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Abstract 

In glacial systems, hydrological forcing of ice velocity may lead to instability and 

accelerated mass loss. However, recent studies have demonstrated that the 

relationship between ice melt and ice dynamics is non-linear because subglacial 

drainage configuration strongly modulates meltwater inputs and results in 

asynchroneity between surface melt production and ice movement. Furthermore, 

subglacial drainage undergoes temporal evolution and can vary spatially between 

and within individual glaciers. As such, the degree of connectivity between ice melt 

and ice dynamics exhibits spatio-temporal variability. To address this, time-lapse 

images from Falljökull, SE Iceland, were analysed using Pointcatcher, a feature 

tracking software. Surface velocities and thinning rates were quantified for the period 

2011-2013 and compared to results from energy balance modelling (EBM) to 

determine the climatic, hydrological and structural controls on glacier dynamics.  The 

results show that melt production at Falljökull is closely linked to energy inputs to 

the glacier surface, although consistent thinning underestimation by the EBM, 

equivalent to ~1-3 m, reflects the poor optimisation of the model for thin debris cover. 

In addition, melt production is strongly modulated by individual events e.g. 

Grímsvötn eruption, which modify surface conditions and enhance/supress melt. A 

clear relationship between ice melt and ice dynamics is also evident in these data 

although subglacial drainage structure i.e. discrete/distributed, and surface 

conditions e.g. debris or snow cover, account for periods of de-coupling. 

Hydrologically induced speed-up events are identified and occur more readily when 

inefficient distributed systems are present. In contrast, flow variability is markedly 

reduced when meltwater inputs are suppressed and when efficient discrete drainage 

is present. Enhanced flow is strongly linked to sliding at the ice-bed interface 

although this varies spatially and temporally as a function of subglacial drainage 

configuration. Finally, these data conflict markedly with previous research which 

inferred that Falljökull was stagnant and wasting away in-situ. Instead, Falljökull is 

‘active’ with movement through ice deformation, basal sliding and subglacial 

deformation although forward motion is insufficient to offset retreat.  
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Chapter 1 - Introduction 

1.1 - Glaciers-climate coupling 

Glaciers, ice caps and ice sheets are important components of the global climate 

system because they respond rapidly to climate forcing (Raper and Braithwaite, 2009; 

Fountain at al., 2012) and amplify its effects through feedback mechanisms (Flanner at 

al., 2011). Given the rapidity of anthropogenic climate change (IPCC, 2014), 

understanding and predicting the response of glacial systems is of paramount 

importance (McCarroll, 2010).  

However, although glaciers undergo adjustment to attain equilibrium with climate 

(Bahr et al., 2009; Miles et al., 2013), structural and topographic controls condition 

glaciers to respond individually to secular, decadal or annual climate forcing 

(Hoelzle et al., 2003). As a result, glaciers can appear to respond asynchronously to 

regional climate (Patton et al., 2013; Sorg et al., 2015).  Spatial variability in glacier-

climate response is also evident (Arendt et al., 2002; Zwally et al., 2005). Currently, the 

greatest contribution to sea level rise is from small ice masses i.e. mountain glaciers 

and ice caps (Fig. 1), which respond rapidly to climate forcing and have a 

disproportionate climate feedback effect relative to their size (Raper and Braithwaite, 

2006; Hock et al., 2009; Cogley, 2009). These glaciers are expected to remain an 

important component of eustatic sea level rise for at least another century (Radic and 

Hock, 2011). Non-climatic factors including glacier size (Kirkbride and Winkler, 

2012), geometry (Kuhn, 1989), hypsometry (Oerlemans et al., 2007) and thermal 

Figure 1. The contributions of glaciers and ice caps and the Greenland and Antarctic 
Ice Sheets to the present-day rate of sea-level rise (s.l.r.), along with their respective 
volumes and areas. Redrawn from Meier et al., (2007) 
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regime (Raper and Braithwaite, 2009) can strongly modulate glacier flow and lead to 

the virtual decoupling of glacier response from climate (Winkler et al., 2010). Over 

shorter timescales, surface energy balance (Röthlisberger and Lang, 1987) and glacier 

hydrology (Copland et al., 2003) also control ice melt and ice dynamics. Further 

research is clearly necessary to study glacier-climate coupling at a high spatio-

temporal resolution to determine the key controls on glacier dynamics.  

 

1.2 - Ice melt and ice dynamics 

Glaciers can move through internal deformation, sliding at the ice-bed interface and 

subglacial deformation. The relative importance of these distinct processes has been 

linked to surface meltwater input to the glacial system (e.g. Zwally et al., 2002). 

However, the fundamental process of basal sliding is poorly understood (van 

Boeckel, 2015). Early research on small alpine glaciers demonstrated that surface 

meltwater can penetrate to the glacier bed, reduce friction (Bingham et al., 2006) and 

accelerate flow (Iken et al., 1983; Iken and Bindschadler, 1986). As a result, it was 

hypothesised that enhanced surface melt production would instigate a positive 

feedback loop, whereby accelerated glacier flow would increase the transfer of ice to 

the ablation area where melt and thinning are enhanced (Parizek and Alley, 2004).  

However, this direct relationship between meltwater input, subglacial water pressure 

and basal motion has been challenged by recent research (Sole et al., 2013; Tedstone et 

al., 2013). Further studies have demonstrated that the relationship between ice melt 

and ice dynamics is non-local and non-linear (Bartholomaus et al., 2008; Howat et al., 

2008; Minchew et al., 2016). To account for this behaviour, researchers have 

acknowledged the key role of subglacial drainage structure (location, alignment, 

interconnection) and morphology (size, shape, roughness) in modulating meltwater 

inputs and controlling basal water pressures (Hubbard and Nienow, 1997; Hock and 

Jansson, 2005). In particular, the temporal evolution of subglacial drainage (Flowers 

and Clarke, 2002) and its shift from steady state conditions (Kamb et al., 1994; 

Anderson et al., 2004; Bartholomaus et al., 2008) has proved to be a key control on 

glacier dynamics (Harbor et al., 1997). Flow variance between distributed 

(unconnected) and discrete (connected) systems (Arnold et al., 1998) may account for 

periods of enhanced flow due to basal sliding (Hooke et al., 1990). 

Despite this, hydrological forcing of ice velocity can also occur in connected, discrete 

systems if meltwater inputs are rising faster than the drainage system can adjust to 

(Bartholomew et al., 2011). Furthermore, subglacial drainage demonstrates significant 

spatial variability, both between (Irvine-Fynn et al., 2011) and within individual 

glaciers (Cowton et al., 2013) with structural variation preserved over multiple 

seasons (Willis et al., 2012). This relationship is further complicated by significant 
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spatio-temporal variability in surface meltwater production due to glacier surface 

conditions (Röthlisberger and Lang, 1987). Meltwater inputs to the subglacial system 

are also modulated by the structure and efficiency of englacial drainage (Flowers, 

2008). As a result, the relationship between ice melt and ice dynamics (Iken et al., 

1983) is characterised by considerable complexity due to surface energy balance and 

glacier hydrology. Understanding the controls on glacier dynamics should be a key 

focus of glaciological research as hydrologically induced glacier speed up may lead 

to instability and accelerated mass loss (Aðalgeirsdóttir et al., 2011).  

 

1.3 - Project rationale 

Small, temperate, mountain glaciers in maritime environments have been shown to 

be extremely sensitive to climatic perturbations (Shi and Liu, 2000; Dyurgerov, 2003). 

For this reason, the British Geological Survey (BGS) have been monitoring the 

Falljökull glacier in SE Iceland. Given the importance of this glacier and similar ice 

masses in driving eustatic sea level rise (Radic and Hock, 2011), determining the key 

controls on glacier dynamics will provide a useful insight into the response of similar 

glaciers to future climate change. Falljökull is undergoing rapid retreat (Bradwell et 

al., 2013; Phillips et al., 2014) and may have accelerated in the last 5 years.  

The BGS have generated large volumes of time-lapse imagery and laser scanning 

data as well as high temporal resolution meteorological data from three automatic 

weather stations (AWS). This project will integrate 3D digital elevation models 

(DEMs) and 2D time-lapse data to derive glacier surface velocities and rates of 

thinning from which patterns of hydrodynamic coupling i.e. meltwater forcing of ice 

velocity, can be determined. These data will be generated using Pointcatcher, a 

feature tracking software previously used on Solheimajökull, SE Iceland (James et al., 

2016) and interpreted in the context of structural glacier changes and energy balance 

modelling. Although time-lapse imagery has been used extensively in glaciological 

settings, its integration with meteorological data has been limited. The linking of 

these datasets provides a deeper insight into the mechanics of glacier movement at a 

high spatio-temporal resolution.  

 

In order to determine the controls on glacier dynamics at Falljökull, this thesis has 

three main objectives: 

1. To generate high spatio-temporal resolution datasets of glacier thinning and 

ice dynamics at Falljökull using time-lapse imagery. 
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2. To compare these data with estimates of surface melt production from energy 

balance modelling to determine the key controls on surface melt. 

 

3. To address the degree of connectivity between ice thinning and ice dynamics 

in the context of surface melt production and glacier hydrology. 
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Chapter 2 - Literature Review 

2.1 - Glacier dynamics 

Glacier flow is a product of stress and strain. Stress is the external force acting upon 

an object while strain is the response to the applied stress. Stress is expressed by the 

following equations for normal and shear stress respectively: 

 𝜎 =  𝜌𝑖  𝑔ℎ (1) 

   

 𝜏 =  𝜌𝑖  𝑔ℎ sin 𝑎 (2) 

where 𝜌𝑖 is the weight of the ice, 𝑔 is gravity, ℎ is ice height and 𝑎 is slope angle. 

Normal stress incorporates the vertical forces at work, including the weight of ice 

and gravity, while shear stress accounts for the forces acting in parallel i.e. slope 

angle. The response of the glacier to these stresses is expressed as the strain rate 

which is dependent on the strength of the ice and the contact with and structure of 

the bed.  However, this movement is manifested in three distinct ways incorporating 

internal, basal and subglacial processes. The relative importance of these processes 

varies significantly as a result of glacier thermal regime. In cold based glaciers, where 

ice is frozen to the bed, flow is dominated by internal movement due to a restricted 

subglacial meltwater flux. In temperate glaciers, where ice is above the pressure 

melting point throughout, internal, basal and subglacial derived flow are all possible, 

although the rheology of the bed is a key control. Polythermal glaciers are inherently 

more complex and flow is a function of the temperature distribution in the ice and at 

the bed (Irvine-Fynn et al., 2011).  

Another key variable to consider is balance velocity, defined as the amount of ice 

discharged through the equilibrium line i.e. the line of zero net mass loss/gain. 

Balance velocity variability is crucial to understanding long term changes in glacier 

velocity and rates of surface elevation change as this determines the amount of ice 

being transferred to lower elevations where surface melting and runoff are enhanced 

(Bingham et al., 2006). However, glacier response time i.e. the time it takes for a 

glacier to respond to an external climate forcing, varies significantly between glaciers. 

Short steep glaciers, particularly those in maritime environments, may respond in 

only a few years to climate forcing, while large valley glaciers may take up to a 

century and ice caps much longer (Kirkbride and Winkler, 2012).  

 

2.1.1 - Internal deformation 

Internal movement is a function of ice deformation through the processes of creep 

and fracture. Creep is described by Glen’s flow law: 
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 𝜀 = 𝐴 𝜏𝑛 (3) 

   

where 𝜀 is defined as the strain rate, 𝐴 is ice hardness, 𝜏 is shear stress and 𝑛 is the 

creep exponent, a constant value (~3) that refers to the plasticity of the flowing 

material.  Based on the Eqn (3), shear stress increases with ice thickness while the 

strain rate increases exponentially with depth. However, when ice cannot creep fast 

enough to adjust its shape for a given stress, brittle failure in the form of ice fracture 

occurs. Ice fracture is the primary driver of surface crevassing although these features 

rarely propagate to the glacier bed as an increase in strain rate with depth is offset by 

an increase in ice strength (Hambrey, 1994).   

Traditionally, rates of internal ice deformation were assumed to be constant over 

short timescales and short term fluctuations in glacier surface motion (e.g. Hooke et 

al., 1989) were solely attributed to basal or subglacial derived flow. However, 

numerous studies using inclinometry (Hooke et al., 1992; Harper et al., 1998), 

englacial tiltmeters (Gudmundsson. 1999; Mair et al., 2003) and differential changes in 

borehole depths (Sugiyama and Gudmundsson, 2003) have shown that short term 

changes in ice deformation rates can occur. A notable study on Haut Glacier d’Arolla, 

Switzerland by Mair et al., (2008) demonstrated daily increases in ice deformation 

rates due to the occurrence of hydrologically induced, localised basal slippery spots. 

However, these were not associated with any change in surface velocity. Basal 

slippery spots are defined as areas where basal drag is low. These features enhance 

basal motion and result in glacier speed up as shear stresses cannot be supported. 

This results in the transferral of stress elsewhere over the glacier bed, creating 

increased ice-bed coupling which accounts for the observed increase in ice 

deformation rates. This pattern of internal ice deformation (Mair et al., 2008) indicates 

that basal ice flow can exhibit rapid changes in stress due to small spatial scale 

variability in bed conditions (Blatter et al., 1998). As such, ice dynamics should be 

considered in the context of bed rheology.  

 

2.1.2 - Basal sliding  

Glaciers can also move due to sliding at the ice-bed interface. However, given that 

glacier beds are inherently rough, regelation sliding can occur (Weertman, 1957, 

1964), with this process initiated due to the variance in pressure between the lee and 

stoss sides of bedrock obstacles (Fig. 2).  Ice melts on the lee side due to enhanced 

pressure with meltwater flowing over bedrock obstacles and refreezing on the stoss 

side due to a pressure reduction. The latent heat of this refreezing is advected back 

through the obstacles to sustain melting although this process cannot be effectively 

maintained if obstacles are in excess of 1 m in diameter (Kamb, 1970). To 

accommodate this, enhanced creep occurs where localised ice deformation allows ice 
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to flow around obstacles. Therefore, the relative importance of enhanced creep or 

regelation sliding is dependent on obstacle size. However, these processes are largely 

a function of glacier thickness, surface slope and bed roughness, variables that cannot 

change over short timescales. Despite this, short term variability in glacier surface 

velocities are evident (e.g. Nienow et al., 2005).  These diurnal fluctuations in surface 

velocities are fundamentally linked to water pressure and cavitation. 

The Lliboutry-Fowler cavitation sliding law is expressed by the following equation: 

 𝑈𝑠 = 𝜏𝑝 𝑁𝑞 (4) 

   

where 𝑈𝑠 is basal sliding, 𝜏 is basal shear stress, 𝑁 is the effective normal pressure 

(discussed in Chapter 2.3.3) while 𝑝 and 𝑞 are empirically determined constants. 

Although rates of basal sliding increase with basal shear stress, sliding is inversely 

proportional to the effective pressure. The submergence of minor roughness obstacles 

(Bingham et al., 2006) promotes enhanced velocities as water cannot support basal 

shear stress, with pressure concentrated over the remaining portion of the bed in 

contact with the ice. This accelerates regelation sliding and deformation of the bed 

due to increased shear stress.  

The relationship between surface velocities and subglacial hydrology was studied at 

John Evans Glacier, Canada (Copland et al., 2003), a predominantly cold-based 

polythermal glacier. Initial assessments of subglacial hydrology at similar glaciers 

indicated that penetration of supraglacial meltwater to the bed was limited 

(Hodgkins, 1997) because water flow along intergranular vein networks is largely 

absent in cold ice and because crevasses and moulins, features which introduce large 

scale permeability to ice, are rare due to low rates of ice deformation and refreezing 

of meltwater. However, seasonal shifts in surface velocity were evident and were 

Figure 2. Regelation sliding. Redrawn from Benn and Evans (1998) 
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attributed to increased basal sliding as mean horizontal velocities increased from 3.5 

cm d-1 in winter to 5.3 cm d-1 in summer, coeval with an enhanced meltwater flux 

(Copland et al., 2003). However, this seasonal speedup was concentrated during high 

velocity events which lasted only 2-4 days, while surface velocity fluctuations were 

not spatially ubiquitous. While the mean velocity of the lower terminus increased by 

110% relative to winter levels, upper terminus speedup was limited to 75%, spatial 

variability that probably accounted for by the increasing prevalence of cold-based ice 

up-glacier. The key driving force throughout were fluctuations in subglacial water 

pressure, as the rapid transfer of large meltwater fluxes to the subglacial network led 

to over pressurisation, uplift of the ice, a reduction in shear stress and increased rates 

of basal sliding (Copland et al., 2003).  

