015, Q1, Jan>       

javascript:AppendPopup(this,'850533851_4')
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Second, the stage computations in the spreadsheet will become infeasible if the total 

number of equipment before decision is more than 10, i.e.,      , since the 

maximum default value is set at 10 initially. In this case, the necessary modification 

steps before running the stage computations are as follows: 

i. Go to Input Worksheet and click the “Insert” button to start editing the Stage 

Computations Table in Worksheet “p”.  

ii. Highlight the last row of cells and drag the fill handle  across the rows 

as many as are needed, as illustrated in Figure A2. 

iii. Assign the corresponding values to the new rows in column A, B, C, D 

accordingly. 

iv. Click the “Insert Next” button to start editing the Stage Computations Table 

in the next worksheet. 

v. Repeat step ii to iv until Worksheet “Vt” has been edited. 

 

Figure A2 – Spreadsheet adjustment for problems that contain more than 10 equipment 

 

  

 

 A B C D E 

50 Total number of equipment before decision, rt rt
N rt

O kt  

181 10 10 0 0 0 

182 10 10 0 1 0 

javascript:AppendPopup(this,'850533851_4')
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Appendix 7 

Development of the MPOWER function 

There is a necessity to create a new Excel function that can raise a single matrix to 

the power of   so that the  -step transition probabilities in Equation 5.39 (p. 190) 

can be conveniently computed. Such a function is named as MPOWER function in 

this thesis. In order to develop a user defined function in Microsoft Excel, it is 

required to access the “Developer” tab and open the Visual Basic Editor. The 

“Developer” tab does not appear on the Excel application ribbon by default. Users 

can go to the “File” tab and click the “Options” button. Next, choose the “Customize 

Ribbon” button and click the “Developer” check box to activate the “Developer” tab. 

To create the MPOWER function, the following code is entered into the new Module: 

Function MPOWER(rngInp As Range, lngPow As Long) As Variant 

Dim i As Long 

MPOWER = rngInp 

If lngPow > 1 Then 

  For i = 2 To lngPow 

    MPOWER = Application.WorksheetFunction.MMult(rngInp, MPOWER) 

  Next 

End If 

End Function 

Having done so, the syntax for the MPOWER function will look in this way: 

=MPOWER(array, power)  
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