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Abstract

Bayes sequential decision problems are an extensive problem class with wide applica-

tion. They involve taking actions in sequence in a system which has characteristics

which are unknown or only partially known. These characteristics can be learnt over

time as a result of our actions. Therefore we are faced with a trade-off between choos-

ing actions that give desirable short term outcomes (exploitation) and actions that

yield useful information about the system which can be used to improve longer term

outcomes (exploration).

Gittins indices provide an optimal method for a small but important subclass of these

problems. Unfortunately the optimality of index methods does not hold generally

and Gittins indices can be impractical to calculate for many problems. This has

motivated the search for easy-to-calculate heuristics with general application. One

such non-index method is the knowledge gradient heuristic. A thorough investigation

of the method is made which identifies crucial weaknesses. Index and non-index

variants are developed which avoid these weaknesses.

The problem of choosing multiple website elements to present to user is an impor-

tant problem relevant to many major web-based businesses. A Bayesian multi-armed

bandit model is developed which captures the interactions between elements and the

dual uncertainties of both user preferences and element quality. The problem has

many challenging features but solution methods are proposed that are both easy to

I



II

implement and which can be adapted to particular applications.

Finally, easy-to-use software to calculate Gittins indices for Bernoulli and normal

rewards has been developed as part of this thesis and has been made publicly available.

The methodology used is presented together with a study of accuracy and speed.
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Chapter 1

Introduction

What is it that makes a decision difficult? In the past it might have been because

the decision was complex with lots of options and factors to consider. However,

this challenge can often be overcome by utilising the large computing power that is

available today. Instead it is much more often the presence of uncertainty or a lack of

information that can make even small problems hard, especially when this uncertainty

is about the future.

For example, I have to make a decision of whether to stay in my current job or take

a new job in a different city. Although this is an important decision it is not, at

first glance, very complex as there are only two alternatives. I just have to make a

comparison between my current job and home, which I know a lot about, and my new

job and location about which there are uncertainties but which I have researched well.

The real difficulty is that to make a good decision I need to think about the future,

the different scenarios that may emerge and how I will respond. Will I be promoted

if I stay in my current job? If I don’t like the new job but do like the location then

what other options are there in my new city? What if the city is a problem, should I

move again? If so where? What might I learn from the experience that would make
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moving jobs an easier decision next time? To fully evaluate the question I would need

to continue like this considering possible branches into my future where each decision

depends on what has gone before and each future depends on what is learnt in the

past. Clearly the decision is far more complex than it seemed at first.

This thesis will focus on a crucial part of this problem, how to put a value on the

new information that results from a decision. I learn a lot more by moving jobs than

by staying where I am. My current job is reliable but limited in what it can become

whereas the new job has much greater potential even though it might not work out.

This kind of trade-off is known as the exploration versus exploitation dilemma. Do I

exploit my current knowledge (stay with what I know) or explore to learn in the hope

of finding something better.

This feature is investigated by studying Bayes sequential decision problems. These

are problems, such as the job example above, which involve taking actions in time

sequence in pursuit of some objective. There is information about which we are

uncertain which could help our decisions if it were known more accurately and we

have the opportunity to learn this information as a result of taking actions. Therefore

our actions affect both the world and our understanding of it which in turn affects our

decisions about future actions. This chapter will introduce some of the main ideas of

this type of problem and outline the rest of the thesis.

1.1 Markov Decision Processes

A common method of formulating sequential decision problems which will be adopted

here is a Markov decision process (MDP). These date from at least as far back as Wald

(1950) and are an extension of Markov processes. Markov processes move through

states where each move depends on transition probabilities associated with the current

state. MDPs add a degree of control to the process where a decision-maker can choose
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from a set of actions in each state. The transition probabilities now depend on the

action as well as the current state. A reward is received which depends on the action

and resulting transition. The transition and reward resulting from an action will often

be referred to here as the outcome. A policy is a set of rules that determine which

action is taken in any state.

In the basic formulation, which will be assumed throughout this thesis, actions and

transitions occur at fixed discrete times {0, 1, 2 . . .} but continuous time versions are

frequently used. In a semi-Markov decision process the intervals between each event

are random variables which may depend on the start and end states and the most

recent action. The time horizon could be of finite or infinite. Where the horizon is

infinite the rewards are usually discounted by a fixed factor γ ∈ (0, 1) so that total

reward is finite under common simple assumptions. At time t the return (the reward

received after discounting) is then γtyt, where yt is the observed (undiscounted) reward

at time t. The standard objective in this setting is to maximise the total discounted

expected return over the infinite horizon.

With this objective the quality of any action cannot be judged solely on the immediate

expected reward that will be received as it also depends on future rewards. These in

turn depend on future states and hence the transition probabilities associated with

the action. An action yielding poor reward now may be preferred if it results in a

transition to states that yield higher rewards later. Hence to evaluate current actions

all future actions and outcomes must be considered. Therefore, as the state and

actions spaces increase in size and the transition probability distributions become

more complex MDPs can rapidly become very difficult to solve.

Another kind of trade-off between short and long term rewards, as well as another

dimension of complexity, comes from adding learning to the problem. This arises

when there are aspects of the system, such as current state, reward distributions

or transition probabilities, which are unknown or partially known but which can be
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learnt as a result of taking actions and observing outcomes. This leads to a more

specialised formulation of the MDP which will be given over the next two sections.

The literature for MDPs is extensive and of a more general nature than can be covered

here. For a detailed description see, for example, Puterman (2005).

1.2 Learning and Bayesian Inference

We now make two changes to the MDP framework given in the previous section which

lead towards the multi-armed bandit problem as will be described in the next section.

First, rewards, and therefore decisions, depend on an unknown parameter θ about

which we receive information by observing outcomes. Second, the state now incorpo-

rates a belief state or informational state which records our current knowledge of θ.

Transitions between states then represent learning and are determined by Bayesian

inference as will now be described.

Bayesian statistics provides a framework where our belief about quantities or param-

eters of interest can be formally represented by probability distributions (see Jaynes

and Bretthorst 2003). Let θ be such a parameter which does not change over time

and let y be an observation (such as a reward) from the system. The sampling model

f(y|θ) gives the probability that the data y would be observed given a known value

of θ. The parameter θ is not known exactly but we have knowledge of its distribution

given by the prior density g(θ). The posterior density g(θ|y) gives our belief about

the value of θ once y has been observed. The transition (or updating) from prior to

posterior after an observation is given by Bayes’ rule:

g(θ|y) =
f(y|θ)g(θ)∫

θ
f(y|θ)g(θ)dθ

.

Updating easily extends to a sequence of observation steps which makes it very ap-

propriate for sequential decision problems. The posterior of each step becomes the
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prior for the next step. The belief at time t = 1, 2, . . . can be found from the belief at

time t−1 starting with a prior g(θ) at time 0. Given a sequence of i.i.d. observations,

y1, . . . , yt where yt is the data observed at time t,

g(θ|y1, . . . , yt) =
f(yt|θ)g(θ|y1, . . . , yt−1)∫

θ
f(yt|θ)g(θ|y1, . . . , yt−1)dθ

.

The belief at time t− 1 depends on the data observed up to and including that time.

The denominator is called the marginal likelihood. This is a normalising constant that

ensures that the posterior is a probability density. The posterior distribution can be

used to give the predictive distribution of the next observation y∗:

p(y∗|y1, . . . , yt) =

∫
θ

f(y∗|θ)gt(θ|y1, . . . , yt)dθ.

It is the predictive distribution that models the possible outcomes of actions and

which is used in decision making.

Although this framework is very general it is particularly useful for forms of f(y | θ)

which enable a choice of prior such that the posterior is of the same family of distri-

butions (the prior and posterior are said to be conjugate). For appropriate sampling

and belief distributions updating can then be done analytically. For Bernoulli or

binomial observations the Beta family provides conjugate beliefs and normal priors

provide conjugacy for normal sampling models (self-conjugacy). By using a conjugate

prior there is a closed form expression for the posterior which depends upon a small

number of defining parameters. The knowledge state can be therefore be expressed

and recorded succinctly. Conjugate priors are generally used where possible for these

reasons of mathematical tractability.

Bayesian statistics provides a range of methods for the analysis of data that go beyond

inference but which link naturally to it within a probabilistic framework. Examples

are model choice, design of experiments and decision theory. A good introduction to

Bayesian methods is given in Hoff (2009). For a more decision-oriented approach see

Robert (2007).
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1.3 The Multi-armed Bandit Problem

The multi-armed bandit problem (MAB) is one of the the most well studied of sequen-

tial decision problems. It provides the simplest expression of many of the features and

challenges of such problems in particular the trade-off of exploration and exploitation.

A description of the classical form of the problem will be given here to introduce the

main ideas of the thesis but the problem has since spawned into a very large and

multi-layered problem class. Chapter 2 will go more deeply into the origins and vari-

ations of this wider class and well as the range of solution methods that have been

proposed.

The name comes from the analogous problem of a gambler playing a slot machine

(a one-armed bandit) in a casino. The gambler can select one machine from those

available at each time which pays out a random reward from an unknown distribution

which is different for each machine. The distribution for each machine is fixed over

time so the gambler can learn about it through playing. How should the gambler play

to maximise winnings?

An example of the kind of problem that motivated the study of the MAB was by

given by Thompson (1933). Here, the choice is between several drugs. Each drug has

a fixed unknown probability of curing a patient of a disease. The reward is binary,

either the patient is cured or is not. How should we assign drugs to learn about which

drugs are effective and heal the most patients?

This latter problem can be modelled as a MAB with a Bernoulli reward distribution.

This is the classical form of the MAB and is as follows. At each decision time t =

0, 1, 2, . . . an action at ∈ {1, . . . , k} is taken. Action at = a corresponds to choosing

alternative a (or pulling arm a). Associated with each arm a is an unknown parameter

θa. Action at = a results in an outcome or observed reward yt where yt | (at = a) ∼

Bern(θa).
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Each θa has an independent conjugate prior g0(θa | αa,0, βa,0) ∼ Beta(αa,0, βa,0). The

α and β parameters for all the arms together give the current (informational) state

of the system. Following an action at = a and outcome yt the state parameters for

arm a update by (αa,t+1, βa,t+1) = (αa,t + yt, βa,t + 1 − yt). For all other arms b 6= a

we receive no information so (αb,t+1, βb,t+1) = (αb,t, βb,t).

The total return is given by
∞∑
t0

γtyt

where 0 < γ < 1 is a discount factor. The objective is to design a policy that takes

actions that maximise the Bayes’ return which is the total return in expectation over

both the system realisations and the prior information.

A natural policy to follow is the greedy policy. This is greedy with respect to the

immediate expected reward of each arm which is given by

µa,t =
αa,t

αa,t + βa,t
.

At any time the arm with the current highest value (the greedy arm) is chosen. The

greedy policy is not optimal though as it is myopic so does not consider the value of

information results from actions. An arm with tight posterior (high α + β) will be

less likely to have a high θ than an arm with the same µ about which we are more

uncertain (low α+ β). An observation from the latter arm will bring a bigger change

in µ than one from the first arm. If the change is negative then there are other arms

to fall back on but if it is positive then we will receive good information about a

potentially good arm which we can take advantage of in future decisions. This effect

is often strong enough that it is worth sacrificing immediate reward by choosing an

arm with lower µ if it has greater potential to be the best arm.

The MAB therefore gives a simple representation of the exploration versus exploita-

tion dilemma. Do we exploit current knowledge to maximise the immediate expected

reward or do we explore other arms to learn information that will enable us to gain
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extra reward in the future? The MAB is one of the simplest models for the study

of this dilemma and as a result it has been given much attention. Despite this and

its apparent simplicity it has been a very difficult problem to solve. Theoretically,

techniques such as stochastic dynamic programming can be used to solve it but the

computation grows rapidly with the number of arms so that this is impractical with

all but the smallest problems. A key result, the Gittins index theorem (Gittins 1979)

enables the problem to be decomposed into smaller subproblems while retaining opti-

mality of the solution. For each arm a Gittins index value is calculated and the policy

that chooses arms in order of index value is optimal for this problem. Dynamic pro-

gramming and Gittins indices will be described in more detail in Section 2.3. Simple

changes to the MAB mean that policies based on Gittins indices are no longer optimal

which provides motivation for the research in this thesis.

1.4 Thesis Outline

Bayes sequential decision problems extend far beyond the classical MAB. Under even

simple extensions the optimality guarantee of the Gittins index theorem no longer

holds and the calculation of the required indices can become much more difficult. This

motivates the search for, and investigation of, other solution methods. Chapter 2 will

give an overview of Bayes sequential decision problems and the main solution methods.

The focus of the thesis is on problems that exhibit the exploration versus exploitation

dilemma, especially as found in extensions to the classical MAB. However awareness

of the wider problem area is important in order to understand which solution methods

are most appropriate for a given problem.

Chapter 3 investigates knowledge gradient (KG) policy. This is a recently developed

heuristic solution method which was intended for very general application in MABs.

We study its use in a class of MABs which have rewards from the exponential family.
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A weakness was found where the policy took actions which were dominated in the

sense that the action was inferior in both exploration and exploitation. The chapter

will give variants which avoid this error. These new policies include an index heuristic

which deploys a KG approach to develop an approximation to the Gittins index. This

is shown to perform well in a numerical study over a range of MABs including those

for which index policies are not optimal. One of the promising features of KG was that

it could incorporate correlation between arms into its decision making. However it

was found that this did not appear to bring a performance advantage over competitor

policies. This chapter has been accepted as a paper (Edwards et al. in press).

Chapter 4 studies the problem of choosing multiple website elements to display to a

user of a website. To choose elements that appeal to the user we need to learn the

characteristics and general quality of each element while at the same time choosing

elements that are appropriate for the user in the short term. Therefore MAB frame-

work is appropriate for this problem. However, elements presented together interact

since choosing elements that are very similar will result in redundancy for the user.

Therefore rewards need to be considered as function of the set of elements as a whole

rather than just some simple combination of the rewards of the individual elements.

This brings a number of challenges. Firstly we need to model the interactions in an

appropriate way so that rewards realistically reflect user behaviour. The models devel-

oped are based on the intuitive idea that we have uncertainty about users’ preferences.

We investigate the consequences of this model on the diversity of the element sets.

Secondly we need solution methods which choose and learn about element sets while

being fast and efficient in an online setting. This is made difficult by the combinato-

rial explosion in the number of potential element sets. The policy we use combines

existing bandit methods with a submodular optimisation algorithm. This requires a

method of learning from user feedback that scales with the number of elements rather

than the number of element sets. A further complication is uncertainty over the user

preferences. A Bayesian scheme is given that deals with these issues.
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The Gittins index theorem was a breakthrough result in the study of MABs. It

gives a computationally tractable optimal policy for the classical MAB and some

variations. Even where it is not optimal, similar index approaches have produced

strongly performing policies for a wide range of problems. However, computing the

indices required for the policy is not trivial even for common reward distributions.

A greater obstacle to their use, though, is the perception that the computation is

more difficult than it is. We have produced and made publicly available easy-to-use

software to calculate Gittins indices for Bernoulli and normal rewards. Chapter 5

describes the methods used in this software and discusses some of the issues involved

in calculating Gittins indices.

Chapter 6 will conclude by giving the main contributions of the thesis and the future

research directions emerging from the work involved.

Chapters 3, 4 and 5 can each be read independently and as such some of the basics

of the problem area will be repeated several times. There are some differences in

notation between chapters but notation is defined within each chapter. The work in

Chapter 4 was funded by a Google faculty research award to work on a problem of

interest to Google and this motivated the direction of the work.



Chapter 2

Bayes Sequential Decision

Problems

Bayes sequential decision problems (BSDPs) have widely varying origins and mo-

tivations. The problems and the solution methods developed to solve them have

come from a range of disciplines such as statistics, operational research, computing,

engineering, machine learning, control theory, artificial intelligence, and economics.

Despite large areas of overlap, the different fields naturally had different motivations

and expressions of the problems so that solution methods developed in one field may

not be appropriate for use with problems for another. Even terms as fundamental

as “bandit” or “optimal” can have different interpretations in different areas. This

chapter will give an overview of BSDPs, in particular aiming to identify similarities

and differences between the different classes of problems so that objectives can be

stated more clearly and that solution methods may be better understood and used

appropriately.

Section 2.1 give examples of how BSDPs have developed in each of the main disci-

plines that use them, highlighting the principle features of interest. Section 2.2 will

11
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outline the most common objectives in BSDPs and discuss when these different ob-

jectives are appropriate. This will lead into Section 2.3 which will give a review of the

main solution methods that have been developed for BSDPs. Section 2.4 will give a

condensed overview of the main variants of the MAB and their applications.

2.1 Main Features and Origins

BSDPs are optimisation problems where: (i) decisions are made in time sequence,

(ii) such decisions involve taking actions that affect a system of interest, (iii) there

are features of the system on which decisions may depend which are unknown or

partially known, (iv) we learn about the system over time so that later decisions

can be better informed than early decisions, and (v) learning is commonly modelled

with a Bayesian framework. Many of the models and methods discussed here do

not necessarily assume Bayesian learning and can be formulated using other learning

and inference models. The interest for this thesis is in problems where learning is

affected by actions (as distinct from problems where information is accrued over time

independently of decisions) but the overview given here will be of a general nature.

The classical MAB, described in Section 1.3, is one of the best known and most studied

of BSDPs. One of the original motivations for study of the MAB came from statistics

in the sequential design of experiments (Robbins 1952). Statistical experimentation

is traditionally based on sampling from one or more populations then observing and

analysing the results. A modern example is in website optimisation (Scott 2010). We

have several possible designs for a commercial website and we want to know which

one leads to the best response from users (e.g. the most purchases of a product). A

standard method of design of such an experiment (often referred to as A/B testing

when there are only two alternatives) would be to choose an experiment size (number

of users) and, in a suitably controlled manner, present each design to an equally sized
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subpopulation of the available users. The outcome of the experiment is analysed only

when it is over. An alternative approach is to use sequential analysis (e.g. Wald 1973)

which instead considers observations one by one, making a decision after each one (i)

whether to continue the experiment and if so, (ii) which design should be shown

to the next user. This has the advantages that more effort can be devoted to more

promising designs and the experiment size does not have to be fixed in advance so can

be stopped early if one design is clearly the best. Practical applicability of sequential

analysis depends on the ease with which individual observations can be taken and

the delay before feedback is outcomes are observed. Web-based applications are ideal

since feedback is often instant and the design shown can be changed with minimal

effort.

The MAB has since grown into a large problem class of its own, referred to as multi-

armed bandit problems or just bandits. The name can have different interpretations,

sometimes referring to the classical MAB and close relatives (as will be the case in

this chapter) and other times the wider class or some part of it. The use of the MAB

in sequential sampling for inference emphasises the element of learning. However, for

bandit problems in general, learning is not necessarily a central element and may not

even be a direct consideration in decision making. The bandit framework, particularly

in the field of operational research, has become much more general which has allowed

theory developed in the study of the MAB to be applied to a much broader class

of problems based on sequential resource allocation to competing projects. This is a

problem occurring in a wide range of applications such as scheduling, internet-based

marketing and commerce, product pricing, industrial research and development, and

clinical drug testing. This wider problem class is described in detail in Gittins et al.

(2011).

An area in which the study of bandit problems is currently very active is machine

learning. This has developed out of computer science but with strong links to statis-
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tics. The approach to bandits reflects these origins, combining reinforcement learning

ideas (see below) with the sequential learning motivation of Robbins (1952). A fuller

review of the numerous variants of bandit problems in machine learning, statistics

and operational research will be given in Section 2.4.

Optimal control (Bertsekas 2012) is the study of optimisation over time and has

been instrumental in the development of some fundamental solution methods such

as dynamic programming. Optimal control is connected with control theory from

the engineering field which is concerned with dynamical systems and has found use in

applications such as vehicle control systems. Where these involve feedback in response

to an action these problems can share many features with BSDPs. Of note is the idea

of dual control where the system must simultaneously be controlled and learnt about.

This is analogous to the exploration and exploitation trade-off and is referred to as

identification and control or, action and investigation.

Reinforcement learning is a very general approach to optimisation in MDPs and re-

lated problems which was developed in computer science and artificial intelligence

with ideas inspired by behavioural psychology. It treats problem solving as a pro-

cess of learning about an uncertain environment by interacting with it and observing

outcomes. This process could occur in a simulated environment inside a computer

rather than the real world which can lead to a different trade-off between exploitation

and exploration as will be discussed in Section 2.2. It has had an important role in

research into BSDPs and the MAB since the computer science viewpoint has been

incorporated into bandit research in machine learning. A full description of reinforce-

ment learning can be found in Sutton and Barto (1998) which also contains further

references on the MAB in fields such as computing, engineering and psychology.

A large area of BSDPs which initially seems very similar to the MAB but which has

quite different aims is ranking-and-selection (R&S). Like the MAB this is concerned

with the comparison of a set of alternatives. The comparison can take several forms
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but most commonly the aim will be to learn which is best (i.e. optimised with re-

spect to some quantity, the value of which is initially unknown). At each each time

we choose to measure one alternative and so gradually learn about each over time.

This clearly has similarities with the sequential design of experiment view of bandits.

The difference, as will be discussed in detail in the next section, is that no reward

is received during the process but is only received at the end. A common applica-

tion of R&S is in simulation optimisation (e.g. Fu 2002). For example, we need to

choose between competing designs for the layout of a manufacturing plant. Each can

be evaluated via computer simulation but the output is stochastic so the simulation

will have to be run many times to give a good estimate of each design’s true per-

formance. The simulation takes a long time to run due to its complexity and there

are a large number of alternatives. The problem is to find a strategy to sequentially

divide the available computing budget between the designs. Much analysis of R&S

uses frequentist statistical methods (see Bechhofer et al. 1995 for a comprehensive

overview) but Bayesian methods are commonly used too (originating with Raiffa and

Schlaifer 1968). An introduction to the R&S in general can be found in Kim and

Nelson (2006).

2.2 Objectives

The objective for the MAB as given in Section 1.3 is well defined - maximising the

Bayes’ return over an infinite horizon using a constant discount factor. However,

this is not the only objective in BSDPs and this section will present some of the

alternatives. Of particular interest is the role learning plays.
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2.2.1 Online and Offline Learning Problems

Powell and Ryzhov (2012) makes a useful distinction between online and offline learn-

ing problems. The terms online and offline refer to how and when rewards are collected.

A learning problem is said to be online if rewards are collected at the same time as

information is gathered. The MAB is the classic example of an online learning prob-

lem. In offline learning problems decisions and feedback still occur in sequence but

no reward is collected and the policy is only evaluated according to the state of the

system at the end of the process. The focus of this thesis is on online problems so

problems and solution methods for purely offline problems will not be discussed in

any detail. However, it is still important to be aware of the different objectives since

this can inform the use of appropriate models.

An excellent example of an offline learning problem is R&S. For a formal overview

of possible objectives in R&S see Kim and Nelson (2006) but, informally, the most

common aims are to identify the alternative that is best (or close to the best) (i) with

maximum probability by the end of a fixed horizon, or (ii) to a given level of confidence

with the minimum number of observations. R&S is appropriate for applications where

the actions have no immediate consequences. For example, in simulation optimisation

there is no difference between two simulations other than computational resources

consumed and the information received. There is no trade-off between exploitation

and exploration in offline problems, instead the problem is one of pure exploration.

The related problem of target processes was the original motivation for the develop-

ment of Gittins indices. Chemical compounds are screened sequentially as potential

drugs and the problem is to identify, as quickly as possible, one that exceeds some

threshold of a given measure. More information and theory on this problem can

be found in Gittins et al. (2011) where the target process is one example of bandit

processes as a general class of sampling processes.
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In the sequential design of experiments interpretation of the MAB it is less clear

whether the problem is one of online or offline learning. If the experiment in question

is a clinical trial then there is a strong argument that immediate outcomes matter as

these represents patients’ health outcomes and so online is appropriate. If the exper-

iment is one of market research of a range of products before they go on sale then

offline would be more appropriate as no products will be sold during the experiment

and only the information gained matters. In the first example conducting the experi-

ment sequentially allows short term outcomes to be improved while in the second the

motivation is more efficient learning, with the hope that required research budget can

be reduced. In the former the MAB is appropriate while in the latter the problem

is closer to R&S. Motivated by the former Robbins (1952) introduced a new criteria

(based on regret) which is often used as an alternative to Bayes’ return. This leads

to a different balance of exploitation and exploration as will be discussed in the next

section.

2.2.2 Regret Criteria

The MAB formulation given by Robbins (1952) used a different objective than given

in Section 1.3 (the problem was otherwise the same). This was based on the regret

ρ(T ) at some time T given a history of actions {a1, . . . , aT} which was defined to be

ρ(T ) = T max{θ1, . . . , θk} −
T∑
t=1

θat . (2.2.1)

This can be defined for general reward distributions by replacing θ with the expected

true reward of arms. Note that there is no discounting over time in this setup and

that minimising ρ(T ) is equivalent to maximising undiscounted reward over the same

horizon. The difference between formulations comes from how the regret is used to

set objectives.

The most basic objective given by Robbins (1952) is that average regret ρ(T )/T → 0
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as T →∞. This requires infinite exploration to ensure that the best arm is identified

and that actions converge to the best arm asymptotically. There are many policies

that can achieve this objective, one of which was given by Robbins (1952) for the

Bernoulli MAB with k = 2 arms. Such policies are called consistent by Lai and

Robbins (1985) and uniformly convergent by Burnetas and Katehakis (1996). No

conditions are made on the rate of learning or reward collected over any finite time.

Stronger conditions, based on the worst case growth rate of regret, originate from the

result in Lai and Robbins (1985) that the regret must grow at least logarithmically

with time. They gave an asymptotic lower bound for regret based on the differences

between reward distributions of the arms. That result was for reward distributions

with a single unknown parameter but was later extended to multi-parameter un-

knowns by Burnetas and Katehakis (1996). Lai and Robbins (1985) call any policy

that attains this lower bound as T → ∞ asymptotically efficient or optimal. These

terms have since been used more loosely to refer to any policy for which regret grows

at some constant multiple of the lower bound, that is ρ(T ) = o(T b) for all b > 0

as T → ∞. Burnetas and Katehakis (1996) distinguishes between these two sets

of policies with those achieving the lower bound having a uniformly maximal con-

vergence rate and those meeting the lesser criterion being uniformly fast convergent.

Therefore not all policies that are uniformly fast convergent are equivalent and it is

unsatisfactory to describe such policies as optimal. For a more formal description of

the different regret optimalities with further references see Cowan et al. (2015).

Besides asymptotic results it is desirable to have guarantees on regret after any finite

time. Regret criteria are commonly used, especially in machine learning. The current

standard of evaluating a policy is to give an upper bound on its regret over time (e.g.

Auer et al. 2002). The aim is that this is of O(log T ) but large constant multipliers

can mean that these bounds are very loose. As illustrated in Cowan et al. (2015),

the difference between a policy’s regret bound and its empirical performance may be
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large, even for long time horizons, and consistent policies can be outperformed by

non-consistent policies for a very long time.

2.2.3 Problem Horizon and Discounting

The distinction between maximising Bayes’ return and meeting different regret criteria

can be seen as a difference of effective time horizon and reward availability. Discount-

ing makes near term rewards and therefore information more important than long

term rewards and information. The discount factor γ can be adjusted to control the

balance between the importance of short and long term rewards, and therefore the

required balance between exploration and exploitation. Which viewpoint is best is a

modelling question which should depend on the problem application. Three aspects

of this will be discussed briefly here: discounting, asymptotic learning and the cost of

information.

The use of discounting has been criticised as artificial especially with a factor that is

constant over time (Scott 2010). This can be a reasonable criticism if actions are taken

over very irregular time intervals but can also stem from a misunderstanding of the

modelling role played by discount factors. The most common view is the economic one

that uses discounting to model the reduced value of future money relative to present

value. That is, discounting accounts, in a simplified way, for the return that resources

could generate if used outside the model. However for many problems this would give

a discount factor close to 1 and is not the main reason to use discounting. Instead

discounting represents the idea that information becomes less reliable over time. One

way this can be seen is to consider what happens if rewards are not guaranteed to

always be available for collection - projects can always be cancelled, machines can

breakdown or a business might go bankrupt. An undiscounted problem where there

is a constant probability that reward process ends prematurely is equivalent to an

infinite horizon problem with a constant discount factor (Kelly 1979).
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Underlying all regret based optimality criteria given in Section 2.2.2 is the condition

that, asymptotically, the process learns which arm has the best true expected reward.