A further study at John Evans Glacier linked basal sliding to subglacial drainage 

structure (Bingham et al., 2006). Annual dynamics at this glacier are a function of 

internal deformation and long term average basal motion but significant short term 

variability can occur as a result of supraglacial hydrological forcing. However, these 

events are mediated by the efficiency of the subglacial drainage system. Initial 

forcing occurs during the early melt season as a result of the drainage of large fluxes 

of supraglacial meltwater, which overcome a threshold to permit englacial drainage 

through the cold ice. High horizontal surface velocities subsequently propagate 

down glacier and the glacier exhibits uplift, as high pressure subglacial water 

overrides the inefficient distributed system. Summer weather conditions are key to 

determining the timing of this shift from distributed to discrete drainage. Further 

research using 3D flow modelling was undertaken to determine the spatial 

distribution of basal sliding (Bingham et al., 2008). However, this study indicated that 

stress gradient coupling is ineffective at transmitting basal motion anomalies over 

one part of the bed more widely through the glacier. This is attributed to high drag 

imposed by the partially frozen bed and friction from the valley walls and 

topographic pinning points. This study emphasises the dynamic nature of basal 

motion due to both thermal regime and local topographic and structural controls but 

also demonstrates that surface velocity variability is more likely to arise directly from 

local basal forcing i.e. direct surface meltwater input, and not represent stress 

gradient coupling with non-local basal forcing.  

 

2.1.3 - Subglacial deformation 

Glaciers can also move through bed deformation (Boulton et al., 2001). As glaciers are 

often underlain by a porous layer of till (Boulton and Hindmarsh, 1987), it has been 

hypothesised that deformation of this till layer will promote glacier movement (Fig. 

3; Boulton and Jones, 1979; Clark, 1994; Murray, 1997). At Breidamerkurjökull, 

Iceland, an early study by Boulton and Jones (1979) concluded that 88% of basal 
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movement could be attributed to deformable sediment. However, deformation 

cannot occur until a critical shear stress has been exceeded, described by the 

following equation: 

 𝐸𝑆 = 𝐾(𝜏 − 𝜏∗)𝑎 𝑁−𝑏 (5) 

   

where 𝐸𝑆 is defined as the strain rate, 𝜏 is shear stress, 𝜏∗ is critical shear stress, 𝑁 is 

effective pressure and 𝐾, 𝑎 and 𝑏 are empirically determined constants. 

Critical shear stress is described by the following equation: 

 𝜏∗ = 𝐶 + 𝑁 tan 𝜙𝑖 (6) 

   

where 𝐶 is cohesion, 𝜙𝑖 is the angle of internal friction based on the arrangement, size 

and shape of grains and 𝑁 is normal stress. The structural strength of till and its 

Figure 3. Idealised velocity profiles for an ice mass overlying soft sediments. (a) The 
ice mass is completely decoupled from its bed, and basal sliding is the only form of 
basal motion. (b) The ice mass is completely coupled to its bed, and sediment 
deformation is the only form of basal motion. (c) The ice mass is partially coupled to 
its bed, and both sliding and sediment deformation occur. Redrawn from Murray 
(1994). 
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propensity for deformation is strongly affected by variation in pore-water pressure. 

Negative pressure causes grains to be pulled together which increases normal stress 

and internal friction. In contrast, positive pressure decreases sediment stability as 

grains are forced apart and internal friction is reduced. As a result, deformation 

occurs more readily when subglacial drainage is inefficient and when water 

pressures are high. This is most common during the early melt season when the 

drainage system has not yet adjusted to higher water flux and through hydraulic 

jacking, developed more efficient channelized drainage. However, rates of sediment 

deformation decrease with depth as normal stress and frictional strength increase 

(Iverson et al., 1995) while water pressures within the sediment layer itself determine 

its susceptibility to deformation. As such, this process is highly dynamic as water 

pressures can vary significantly over short timescales due to the varying input of 

supraglacial meltwater (Clark, 1995).  

However, the subglacial deformation hypothesis has been challenged by recent 

research. Flow modeling indicates that deforming sediment would behave as a nearly 

perfect plastic and lead to highly unstable behavior (Kamb, 1991). Further work at 

Storglaciären, Northern Sweden (Iverson et al., 1995) demonstrated that flow 

acceleration occurred when basal water pressure increased sufficiently to raise the 

glacier from its bed. Although sediment was undergoing deformation, ice-sediment 

de-coupling was evident as the rate of deformation decreased during the glaciers 

most rapid flow and rapidly increased during deceleration. Although unlithified 

sediment may deform readily if basal water pressures are near the ice overburden 

pressure, it appears that deformation is not the primary mechanism for movement as 

it accounted for only 5% of glacier displacement (Iverson et al., 1995). However, 

deformable beds may be an important control on the timing of periods of fast glacier 

flow as they provide a smooth surface to support concentrated shear stresses.   

 

2.1.4 - Key methods for measuring ice movement 

Glacier surface velocities are primarily measured using satellite remote sensing or in-

situ global navigation satellite system (GNSS) data. The recent application of 

interferometric synthetic aperture radar (inSAR) has allowed researchers to quantify 

glacier flow over large spatial scales (e.g. Mouginot et al., 2014). Differential 

interferograms are created based on the difference in phase lengths of multiple SAR 

images. If the elevation signal can be removed and control points of zero motion 

identified, then phase length variation must be related to topographic deformation 

(ice flow) (Rignot et al., 2011). InSAR works effectively independent of cloud cover, 

solar illumination or surface features (Goldstein et al., 1993) and improves on 

traditional velocity assessments which are based on oversimplifications, assuming ice 
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sheet equilibrium and perpendicular ice flow to surface contours (Rignot et al., 2011). 

Unfortunately, data is typically of low temporal resolution (Quincey and Luckman, 

2009). The errors of 16-60 m yr-1 calculated by Mouginot et al., (2014) are closely 

correlated with the time interval between images. Orbital errors are also possible 

although are generally smaller than expected (Fattahi and Amelung, 2014). 

Consistent satellite position between SAR images ensures that phase length variation 

is solely a function of terrain deformation. InSAR has been applied to the Greenland 

and Antarctic ice sheets and shown increasing discharge from outlet glaciers 

(Mouginot et al., 2014) and acceleration into ice sheet interior (Rignot et al., 2011) as 

well as localised slowdowns, demonstrating significant variation between basins 

(Thomas et al., 2013). Recent studies have also studied glacier velocities at terrestrial 

ice caps in Iceland using inSAR (Palmer et al., 2009; Minchew et al., 2016). However, 

the application of inSAR to small, mountain glaciers has been limited.  

In contrast, GNSS data is of higher temporal resolution (e.g. 10s intervals in Sole et al., 

2011) and of comparable precision (Manson et al., 2000) and has been applied to 

mountain glaciers in Iceland (Phillips et al., 2014), New Zealand (Kehrl et al., 2015) 

and the Himalaya (Copland et al., 2009; Sugiyama et al., 2013). By deploying GNSS 

receivers along a glacier flow line and linking observations to a stable base station, 

velocity changes can be quantified. Surface velocity fluctuations have been linked to 

surface melt-induced changes in subglacial hydrology over short term (Sole et al., 

2011) and annual timescales (Sole et al., 2013) in agreement with previous research 

(Pimental and Flowers, 2011; Sundal et al., 2011; Van de Wal et al., 2008). GNSS data 

has also been used to demonstrate ice sheet self-regulation (Van de Wal et al., 2015) as 

well as structural (Phillips et al., 2014) and hydrological controls (Bartholomaus et al., 

2008) on ice dynamics. However, rigorous GNSS data processing is necessary to 

generate accurate results (King, 2004; Khan et al., 2008). Additionally, GNSS data are 

typically of low spatial resolution e.g. just 4 GNSS receivers along a 36 km glacier 

flowline at Kangiata Nunata Sermia in Greenland (Sole et al., 2011).  

In contrast, glacier feature tracking through time-lapse image sequences may permit 

study of small spatial scale variability in glacier flow that is poorly captured by 

GNSS. Terrestrial time-lapse imagery has the potential to significantly improve our 

understanding of glacier dynamics by monitoring changes at high spatio-temporal 

resolutions (Cerney, 2010; Danielson and Sharp, 2013). This technique should provide 

a practical, cost-efficient alternative (Corripio, 2004; Garvelmann et al., 2013) to in-situ 

GNSS (Hamilton and Whillans, 2000) or terrestrial laser scanning (Schwalbe et al., 

2008) which can be readily applied to many glacial environments with careful 

planning and choice of site location (Danielson and Sharp, 2013). 
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2.2 - Energy Balance  

2.2.1 - Key variables 

Surface energy balance determines the production of meltwater in the supraglacial 

environment (Röthlisberger and Lang, 1987) but is strongly affected by the 

characteristics of the glacier surface. When the surface energy budget is positive, 

energy is available for melt. When the budget is negative, there is a net loss of energy 

at the glacier surface. Surface energy balance (SEB) is expressed by the following 

equation:  

 𝑄𝑚 = 𝑄𝑠𝑤 + 𝑄𝑙𝑤 + 𝑄𝑠 + 𝑄𝑙 + 𝑄𝑝 + 𝑄𝑔 (7) 

   

where 𝑚 is the energy available for melt, 𝑠𝑤 is short wave radiation, 𝑙𝑤 is long wave 

radiation, 𝑠 is sensible heat, 𝑝 is precipitation and 𝑔 is the heat from conduction. This 

final variable is often overlooked (Greuell and Oerlemans, 1986; Oerlemans and Klok, 

2002) but is important as energy is required to raise the snow or ice surface to 0°C 

before melting can occur, a process which delays the onset and reduces the total 

amount of supraglacial melt. The incoming energy from short wave radiation (SWR) 

is often the primary driver of supraglacial melt (Braithwaite and Olesen, 1990: 

Munro, 1990) while long wave radiation (LWR) from clouds or surrounding 

topography often contributes a small net loss of energy (Arnold et al., 1996). At 

Storbreen, Norway, SWR contributed 76% to surface energy balance (Andreassen et 

al., 2008), a value supported by previous research (Willis et al., 2002; Hock, 2005). 

Turbulent heat fluxes of sensible heat, the direct transfer of energy from the 

atmosphere to the snowpack, and latent heat, the transfer of energy during a change 

of state i.e. water to ice, contributed the remaining 24% of the surface energy budget. 

The relative importance of radiative and turbulent heat fluxes is strongly affected by 

continentality (Engelhardt et al., 2015) as maritime glaciers are subjected to humid air 

streams and enhanced sensible heat fluxes (Laumann and Reeh, 1993). If all variables 

are known, a melt rate can be calculated expressed by the following equation: 

 𝑀 =  𝑄𝑚/𝐿 (8) 

   

where 𝑀 is the mass of ice melted and 𝐿 is the latent heat of melting. Determining an 

accurate melt rate is necessary to understand changes in hydrology and glacier 

dynamics as a result of variable meltwater flux. Radiative and turbulent energy 

fluxes are also affected by glacier surface conditions, which can change over hourly 

(Oerlemans and Klok, 2002), diurnal (Munro, 1990) and seasonal timescales (Sicart et 

al., 2011) and affect meltwater production and through surface-bed coupling, the 

patterns of internal, basal and subglacial derived flow.  
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2.2.2 - Controls on energy flux 

Surface melt production due to incoming short wave radiation is strongly dependent 

on albedo, defined as the reflectivity of the surface (Van de Wal et al., 1992). 

However, estimating albedo is typically associated with significant errors (Arnold et 

al., 1996; Klok and Oerlemans, 2002) as spatio-temporal variability is common (Klok 

and Oerlemans, 2004). Albedo can have a significant impact on melt production as a 

modelled albedo perturbation of just 0.1 can result in mass balance changes of 0.5 - 

1.5 mWE yr-1 (Oerlemans and Hoogendoon, 1989), equivalent to atmospheric 

warming of 1k (Oerlemans, 1992). Albedo change has a disproportionate effect at the 

glacier terminus (Munro, 1991) due to the sensitivity of the margin to warming and 

the increasing prevalence of dust, snow, liquid water and debris cover (Fig. 4). 

Albedo feedbacks are also key (Greuell and Bohm, 1998) as glaciers with a low ice 

albedo are more sensitive to change, particularly as a result of climate forcing (Hock 

et al., 2007; van Pelt et al., 2012). Albedo is affected by snow depth, dust content, 

debris cover, metamorphism of snow crystals, snow density,  water content and the 

uncovering of superimposed or glacier ice (Paterson, 1994).  

At high latitudes, longwave radiation can provide similar or higher amounts of 

energy to snow than SWR, typically 10 - 26 MJ m-2 day-1 (Sicart et al., 2006), as a result 

of the cosine effect and increased scattering due to long atmospheric path lengths 

(Muller, 1985; Granger and Gray, 1990; Duguay, 1993). This has been demonstrated 

for the Greenland Ice Sheet (Ambach, 1974) as high values of net radiation were 

Figure 4. Albedo variation (A) from Benn and Evans (1998). The clean ice of White 
Glacier, Axel Heiberg Island, Canada (B) (Photo source: http://tinyurl.com/hk93nm5) 
and the debris covered Inylchek glacier in Eastern Kyrgyzstan (C) (Photo source: 
http://tinyurl. com/h9j3ava 
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correlated with high values of LWR but low values of SWR. However, LWR is also of 

increasing importance when cloud cover is significant as peak radiation (270 J/cm2) 

occurred when cloudiness was ranked 10/10. In contrast, the mean value for net 

radiation was just 75 J/cm2 when cloudiness was ranked 0/10 (Ambach, 1974). This 

trend was also observed at Midtdalsbreen, Norway (Giesen et al., 2008). Although the 

melt rate was generally higher under clear skies, almost 60% of the melt occurs under 

cloudy skies as wind speed and humidity were enhanced. In general, melt energy is 

considerably underestimated on days characterised by dense fog or precipitation 

(Hock and Holmgren, 1996).  

Both SWR and LWR are affected by aspect i.e. the overall flowline direction, as well 

as local topography. Although energy balance is strongly dependent on incoming net 

radiation, glacier gradient and orientation are key to determining the spatial 

distribution of energy (Duguay, 1993), particularly in mountainous terrain 

(Olyphant, 1986b). Aspect can control diurnal variations in solar radiation incidence, 

temperature, wind and cloudiness (Evans, 1977). In most regions, the favoured aspect 

is poleward, which confirms the importance of shade and radiation incidence in 

affecting surface energy balance, particularly in accumulation areas (Evans, 2006). 

However, lineated or asymmetric topography can bias glacier aspect. Slope-aspect 

relationships (Hock, 2005) show that energy balance is latitude dependent and can 

have positive or negative impacts on the overall irradiance balance depending on the 

relative angle to solar zenith.   

Topography also impacts on LWR by controlling isotropic radiance (Olyphant, 

1986a) as a result of atmospheric conditions and surface temperature (Plüss and 

Ohmura, 1996). This effect is magnified in mountains due to shading. However, LWR 

is generally more sensitive to sky view factor than the temperature of the emitting 

terrain surface although terrain emission can be significant when sky irradiance is 

low, for example during the cold-dry atmosphere of early spring or at high elevations 

or latitudes. This may enhance snowmelt on opposing facing slopes. The effects of 

shading, slope and aspect are magnified at high latitudes due to the cosine effect 

(Duguay, 1993) although this may be tempered by increasing daylight hours. In polar 

glaciers, the paradoxical role of aspect and slope had no effect on the total amount of 

incoming radiation but produced cross glacier variations (Arnold et al., 2006). Slope-

aspect relations and local topography may be of importance in determining similar 

variability in melt production at Falljökull, particularly given the steep valley walls 

and enclosed nature of the basin.  

Turbulent heat transfers via sensible and latent heat are strongly controlled by 

boundary layer conditions including wind, air turbulence and surface roughness 

(Irvine-Fynn et al., 2014). Under conditions of low wind speed and strong stability, 

turbulent fluxes may be severely restricted and may reduce to zero (Brock and 
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Arnold, 2000). Turbulent heat fluxes are assumed to be zero based on the Monin-

Obukhov similarity theory (Arnold et al., 2006) when the following conditions are 

met: 

 𝑢 < 2 𝑚 𝑠−1 and 
𝑢

𝑇
< 0.3 (9) 

   

𝑜𝑟 

 𝑢 < 1.5 𝑚 𝑠−1 and − 1.5°𝐶 < 𝑇 < 1.5°𝐶 (10) 

   

where 𝑢 is wind speed and 𝑇 is temperature (Brock and Arnold, 2000). Strong 

stability over melting ice surfaces are best approximated used log-linear air profiles 

(Braithwaite et al., 1998). However, assumptions about the roughness length profiles 

for wind and temperature can result in errors, as these parameters can vary over 

time. While the effect of stability is fairly small, careful model tuning should be 

undertaken by choosing roughness and albedo values which reduced the error 

between observed and calculated daily ablation (Braithwaite et al., 1998). 

Precipitation can also play a key role in turbulent heat fluxes, particularly when the 

snow/ice surface is < 0°C as the freezing of rainwater releases latent heat. This process 

is of particular importance in maritime environments as moist air masses over 

maritime glaciers increase the transfer of sensible heat and latent heat of 

condensation (Willis et al., 2002). For these glaciers, net radiation contributes only 10-

50% of ablation energy. In contrast, for continental glaciers under clear sky 

conditions, net radiation has been shown to contribute 66% of ablation energy.  

 

2.2.3 - Modelling 

Researchers have attempted to develop energy balance models (EBMs) which 

incorporate these controls. However, initial models had limited spatial resolution, 

failed to include turbulent heat fluxes (Munro and Young, 1982) and did not consider 

the effects of surface albedo variation particularly accurately. As such, the 

development of a distributed surface energy balance model for Haut Glacier D’Arolla 

(Arnold et al., 1996) significantly improved on previous studies by incorporating 

these variables. This study is particularly useful as it emphasises the need for careful 

consideration of model inputs as radiative fluxes were significantly higher than 

previous studies. This variability was primarily due to improved albedo 

parameterization (Oerlemans, 1993; Munro and Young, 1982; Escher-Vetter, 1985) as 

previous work had overlooked rapid snowline retreat and earlier exposure of bare 

ice. Energy balance models should incorporate the changing nature of the glacier 

surface throughout the melt season. 
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Furthermore, it is preferable if EBMs can be readily adapted to different sites and are 

flexible enough to enable the integration of additional energy fluxes e.g. Brock and 

Arnold (2000). However, while the application of these models to Falljökull is 

straightforward, they may oversimplify complex boundary layer interactions. For 

example, there is uncertainty over the physics of the surface atmospheric layer in 

regards to profiles of wind, temperature and humidity and whether these should be 

derived from physics (Grainger and Lister, 1966; Munro and Davies, 1977; 

Halberstam and Schieldge, 1981), logarithmic profiles (Munro, 1989; Braithwaite, 

1995) or from empirical relationships (Hock and Noetzli, 1997). Further assumptions 

are involved in determining aerodynamic roughness length (Brock, 1997). The model 

also assumes no conduction of heat into the snowpack (Brock and Arnold, 2000), 

although this is assumed to be insignificant except for high alpine and polar glaciers 

(Price, 1986; Braithwaite, 1995). While the model originally excluded energy 

contribution from precipitation, as this was deemed important only in exceptional 

circumstances (Marcus et al., 1985), it was updated by Thompson (2016) to include 

this energy flux.  The impact of debris cover is also not included in this model despite 

its importance to glacier thermodynamics (Brock et al., 2010). While the updated 

energy balance model developed by Reid and Brock (2010) does address this issue, it 

requires accurate data for debris extent, thickness and thermal properties. Results 

from this updated model corroborate with the Østrem curve (1959) which shows that 

thin debris cover enhances melt. When debris cover exceeds a critical threshold of 20 

- 30 mm (Warren, 1984), melt is supressed (Fig. 5). Thin debris cover not only reduces 

albedo but acts as source of retained heat (Carenzo et al., 2016). 

 

Figure 5. The relationship between debris thickness and mean daily ablation rate. 
Redrawn from Nicholson and Benn (2006) 
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2.3 - Hydrology  

Glacier hydrology is strongly controlled by surface energy balance as the spatio-

temporal variability in supraglacial meltwater production determines the timing and 

magnitude of water input into the englacial and subglacial environment. See the 

reviews by Fountain and Walder (1998) and Hubbard and Nienow (1997) for 

temperate glaciers and Irvine-Flynn et al., (2011) for polythermal glaciers. In cold-

based glaciers, it was commonly suggested that the predominance of impermeable 

ice ensured that supraglacial–subglacial hydrological connections were limited 

(Bingham et al., 2006). However, researchers now acknowledge that significant 

transfer does occur (e.g. Boon and Sharp, 2003) and as such, the review of cold based 

glacier hydrology by Hodgkins (1997) is a useful introduction to the subject. 

Drainage can effectively be separated into three distinct but interlinked pathways; 

supraglacial, englacial and subglacial flow. 

 

2.3.1 - Supraglacial drainage 

Supraglacial flow is highly dependent on the nature of the glacier surface and is 

characterised by open stream hydrology (Fig. 6), limited percolation into the ice 

surface and the rapid transit of water to crevasses and into the englacial system 

(Fountain, 1992a). This pattern of flow is described by the Manning equation:  

 𝑡𝑖 = 𝑛𝐿/𝑅 2/3𝜃1/2 (11) 

   

where 𝑡𝑖 is water velocity, 𝑛𝐿 is surface roughness, 𝑅 is the hydraulic radius of the ice 

surface and 𝜃 is slope angle. In general, an increase in water velocity is associated 

with an increase in slope angle, a reduction in surface roughness and an increase in 

the hydraulic radius of the ice surface. In contrast, the presence of snow or the firn 

layer at the glacier surface introduces complexity to supraglacial runoff 

(Illangasekare et al., 1990). For example, flow variance between unsaturated wet 

snow, saturated wet snow and unsaturated dry snow is significant (Colbeck, 1978). 

For wet snow, which is isothermal at 0°C, storage capacity, snow depth, 

permeability, water flux, water density, gravity and the viscosity of water interact 

strongly to augment flow. In contrast, flow through unsaturated dry snow, which is 

below 0°C, has yet to be robustly described due to the complex interaction between 

irreducible water content, the freezing and release of latent heat and the presence of 

ice layers and preferential flow pathways. In general, snow cover leads to significant 

flow deceleration. In the unsaturated zone, water percolates vertically through the 

snow before refreezing. The formation of ice layers results in horizontal percolation 

although layers can disintegrate quickly when subjected to large meltwater fluxes 

(Male, 1980). Saturated snow leads to direct downslope runoff (Colbeck, 1973).  
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The snow layer can also restrict meltwater input by temporarily storing water in the 

saturated layer. However, the offset between melt events and discharge into the 

englacial system varies significantly from spring to mid-summer although there is no 

clear consensus as to whether this is linked to water storage or an enlarging 

subglacial hydraulic system (Röthlisberger and Lang, 1987). Another explanation is 

that the removal of the snowpack leads to the exposure of bare ice and rapid flow 

into the englacial system (Hannah and Gurnell, 2001). The timing of snowpack 

removal is key to determining rates of melt and runoff (Willis et al., 2002) while 

snowpack thickness has been shown to have an effect on the morphology of 

subglacial drainage systems (Nienow et al., 1998) which in turn controls subglacial 

water pressures and rates of basal motion (Fischer et al., 1999). Therefore, glacier 

surface conditions are a key control on ice movement (Willis et al., 2002).  

 

2.3.2 - Englacial drainage 

The structure and morphology of englacial drainage varies throughout the year as 

the change in runoff response time (Munro, 2010) reflects the seasonal development 

of englacial and subglacial controls (Flowers, 2008). Water flow is distinct between 

primary permeability i.e. movement of water between ice crystals, and secondary 

permeability, i.e. water flow through much larger pathways such as channels, 

moulins and crevasses. The vast majority of meltwater is transferred to the subglacial 

system through secondary permeability although there is no consensus regarding the 

structure of englacial flow pathways (Röthlisberger, 1972; Shreve, 1972; Hock et al., 

Figure 6. Supraglacial flow pathways on Solheimajökull, SE Iceland, photo taken by 
the author. 
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1999). However, englacial drainage is an important control on glacier dynamics as 

drainage efficiency determines the transfer of water to the bed and the glaciers 

propensity for basal sliding.  

Both Röthlisberger (1972) and Shreve (1972) argued that semi-circular conduits 

transported the vast majority of water to the bed with their formation and survival 

dependent on the rate of ice creep and the outward melting of channel walls due to 

frictional heating. These conduits form an upward branching arborescent network 

due to the pressure gradient between smaller and larger conduits (Hooke, 1989). The 

Shreve model is based on the principle that wall melt by dissipation, a process which 

lowers channel pressure, is enhanced in larger conduits due to greater meltwater 

discharge and therefore greater heat dissipation per unit wall area (Gulley et al., 

2009). This creates areas of low potential which will tap smaller passages in which 

hydraulic potential is higher and results in an arborescent structure where water is 

routed into increasingly large channels further down the glacier.  

However, despite these models being generally accepted (Fountain et al., 2005a), 

there are a number of assumptions involved (Gulley et al., 2009). Firstly, they assume 

steady state conditions, which is clearly not applicable to systems that are fed by 

supraglacial melt with large diurnal, seasonal and annual fluctuations (Schuler et al., 

2004). Secondly, they assume that recharge is distributed evenly across the surface of 

the glacier. As secondary permeability is the dominant pathway by which 

supraglacial meltwater is routed into the englacial system, it is clear that this 

assumption is not valid as the vast majority of meltwater will be concentrated 

through a limited number of discrete points on the glacier surface leading to 

significant fluctuations in meltwater input. Additionally, it is assumed that water 

pressure is always equal to ice pressure and that gradients in ice pressure determine 

hydraulic gradients (Liboutry, 1996). These theories describe flow in idealised 

conduit systems which may not reflect the true complexity of englacial flow. The 

potential for conduit development from vein systems is minimal, even when water 

content and hydraulic gradients are large. As such, alternative theories have arisen 

(Hock et al., 1999) which argued that water primarily flows at atmospheric pressure 

in open channel systems. 

Recent research has shown that fractures may be the main pathways of water flow 

(Fountain et al., 2005a), particularly in temperate glaciers (Gulley et al., 2009).  

Fractures provide multiple connections between englacial and subglacial systems 

and are perhaps common on temperate and polythermal glaciers and concentrated in 

the accumulation area. Fractures are characterised by steep plunges (~70°), narrow 

openings (40 mm) and slow water speeds (10 mm s-1) (Fountain et al., 2005b) and 

propagate to depths of approximately 130 m. Fractures develop in situ or through the 

advection of surface crevasses (Pohjola, 1993; Copland et al., 1997) with formation 
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linked to supraglacial conditions (Fountain and Walder, 1998; Stenborg, 1973) and 

the density variation between ice and water, which forces the surrounding ice to 

crack apart. As such, conduits are most likely to develop where concentrated surface 

water i.e. supraglacial lakes, provides a point source of high water flux which 

destabilises the fracture flow system. Increased water flux, friction and heat 

dissipation in larger fractures leads to faster enlargement in these pathways. Recent 

research has demonstrated that fractures are also present in cold based glaciers (Van 

der Veen (2007). These studies demonstrate the complexity of englacial hydrology in 

in transporting meltwater to the subglacial system.   

 

2.3.3 - Subglacial drainage 

The structure and morphology of subglacial flow pathways exerts a strong influence 

on the pressure and velocity at which meltwaters are routed beneath glaciers 

(Hubbard and Nienow, 1997). This controls rates of basal sliding (Iken, 1981) and 

subglacial sediment deformation (Clarke, 1987). Drainage is divided into two distinct 

systems: discrete and distributed (Boulton et al., 2007). The structure of flow 

pathways within these systems is also strongly controlled by bed rheology (Fig. 7). 

Discrete systems are characterised by large water fluxes in which there is an inverse 

relationship between pressure and flux (Clark and Walder, 1994). Although the ice 

creep can result in channel closure, discrete channels can persist even when water 

levels fall as rates of ice deformation are much lower than the variability of water 

levels. 

In contrast, distributed systems are characterised by linked cavities, which are 

formed in lee of bedrock protuberances (Kamb, 1987), as well as canals on soft 

subglacial sediments (Boulton and Hindmarsh, 1987) with inefficient but high 

pressure flow. Film flow can also occur at the ice bed interface (Weertman, 1972) 

through regelation sliding. Pore water flow, in which water moves with sediment, is 

also associated with distributed drainage. The spatial distribution of discrete or 

distributed systems is largely a function of pressure as water flows from high to low 

elevation and high to low pressure (Shreve, 1972). Subglacial drainage structure has 

been studied using dye tracing (e.g. Sharp et al., 1993), meltwater chemistry (Tranter 

et al., 1993), mapping of deglaciated bedrock (Sharp et al., 1989), proglacial 

hydrographs (Covington et al., 2012), borehole water level fluctuations (Iken and 

Bindschadler, 1986) and electrical conductivity and turbidity at the glacier bed 

(Hubbard et al., 1995).  
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The varying importance of discrete and distributed drainage is dependent on the 

pressure-flux relationship which is a key determinant of ice movement. Ice 

overburden pressure (12) and effective pressure (13) interact strongly and are 

described as follows: 

 𝑃𝑖 =  𝑝𝑖 𝑔 (𝐻 − 𝑧) (12) 

   

 𝑁 = 𝑃𝑖 − 𝑃𝑤  (13) 

   

where 𝑝𝑖 is ice density, 𝑝𝑤 is water pressure, 𝑔 is gravity, 𝐻 is surface elevation and 

𝑧 is actual elevation. If ice overburden pressure and water pressure are equal, the 

effective pressure is 0. In the terrestrial landscape, the hydraulic potential (𝜙) of 

water is a function of atmospheric pressure and elevation: 

 𝜙 =  𝑝𝑤 𝑔 𝑧 (14) 

   

However, when water is bounded by overlying ice, ice overburden pressure and thus 

hydraulic potential is described as: 

 𝜙 =  𝑝𝑤 𝑔 𝑧 +  𝑝𝑖 𝑔 (𝐻 − 𝑧) (15) 

   

Hydraulic potential is a measure of the available energy of water and governs its 

direction of flow, with decreasing pressure down glacier.  However, these equations 

involve a number of assumptions. Firstly, they assume that englacial and subglacial 

channels are always water filled. Given the significant temporal and spatial 

variability of supraglacial meltwater input, channels will often alternate between 

Figure 7. Flow pathways of discrete and distributed subglacial systems. 
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atmospheric and ice-derived flow. Additionally, it is assumed that pressures must be 

equal and opposite. However, if channels are full and flow is solely controlled by ice 

overburden pressure, then equipotential contours are a useful indicator of water flow 

(Fig. 8). Once at the bed, water flows at 90° to these contours.  

The subglacial drainage system also undergoes significant temporal evolution. The 

timing of the seasonal transition from distributed to discrete drainage is an important 

control on glacier dynamics as demonstrated through theory (Alley, 1989), 

observation (Harbor et al., 1997) and glaciohydraulic modelling (Arnold et al., 1998). 

Subglacial drainage structure and morphology strongly modify melt and 

precipitation inputs (Hock and Jansson, 2005) which in turn, determine the timing 

and duration of periods of basal sliding. This seasonal transition is predominantly 

linked to the input of peak meltwater discharges during the melt season into the 

steady state distributed system. This is dependent on initial snow depth and 

superimposed ice formation as well as local meteorology (Flowers and Clarke, 2002). 

The input of peak discharges overwhelms the distributed system which is adjusted to 

smaller discharges and causes water to back up in englacial voids (Iken et al., 1983). 