This is not true for policies that optimise Bayes’ return for the discounted MAB as

these can show incomplete learning (Brezzi and Lai 2000). This has been given as a

failing of such policies but an alternative view is that complete asymptotic learning

is incompatible with Bayes’ return type optimality and therefore should not always

be pursued. It is worth noting that R&S, where the objective is purely about learn-

ing, does not seek such guarantees as observations are seen to carry a cost and hence

the time horizon is necessarily finite. Glazebrook (1980) did show that a randomised

version of the GI could be arbitrarily close to Bayes optimality while retaining asymp-

totic complete learning but in as much as it is close to Bayes optimal it will be close

to the GI-based policy until discounted rewards are small.

Modelling for learning problems cannot be appropriate without considering the cost

of information and this goes some way to explaining the different approaches from

different fields. Problems in statistics or operational research are more likely to be

physical processes where the sampling cost is high and so samples are realistically

limited in size. Therefore discounting or a limited horizon length is appropriate. In

computing and machine learning sampling is commonly rapid and low cost so effective

horizons can be very long. This can be seen especially in reinforcement learning where

the aim is to learn a solution to a problem. Typical solution methods (which will be

described in Section 2.3.4) balance exploration and exploitation but only as a method

of learning. The reward collected is more properly described as a reward signal which

indicates where learning effort should be focused. Hence the aim is really one of

exploration where a long time horizon is available.
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2.3 Solution Methods

The main difficulty with sequential decision problems is that decisions cannot be

considered in isolation. Any decision must consider all future decisions also. One

method to do this is to evaluate all possible paths - sequences of actions leading from

the starting state to an end state. However, the number of paths quickly becomes

large. Even a small deterministic problem with a time horizon of 30 stages and three

possible actions at each stage will have 330 ≈ 1014 paths. Time horizons are generally

longer and more actions are often available. In addition stochastic problems have

multiple outcomes for each action. Therefore other approaches are needed. Such

methods, exact and approximate, will be described in this section. All of the methods

can be used with BSDPs in general but will be described in terms of the MAB and

Bayes’ return objectives unless stated otherwise.

2.3.1 Dynamic Programming

Dynamic programming was developed by Bellman (1957) as an optimisation method

for sequential decision problems and which has very general use for optimisation in

problems beyond BSDPs and bandits. The term “programming” as used here refers

to planning rather than computer programming. It has been used extensively for

deterministic problems but will be presented here in its stochastic form. It works by

breaking the problem down into a series of smaller problems (sub-problems). Solving

these gives the solution to the original problem. This approach reduces the required

computation in two ways:

1. The solutions to smaller sub-problems can be re-used in solving larger sub-

problems which reduces repeated calculation of shared sections of paths.

2. A policy can be found to be suboptimal and so eliminated without evaluating
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the whole length of any paths that result from that policy (see the Principle of

Optimality below).

Dynamic programming is based on the calculation of the value V (s, t) of any state

s in the state space S at time t. Here V (s, t) will be taken to be the maximum

total expected reward that can be gained when starting from state s at time t (i.e.

when an optimal policy is followed). The value is an important concept because of

the Principle of Optimality (which holds for Markov decision problems), as stated in

Bellman (1957):

“An optimal policy has the property that whatever the initial state and initial decision

are, the remaining decisions must constitute an optimal policy with regard to the state

resulting from the first decision.”

So to find an optimal policy from the starting state, only policies that are optimal

from each subsequent state need be considered. These are exactly the policies that

are needed to calculate the state values. Therefore, to find an optimal policy it is

sufficient to calculate the values of all states at all times.

Let r(s, a, t) be a reward function and π(s′ | s, a) be the transition probability from

state s to any state s′ after taking action a, then the value of a state is given by the

recursive value function (also known as the Bellman equation),

V (s, t) = max
a∈A

[
r(s, a, t) + γ

∑
s′∈S

π(s′ | s, a)V (s′, t+ 1)

]
where γ is a constant discount factor an A is the available action space. For our

purposes here it will be assumed that the process has time T at which the process

terminates. The value of states at this time can be found directly,

V (s, T ) = max
a∈A

[r(s, a, T )].

Dynamic programming works backwards sequentially from these end states to give the

values of all states. This is called backward induction. The value V (s0, 0) of the initial
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state s0 at time 0 is the optimal reward and the recursion sequence that calculates

this value gives the optimal policy. A infinite horizon process may not terminate but,

for discounted rewards, a finite horizon approximation can be used which tends to

the solution as the horizon tends to infinity since received rewards become small as

time increases (Blackwell 1962). Regret-based problems use an infinite horizon with

undiscounted rewards so dynamic programming is inappropriate in those cases.

Dynamic programming as a solution method for BDSPs has been studied extensively

and theoretical results have shown that this method can be used to find the optimal

solution (e.g. Rieder 1975). Dynamic programming is a much more efficient method

than complete enumeration of paths and has been applied extensively but it still

quickly runs into computational limits as the number of calculations required grow

exponentially with the number of possible actions and outcomes. A wide range of

methods of computation besides backward induction have been developed to calculate

the value function of states and the term dynamic programming is often used to refer

to this collection of algorithms rather than a single method. For a full overview of

DP techniques see Bertsekas (2012).

An even more general family of algorithmic techniques for estimating value functions

comes under the term approximate dynamic programming. This is itself an example

of a BSDP where paths are explored with resources being progressively concentrated

on paths more likely to be part of an optimal policy. The problem has been studied

in different fields and the main texts on the subject are Powell (2007), Sutton and

Barto (1998) and Bertsekas and Tsitsiklis (1996).

Dynamic programming can be applied to the Bernoulli MAB as given in Section 1.3.

For each action there are two possible outcomes where Pr(yt = 1 | at = a, αa,t, βa,t) =

µa,t. The value function for state s = (α1,t, β1,t, . . . , αk,t, βk,t) at time t is,

V (s, t) = max
a∈A

{
µa,t

[
1 + γVt+1(s+, t)

]
+ (1− µa,t)γVt+1(s−, t)

}
.
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where s+ = (αt,1, βt,1, . . . , αt,a+1, βt,a, . . . , αt,k, βt,k) and s− = (αt,1, βt,1, . . . , αt,a, βt,a+

1, . . . , αt,k, βt,k) are the states reached after a success and failure respectively. Using

the finite horizon approximation described earlier we terminate the process at some

time T where states have value V (s, T ) = maxa∈A µa,T .

Although there are only two outcomes at each stage the computation required still

increases exponentially with the number of available arms and evaluating the value

function is impractical for as few as four arms (Gittins et al. 2011). The next section

will describe an alternative approach, based on decomposing the dynamic program-

ming problem into smaller subproblems, which gives an optimal policy for the MAB.

2.3.2 The Gittins Index

An index is a numerical value that can be calculated for each arm for a given state

independently of other arms. An index policy always chooses the alternative with

the greatest index for its current state. Gittins and Jones (1974) and Gittins (1979)

proved that the optimal policy for the MAB is an index policy. Such an index was

found and termed the dynamic allocation index which is now usually referred to as

the Gittins index (GI). This was a breakthrough since an optimal sequence of actions

could now be taken using forward induction which is much simpler to perform than

the backwards induction of dynamic programming.

The GI values are found by solving a stopping problem for each arm. This is itself

a MAB involving the arm we wish to find the GI for and a standard arm of known

constant reward λ. The index value is the value of λ for which we are indifferent

between the two arms in the initial action. It is a stopping problem since any time it

is optimal to choose the standard arm it will be optimal to continue to choose that

arm indefinitely since no new information will be received from that point on. The

stopping problem still requires a method such as dynamic programming to solve but
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this is an independent problem for each arm and so the MAB has been transformed

from one k-dimensional problem to k one-dimensional problems. Hence computational

cost rises linearly with k rather than exponentially.

A large number of proofs for the index theorem exist in addition to the original

publication. For example, Whittle (1980), Tsitsiklis (1994) and Bertsimas and Niño-

Mora (1996). An intuitive explanation of why the indexation is optimal comes from

the proof given by Weber (1992). In this, each arm has a fixed cost that must be

paid each time it is used. It is only profitable for the gambler to play a given arm if

the cost is less than the value of playing. There is a cost for any arm, called its fair

charge, at which the gambler is indifferent to playing that arm. The fair charge can

be compared between different arms and so provides a measure of the relative value

of each arm. Calculating the fair charges for each arm will give the optimal arm to

play.

Index policies are not optimal for BSDPs in general as changes such as irregular

discounting or dependence between the arms can make such a policy suboptimal.

Even where they are not optimal index policies can still perform very strongly as will

be seen in Chapter 3. More detail of conditions for optimality of index policies as well

as their general application can be found in Gittins et al. (2011).

GIs cannot usually be found analytically and can be difficult to calculate. This has

led to the development of analytical approximations. Brezzi and Lai (2002) give

functional approximations for general bandit problems based on the GI for a Wiener

process. These results were refined by Yao (2006) for normal rewards by adding a

continuity correction, and further by Chick and Gans (2009). These methods are

asymptotically accurate as γ → 1. In general, the approximations errors are largest

for arms for which we have little information. Thus the decisions affected most are

those made at early times when rewards are discounted the least which therefore result

in the greatest loss of reward. The performance of policies based on some of these
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approximations will be assessed empirically in Chapter 3. An detailed discussion of

the calculation of the GI will be given in Chapter 5.

2.3.3 Optimistic Index Methods

The GI of any arm a takes the form of µa+la, la ≥ 0. The quantity la has been termed

the learning bonus or uncertainty bonus. It represents, for that arm, the value of

exploration, that is, the extra future reward that will result from information gained.

A reasonable heuristic approach therefore is to use index policies that approximate

this value in some way.

Interval Estimation

Interval estimation was first used by Kaelbling (1993). It uses as an uncertainty

bonus the mean reward given θ = θ∗ where θ∗ is some upper quantile of the posterior

distribution of θ. For example, if arm rewards had distribution N(θa, 1) the index

would be

νa = µa + zασa

where zα is the 1 − α quantile of the standard normal distribution and σa is the

(Gaussian) posterior standard deviation for arm a. There is no particular value of α

that is correct and so zα can be regarded as a tunable parameter. Interval estimation

was compared to the knowledge gradient policy in Ryzhov et al. (2012) where the

performance of the policy was found to be very sensitive to the value of zα used.

Upper Confidence Bound Methods

Upper confidence bound methods (or UCB) are a family of policies designed to meet

the regret optimality criteria. The name was originally used for a policy in Auer
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et al. (2002) but earlier examples exist (Agrawal 1995; Katehakis and Robbins 1995).

In order to be asymptotically consistent arms must be sampled infinitely often and

the policy does this by making the index a function of the number of times the arm

has been pulled up to the current time. There are many upper confidence bound

policies, a number of which are designed for a specific problem or using a particular

reward distribution. They have been largely studied under regret criteria with many

obtaining logarithmic regret growth. Recent methods with general application include

Cappé et al. (2013) and Kaufmann et al. (2012).

2.3.4 Stochastic Methods

Semi-uniform Strategies

Semi-uniform strategies are so named as they use a mixed strategy of selecting either

(i) the greedy action or, (ii) an action uniformly at random. Therefore there is an

explicit mix of pure exploitation with pure exploration.

The simplest and most well known method is ε-greedy, first described in Watkins

(1989). The greedy action is chosen with probability 1 − ε where ε ∈ [0, 1] is a

parameter, called the exploration rate, to be chosen by the user. With ε > 0 the

policy is guaranteed to eventually gather all available information. However, it does

not use this information well as it explores at a constant rate over time and so does not

converge to always selecting the best arm. Ideally there would be more exploration

at early times while there is greater uncertainty, becoming more greedy as reward

estimates improve.

Two extensions which seek to correct this issue are ε-decreasing and ε-first. In ε-

decreasing the value of ε decreases over time. In its first presentation in Cesa-Bianchi

and Fischer (1998) the value of ε used was log(t)/t, where t is the current time.
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Improved results were found by Auer et al. (2002) with an algorithm that uses the

difference between the reward expectations of the two currently best alternatives. The

ε-first approach divides the time into an early pure exploration phase before switching

to pure exploitation (see, for example, Mannor and Tsitsiklis 2004).

Semi-uniform strategies have the advantage that they make few statistical assump-

tions, the only requirement being to identify the greedy arm. For this reason they

have been popular in reinforcement learning (see Sutton and Barto 1998). The lack

of assumptions can lead to under-performance in problems, such as the MAB, where

parametric assumptions are usually made. In addition there are several other weak-

nesses. Uniform exploration means that the quality of alternatives is not considered

when exploring. This leads to a lot of suboptimal choices especially when the number

of alternatives is large. A second problem is that all the variants require parameter

to be chosen and behaviour will depend on these. Numerical results can exaggerate

the quality of such methods by assuming that the best parameters are selected which

will rarely be the case in practice.

Softmax

Probability matching strategies are a range of methods which choose actions according

to choice probabilities assigned to each. These improve on the uniform exploration

of semi-uniform strategies by using higher probabilities for better actions (on some

measure of quality). The term probability matching should not be confused with

Thompson Sampling (discussed below) which, although using a similar idea, has dif-

ferent origins.

One of the most popular of these strategies is Softmax or Boltzmann exploration

(Luce 1959). Here the choice probability for any action a is given by the Boltzmann
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distribution,

eµa/τ∑k
j=1 e

µj/τ

where µa is a current estimate of expected reward of action a and τ is a temperature

parameter chosen by the user. Low τ tend to pure exploitation while high τ tend to

pure exploration. Other estimates besides µ could be used as measures of the quality

but µ is most common. Variations exist where the temperature parameter varies with

time (Cesa-Bianchi and Fischer 1998) and where the probabilities are weighted by

favouring recent high rewards (Auer et al. 2002). As with semi-uniform methods the

requirement for a tuning parameter is a downside. In addition, the method ignores

any uncertainty in the estimate of expected reward.

Thompson Sampling

Thompson sampling, also known as probability matching, was first proposed by Thomp-

son (1933). It selects arms according to the Bayesian probability, taken in expectation

over the posterior, that their true expected reward is best. This is an advance over

Softmax since it uses the full posterior distribution rather than just the point estimate

used by Softmax. Although it is possible to find the choice probabilities for all arms

then sample from them, it is simpler and equivalent to sample directly from the arm

posteriors. A θ̃a is drawn from the posterior distribution g(θa | ·) for each arm a ∈ A

and the arm selected is arg maxa θ̃a.

Whilst this method has existed for over 80 years, it is only recently that it has become

popular (e.g. Scott 2010). Recent work have found it to have good theoretical prop-

erties on asymptotic regret-based criteria (e.g. May et al. 2012; Honda and Takemura

2014; Agrawal and Goyal 2013; Korda et al. 2013), including favourable theoretical

comparisons with upper confidence bounding methods (Russo and Van Roy 2014;

Cowan et al. 2015). These references also give evidence that empirical performance

for Thompson sampling is better than for upper confidence bounding methods.
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2.4 Multi-arm Bandit Variations

A large number of variations have grown out of the basic bandit framework given in

Section 1.3. This section will give a brief overview of some of the more important

of these. The variations can loosely be grouped into changes to rewards, available

actions or feedback. Chapters 3, 4 and 5 each contain further references relevant to

the specific work in each chapter. More extensive references on MABs, the Gittins

index and index ideas in general can be found in Gittins et al. (2011) and Mahajan

and Teneketzis (2008).

A simple way in which the received rewards change is to alter the discount factor. The

most obvious of these is to introduce a finite time after which rewards are no longer

received (effectively discounted to zero). Chapter 3 contains work on this variation

when rewards up to the horizon end are undiscounted or discounted at a constant

rate. However discount sequences can be quite general and a thorough study of these

can be found in Berry and Fristedt (1985).

A much more difficult problem is created by allowing the arms themselves to evolve

over time. In restless bandits (Whittle 1988; Weber and Weiss 1990) such changes

can occur at any time whether the arm is selected or not. A special case of this is

explored in Mellor (2014) when arm reward distributions reset abruptly with some

probability at each time.

The problem where the arms reward distributions stay the same but new arms can

arrive over time has been referred to as arm-acquiring bandits, bandit processes with

arrivals or branching bandits. This is a very different problem from restlessness and

an index policy is optimal (Whittle 1981; Weiss 1988).

In contextual bandits (e.g. May et al. 2012; Yang and Zhu 2002) the rewards depend

on covariates (called a context) which are given at each time before selecting the arm.
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The context represents information that is relevant only to the current decision, for

example, characteristics (sex, age etc.) of the current patient in a medical trial. It

therefore gives a method by which actions can be made more relevant to the current

situation. The context is common to all arms and affects only the rewards at the

current time.

Another group of extensions restricts the availability of actions in some way. There

could be precedence constraints which limit the order in which arms can be cho-

sen (Glazebrook 1991) or some arms may not be available for selection at all times

(Dayanik et al. 2008; Kleinberg et al. 2010). There can also be a penalty (delay or

cost) when switching from one bandit to another (Van Oyen et al. 1992; Asawa and

Teneketzis 1996; Jun 2004). Each of these is a realistic feature of job scheduling prob-

lems where jobs have to be completed in order, where machines break down or are

unavailable for use, and where changing from one job to another requires a new setup.

Variations can come from extending the available actions. The MAB with multiple

plays (Whittle 1988; Pandelis and Teneketzis 1999) allows more than one arm to be

selected at a time. Job scheduling is again an example application where multiple

machines are available to process a job. Here total rewards are additive over the

individual arms rewards but can be a more general function of the arms chosen (Chen

et al. 2013). The arms chosen can be thought of as corresponding to a binary vector

with a 1 where the arm is selected. This can be generalised so that the action at each

time is to choose a vector (possibly chosen from a limited set) with the reward being

a function of this vector (Ginebra and Clayton 1995; Rusmevichientong and Tsitsiklis

2010). The exploration part of the problem is then concerned with learning about the

reward function rather than arms.

If the arms are correlated then this affects both the structure of the underlying arms

and the information received from rewards as we now can learn about arms beyond

the one selected. This is relevant in applications where we have prior information
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that some arms are similar. For example if we are testing different dosages of a clini-

cal treatment then we would expect similar dosages to bring a more similar response

than that of dosages much larger or smaller. There is no one method of modelling

this similarity. In a Bayesian setting we could treat arms as having a joint belief

distribution either directly or by using common hyperparameters. An example of the

former from Ryzhov et al. (2012) which uses a multivariate normal belief distribution

over all arms is investigated in Chapter 3. The latter type is studied in an intelli-

gence setting in Dimitrov et al. (2015) where arms are edges on a graph representing

communication links between vertices (representing people). The rewards from the

arms/edges depend on adjacent vertices so arms with a vertex in common are corre-

lated. Brown and Smith (2013) used a correlation structure also based on a graph

to choose where to explore for oil. Possible sites form clusters which have correlated

chances of finding oil. The solution method uses theory from another bandit variant,

bandit superprocesses (Whittle 1980). Here arms themselves correspond to decision

processes - as well as choosing which arm to play there is additional choice about how

it is played. In Brown and Smith (2013) the clusters of possible sites form arms and

the sites within each cluster the additional option of how to play the arm.



Chapter 3

On the Identification and

Mitigation of Weaknesses in the

Knowledge Gradient Policy for

Multi-Armed Bandits

3.1 Introduction

Bayes sequential decision problems (BSDPs) constitute a large class of optimisation

problems in which decisions (i) are made in time sequence and (ii) impact the system

of interest in ways which may be not known or only partially known. Moreover, it

is possible to learn about unknown system features by taking actions and observing

outcomes. This learning is modelled using a Bayesian framework. One important

subdivision of BSDPs is between offline and online problems. In offline problems some

decision is required at the end of a time horizon and the purpose of actions through

the horizon is to accumulate information to support effective decision-making at its

33



CHAPTER 3. ON THE KNOWLEDGE GRADIENT POLICY 34

end. In online problems each action can bring an immediate payoff in addition to

yielding information which may be useful for subsequent decisions. This chapter is

concerned with a particular class of online problems although it should be noted that

some of the solution methods have their origins in offline contexts.

The sequential nature of the problems coupled with imperfect system knowledge

means that decisions cannot be evaluated alone. Effective decision-making needs

to account for possible future actions and associated outcomes. While standard so-

lution methods such as stochastic dynamic programming can in principle be used, in

practice they are computationally impractical and heuristic approaches are generally

required. One such approach is the knowledge gradient (KG) heuristic. Gupta and

Miescke (1996) originated KG for application to offline ranking and selection prob-

lems. After a period of time in which it appears to have been studied little, Frazier

et al. (2008) expanded on KG’s theoretical properties. It was adapted for use in on-

line decision-making by Ryzhov et al. (2012) who tested it on multi-armed bandits

(MABs) with Gaussian rewards. They found that it performed well against an in-

dex policy which utilised an analytical approximation to the Gittins index; see Gittins

et al. (2011). Ryzhov et al. (2010) have investigated the use of KG to solve MABs with

exponentially distributed rewards while Powell and Ryzhov (2012) give versions for

Bernoulli, Poisson and uniform rewards, though without testing performance. They

propose the method as an approach to online learning problems quite generally, with

particular emphasis on its ability to handle correlated arms. Initial empirical results

were promising but only encompassed a limited range of models. This chapter utilises

an important sub-class of MABs to explore properties of the KG heuristic for online

use. Our investigation reveals weaknesses in the KG approach. We inter alia propose

modifications to mitigate these weaknesses.

In Section 3.2 we describe a class of exponential family MABs that we will focus

on, together with the KG policy for them. Our main analytical results revealing
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weaknesses in KG are given in Section 3.3. Methods aimed at correcting these KG

errors are discussed in Section 3.4 and are evaluated in a computational study which

is reported in Section 3.5. In this study a range of proposals are assessed for Bernoulli

and exponential versions of our MAB models. Gaussian MABs have characteristics

which give the operation of KG distinctive features. The issues for such models are

discussed in Section 3.6, together with an associated computational study in Section

3.6.1. Section 3.7 identifies some key conclusions to be drawn.

3.2 A class of exponential family multi-armed ban-

dits

3.2.1 Multi-Armed Bandit Problems for Exponential Fami-

lies

We consider multi-armed bandits (MABs) with geometric discounting operating over

a time horizon T ∈ Z+ ∪ {∞} which may be finite or not. Rewards are drawn from

exponential families with independent conjugate priors for the unknown parameters.

More specifically the set up is as follows:

1. At each decision time t ∈ {0, 1, . . . , T − 1} an action a ∈ {1, . . . , k} is taken.

Associated with each action, a, is an (unknown) parameter, which we denote as

θa. Action a (pulling arm a) yields a reward which is drawn from the density

(relative to some σ-finite measure on R)

f(y | θa) = eθay−ψ(θa), y ∈ Ω, θa ∈ Θ, (3.2.1)

where Ω ⊆ R is the support of f, ψ is a cumulant generating function and

parameter space Θ ⊆ R is such that ψ (θ) <∞, ∀θ ∈ Θ. Reward distributions
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are either discrete or absolutely continuous, with Ω a discrete or continuous

interval [min Ω,max Ω] where −∞ ≤ min Ω < max Ω ≤ ∞. We shall take a

Bayesian approach to learning about the parameters θa.

2. We assume independent conjugate priors for the unknown θa with Lebesgue

densities given by

g(θa | Σa, na) ∝ eΣaθa−naψ(θa), θa ∈ Θ, 1 ≤ a ≤ k, (3.2.2)

where Σa and na are known hyper-parameters representing, respectively, the

Bayesian sum of rewards and the Bayesian number of observations for arm a.

This then defines a predictive density

p(y | Σa, na) =

∫
Θ

f(y | θa)g(θa | Σa, na)dθa (3.2.3)

which has mean Σa

na
. Bayesian updating following an observed reward y on

arm a produces a posterior p(θa|y) = g(θa|Σa + y, na + 1). Thus at each

time we can define an arm’s informational state as the current value of hyper-

parameters Σa, na, such that the posterior for θa given the observations to date

is g(θa|Σa, na). The posterior for each arm is independent so the informational

states of arms not pulled at t are unchanged.

3. The total return when reward yt is received at time t is given by
∑T−1

t=0 γ
tyt,

where discount rate γ satisfies either 0 < γ ≤ 1 when T < ∞ or 0 < γ < 1

when T = ∞. The objective is to design a policy, a rule for choosing actions,

to maximise the Bayes’ return, namely the total return averaged over both

realisations of the system and prior information.

The current informational state for all arms, denoted (Σ,n) = {(Σa, na), 1 ≤ a ≤ k}

summarises all the information in the observations up to the current time.

When 0 < γ < 1, T = ∞ the Bayes’ return is maximised by the Gittins Index (GI)

policy, see Gittins et al. (2011). This operates by choosing, in the current state, any
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action a, satisfying

νGI(Σa, na, γ) = max
1≤b≤k

νGI(Σb, nb, γ) , (3.2.4)

where νGI is the Gittins index. We describe Gittins indices in Section 3.4 along

with versions adapted for use in problems with 0 < γ ≤ 1, T < ∞. Given the

challenge of computing Gittins indices and the general intractability of deploying dy-

namic programming to solve online problems, the prime interest is in the development

of heuristic policies which are easy to compute and which come close to being return

maximising.

3.2.2 The Knowledge Gradient Heuristic

The knowledge gradient policy (KG) is a heuristic which bases action choices both on

immediate returns Σa

na
and also on the changes in informational state which flow from a

single observed reward. It is generally fast to compute. To understand how KG works

for MABs suppose that the decision time is t and that the system is in information

state (Σ,n) then. The current decision is taken to be the last opportunity to learn

and so from time t+1 through to the end of the horizon whichever arm has the highest

mean reward following the observed reward at t will be pulled at all subsequent times.

With this informational constraint, the best arm to pull at t (and the action mandated

by KG in state (Σ,n)) is given by

AKG(Σ,n,t) = arg max
a

{
Σa

na
+H(γ, s) max

1≤b≤k
E

(
Σb + IaY

nb + Ia
| Σ,n,a

)}
, (3.2.5)

where Y is the observed reward at t and Ia is an indicator taking the value 1 if action a

is taken at t, 0 otherwise. The conditioning indicates that the reward Y depends upon

the current state (Σ,n) and the choice of action a. The constant H(γ, s) is a suitable

multiplier of the mean return of the best arm at t+ 1 to achieve an accumulation of
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rewards for the remainder of the horizon (denoted here by s = T − t). It is given by

H(γ, s) =



γ(1−γs−1)
1−γ if 0 < γ < 1, T <∞

γ
1−γ if 0 < γ < 1, T =∞

s− 1 if γ = 1, T <∞.

(3.2.6)

KG can be characterised as the policy resulting from the application of a single policy

improvement step to a policy which always pulls an arm with the highest prior mean

return throughout. Note that for (γ, T ) ∈ (0, 1)×Z+, H(γ, s) is increasing in both γ

(T fixed) and in T (γ fixed). For any sequence of (γ, T ) values approaching the limit

(1,∞) in a manner which is co-ordinatewise increasing, the value of H(γ, s) diverges

to infinity. This fact is utilised heavily in Section 3.3.

We now develop an equivalent characterisation of KG based on Ryzhov et al. (2012)

which will be more convenient for what follows. We firstly develop an expression for

the change in the maximal mean reward available from any arm when action a is

taken in state (Σ,n). We write

νKGa (Σ,n) = E

{
max
1≤b≤k

µ+1
b − max

1≤b≤k
µb | Σ,n,a

}
, (3.2.7)

where µb is the current arm b mean return Σb

nb
and µ+1

b is the mean return available

from arm b at the next time conditional on the observed reward resulting from action

a. Please note that µ+1
b is a random variable. It is straightforward to show that

AKG(Σ,n,t) = arg max
1≤a≤k

{
µa +H(γ, s)νKGa (Σ,n)

}
. (3.2.8)

Hence KG gives a score to each arm and chooses the arm of highest score. It is not

an index policy because the score depends upon the informational state of arms other

than the one being scored. That said, there are similarities between KG scores and

Gittins indices. The Gittins index νGI(Σa, na) exceeds the mean return Σa

na
by an

amount termed the uncertainty or learning bonus. This bonus can be seen as a mea-

sure of the value of exploration in choosing arm a. The quantity H(γ, s)νKGa (Σ,n) in
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the KG score is an alternative estimate of the learning bonus. Assessing the accuracy

of this estimate will give an indication of the strengths and weaknesses of the policy.

3.2.3 Dominated arms

In our discussion of the deficiencies of the KG policy in the next section we shall focus,

among other things, on its propensity to pull arms which are suboptimal to another

arm with respect to both exploitation and exploration. Hence there is an alternative

which is better both from an immediate return and from an informational perspective.

We shall call such arms dominated. We begin our discussion with a result concerning

properties of Gittins indices established by Yu (2011).

Theorem 3.2.1. The Gittins index νGI (cΣ, cn, γ) is decreasing in c ∈ R+ for any

fixed Σ, n, γ and is increasing in Σ for any fixed c, n, γ.

We proceed to a simple corollary whose statement requires the following definition.