This raises subglacial water pressures and promotes hydraulic jacking, a process 

which steepens the hydraulic gradient and increases downstream water flow velocity 

and results in greater frictional melting (Hooke et al., 1990). This in turn causes the 

system to become more hydraulically efficient with increased coupling between the 

bed and surface and rapid subglacial transitions from a hydraulically unconnected to 

a connected state (Flowers and Clarke, 2002). The maintenance of connected, discrete 

Figure 8. Englacial drainage systems. Upward branching arborescent network (A) 
formed normal to equipotential contours according to Shreve (1975). However, if the  
assumption that water (Pw) and ice pressures (Pi) are equal is ignored, then 
equipotential contours are rotated nearly 90° to the Shreve model (B) which predicts 
circular conduit cross sections framed by intact glacier ice (C). Redrawn from Gulley 
et al., (2009). 
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drainage is dependent on subglacial water pressures. In the summer, higher 

discharges due to enhanced supraglacial melt increases the frictional heating of 

channel walls which offsets channel closure by creep. In contrast, meltwater 

discharges are significantly reduced during winter with frictional melting insufficient 

to offset channel closure. The transition to this winter state is characterised by 

deterioration of the basal drainage network, drawdown of subglacial storage 

reservoirs and a heightened sensitivity to precipitation and surface refreezing 

(Flowers and Clarke, 2002). Additionally, although subglacial drainage regularly 

undergoes seasonal reorganisation, it can also vary spatially for individual glaciers 

(e.g. Cowton et al., 2013) while structural variation can be preserved over multiple 

seasons (Willis et al., 1990; Willis et al., 2012).  

 

2.3.4 - The theory of hydrodynamic coupling 

It has been shown that hydrological forcing of ice velocity through basal sliding 

(Nienow et al., 2005) and subglacial deformation (Boulton et al., 2001) is dependent on 

the structure and morphology of subglacial drainage (Iken, 1981; Clarke, 1987). As 

such, hydrodynamic coupling i.e. meltwater forcing of ice velocity, should occur 

more readily when distributed subglacial drainage is present as meltwater inputs can 

rapidly over-pressurise channels, cause hydraulic jacking and lead to periods of basal 

sliding (Hooke et al., 1990). In contrast, flow variability should be reduced in 

channelised, discrete systems as meltwater inputs are more efficiently transferred out 

of the glacial system. Surface dynamics at glaciers underlain by discrete systems 

should be predominantly controlled by internal deformation.  

Therefore, the degree of connectivity between surface meltwater generation and 

surface velocities could be used as a proxy for subglacial drainage configuration. 

However, hydrological forcing of ice velocity can occur despite the existence of 

discrete drainage (Bartholomew et al., 2011). At the Leverett Glacier, Greenland, ice 

velocity remained high and variable when meltwater inputs were rising faster than 

the drainage system could adjust to (Cowton et al., 2013). Coeval periods of fast 

glacier and high surface melt production were evident during the early summer, 

despite the presence of discrete drainage (Cowton et al., 2013). As such, 

hydrodynamic coupling can occur throughout the year if surface meltwater or 

precipitation inputs are sufficient to cause over-pressurisation.  

As such, drainage system configuration can hold little influence upon ice dynamics 

under scenarios of overwhelming meltwater generation (Bartholomew et al., 2011). 

With the exception of these events, hydrodynamic coupling/de-coupling will be 

observed as followed: 
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1. Events which exhibit close coupling between melt production and forward 

motion i.e. basal sliding due to over-pressurisation of distributed systems (e.g. 

Iken et al., 1983). 

 

2. Events which demonstrate a clear disconnection between melt production 

and forward motion, accounted for by the process of hydrodynamic de-

coupling. This can take the form of (A) the suppression of meltwater input 

and a return to internal deformation (e.g. Hooke et al., 1989) or (B) when 

enhanced meltwater input to discrete systems has no impact on glacier 

dynamics (e.g. Mair et al., 2002). 

Determining the degree of connectivity between ice melt and ice dynamics and 

identifying periods of hydrodynamic coupling at Falljökull may provide an 

understanding of how similar glaciers will respond i.e. speed up/slowdown, under 

scenarios of sustained thinning and enhanced meltwater input to the subglacial 

system. 

 

2.3.5 - Water storage 

Water storage also introduces complexity to this model of hydrodynamic coupling 

but is often overlooked (Killingtreit et al., 2003) and is poorly handled by conceptual 

or mathematical models (Jansson et al., 2003). Storage occurs at a variety of timescales 

and in different forms, from the long term storage of water as glacial ice to the hourly 

storage of water in the englacial and subglacial system (Fig. 9). The long term storage 

effect of glaciers is ultimately dependent on climate (Fountain and Tangborn, 1985). 

Figure 9. Forms and timescales of glacier storage. Redrawn from Jansson et al., 
(2003). 
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Intermediate water storage is an important control on seasonal water flux, as winter 

accumulation and summer ablation produces a strong seasonality in discharge 

(Stenborg, 1970; Tangborn et al., 1975). This water is primarily stored in the firn layer 

(Schneider, 2000) which responds strongly to seasonal changes, with saturation 

during the winter period and drainage during the summer (Jansson et al., 2003) and is 

effective at delaying water transport (Dyurgerov, 2002). However, the firn may be 

reduced or vanish in warming climate, particularly for glaciers with a narrow 

altitude range (Braun et al., 2000). The impact of the firn layer has been demonstrated 

at Hofsjökull, Iceland (Woul et al., 2006). For this terrestrial ice cap, meltwater 

discharge is expected to increase by up to 50% by the end of the century and 

subsequently decrease as the ice cap area diminishes (Aoalgeirsdottir et al., 2006). 

Modelling showed that retreat of the firn layer resulted in reduced water retention, 

redistributed but not reduced discharge, accelerated runoff generation and amplified 

peak discharges (Hock et al., 2005). Similar changes may occur at other Icelandic ice 

caps e.g. Öræfajökull, which could lead to flow modification in outlet glaciers e.g. 

Falljökull.  

Water can also be stored over intermediate timescales in the subglacial environment, 

as indicated by the early melt season uplift of various glaciers (Iken et al., 1983; 

Jansson and Hooke, 1989; Raymond et al., 1995). However, as Jansson et al., (2003) 

note, there is still doubt as to where this seasonal water is located in the glacier 

system. Short-term water storage is also evident. Diurnal variations in discharge are 

well documented (Lang, 1967) with a significant lag between peak solar input and 

peak discharge (Munro, 1990). This cycling is attributed to ice melt (Elliston, 1973) 

and the structure of the englacial and subglacial system as well as the maturity of 

drainage channels in the snow and firn (Singh et al., 1997). Short term water storage is 

generally enhanced in distributed systems as flow velocities are significantly 

reduced.  

 

2.4 - Terrestrial time-lapse photography 

2.4.1 - Procedures 

Since the earliest applications of time-lapse photography to Mount Rainer, U.S. and 

Unteraargletscher, Switzerland by Miller and Crandell (1959) and Flotron (1973) 

respectively, numerous studies have shown ice velocity variation using this 

technique (Harrison et al., 1986, 1992; Evans, 2000; Ahn and Box, 2010; Schubert et al., 

2013). However, there is no standard methodology for generating time-lapse data or 

interpreting it quantitatively, although the majority of studies follow the same basic 

procedures of image registration, feature tracking and geo-referencing. 
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Methodological variation between studies cannot be discounted as a source of 

variation in ice velocity estimates.  

Image registration is a crucial step in all image analysis tasks (Zitová and Flusser 

2003) as it defines the relationship between different images and enables camera 

rotations to be isolated when comparing across a time sequence. Although camera 

position is generally constant, thermal effects, wind vibration or settling of the 

camera can result in camera rotation (Dietrich et al., 2007). By locating static points in 

the image sequence at a high level of precision, camera rotations can be identified 

and corrected for. This is a necessary process as a “stable step-up seems nearly 

impossible” (Eiken and Sund, 2012) 

Feature tracking, which involves observations of glacial features across an image 

sequence, is often undertaken using automated algorithms which can generate 

matching accuracies of potentially up to 0.02 pixels (Maas et al., 2010). However, 

natural features on the glacier surface often do not form sharply defined targets 

(Eiken and Sund, 2012) and care should be taken to select features which are 

representative of surface displacement.  Automated feature tracking has been used to 

study glacier surface motion (e.g. Scambos et al., 1992; Kaab and Vollmer, 2000; 

Leprince et al., 2007; Amundson et al., 2008) although given the systematic changes in 

the appearance of natural features, automated matching will eventually fail. 

However, manual tracking of natural (e.g. Eiken and Sund, 2012) or non-natural 

features (Harrison et al., 1986) is time-intensive and unlikely to deliver sub-pixel 

accuracies.  

Deciding between automated and manual tracking is largely dependent on the 

relative magnitude of feature displacements. Rapid and high magnitude changes are 

perhaps best captured by manual tracking, while longer term and lower magnitude 

changes can be captured by automatic techniques at a much greater precision 

(Danielson and Sharp, 2013). Both automated and manual feature tracking are 

affected by the resolution (pixels) and clarity of the generated image. Image clarity is 

affected by falling snowflakes and rain droplets, snow and rain on the ground, lens 

internal reflections and enclosure window optical distortion (Ahn and Box, 2010). 

The degree of illumination can also result in under or over-exposure which can make 

feature identification challenging (Eiken and Sund, 2012), particularly for heavily 

crevassed surfaces which are illuminated differently throughout the day e.g. icefalls. 

In the study by Ahn and Box, (2010), image loss was 6-10% based on these factors, 

increasing to 15-20% when fog cover was included. As such, a suitable number of 

images per day are necessary to ensure a statistically robust dataset.  

Finally, geo-referencing involves aligning images to a contemporaneous digital 

elevation model (DEM) using specific control points. This requires a camera model 
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i.e. a generalized description of how the camera represents any 3D scene in its 2D 

image (James et al., 2016), as well as the viewing distance to control points and image 

geo-referencing parameters to describe the camera position and how it is oriented 

within the geographic coordinate system. Determining an accurate focal length is 

necessary (Rasmussen, 1986) in order to balance the field of view, velocities and 

distance to targets (Eiken and Sund, 2012). Early studies found that generating 

absolute distances from time-lapse data was challenging (e.g. Harrison et al., 1986; 

Harrison et al., 1992; Evans, 2000). However, geo-referencing should now be 

considered an essential step, as the value of time-lapse data is dependent on the 

ability of the image to be georectified to a meaningful coordinate system (Messerli 

and Grinsted, 2015), thus permitting comparison with other studies.  

 

2.4.2 - Recent developments 

However, technical issues can complicate quantitative data processing for 

conventional photography (Farinotti et al., 2010). As James et al., (2016) note, the 

oblique view from terrestrial vantage points means that the effective scale varies 

across the image while with single-camera (monoscopic) installations, ice motion 

towards or away from the camera cannot be determined. Additionally, horizontal 

and vertical movement can only be distinguished for specific camera orientations. 

Furthermore, classical algorithm based correlation techniques are disadvantaged by 

dramatically increased computational times with an increase in image size and the 

number of correlation points (Rosen et al., 2004; Leprince et al., 2007). As a result, 

some studies do not quantitatively analyse time-lapse data but interpret it 

qualitatively to support velocity measurements from other sources (e.g. Boon and 

Sharp, 2003; Andersen et al., 2011).  

However, recent studies have addressed these limitations. In particular, the 

development of the Normalized Cross-Correlation (NCC) algorithm by Vernier et al., 

(2012) improved on classical algorithm based correlation techniques by optimising 

memory management to avoid temporary result re-computations (Vernier et al., 

2011). This program has been applied to glacier flow for the Argentière glacier, 

France by combining terrestrial image sequences with high resolution TerraSAR-X 

data. Using this technique, image registration was twice as fast as conventional 

approaches. However, this program does not account for the problems associated for 

monoscopic installations.   

ImGRAFT, an automated tracking algorithm (Messerli and Grinstead, 2015) is a more 

appropriate tool as it is designed for oblique terrestrial images for which there are 

currently limited post-processing options available. Most software focus on feature 

tracking or geo-referencing (Corripio, 2004; Harer et al., 2013) but are poorly 
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optimised for oblique terrestrial images and do not incorporate camera motion and 

lens distortion efficiently, as they are generally designed for aerial and satellite 

imagery. Processing using this software can also result in a loss of image quality and 

detail. In contrast, ImGRAFT directly integrates DEMs for geo-referencing and 

feature tracking (Messerli and Grinstead, 2015) and is of comparable efficiency to 

previous studies when handling large images (e.g. Vernier et al., 2012).  

However, automated matching of image pairs (Messerli and Grinstead 2015) would 

have limited success as terrestrial time-lapse images are affected by drift due to an 

unstable camera, variable weather, illumination, snow cover conditions and an ice 

surface that evolves rapidly due to melting (James et al., 2016). These variables are not 

accounted for by Messerli and Grinstead (2015). As such, the use of image tracking 

software such as Pointcatcher (James et al., 2016) represents an improvement on 

previous techniques (Vernier et al., 2012; Messerli and Grinstead, 2015) and builds on 

feature tracking applications used for laboratory and volcanic image sequences 

(Delcamp et al., 2008; Applegarth et al., 2010; James and Robson, 2014). Procedures for 

image registration enable the isolation of camera drift and orientation change from 

glacier surface movement, with Monte Carlo error analysis used to determine the 

precision of camera orientations. Furthermore, the careful use of automated and 

manual tracking techniques can limit errors due to variable weather and 

illumination. Manual procedures i.e. rather than automated matching of image pairs, 

allows suitable features that are representative of surface movement to be selected 

and tracked through the image sequence. This limits the impact of rapid surface 

melting which can obscure the signal of glacier flow, particularly when surface melt 

is significant relative to ice movement (James et al., 2016). Features representing 

thrust planes should be rejected as recorded velocities are a function of both surface 

movement and melt back along the reverse inclined plane (James et al., 2016).  

The integration of multi-temporal DEMs allows the direction of glacier surface 

movement to be calculated for each surface feature. At Sólheimajökull, SE Iceland, 

James et al., (2016) acquired terrestrial laser scanner (TLS) data at the start and end of 

a 73 day image sequence using a laser scanner (Riegl LPM-321) which was capable of 

providing useful data at a distance of 3.5 – 4 km (Schwalbe et al., 2008; James et al., 

2009). These high resolution topographic datasets were visually aligned to the image 

scene to generate accurate 3D geographic point coordinates for point observations at 

the start and end of feature tracks. Intermediate point observations were assumed to 

be located on the vertical plane between these points. This software is optimised for 

challenging oblique glacial image sequences and is suitable for use at similar 

mountain glaciers e.g. Falljökull. At Sólheimajökull, asynchronous variations of ~10% 

in surface velocities and rates of thinning were identified over timespans of ~25 days 

(James et al., 2016) while the average surface velocity (17 cm d-1) is in agreement with 
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velocities recorded for similar temperate glaciers e.g. velocities of up to ~ 20 cm d-1 at 

Eystri-Hagafellsjökull, an outlet glacier of Langjökull, Iceland (Minchew et al., 2016).  

 

2.5 - Meteorological data 

Time-lapse data, if correctly registered, tracked and geo-referenced, is a powerful 

record of glacier change. However, linking this dataset to climatic variables requires 

data of comparable temporal resolution. As such, the establishment of Automatic 

Weather Stations (AWS) is clearly beneficial (Abbate et al., 2013). AWS have been 

increasingly used for process-oriented energy and mass balance measurements (e.g. 

Oerlemans and Klok, 2002). They are highly automated, provide high temporal 

resolution data and can be used to study micro-meteorological variables such as air 

temperature, humidity, wind speed and radiation (Sicart et al., 2011). Unlike data 

from regional weather stations or from climate modelling, the results from AWS are 

intimately coupled to the surface energy balance of the proximal glacier.  

AWS are becoming more common and increasingly affordable, which encourages 

researchers to setup multiple AWS at different elevations at the field site (e.g. 

Virkisjökull Weather Observatory, BGS). This allows researchers to look at changing 

conditions with altitude and gradients in temperature, humidity and pressure along 

the glacier flow line. An AWS is typically composed of a data-logger, a power unit 

and a number of meteorological sensors but a recent advancement has been the 

inclusion of a communication facility which allows daily data retrieval (Abbate et al., 

2013). This removes the need for periodic site visits for data gathering as near-real-

time data communication allows timely assessment of the correct functioning of the 

data logger and enables researchers to quickly identify when site visits are necessary.  

Linking AWS measurements to mass balance (e.g. van de Wal et al., 2005), surface 

energy balance (e.g. van Pelt et al., 2012) and hydrology (e.g. Wagnon et al., 1999) is 

now routine. However, few studies have effectively linked AWS and time-lapse 

photography to study glacier dynamics at a high temporal resolution, an approach 

which could yield a deeper insight into the mechanics of glacier movement.  

 

2.6 - Study area: Virkisjökull-Falljökull 

2.6.1 - Regional context 
As the studies by Radic and Hock (2011) and Arendt et al., (2002) have shown, 

mountain glaciers and ice caps are expected to remain an important component of 

eustatic sea level rise for at least another century. Given that 11% of Iceland is 
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currently glaciated (Björnsson and Pálsson, 2008), the potential for mass loss is 

significant. These glaciers are particularly sensitive to climatic fluctuations 

(Jóhannesson and Sigurðsson, 1998; Sigurðsson et al., 2007) due to their maritime 

North Atlantic setting, high-mass turnover and steep gradients. The majority of ice 

volume is accounted for by the 4 main ice caps (Fig. 10) including Vatnajökull (8,100 

km3), Langjökull (900 km3), Hofsjökull (890 km3) and Mýrdalsjökull (590 km3) 

(Björnsson and Pálsson, 2008). These ice caps account for 94% of the ~11,100 km2 area 

of all Icelandic glaciers (Björnsson and Pálsson, 2008). These glaciers are 

predominantly temperate, dynamic and characterised by high annual mass turnover 

(Aðalgeirsdóttir et al., 2011) and have responded rapidly to changes in temperature 

and precipitation during historical times (Björnsson, 1979; Björnsson et al., 2003; 

Aðalgeirsdóttir et al., 2006; Björnsson and Pálsson, 2008; Gudmundsson et al., 2011). 

Vatnajökull is the largest temperate ice cap in the world and has lost over 400 km3 of 

ice since 1890 (Pagli et al., 2007), with this shift to negative mass balance coeval with a 

mean temperature increase of 1-2°C (Björnsson, 1979). The sensitivity of this ice cap 

was demonstrated by Björnsson (2002) as mass balance was positive from 1991-1994, 

close to zero in 1995 but negative from 1996-2001. The 21 km3 mass loss due to 

balance changes (1991-2001) was closely linked to climatic variability (Pagli et al., 

2007).  

 

2.6.2 - Glaciology 

Öræfajökull is the southernmost sector of Vatnajökull and is glaciologically distinct 

and characterised by high-mass turnover (Bradwell et al., 2013). The ice cap has 13 

officially named outlets (Sigurðsson & Williams 2008) of which many, including 

Virkisjökull-Falljökull, terminate close to sea level. These outlet glaciers are all 

maritime (Bradwell et al., 2013) with the vast proportion of mass loss occurring 

during the summer (May-September) (Björnsson, 1998). This region is important as 

average mass balance gradients in Öræfajökull outlet glaciers are the strongest in 

Iceland (Björnsson, 1998; Björnsson & Pálsson 2008) which combined with steep 

glacier profiles, makes them some of the highest-mass-turnover glaciers in Europe 

(Dyurgerov, 2002). From the summit of Öræfajökull at 2000 m above sea level (a.s.l), 

the ice flows to the west as twin outlet glaciers which split below 1200 m a.s.l into 

separate glacier arms – Virkisjökull and Falljökull, which are separated by a 

prominent bedrock ridge named Rauðikambur (Bradwell et al., 2013). These glaciers 

share an accumulation area of ~5 km2, with equilibrium line altitude estimated at 

1000 - 1200 m a.s.l. (Björnsson and Pálsson, 2008). Although these glaciers recombine 

in their terminal zone, which previously extended ~2 km further down-valley 

(Gudmundsson 1997), a wide supraglacial debris band, sourced from Rauðikambur, 

marks the distinction between the glaciers at ~300 m a.s.l. These steep glaciers  
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Figure 10. Map of 
Iceland showing the 
main glaciers and the 
Virkis-Falljökull study 
site (inset). Digital 
data retrieved from 
the National Land 
Survey of Iceland.   
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descend from the accumulation area to the glacier terminus via steep icefalls, an 

elevation difference of ~1350 m in just 2-3 km (Phillips et al., 2014). Virkisjökull and 

Falljökull are both temperate with ice above the pressure melting point throughout, 

in line with the majority of Icelandic glaciers (Björnsson and Pálsson, 2008). However, 

determining bed rheology is more challenging (Björnsson et al., 2003). The main 

outlets of eastern Vatnajökull predominantly rest on impermeable unconsolidated till 

(Björnsson and Einarsson, 1991) although many glaciers in the southeastern sector of 

the ice cap rest on impermeable bedrock (Björnsson et al., 2003). However, porous 

lava beds are evident at Mýrdalsjökull, Langjökull and western Vatnajökull 

(Björnsson et al., 2003).   Field observations at Falljökull indicate that the glacier snout 

rests on a thin (< 1 m), discontinuous subglacial till which overlies semi-lithified 

volcanogenic diamicton (Phillips et al., 2013). As such, the glacier front at Falljökull is 

probably underlain by a porous layer of till and is characterised by soft bed rheology.  

 

2.6.3 - Meteorology 

The region is characterised by a mild oceanic climate with ~150 days of precipitation 

per year (Einarsson 1984). There is no strong seasonal trend in precipitation although 

October, December and January are typically the wettest months (Bradwell et al., 

2013). However, topography exerts a strong control on precipitation values as to the 

south and west of Öræfajökull, mean annual precipitation is just ~1800 mm, 

increasing to 3000 mm in the east and exceeding 7000 mm on the summit plateau 

(Guðmundsson, 2000). The annual range in temperatures is limited (~11°C) although 

temperatures vary on a seasonal timescale as average temperature falls from 8-12°C 

in summer to 0-4°C in winter (Bradwell et al., 2013). Summer maxima of 20°C and 

winter minima of -5°C are possible but rarely exceeded. Given this mild climate, 

snow is absent on low ground (< 200 m) for much of the year and is generally present 

for only 3-4 weeks during the winter. 

 

2.6.4 - Chronology and previous research 

Annual measurements of the glacier front position at Falljökull by the Iceland 

Glaciological Society (IGS) date back to 1957. In contrast, measurements at 

Virkisjökull were started in 1932, were discontinuous in the 1970s and ceased in 2000 

(Bradwell et al., 2013). The large-scale stagnation of the debris-covered ice margin 

meant that determining ice front position was challenging (Sigurðsson, 1998). As 

such, measurements since 1968 are unlikely to be representative of the glacier front 

position. Data from Falljökull are more reliable due to negligible debris cover at the 

terminus (Bradwell et al., 2013). Ice front position data is shown in Fig. 11.  
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Since measurements began, both Virkisjökull and Falljökull have retreated ~1200 m. 

However, this significant retreat was punctuated by one major readvance (~180 m) 

between 1970 and 1990 (Sigurðsson, 1998; Bradwell et al., 2013). Considerable mass 

loss has occurred, demonstrated by the decreasing areal extent and surface elevation 

of the glaciers, particularly in the ablation area (Phillips et al., 2014). However, 

contemporary retreat (post-2004) may be distinct compared to previous changes 

(Bradwell et al., 2013). This study suggests that Virkisjökull-Falljökull was 

undergoing active (dynamic) retreat before 2004, with some forward motion during 

the winter and spring (Evans and Twigg, 2002). This pattern of retreat is evident in 

the landscape with the formation of annual push moraines. Two groups are 

identified with the older formed between 1935 and 1945 based on lichenometric 

dating and the younger between 1990 and 2003 based on photographic evidence and 

field measurements (Bradwell et al., 2013). The spacing between these annual push 

moraines has increased significantly between 1998 and 2003, perhaps reflecting a 

progressive increase in the loss of mass relative to changes in forward motion, 

perhaps as a result of warming summers (Bradwell et al., 2013). The magnitude of 

these oscillations is inherently a function of mass balance (Phillips et al., 2014) and is 

therefore partially a function of climate (Björnsson and Pálsson, 2008). This 

conclusion does support previous research, as a strong relationship has been 

observed between glacier-front fluctuations and air temperatures since 1930 with 

summer temperature the primary driver of ice-front recession on a sub-decadal scale 

(Sigurðsson 2005; Sigurðsson et al. 2007). 

Figure 11. Cumulative retreat of the Virkisjökull and Falljökull ice fronts from annual 
measurements taken by the Icelandic Glaciological Society. From Bradwell et al., 
(2013). 
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However, since 2004, the formation of annual push moraines at the margin has 

ceased. This may indicate that Virkisjökull-Falljökull has crossed a “glaciological 

threshold” (Bradwell et al., 2013) as the glacier is now retreating at a faster rate in any 

5 year period since 1932. However, retreat is no longer active as the glacier is down-

wasting and collapsing with negligible forward motion (Schomacker et al., 2014). This 

retreat was studied on a structural level using terrestrial LiDAR and ground 

penetrating radar (GPR) which demonstrated that collapse involves intense brittle 

faulting and fracturing along large-scale, down-ice dipping normal faults (Phillips et 

al., 2013). GPR shows that a large area of buried ice in the proglacial outwash terrain 

provides an important control on this down-wasting. Falljökull is not unique in this 

regard, as ice-cored stagnation topography (Phillips et al., 2014) is evident at a 

number of Icelandic glaciers including Kötlujökull (Kjær and Krüger, 2001), 

Bruarjökull (Kjær et al., 2008), and Eyjabakkajökull (Schomacker et al., 2014). A 

further study proposed a three stage structural glaciological model for retreat (Fig. 

12) which expands on the work by Bradwell et al., (2013) with [A] active retreat 

between 1990-2004, [B] passive down-wasting between 2005-present and [C] 

Figure 12. Structural evolution of Falljökull based on work by Bradwell et al., (2013) 
and Phillips et al., (2014). 
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continued movement and overthrusting in the upper part of the glacier (Phillips et al., 

2014). This crucial third stage is based on GNSS observations, with the lower part of 

the glacier stagnating while the upper reaches remain active. Significant flow 

deceleration below a marked topographic bulge is evident, as active ice overrides 

stagnant ice below. Deformation style varies significantly between active and static 

ice (Phillips et al., 2014) with this study highlighting the importance of hypsometry, 

mass turnover and glacier bed topography in controlling glacier velocities.    
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Chapter 3 - Methodology 

3.1 - Time-lapse image acquisition and processing 

3.1.1 - Camera specifications and set up 

Photographs were obtained from two Vivotek IP7361 Network Bullet Cameras at 

Falljökull (Fig. 13). These installations provide coverage of the glacier front (AWS1) 

and icefall (AWS3) and have been operational since 10/04/2011 and 12/04/2011 

respectively. Photographs were generated daily at 09:30, 12:30 and 15:30 GMT. Both 

installations are still operational although this study focuses solely on the period 

2011-2013. Given the slow surface velocities previously observed (Phillips et al., 2014) 

and the large scale stagnation of the terminus (Bradwell et al., 2013), data acquisition 

at a higher temporal resolution (e.g. hourly) would be an inefficient use of data 

storage availability. While a progressive increase in surface velocities is evident up 

glacier, with movement at a rate of 72 m yr-1 below the icefall (Phillips et al., 2014), 

these values are relatively small compared to fast moving maritime glaciers e.g. 40 m 

d-1 at Jakobshavn Isbrae, Greenland (Schwalbe et al., 2008) and do not necessitate 

more intensive data acquisition. Generating multiple photographs per day minimises 

the risk of days with no acceptable data.  

 

 

3.1.2 - Data set 

Between time-lapse camera installation and the culmination of the study period on 

31/12/2013, 2824 and 2985 images were acquired from AWS1 and AWS3 respectively. 

Figure 13. Automatic Weather Station 3 and the Falljökull icefall. 
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This sequence was down-sampled to 1954 and 2044 acceptable images by removing 

those in which image quality was compromised by cloud cover or precipitation. 

Although both datasets provide a satisfactory long term record of glacier dynamics at 

Falljökull, acceptable images were not available for each day throughout the 

sequence. At AWS1, the number of missed days accounts for ~10% (102 days) of the 

total study period while this figure rises to ~12% at AWS3 (122 days). However, 

AWS1 was not in operation for 65 consecutive days between 19/12/2011 and 

23/02/2012, a period which accounts for over 60% of the missed days for this 

installation. When these dates are excluded, it is evident that missed days due to 

cloud cover or precipitation are far more likely at AWS3 (122:37), probably reflecting 

the increase in cloud cover with altitude.  The temporal distribution of missed days 

(Fig. 14) highlights the increase in image loss during the winter months, a trend best 

explained by more extensive cloud cover and regular precipitation events during this 

period (Bradwell et al., 2013). Moreover, images acquired in the early morning during 

winter months were not sufficiently illuminated and were underexposed and 

unsuitable for image tracking.  

Finally, an additional 1929 and 2112 images from AWS1 and AWS3 respectively i.e. 

the second or third acceptable image for a particular day, are retained in the image 

sequences. While these could be removed to significantly reduce image processing 

time without compromising the project timespan, this would prevent the study of 

any sub-diurnal dynamics at Falljökull.  

 

Figure 14. Missed days in the glacier front and icefall image sequences (2011-2013) 
due to cloud cover or precipitation  
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3.2 - Pointcatcher analysis 

3.2.1 - Image registration 

In order to isolate camera movement and facilitate robust glacier surface tracking, 

image registration was undertaken by tracking stable topographic features through 

the sequence.  Irregular sections of skyline were manually selected, with points 

covering the width of the image in order to accurately determine camera rotation 

angles. These features exhibit the best contrast between dark topography and light 

backgrounds and are therefore the most suitable for tracking (James et al., 2016). A 

typical feature is shown in Fig. 15. However, static feature tracking was undertaken 

manually, a time-intensive process. Choosing between automated and manual 

tracking is largely dependent on the magnitude or speed of the expected change in 

the sequence. As such, automated tracking of static features would seem to be the 

most appropriate method (James et al., 2016). If camera position is assumed to be 

constant, then any camera displacement should be minor, reflecting thermal effects, 

wind vibration or settling of the installation during periods of ground heave.  

However, the magnitude of feature movement is not the only factor to consider. 

While automated tracking can generate matching accuracies of 0.02 pixels under 

idealised conditions (Maas et al., 2010), the Falljökull datasets are far from idealised 

as image quality is strongly affected by cloud and snow cover which leads to 

Figure 15. Selecting suitable topographic features for manual tracking (A-D). 
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significant errors in automated tracks. Although these can be corrected for by 

regularly updating the cross-correlation parameters, this is a time-intensive process. 

Automated tracking also generates a limited number of point observations during 

the transitionary periods (W-S, S-W) when snow cover varies and features change 

significantly in appearance. This requires further manual interaction. In contrast, 

fully manual tracking is generally not associated with such significant errors and 

takes only marginally more time to complete.  

Furthermore, illumination variability is difficult to isolate from camera displacement 

but has a significant impact on the scatter of automated points (Fig. 16). This scatter 

adds noise to measured point observations, with the magnitude of these 

Figure 16. Automated tracking and the impact of illumination change (A-F) in 
images 55-60 from the 2011 AWS1 sequence (05/05/2011 - 07/05/2011) using a 
correlation threshold of 0.8 and template size of 10 pixels. Red circles indicate 
location of point observations. The outline of the topography is highlighted (green 
dotted lines) to demonstrate the impact of illumination.  
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displacements often exceeding displacement due to camera movement. In contrast, 

careful and rigorous manual tracking would appear to be able to isolate illumination 

errors. Although solely based on qualitative interpretation, identifying whether 

changes are consistent across the skyline does seem to provide a useful indicator of 

whether illumination or camera movement is the primary cause of point 

displacement. To demonstrate the difference between these techniques, Fig. 17 

presents the results of both manual and automated tracking of static features for the 

AWS1 image sequence in 2015 (time-lapse images were available up to 31/12/2015 but 

could not be georeferenced and were not included in this project). Although the 

trends are generally similar, manual tracking is characterised by abrupt shifts in 

point positions but considerably more stable x-y tracks, as the data is discretised to 1 

pixel. As a result, it is not possible to record sub-pixel variation using this method. 