Definition 3.2.2. An arm in state (Σ, n) dominates one in state (Σ′, n′) if and only

if Σ
n
> Σ′

n′
and n < n′.

Corollary 3.2.3. The GI policy never chooses dominated arms.

Proof. We will show that νGI(Σ, n, γ) > νGI(Σ′, n′, γ) when Σ
n
> Σ′

n′
and n < n′.

Let c = n′

n
, then from Theorem 3.2.1 and since c > 1 we have νGI(Σ, n, γ) >

νGI(cΣ, cn, γ) = νGI(cΣ, n′, γ). From the condition Σ
n
> Σ′

n′
we have that cΣ > Σ′

and it then follows from the monotonicity of νGI(Σ, n, γ) with Σ given in Theorem

3.2.1 that νGI(cΣ, n′, γ) > νGI(Σ′, n′, γ).
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Hence pulling dominated arms can never be optimal for infinite horizon MABs. We

shall refer to the pulling of a dominated arm as a dominated action in what follows.

Exploration of the conditions under which KG chooses dominated actions is a route

to an understanding of its deficiencies and prepares us to propose modifications to it

which achieve improved performance. This is the subject matter of the following two

sections.

3.3 The KG policy and dominated actions

3.3.1 Conditions for the choice of dominated actions under

KG

This section will elucidate sufficient conditions for the KG policy to choose dominated

arms. A key issue here is that the quantity νKGa (and hence the KG learning bonus)

can equal zero in cases where the true learning bonus related to a pull of arm a may

be far from zero. Ryzhov et al. (2012) stated that νKGa > 0. However, crucially,

that paper only considered Gaussian bandits. The next lemma is fundamental to the

succeeding arguments. It says that, for sufficiently high γ, the KG policy will choose

the arm with the largest νKG.

Lemma 3.3.1. ∀ Σ,n, t for which maxaν
KG
a (Σ,n) > 0 ∃γ∗, T ∗ such that γ > γ∗, T >

T ∗ ⇒ AKG (Σ,n, t) = arg maxa ν
KG
a (Σ,n).

Proof. The result is a trivial consequence of the definition of the KG policy in Section

3.2.2 together with the fact that H(γ, s) diverges to infinity in the manner described

in Section 3.2.

The next result gives conditions under which νKGa (Σ,n) = 0. Informally, νKGa = 0 if

no outcome from a pull on arm a will change which arm has maximal mean value.



CHAPTER 3. ON THE KNOWLEDGE GRADIENT POLICY 41

When a ∈ arg maxb µb this depends on the lower tail of the distribution of Ya while if

a /∈ arg maxb µb it depends on the upper tail.

Lemma 3.3.2. Let Ca (Σ,n) denote maxb 6=a µb = maxb6=a
Σb

nb
. If a ∈ arg maxb µb and

the observation state space, Ω, is bounded below with minimum value min Ω then

νKGa (Σ,n) = 0⇔ Σa + min Ω

na + 1
≥ Ca (Σ,n) ; (3.3.1)

while if a /∈ arg maxb µb and Ω is bounded above with maximum value max Ω then

νKGa (Σ,n) = 0⇔ Σa + max Ω

na + 1
≤ Ca (Σ,n) . (3.3.2)

In cases where a ∈ arg maxb µb with Ω unbounded below, and where a /∈ arg maxb µb

with Ω unbounded above, we have νKGa (Σ,n) > 0.

Proof. Note that

νKGa (Σ,n) = EYa

[
max
b
µ+1
b −max

b
µb | Σ,n,a

]
= EYa

[
max

(
µ+1
a , Ca (Σ,n)

)
| Σ,n,a

]
−max

b
µb. (3.3.3)

Hence

νKGa (Σ,n) = 0⇔ EYa
[
max

(
µ+1
a , Ca (Σ,n)

)
| Σ,n,a

]
= max

b
µb. (3.3.4)

If a ∈ arg maxb µb and so maxb µb = µa then, observing that

EYa
[
max

(
µ+1
a , Ca (Σ,n)

)
| Σ,n,a

]
≥ EYa

[
µ+1
a | Σ,n,a

]
= µa, (3.3.5)

we infer from equation (3.3.4) that νKGa (Σ,n) = 0 if and only if

max
(
µ+1
a , Ca (Σ,n)

)
= µ+1

a ⇔ µ+1
a ≥ Ca (Σ,n) (3.3.6)

with probability 1 under the distribution of Ya. Under our set up as described in Sec-

tion 3.2, this condition is equivalent to the right hand side of (3.3.1). If a /∈ arg maxb µb
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then maxbµb = Ca (Σ,n) and so, suitably modifying the previous argument, we infer

that νKGa (Σ,n) = 0 if and only if

max
(
µ+1
a , Ca (Σ,n)

)
= Ca (Σ,n)⇔ µ+1

a ≤ Ca (Σ,n) (3.3.7)

with probability 1 under the distribution of Ya. Under our set up as described in Sec-

tion 3.2, this condition is equivalent to the right hand side of (3.3.2). The unbounded

cases follow directly from the formula for νKGa (Σ,n) as the change in µa due to an

observation has no finite limit in the direction(s) of unboundedness. This completes

the proof.

So whether νKGa (Σ,n) = 0 depends on a different tail of the distribution of Ya de-

pending on whether a ∈ arg maxb µb or not. This asymmetry is important in what

follows.

Theorem 3.3.3. If Ω is bounded below then there are choices of Σ,n,γ, T for which

the KG policy chooses dominated arms.

Proof. If we consider cases for which

Σ1

n1

>
Σ2

n2

, n1 < n2; Σb = cΣ2, nb = cn2, 3 ≤ b ≤ k, c ≥ 1 (3.3.8)

then it follows that µ2 = µb, ν
KG
2 ≥ νKGb , 3 ≤ b ≤ k, and all arms except 1 and 2 can

be ignored in the discussion. We first suppose that Ω unbounded above. It follows

from Lemma 3.3.2 that νKG2 (Σ,n) > 0. Since min Ω > −∞, we can further choose

(Σ,n) such that

Σ1 + min Ω

n1 + 1
≥ Σ2

n2

= C1(Σ,n). (3.3.9)

From the above result we infer that νKG1 (Σ,n) = 0. We now suppose that Ω is

bounded above, and hence that ∞ > max Ω > min Ω > −∞. Choose (Σ,n) as

follows: Σ1 = max Ω + 2 min Ω, n1 = 3,Σ2 = max Ω + 3 min Ω, n2 = 4. It is trivial

that these choices mean that arm 1 dominates arm 2. We have that

Σ1 + min Ω

n1 + 1
=

max Ω + 3 min Ω

4
=

Σ2

n2

= C1(Σ,n) (3.3.10)
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and hence that νKG1 (Σ,n) = 0. Further we have that

Σ2 + max Ω

n2 + 1
=

2 max Ω + 3 min Ω

5
>

Σ1

n1

= C2(Σ,n) (3.3.11)

and hence that νKG2 (Σ,n) > 0. In both cases discussed (i.e., Ω bounded and un-

bounded above) we conclude from Lemma 3.3.1 the existence of t, γ∗, T ∗ such that

γ > γ∗, T > T ∗ ⇒ AKG(Σ,n, t) = arg maxa ν
KG
a (Σ,n) = 2, which is a dominated

arm, as required. This concludes the proof.

Although the part of the above proof dealing with the case in which Ω is bounded

above identifies a specific state in which KG will choose a dominated arm when

H(γ, s) is large enough, it indicates how such cases may be identified more generally.

These occur when the maximum positive change in the mean of the dominated arm

(µ2 → µ+1
2 ) is larger than the maximum negative change in the mean of the dominating

arm (µ1 → µ+1
1 ). This can occur both when the Ya have distributions skewed to the

right and also where the corresponding means are both small, meaning that a large

y can effect a greater positive change in µ2 than can a small y a negative change in

µ1. A detailed example of this is given for the Bernoulli MAB in the next section.

Similar reasoning suggests that the more general sufficient condition for KG to choose

dominated arms, namely νKG2 (Σ,n) > νKG1 (Σ,n) with arm 2 dominated, will hold in

cases with Ω unbounded above if the distribution of Ya has an upper tail considerably

heavier than its lower tail.

3.3.2 Stay-on-the winner rules

Berry and Fristedt (1985) demonstrated that optimal policies for MABs with Bernoulli

rewards and general discount sequences (including all cases considered here) have a

stay-on-the-winner property. If arm a is optimal at some epoch and a pull of a yields

a success (ya = 1) then arm a continues to be optimal at the next epoch. Yu (2011)

extends this result to the exponential family considered here in the following way: an
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optimal arm continues to be optimal following an observed reward which is sufficiently

large. The next result is an immediate consequence.

Lemma 3.3.4. Suppose that Ω is bounded above. If arm a is optimal at some epoch

and a pull of a yields a maximal reward (ya = max Ω) then arm a is optimal at the

next epoch.

The following result states that the KG policy does not share the stay-on-the-winner

character of optimal policies as described in the preceding lemma. In its statement

we use ea for the k−vector whose ath component is 1, with zeros elsewhere.

Proposition 3.3.5. If Ω is bounded above and below ∃ choices of Σ,n,t, γ, T and a

for which AKG (Σ,n, t) = a, AKG (Σ + max Ωea,n + ea, t) 6= a.

Proof. For the reasons outlined in the proof of Theorem 3.3.3 we may assume without

loss of generality that k = 2. As in that proof we consider the state (Σ,n) with

Σ1 = max Ω + 2 min Ω, n1 = 3,Σ2 = max Ω + 3 min Ω, n2 = 4. We suppose that a pull

of arm 2 yields an observed reward equal to max Ω. This takes the process state to

(Σ + max Ωe2,n + e2, t) =
(
Σ/,n/

)
, say. We use the dashed notation for quantities

associated with this new state. Observe that µ
/
2 > µ

/
1 and hence that 2 ∈ arg maxb µ

/
b .

We note that

Σ
/
2 + min Ω

n
/
2 + 1

=
2 max Ω + 4 min Ω

6
= µ

/
1 = C2

(
Σ/,n/

)
, (3.3.12)

which implies via Lemma 3.3.2 that νKG2

(
Σ/,n/

)
= 0. We also have that

Σ
/
1 + max Ω

n
/
1 + 1

=
2 max Ω + 2 min Ω

4
> µ

/
2 = C1

(
Σ/,n/

)
, (3.3.13)

which implies via Lemma 3.3.2 that νKG1

(
Σ/,n/

)
> 0. The existence of t, γ, T for

which AKG (Σ,n, t) = 2 while AKG
(
Σ/,n/, t+ 1

)
= AKG (Σ + max Ωe2,n + e2, t) 6=

2 now follows from Lemma 3.3.1.
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3.3.3 Examples

We will now give more details of how the KG policy chooses dominated actions in the

context of two important members of the exponential family.

Exponential rewards

Suppose that Ya | θa v Exp(θa) and θa v Gamma(na + 1,Σa) which yields the

unconditional density for Ya given by

ga(y) = (na + 1)Σna+1
a (Σa + 1)−na−2, y ≥ 0, (3.3.14)

with E(Ya) = Σa

na
. Let arm 1 dominate arm 2. For this case Ω = [0,∞) and

from Lemma 3.3.2, the unboundedness of Ω above means that νKG2 (Σ,n) > 0 while

νKG1 (Σ,n) = 0 if and only if

Σ1

n1 + 1
≥ Σ2

n2

. (3.3.15)

Hence from Lemma 3.3.1 we can assert the existence of t, γ, T for which KG chooses

dominated arm 2 whenever (3.3.15) holds.

Ryzhov and Powell (2011) discuss the online KG policy for exponential rewards in

detail. They observe that νKGa can be zero but do not appear to recognise that this

can yield dominated actions under the policy. Later work, Ding and Ryzhov (2016),

showed that this can lead to the offline KG policy never choosing the greedy arm, an

extreme case of dominated errors. However, with the online KG policy the greedy

arm will eventually be selected as νKGa for the other arm tends to zero. These papers

note that, in states for which

Σ1

n1 + 1
≤ Σ2

n2

≤ Σ1

n1

, (3.3.16)

the value of νKG1 (Σ,n) , while not zero, penalises the choice of the greedy arm rel-

ative to other arms in a similar way to the bias which yields dominated actions.
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Policies which mitigate such bias are given in the next section and are evaluated in

the computational study following.

3.3.4 Bernoulli rewards

Suppose that Ya | θa v Bern (θa) , with θa v Beta (Σa, na − Σa) and so Ω = {0, 1} and

P (Ya = 1) = Σa

na
= 1 − P (Ya = 0). Since Ω is bounded above and below, dominated

actions under KG will certainly occur. Demonstrating this in terms of the asymmetric

updating of Beta priors can be helpful in understanding the more general case of

bounded rewards. Use δ+
a and δ−a for the magnitudes of the upward and downward

change in E (Ya) under success and failure respectively. We have

δ+
a =

na − Σa

na (na + 1)
; δ−a =

Σa

na (na + 1)
, (3.3.17)

from which we conclude that δ+
a ≥ δ−a ⇔ µa ≤ 0.5. Prompted by this analysis,

consider a case in which k = 2,Σ1 = Σ2;n1 + m = n2 for some m ∈ N+. Arm 1

dominates arm 2. Further, the fact that

Σ1 + min Ω

n1 + 1
=

Σ1

n1 + 1
≥ Σ1

n1 +m
=

Σ2

n2

= C1 (Σ,n) (3.3.18)

implies via Lemma 3.3.2 that νKG1 (Σ,n) = 0. From Lemma 3.3.2 we also conclude

that

νKG2 (Σ,n) > 0 ⇐⇒ Σ2 + max Ω

n2 + 1
=

Σ1 + 1

n1 +m+ 1
>

Σ1

n1

= C2 (Σ,n) . (3.3.19)

The strict inequality in the right hand side of (3.3.19) will hold whenever n1 >

(m+ 1) Σ1. Thus, for suitably chosen t, γ and T, the KG policy will take dominated

actions in a wide range of states. Suppose now that T =∞ and hence the immediate

claim is that under the condition n1 > (m+ 1) Σ1 the KG policy will take dominated

action 2 for γ large enough. We now observe that in practice dominated actions can

be taken for quite modest γ. Returning to the characterisation of the KG policy we
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infer that in the above example, dominated action 2 will be chosen whenever

n1 > (m+ 1) Σ1,
γ

1− γ
>

m (n1 +m+ 1)

{n1 − (m+ 1) Σ1}
. (3.3.20)

Such errors will often be costly. Note also that the condition n1 > (m+ 1) Σ1 suggests

that dominated actions occur more often when arms have small mean rewards. This

is investigated further in the computational study following.

Gaussian rewards

Here we have Ya | θa v N (θa, 1) and θa v N
(

Σa

na
, 1
na

)
. Hence Ω = R is unbounded

and if arm a is chosen, the distribution of µ+
a is symmetric about µa. In this case the

KG policy does not choose dominated actions and the value of νKGa is always greater

for the arm with smaller prior precision na. Despite this fact, KG can still take poor

decisions by underestimating the learning bonus for the greedy arm. The Gaussian

MAB is discussed further in Section 3.6.

3.4 Policies which modify KG to avoid taking dom-

inated actions

In this section we present new policies which are designed to mitigate the defects of

the KG approach elucidated in the previous section. The performance of these are

assessed along with some earlier proposals, in the numerical study of the next section.

Non-dominated KG (NKG): This proposal modifies standard KG by prohibiting

dominated actions. It achieves this by always choosing a non-dominated arm with

highest KG score. Any greedy arm is non-dominated and hence one always exists.

Positive KG (PKG): The KG score for a greedy arm reflects a negative change in

its posterior mean while that for non-greedy arms reflect positive changes. The PKG
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policy modifies KG such that for all arms it is positive moves which are registered.

It achieves this by modifying the KG scores for each greedy arm a as follows: in the

computation of the score replace the quantity Ca (Σ,n) = maxb6=a µb by the quantity

C∗a (Σ,n) := 2µa−Ca (Σ,n). This adjustment transforms the KG scores νKGa (Σ,n) to

adjusted values νPKGa (Σ,n). The change maintains the key distance used in the KG

calculation as C∗a − µa = µa −Ca but ensures that it is non-negative. For non-greedy

arms b we have νKGb (Σ,n) = νPKGb (Σ,n).

Theorem 3.4.1. Policy PKG never chooses a strictly dominated arm.

Proof. Suppose that arm 2 is strictly dominated by arm 1 such that Σ1

n1
> Σ2

n2
and

n2 ≥ n1 + 1. In the argument following we shall suppose that k = 2. This is without

loss of generality as the addition of any other arm b with µb ≤ µ1 does not effect the

PKG score of arm 2 and can only increase the PKG score of the non-dominated arm

1. Given that µ1 > µ2, in order to establish the result, namely that APKG (Σ,n) = 1

it is enough to establish that νPKG1 (Σ,n) ≥ νPKG2 (Σ,n). From the definitions of the

quantities concerned we have that

νPKG1 (Σ,n) = E
{

max
(
µ+

1 − C∗1 (Σ,n) | Σ,n,1
)
, 0
}

= EY1 max

{(
Σ1 + Y1

n1 + 1
−
(

2Σ1

n1

− Σ2

n2

))
, 0

}
, (3.4.1)

while

νPKG2 (Σ,n) = EY2 max

{(
Σ2 + Y2

n2 + 1
− Σ1

n1

)
, 0

}
. (3.4.2)

However, under the conditions satisfied by (Σ,n) it is easy to show that, ∀y ∈ R,

max

{(
Σ1 + y

n1 + 1
−
(

2Σ1

n1

− Σ2

n2

))
, 0

}
≥ max

{(
Σ2 + y

n2 + 1
− Σ1

n1

)
, 0

}
(3.4.3)

and hence that

νPKG1 (Σ,n) ≥ EY1 max

{(
Σ2 + Y1

n2 + 1
− Σ1

n1

)
, 0

}
. (3.4.4)



CHAPTER 3. ON THE KNOWLEDGE GRADIENT POLICY 49

But from Shaked and Shanthikumar (2007) we infer that Y1 exceeds Y2 in the convex

ordering. Since max
{(

Σ2+y
n2+1

− Σ1

n1

)
, 0
}

is convex in y it follows that

νPKG1 (Σ,n) ≥ EY1 max

{(
Σ2 + Y1

n2 + 1
− Σ1

n1

)
, 0

}
≥ EY2 max

{(
Σ2 + Y2

n2 + 1
− Σ1

n1

)
, 0

}
= νPKG2 (Σ,n) (3.4.5)

and the result follows.

KG-index (KGI): Before we describe this proposal we note that Whittle (1988)

produced a proposal for index policies for a class of decision problems called restless

bandits which generalise MABs by permitting movement in the states of non-active

arms. Whittle’s indices generalise those of Gittins in that they are equal to the

latter for MABs with 0 < γ < 1, T = ∞. Whittle’s proposal is relevant for MABs

with finite horizon T < ∞ since time-to-go now needs to be incorporated into state

information which in turn induces a form of restlessness. In what follows we shall

refer to Gittins/Whittle indices as those which emerge from this body of work for all

versions of the MABs under consideration here.

The KGI policy chooses between arms on the basis of an index which approximates

the Gittins/Whittle index appropriate for the problem by using the KG approach. We

consider a single arm with (Σ, n) prior, finite horizon t and discount factor γ, 0 ≤ γ ≤

1. To develop the Gittins/Whittle index νGIt (Σ, n, γ) for such a bandit we suppose

that a charge λ is levied for bandit activation. We then consider the sequential decision

problem which chooses from the actions {active, passive} for the bandit at each epoch

over horizon t with a view to maximising expected rewards net of charges for bandit

activation. The value function Vt (Σ, n, γ, λ) satisfies Bellman’s equations as follows:

Vt(Σ, n, γ, λ) = max

{
Σ

n
− λ+ γEY [Vt−1(Σ + Y, n+ 1, γ, λ)]; γVt−1(Σ, n, γ, λ)

}
.

(3.4.6)
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This is a stopping problem in that, once it is optimal to choose the passive action

at some epoch then it will be optimal to choose the passive action at all subsequent

epochs since the active arm is unchanged by the passive action. Hence, (3.4.6) may

be replaced by the following:

Vt (Σ, n, γ, λ) = max

{
Σ

n
− λ+ γEY [Vt−1 (Σ + Y, n+ 1, γ, λ)] ; 0

}
. (3.4.7)

We further observe that Vt (Σ, n, γ, λ) decreases as λ increases, while keeping t,Σ, n

and γ fixed. This yields the notion of indexability in index theory. We now define the

Gittins/Whittle index as

νGIt (Σ, n, γ) = min{λ;Vt(Σ, n, γ, λ) = 0}. (3.4.8)

This index is typically challenging to compute.

We obtain an index approximation based on the KG approach as follows: In the

stopping problem with value function Vt(Σ, n, γ, λ) above, we impose the constraint

that whatever decision is made at the second epoch is final, namely will apply for

the remainder of the horizon. This in turn yields an approximating value function

V KG
t (Σ, n, γ, λ) which when 0 < γ < 1 satisfies the equation

V KG
t (Σ, n, γ, λ)

= max

{
Σ

n
− λ+

γ (1− γt−1)

(1− γ)
EY

[
max

(
max

(
Σ + Y

n+ 1
, λ

)
− λ; 0

)
| Σ, n

]
; 0

}
(3.4.9)

and which is also decreasing in λ for any fixed t,Σ, n and γ. When γ = 1 the constant

multiplying the expectation on the r.h.s of (3.4.9) becomes t− 1. The indices we use

for the KGI policy when T <∞ are given by

νKGIt (Σ, n, γ) = min
{
λ;V KG

t (Σ, n, γ, λ) = 0
}

= min

{
λ;λ ≥ Σ

n
and V KG

t (Σ, n, γ, λ) = 0

}
, (3.4.10)
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where Σ, n, γ are as previously and t is the time to the end of the horizon. Note

that the second equation in (3.4.10) follows from the evident fact that the index is

guaranteed to be no smaller than the mean Σ
n

.

Trivially Vt (Σ, n, γ, λ) and V KG
t (Σ, n, γ, λ) are both increasing in the horizon t and

consequentially so are both νGIt (Σ, n, γ) and νKGIt (Σ, n, γ). When 0 < γ < 1 the

limits limt→∞ ν
GI
t (Σ, n, γ) and limt→∞ ν

KGI
t (Σ, n, γ) are guaranteed to exist and be

finite. These limits are denoted νGI (Σ, n, γ) and νKGI (Σ, n, γ) respectively, the for-

mer being the Gittins index. We use the indices νKGI (Σ, n, γ) for the KGI policy

when 0 < γ < 1, T =∞.

Theorem 3.4.2. The KGI policy does not choose dominated arms.

We establish this result via a series of results.

Lemma 3.4.3. V KG
t (Σ, n, γ, λ) and νKGIt (Σ, n, γ) are both increasing in Σ for any

fixed values of t, n, γ, λ.

Proof. Since the quantity
(
max

(
Σ+y
n+1

, λ
)
− λ; 0

)
is increasing in y and Y | Σ, n is

stochastically increasing in Σ, it follows easily that the expectation on the right hand

side of (3.4.9) is increasing in Σ. The result then follows straightforwardly.

We now proceed to consider the equivalent bandit, but with prior (cΣ, cn) , where

c > 0.

Lemma 3.4.4. V KG
t (cΣ, cn, γ, λ) is decreasing in c for any fixed values of t,Σ, n, γ

and for any λ ≥ Σ
n

.

Proof. First note that for y ≥ Σ
n
, the quantity max

(
cΣ+y
cn+1

, λ
)
, regarded as a function

of c, is decreasing when λ ≥ Σ
n

. For y < Σ
n
,max

(
cΣ+y
cn+1

, λ
)

= λ and hence is trivially

decreasing in c. Note also that the quantity max
(
cΣ+y
cn+1

, λ
)
, regarded as a function
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of y, is increasing and convex. We also observe from Yu (2011) that Y | cΣ, cn is

decreasing in the convex order as c increases. It then follows that, for c1 > c2 and for

λ ≥ Σ
n
,

EY

(
max

(
c1Σ + Y

c1n+ 1
, λ

) ∣∣∣∣∣ c1Σ, c1n

)
≤ EY

(
max

(
c1Σ + Y

c1n+ 1
, λ

) ∣∣∣∣∣ c2Σ, c2n

)

≤ EY

(
max

(
c2Σ + Y

c2n+ 1
, λ

) ∣∣∣∣∣ c2Σ, c2n

)
(3.4.11)

from which the result trivially follows via a suitable form of (3.4.9).

The following is an immediate consequence of the preceding lemma and (3.4.10).

Corollary 3.4.5. νKGIt (cΣ, cn, γ) is decreasing in c for any fixed values of t,Σ, n, γ.

It now follows trivially from the properties of the index νKGIt established above that

if (Σ1, n1) dominates (Σ2, n2) then νKGIt (Σ1, n1, γ) ≥ νKGIt (Σ2, n2, γ) for any t, γ.

It must also follow that νKGI(Σ1, n1, γ) ≥ νKGI(Σ2, n2, γ) when 0 < γ < 1. This

completes the proof of the above theorem.

Closed form expressions for the indices νKGIt are not usually available, but are in

simple cases. For the Bernoulli rewards case of Subsection 3.3.4 we have that

νKGIt (Σ, n, γ) =
Σ

n+ γ(1−γt−1)
(1−γ)

Σ
+
γ (1− γt−1)

(1− γ)

Σ (Σ + 1)

(n+ 1)
{
n+ γ(1−γt−1)

(1−γ)
Σ
} . (3.4.12)

In general numerical methods such as bisection are required to obtain the indices.

If the state space is finite it is recommended that all index values are calculated in

advance.

Fast calculation is an essential feature of KG but it should be noted that this is not

universal and that index methods are more tractable in general. An example of this

is the MAB with multiple plays (Whittle 1980). Here m arms are chosen at each time
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rather than just one. Rewards are received from each of the arms as normal. For an

index policy the computation required is unchanged - the index must be calculated for

each arm as normal with arms chosen in order of descending indices. The computation

for KG is considerably larger than when m = 1. The KG score must be calculated

for each possible combination of m arms, that is
(
n
m

)
times. For each of these we

must find the set of arms with largest expected reward conditional on each possible

outcome. Even in the simplest case, with Bernoulli rewards, there are 2m possible

outcomes. For continuous rewards the problem becomes much more difficult even for

m = 2. It is clear that KG is impractical for this problem.

An existing method with similarities to KG is the Expected Improvement algorithm

of Jones et al. (1998). This is an offline method of which KG can be thought of as

a more detailed alternative. It was compared with KG in Frazier et al. (2009) in the

offline setting. The Expected Improvement algorithm is simpler than KG and always

assigns positive value to the greedy arm unless its true value is known exactly. Its

arm values are “optimistic” in a manner analogous to the PKG policy described above

and it is reasonable to conjecture that it shares that rule’s avoidance of dominated

actions (see Theorem 3.4.1). As an offline method it is not tested here but it may be

possible to develop an online version.

3.5 Computational Study

This section will present the results of experimental studies for the Bernoulli and

exponential MAB. A further study will be made for the Gaussian MAB in Section

3.6.1.
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3.5.1 Methodology

All experiments use the standard MAB setup as described in Section 3.2.1. For

Bernoulli rewards with k = 2 policy returns are calculated using value iteration.

All other experiments use simulation for this purpose. These are truth-from-prior

experiments i.e. the priors assigned to each arm are assumed to be accurate.

For each simulation run a θa is drawn randomly from the prior for each arm a ∈

{1, 2, . . . , k}. A bandit problem is run for each policy to be tested using the same set

of parameter values for each policy. Performance is measured by totalling, for each

policy, the discounted true expected reward of the arms chosen. For each problem

160000 simulation runs were made.

In addition to the policies outlined in Section 3.4, also tested are the Greedy policy

(described in Section 3.2.1) and a policy based on analytical approximations to the

GI (Brezzi and Lai 2002), referred to here as GIBL. These approximations are based

on the GI for a Wiener process and therefore assume normally distributed rewards.

However, they can be appropriate for other reward distributions by Central Limit

Theorem arguments and the authors found that the approximation was reasonable

for Bernoulli rewards, at least for n not too small. Other papers have refined these

approximations but, although they may be more accurate asymptotically, for the

discount rates tested here they showed inferior performance and so only results for

GIBL are given.

3.5.2 Bernoulli MAB

The first experiment tests performance over a range of γ for k ∈ {2, 10} arms, each

with uniform Beta(1, 1) priors. The mean percentage lost reward for five policies

are given in Figure 3.5.1. The results for the greedy policy are not plotted as they
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Figure 3.5.1: Mean percentage of lost reward compared to the GI policy for five

policies for the Bernoulli MAB with uniform priors and γ ∈ [0.9, 0.99]. The left plot

shows k = 2 while on the right k = 10.

are clearly worse than the other policies (percentage loss going from 0.64 to 1.77 for

k = 2). The overall behaviour of the policies is similar for k = 2 and k = 10. KGI is

strong for lower γ but is weaker for higher γ while GIBL is strongest as γ increases.