Manual tracking is most effective when the boundaries between pixels are selected. 

Although these shifts in point position are abrupt, a displacement of 1 pixel is 

equivalent to a camera angle change of just 0.052° (Fig. 18).  

Figure 17. Manual (A-B) and automatic (C-D) tracking of the AWS1 image sequence 
in 2015. 
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In contrast, automated tracks exhibit greater variability but are generally coeval with 

the timing of shifts observed in the manually generated tracks. After image ~160, 

both techniques indicate a stable camera setup. However, automated tracks are 

characterised by point scatter of ± 0.5 pixels, variability that is best accounted for by 

illumination change. While automated tracking may be able to record sub-pixel 

variation due to camera movements of less than 0.052° in idealised conditions, this 

relatively small signal is almost certainly obscured by relatively high-magnitude 

fluctuations (> 0.052°) due to illumination change. It is suggested that neither method 

in their current form can generate results of reliable sub-pixel accuracy. Additionally, 

manual tracking is more appropriate for glacier surface features. Not only are these 

features affected by variable snow and cloud cover, illumination variability and 

camera displacements but they also move due to glacier flow as well as fundamental 

changes in the features themselves e.g. collapse of debris cones. All these variables 

would require almost continual updating of the cross correlation parameters. As 

such, manual tracking of static features will ensure data precision is consistent 

between these datasets.  

Another issue to consider is the number of static tracks to generate although 2 is the 

minimum required to undergo image registration. For this study, 20 static features 

have been tracked for each year and for each camera installation. This represents the 

practical maximum number of static features that are trackable in these image 

sequences, as beyond this number there are few suitable features remaining. 

Unfortunately, tracking this number of features is time intensive but was undertaken 

for a number of reasons. Firstly, with more static features tracked, image registration 

and subsequent error analyses can be more robust. Secondly, it guarantees good 

spatial coverage of points and satisfactory tracking through the sequence. Generating 

20 tracks provides flexibility when snow or cloud cover or a change in illumination 

obscures parts of the image. The precision of camera rotation angles is highly 

dependent on the spatial distribution of tracked points across the image scene. As 

such, tracking only a limited number of points with a restricted spatial distribution 

Figure 18. Manual tracking precision. 
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would poorly capture any change in relative camera angles, particularly when parts 

of the image are obscured. 

To register these datasets, the procedures of James et al., (2016) were followed. First, a 

reference image was selected for each image sequence in which the full 20 static 

features were observed. Camera angles were determined for all other images relative 

to this reference image using a robust image-based transform which permits 

identification and rejection of point outliers. As this process does not account for lens 

distortion, an additional registration stage was undertaken by defining a registration 

for each image in terms of a physical camera model which determines camera 

rotation around the x (omega), y (phi) and optic axes (kappa) (Fig. 19). This camera 

model required a number of inputs which had to be calculated (sensor size, pixel 

size, principal point position) or estimated based on integrating the image data with 

georeferenced LiDAR datasets (focal distance, radial parameters).  

In order to determine the precision of the relative camera angles, a Monte Carlo 

approach was undertaken (James et al., 2016). Camera orientation values were 

estimated repeatedly with different randomised errors added to the static point’s 

image position. These random offsets are derived from a pseudo-random normal 

distribution with a standard deviation that reflects the precision of image 

measurements. The distribution of these random offsets generates standard deviation 

values for omega, phi and kappa for each image which represents the distribution of 

likely camera orientation angles. This error analysis also generates a residual RMS 

value. This is a measure of the quality of image registration based on the distance 

between static features in a registered image and the equivalent features in the 

reference image. An estimate of the registration accuracy for each image sequence 

𝜎𝑚𝑟 is calculated as followed: 

Figure 19. Rotation around the Omega (X), Phi (Y) and Kappa (Z) axis. 
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 𝜎𝑚𝑟 = (𝜎𝑟
2 + 𝜎𝑚

2)1/2 (16) 

   

where 𝜎𝑟 is the image registration error and 𝜎𝑚 is the image registration precision. As 

features could not be tracked at a sub-pixel precision, registration precision is 

considered to be ~1 pixel. 

 

3.2.2 - Feature tracking 

With each image sequence registered, glacier surface features were tracked to 

determine spatial and temporal variability in surface velocities and rates of thinning. 

In the study of Sólheimajökull, Iceland by James et al., (2016), the authors tracked ~50 

individual features although this study focused on a short 73 day sequence 

comprising just 145 images to test the viability of the site equipment and analysis 

procedures. Applying the same intensive procedures at Falljökull is not appropriate.  

To account for the difficulties of feature tracking in these image sequences, more 

realistic targets were set to account for the limitations of the camera set up and the 

deterioration in image quality due to weather and varying illumination. Between 10 

and 20 point observations and a minimum of 5 point observations were required in 

60% and 80% of images respectively before a sequence was considered sufficiently 

tracked. Glacier feature tracking results are discussed in Section 3.5.1. As per the 

recommendation of James et al., (2016), features were selected which were deemed 

representative of surface displacement. However, due to a small image sensor (Fig. 

20) and a restricted image resolution relative to previous studies (e.g. Fig. 21; James et 

al., 2016), which was exacerbated by the distance from the camera installations to the 

glacier (< 600 m at AWS1), accurately determining the suitability of each surface 

Figure 20. Image sensor dimensions. 
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feature was challenging. Debris cones and similar supraglacial deposits were deemed 

the most suitable features for tracking as they exhibited clear contrast between 

sediment and snow/ice. Due to the project timespan, it was not possible to track 

features which persisted throughout the entire image sequence. Features which were 

present in the image sequence for less than ~1 month were not considered for 

tracking as they are unlikely to be representative of glacier flow. Any movement in 

these transient features probably reflects the accumulation and rapid collapse of 

debris structures.  

 

3.2.3 - Geo-referencing 

By determining camera model information and integrating high resolution DEMs, 3D 

geographic point coordinates can be derived for individual feature tracks. This 

involves the manual alignment of the image scene with topographic data from 

DEMs, a process which describes the position and orientation of the camera within 

the specific geographic coordinate system. This is then linked to relative camera 

angles to determine absolute displacement through the sequence. While the down 

sequence precision of this alignment is based on the precision of the camera 

Figure 21. High image resolution of the Solheimajökull dataset enables tracking of 
distal surface features (inset). Photo credit: James et al., (2016). 
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orientations, the initial alignment of the image scene and the DEM is undertaken 

manually in Pointcatcher (Fig. 22) and is therefore not associated with any formal 

error analysis. The accuracy of this alignment is strongly affected by a number of 

parameters including focal distance, camera position and radial distortion.  

 

Furthermore, with monoscopic installations, movement towards or away from the 

camera cannot be determined and therefore for most viewing geometries, surface 

elevation change cannot be isolated from horizontal movement. As discussed in 

Section 2.4.2, multi-temporal DEMs can be used to address these limitations, with 

accurate 3D point positions generated for point observations at the start and end of 

feature tracks (James et al., 2016). The straight line between these points is used to 

constrain a vertical plane and it is assumed that all intermediate points i.e. those not 

covered by a DEM, will be located on this plane. This assumption allows 3D 

coordinates to be calculated for all intermediate points with the signal of surface 

elevation change isolated throughout the image sequence.  

 

At Falljökull, high resolution LiDAR datasets were collected on an annual basis by 

the BGS and made available for this project. Unfortunately, with only one DEM 

available per year, 3D geographic point coordinates can only be generated for one 

image scene. Without an additional DEM, it is not possible to fully constrain the 

direction of ice movement and isolate surface elevation change using this method. As 

such, any horizontal or vertical change in pixel position is treated as movement in XY 

space (N°, E°). This obscures the signal from surface elevation change as any thinning 

Figure 22. Manual alignment of LiDAR points and topographic data. 
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or uplift of the glacier, which would be reflected in a change in vertical pixel position, 

is treated as movement towards or away from the camera.  

 

In order to address this, the direction of ice movement (relative to grid north) can be 

estimated using satellite data (Glacier front: 220°, Icefall: 245°). This provides the 

direction of the vertical planes on which all points are situated (Fig. 23). A similar 

technique has been demonstrated by Schwalbe et al., (2016). While this technique 

does provide an estimate of the direction of ice movement, it is not practical to 

generate a unique flow angle (°) and vertical plane for each surface feature as 

provided by the integration of multi-temporal DEMs. This simple estimate is less 

robust as it may poorly capture the movement of surface features at the glacier 

margins (e.g. James et al., 2016), where movement may be almost perpendicular to 

the glacier flowline (Fig. 24).  

 

 

 

 

 

 

 

 

However, as feature tracks are not continuous through the image sequence, 3D 

geographic coordinates can only be generated for surface features which are present 

in the image coincident with the date of DEM generation i.e. feature tracks which end 

before or start after this image will not be georeferenced. To account for this, 4-5 

images were georeferenced for each camera sequence in order to generate 3D 

geographic coordinates for as many surface features as possible, although not all 

features could be georeferenced. Given the changing nature of the glacier surface, 

more regular acquisition of DEMs is necessary in order to accurately georeference the 

glacier surface. While the approach used in the study is not without uncertainty, as 

Figure 23. Georeferencing procedure. (A) Image registration throughout the 
sequence allows the set of feature observations to be represented in one reference 
camera orientation (grey box). (B) For the observation made closest in time to the 
first LiDAR survey, 3D coordinates can be calculated by projecting the observation 
through the perspective centre of the camera, p, onto the DEM surface defined by the 
LiDAR. (C) Ice direction is estimated based on satellite data to constrain a vertical 
plane in which the point is assumed to lie at all other times (D) 3D coordinates for all 
other image observations of that point are then calculated by intersecting their 
observation rays with the plane. 
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the changing nature of the ice surface through each year is not reflected in the 

subsequent georeferenced images, the topographic alignment was consistent 

throughout and so data should be internally consistent.   

 

Geo-referencing of the icefall dataset was more challenging as DEM coverage of the 

surrounding topography was severely restricted with LiDAR point distribution 

limited to just one side of the image scene. As such, although visual alignment of 

these data could be undertaken, it would be extremely sensitive to a change in 

camera orientation as well as the adjustment of camera focal distance and radial 

parameters. To account for this, geographic coordinates were generated from satellite 

data to provide coverage of the distal topography not scanned using LiDAR. These 

points were incorporated into the LiDAR dataset and were visually aligned to the 

surrounding topography to determine camera model information. Visual alignment 

involved the adjustment of camera model parameters until both sides of the image 

displayed a satisfactory match. Unfortunately, due to the low spatial resolution of the 

satellite data, the estimated geographic point coordinates of surrounding topography 

are of limited precision. Therefore, comparison of the icefall and glacier front datasets 

should be undertaken cautiously. However, as each icefall dataset (2011-2013) were 

geo-referenced in this way, these data are internally consistent and comparison 

between years is possible, although without additional data, the absolute values 

generated for the icefall cannot be verified.  

 

Figure 24. Ice movement at the glacier margin. 
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3.3 - Data analysis 

3.3.1 - Spatial groupings 

With point observations georeferenced and 3D geographic coordinates generated for 

each surface feature throughout the image sequences, surface features at the glacier 

front were allocated to 1 of 3 spatial groupings based on starting point position. This 

permitted study of spatial variability in surface velocities and rates of thinning. An 

example of these groupings is shown in Fig. 25. Surface features in the glacier 

terminus sector were all within 200 m of the terminus position in 2011, although the 

distribution of points became increasingly restricted by 2013 due to sustained retreat. 

Intermediate points were generally between 200-400 m upslope from the terminus 

and generally within ± 100 m of a major fault zone, which was present throughout 

the 3 year period.  Surface features in the upper sector were generally in excess of 500 

m from the glacier terminus in 2011. Due to the oblique camera view, it was only 

possible to track a handful of suitable surface features in the upper sector. As such, 

error estimates for these data are often significantly higher than for terminus and 

intermediate sector surface features. Finally, sub-dividing the icefall dataset spatially 

was challenging due to the complex nature of the ice body and the speed of ice 

movement. Determining inter/intra-annual spatial variability in surface velocities 

was not possible for these data.  

 

3.3.2 - Data management 

In order to determine the distance travelled for each surface feature, the horizontal 

and vertical displacement between the first and last point observation were 

calculated. Daily velocities were calculated by dividing track length by track 

duration. Mean daily velocities were calculated for each spatial grouping with 1σ 

uncertainties. T-tests assuming unequal variances were used to calculate whether 

inter/intra-annual variability between spatial groupings was statistically significant. 

Annual retreat rates were also calculated for Falljökull over the period 2011-2013 

with geographic coordinates of the glacier snout determined at the start and end of 

each year using georeferenced LiDAR. 

To determine the precision of these values, the standard deviations of camera angles 

(omega, phi, kappa) at the start and end of each feature track were used to calculate 

total track length uncertainty (m). By calculating the viewing distance i.e. the distance 

between the camera position and the georeferenced point observation, 

straightforward trigonometry allows the precision of the camera angles to be 

converted to distances. Angular errors i.e. errors due to uncertainty regarding camera 

rotation, are relatively small, highlighting the consistency of manual tracking of static 
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points. However, as the precision of manual tracking is limited to ± 1 pixel, an 

additional error of 0.052° was added to each uncertainty estimate. Total track length 

𝑇𝜎  uncertainty is calculated as follows: 

 𝑇𝜎 2 = Ω2 + 𝜙2𝜎𝜎 +  𝐾2𝜎  (17) 

   

where Ω𝜎  is uncertainty around the x axis, 𝜙𝜎  is uncertainty around the y axis and 

𝐾𝜎  is uncertainty around the optic axis. An example of this data is shown in Fig. 26.  

Surface velocity and thinning rate data were investigated using cumulative 

displacement analysis which provides a useful insight into glacier dynamics at a high 

temporal resolution. Firstly, a constant velocity model was generated for each surface 

feature by dividing the total track length by the track duration. The absolute 

displacement from that model was calculated for each surface feature at each image 

interval. An updated constant velocity model was calculated for each spatial 

Figure 25. Map of the Virkis-Falljökull study site, showing the spatial distribution of 
surface features and camera locations. Data retrieved from the National Land Survey 
of Iceland. 
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grouping by taking the mean of the horizontal and vertical displacements between 

subsequent images for each surface feature. Absolute displacements were averaged 

from the constant velocity position at each interval for images in which at least 2 

surface features had been tracked. Based on these data, it was possible to determine 

whether surface features were moving faster than, on or below the average rate and 

whether surface features are ahead of or behind the estimated constant velocity 

position. 1σ uncertainties were calculated for cumulative displacement tracks.  

 

Figure 26. Horizontal and vertical track length uncertainty for surface feature 6 in the 
2011 AWS1 image sequence. 
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3.4 - Meteorological data 

3.4.1 - Data processing 

In order to determine the climatic controls on glacier dynamics at Falljökull, spatial 

and temporal variability in surface velocities and rates of thinning were compared to 

local meteorological data provided by the BGS. Three AWS are currently in operation 

at Falljökull with data generation since 07/09/2009, 15/09/2010 and 14/09/2011 

respectively. The lowest installation (AWS1) is in daily communication with the BGS, 

permitting daily data retrieval. Each installation records data using a Campbell 

Scientific CR800 Datalogger and measures each variable every 5 seconds to calculate 

an hourly average. The measured meteorological variables at each station are shown 

in Table 1.  

Unfortunately, there were significant gaps in the dataset and intensive data 

processing was required to generate a chronological and sequential data series. Data 

from AWS1 are predominantly used in this study as the dataset is near continuous, 

with the exception of a brief period from 16:00 GMT on 06/09/2011 to 11:00 GMT on 

10/09/2011. To account for this, temperature, relative humidity and wind speed data 

from AWS3 and precipitation data from AWS4 were used. This highlights the value 

of multiple installations which provide redundancy when one or more stations are 

not operational. While using multiple meteorological datasets would provide a more 

comprehensive insight into changing conditions with altitude, variability that may 

have an impact on glacier functioning, it was not feasible to study this within the 

confines of the project.  

 

3.4.2 - Energy balance modelling 

As discussed in Section 2.2, meteorological conditions primarily control glacier 

functioning through surface energy balance, which can be modelled by calculating 

the inputs of energy to the glacier surface e.g. incoming shortwave radiation, 

temperature, wind speed and precipitation, in the context of site specific conditions 

Table 1. Meteorological variables. 
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e.g. latitude, altitude, aspect, hypsometry, surface albedo, surface roughness and 

temperature lapse rate. A key input to the glacier surface is air vapour pressure 

which is strongly temperature dependent (Fig. 27). This is calculated by first 

calculating saturation vapour pressure: 

 𝐸𝑆 = 𝐴 × 𝐸𝑋𝑃 (𝐵 × 𝑇) (18) 

   

where 𝐸𝑆 is saturation vapour pressure, 𝐸𝑋𝑃 is the value of the mathematical 

constant e, raised to the power of the nth value, and 𝑇 is average air temperature. 

𝐴 (608.19) and 𝐵 (0.0712) are empirically determined constants. To calculate air 

vapour pressure, the following equation is used: 

 𝐴𝑉𝑃 = (𝑅𝐻/100) × 𝐸𝑆 (19) 

   

where 𝐴𝑉𝑃 is air vapour pressure and 𝑅𝐻 is relative humidity.  

Surface melt production at Falljökull, incorporating the energy flux related to 

precipitation (Thompson, 2016), was estimated using energy balance modelling 

(Brock and Arnold, 2000). Unfortunately, with no ablation data available at Falljökull, 

it was not possible to adjust the model parameters to ensure that modelled surface 

melt production was representative of observed surface melt. Ablation stake data 

were available for Virkisjökull (Flett, unpublished data, Table. 2) and provide a 

useful comparison with modelled values at Falljökull. However, given that these 

values are from a unique, albeit proximal glacier, and related to a year not studied in 

this project, it was not an efficient use of processing time to intensively run the model 

to achieve a best fit between these datasets.  

The model developed by Brock and Arnold (2000) was chosen for its straightforward 

adaptability to different sites. Model inputs are shown in Table. 3. Periods of 

Figure 27. The impact of temperature on saturation vapour pressure. 
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predominantly snow covered or snow free ice were identified and modelled to 

generate more reliable values for surface melt (Fig. 28). This allowed values for 

albedo and surface roughness to be tweaked to better capture changing conditions at 

the glacier surface. This modelling has generated a long term, high temporal 

resolution dataset (hourly) of glacier surface melt. Variability in surface melt 

production and the relative contribution of radiative and turbulent fluxes has been 

demonstrated at inter and intra-annual scales and compared to glacier dynamics.  

 

Table 2.  Energy balance modelling parameters. 

Table 3. Virkisjökull ablation in 2014 (Flett, unpublished data). 

Figure 28. Glacier surface conditions (ice/snow) for EBM (2011-2013). 
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3.5 - Pointcatcher results 

3.5.1 - Image registration 

Topographic feature tracking results (Fig. 29) demonstrate that 10 or more features 

were tracked in > 60% of all images. However, variability between camera 

installations is evident. These data suggest that tracking 20 topographic features is 

necessary at AWS1. At this installation, 20 - 40% of images have fewer than 10 point 

observations. By reducing the target number of tracked features, it is likely that the 

quality of image registration would be compromised as the majority of images would 

display a limited spatial coverage of points across the skyline. In contrast, 15 - 20 

point observations are evident in over 80% of all images from AWS3 as features are 

visible more often throughout these image sequences. This is partially due to the 

reduced distance from the camera installation to the surrounding topography which 

allows smaller scale topographic features to be tracked. Despite this, using a large 

number of static points will still generate more reliable results and allows for 

erroneous data to be easily identified. 

 

These topographic point observations were used to calculate camera orientation 

angles, orientation precision estimates and a residual RMS value for each individual 

image (Fig. 30, A-C). However, given the number of image sequences (6), it was not 

feasible to present all these data. As such, key data regarding image registration are 

presented in Table 4. At AWS1, the skyline was obscured by cloud or snow cover in > 

50 images. Orientation angles for these images were derived from previous or 

subsequent images. In contrast, image registration was more successful at AWS3, 

with only ≤ 20 images with no orientation points (inliers). At AWS3, the mean 

Figure 29. Topographic feature tracking results. 
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number of inliers in successfully registered images is also consistently higher than at 

AWS1. Camera orientation precision is high throughout, with a maximum mean 

RMS value of just 0.63 pixels. For 4 image sequences, this decreases to ≤ 0.22 pixels. 

However, intra-annual variation is evident. In 2011 at AWS1, a change in camera 

Figure 30. Results of error analyses for the 2011 AWS1 image sequence. (A) 
Camera orientation angles. (B) Orientation precision estimates. (C) RMS residuals. 
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orientation from late-November is reflected in an increase in the RMS to 0.5 pixels 

(Fig. 30, A). This is probably complicated by winter snow cover. However, 

orientation precision estimates remain low over this period, with mean omega, phi 

and kappa uncertainties of 0.02°, 0.02° and 0.04° respectively, reflecting the robust 

manual tracking procedure. 

 

3.5.2 - Glacier feature tracking 

Glacial feature tracking statistics are shown in Fig. 31. 10 or more point observations 

were present in > 60% of images and more than 5 points in > 86.5% of images. 

However, glacier features could not be tracked through the entirety of each image 

sequence. Feature timelines for 2011 (Fig. 32), 2012 (Fig. 33) and 2013 (Fig. 34) 

demonstrate the varying persistence of glacier surface features.  

 

 

Table 4. Registration results. 

Figure 31. Glacier feature tracking results. 

(16) 
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Figure 32. Glacier feature timelines (interval between the first and last point 
observation) for the 2011 AWS1 image sequence. 

Figure 33. Glacier feature timelines (interval between the first and last point 
observation) for the 2012 AWS1 image sequence. 

Figure 34. Glacier feature timelines (interval between the first and last point 
observation) for the 2013 AWS1 image sequence. 
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Chapter 4 - Results 

4.1 - Inter-annual variability 

4.1.1 - Thinning rates 

Based on the spatial groupings established in Section 3.3.1, spatio-temporal 

variability in inter-annual rates of surface elevation change are evident (Table 5). 

However, Falljökull is thinning substantially in all sectors, in excess of 0.029 m d-1 

throughout the period 2011-2013. Large scale, rapid retreat of the margin and 

significant surface lowering are clearly evident in Fig. 35. Annual data for glacier 

dynamics i.e. retreat, forward motion and thinning, are shown for each year in 

Figures 36-38.  

Table 5. Annual surface velocity and thinning rate data. 

Figure 35. Retreat and thinning of the Falljökull ice front (10/04/2011 - 31/12/2013). 
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Figure 36. Glacier dynamics at the Falljökull glacier front in 2011. 

Figure 37. Glacier dynamics at the Falljökull glacier front in 2012. 

Figure 38. Glacier dynamics at the Falljökull glacier front in 2013. 
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In 2011, statistically significant spatial variability is evident, as thinning rates 

decrease from the terminus to the upper sector. While the terminus thins at a rate of 

0.06 ± 0.003 m d-1, the intermediate and upper sectors undergo thinning at 0.052 ± 

0.003 m d-1 and 0.044 ± 0.004 m d-1 respectively. T-tests show that terminus-

intermediate and terminus-upper variability is significant at p = 0.1 and p = 0.5 

respectively. Intermediate-upper variation is not statistically significant (p = 0.15). A 

similar trend is not evident in 2012 and 2013. Thinning rates for each sector in these 

years are within error (p = > 0.1). These results are presented in Table 6.   

 

Temporal variability is also evident with a statistically significant reduction in 

thinning rate (p = < 0.01) for the glacier terminus and intermediate sector from 2011 to 

2013 (Table 7). At the terminus, this is largely accounted for by a statistically 

significant decrease (p = < 0.01) in thinning rate between 2011 and 2012 (- 40%) to just 

0.036 ± 0.006 m d-1. While the intermediate sector also demonstrates a reduction in 

thinning rate over this interval (- 16%), this is not statistically significant (p = 0.19). In 

contrast, thinning rates fall significantly between 2012 and 2013 for the intermediate 

sector to just 0.029 ± 0.006 m d-1 (p = 0.04). Both sectors record an average surface 

lowering of 0.029 ± 0.006 m d-1 in 2013, which overlaps with the upper sector within 

Table 6. Intra-annual spatial variability in thinning rates: t-test results. 

Table 7. Inter-annual temporal variability in thinning rates: t-test results. 
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error. Rates of surface lowering are stable for the upper sector for the period 2011-

2013 with values of 0.044 ± 0.004 m d-1, 0.037 ± 0.005 m d-1 and 0.037 ± 0.007 m d-1 in 

2011, 2012 and 2013 respectively.  

 

4.1.2 - Surface velocities 

Surface velocities exhibit significant spatio-temporal variability over the period 2011-

2013 (Table 8). A consistent inter-annual spatial trend is evident as surface velocities 

decrease from the upper sector to the terminus. Average surface velocity data plotted 

against northing (Figs. 39-41) demonstrates a strong correlation between these 

variables in 2013 (R2 = 0.77, p = < 0.01). However, this relationship is more uncertain in 

2012 (R2 = 0.51) while these data are poorly correlated in 2011 (R2 = 0.35). In these 

years, slow surface velocities (< 0.005 m d-1) are observed higher up the glacier than 

expected. In 2011, surface velocities of 0.077 ± 0.02 m d-1 in the upper sector greatly 

exceeded the values of 0.02 ± 0.005 m d-1 and 0.029 ± 0.006 m d-1 recorded for the 

terminus and intermediate sector respectively. This variability is statistically 

significant at p = 0.1 although relatively large errors for the upper sector (± 0.02 m d-1) 

account for some overlap of these data. Terminus-intermediate variation is not 

statistically significant in 2011 and 2012, although more significant variability is 

evident in 2013 (p = 0.06). Variation between all sectors is statistically significant in 

this year, accounted for by a marked slow-down in the rate of motion of the terminus 

(- 32%) to just 0.017 ± 0.005 m d-1, an acceleration of the intermediate sector (+ 46%) to 

0.044 ± 0.01 m d-1 and the maintenance of high surface velocities in the upper sector of 

0.158 ± 0.022 m d-1. These changes in 2013 account for the better relationship between 

surface velocities and northing in this year (Fig. 41). Throughout the period 2011-

2013, the terminus, intermediate and upper sectors flowed at velocity ranges of 1.7 - 

2.5 cm d-1, 2.9 - 4.4 cm d-1 and 7.7 - 15.8 cm d-1 respectively. 

Table 8. Intra-annual spatial variability in surface velocities: t-test results. 
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Figure 39. Plotting horizontal velocity 
magnitudes against Northing for 
2011 surface features.  

Figure 40. Plotting horizontal velocity 
magnitudes against Northing for 
2012 surface features. 

Figure 41. Plotting horizontal 
velocity magnitudes against 
Northing for 2013 surface 
features. 
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Temporal variability is also evident (Table 9) with a statistically significant increase 

in surface velocities between 2011 and 2013 for the upper sector (p = 0.04). Upper 

sector variation over this timeframe is largely accounted for by a statistically 

significant acceleration (+ 83%) in 2012 (p = 0.09) to an average annual velocity of 

0.141 ± 0.024 m d-1. In contrast, inter-annual variation is not statistically significant for 

both the terminus and intermediate sectors at p = 0.1. Although changes in motion are 

apparent, these are not beyond the error of the technique.  

 

 

At the icefall, surface velocities are stable over the period 2011-2012 (p = 0.61). 

However, a statistically significant acceleration (+ 17%) is evident between 2012 and 

2013 (p = 0.02) as velocities increase from 1.35 ± 0.05 m d-1 to 1.58 ± 0.08 m d-1 (Table 

10). In contrast, rates of surface elevation change are within error for the period 2011-

2013.  

 

 

 

 

 

 

Table 9. Inter-annual temporal variability in surface velocities: t-test results. 

Table 10. Inter-annual temporal variability in icefall surface velocities: t-test results. 
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4.2 - Energy balance modelling  

4.2.1 - Inter-annual variability in surface melt production  

Surface melt data are available for Falljökull from 10/04/2011 - 31/12/2013 (Table 11). 

Although meteorological data were available throughout 2011, glacier surface 

conditions were not known prior to this date. As such, it was not possible to adjust 

albedo and surface roughness parameters accordingly to achieve a best match 

between model inputs and the observed glacier surface. When 2012-2013 data were 

adjusted to cover the same 9 month period to enable comparison between years, 

significant inter-annual variability in surface melt production was evident (Fig. 42). 

In 2011, surface melt production was equivalent to 7952 mm w.e. at the glacier front 

(150 m a.s.l). Total melt exceeded 8700 mm w.e. over the same period in 2012 but was 

limited to just 6974 mm w.e. in 2013.  

 

4.2.2 - The contribution of radiative and turbulent heat fluxes 

Surface melt is dominated by shortwave radiative fluxes, which account for 68.9% of 

total melt in 2011 (Fig. 43), increasing to 82.8% in 2012 (Fig. 44) and 85.5% in 2013 

(Fig. 45), equivalent to an energy flux range of 20.9 - 27.4 mm w.e d-1. The smaller 

contribution of shortwave radiation in 2011 is accounted for by the increased energy 

flux from longwave radiation (1.6 mm w.e. d-1) and both sensible (6.4 mm w.e. d-1) 

and latent heat (1.1 mm w.e. d-1) relative to subsequent years. Energy transfer via 

sensible heat flux contributes 17.6 - 20.9% of total melt over this period 

demonstrating the important contribution of turbulent heat fluxes in maritime 

environments. In contrast, longwave radiation demonstrates a negligible (~ 0.0 mm 

w.e d-1) or even negative contribution (- 0.5 mm w.e d-1) to total melt when the 

Table 11. Energy balance modelling output (2011-2013). 
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entirety of 2012 and 2013 are considered. Latent heat contributes 1.1 mm w.e. d-1 to 

total melt in 2011 but shifts to negative values (- 3.3%) in 2012 (- 1.1 mm w.e. d-1). Its 

contribution to the surface energy budget is negligible in 2013 at just - 0.2 mm w.e. d-

1. Finally, energy inputs from precipitation account for 0.8% - 2.2% of the surface 

energy budget in each year, equivalent to just 342 mm w.e. from April 2011 to 

December 2013.  

However, the relative importance of radiative and turbulent heat fluxes demonstrates 

variability over seasonal timescales. In 2012, inputs from shortwave radiation account 

for > 60% of total melt between February and October. In contrast, the positive energy 

contribution from longwave radiation is generally small during the summer months 

(< 10 % of total melt). However, this flux is of increasing importance in the late melt 

season, accounting for 15% (224 mm w.e.) and 17% (225 mm w.e.) of total melt in July 

and August 2012 respectively. Furthermore, contributions of sensible and latent heat 

and the energy flux from precipitation exceed shortwave radiative inputs during the 

winter. Therefore, although shortwave radiation contributes significantly to total 

melt throughout each year, additional energy fluxes are of increasing importance as 

inputs from shortwave radiation decline. 

 

 

Figure 42. Total melt production and energy totals (mm w.e.) from turbulent and 
radiative heat fluxes (2011-2013). 
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4.2.3 - Intra-annual variability in surface melt production  

Clear seasonal trends in surface melt production are evident in the period 2011-2013. 

However, although monthly melt totals do vary significantly over this period, the 

timing of seasonal shifts are consistent in each year. Inter-annual variation is limited 

with tight coupling for 2011-2012 (R2 = 0.84), 2011-2013 (R2 = 0.91) and 2012-2013 (R2 = 

0.94). These data are statistically significant at p = 0.01. However, there are some 

subtle variations between each year. 

Firstly, the timing of peak monthly surface melt production varies slightly over this 

period. In 2011, peak melt occurs in June but this is modelled in May in both 2012 

and 2013. Additionally, while peak monthly melt totals in 2011 and 2013 are 

relatively similar, at 1778 mm w.e. and 1647 mm w.e. respectively, Falljökull is 

subject to enhanced surface melting in 2012 (2184 mm w.e.). In addition, while melt 

production exceeds 1000 mm w.e. for just 4 months in 2011 and 2013 (May – August), 

melt is sustained above 1000 mm w.e. for an extended 6 month period in 2012 (April - 

September). As such, not only does 2012 exhibit the highest monthly melt total but 

the peak melt season is sustained for the longest period.  In contrast, melt production 

is severely restricted during the winter months and shifts to a negative surface 

energy budget in December of each year.  