The sharp change in performance for GIBL at γ ≈ 0.975 occurs because the GIBL

index is a piecewise function. Both NKG and PKG improve on KG for k = 2 but the

three KG variants are almost identical for k = 10. The difference between KG and

NKG gives the cost for the KG policy of dominated actions. These make up a large

proportion of the lost reward for KG for lower γ but, as γ increases, over-greedy errors

due to the myopic nature of the KG policy become more significant and these are not

corrected by NKG. These errors are also the cause of the deteriorating performance

of KGI at higher γ. At k = 10 the states given in Section 3.3.3 where KG was shown

to take dominated actions occur infrequently. This is because, for larger numbers

of arms there will more often be an arm with µ ≥ 0.5 and such arms are chosen in

preference to dominated arms.
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Figure 3.5.2: Percentage lost reward relative to the GI policy for six policies for the

Bernoulli MAB with α = 1, β ∈ [1, 10] and γ = 0.98. The left plot shows k = 2 while

on the right k = 10.

However, states where µ < 0.5 for all arms will occur more frequently when arms

have lower θ. Here dominated actions can be expected to be more common. We can

test this by using priors where β > α. Figure 3.5.2 shows the effect of varying the β

parameter for all arms. The discount rate γ = 0.98 is quite a high value where the

greedy policy can be expected to perform poorly since exploration will be important.

However as β increases the performance of KG deteriorates to the extent that it is

outperformed by the greedy policy. This effect is still seen when k = 10. The superior

performance of NKG shows that much of the loss of KG is due to dominated actions.

Policy PKG improves further on NKG suggesting that KG makes further errors due

to asymmetric updating even when it does not choose dominated arms. A clearer

example of this is given in Section 3.5.3. Both policies based on GI approximations

perform well and are robust to changes in β. KGI is the stronger of the two as GIBL

is weaker when the rewards are less normally distributed.

The same pattern can also be seen to be present when arms have low success prob-
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Figure 3.5.3: Percentage lost reward relative to the GI policy for six policies for the

Bernoulli MAB with β = 1, α ∈ [0.02, 0.5] and γ = 0.98. The left plot shows k = 2

while on the right k = 10.

abilities but prior variance is high. Figure 3.5.3 gives results for β = 1 with low α.

The range shown focuses on lower prior µ which correspond to β ∈ [2, . . . 50] in the

setup of the previous experiment. The higher prior variance makes arms with higher

success probabilities more likely than in the previous experiment but as α is reduced

the performance of KG can still be seen to deteriorate markedly. The other policies

tested do not show this problem.

Arms with low θ are common in many applications. For example, in direct mail

marketing or web based advertising where θ is the probability that a user responds

to an advert. The unmodified KG is unlikely to be an effective method in such cases.

The equivalent plots with prior µ > 1 do not show any significant changes in behaviour

compared to uniform priors.

Another policy that is popular in the bandit literature and which has good theoretical

properties is Thompson Sampling (e.g. Russo and Van Roy 2014). Results for this

method are not given in detail here as its performance is far inferior on these problems
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to the other policies tested. For example, on the results displayed in Figure 3.5.1 losses

were in the ranges from 1.3 − 4% and 6 − 15% for k = 2 and k = 10 respectively

with the best performance coming for γ = 0.99. It is a stochastic policy and so makes

many decisions that are suboptimal (including dominated errors). Its strength is that

it explores well in the limit over time, eventually finding the true best arm. However,

with discounted rewards or when the horizon is finite it gives up too much short

term reward to be competitive unless γ is close to 1 or the finite horizon is long. In

addition, note that it will spend longer exploring as k increases as it seeks to explore

every alternative. Performance on the other problems in this chapter was similar and

so are not given.

3.5.3 Exponential MAB

This section gives the results of simulations for policies run on the MAB with Expo-

nentially distributed rewards as outlined in Section 3.3.3. These are shown in Figure

3.5.4. Here the lost reward is given relative to the KG policy (the negative values indi-

cate that the other policies outperformed KG). Different priors give a similar pattern

of results.

The results show a clear improvement over the KG policy by PKG and NKG policies.

Notably the PKG earns better reward than the NKG indicating that the bias that

causes dominated errors also causes suboptimal choices when arms are not dominated.

Policy KGI gives the best performance although similar to PKG.

3.6 The Gaussian MAB

Here we consider the Gaussian case Ya | θa v N(θa, 1) and θa v N
(

Σa

na
, 1
na

)
. In the

brief discussion in Section 3.3 we noted that KG does not take dominated actions in



CHAPTER 3. ON THE KNOWLEDGE GRADIENT POLICY 59

Figure 3.5.4: Mean percentage of lost reward compared to the KG policy for three

policies for the exponential MAB with Gamma(2,3) priors and γ ∈ [0.9, 0.99]. The

left plot shows k = 2 while on the right k = 10.

this case. While Ryzhov et al. (2012) give computational results which demonstrate

that KG outperforms a range of heuristic policies, the policy still makes errors. In this

section we describe how errors in the estimation of arms’ learning bonuses constitute a

new source of suboptimal actions. We also elucidate easily computed heuristics which

outperform KG. A major advantage of KG cited by Ryzhov et al. (2012) is its ability

to incorporate correlated beliefs between arms. We will later show, in Section 3.6.1,

that it is unclear whether KG enjoys a performance advantage in such cases.

We shall restrict the discussion to cases with k = 2, 0 < γ < 1 and T = ∞ and

will develop a notion of relative learning bonus (RLB) which will apply across a wide

range of policies for such problems. We shall consider stationary policies π whose

action in state (Σ,n) ≡ (Σ1, n1,Σ2, n2) depends only upon the precisions nb and the

difference in means ∆µ := Σ2

n2
− Σ1

n1
. We shall write π (∆µ, n1, n2) in what follows. We

further require that policies be monotone in the sense of the following definition of

the RLB.
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Definition 3.6.1 (Relative Learning Bonus). If π is monotone in ∆µ such that ∃

function Rπ : N2 → R with π (∆µ, n1, n2) = 2⇔ ∆µ ≥ Rπ (n1, n2) ∀ (n1, n2) then Rπ

is the RLB function.

This monotonicity is a natural property of deterministic policies and holds for all

policies considered in this section since increasing ∆µ while holding n1, n2 unchanged

favours arm 2 in all cases. The RLB gives a method of comparing the actions of index

and non-index policies but it is also useful when comparing index policies. A natural

method of evaluating an index policy would be to measure the difference in its indices

from the GI in the same states. This can be inaccurate. An index formed by adding

a constant to the GI will give an optimal policy so it is not the magnitude of the

bias that is important but how it varies. The RLB and the idea of index consistency

(discussed later) give methods to assess this distinction.

Under the above definition we can set Σ1 = 0 without loss of generality. We then

have that ∆µ = µ2 and arm 2 is chosen by policy π in state (Σ,n) if and only if

µ2 ≥ Rπ (n1, n2). Figure 3.6.1 illustrates this for the GI and KG policies, the former

of which determines the optimal RLB values. The plots are of slices through the RGI

and RKG surfaces with n1 = 1 and with γ set at 0.95. As n2 increases the GI learning

bonus for arm 2 decreases, yielding values of RGI (1, n2) which are increasing and

concave. Comparison with the RKG (1, n2) suggests that the latter is insufficiently

sensitive to the value of n2. This is caused by a KG value close to zero for arm 2 when

n2 ≥ 2 and results in a mixture of over-exploration and over-exploitation. In practice

when the priors of the two arms are close, over-exploration is the main problem. For

n1 > 1 the RLB curves have a similar shape but with smaller R as the learning

bonuses for both policies decrease with increased information over time.

Figure 3.6.2 contains comparative plots of RGI (1, n2) and Rπ (1, n2) for three other

policies π and with γ again set at 0.95. The policies are KGI, described in Section 3.4,

and two others which utilise analytical approximations to the Gittins Index, namely
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Figure 3.6.1: The left plot shows RLB values for KG and GI policies for γ = 0.95,

n1 = 1, µ1 = 0. The right plot shows the nature of KG actions over different arm 2

states.

GIBL (Brezzi and Lai 2002) and GICG (Chick and Gans 2009). Although the latter

use similar approaches to approximating GI their behaviour appear quite different,

with GIBL over-greedy and GICG over-exploring. This changes when γ is increased to

0.99 where both policies over-explore. Although not shown here, the approximations

of GI by both GIBL and GICG improve as n1 increases and the corresponding RLB

curves are closer. A suboptimal action is often less costly when over-greedy, especially

for lower γ since immediate rewards are guaranteed while the extra information from

exploration might not yield any reward bonus until discounting has reduced its value.

Weber (1992) enunciates a desirable property for policies which is enjoyed by the

optimal GI policy. It can be thought of as a generalised stay-on-a-winner property.

Definition 3.6.2. A policy is index consistent if, once an arm is chosen then it

continues to be chosen while its Gittins index remains above its value at the start of

the period of continuation.

The region of over-exploration in the RLB plot in Figure 3.6.1 yields states in which
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Figure 3.6.2: Plots of actions for KGI, GIBL and GICG (from left to right) for

γ = 0.95, n1 = 1, µ1 = 0.

KG is not index consistent. It will simplify the proof and discussion of the next result

if we write the Gittins index for an arm in state (Σ, n) as νGI (Σ, n) = Σ
n

+ lGI (n) ,

where lGI is the GI (i.e., optimal) learning bonus for the arm. Note that for notational

economy we have dropped the γ-dependence from the index notation. It now follows

from the above definition that RGI (n1, n2) = lGI (n1)− lGI (n2). More generally, if π

is an index policy we use lπ for the learning bonus implied by π, with Rπ (n1, n2) =

lπ (n1)− lπ (n2).

To prove Proposition 3.6.3 we use that each policy over-explores, as shown in Figures

3.6.1 and 3.6.2 for KG and GICG and for (e.g.) γ = 0.99 for GIBL (not shown). The

idea of the proof is that a policy that over-explores overestimates the RLB of the arm

with lower n. After the arm is pulled n increases and its RLB is reduced. There are

values of y such that the arm’s GI will increase (as its reduction in RLB is smaller)

but its µ will not increase sufficiently to overcome the loss of RLB and so the policy

will switch arms.

Proposition 3.6.3. Policies KG, GIBL and GICG are not index consistent.
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Proof. For definiteness, consider policy KG. From the calculations underlying Figure

3.6.1 we can assert the existence of state (Σ,n) such that Σ1 = 0, n1 = 1, n2 = 2

and 2RKG (1, 2) > Σ2 > 2RGI (1, 2), equivalently, RKG (1, 2) > µ2 > RGI (1, 2) , when

γ = 0.95. It follows that AKG (Σ,n) = 1 and KG over-explores in this state. We

suppose that the pull of arm 1 under KG in state (Σ,n) yields a reward y satisfying

µ2 > y
2
> RGI (1, 2) = lGI (1) − lGI (2). But νGI (y, 2) = y

2
+ lGI (2) > lGI (1) =

νGI (0, 1) and so the Gittins index of arm 1 has increased as a result of the reward y.

However, the symmetry of the normal distribution and the fact that µ2 > y guarantees

that KG will choose arm 2 in the new state. Thus while the Gittins index of arm 1

increases, KG switches to arm 2 and hence is not index consistent. Regions of over-

exploration for GIBL and GICG (in the former case when γ = 0.99) means that a

similar argument can be applied to those policies. This concludes the proof.

An absence of over-exploration does not guarantee index consistency for a policy.

However, we now give a sufficient condition for an index policy never to over-explore

and to be index consistent.

Proposition 3.6.4. If index policy π satisfies 0 ≤ Rπ (n1, n2) ≤ RGI (n1, n2) ∀n1 <

n2 then it never over-explores and is index consistent.

Proof. Let state (Σ,n) be such that Σ1 = 0. This is without loss of generality. For

the over-exploration part of the result, we consider two cases. In case 1 we suppose

that µ2 > 0 and the GI policy chooses greedily when it chooses arm 2. This happens

when µ2 ≥ RGI (n1, n2). If n1 < n2 then the condition in the proposition implies that

µ2 ≥ Rπ (n1, n2) and policy π must also choose arm 2. If n1 ≥ n2 then the condition in

the proposition implies that Rπ (n1, n2) ≤ 0 and hence that µ2 ≥ Rπ (n1, n2) trivially,

which implies that policy π continues to choose arm 2. This concludes consideration

of case 1. In case 2 we suppose that µ2 ≤ 0 and so the GI policy chooses greedily

when it chooses arm 1. If n1 < n2 then we have µ2 ≤ 0 ≤ Rπ (n1, n2) while if n1 ≥ n2
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then we must have that µ2 ≤ RGI (n1, n2) ≤ Rπ (n1, n2) ≤ 0. Either way, policy π also

chooses arm 1 and case 2 is concluded. Hence, under the condition in the proposition,

policy π never explores when GI is greedy, and so never over-explores. For the second

part of the result suppose that in state (Σ,n) , index policy π chooses arm a and that

the resulting reward y is such that νGI (Σa + y, na + 1) > νGI (Σa, na) , namely arm

a’s Gittins index increases. Under the condition in the proposition we then have that

Σa + y

na + 1
+ lGI (na + 1) >

Σa

na
+ lGI (na)

⇔ Σa + y

na + 1
− Σa

na
> RGI (na, na + 1) ≥ Rπ (na, na + 1)

⇒ Σa + y

na + 1
+ lπ (na + 1) >

Σa

na
+ lπ (na) (3.6.1)

and we conclude that policy π will continue to choose arm a. Hence π is index

consistent. This concludes the proof.

Conjecture 3.6.5. On the basis of extensive computational investigation we conjec-

ture that policy KGI satisfies the sufficient condition of Proposition 3.6.4 and hence

never over-explores and is index consistent. We have not yet succeeded in developing

a proof.

3.6.1 Computational Study

This section gives the results of computational experiments on the MAB with normally

distributed rewards (NMAB). The same methodology as in Section 3.5 is used. As well

as the basic MAB, also considered are the finite horizon NMAB with undiscounted

rewards and a problem where arm beliefs are correlated. It extends the experiments of

Ryzhov et al. (2012) by testing against more competitive policies (including GI) and

by separating the effects of finite horizons and correlated arms. In both of these latter

problems the Gittins Index Theorem (Gittins et al. 2011) no longer holds and there is

no index policy that is universally optimal. This raises the question of whether index

policies suffer on these problems in comparison to non-index policies such as KG.
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Figure 3.6.3: Lost reward versus optimal for heuristic policies for the NMAB with

γ = 0.9 (left) and γ = 0.99 (right). There are k = 10 arms each with a N(0, 1) prior.

A new parameter, τ for the observation precision is introduced for several of these

experiments so that Ya | θa v N(θa, τ). In Section 3.6 it was assumed τ = 1 but

the results given there hold for general τ . The posterior for θ is now updated by

p(θa|y) = g(θ|Σa + τy, na + τ). We take τ to be known and equal for all arms.

Infinite Horizon, Discounted Rewards

The first problem compares KG, KGI, GIBL, GICG against the optimal policy on the

standard NMAB over a range of τ . The lost reward as a percentage of the optimal

reward is shown in Figure 3.6.3. The plot does not show the loss for GICG for high

τ and γ = 0.9 as it is very high relative to the other policies (rising to > 38%). The

Greedy policy has similarly poor performance.

Ryzhov et al. (2012) used the GICG policy as a comparator for the KG policy for

the discounted Gaussian MAB. It was described as “the current state of the art in

Gittins approximation”. These approximations are supposed to be better than the

older GIBL but it appears that the improvements are mainly for large n which may
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not result in improved performance. The RLB plots earlier in this section suggest that

the approximations for low n are not better and it is more important to be accurate

in states reached at early times due to discounting. As γ becomes larger these early

actions form a smaller portion of total reward and are therefore less significant.

There is no one best policy for all problem settings. Policy KGI is uniformly strong

for γ = 0.9 but is weaker for γ = 0.99. Both KGI and KG do well for high τ . This is

because more information is gained from a single observation and so myopic learning

policies become closer to optimal. As τ becomes smaller it becomes important to

consider more future steps when evaluating the value of information. However when

τ is very low learning takes so long that a simple greedy approach is again effective.

Hence KG and KGI are weakest for moderate values of τ between 0.1 and 1, depending

on the number of arms.

The Finite Horizon NMAB

This section considers a variant on the NMAB where the horizon is a fixed length and

rewards are not discounted (FHNMAB). One strength of KG is that it adapts easily for

different horizon lengths and discount rates. GIBL and GICG, however, are designed

only for infinite horizons. Ryzhov et al. (2012) got round this problem by treating

the discount rate as a tuning parameter. This allowed them to run experiments on a

single horizon length (T = 50). However, it is not ideal. Firstly, the tuning parameter

will need to be different for different horizons and there is no simple way to set this.

Secondly, the policy is not appropriate for the problem because a policy for a finite

horizon should be dynamic, it should change over time by exploring less as the end

time approaches, whereas this policy is static over time. We give a method here by

which any policy designed for an infinite discounted problem can be adapted to a finite

horizon one so that it changes dynamically with time. Note that all KG variants given

in this chapter (including KGI) are already dynamic when the horizon is finite so do
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Figure 3.6.4: Lost reward on the FHNMAB. Left shows performance over a τ ∈

[10−2, 102] with T = 50, right over T ≤ 400 with τ = 1. All k = 10 arms had the

same N(0, 1) prior.

not require any adjustment.

Definition 3.6.6 (Finite Horizon Discount Factor Approximation). A policy which

depends on a discount factor γ can be adapted to an undiscounted problem with a finite

horizon T by taking

γ(t, T ) =
T − t− 1

T − t
, t = 0, 1, . . . , T − 1. (3.6.2)

This chooses a γ such that γ/(1−γ) = T−1−t so that the ratio of available immediate

reward to remaining reward is the same in the infinite case with γ discounting (LH

side) as the undiscounted finite case (RH side).

Figure 3.6.4 shows percentage lost reward versus KG for KGI and the adjusted GIBL

(with KG shown as a straight line at zero).

Note that the scale of the vertical axis on the right plot is quite close to zero so that

no policies are very distinct from KG here. GIBL shows similar behaviour to that seen

in Figure 3.6.3 with infinite horizons, performing similarly to KG at τ = 1 (worse for
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shorter horizons but better for higher T ) but doing very badly as τ increases above

1. KG and KGI show similar results but KG is the preferred policy for T ≥ 60.

The Correlated NMAB

The NMAB variant where arm beliefs are correlated was studied in Ryzhov et al.

(2012) where the ability of KG to handle correlated beliefs was given as a major

advantage of the policy. However, being able to incorporate correlation into the KG

policy does not mean performance will improve and the experimental results that

were given were mixed. A further short experimental study is conducted here for

several reasons. Firstly, as shown earlier in this section, the GI approximation used

(GICG) performs poorly in many circumstances and the GIBL and KGI policies might

offer a stronger comparison. Secondly, Ryzhov et al. (2012) used the finite horizon

undiscounted version of the problem. As described earlier the policies based on GI

are not designed for this problem so an artificial tuning parameter was introduced.

Here we use infinite horizon with discounted rewards as before. This makes it clearer

to see the effect of the introduction of correlation without the extra complication of

the different horizon.

The problem is the same as the NMAB described earlier in this section except that

beliefs are captured in a single multivariate normal distribution for all the arms rather

than one univariate normal for each arm. For each simulation run the θ values for all

arms are drawn from this true multivariate prior. The belief correlation structure can

take many different forms but here we use the same the power-exponential rule used

in Ryzhov et al. (2012). Prior covariances of the variance-covariance matrix C are

Ci,j = e−λ(i−j)2 . (3.6.3)

where the constant λ determines the level of correlation (decreasing with λ). In the

experiments here all prior means are zero.
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Figure 3.6.5: Lost reward vs GI on the Correlated NMAB for λ ∈ [0.05, 1] with γ = 0.9

(left) and γ = 0.99 (right). Both use k = 10 with τ = 1.

Two versions of KG are tested, the complete version that incorporates the correlation

(CKG) and a version that assumes the arms are independent (IKG). Details of the

CKG policy are given in Ryzhov et al. (2012) using an algorithm from Frazier et al.

(2009). All policies tested (including IKG) use the true correlated model when updat-

ing beliefs but, apart from CKG, choose actions that make the false assumption that

arms are independent. Updating beliefs using the independence assumption results

in much poorer performance in all cases and therefore these results are not shown.

CKG is significantly slower than the other policies, scaling badly with k. This limits

the size of the experiment so 40000 runs are used. The results over λ ∈ [0.05, 1] are

shown in Figure 3.6.5. The first observation is that, although GI is not optimal for

this problem, it still clearly outperforms all the other heuristics indicating that using a

index policy is not an obvious handicap. The GI approximation policies’ performance

follows a similar pattern to the independent NMAB with KGI stronger at γ = 0.9

and GIBL stronger at γ = 0.99. IKG compares well to both these policies but again

there is no evidence that non-index methods are stronger than index methods. More

surprising is that CKG is clearly inferior to IKG. Frazier et al. (2009) found CKG to
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be stronger in the offline problem but this does not appear to translate to the online

problem. Exactly why this is so is not clear as this is a difficult problem to analyse.

CKG requires O(k2 log(k)) to compute compared to IKG which requires O(k). CKG’s

performance would have to be much better to justify its use and in many online prob-

lems with larger k it would simply not be practical while IKG and the three simple

index policies all scale well.

These experiments only scratch the surface of the correlated MAB problem and there

are a number of possible issues. As rewards are observed the correlations in beliefs

reduce and the arms tend to independence. Therefore correlations will be most im-

portant in problems with short horizons or steep discounting. Secondly, the number

of arms used here is quite small. This is partly because CKG becomes very slow as

k increases so its use on larger problems would not be practical. A feature of corre-

lated arm beliefs is that we can learn about a large number of arms with a single pull

and therefore independence assumptions should be punished with greater numbers of

arms. However we still learn about multiple arms as long as belief updating is han-

dled accurately which is easy to do in this Gaussian setting. If this is not done then

learning will be much slower and we did find that it is important that belief updating

incorporates correlations.

One difficulty with analysing policies on this problem is that it still matters that the

policy is effective on the basic MAB problem. Suboptimality in this regard can mask

the effect of introducing correlation and changes may improve or worsen performance

quite separately from addressing the issue of correlations. For example if a policy

normally over-explores then any change that makes it greedier might improve perfor-

mance. Thompson Sampling is a policy that can easily incorporate correlations (by

sampling from the joint posterior) but the high level of exploration that comes from

randomised actions does not do well on short horizon problems and any changes due

to correlations will be too subtle to change that.
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3.7 Conclusion

We identify an important class of errors, dominated actions which are made by KG.

This involves choosing arms that have both inferior exploitative and explorative value.

Much of the existing work on KG has focused on Gaussian rewards but these have

features (symmetric and unbounded distributions) that avoid the domination prob-

lem. For other reward distributions the performance of KG can suffer greatly. Two

new variants are given which remove this problem. Of these, NKG is simpler while

PKG gives better experimental results by correcting errors besides those arising from

dominated actions.

We also introduced an index variant of KG which avoids dominated actions, which

we called KGI. For problems where the optimal policy is an index policy, simulation

studies indicate that KGI is more robust than other proposed index policies that use

approximations to the optimal index. It has computational advantages over KG and

performed competitively in empirical studies on all problems tested including those

where index methods are known to be suboptimal. One such problem is the MAB

with correlated beliefs. Although KG can incorporate these beliefs it was found that

any performance gain was, at best, small and did not justify the extra computation

involved.

The new variants we introduce give a range of simple heuristic policies, of both index

and non-index type. On the problems tested here at least, there did not appear to

be any advantage to using non-index methods and, in addition, index methods have

computational advantages on some BSDPs. However, this may not always be the

case and further research will be needed to be more confident on other variants of this

problem.



Chapter 4

Selecting Multiple Website

Elements

4.1 Introduction

A common problem faced by websites is to choose which elements (e.g. adverts,

news stories, or retail items) to display to users. A natural objective is to maximise

the number of users that select or click an element. To do this we need to present

elements that appeal to the users which, for a given user, depends not only on the

general attractiveness or quality of the element but also its relevance to that user. For

example, a news story about a big football game might attract more interest than a

relatively niche story about astronomy but if it is known that the user enjoys science

news and has little interest in sport then they may be more likely to click on the latter

story.

The challenge of this problem comes principally from two features. Firstly, we do

not know exactly either the users’ preferences or the characteristics or quality of the

available elements. Secondly, elements are not usually presented in isolation but as a

72
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part of a list or set of other elements. If they are very similar to one another then there

will be redundancy in the set. So if our belief about the user in the previous example

is wrong then a selection of mainly astronomy stories would be very inappropriate

and lead to a dissatisfied customer. This illustrates the intuitive idea that element

sets should be diverse. Diversity and its role in motivating our choice of model for

user click behaviour will be discussed in more detail in Section 4.1.2.

In the version of the multiple elements problem investigated here the users arrive at

the website sequentially over time. The user at each time is assumed to be unique

with preferences that are independent from those of other users. We have some (noisy)

information about each user’s preferences which we observe only as they arrive. In

response we select a set (of fixed size) of elements to display. The user then either

clicks one element or none and this gives us some information about the quality and

characteristics of elements which can be used to improve element selections presented

to future users. Since users are unique and independent we do not improve our

estimates of user preferences over time. The assumption that the user clicks at most

one element will not always be realistic but can be seen to be appropriate in the

principle motivation for this work which is search advertising. Here the user enters a

term into a search engine and is presented with adverts alongside the search results.

The search term gives us information about the user’s current interests and adverts

appropriate to this term will be more likely to be clicked. However, since the user is

not seeking adverts, clicking more than one will be rare.

4.1.1 Multi-armed Bandit Framework

A natural framework to represent this problem is the multi-armed bandit problem

(MAB). In the classical form of the MAB we choose one arm (equivalent to an element)

at each time from those available. We then receive a binary reward (equivalent to

a click or no click) with a probability associated with the chosen arm but which
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is unknown. By observing rewards we learn more about the selected arm’s reward

distribution which can then be used to inform which arms are chosen in future. The

difficulty in the problem lies in how best to trade off choosing elements for expected

immediate reward given current information (exploitation) against choosing elements

to learn about them and so to gain improved reward in the long term (exploration).

The multiple website elements problem differs from the classical MAB since (i) we

choose several arms at each time instead of one and, (ii) the reward depends on the

user as well as the selected arm set. The dependence of reward on each user is related

to the contextual MAB where the reward is a function of some context which is given

at each time prior to choosing an arm. However, in the contextual MAB the context

assumed to be known but we treat information about user preferences as uncertain.

Choosing multiple arms changes the problem significantly since, crucially, elements

in the set interact so the reward of a set is not a linear combination of rewards of

individual arms. Therefore we now need to learn and choose the best set for any user

rather than just the best individual arms. There is a combinatorial explosion in the

number of possible sets as the number of arms grow (which should be expected to be

large as these represent, for example, available adverts). Even with a simple model for

user click behaviour evaluating expected rewards for all sets will not be tractable in

an online setting. In addition we need to define an appropriate model for the reward

from a set of arms. We will now discuss one of the main features that such a model

should capture.

4.1.2 Diversity

We observed earlier that it is desirable that element sets should be diverse. That

is, contain elements that are not too similar to each other. This is done to avoid

redundancy in the the arm set since if an element does not appeal to a user then it
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is unlikely that a similar element will do so either. In discussing diversity we will

outline ideas behind the models for user click behaviour that will be used. A formal

description of these will be given in Section 4.2.

How to achieve appropriate diversity has been studied in the the field of recommender

systems which are concerned with recommending items (e.g. documents or other

media) to users. A common approach is to maximise a combination of accuracy

and diversity (Vargas and Castells 2011). In this chapter we will demonstrate that

treating diversity as a separate objective can be unnecessary. Instead diversity arises

naturally as a result of maximising a single, realistic objective (click through rate)

under uncertainty about user preferences.

These two alternative views of diversity are described by Radlinski et al. (2009) as

intrinsic and extrinsic needs for diversity. When the need is intrinsic the diversity

is regarded as desirable in itself, for example by providing variety and novelty in

a recommender system. The usual approach (e.g. Carbonell and Goldstein 1998;

Vargas and Castells 2011; Hurley and Zhang 2011; Zhou et al. 2010) is to trade

off accuracy (choosing elements that have similarity to the user in some way) and

diversity (choosing elements that are dissimilar to each other). With an extrinsic

need, diversity emerges as a characteristic of good solutions even though it is not in

itself an objective. The models used here build on the extrinsic viewpoint taken in

information retrieval by El-Arini et al. (2009) and Agrawal et al. (2009). We will

show that existing models often result in only moderate set diversity, then give an

extended family of models in which higher diversity is induced.

Our approach is based on the idea that each user has a latent preference or state.

This state provides information about what type of element a user is likely to click on.

The state could take many forms: it could be the intended meaning of an ambiguous

search term, the genre of movie the user wishes to watch, or some subgroup of the

user population that the user belongs to. If the state was known then elements
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could be chosen that are appropriate for that state. However we assume that we are

provided only with a probability distribution over the user’s states. Therefore it may

be desirable to choose elements appropriate for several different states to ensure that

there is a good chance of a click whichever of the possible states is true. In this way

we choose a diverse set simply by seeking to maximise the probability of a click.

We argue that this approach results in appropriate diversity. If we are sure a user

wishes to watch an action movie then there is little to be gained from including sport

or comedy movies in the recommended set; this would correspond to inappropriate

diversity. However when we are uncertain about the user’s desires, perhaps because

we have little information on the user or because their preferences vary, then we need

a variety of genres in the set to cover these different realities. Therefore the diversity

of the element set should depend on the reliability of available information about the

user’s preferences and our models will be seen to reflect this.

4.1.3 Related Work

The MAB with multiple plays (e.g. Whittle 1988; Pandelis and Teneketzis 1999) is

the MAB where multiple arms are selected at each time. Although this has been well

studied it is not appropriate here since rewards are a simple sum of the independent

rewards of the individual arms. An area where the MAB with multiple plays is used

but where there is also correlation between the arms is in multi-channel access in

communications (e.g. Ahmad and Liu 2009). The arms are uncontrolled Markov

chains and the correlation comes from common transition probabilities which does

not fit with our problem.

The combinatorial MAB is also concerned with selecting sets of arms at each time.

In Chen et al. (2013) rewards can be quite general functions of the arms selected,

although it does not include the reward formulation we give in Section 4.2 because of
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the dependence of rewards on the user state. In addition they assume that rewards

from individual arms are observed as opposed to the more difficult problem where only

the total reward is observed. This latter more limited feedback occurs in the related

response surface bandit of Ginebra and Clayton (1995) where we choose at each time

the value of a vector (which might be restricted in some way) and observe a reward

which is some function of this vector. The actions are used to learn the function.

Where the function is linear we have the linear bandit problem (e.g. Auer 2002; Dani

et al. 2008; Rusmevichientong and Tsitsiklis 2010). Cesa-Bianchi and Lugosi (2012)

use the term combinatorial bandits to refer to a special case of the linear bandit where

the chosen vector is binary.

A very relevant area of research is information or document retrieval in particular

as applied to search engines. As already mentioned in Section 4.1.2 our models will

build on ideas from Agrawal et al. (2009) and El-Arini et al. (2009). However, in both

of these, as well as the related work in Yue and Guestrin (2011) and Radlinski et al.

(2008), the quality and features of the available documents is assumed to be fixed

and known. Where there is learning it is concerned only with the user population.

This removes a central feature of the problem which is that we must learn about the

available arms. Objectives in information retrieval can extend beyond those already

discussed in relation to diversity. For a review of these see Chen and Karger (2006).

The references given above make very different assumptions on how specific or reliable

user feedback is. These range from non-stochastic rewards, through noisy observations

on individual arms to a single noisy reward for the whole set (referred to in Chen et al.

(2013) as full information, semi-bandit feedback and bandit feedback respectively).

Our problem uses the latter in a Bayesian setting with the added complication that

there are two sources of uncertainty, from the users and from the arms. A distinctive

alternative type of feedback that makes no assumptions on rewards is that of duelling

bandits (Yue et al. 2012). This makes pairwise comparisons of arms, receiving only a
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noisy preference from each pair. This type of feedback can be relevant to information

retrieval but we will assume that all feedback comes in the form of clicks. Some issues

with interpreting clicks will be discussed in Section 4.2.

4.1.4 Chapter Outline

Section 4.2 will give a formal statement of the problem together with models for

user click behaviour that is based on uncertainty about user preferences. Solving

this problem is challenging, even when it is assumed that the arm characteristics are

known, due to the combinatorial explosion in possible sets. A method for handling

this part of the problem is given in Section 4.3. This includes a study of the effect

of model choice on set diversity and the implications this has on the validity of the

models.

Section 4.4 will give a Bayesian model for learning for when arm characteristics are

not known. Dependence on the latent user preferences means that an exact scheme

is not practical and we will describe an alternative method. Section 4.5 builds on the

work from Sections 4.3 and 4.4 to give a solution method for the full problem which

will then be tested in simulations in Section 4.6. The chapter will conclude in Section

4.7 with a summary of contributions and a discussion of issues and future work.

4.2 Problem Formulation

This section will formally state the multiple elements problem. The basic structure of

the problem is that of a multi-armed bandit problem as described in Section 4.1 but

we need to characterise the information available about each user, define measures of

quality for the arms, and combine both of these into a model to determine whether a

given user clicks on a chosen set of arms.
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4.2.1 Topic Preference Vector

Our model for user click behaviour is based on the idea that each user has a latent

preference or state. This state provides information about what type of element a

user is likely to click on. The state could take many forms. For search advertising in

its simplest form it can be thought of as a search objective or the intended meaning

of an ambiguous search term but it could also represent more general characteristics

of the user such as their interests or some subgroup of the user population that the

user belongs to. If the state was known then elements could be chosen that are

appropriate for that state. However we will assume throughout that we are provided

only with a probability distribution over the user’s states which we will refer to as

a topic preference vector. It represents prior information or beliefs about the user’s

state. How this information is derived depends on the application and is beyond the

scope of this work. However, for search advertising it would reasonably come from

the user population search history together with the current search. The available

information about searches would be much greater than that available about adverts

and for this reason we take the topic preference vectors to be unchanging whilst we

do learn about the adverts. The time frame over which an advert is displayed will be

small relative to the number of times a search term has been entered. We characterise

the quality of arms using weight vectors corresponding to the topic preference vector

where a high value in a given entry indicates that the arm has high relevance to a

user with that state.

The mathematical formulation of the users and arms is as follows. At each time step

t = 1, 2, . . . a user arrives with a state xt ∈ {1, . . . , n}. This state is hidden but its

distribution Xt is observed and is given by a topic preference vector qt such that

Pr(Xt = x) = qt,x. Each distribution qt is random and we will assume throughout

that Pr(qt,x = 0) < 1. In response to this we present m arms as an (ordered) set

At ⊆ A where A is the set of k available arms. The user will respond by selecting (or
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clicking) at most one arm. If any arm is clicked then a reward of one is received, with

zero reward otherwise.

Each arm a ∈ A is characterised by a weight vector w of length n with each wa,x ∈

(0, 1). Let wA denote the set of vectors {wa}, a ∈ A. The weight wa,x represents

the probability a user with state x will click element a. Each weight is not known

exactly but can be learnt over time as a result of the repeated selection of arms and

observation of outcomes. The outcome at each time is given by the reward together

with which element (if any) is clicked. Further details on this feedback and learning

process and how it can be used to inform future decisions are given in Section 4.4.1.

This framework is complete if m = 1 element is to be displayed and x is known: the

click probability if a is presented is simply wa,x. However if x is latent and m > 1 we

need to build a model which gives the probability of receiving a click on the set of

arms A as well as determining which arm (if any) is clicked. As described earlier we

assume that at most one arm is clicked at a given time so we cannot simply sum the

rewards from individual arms.

4.2.2 Click Models

We introduce a statistical model of which arm, if any, a user selects at each time.

The click through rate (CTR) will refer to the expected probability over all relevant

unknowns (if any) of a click on some arm in a set of arms. The term arm CTR will

be used if we are interested in the probability of a click on a specific arm.

A simple and popular model that addresses the question of which arm is clicked is

the cascade model (Craswell et al. 2008). Arms are presented in order and the user

considers each one in turn until one is clicked or there are no more left. There are

issues with this model as the probability that an arm is clicked is not directly affected

by its position while, in reality, it is likely that users would lose interest before looking
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at arms later in the list. However, it is not the purpose of this work to address these

issues and the framework given here can readily be adapted to more complicated

models.

Using the cascade model we now give models to determine the CTR of a set of arms.

Two intuitive models are presented, which are shown to be extreme examples of a

general click model. The consequences of the choice of model will be a major focus of

this work. Each model is initially specified for known xt but easily extends to latent

xt as given at the end of this section.

Definition 4.2.1 (Probabilistic Click Model). In the Probabilistic Click Model (PCM)

the user considers each arm in At independently in turn until they click one or run

out of arms. This is closely related to the probabilistic coverage model for document

retrieval given in El-Arini et al. (2009). At each step, the click probability for arm a

is wa,xt as in the single arm case. Therefore the CTR of the set At for known wA and

xt is

rPCM(xt, At,wAt) = 1−
∏
a∈At

(1− wa,xt).

Although it will be shown later that using this model does encourage diversity in the

arm set, an obvious issue is that a set of two identical arms gives a higher CTR than

a single such arm, which is inconsistent with our intuition of realistic user behaviour

when presented with very similar elements. We present a new model which avoids

this problem.

Definition 4.2.2 (Threshold Click Model). In the Threshold Click Model (TCM)

each user has a threshold ut drawn independently from distribution U(0, 1). They

consider each arm in turn, clicking the first arm a ∈ At such that wa,xt > ut. The



CHAPTER 4. SELECTING MULTIPLE WEBSITE ELEMENTS 82

CTR of the set At for known wA and xt is then

rTCM(xt, At,wAt) =

∫ 1

0

1−
∏
a∈At

(1− 1wa,xt>ut
) dut.

=

∫ maxa∈At wa,xt

0

1 dut +

∫ 1

maxa∈At wa,xt

0 dut

= max
a∈At

wa,xt .

The TCM thus represents a user who, with preference xt, will click an element if

its relevance wa,xt exceeds a user-specific threshold ut. These two models form the

extreme ends of the following parameterised continuum of models.

Definition 4.2.3 (General Click Model). In the General Click Model (GCM) there is

a single parameter d ∈ [1,∞). Let a∗t ∈ argmaxa∈At
wa,xt with ties broken arbitrarily.

The click probability for arm a∗t is wa∗t ,xt and for all other arms a ∈ A\a∗t it is (wa,xt)
d.

Therefore the CTR of the set At for known wA and xt is

rdGCM(xt, At,wAt , d) = 1− (1− wa∗t ,xt)
∏

a∈At\a∗t

(1− (wa,xt)
d).

Setting d = 1 gives PCM and d → ∞ results in TCM. In Section 4.3.3 we will

demonstrate how, with latent xt, the diversity of the arm set with optimal CTR

changes with d.

Since xt is unobserved a more important quantity is the expected reward over q.

Since, in any particular instance, qt and wA are fixed, we write this, the CTR, as

CTRd(A) = Ext∼qt [r
d
GCM(xt, A,wA)]. (4.2.1)

The expected reward for PCM is therefore given by CTR1(A) and for TCM we denote

the expected reward by CTR∞(A). As q defines a discrete distribution taking its

expectation is easy to do for all click models.

In the full model the arm weights w are not known exactly but are learnt over time

by observing clicks. A model and solution for learning the weights will be given in
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Sections 4.4 and 4.5. Where arm weights are known the CTR, as given in Equation

4.2.1, is our objective function. The problem of maximising this is studied in Section

4.3 together with an investigation into set diversity.

4.3 Solution Method and Analysis when Weights

are Known

Generally in bandit problems maximising the immediate reward (exploiting) is the

simple part of the problem. The difficulty comes from calculating the value of infor-

mation (exploration). However, in the multiple elements problem, exploiting is not

straightforward as there is a combinatorial explosion in the number of possible sets

of arms that are available and online evaluation of all of these is computationally im-

practical. Given the web-based primary applications of this problem it is necessary to

use algorithms that are very fast to select arm sets. This section will examine arm set

selection in the simplified setting where weight vectors w are assumed to be known.

First a method will be giving for handling the combinatorial aspect of the problem by

exploiting a property of the click models then, in Section 4.3.3 the performance of this

and other methods will be assessed as well as how exploring how the diversity varies

with click model and selection method. Throughout this section the time subscript t

will be dropped for simplicity as it is not relevant when weights are known.

4.3.1 Submodularity

The reward functions for our models possess a property, submodularity, that has

been well studied (e.g. Krause and Golovin 2014) for which there is a simple but

effective heuristic algorithm. Submodularity in our context captures the intuitive

idea of diminishing returns as the number of elements chosen increases - adding an
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element to a large set gives a smaller increase in set CTR than adding it to a smaller

subset.

Definition 4.3.1. A set function f is submodular if for every A ⊆ B ⊆ A, and

a ∈ A \B it holds that

f(A ∪ {a})− f(A) ≥ f(B ∪ {a})− f(B).

A submodular function for which the f(A∪{a})− f(A) are all nonnegative is said to

be monotone.

Proposition 4.3.2. CTRd is monotone submodular.

Proof. CTRd(A ∪ {a})− CTRd(A) is an expectation of

∆d
a,A,x := rdGCM(x, {a} ∪ A,w{a}∪A)− rdGCM(x,A,wA)

over x ∼ q. It is thus sufficient to show that ∆d
a,A,x −∆d

a,B,x ≥ 0 for all A ⊆ B ⊆ A,

a ∈ A \B, x and wA.

We derive formulae for ∆d
a,A,x. Let a∗ = argmaxa∈Awa,x, resolving ties arbitrarily, and

let CA =
∏

b∈A\{a∗}(1− (wb,x)
d). Directly from Definition 4.2.3, we have ∆d

a,A,x equal

to

(wa,x)
d(1− wa∗,x)CA, if wa,x < wa∗,x[

wa,x − wa∗,x + (1− wa,x)(wa∗,x)d
]
CA, if wa,x ≥ wa∗,x.

Both are non-negative, so the CTR is monotone.

Now fix arbitrary A ⊆ B ⊆ A, a ∈ A\B, x and wA. Also define b∗ = argmaxa∈B wa,x

and CB =
∏

b∈B\{b∗}(1 − wb,xd). We wish to show ∆d
a,A,x −∆d

a,B,x ≥ 0, and are faced

with three cases:

1. wa,x ≤ wa∗,x ≤ wb∗,x

∆d
a,A,x −∆d

a,B,x = (wa,x)
d [(1− wa∗,x)CA − (1− wb∗,x)CB]

≥ (wa,x)
d [(1− wa∗,x)− (1− wb∗,x)]CA ≥ 0
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since CA ≥ CB and wb∗x ≥ wa∗,x, as A ⊆ B.

2. wa∗,x ≤ wa,x ≤ wb∗,x

∆d
a,A,x −∆d

a,B,x =
[
wa,x − wa∗,x + (1− wa,x)(wa∗,x)d

]
CA

− (wa,x)
d(1− wa∗,x)CB

≥
[{

(wa,x − wa∗,x)−
(
(wa,x)

d − (wa∗,x)
d
)}

+
{

(wa,x)
dwb∗,x − wa,x(wa∗,x)d

}]
CA.

The first curly braces are non-negative since x − y ≥ xd − yd for 1 ≥ x > y ≥ 0 and

d ≥ 1; the second curly braces are non-negative since wa∗,x ≤ wa,x ≤ wb∗,x.

3. wa∗,x ≤ wb∗,x ≤ wa,x

∆d
a,A,x −∆d

a,B,x

≥
[
wb∗,x − wa∗,x − (1− wa,x)((wb∗,x)d − (wa∗,x)

d)
]
CA

≥ [wb∗,x − wa∗,x − (1− wa,x)(wb∗,x − wa∗,x)]CA ≥ 0

where again we have used wb∗,x − wa∗,x ≥ (wb∗,x)
d − (wa∗,x)

d.

For the TCM, where d = ∞, we simply have the limiting case, although a simpler

argument can be made based directly on Definition 4.2.2.

4.3.2 Algorithms for Selecting Element Sets

We now describe a number of heuristic algorithms for choosing element sets which will

be evaluated in Section 4.3.3. Maximising a submodular function is NP-hard but for

monotone submodular functions a computationally feasible greedy heuristic algorithm

is known to have good properties (Nemhauser and Wolsey 1978). This algorithm starts

with the empty set then iteratively adds the element that most increases the objective

function.
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It will be referred to here as the sequential algorithm (SEQ). SEQ is known

(Nemhauser and Wolsey 1978) to produce a solution within 1−1/e ≈ 0.63 of optimal.

In practical terms 0.63 of optimal represents a considerable loss so in Section 4.3.3

we test the method using simulation to better estimate what the true loss is, as well

as measuring the robustness of the method to model misspecification and quantifying

the diversity of the sets chosen for different click models.

For comparison we present here a number of other algorithms which are natural

alternatives.

Optimal (OPT). For small studies, we can optimise CTRd. Note that we retain the

expectation over latent state x ∼ q.

Naive (NAI). Elements, a, are ranked in order of independent element CTR given

by Ex∼qwa,x = q ·wa, and the top m elements are selected in order.

Most Frequent User Preference (MFUP). We fix x̃ = argmaxx qx and select the

m elements with highest wa,x̃.

Ordered User Preference (OUP). For i ∈ 1, . . . ,m, x̃i are selected in order of

decreasing probability of occurrence qx.
1 Then select ai = argmaxa/∈{aj : j<i}wa,x̃i for

each i.

All of these methods except OPT are computationally fast and scale well. With

SEQ, for each of the m elements that it must select it is only necessary to calculate

CTRd(A ∪ {a}) − CTRd(A) for the existing set of chosen elements A and each a ∈

A \ A. As the CTR of the existing set is known at each stage from the calculation

in the previous stage (note CTRd(∅) = 0) this requires only finding the CTR of each

candidate set. Therefore SEQ requires the calculation of CTRs for fewer than mk

sets compared to
(
k
m

)
CTR calculations to solve to optimality. NAI requires k such

1To ensure that all qx̃i
> 0, if |{x : qx > 0}| < m then fill the remaining slots by repeating the

sequence {x : qx > 0} until |x̃| = m.
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calculations. Set CTRs are fast to compute since taking the expectation of r(·) over q

can be done with vector multiplication. The last two methods do not require taking

expectations which could be an advantage in more complex models.

4.3.3 Simulation Study

This section will give the results of simulation experiments investigating the sets

chosen by each of the algorithms from Section 4.3.2 under the different click models.

The arm sets selected by different algorithms will be analysed first for set CTR, then

for set diversity.

Results are based on 1000 instances. Each instance represents a unique user. Each

weight is drawn for each instance independently from a mixture distribution where

each is relevant with probability ξ = 0.5 and non-relevant otherwise. If relevant the

weight is drawn from a Beta(α, β) distribution, otherwise the weight is 0.001. The

values of the parameters α, β will be given with the results. The low non-relevance

weight represents a mismatch between the element and the user’s state where it is

assumed that the user will click with some low non-zero probability. On each instance,

the state distribution q is sampled from a Dirichlet distribution with all n parameters

equal to 1/n. In response each set choosing algorithm selects a set of m arms from

the available k. In all simulations there are n = 20 possible states for x with k = 40

elements and a set size of m = 3. Varying these parameters did not change the overall

pattern of results.

Experimental Results: CTR

Table 4.3.1 gives the percentage lost CTR which is the the difference between the

CTR of the sets chosen by the OPT and those chosen by the heuristic as a percentage

of the optimal CTR. This is averaged over all instances. In each instance there is a
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true click model (either PCM or TCM, as given in the left column) and a set choosing

algorithm. The click model assumed by OPT or SEQ is appended to its name (e.g.

SEQ-TCM assumes that the click model is TCM - whether that is correct or not).

The other methods do not assume any click model. The absolute CTRs of OPT using

the correct click model with β = 2 and β = 9 respectively are 0.877 and 0.451 for

PCM, and 0.773 and 0.316 for TCM.

Click
β

Set Choosing Method

Model OPT-PCM OPT-TCM SEQ-PCM SEQ-TCM NAI MFUP OUP

PCM 2 0% 9.2% 0.0% 8.9% 4.2% 17.0% 9.8%

PCM 9 0% 19.9% 0.0% 19.8% 0.6% 13.6% 20.7%

TCM 2 3.4% 0% 3.4% 0.1% 10.6% 25.6% 1.1%

TCM 9 6.6% 0% 6.6% 0.1% 9.6% 27.2% 1.4%

Table 4.3.1: Lost reward as a percentage of optimal reward over 1000 instances with

n = 20, k = 40, m = 3, ξ = 0.5, α = 1 and β as shown.

It can be seen that SEQ performs similarly to OPT with performance being much

better than the theoretical guarantees when the assumed click model is correct. How-

ever, both methods do badly when the click model is incorrectly specified. The other

methods perform poorly on at least one of the click models with OUP better on TCM

and NAI better on PCM. These preferences can be explained by the set diversity for

each as will be given in the next section.

The performance of NAI illustrates an issue with PCM as a choice for click model.

Despite NAI ignoring interaction effects, for PCM with β = 9 it performs well. When

wa is small, rPCM(x,A,wA) = 1−
∏

a∈A(1− wa,x) ≈
∑

a∈Awa,x, and NAI is optimal

for the problem of maximising the expected value of this last quantity. So if weights

are small (as would be common in problems such as web advertising) then using PCM

does not result in sets where interactions between elements are important. This goes

against the intuition that interactions are important.
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Experimental Results: Diversity

To compare set diversity of different methods and click models we first need a mea-

sure of diversity appropriate to our problem. From Vargas and Castells (2011), the

“pairwise dissimilarity between recommended items” is commonly used. Based on

this we define the following simple measure of redundancy or overlap:

Definition 4.3.3 (Overlap and Diversity). The overlap of a set of two arms A =

a1, a2 is

overlap(A) =

∑n
x=1 min(w1,x, w2,x)

min[
∑n

x=1(w1,x),
∑n

x=1(w2,x)]
.

For sets of arms larger than 2 the overlap is given by

2

|A|(|A| − 1)

∑
ai,aj∈A,i<j

overlap({ai, aj}).

The diversity of the set A is given by 1− overlap(A).

Note that these measures are independent of the click model used. For two arms,

if overlap = 1 then the weights for one arm are all larger than the corresponding

weights of the other arm. In that case the lesser of the two arms contributes nothing

under TCM. However, it does contribute under PCM. If overlap = 0 then the weight

vectors of all arms are pairwise orthogonal and CTRd(A) =
∑

a∈A CTRd(a) for all

d ∈ [1,∞) as well as for TCM.
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Figure 4.3.1: Overlap for set choosing algorithms over d ∈ [1, 8] averaged over 1000

instances with m = 3, n = 20, ξ = 0.5 and k = 40 arms, each with α = 1 and β = 2.

To investigate diversity we measure the mean overlap values of element sets chosen

by algorithms. These are given in Figure 4.3.1 over a range of GCM parameter values

d used by the OPT and SEQ algorithms. The other methods ignore the click model

and so have unchanging overlap over d.

The overlap of the optimal sets decreases with d which shows how the diversity require-

ments change with the click model. SEQ shows a very similar pattern and chooses

similar sets to OPT but with generally slightly greater overlap.

NAI and MFUP choose sets that are insufficiently diverse for any model which explains

their poor performance in the CTR simulation results particularly on TCM. OUP has

low overlap which is at an appropriate level for TCM and higher d but which is too

low for PCM which fits with its poor CTR on PCM. No method is as diverse as OPT

and SEQ for high d indicating that maximising rewards under the TCM model is an

effective method to produce diverse sets.
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4.4 Unknown Weights - Inference

In the last section arm weights were assumed to be known in order to explore set

selection in a simplified setting. From now on we will assume that weights are initially

unknown but can be learnt over time. This requires (i) a model for learning about the

weights from user actions and, (ii) a method of selecting sets so that weights are learnt

effectively while still choosing sets with good CTR. The second of these challenges

will be addressed in Section 4.5 where we will give a simple method by which existing

bandit algorithms can be adapted to learn the true weights while still retaining the

CTR performance of the SEQ algorithm as weights are learnt.

This section will consider the first question, that of creating a model of learning for

weights. Such a model requires an estimate of our current knowledge of each weight

(a point estimate and an estimate of uncertainty) together with a method to record

how that knowledge changes as user actions are observed. A Bayesian model will be

used to do this which is presented in Section 4.4.1. There are practical computational

problems with implementing this exactly so an approximate version is detailed in

Section 4.4.2. An analysis of this method is given in Section 4.4.3 together with a

discussion of conditions on q required for learning to be reliable.

This section and the next will concentrate on PCM and TCM but the methods given

apply to all GCM and can easily be adapted.

4.4.1 Feedback and Learning

A Bayesian framework will be used to quantify our knowledge of weights in the form

of a joint probability distribution over all weights with density given by p(wA). Given

this density a single step of learning proceeds as follows. We are presented with a

user with topic preference q. In response we choose a set of arms A, to which the user
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gives feedback in the form of either a click (together with which arm was clicked) or

no click. Based on this feedback, the belief density p(wA) is updated which is then

used in the next step. Since only a single updating step is described in this section

no time subscripts will be used in the notation for simplicity. Updating through time

is simply a series of single updating steps. Formally p(wA) would then need to be

conditioned on the history of all relevant information up to the current time but,

again, for notational simplicity this is omitted here.

To summarise user feedback two new variables will be introduced: a binary variable

y where y = 1 if the user clicked some arm and y = 0 otherwise and m∗, which is

the number of arms considered by the user. Under the cascade model m∗ = i if arm

ai is clicked or m∗ = m if no arm is clicked. This allows us to distinguish between

two possible interpretations for arms that are not clicked. For arms ai, i ≤ m∗ that

are considered by the user we receive information which affects the updating but for

arms ai, i > m∗ not considered no information is received. To simplify notation in the

following it is useful to define the set of arms considered by the user but not clicked

as

A′ =


A if y = 0

{a1, . . . , am∗−1} if y = 1.

PCM. The joint distribution for all weights given a feedback step is updated as given

below. In the following note that p(·|q, x) simplifies to p(·|x) and that p(wA, x|q, A) =

p(wA)qx since p(x | q) = qx which is independent from p(wA). The weight belief
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posterior after a user action is,

p(wA|y,m∗,q, A) =
n∑
x=1

p(wA, x|y,m∗,q, A)

=
n∑
x=1

p(y,m∗|wA, x,q, A)p(wA, x|q, A)

p(y,m∗|q, A)

=
1

p(y,m∗|q, A)

n∑
x=1

{[
(wam∗ ,x)

y
∏
a∈A′

(1− wa,x)

]
p(wA)qx

}

=
p(wA)

p(y,m∗|q, A)

n∑
x=1

[
qx(wam∗ ,x)

y
∏
a∈A′

(1− wa,x)

]
.

TCM. The updating equation for wA for TCM is similar to that for PCM except

that p(y,m∗|wA, x,q) is different due to the presence of the user threshold u:

p(wA|y,m∗,q, A) =
n∑
x=1

p(wA, x|y,m∗,q, A)

=
n∑
x=1

p(y,m∗|wA, x,q, A)p(wA, x|q, A)

p(y,m∗|q, A)

=
p(wA)

p(y,m∗|q, A)

∫ 1

u=0

n∑
x=1

[
qx(1{wam∗ ,x>u})

y
∏
a∈A′

1{wa,x≤u}

]
du.

(4.4.1)

The updating equations for both PCM and TCM therefore involve finding the joint

distribution over a large number of variables which cannot be decomposed due to

dependency on q. Not knowing the state x means we do not know which wa,x to

attribute any click or refusal to click. TCM has the added complication of dependency

on the latent user threshold u which is common to all arms. This means conjugate

updates are not possible and exact updating is not practical. The next section will

describe an approximate updating method that can be used instead.

4.4.2 Updating Weight Beliefs

The standard way to resolve the issues in updating caused by dependency on latent

variables, such as found in the previous section, is to use an expectation maximisation
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algorithm for which online versions exist (e.g. Cappé and Moulines 2009; Larsen et al.

2010). The approach used is to sample an x̃ from the belief distribution for x and

then update the weights using x̃ as the state. By conditioning on x̃ instead of q we

can treat user actions for any arm a as a Bernoulli trial and attribute successes or

failures to wa,x̃. For PCM this allows beliefs for all points to be independent Beta

distributions. Each weight wa,x has a belief distribution Wa,x ∼ Beta(αa,x, βa,x) and

the joint distribution of the weight beliefs for all arms in A is WA. The belief state is

given by the α and β values so 2kn values are required to store the belief state. The

model is now conjugate and the update conditional on x̃ is given by αam∗ ,x̃ ← αam∗ ,x̃+y

and βa,x̃ ← βa,x̃ + (1− y) for all a ∈ A′ with all other α, β values unchanged.

A key observation in Larsen et al. (2010) is that the belief distribution from which

x̃ is drawn should be dependent on the user feedback just observed (rather than just

q). This posterior q̃ = (q̃1, . . . , q̃n), which depends on WA, y, m∗, q and A is found

by,

q̃x =

∫
wA∼WA

p(x|wA, y,m∗,q, A) dwA

=

∫
wA∼WA

p(y,m∗|wA, x,q, A)p(x|wA,q, A)p(wA)

p(wA, y,m∗|q, A)
dwA

=

∫
wA∼WA

p(y,m∗|wA, x,q, A)p(x|wA,q, A)

p(y,m∗|wA,q, A)
dwA

= qx

∫
wA∼WA

p(y,m∗|wA, x,q, A)∑n
x=1 p(y,m

∗|wA, x,q, A)
dwA,

where the last step is because the prior for the state p(x|wA,q, A) = p(x|q) = qx

depends only on q. It remains to find p(y,m∗|wA, x,q, A). Under PCM this is easily

found since, given x, the probability of clicking any arm a considered by the user is

the same as its independent click probability (as though it were the only arm in the
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set) and is independent from all weights except wa,x. That is,∫
wA∼WA

p(y,m∗ = 1|wA, x,q, A = {a}) dwA

=

∫
wa∼Wa,x

p(y,m∗ = 1|wa, x, A = {a}) dwa

= (µa,x)
y(1− µa,x)(1−y),

where µa,x = αa,x

αa,x+βa,x
is the expectation of Wa,x. Therefore,

q̃x = qx
(µam∗ ,x)

y
∏

a∈A′(1− µa,x)∑n
j=1[qj(µam∗ ,x)

y
∏

a∈A′(1− µa,x)]
. (4.4.2)

The complete method is shown in Algorithm 1.

Algorithm 1 Posterior Sampled Bayesian Updating

Input: Weight belief distributions WA for the set of arms A presented to the user;

a user response given by y and m∗; the state probability vector q for the n states.

Calculate the posterior state probabilities q̃ = (q̃1, . . . , q̃n), given in (4.4.2).

for all arms ai : i = 1, . . . ,m∗ do

Draw x̃i from q̃.

Update wai,x̃i ← wai,x̃i |y,m∗.

end for

Output: A set of updated belief distributions WA.

By studying the stochastic approximation methods (e.g. Larsen et al. 2010) it becomes

clear that deterministic averaging over x is equally valid. This is done by updating

elements of WA in proportion to q̃, that is, by setting αam∗ ,x ← αam∗ ,x + yq̃x and

βa,x ← βa,x + (1− y)q̃x for all a ∈ A′. All other α, β values are unchanged as before.

These two methods will be compared in Section 4.4.3.

TCM does not have the advantage that the click probabilities are independent if x

is known and therefore it does not reduce to a simple updating model even given a
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sampled x. Adapting (4.4.1) in Section 4.4.1, the updating for known x is

p(wA|y,m∗, x) =
p(wA)

p(y,m∗|q)

∫ 1

u=0

qx(1{wam∗ ,x>u})
y
∏
a∈A′

1{wa,x≤u}du

=
qxp(wA)

p(y,m∗|q)

∫ 1

u=0

(1{wam∗ ,x>u})
y1{u>maxa∈A′ (wa,x)}du

=
qxp(wA)

p(y,m∗|q)

[
(wam∗ ,x)

y −max
a∈A′

(wa,x)

]
.

This would not fit into a simple updating scheme. In addition, to use this in the

posterior sampled Bayesian updating in Algorithm 1 it would be necessary to obtain

the posterior for q which would require taking integrals over the multiple belief dis-

tributions. Therefore the heuristic updating method used for PCM will not work for

TCM. The approach we use to handle this difficulty is to record and update beliefs as

though the click model was PCM. For the arm a1 in the first slot the models are the

same but for subsequent arms we are making an independence assumption. This loses

information but this approach will be shown to work well in simulations in Section

4.6. The same method can also be used for any GCM.

4.4.3 Approximate Updating Analysis

In Section 4.4.2 two approximate updating methods were given, each using q̃ the

posterior of q once the user actions have been observed. The first updates using a

sampled value from q̃ while the second updates deterministically in proportion to

q̃. A simple comparison of these can be made by taking the single arm case where

k = m = 1 so that the results are unaffected by click model or set choosing algorithms.

The simulation was run 500 times over N = 1000 time steps. Each q is an i.i.d.

Dirichlet distribution with all n parameters equal to 1/n. At each time, the absolute

error |µ1,x−w1,x| for each state x was recorded. This was averaged over all the runs and

is shown on the left in Figure 4.4.1. In addition, the state thought to have the highest

weight argmaxx(µ1,x) was compared to the truth argmaxx(w1,x) and the proportion
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that this was incorrect was recorded. The purpose of this was to assess how often the

updating had got the state weights mixed up, a problem found to happen occasionally

in a similar problem in Larsen et al. (2010). This is shown on the right in Figure 4.4.1.

On both measures the deterministic version performed better. Similar patterns are

found with other values of n and β.

Figure 4.4.1: The mean absolute error of ŵ (left) and the proportion of times that

the highest weight is misidentified (right) over 500 runs for a single arm with n = 5,

α = 1 and β = 2.

It is important to note that this relies on q being varied over time since if q is fixed

then inference is unreliable as illustrated in Figure 4.4.2. This is an identifiability

issue due to there being insufficient information to solve the problem, rather than an

issue with the updating method. This can be seen by considering the offline version

of the problem for the simplest case where n = 2 given T observations. We then have

a system of equations y = Qw + ε where y is a vector of T observed rewards, Q is a

T × 2 matrix where each row t is qt, and ε is a noise term. The least squares solution

is given by (Q>Q)−1Q>y which has a unique solution if and only if Q is of rank 2.

Therefore using a constant qt will not give a single solution.
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Figure 4.4.2: The mean absolute error of ŵ (left) and the proportion of times that

the highest weight is misidentified (right) over 500 runs for a single arm with n = 5,

α = 1 and β = 2 and q = (0.8, 0.05, 0.05, 0.05, 0.05) fixed.

This may be important in practice. Say a given q comes from a particular search

term for which we must choose a set of adverts then the problems of learning with a

fixed q indicate that we cannot reliably learn the qualities of the adverts by observing

clicks with only a single search term or very similar search terms. Simulations suggest

that the algorithm attributes rewards most accurately and reliably when each qx is

sometimes large. It may be that in practice some states are always more likely and

in these situations the estimates of weights for states occurring less often may not be

accurate. So feedback for a variety of search terms on a range of preferences gives

better information even if we are only interested in learning about responses to a

particular search or related group of searches.
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4.5 Unknown Weights - Exploration

Section 4.3 gave a method of selecting a set of arms when weights are known. This

corresponds to the exploitation part of a bandit problem. With weights only known

up to distribution it is necessary to choose arms to learn the true weights effectively

while also favouring actions that are likely to give the best immediate reward. This

is the exploration versus exploitation problem. The objective is still to achieve high

CTR but not for a single time or even a particular time horizon but up to any given

time. In this section a method is given whereby a range of existing bandit algorithms

(or policies) can be easily adapted to work with this problem.

Index policies are a family of bandit policies which assign to each arm a real valued

index and then chooses the arm with the highest index. Examples include: the Greedy

policy for which the index is the expected immediate reward; the Gittins index (Gittins

et al. 2011) where the index is found by solving a stochastic optimisation problem on

each arm; Thompson sampling (e.g. May et al. 2012) which uses a stochastic index

by sampling from the posterior for the arm; and the upper-confidence-bound policy

family (e.g. Auer et al. 2002) where the index is based on some optimistic estimate

of the arm’s value.

To use any of these methods in the multiple arm problem given here the index is

substituted for the true weight in a set selection algorithm as given in Section 4.3.

Let It be the history up to time t which consists of all available information that is

relevant to the current decision, namely q1, . . . ,qt−1; the weight priors, past actions

A1, . . . , At−1; and user responses given by m∗1, . . . ,m
∗
t−1 and y1, . . . , yt−1. For the

purposes of choosing arms this information is used only via the current posterior

weight belief distributions WA,t. Formally, a policy for our problem consists of two

parts: an exploration algorithm ν(WA,t|It) which maps posterior distributions WA,t

to real valued w̃A,t and a set selection algorithm S(A, w̃A,t,m) which takes the output
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of the exploration algorithm and outputs a set A of m chosen arms. Each w̃a,t,i in w̃A,t

can be thought of some proxy for the unknown weight wa,t,i. As such it is natural for

it to be in (0, 1) but can take a more general form as long as it is an appropriate input

to the set selection algorithm used. For the algorithms given in Section 4.3, where a

CTR calculation is required, inputs would need to be in [0, 1] although a monotone

mapping from real valued w̃A,t could be made if needed.

A desirable property of any bandit algorithm is that, as weight estimates become

increasingly good, the arms chosen will converge to the arms that would be chosen if

the true weights were known. It is for this reason that the analysis given in Section

4.3.3 is important - the expected reward rate as arm weights are learnt is limited by

the expected reward of the set with known weights.

We will not attempt to compare the general performance of the many possible index

policies that are available as there are plenty of examples of this elsewhere but instead

we will concentrate on the performance of one, Thompson Sampling (TS), and any

issues that arise as it is adapted to this problem. TS is chosen because it has properties

that fit the requirements of this problem, namely that it is quick to run and in similar

long horizon bandit problems it has been shown to work well and explore effectively

(see e.g. Russo and Van Roy 2014, May et al. 2012). The algorithm used is given in

Algorithm 2. Note that this makes a single draw from each weight posterior which is

then used for each of the 1, . . . ,m arms selected. An alternative is to make separate

draws for each slot which would avoid extra correlation between the selected arms but

in practice the difference is small and it does not affect the results given here.
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Algorithm 2 Multiple Action Thompson Sampling

Input: The available arms A with posterior weight beliefs WA,t; the number of arms

to be selected m; a set choosing algorithm S(A, w̃A,t,m).

for all Wa,i, a ∈ A, i = 1, . . . , n do

Draw w̃a,t,i ∼ Wa,t,i

end for

Select an arm set using set choosing algorithm S(A, w̃A,t,m)

Output: A set of chosen arms A of size m.

The next lemma works towards Theorem 4.5.2 that will give conditions under which

Algorithm 2 using the deterministic updating scheme from Section 4.4.2 will select

each arm infinitely often. The strongest condition is on the distribution of each qt,

and will be discussed after the proof of the theorem.

Let RTS(a,Wa,t,qt | It) =
∑n

x=1(qt,xw̃a,t,x) denote the stochastic index for the mul-

tiple action TS policy for a single arm a where each w̃a,t,x ∼ Wa,t,x. Then un-

der SEQ or NAI the arm chosen in slot one is the one with the highest index:

at,1 = argmaxa∈AR
TS(a,Wa,t,qt|It).

Lemma 4.5.1. Let τa,T be the set of times t = 1, . . . , T at which a ∈ At. Let

q∗ = mint,x Pr(qt,x = 1) and w∗ = maxa∈A,xwa,x and, from these, set η = q∗(1−w∗)m.

If q∗ > 0 then under the deterministic updating scheme given in Section 4.4.2 using

any click model from Section 4.2.2,

Pr

(
RTS(a,Wa,T ,qT | It) ≤

1

1 + η − δ1

+ δ2

)
→ 1 as |τa,T | → ∞

for any a ∈ A and any δ1, δ2 such that η > δ1 > 0 and δ2 > 0.

Proof. For any a ∈ A, x = 1, . . . , n we will give bounds for expected rate at which

αa,t,x and βa,t,x increase as the arm a is selected over time (an upper bound for αa,t,x

and a lower bound for βa,t,x). This will give an asymptotic upper bound less than 1 on
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each posterior mean µa,t,x = E [Wa,t,x] as |τa,t| → ∞. Showing that V ar(Wa,t,x) → 0

as |τa,t| → ∞ then gives the required result. Throughout we will consider a to be an

arbitrary arm in A and x to be an arbitrary state in {1, . . . , n}.

Let αa,0,x and βa,0,x be values of the parameters of the Beta prior placed on wa,x, then

an upper bound for αa,T,x, T ≥ 1 is simply

αa,T,x ≤ αa,0,x + |τa,T | (4.5.1)

since αa,T,x can only increase by at most one at times when when a ∈ At and is

unchanging at other times.

For a lower bound on E [βa,T,x] we consider only times when a ∈ At, qt,x = 1 and

yt = 0. Note that yt = 0 guarantees that arm a is considered by the user and qt,x = 1

means that the failure to click can be attributed to wa,x. Therefore for t ≥ 1 we have

βa,t+1,x | (qt,x = 1, yt = 0, a ∈ At, βa,t,x) = βa,t,x + 1. (4.5.2)

At all other times βa,t+1,x ≥ βa,t,x since the β parameters cannot decrease. For PCM,

Pr(yt = 0 | qt,x = 1, At,wAt) =
∏
b∈At

(1− wb,x)

which is no larger than the corresponding probability for all other GCM click models

and TCM. The probability that yt = 0 can therefore be bounded below. Let w∗ =

maxb∈A,xwb,x and q∗ = mint,x Pr(qt,x = 1) then for any At ⊂ A,

Pr(yt = 0 | At,wA) ≥ q∗(1− w∗)m. (4.5.3)

We can now give a lower bound on E [βa,T,x | I1] where the expectation is joint over all

qt, yt, m
∗
t for t = 1, . . . , T , and I1 is just the priors for W. Using (4.5.2) and (4.5.3),

we have at any time T ,

E[βa,T,x | I1] ≥ βa,0,x+∑
t∈τa,T

[
Pr(qt,x = 1) Pr(yt = 0 | qt,x = 1, a ∈ At,wAt)

]
≥ |τa,T |q∗(1− w∗)m. (4.5.4)
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Let η = q∗(1− w∗)m and note that η > 0 since w∗ < 1 by the problem definition and

q∗ > 0 by the assumption given in the statement of the Lemma. Combining (4.5.1)

and (4.5.4) gives, for any τa,T ,

E
[
βa,T,x
αa,T,x

| I1

]
≥ 1

αa,0,x + |τa,T |
E [βa,T,x | I1]

≥ |τa,T |η
αa,0,x + |τa,T |

and so by the strong law of large numbers,

lim
|τa,T |→∞

βa,T,x
αa,T,x

| I1 ≥
|τa,T |η

αa,0,x + |τa,T |

= η . (4.5.5)

Note that

µa,T,x =
αa,T,x

αa,T,x + βa,T,x
=

1

1 +
βa,T,x

αa,T,x

; ,

and so from (4.5.5),

Pr

(
µa,T,x ≤

1

1 + η − δ1

)
→ 1 as |τa,T | → ∞ (4.5.6)

for any δ1 such that η > δ1 > 0.

Then, using the variance of a Beta distribution and (4.5.4) we have

V ar(Wa,T,x) =
αa,T,xβa,T,x

(αa,T,x + βa,T,x)2(αa,T,x + βa,T,x + 1)

<
(αa,T,x + βa,T,x)

2

(αa,T,x + βa,T,x)2(αa,T,x + βa,T,x + 1)

=
1

(αa,T,x + βa,T,x + 1)
→ 0 as |τa,T | → ∞,

and so for any δ2 > 0 the sampled w̃a,T,x ∼ Wa,T,x satisfy

Pr (w̃a,T,x | µa,T,x ≤ µa,T,x + δ2)→ 1 as |τa,T | → ∞. (4.5.7)

By definition RTS(a,Wa,t,qt | It) =
∑n

x=1(qt,xw̃a,t,x) ≤ maxx w̃a,t,x where w̃a,t,x ∼

Wa,t,x. Therefore, to complete the proof it is sufficient that Pr(w̃a,T,x < 1/(1 + η −

δ1) + δ2) → 1 as |τa,T | → ∞ for all a ∈ A, x = 1, . . . n and any δ1, δ2 such that

η > δ1 > 0 and δ2 > 0, which follows from (4.5.6) and (4.5.7).
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Theorem 4.5.2. Let Pr(qt,x = 1) > 0 for all x = 1, . . . , n and t ≥ 1 then the multiple

action TS algorithm given in Algorithm 2 with SEQ or NAI as set choosing method

samples infinitely often from each arm for any click model from Section 4.2.2. That

is, Pr(|τa,T | → ∞ as T → ∞) = 1 for any arm a ∈ A, where |τa,T | is set of times

t = 1, .., T that a ∈ At.

Proof. We will assume that there is a non-empty set of arms AF ⊂ A whose members

are sampled finitely often as t→∞ and show that this leads to a contradiction. By

this assumption
∑

b∈AF
|τb,∞| <∞ and so there is a finite time M = maxb∈AF

τb,t even

as t→∞.

Let AI = A \ AF be the set of arms sampled infinitely often (which must be non-

empty). Let q∗ = mint≥1,x Pr(qt,x = 1), w∗ = maxa∈A,xwa,x and η = q∗(1 − w∗)m

as in the proof of Lemma 4.5.1 and Note that η > 0 since w∗ < 1 by the problem

definition and q∗ > 0 by the given condition. Then fix some 0 < δ1 < η and 0 < δ2 <

1− 1/(1 + η − δ1). Then by Lemma 4.5.1 for all a ∈ AI ,

Pr

(
RTS(a,Wa,t,qt) ≤

1

1 + η − δ1

+ δ2

)
→ 1 as t→∞.

So there exists a finite random time T > M such that

Pr

(
RTS(a,Wa,t,qt) ≤

1

1 + η − δ1

+ δ2

)
> 1− δ2 for t > T and all a ∈ AI . (4.5.8)

Let ε = minb∈AF
[Pr(RTS(b,Wb,T ,qT | IT ) > 1/(1 + η− δ1) + δ2)]. Then for all t > T ,

b ∈ AF we have

Pr

(
RTS(b,Wb,t,qt | It) >

1

1 + η − δ1

+ δ2

)
≥ ε, (4.5.9)

since no arm in AF is selected at times t > T > M and so Wb,t is unchanged over

these times. We know that ε > 0 since Pr(w̃b,T,x > 1/(1 + η+ δ1) + δ2) > 0 for all b, x

because 1/(1 + η − δ1) + δ2 < 1 and Wb,T,x is a Beta distribution with support (0, 1).

Combining (4.5.8) and (4.5.9),

Pr
[
RTS(b,Wb,t,qt | It) > RTS(a,Wa,t,qt | It), ∀a ∈ A

]
> ε(1− δ2) (4.5.10)
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for all t > T . Therefore

∞∑
t=T

Pr(b ∈ At for some b ∈ AF ) >
∞∑
t=T

ε(1− δ2)|AI | =∞.

Using the Extended Borel-Cantelli Lemma (Corollary 5.29 of Breiman 1992) it follows

that
∑

b∈AF
|τb,∞| = ∞ which contradicts the assumption that |τb,∞| is finite for all

b ∈ AF . Therefore some arm in AF is selected infinitely often and since AF was of

arbitrary size it follows that AF = ∅.

The condition that all Pr(qt,x = 1) > 0 in Theorem 4.5.2 will not always hold in

practice. The reason that this is needed is that it is possible, due to approximate

updating, that µa,t,x → 1 as |τa,t| → ∞ even though wa,x < 1. In practice this would

be improbable unless the prior Wa,0,x was unrealistically concentrated close to 1. An

alternative method to avoid this problem would be to put an upper bound close to

1 on the value of µa,t,x used to calculate q̃t,x. This would give a lower bound for the

amount by which βa,t,x increases whenever a ∈ At, y = 0 and qt,x > 0. Using this,

Theorem 4.5.2 would hold without the Pr(qt,x = 1) > 0 condition.

4.6 Policy Performance for Unknown Weights

4.6.1 Regret Simulations

The proposed solution outlined in this section brings together a number of different

elements. Previous sections have analysed these elements separately: the sequential

set choosing algorithm when weights are known (Section 4.3.3) and the ability of the

approximate updating scheme (Section 4.4.3) to learn the true weights given sufficient

observations. Using TS ensures that there will be enough observations of the arms and

that, if weight estimates converge to the true weights, the best arm sets will be chosen

with increasing probability. This section uses simulations to test all these elements
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together using the objective of the full problem - maximising the total reward earned

over time or, equivalently, minimising the cumulative regret. At any time T this is

given by

1

T

T∑
t=1

[
CTRd(ASORACLEt ,wA,qt)− CTRd(Aπt ,wA,qt)

]
where Aπt and ASORACLEt are the arm sets chosen at time t by, respectively, the policy

being tested and the SORACLE policy. The SORACLE policy uses SEQ assuming

the true weights are known.

For each simulation run a policy is selected. This consists of a set choosing method

(either SEQ or NAI) and a bandit exploration algorithm (either the Greedy policy,

which uses the posterior mean as an estimate of the true weights, or TS). Each policy

is denoted by a two-part name where the first part gives the set choosing algorithm,

either N for NAI or S for SEQ, and the second part gives the bandit algorithm, either

TS Thompson Sampling or G for Greedy. For example, NTS indicates NAI paired

with TS.

The true weights for the run are drawn from a mixture distribution where each is

relevant with probability ξ = 0.5 and non-relevant otherwise. If relevant the weight

is drawn from a Beta(α = 1, β = 2) distribution, otherwise the weight is 0.001.

Each weight is given an independent prior belief which matches the distribution from

which relevant weights are drawn, here Beta(1, 2). At each time t = 1, 2, . . . , T a state

distribution qt is sampled from a Dirichlet distribution with all n parameters equal

to 1/n. Note that this does not satisfy the assumption on q given in Therorem 4.5.2.

In response the policy chooses a set of m arms from the available k. A user action

is then simulated and weight beliefs updated. The values of m, T , n and k used are

given with the results. This process is repeated with the other policies to be tested

using the same weights, qt and common random numbers. Both PCM and TCM

are used as click models and the policies use the correct click model where relevant.

Section 4.6.2 will consider learning when the click model is misspecified. Where the
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click model is used by a policy it will be appended to its name e.g. STS-PCM.

At each time, for each of the 500 simulation runs and each policy the cumulative

regret is calculated using the chosen arm set and the true weights.

There are clearly many possible settings for these simulations and it is not practical

to attempt to present the results of an exhaustive study of all possible combinations.

Instead the simulations given here are intended as a complement to the earlier theory

and to illustrate behaviour of various policies on the full problem.

We use two different sizes of problem to give an idea of how the learning rates scale.

For these the cumulative sequential regret averaged over all runs is shown in Figure

4.6.1 for the smaller problem and in Figure 4.6.2 for the larger one. It can be seen

that the overall pattern is the same for each but on different timescales.

Figure 4.6.1: Mean cumulative sequential regret. Simulation setting are n = 5, k = 20,

m = 2, ξ = 0.5, α = 1 and β = 2. The true click model is PCM on the left and TCM

on the right.
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Figure 4.6.2: Mean cumulative sequential regret. Simulation setting are n = 10,

k = 40, m = 3, ξ = 0.5, α = 1 and β = 2. The true click model is PCM on the left

and TCM on the right.

Some aspects of the results are as would be expected given previous analyses. For

policies using TS, as the weights are learnt, SEQ chooses higher reward sets than NAI

and so STS outperforms NTS. Greedy is more effective than TS at earlier times but

does not learn well and so falls behind later. It takes longer for the superior learning

of TS to pay off for TCM than PCM.

There are some surprises though. The two Greedy policies perform very differently on

PCM and TCM. SG does better than NG on PCM as would be expected but on TCM

the order is reversed indicating that the SG-TCM does not learn well. It appears that

NTS does not learn well as it is slow to catch up with the Greedy policies and it is

not clear whether it is catching the best of the Greedy policies at all on the larger

problem. This supports the use of combination of SEQ and TS on this problem.

Further simulations in Section 4.6.2 will look at learning rates and these issues in

more detail.
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It is worth noting that learning rates are generally slow in this problem. There are kn

parameters to learn compared to just k for the standard MAB. In addition there is

the problem of unknown x which makes feedback more noisy than normal. Offsetting

this we get to choose multiple arms at each time but due to the cascade model this

multiplies the learning rate by less than m. The contextual nature of the problem

means that there is no single best arm and this decreases the policy’s ability to focus

learning on a small subset of arms over time. Learning would be faster with more

accurate priors as the ones used ignore the possibility of non-relevance of the arms.

However, our purpose here is to produce a general working algorithm rather than one

that is optimised to particular problem settings.

4.6.2 State of Knowledge Simulations

The simulations in the previous section compared policies based on SEQ and NAI

using cumulative regret over time. An issue with this form of simulation is that

it does not answer the question of how well the methods explore since the inferior

set choosing ability of NAI once weights are known (see Section 4.3.3) limits the

reward gained even if learning is superior. This section tests how NAI or SEQ affects

the learning capabilities of policies. In addition, the previous section’s experiments

assumed the correct click model was known but misspecified models will also be tested

here.

To measure how effectively a policy has learnt we run the same simulations as in

Section 4.6.1 but rather than record the cumulative regret, we instead record the

greedy posterior regret (GPR). To define this we first define the greedy posterior reward

of a policy. At any time this is the expected reward using the SG policy with the

true click model if no further learning occurs beyond that time. The GPR is then

the difference between this value and the expected reward of the SORACLE policy

which knows the true weights. This is a more useful measure of learning than more
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general measures such as the Kullback Leibler difference because, rather than give a

general measure of learning or convergence, GPR gives a measure of effective learning.

It estimates how well the policy has focused on the most important arms which are

those likely to have larger weights and which are therefore more likely to be part of

optimal sets.

The simulation estimates the GPR for a policy as follows. A qt is generated as usual

and a single action taken using the SG policy using the posterior mean of all weights

at time t. This is done for a 100 different simulated values of qt for each run of the

original simulation and the regret averaged. The GPR over time for TS-based policies

with PCM and TCM as the true click model are shown in Figure 4.6.3. As well as

comparing SEQ and NAI it also tests for the effects of click model misspecification.

So STS-PCM assumes PCM while STS-TCM assumes TCM. NTS acts the same for

either click model. The time axis starts at t = 1000 because GPR values are high

at early times before the policies have had much time to learn. GPR values for the

Greedy-based policies are much higher and so these are shown on a separate plot in

Figure 4.6.4 with just NTS for comparison.
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Figure 4.6.3: Mean greedy posterior regret for TS-based policies with PCM (left) and

TCM (right). Simulation setting are n = 10, k = 40, m = 3, ξ = 0.5, α = 1 and

β = 2.

Figure 4.6.4: Mean greedy posterior regret for Greedy-based policies with PCM (left)

and TCM (right). Simulation setting are n = 10, k = 40, m = 3, ξ = 0.5, α = 1 and

β = 2. The NTS policy is shown for comparison.

For PCM all of the TS policies are very similar. On TCM both STS policies do
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better than NTS with STS-TCM best of all. The learning for the Greedy policies

is, as expected, clearly worse than for TS but in addition there are bigger differences

between the different Greedy variants. In particular SG-TCM learns poorly on both

PCM and TCM. This explains the regret results from Section 4.6.1 showing that the

problem is with the click model assumed by the policy rather than the true click

model. Therefore, if using a Greedy-based policy, it is more robust for learning to

assume PCM. However this is not the case with TS policies. The results here and the

regret simulations in Section 4.6.1 suggest that, in addition to superior exploitation of

knowledge, STS also learns as effectively as NTS and is better for a correctly specified

TCM.

4.7 Discussion

This section will highlight the main contributions of this chapter and discuss any issues

with the methods and future work that could result. We considered the problem of

selecting multiple website elements which has considerable application in a number

of areas of web commerce and services. The main contributions can be divided into

modelling and solution methods.

The primary intention in modelling the problem was to gain insight into the key

features of the problem and how it differed from existing similar problems. By doing

this we could better understand whether existing solution methods were appropriate

and if not develop new ones. A major objective of the model was to capture the

interactions between elements in a way that satisfied the intuitive notion that element

sets should be diverse. This was done in a concise manner by using a latent user state

together with a range of click models. By analysing solutions to the click models a

direct link can be made to element set diversity without introducing any objective

other than maximising user clicks. In particular, it was found that a click model based
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on user click thresholds resulted in a high level of diversity and which avoided the

undesirable redundancy found in sets chosen with other existing models.

The main purpose of the model is conceptual and it may seem too simple to translate

to direct application. However this depends on the richness of the topic preference

vector q. In practice this could be very large and contain considerable information.

The models and solutions methods were chosen to be practical at such a large scale.

A possible limitation of the the model is that a user state is given by a single x. An

extension would be to record the user state as a very sparse vector of equal length to

w. The click model would then be a function of these two vectors mapping to a click

probability. The function need not be complicated e.g. the probit of the dot product.

A similar model for single advert CTR prediction which has been implemented in

commercial web search is given in Graepel et al. (2010).

The second modelling challenge was how to handle the process of learning the char-

acteristics of the elements, given here by a weight vector w. Using a Bayesian multi-

armed bandit framework gave access to considerable existing research but also pre-

sented new challenges. The exact Bayesian updating scheme was not practical but in

Section 4.4.2 we developed an heuristic method which was shown to work effectively

and which will have wider application. This enabled the use of an underlying Beta-

Bernoulli model which further linked with existing bandit work and led to solution

methods for effectively learning element weights.

The solution method was given in two parts corresponding to the exploitation and

exploration parts of the traditional multi-armed bandit. First a set choosing algorithm

drew on existing theory using the submodularity of the click models to handle the

combinatorial explosion in the number of available arm sets. The theory was tested

in this setting using a simulation study and found to perform well, acting similarly to

the optimal method not only in performance but also by choosing sets with similar

diversity. Secondly, to solve the exploration part we gave a method by which existing
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bandit algorithms can easily be adapted to this problem. Our analysis concentrated

on adapting Thompson Sampling. A proof was given that the proposed method

selected all elements infinitely often under stated conditions. It demonstrated good

performance in simulations.

We did not compare our approach with existing methods because none were designed

for our problem formulation and make inappropriate assumptions for our specific

model. A formal bound on finite time regret would be desirable but the difficulty of

our problem with a stochastic latent state in addition to stochastic arms makes this

impractical. In particular the approximate Bayesian scheme does not give guarantees

of accurate convergence of weight beliefs so regret growth cannot be usefully bounded.

It was noted in Section 4.6.1 that exploration of weights will be slow as the problem is

scaled up. This is unavoidable unless greater assumptions are made on the structure

of the weights (e.g. assuming dependence between weights or elements). There are

examples of this in bandit problems (e.g. Yue and Guestrin 2011) but the intention

in this work is to use a model that is as general as possible, only adding in such

assumptions if it is clear they are valid and necessary. It may be that exploration is

not a problem in practice due to the high rate of observations in likely applications

and by using priors that best represent existing knowledge of likely element CTRs.

A realistic extension of the problem would be to have control over the number of

elements chosen at each time rather than have a fixed number. If there was some cost

to each element then it would be necessary to estimate the value in immediate and

longer term CTR of adding the element. A more realistic model of element ranking

or position than the cascade model would be desirable in evaluating the benefit of

adding extra elements.

Another extension would be to treat user preferences as a quantity that can be learnt

over time. The most basic version would be to treat user preferences q as constant
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over time but not known exactly. It may be that there are fundamental identifiability

issues with this problem. This would have important consequences for recommender

type systems which have the dual unknowns of both user needs and the characteristics

of items available for recommendation.

Finally, the methods given were not tested on a real data set as these were not available

in a suitable form for this problem. Data from a seemingly similar setting such as

that used in Li et al. (2011) is not usable as a single element is presented to the user

whereas we require a user response to a set of elements and our approach is predicated

on the assertion that the CTR of set depends on interactions between elements rather

than a simple function of their individual CTRs. Many of the modelling assertions

made in this chapter would not be difficult to test for companies able to carry out

appropriate web experiments and this would give insight into the nature of their

particular applications. For example, assessing the diversity of “good” element sets

would help suggest which click model is most appropriate. A comparison of PCM and

TCM as models for user behaviour would be of value in many applications.



Chapter 5

Practical Calculation of Gittins

Indices

5.1 Introduction

The Gittins index (GI) is known to provide a method for a Bayes optimal solution to

the multi-armed bandit problem (MAB) (Gittins 1979). In addition, Gittins indices

(GIs) and their generalisation Whittle indices have been shown to provide strongly

performing policies in many related problems even when not optimal (see Chapter 3).

The breakthrough that GIs provided was one of computational tractability since opti-

mal solution methods previously available had only been practical for very restricted

range of small MAB problems. But despite this, and the rarity of other tractable

optimal or near optimal solutions in problems of this type, GIs are often not used for

many problems for which they would be well suited, including the MAB. Part of the

reason is the perception that GIs are hard to compute in practice: “. . . the lookahead

approaches [GI] become intractable in all but the simplest setting. . . ” (May et al.

2012) and, “Logical and computational difficulties have prevented the widespread

116
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adoption of Gittins indices” (Scott 2010). In a very general setting there may be

fundamental difficulties in computation, hence the value of reliable heuristics such

as those developed in Chapter 3, but for common forms of the MAB with standard

reward distributions calculation of the GI is very much tractable. However there is

clearly a need to make the practice of calculation better understood and easier to

carry out. Powell (2007) observed “Unfortunately, at the time of this writing, there

do not exist easy to use software utilities for computing standard Gittins indices”. To

our knowledge this is still the case. Gittins et al. (2011) provides tables of GI values

for some commonly occurring problem settings but these are limited in scope.

The difficulty in calculating GIs for general Bayes sequential decision problems mo-

tivated the investigation of heuristics reported in Chapter 3. In that work the MAB

was used as a test for heuristics in part due to the existence of a known optimal policy,

namely that based on the GI. To make this comparison it was necessary to obtain GI

values for some common versions of the MAB, namely when rewards had Bernoulli or

normal distributions. It was found that the difficulty of GI calculation, in these cases

at least, was overstated. The purpose of this chapter is to give details of the method

used to calculate GIs for the MAB with Bernoulli and normal rewards (respectively

BMAB and NMAB). In doing so we will give a more general discussion, which will

be applicable beyond the BMAB and NMAB, of the issues faced and how these may

be overcome.

Probably the largest contribution of this work is the accompanying code that has

been developed in the R programming language. This code has been made publicly

available at https://bitbucket.org/jedwards24/gittins. By doing this, and by

providing the settings we used with the code, it is our intention that the process

of obtaining GI values will become easily reproducible. The run times reported on

computational experiments were obtained using a laptop with an Intel Core i7-2640

2.80 GHz processor with 8GB RAM.
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5.1.1 Problem Definition

A detailed formulation of the MAB and the GI are given in earlier chapters but a

brief outline relevant to this chapter will now be given. For the purposes of notation

we will assume rewards are from the exponential family as described in Section 3.2 in

Chapter 3 but the methodology given in this chapter is appropriate for more general

reward distributions.

In the MAB, at each decision time t = 0, 1, 2, . . . an action at ∈ {1, . . . , k} is taken.

Action at = a corresponds to choosing arm a at time t. Associated with each arm a is

an unknown parameter θa. Our belief in the value of θa is given by g(θa | Σa, na) where

Σa and na are known hyperparameters. After selection an outcome y is observed,

where y has density f(y | θa), and our belief is updated to g(θa | Σa + y, na + 1).

For the BMAB we have f(y | θa) ∼ Bern(θa) with g(θa | Σ, n) ∼ Beta(Σa, na − Σa)

and for the standard version of the NMAB, f(y | θa) ∼ N(θa, 1) and g(θa | Σa, na) ∼

N
(

Σa

na
, 1
na

)
. The sections specific to the NMAB will consider a more general form of

the NMAB which has extra parameters τa > 0. This are the observation precision of

the arms which are known and can be different for each arm. The τa alter the variance

of rewards which are now f(y | θa) ∼ N(θa, 1/τa) for arm a. As τa increases then the

observed reward becomes a more reliable estimate of θa. In any material where τa is

not mentioned it can be assumed that τa = 1 for all arms.

After the observation a reward γty is received where 0 < γ < 1 is the discount factor

and t = 0, 1, . . . is the current time. For an infinite time horizon the total Bayes’

reward is maximised by choosing an arm satisfying

νGI(Σa, na, γ) = max
1≤b≤k

νGI(Σb, nb, γ) , (5.1.1)

where νGI is the GI which will be defined later in this section. For a constant discount

factor GI values are independent of time. For the NMAB where τa 6= 1 for some arm

a the GI will be denoted νGI(τ)(Σa, na, γ, τa). Note the subscripts a will usually be
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dropped in this chapter since we are only interested in a single arm for a given index

calculation.

5.1.2 Use of Gittins Indices in Practice

GIs for the Bayesian MAB can, in general, only be calculated numerically and so it is

more accurate to think of a GI value as only being known to lie within some range. For

any given policy decision only the ordering of the arm GIs matters, not the absolute

value, as we only need to find an arm that satisfies arg maxa ν
GI(Σa, na, γ). Therefore,

for an optimal policy we only need to calculate GIs to sufficient accuracy such that the

intervals containing νGI for competing arms do not overlap. However we do not seek

such exact optimality as doing so will come with a computational cost unjustified by

diminishing returns in reward. Instead we will give a simple, computationally practical

approach that gives GIs to a good and bounded accuracy for almost all states. The

suboptimality of this approach is limited and quantifiable because decisions involving

arms that have very similar GI values will be rare and, more importantly, the cost of

a suboptimal action is small when the GI of the suboptimal arm is close to that of the

optimal arm: “. . . an approximate largest-index rule yields an approximate optimal

policy” (Katehakis and Veinott Jr 1987). Glazebrook (1982) gives a bound for the

lost reward of a suboptimal policy in terms of GIs.

Also, the accuracy of the quantity νGI(Σa, na, γ)− νGI(Σb, nb, γ) for any two arms a,

b will be better than accuracy guarantees on individual GIs since, by using similar

calculation methods for each arm, the approximation errors will be correlated. This

will be indicated for any approximations where relevant in later sections.

GIs can be calculated either online, as they are needed, or offline where they are stored

then retrieved when needed. Online calculation has the advantage that GIs need only

be calculated for states that are visited which is beneficial when the state space is
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large and especially if it is continuous. If calculated online it is not necessary to do

the full calculation for each arm at every time because only the GI of the arm selected

will change and this need only be recalculated to sufficient accuracy to determine

whether its new GI is below the GI of the second best arm at the previous time. Also

it may be that fast to calculate bounds such as those given in Section 5.2 are sufficient

to determine the next action. For the BMAB recalculation can often be avoided by

using the stay-on-the-winner rule (Berry and Fristedt 1985) which guarantees that

the optimal arm from the previous time remains optimal for the next if a success is

observed.

However, for many applications, online calculation may be too slow to be used, at

least to reasonable accuracy, and in this thesis only offline calculation was used.

The rest of this chapter will focus on offline calculation although the methods will

often be applicable to online use. When using GIs in simulations, as in Chapter

3, offline calculation is appropriate as the same states are repeated many times in

different simulation runs and offline use avoids repeated calculations. Generally, offline

calculation is simpler and will be efficient whenever online calculation is practical, the

only possible exception being with large state spaces. Methods to handle this issue

are discussed in Section 5.4.

5.1.3 General Approach

Various methods exist for calculating GIs (for a review see Chakravorty and Mahajan

2014 or Gittins et al. 2011) but we will use calibration. Calibration uses a bandit

process with a retirement option (Whittle 1980) which is sometimes referred to as a

one-armed bandit. The single arm in question is the one for which we wish to find

the GI which we will call the risky arm. At each time we have the choice to continue

to play this arm or instead choose an arm of known and stationary reward λ (the

safe arm). Since there is nothing we can learn about the safe arm it’s value does not
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change and once it is optimal to choose then it will continue to be optimal indefinitely

(this is retirement). The GI of the risky arm is the value of λ for which, at the start

of the one-armed bandit, we are indifferent between choosing the safe or risky arms.

Hence we must find the expected reward available from (or value of) the one-armed

bandit for a given λ with either initial action.

This can be done using stochastic dynamic programming to solve the value function

for the one-armed bandit given λ and the risky arm’s state given by Σ, n and γ:

V (Σ, n, γ, λ) = max

{
Σ

n
+ γEY

[
V (Σ + Y, n+ 1, γ, λ)

]
;

λ

1− γ

}
. (5.1.2)

Note that in any state where it is optimal to choose the safe arm at any time then it

remains optimal for all remaining times hence the value of choosing the safe arm is

λ
1−γ and can be found without recursion. However we do not need the absolute value

so V (Σ, n, γ, λ) will instead denote the relative value between the safe and risky arms

and (5.1.2) is replaced by

V (Σ, n, γ, λ) = max

{
Σ

n
− λ+ γEY

[
V (Σ + Y, n+ 1, γ, λ)

]
; 0

}
. (5.1.3)

The Gittins index can then be defined as

νGI(Σ, n, γ) = min{λ : V (Σ, n, γ, λ) = 0}. (5.1.4)

To find λ satisfying (5.1.4) a numerical method must be used. Observe that V (Σ, n, γ, λ)

decreases as λ increases while Σ, n and γ are fixed so we can progressively narrow an

interval containing λ by repeatedly finding V
(

Σ, n, γ, λ̂
)

for appropriate λ̂. The

general method for a single state is given in Algorithm 3.
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Algorithm 3 Calibration for Gittins indices

Input: Parameters Σ, n, γ. Initial bounds for νGI(Σ, n, γ) given by u, l. A required

accuracy ε.

while u− l > ε do

λ̂← l + (u− l)/2

Calculate V (Σ, n, γ, λ̂) as given in (5.1.3)

if V (Σ, n, γ, λ̂) > 0 then

l← λ̂

else

u← λ̂

end if

end while

Output: An interval [l, u] which contains νGI(Σ, n, γ) where u− l < ε .

The algorithm initialises an interval in which νGI(Σ, n, γ) is known to lie (methods

for doing this will be given in Section 5.2). The interval is then reduced in size, using

bisection and repeated calculation of the value function in (5.1.3), until it is sufficiently

small for our purposes. We can use the mid-point of this interval for νGI(Σ, n, γ)

which will be within the desired accuracy ε of the true value. Details of calculating

the value function for the BMAB and NMAB will be given in Section 5.3.

Other interval reduction methods could be used but bisection is sufficient for our

purposes. The number of calculations of V (Σ, n, γ, λ̂) required is

NV =

⌈
log
(

ε
u−l

)
log(0.5)

⌉
,

where u and l are respectively the initial upper and lower bounds for νGI(Σ, n, γ)

given to the algorithm. Using ε = 0.001 is sufficient to give a policy close enough to

optimal for most purposes but ε = 0.0001 can usually be obtained with NV ≈ 15.

Section 5.2 gives new and existing bounds for GIs that can be used to initialise the
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interval for calibration. Section 5.3 gives details of the calculation of the value func-

tions for BMAB and NMAB. This allows us to calculate the GI for a single state.

Section 5.4 describes how to extend the single state methods in a practical way to

obtain GIs for the full state space of the MAB. This is made possible by using invari-

ant transforms to reduce the dimension of the state space and by using monotonicity

properties of GIs to handle continuous state spaces. A comparison will be made of

two general approaches to finding GIs for a block of states. Section 5.5 will discuss

some outstanding issues and the calculation of indices for the finite horizon MAB.

5.2 Bounds for Gittins Indices

In this section we give new and existing bounds for GIs. Bounds are needed to initialise

an interval to calculate GIs and tighter bounds will reduce computation time. The

bounds given will also be of general interest and use in the study and application of

GIs.

The following theorem from Brezzi and Lai (2000) gives bounds for the MAB with

general rewards.

Theorem 5.2.1. For the MAB with general rewards under the condition that
∫

[Eθ(Y |

θ)]2 dg(θ) <∞,

µ ≤ νGI ≤ µ+ σ
γ

1− γ
, (5.2.1)

where µ is the mean reward given the belief g(θ) and σ is the standard deviation of

g(θ).

For exponential family rewards µ = Σ/n and σ = 1/
√
n. For the BMAB a better

bound is often given by νGI ≤ 1 since rewards are bounded. The upper bound in

(5.2.1) can be very loose for larger γ so we now give new, tighter bounds that in



CHAPTER 5. CALCULATING GITTINS INDICES 124

general require numerical calculation but which are still fast to obtain for common

reward distributions such those for the BMAB and NMAB.

5.2.1 Upper Bounds

Upper bounds are based on a variant of the MAB with perfect information where θ

is assumed to be revealed after a single observation. Under this assumption the value

function for the one-armed bandit is

V PI (Σ, n, γ, λ) = max

{
Σ

n
− λ+

γ

1− γ
Eθ∼g(θ|Σ,n)

[
max(θ − λ, 0)

]
; 0

}
, (5.2.2)

and substituting this for V (·) in (5.1.4) gives the GI for the perfect information MAB.

Definition 5.2.2. The index GI+ is the GI of the MAB where the unknown parameter

θ becomes known after a single observation. Let Θ be the support of g(θ | Σ, n) and

V PI(Σ, n, γ, λ) be the value function under perfect information as given in (5.2.2),

then GI+ is given by

νGI
+

(Σ, n, γ) = min{λ : V PI(Σ, n, γ, λ) = 0} (5.2.3)

= min

{
λ :

λ

1− γ
=

Σ

n
+

γ

1− γ

[∫ λ

min Θ

g(θ | Σ, n)λ dθ +

∫ max Θ

λ

g(θ | Σ, n)θ dθ

]}
.

(5.2.4)

The left and right hand sides of the equation in the curly braces in (5.2.4) are the

expected reward of playing, respectively, the safe and risky arms over the remaining

time horizon. Rewards after the next outcome partition depending on the value of

θ with the risky arm being continued if θ > λ and retired otherwise. Since θ is

now known the arm played will continue for the remaining time. Therefore to solve

(5.2.3) only the first outcome need be considered which means that a full dynamic

programming scheme is not needed. Note that for the NMAB GI+ is equivalent to

the limit of νGI(τ)(Σ, n, γ, τ) as τ → ∞. The next proposition states that GI+ is an

upper bound for GI.
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Proposition 5.2.3. νGI(Σ, n, γ) ≤ νGI
+

(Σ, n, γ) for all Σ, n, γ.

Proof. V PI(·) maximises the value in a relaxed version of the one-armed bandit.

Therefore V (Σ, n, γ, λ) ≤ V PI (Σ, n, γ, λ) for any Σ, n, γ, λ and the result follows

from the definitions of GI and GI+ in (5.1.4) and (5.2.3) respectively.

Let H = γ/(1 − γ) and µ = Σ/n then substituting G(·), the CDF of g(θ | Σ, n), for

the right hand integral in (5.2.4) and rearranging gives an alternative expression for

GI+:

νGI
+

= min

{
λ : λ =

µ+H
∫ max Θ

λ
g(θ | Σ, n)θ dθ

1 +H[1−G(λ)]

}
. (5.2.5)

This leads to a new bound which is looser but which can be calculated directly without

calibration.

Definition 5.2.4. The index UBGI+ is

νUBGI
+

(Σ, n, γ) =
µ+H

∫ max Θ

µ
g(θ | Σ, n)θ dθ

1 +H[1−G(µ+Hσ)]
. (5.2.6)

where H = γ/(1− γ) and σ is the standard deviation of the belief g(θ | Σ, n).

Lemma 5.2.5. νGI
+

(Σ, n, γ) ≤ νUBGI
+

(Σ, n, γ) for all Σ, n, γ.

Proof. As νGI
+

(Σ, n, γ) is a GI for a MAB it follows from Theorem 5.2.1 that µ ≤

νGI
+

(Σ, n, γ) ≤ µ + Hσ. The result then follows directly from Definition 5.2.4 since

νUBGI
+

is found by substituting µ and µ+Hσ appropriately for λ in (5.2.5).

UBGI+ can be found directly without the use of interval reduction. Numerical meth-

ods are still required for the integral but these are fast for common distributions. A

comparison of upper bounds is given for the NMAB in Figure 5.2.1 where UBBL is

the upper bound from Theorem 5.2.1. It can be seen that GI+ is much tighter than

the other bounds. A more appropriately scaled plot of GI+ will be given later in this

section together with lower bounds.
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Figure 5.2.1: Comparison of Upper Bounds for GI for the NMAB with Σ = µ = 0,

γ = 0.95, τ = 1 and n = 1, . . . , 20.

5.2.2 Lower Bounds

The lower bound µ = Σ/n from Theorem 5.2.1 can be improved upon by using the

Knowledge Gradient index (KGI) introduced in Section 3.4 in Chapter 3 the relevant

details of which will be repeated here.

A value function V KG(Σ, n, γ, λ) which approximates V (Σ, n, γ, λ) is found by impos-

ing the constraint that whatever decision is made at the second stage of the dynamic

program is final and so will apply for the remainder of the horizon:

V KG(Σ, n, γ, λ)

= max

{
Σ

n
− λ+

γ

1− γ
EY
[
max

(
max

(
Σ + Y

n+ 1
, λ

)
− λ; 0

)
| Σ, n

]
; 0

}
. (5.2.7)

Note V KG(Σ, n, γ, λ) is decreasing in λ for any fixed Σ, n and γ. The KGI is then

given by

νKGI (Σ, n, γ) = min
{
λ : V KG (Σ, n, γ, λ) = 0

}
. (5.2.8)

Let p(y | Σ, n) and P (y | Σ, n) be respectively the density and CDF of the predictive

distribution of y found by integrating over θ. These will be abbreviated to p(y) and
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P (y) in the following for brevity as conditioning is always on Σ and n. Unlike the

GI+ we do not observe the true θ and so the continuation threshold after the first

stage depends on y. Let µ+ = (Σ + y)/(n+ 1) be the mean of the posterior predictive

given y, then the continuation threshold above which the risky arm is continued is

y∗ = λ(n+ 1− Σ). An alternative statement of KGI is then

νKGI(Σ, n, γ) = min

{
λ : µ− λ+H

[∫ y∗

minY

p(y)λ dy +

∫ maxY

y∗
p(y)µ+ dy − λ

]
= 0

}
(5.2.9)

⇐⇒ min

{
λ : λ =

µ+H
∫ maxY

y∗
p(y)µ+ dy

1 +H(1− P (y∗))

}
(5.2.10)

where H = γ/(1− γ). For the NMAB the corresponding index νKGI(τ) is a function

of τ where y∗ = (λ(n + τ) − Σ)/τ and µ+ = (Σ + yτ)/(n + τ). The right hand side

of the part of (5.2.10) in curly braces therefore depends on λ through y∗ and interval

reduction must be used.

Binary outcomes mean that the BMAB case for KGI can solved analytically,

νKGI(Σ, n, γ) =
Σ

n+HΣ
+H

Σ(Σ + 1)

(n+ 1)(n+HΣ)
=
µ+Hµ

(
Σ+1
n+1

)
1 +Hµ

, (5.2.11)

where again H = γ/(1− γ).

Proposition 5.2.6. KGI satisfies µ ≤ νKGI(Σ, n, γ, λ) ≤ νGI(Σ, n, γ, λ).

Proof. The left hand inequality follows directly from (5.2.7), which equals zero if and

only if λ ≥ Σ/n, and the definition of KGI in (5.2.8). The right hand inequality follows

from the definition of KGI since V KG(Σ, n, γ) is an approximation of V (Σ, n, γ) which

finds a maximal solution to the dynamic program.

5.2.3 Summary of Bounds

In summary we have µ ≤ νKGI ≤ νGI ≤ νGI
+ ≤ νUBGI

+
and νGI

+ ≤ νUBBL where

νUBBL is the upper bound from Theorem 5.2.1. The bounds µ and νUBBL have closed
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form and take negligible time to calculate. The calculation times for νUBGI
+

, νKGI

and νGI
+

for a vector of 100 states are given in Table 5.2.1.

Bound Time (s)

UBGI+ 0.0012

GI+ 0.0090

KGI 0.0025

Table 5.2.1: Computation times for bounds for 100 states in the NMAB (γ = 1, τ = 1,

n = 1, . . . , 100). An accuracy ε = 0.00005 was used for the values of GI+ and KGI.

By using bisection for interval reduction, small tightening of initial bounds do not

make a large saving in computation time but calculation of νKGI and νGI
+

is far

faster than finding V (Σ, n, γ, λ) once so it usually worth using these bounds. Section

5.4 discusses how GI values from nearby states can provide a tighter initial range if

they are available.

Figure 5.2.2 shows the two tightest bounds KGI and GI+ for the NMAB which can

be seen to be a big improvement on UBBL (shown in Figure 5.2.1) and the lower

bound µ = 0. For smaller γ the GI values become closer to the KGI bound, moving

closer to GI+ as γ increases. All the bounds shown become tighter as τ increases as

the one step lookahead becomes a more appropriate approximation.
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Figure 5.2.2: Comparison of bounds for GI for the NMAB with Σ = µ = 0, γ = 0.95,

τ = 1 and n = 1, . . . , 20.

In Figure 5.2.3 KGI and GI+ are shown together with µ = Σ/n for the BMAB. The

best alternative upper bound is 1.

Figure 5.2.3: Comparison of bounds for GI for the BMAB with γ = 0.95, n = 2, . . . , 10

where µ = Σ/n. The left plot shows Σ = n/2, the centre plot shows Σ = 1 and the

right plot shows Σ = n− 1.

A side note of the work in this section is that νGI
+ − νKGI gives a bound on the

approximation error for KGI. For the BMAB νUBGI
+−νKGI gives an analytical bound

on this error and which means we can easily bound the suboptimality of the KGI policy

by using the result from Glazebrook (1982).
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5.3 Value Function Calculation

This section will will give details of how the value function (5.1.3) can be calculated

for the BMAB and NMAB. The emphasis for method choice and implementation,

both here and in the general approach given in Section 5.1.3, is on practicality and

general applicability. One obstacle to adoption of GIs as a practical solution method

has been perceived complexity and it is not our aim to optimise for speed but to

present a method that is easy to implement, with good demonstrable accuracy and

which is practical for most situations. Much of methodology here is similar to that

given in Chapter 8 of Gittins et al. (2011) but has been adapted to be more accessible

and to give a more detailed and general implementation. Experimental accuracy and

speeds for a range of settings for the calculation will also be given.

Each V (Σ, n, γ, λ̂) is found with stochastic dynamic programming using the recur-

sive equation (5.1.3). It is useful to distinguish between the states and times in the

dynamic program used to calculate the value function, and states and times in the

original MAB. We will use (ñ, Σ̃) to denote the states in the dynamic program and

refer to the stage of the dynamic program rather than the time. Therefore the initial

state at stage 0 is (n,Σ). The backward recursion process of dynamic programming

cannot proceed for an infinite number of stages so a finite horizon approximation is

used. An N is chosen and the values of states {(ΣN , nN , γ, λ) : nN = n+N} at stage

N are calculated directly using some approximation. An obvious approximation is

V̂ (ΣN , nN , γ, λ) = γN max(ΣN/nN −λ, 0) but this can be improved by using a similar

idea to KGI so that

V̂ (ΣN , nN , γ, λ) =
γN

1− γ
max(ΣN/nN − λ, 0). (5.3.1)

States at stages up to stage N are then found recursively using (5.1.3). Discounting

ensures that this index with a large N gives a very good approximation which can be

made arbitrarily close to νGI by increasing N .
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The size of the dynamic program and hence the computation required depends on N

so we aim to use as small a value as possible that still gives the required accuracy.

The remaining reward at stage N gives a bound on the approximation but is would

lead to a too conservative value of N . An estimate of an appropriate value of N for a

required accuracy can be found from testing convergence for a single state as shown

in Table 5.3.1. The calculation time is also shown. A value of N = 2000 was used to

find the νGI used in the comparison and this took 15 seconds to compute.

N
γ = 0.9 γ = 0.99

Error RRN Error RRN

20 0.00827 1.21577 0.03738 81.79069

40 0.00086 0.14781 0.03531 66.89718

60 0.00010 0.01797 0.02825 54.71566

80 0.00001 0.00218 0.02227 44.75232

100 0 0.00027 0.01755 36.60323

200 0 0.00000 0.00557 13.39797

300 0 0.00000 0.00188 4.90409

400 0 0.00000 0.00066 1.79506

500 0 0.00000 0.00024 0.65705

600 0 0.00000 0.00008 0.24050

700 0 0.00000 0.00003 0.08803

800 0 0.00000 0.00001 0.03222

900 0 0.00000 0 0.01179

1000 0 0.00000 0 0.00432

Table 5.3.1: The error in GI from using a finite horizon approximation for the BMAB

with Σ = 1, n = 2, accuracy ε = 0.000005 and N, γ as given. RRN is the maximum

reward remaining after stage N and is shown for comparison.

Convergence with the NMAB occurs at even smaller N as will be seen in a similar

experiment in Section 5.3.2. The reason why low values of N give good accuracy is as

follows. Let A be the risky arm and B be the safe arm. If B is the optimal action at

stage N of the stopping problem then the value approximation in (5.3.1) is accurate.

If A is optimal at stage N then it will have been chosen at each preceding stage.
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Therefore its posterior distribution will be tight and ΣN/nN is a good estimate of its

true expected reward. Hence it would likely have been continued if N had been much

larger. This combined with discounting means there is little approximation error. It

should also be noted that the errors will all be of the same sign and so will be largely

cancelled out in the resulting index policy as long as the same N is used for all states.

5.3.1 Value Function Calculation - BMAB

The application of dynamic programming in the BMAB case for a single state is

largely straightforward since the outcomes are binary and so the state space for the

dynamic program is discrete. The value function (5.1.3) then becomes

V (Σ, n, γ, λ)

= max

{
−λ+ γ

Σ

n

[
1 + V (Σ + 1, n+ 1, γ, λ)

]
+ γ

(
1− Σ

n

)
V (Σ, n+ 1, γ, λ); 0

}
,

with terminal states as given in (5.3.1). Apart from the use of a finite N , the cal-

culation of νGI(Σ, n, γ) for the BMAB can therefore be done without approxima-

tion. The dynamic program state space is {(Σ̃, ñ) : Σ̃ = Σ,Σ + 1, . . . ,Σ + N, ñ =

n, n+ 1, . . . , n+N ; Σ̃ ≤ ñ}, a total of 1
2
(N + 2)(N + 1) states.

5.3.2 Value Function Calculation - NMAB

For the NMAB rewards are continuous in R rather than discrete and so solving the

dynamic program to find V (Σ, n, γ, λ) is not straightforward. We use a discretisation

of the state space for the one-armed bandit which introduces extra levels of approxi-

mation compared to the BMAB.

The process evolves in two dimensions Σ̃ and ñ but it is simpler to describe the

following method using a reparameterisation from (Σ̃, ñ) to (µ̃, ñ) where µ̃ = Σ̃/ñ

since we can then fix a range of µ̃ into which the process is likely to evolve which is
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invariant to n. We need states to be countable so the µ̃ dimension is discretised and

bounded using two new parameters. The first ξ describes the extent of the state space

and is the number of standard deviations σ =
√

1/n of g(θ | Σ, n) from µ included in

the µ̃ dimension. The second δ controls the fineness of the discretisation. In addition

we will restrict µ̃ ≥ µ which will be justified shortly. Therefore Ω, the range for µ̃ is

Ω = {µ̃ : µ̃ = µ, µ+ δ, µ+ 2δ, . . . , µ+

⌈
ξσ

δ

⌉
δ}.

The ñ dimension is discrete so the state space for the dynamic program is {(µ̃, ñ) :

µ̃ ∈ Ω; ñ = n, n + τ, n + 2τ, . . . , n + Nτ}. The total number of states is therefore

(N + 1)(dξσ/δe + 1) ≈ Nξσ/δ. Hence the state space size is decreasing in δ and n,

and increasing in ξ and N .

The immediate reward of each state is given by µ̃ as usual and the values of the states

at stage N are found using (5.3.1) as with the BMAB. Denote π(S, µ+, τ) to be the

transition probability from any state S = (µ, n) to another state (µ+, n+ τ), µ+ ∈ Ω.

Then π(S, µ+, τ) is given by the probability that the posterior mean is in the interval

[µ+ − δ/2, µ+ + δ/2). Thus, for any state S = (µ̃, ñ) we have

π(S, µ̃+, τ) = P (yu|µ̃, ñ)− P (yl|µ̃, ñ)

where P (y | µ̃, ñ) is the predictive CDF and

yl =
(µ̃+ − δ/2)(ñ+ τ)− nµ̃

τ
and yu =

(µ̃+ + δ/2)(ñ+ τ)− nµ̃
τ

.

As P (·) is Gaussian the transition probabilities are quick to calculate. Then our value

function approximation is

V ∗(µ,n, γ, λ)

= max

µ− λ+ γ

V + + V − +
∑
µ+∈Ω

[
π[(µ, n), µ+, τ ]V (µ+, n+ τ, γ, λ)

] ; 0


where V + and V − are approximations to the expected value when µ updates to outside
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the range of Ω. To find V + and V − let

yU =
(max Ω + δ

2
)(ñ+ τ)− nµ̃
τ

and yL =
(min Ω− δ

2
)(ñ+ τ)− nµ̃
τ

.

then

V + = (1− P (yU | µ̃, ñ))V (max Ω, n+ τ, γ, λ)

and

V − = P (yL | µ̃, ñ)V (min Ω, n+ τ, γ, λ).

For ξ sufficiently high the approximation in V + will be small as the probability of θ

being above max Ω will be negligible. The approximation V − does not result in any

error for min Ω = µ−δ/2 by the following reasoning. For λ = νGI(τ)(µ, n, γ) we are in-

different between retirement and continuation in the starting state so V (µ, n, γ, λ) = 0.

Since V (µ, n, γ, λ) is non-increasing in n and non-decreasing in µ we have V (µ̃, ñ, γ, λ) =

0 for any ñ > n, µ̃ ≤ µ and so we will select the safe arm for the whole of this range

and so the exact value of µ̃ ≤ µ is unimportant. Since the use of V − does not affect

the monotonicity of V ∗(·) with λ, setting min Ω = µ and using V − will not change

the νGI calculated.

To investigate the effect of the approximations N , δ and ξ on accuracy of νGI(τ) a

series of convergence tests were run. For each γ ∈ {0.9, 0.99} and each τ ∈ {0.1, 1, 10}

a benchmark value of νGI(τ)(0, 1, γ, τ) was calculated using ξ = 8, δ = 0.005 and

accuracy ε = 0.00005, with N = 80 for γ = 0.9 and N = 200 for γ = 0.99. Then the

values of N , δ and ξ were relaxed in turn. The difference νGI − ν̂GI between the the

benchmark GI value and the approximation are given in Tables 5.3.2 to 5.3.7 together

with the calculation times.
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N
Approximation Error Run Time (s)

τ = 0.1 τ = 1 τ = 10 τ = 0.1 τ = 1 τ = 10

10 0.00523 0.00123 0.00016 55 50 37

20 0.00054 0.00010 0.00004 109 94 69

30 0.00008 0 0 159 134 100

40 0 0 0 210 173 129

50 0 0 0 256 209 158

60 0 0 0 304 249 188

Table 5.3.2: Approximation error and run time of GI calculations with varying N and

τ as shown and fixed γ = 0.9, n = 1, ε = 0.00005, δ = 0.005, ξ = 8.

δ
Approximation Error Run Time (s)

τ = 0.1 τ = 1 τ = 10 τ = 0.1 τ = 1 τ = 10

0.1 -0.00304 -0.00155 -0.00144 1.6 1.3 1.0

0.09 -0.00246 -0.00129 -0.00111 1.9 1.5 1.2

0.08 -0.00196 -0.00113 -0.00086 2.3 1.9 1.5

0.07 -0.00150 -0.00071 -0.00078 2.9 2.4 1.8

0.06 -0.00104 -0.00068 -0.00049 3.8 3.0 2.4

0.05 -0.00077 -0.00045 -0.00037 5.3 4.2 3.3

0.04 -0.00042 -0.00019 -0.00029 7.8 6.3 4.9

0.03 -0.00015 -0.00016 -0.00012 13 10 8.1

0.02 -0.00012 -0.00003 -0.00004 28 22 17

0.01 -0.00004 0 0 106 83 60

Table 5.3.3: Approximation error and run time of GI calculations with varying δ and

τ as shown and fixed γ = 0.9, n = 1, ε = 0.00005, N = 80 and ξ = 8.

ξ
Approximation Error Run Time (s)

τ = 0.1 τ = 1 τ = 10 τ = 0.1 τ = 1 τ = 10

3 0.00004 0.00081 0.00152 88 70 47

4 0 0 0.00004 148 115 81

5 0 0 0 223 180 122

6 0 0 0 311 255 171

Table 5.3.4: Approximation error and run time of GI calculations with varying ξ and

τ as shown and fixed γ = 0.9, n = 1, ε = 0.00005, N = 80 and δ = 0.005.
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N
Approximation Error Run Time (s)

τ = 0.1 τ = 1 τ = 10 τ = 0.1 τ = 1 τ = 10

20 0.04592 0.00839 0.00113 151 129 95

40 0.01328 0.00218 0.00031 286 238 176

60 0.00535 0.00086 0.00012 411 338 255

80 0.00249 0.00040 0.00004 549 456 333

100 0.00128 0.00022 0 678 559 394

120 0.00066 0.00012 0 800 663 468

140 0.00037 0.00006 0 922 766 544

160 0.00018 0.00003 0 1045 871 620

180 0.00007 0.00003 0 1143 973 696

Table 5.3.5: Approximation error and run time of GI calculations with varying N and

τ as shown and fixed γ = 0.99, n = 1, ε = 0.00005, δ = 0.005, ξ = 8.

δ
Approximation Error Run Time (s)

τ = 0.1 τ = 1 τ = 10 τ = 0.1 τ = 1 τ = 10

0.1 -0.0153 -0.0074 -0.0021 4.8 4.4 3.1

0.09 -0.0128 -0.0065 -0.0018 5.5 5.1 3.6

0.08 -0.0102 -0.0059 -0.0023 6.8 6.2 4.5

0.07 -0.0080 -0.0049 -0.0020 8.4 7.7 5.5

0.06 -0.0066 -0.0039 -0.0017 11.0 10.0 7.3

0.05 -0.0048 -0.0031 -0.0013 15.1 13.8 10.0

0.04 -0.0030 -0.0023 -0.0011 23.3 20.4 14.8

0.03 -0.0018 -0.0015 -0.0007 39.1 32.9 24.6

0.02 -0.0007 -0.0007 -0.0005 81.5 69.1 52.3

0.01 -0.0001 -0.0002 -0.0002 310.7 266.3 196.6

Table 5.3.6: Approximation error and run time of GI calculations with varying δ and

τ as shown and fixed γ = 0.99, n = 1, ε = 0.00005, N = 200 and ξ = 8.
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ξ
Approximation Error Run Time (s)

τ = 0.1 τ = 1 τ = 10 τ = 0.1 τ = 1 τ = 10

3 0.00312 0.00966 0.01022 199 162 117

4 0.00007 0.00018 0.00020 335 276 201

5 0 0 0 504 420 310

6 0 0 0 701 593 441

7 0 0 0 926 795 624

Table 5.3.7: Approximation error and run time of GI calculations with varying ξ and

τ as shown and fixed γ = 0.99, n = 1, ε = 0.00005, N = 200 and δ = 0.005.

The approximation due to N is smaller than for the BMAB with a value as small as

N = 30 being sufficient for γ = 0.9. The N required for a given accuracy reduces with

τ . Using ξ = 5 is sufficient in all cases. Speed generally decreases with τ which is due

to narrower initial intervals. The choice of δ can have a large effect on the run time

of the algorithm. It was found that δ = 0.01 gives good accuracy but the guarantees

are less clear than with N and ξ. The approximations from too small an N or ξ cause

an underestimation in νGI while too high a δ causes an overestimation.

Improvements in the method are most likely to come from selecting δ appropriately

and from improving the approximation δ causes. It is likely a more efficient discreti-

sation will be found by varying δ across the µ̃ dimension so that there is a higher

concentration of states nearer µ. Another possible improvement is that lower values

of δ needed to obtain good accuracy might not be needed at every stage of the cal-

ibration and it may be more efficient to determine the sign of V (Σ, n, γ, λ) for some

values of λ using a fast approximation only using lower δ if needed.



CHAPTER 5. CALCULATING GITTINS INDICES 138

5.4 Computation Details for Multiple States

When GIs are calculated offline we theoretically need to find in advance the GI for

each state that an arm in the MAB may visit. However this may not be possible

as the state space can be infinite. This section will discuss how this issue can be

addressed in practice and will give the states for which GIs are needed to create a

GI-based policy for the BMAB and NMAB. It will also consider several methods of

improving efficiency when going from single to multiple state GI calculations.

The MAB has an infinite time horizon but due to discounting rewards become very

small for large times. Therefore GIs are only needed for states which can be reached

in some suitable finite time T . If a large value of T is used then the states reached

after T observations on a single arm will generally have tight belief distribution and

so νGI(Σ, n, γ) will be close to Σ/n and will be easy to approximate, either by using

the bounds given in Section 5.2 or by using an analytical approximation method such

given by Brezzi and Lai (2002) which will be very good for high n. However, unless γ

is close to one it will usually be feasible to obtain good GI calculations directly with

better guarantees than other approximations.

If rewards are continuous, as in the NMAB then the MAB state space will also be

continuous in the Σ dimension. Even when rewards are discrete we may want to

find GIs for a continuous state space if priors are allowed to be parameterised over a

continuous range.

The issue of continuous state spaces can be solved by using the following monotonicity

properties of νGI(·) to bound values for any states for which we don’t have GIs by

using the GIs of similar states. Theorem 3.2.1 in Chapter 3 states that νGI(cΣ, cn, γ)

is decreasing in c ∈ R+ for any fixed Σ, n, γ and is increasing in Σ for any fixed c, n, γ.

With this result νGI(·) for a discrete grid of Σ and n can be used to bound and

interpolate νGI(·) for any interior state for a given γ. Yao (2006) gives monotonicity
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results specific to the NMAB: νGI(τ)(Σ, n, γ, τ) is non-decreasing in Σ and τ and non-

increasing in n. From Kelly (1981), νGI(Σ, n, γ) is non-decreasing in γ which allows

for a similar process of interpolation to obtain GIs for a continuous range of γ.

Any interpolation can be made arbitrarily accurate by using a finer grid of values.

This may be impractical if the state space is not of low dimension. This is not a

problem for the BMAB but would be for the NMAB if it were not for invariance

properties that reduce the effective dimension. The details of the size of the state

space for which we need GIs will be discussed in Sections 5.4.1 and 5.4.2 for the

BMAB and NMAB respectively.

5.4.1 Multiple State Computation - BMAB

For the BMAB there are two dimensions, Σ and n, for each γ. Outcomes y are in

{0, 1} so for priors Σ0, n0 we need GIs for states

{(Σ, n) : Σ = Σ0,Σ0 + 1, . . . ,Σ0 + T, n = n0, . . . , n0 + T,Σ ≤ n}. (5.4.1)

If a set of GI values is needed for any possible prior (which hypothetically could

take any positive values) then this could be done by finding GIs for the set of states

in (5.4.1) for a reasonable grid of {(Σ0, n0) : Σ0 ∈ (0, 1),n0 ∈ (0, 2],Σ0 < n0} and

interpolating where needed. In practice to avoid searching a large lookup table of

values online the interpolation is best done offline to create a two-dimensional matrix

of values for each arm that has distinct priors.

An alternative to finding GIs one state at a time (the state method) is to use the

method given in Section 8.4 of Gittins et al. (2011) for which MATLAB code is given

(referred to here as the block method). The block method finds GI values for a block

of states in one go by stepping through an increasing sequence of values of λ and

assigning index values to states when the safe arm is first preferred to the risky arm.

By doing this it reuses some value function calculations and can therefore be more
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efficient if used on a large number of states. However, there are several reasons why

the state method may be preferred for general use.

1. Accuracy for the block method depends on the step size use for the λ sequence

and so computation time scales linearly with accuracy. By using bisection the

state method time scales logarithmically.

2. By using good initial bounds the state method only considers λ in a small sub-

interval of [0, 1]. These can be tightened further by bounds from GIs already

calculated for similar states.

3. The state method is easy to parallelise which can drastically reduce the time

needed.

The results of a speed comparison between methods can be seen in Table 5.4.1. This

compares the block method with two implementations of the state method. Method

“State B” initialises intervals for all states using KGI for a lower bound and GI+ for

upper bound. “State A” also does this but then updates the intervals online as GI

values are calculated. The values are calculated in ascending order of n for Σ0 then

repeating for each Σ0 +1,Σ0 +2, . . . ,Σ0 +T . Lower and upper bounds for νGI(Σ, n, γ)

are given respectively by νGI(Σ−1, n, γ) and νGI(Σ, n−1, γ) where these are available.
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ε T N
Run Time (s)

Block State A State B

0.001 50 50 6.2 5.8 9.3

0.001 100 50 16 16 39

0.001 100 200 132 192 398

0.0001 50 50 62 13 12

0.0001 100 50 191 28 47

0.0001 100 200 1354 355 536

Table 5.4.1: A comparison of speeds of methods for finding GI for multiple states

for the BMAB. State A uses online initialisation of intervals while State B intialises

intervals offline. An accuracy ε = 0.0001 is used and γ = 0.99 when T = 200 and

γ = 0.9 otherwise. The state space is given by (5.4.1) with Σ0 = 1, n0 = 2.

The results clearly show that the online method “State A” is the faster of the two

state methods. The block method can be faster for ε = 0.001 especially for larger T

but slows relatively as ε decreases.

If parallelisation is used then it is likely that there will be more states than processors.

In this case states should be assigned to processors in a logical manner so that intervals

can be initialised using GI of neighbouring states as they are found e.g. all states with

the same Σ are sent to one processor which works through them in ascending n.

5.4.2 Multiple State Computation - NMAB

The NMAB takes continuous outcomes so could be much more challenging than the

BMAB, especially if τ can take a range of values. Fortunately, Gittins et al. (2011)

(p 217) gives invariance properties of νGI(τ) for the NMAB which give:

νGI(τ)(Σ, n, γ, τ) =
Σ

n
+

1√
τ
νGI(τ)

(
0,
n

τ
, γ, 1

)
. (5.4.2)
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Therefore the dimensions have effectively been reduced to one for each γ. For a given

γ, τ , T and prior n0 we then require calculations of νGI(τ)(0, n, γ, 1) for

n =
n0

τ
,
n0 + τ

τ
, . . . ,

n0 + Tτ

τ
=
n0

τ
,
n0

τ
+ 1, . . . ,

n0

τ
+ T. (5.4.3)

So for n0 = 1 we would need values for n = 10, 11, . . . , 10 + T for τ = 0.1 and

n = 0.1, 1.1, . . . , 0.1+T for τ = 10. By using (5.4.2), we do not need to do calculations

with τ 6= 1. This is useful since the experiments in Section 5.3.2 showed that τ < 1

required longer computation time. Note, though, that the 1/
√
τ in (5.4.2) inflates

errors when values are transformed for τ < 1 so untransformed values will need to be

calculated to a higher accuracy than if used directly. It will often not be necessary to

calculate GI for every state as interpolation between the GIs of neighbouring states

will be sufficiently accurate for larger n.

The remaining issue is the possible need to find νGI(τ)(0, n/τ, γ, 1) for n/τ < 1. These

states are challenging since n/τ can be arbitrarily close to zero if n is small or τ is large

and νGI(τ)(0, n/τ, γ, 1) becomes large for small n/τ so using GI of similar as bounds is

effective. At most one state per arm (the starting state) is of this nature. GI of states

with small n/τ can be calculated most efficiently by observing from (5.4.2) that

νGI(τ)

(
0,

1

c
, γ, 1

)
=
√
cνGI(τ)(0, 1, γ, c).

Setting c = τ/n then gives

νGI(τ)
(

0,
n

τ
, γ, 1

)
=

√
τ

n
νGI(τ)

(
0, 1, γ,

τ

n

)
,

the right hand side of which is faster to calculate as can be seen from the run times

in Section 5.3.2 when τ is large. In addition, the GI+ can be used to give the

approximation

νGI(τ)(0,
n

τ
, γ, 1) ≈

√
τ

n
νGI

+

(0, 1, γ)

for large τ/n. This also shows that νGI(τ)(0, n, γ, 1) grows approximately linearly with√
1/n for small n. In practice this approximation is very good for even moderate

values of 1/n.



CHAPTER 5. CALCULATING GITTINS INDICES 143

The same principles of parallelisation and online intialisation of intervals also apply to

the NMAB. Computation is slower for the NMAB so finding a narrow intial interval

is more important.

5.5 Discussion

In this chapter we have extended the work of Gittins et al. (2011) to give simple

methods, with accompanying code, to easily calculate GIs for a extensive range of

states for the BMAB and the NMAB.

The only area of these problems that could remain difficult is that for γ close to 1.

Bounds are looser and so the initial interval for calibration is wider. The horizon N ,

and therefore the state space of the dynamic program, need to be large to guarantee

good accuracy. In addition with higher γ MAB problems have longer effective time

horizons before rewards become small and GI values will be needed for more states.

Interpolation between GIs found for other γ is less accurate as γ increases so this

useful approximation is less effective. Even here, though, the difficulties should not

be overstated. GIs can still be calculated to reasonable accuracy and will produce a

policy that is far closer to Bayes optimality than any alternative. The experiments

in Section 5.3 indicate that accuracy can be much better than the remaining reward

at stage N would suggest, especially for the NMAB, since the posterior in the one-

armed bandit will become tight around θ for reasonably large N . A similar argument

suggests that states with large n in a long horizon MAB will not be difficult to

find. Therefore if computation resources are limited they should be concentrated on

producing accurate GI values for low n. Quantifying these challenges more rigorously

would be good questions for future research.

We did not discuss the calculation of GIs for more general reward distributions but

many of the ideas given will apply there also. This will be of greatest difficulty if re-
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wards are continuous and dimensions cannot be reduced using invariance results such

as was done with the NMAB. Another issue will be if the CDF of the predictive cannot

be calculated quickly. Even where computation of GIs is not tractable a numerical ap-

proximation using approximate dynamic programming paired with bounding methods

such as those from Section 5.2 will usually produce a better policy than any simple

analytical approximations.

The methods given in this chapter are also appropriate for the calculation of some

forms of Whittle indices which are a generalisation of GIs applicable in a far wider

range of bandit problems. We will now briefly discuss the tractability of the calculation

of Whittle indices for a common variant of the MAB where the horizon is finite.

A finite horizon adds an extra variable s, the time remaining to the end of the horizon

and we require a different set of Whittle indices νWI(Σ, n, γ, s) for each possible s.

Each set of states is not as large as would be needed for GI since some values of n

would not be possible for each s for given prior n0. For each state, νWI(Σ, n, γ, s) can

be calculated as for GI with the advantage that N does not cause any approximation

and will often be relatively small. If Whittle index values for general priors and time

horizons are needed then we will need to store a greater number of values relative

to GI, but other than this, calculating Whittle Indices for the finite horizon MAB

problem poses little extra difficulty compared to GIs. More on calculating indices for

the finite horizon MAB can be found in Niño-Mora (2011).



Chapter 6

Conclusion

This section will summarise the contributions of this thesis, discuss what motivated

the work and outline possible future work that leads from it. The work was con-

cerned with Bayes sequential decision problems which display the exploration versus

exploitation trade-off. This is a substantial problem class which, despite being well

studied, has many open problems.

The original motivation was to study problems (beginning with variations of the multi-

armed bandit) where the optimality and/or tractability of solutions based on Gittins

indices (GIs) breaks down. These conditions are common : optimality can be lost if

arms are correlated or if the problem horizon is finite while reward structures where

Bayesian updating is no longer conjugate imply that simple heuristic policies would

be needed to retain computational practicality of solutions.

The online knowledge gradient (KG) heuristic offered a possible solution to both of

these issues. It has general application, is fast to calculate and because it is not

an index policy it might be able to adapt to problem features, such as correlated

arms, that an index policy cannot. Chapter 3 analysed the KG policy in detail and

found several weaknesses, the foremost of which is that it takes actions which are

145
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dominated with respect to both exploration and exploitation. Variants were proposed

which avoided these errors. These new policies include the knowledge gradient index

(KGI), an index heuristic which deploys a KG approach to develop an approximation

to the Gittins index.

The study has ramifications beyond the performance of a single heuristic though.

KG represents a different approach to that of index methods. It can be seen as a

simple approximation of a full dynamic programming solution, which is optimal very

generally, whereas KGI is an approximation to the Gittins index which is optimal only

in a restricted subset of problems. It might be expected therefore that the KG policy

will outperform policies based on KGI and other index methods (including the Gittins

index) on problems where index methods are known to be suboptimal. However this

was not found to be the case with policy performance of KGI at least matching that

of KG even on problems where KG does not take dominated actions. These problems

included one where arms are correlated, a key problem motivating the use of KG.

In addition to its unimpressive performance on this correlated multi-armed bandit

problem, there is the added issue that KG in the correlated case requires considerably

more computation than competing index heuristics, an issue that will reoccur in other

problems. Overall the work did not yield any evidence that non-index heuristics have

obvious advantages over index heuristics.

Although the intention in the work in Chapter 3 was to develop and test fast heuristic

methods, an unexpected outcome was the robust effectiveness and tractability of

policies based on Gittins or Whittle indices. As discussed in Chapter 5 it would be

easy to take the message from recent literature that the calculation or use of GIs is

not practical for most problems. This is hindering their adoption even for problems

where they are known to provide an optimal solution. We have developed and made

freely available software to calculate GIs for Bernoulli and normal rewards. The

methodology used in this software and reports of its accuracy and speed is given in
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Chapter 5. By doing this we hope to make the calculation and use of GIs accessible

to a wide audience of practitioners and researchers.

The work in Chapters 3 and 5 motivates a number of outstanding research questions

concerning the performance and tractability of index methods: (i) how well can index

policies perform on problems for which they are not optimal, (ii) what is the extent

of the tractability of calculation of GIs, (iii) if GIs can only be approximated how

should this be done and, (iv) at what point do these approximations become inferior

to alternative heuristics?

Two major problem classes in which to ask these questions would be contextual ban-

dits and correlated bandits. Existing index approaches to contextual bandits (e.g.

May et al. 2012) use indices that are local, that is they are based only on the current

context. It is unclear how much return is sacrificed by making this assumption. Can

indices be adapted to consider future contexts as well as the current one? The depen-

dence of rewards on a changing context has similarities with restless bandits. Can the

two problems be linked to make use of existing research? The problem in Chapter 4

had a context that took the challenging form of a probability distribution but there

is still much research to be done on more basic forms of context.

Bandits with correlated beliefs can take many forms, an example of which was given

in Chapter 3. Index methods which ignored the correlation in decisions but which

incorporated it in belief updates were found to do well. How far from optimal is this

approach? Are there problems where the optimal return (or a bound) can be found in

order to make this comparison? Only positive correlations were explored in Chapter

3 but it is likely that negative correlations will make a more significant change to the

problem.

One area where index methods can be optimal but the calculation of GIs might be dif-

ficult is the classical multi-armed bandit with non-standard reward distributions. This
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change has consequences for the state space size for which GIs are needed, the state

space of the dynamic program using in calibration, and the nature of the Bayesian

updating. A good example would be where reward distribution are mixtures which

would occur naturally where rewards depend on some hyperparameters. These pa-

rameters could be common to all arms and be given at each time (contextual), unique

to arms but vary over time (restless), common to two or more arms but constant and

learnable (correlated) or simply constant, unique for each arm and learnable (closest

to the classical multi-armed bandit).

The work in Chapter 4 also focused on an index method, Thompson sampling, al-

though here the index is stochastic. This method has different characteristics than

policies based on GIs. Thompson sampling together with other stochastic methods

given in Chapter 2 and methods such as UCB, which are effective under regret-based

criteria, were found to perform very poorly on the problems in Chapter 3 on dis-

counted or finite horizon problems. The reasons (discussed next) why Thompson

sampling was used for the multiple website elements problem illustrate when such

methods are and are not appropriate.

The primary motivating application was search advertising for Google where adverts

are presented alongside the results of a web search. The danger with using many

methods that satisfy regret-type optimality criteria is that they sacrifice short and

medium term reward for asymptotic learning guarantees. As discussed in Chapter 2

this can be risky if information is not exploitable in the long term for some reason.

For example, a small web-based business in a rapidly changing area might not be

able to plan that far ahead. Indeed if short term performance is poor the business

might not exist to exploit the information it has gained either for financial or customer

service reasons. Google on the other hand is very different. Although they are in a

competitive area their established position as a dominant search engine gives them

the ability to think long term. In addition, for customers, the important part of a
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search engine is the returned search results not the adverts. A poor selection adverts

is unlikely to affect the customer experience and so will cost only short term revenue

rather than affect the business long term. Thompson sampling is appropriate for this

setting as it is known to be effective in exploring without having to define a time

horizon.

This example illustrates how the both the value and cost of information in the system

of interest can affect objectives and the consequences of using different policies. To

formally study the differences in objectives will require investigation of problems where

the system can change over time (e.g. restless bandits) so that the value of information

decays over time.

Much of the challenge and contribution of Chapter 4 is in the development of an

appropriate model for the problem. Intuitive and simple models were given which

explained why it is undesirable to display similar elements as part of a set of elements.

The models in turn give a method, based on maximising click-through-rate, of creating

diversity in the element set. These models were based on a latent user state which gives

a new, richer form of context for bandit problems. There are a number of barriers to

implementing solutions for this model. The combinatorial explosion in the number of

available sets was overcome by exploiting the submodularity of the click models and by

recording learning about individual elements rather than sets. The latent state made

exact Bayesian updating impractical but an approximate method was implemented

which enabled the use of an underlying Beta-Bernoulli model which was shown to

work well in simulations. By adapting the Beta-Bernoulli scheme familiar in bandit

problems we were able to give a simple method by which a wide range of existing

bandit algorithms could be used. This gives a flexible approach to a very general

problem whereby methods can be chosen which are appropriate for the particular

objectives of the problem.
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