Figure 43. The relative contribution of 
energy fluxes to total melt (2011). 

Figure 44. The relative contribution of 
energy fluxes to total melt (2012). 

Figure 45. The relative contribution of 
energy fluxes to total melt (2013). 
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4.3 - Intra-annual variability in thinning and comparison 

with surface melt 

4.3.1 - Glacier terminus 

Rates of surface elevation change exhibit seasonal variability at the glacier terminus 

over the period 2011-2013. These intra-annual variations can be linked to temporal 

variability in surface melt production. Comparison of cumulative thinning and 

surface melt data generated through EBM (Figs. 46 - 48) indicates a clear relationship 

between these variables. Monthly thinning and melt data for the glacier terminus 

(Fig. 49 - 51) are generally well coupled in both 2012 (R2 = 0.64, p = 0.006) and 2013 (R2 

= 0.76, p = 0.001) although these data are poorly correlated in 2011 (R2 = 0.04, p = 0.7). 

This is probably accounted for by the restricted timeframe of the surface feature 

tracking data in 2011 (April - September). This makes comparison of cumulative melt 

and thinning data particularly challenging, as early and late season trends cannot be 

determined. Despite the poor correlation of this dataset, consistent inter-annual 

trends are evident.  

 

 

 

Figure 46. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the glacier 
terminus in 2011. 
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Figure 47. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the glacier 
terminus in 2012. 

Figure 48. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the glacier 
terminus in 2013. 
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Firstly, an early melt season lag is evident between cumulative melt and thinning 

data in both 2012 (Fig. 47, A) and 2013 (Fig. 48, A). In both years, surface melt 

production is severely restricted in the first three months (January - March) with 

cumulative melt production of < 500 mm w.e. Rates of surface elevation change are 

well correlated at this time with cumulative thinning of < 0.5 m. Surface melt 

production is significantly enhanced during April with high values for monthly melt 

modelled through to August in both years. However, there is a clear temporal lag 

between the onset of enhanced melt and the onset of enhanced thinning. As such, 

energy balance modelling overestimates glacier terminus thinning early in the melt 

season.   

Secondly, thinning rates during the peak melt season i.e. May - August (2011 and 

2013) and April - September (2012), must be higher than predicted by energy balance 

modelling. The magnitude of the offset between these variables decreases 

significantly over the peak melt season with convergence of cumulative melt and 

thinning totals (e.g. Fig. 47, B). For example, on 01/05/2012, 0.88 ± 0.29 m of 

cumulative thinning is calculated at the terminus. In contrast, cumulative surface 

melt production is significantly higher and modelled at 1578 mm w.e. However, by 

14/07/2012, melt and thinning are within error, with cumulative thinning of 6.08 ± 

0.33 m and melt production of 6164 mm w.e. In both 2012 and 2013, cumulative melt 

and thinning tracks converge in July.  

Furthermore, enhanced rates of calculated surface thinning relative to modelled 

surface melt production are sustained after July, resulting in a clear offset between 

cumulative melt and thinning which is evident from August in both years (e.g. Fig. 

47, C). While the late season trends are well correlated, with a coeval deceleration in 

melt and thinning from September, energy balance modelling significantly 

underestimates glacier terminus thinning in the late melt season (e.g. Fig. 47, D). 

Cumulative thinning of the terminus in December 2012 (11.4 ± 0.12 m) and November 

2013 (9.4 ± 0.14 m) greatly exceed the values predicted by EBM at 9346 mm w.e. and  

7819 mm w.e. respectively.  

Finally, there is a temporal offset between peak melt and peak thinning in each year 

(e.g. Fig. 51). In 2011, peak monthly thinning of 0.073 ± 0.01 m d-1 occurs in August, 

two months after modelled peak monthly melt in June. Peak monthly thinning in 

2012 (0.074 ± 0.006 m d-1) and 2013 (0.070 ± 0.004 m d-1) also occur after peak melt. 

While the magnitude of this temporal offset varies between years, its consistency 

must be accounted for.  
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Figure 49. Monthly 
melt (EBM) and 
average daily 
thinning (time-
lapse) for the 
glacier terminus in 
2011. 

Figure 50. Monthly 
melt (EBM) and 
average daily 
thinning (time-lapse) 
for the glacier 
terminus in 2012. 

Figure 51. Monthly 
melt (EBM) and 
average daily 
thinning (time-
lapse) for the 
glacier terminus in 
2013. 
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4.3.2 - Intermediate sector 

The intermediate sector exhibits greater inter-annual variability. Monthly melt and 

thinning data demonstrate remarkably tight coupling in 2011 (R2 = 0.83, p = 0.002) and 

close coupling in 2012 (R2 = 0.73, p = 0.002). However, the relationship between 

modelled melt and calculated thinning is more uncertain in 2013 (R2 = 0.62, p = 0.007). 

In 2011, peak monthly melt (1778 mm w.e.) and thinning (0.066 ± 0.006 m d-1) are 

coeval in June (Fig. 52). Close coupling of these variables is evident from April to 

October while a marginal increase in thinning rate in November (+ 0.014 m d-1) is the 

only irregularity. In contrast, a two month offset between peak monthly melt and 

thinning is evident in 2012 and 2013 (Fig. 53 - 54).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Monthly melt (EBM) and average daily thinning (time-lapse) for the 
intermediate sector in 2011. 

Figure 53. Monthly melt (EBM) and average daily thinning (time-lapse) for the 
intermediate sector in 2012. 
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Comparison of cumulative thinning and melt trends reveals further inter-annual 

variation. Data for 2011 and 2012 are generally well correlated with the trends 

established at the glacier terminus with an early season lag in 2012 (Fig. 56, A) and a 

late season offset in both years with thinning underestimated by the EBM after July 

and August respectively (Fig. 55, B and Fig. 56, D). However, these trends are not 

Figure 54. Monthly melt (EBM) and average daily thinning (time-lapse) for the 
intermediate sector in 2013. 

Figure 55. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the 
intermediate sector in 2011. 
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evident in 2013. Although cumulative melt and thinning are well correlated in 

January and February, there is clear separation of these variables in mid-March (Fig. 

57, B). The intermediate sector demonstrates a shift from a cumulative surface 

elevation reduction of - 0.64 ± 0.13 m on 17/03/2013 to marginal uplift of + 0.21 ± 0.13 

m by 21/03/2013. This is sustained throughout April, despite a significant increase in 

modelled cumulative melt. By the start of May, thinning of the intermediate sector is 

significantly overestimated by the energy balance model, equivalent to + 1.25 m. 

After this date, there is clear shift to above average thinning (Section 4.4.2, Fig. 66, B), 

leading to the convergence of cumulative thinning and melt in early September. A 

marginal late season offset is shown, with cumulative thinning of 8.38 ± 0.35 m and 

cumulative melt of 7819 mm w.e on 04/11/2013. This reduction in the late season 

offset relative to previous years is accounted for by the suppression of surface 

lowering in the early melt season.  

 

Figure 56. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the 
intermediate sector in 2012. 



74 
 

 

 

4.3.3 - Upper sector 

The upper sector also demonstrates reasonable coupling between monthly melt and 

thinning in 2011 (R2 = 0.70, p = 0.009), 2012 (R2 = 0.67, p = 0.004) and 2013 (R2 = 0.65, p = 

0.005). Peak monthly thinning occurs after peak monthly melt throughout this period 

in agreement with the terminus and intermediate sectors.  

However, considerable inter-annual variability is evident at this temporal scale. In 

2011, thinning rate variation is marginal between April and September although 

there is a marked reduction in thinning rate into October (- 0.022 m d-1) which is 

coeval with a fall in melt of 462 mm w.e. (Fig. 58). Despite this coeval melt-thinning 

reduction, thinning rates in the upper sector in 2011 appear significantly less 

sensitive to temporal variability in surface melt production. This year exhibits a 

limited thinning rate range of just 0.027 m d-1. Over the period April - September, this 

is reduced to just 0.01 m d-1. In contrast, both the terminus and intermediate sectors 

demonstrate significant variability in 2011. Additionally, enhanced intra-annual 

variability is evident in the upper sector in both 2012 and 2013 (Fig. 59 - 60) which 

exhibit thinning rate ranges of 0.07 m d-1 and 0.08 m d-1 respectively. Clearly, limited 

intra-annual variability of the 2011 upper dataset must be accounted for.   

 

Figure 57. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the 
intermediate sector in 2013. 
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Figure 58. Monthly 
melt (EBM) and 
average daily thinning 
(time-lapse) for the 
upper sector in 2011. 

Figure 59. Monthly 
melt (EBM) and 
average daily thinning 
(time-lapse) for the 
upper sector in 2012. 

Figure 60. Monthly 
melt (EBM) and 
average daily thinning 
(time-lapse) for the 
upper sector in 2013. 
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Furthermore, there is a consistent late season offset between melt and thinning in the 

upper sector throughout the period 2011-2013 which corroborates with the trends 

observed at the glacier terminus and intermediate sectors. Thinning underestimation 

by the EBM is equivalent to - 2.33 m in 2011, - 3.37 m in 2012 and - 1.84 m in 2013 (Fig. 

61 - 63). Additionally, an early melt season lag between the onset of enhanced melt 

and enhanced thinning is evident in 2013. However, this is curiously absent in 2012 

with cumulative melt and thinning reasonably well coupled until July. Furthermore, 

cumulative thinning actually exceeds modelled cumulative melt in early April (Fig. 

62, A), as the surface elevation reduction of 1.27 ± 0.22 m by 01/04/2012 greatly 

exceeds the value predicted by EBM (417 mm w.e.). This period of enhanced thinning 

is not apparent at the terminus or intermediate sectors in 2012. 

 
Figure 61. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the upper 
sector in 2011. 
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Figure 62. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the upper 
sector in 2012. 

Figure 63. Cumulative melt (EBM) and cumulative thinning (time-lapse) at the upper 
sector in 2013. 
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4.4 - Intra-annual variability in surface velocities and 

comparison with thinning 

4.4.1 - Glacier terminus 

Intra-annual variability in glacier surface velocities are described based on 

cumulative displacement graphs (Figs. 64-67) and compared to thinning rate 

variability to determine periods of hydrodynamic coupling i.e. when periods of 

fast/slow glacier flow are correlated with periods of high/low rates of surface 

elevation change. These data exhibit no consistent seasonal trend over the period 

2011-2013 although significant inter-annual variability is evident. Hydrodynamic 

coupling is evident at the glacier terminus in both 2011 and 2012 although the direct 

relationship between thinning rates and surface velocities is not maintained 

throughout the entirety of these years. In 2013, these variables are predominantly 

asynchronous.   

In 2011, the glacier terminus exhibits relatively stable flow over the period April to 

early-June with some minor fluctuations of ± 0.2 m relative to the constant velocity 

position. However, hydrodynamic de-coupling is evident from early May as thinning 

rates shift to below average while average surface velocities are maintained. From 

early June, hydrodynamic coupling is restored as surface velocities and thinning 

rates shift to above average and remain so until early August. Limited data 

availability after this date prevents any robust description or interpretation of these 

data. In 2012, clear periods of fast glacier flow are evident in April and throughout 

May. Surface velocities are relatively stable after July, within ± 0.5 m of the constant 

velocity position although an extended period of below average surface velocities is 

evident from early September. Thinning rates and surface velocities appear well 

correlated for much of 2012 with coeval peaks and troughs in March and April and 

after June. However, two clear periods of hydrodynamic de-coupling are identified 

(Fig. 65, A). A short period of de-coupling is evident in early May as surface 

velocities shift to above average while thinning is maintained at a below average rate. 

A much longer period of de-coupling is sustained throughout June as surface 

velocities decisively shift to below average while thinning is maintained at an above 

average rate. However, with the exception of these periods, thinning rates and 

surface velocities are well correlated at the glacier terminus in 2011 and 2012. 

In contrast, the glacier terminus exhibits clear hydrodynamic de-coupling in 2013 

with asynchroneity between thinning rates and surface velocities from mid-March 

(Fig. 66, A). A reduction in thinning rate at this time is not reflected in any change in 

surface velocities which are maintained at an average rate (0.017 m d-1) until mid-

May. Furthermore, an increase in thinning rate from mid-April through to September 

is asynchronous with glacier velocities. However, a short period of fast glacier flow is 
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event in August and is associated with enhanced thinning. This speed up is quickly 

curtailed with a return to below above velocities in September. As such, clear inter-

annual variability is evident at the glacier terminus. Although periods of 

hydrodynamic coupling are evident in each year, short intervals of de-coupling in 

2011 and 2012 and the extended de-coupling in 2013 must be accounted for.  

Figure 64. 
Cumulative 
displacement 
graphs for the 
glacier terminus 
(A), 
intermediate (B) 
and upper 
sector (C) in 
2011.  
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4.4.2 - Intermediate sector 

Hydrodynamic coupling is also evident in the intermediate sector over the period 

2011-2013. However, comparison with the glacier terminus reveals spatial variability 

in the occurrence and duration of periods of hydrodynamic de-coupling. In 2011, the 

intermediate sector broadly corroborates with the trends identified at the glacier 

terminus, with average surface velocities through to early-June followed by fast 

glacier flow through to July (Fig. 64, B). Surface velocities are stable until early 

September although some relatively high magnitude fluctuations are evident. 

Furthermore, thinning rates are above average from late-May through to August, 

reflecting the seasonal increase in surface melt production. A short period of de-

coupling is evident in October as thinning rates fall below average, although this has 

no appreciable impact on ice movement which is maintained at an average rate. 

Two periods of hydrodynamic de-coupling are identified in April and June 2012 (Fig. 

65, B). In April, surface velocities shift to above average despite a sustained below 

average thinning rate from early March. In June, this trend is reversed as surface 

velocities fall while the thinning rate is above average. However, spatio-temporal 

variability is evident as the timing of the shift from below to above average surface 

velocities varies between the terminus and intermediate sectors, occurring in late and 

early-April respectively. In contrast, both sectors demonstrate a synchronous shift to 

below average surface velocities in early June, with coeval trends in surface velocities 

and thinning rates after this date.   

In 2013, the glacier terminus and intermediate sector demonstrate significant spatial 

variability (Fig. 66, B). While the terminus is characterised by clear asynchroneity 

between thinning rates and surface velocities from mid-March, these variables are 

reasonably correlated until mid-June in the intermediate sector. Hydrodynamic de-

coupling is evident from this date as surface velocities fall below average while 

thinning rates remain high through to late September.  

 

4.4.3 - Upper sector 

Determining intra-annual variation in surface velocities in the upper sector is 

challenging due to a limited number of tracked surface features. This is most 

apparent in 2011 as tracks are extremely “noisy” and it is difficult to infer anything 

meaningful from these data (Fig. 64, C). Data from 2012 are more useful as 

hydrodynamic coupling is evident from March through to June with coeval peaks 

and troughs in thinning rates and surface velocities. While these variables appear 

asynchronous after June, surface velocity data are associated with significant errors 

which make interpretation challenging (Fig. 65, C). This is accounted for by a low 
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number of feature tracks from June onwards (n = 2). Given the oblique view of this 

sector, tracking additional surface features was not possible. However, thinning rates 

are associated with significantly reduced error estimates and corroborate with 

seasonal trends observed at the terminus and intermediate sectors. As such, it is 

interpreted that thinning of the upper sector must be spatially consistent to account 

Figure 65. 
Cumulative 
displacement 
graphs for the 
glacier 
terminus (A), 
intermediate 
(B) and upper 
sector (C) in 
2012. 
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for the more robust data. In contrast, surface velocity variability between the two 

tracked points must be significant to account for greater error values.  

In 2013, the upper sector demonstrates an intimate coupling between thinning and 

surface velocities throughout the year. However, a short period of hydrodynamic de-

coupling is evident from late-July through to early August as surface velocities fall 

below average while thinning is maintained at an above average rate (Fig. 66, C).  

Figure 66. 
Cumulative 
displacement 
graphs for 
the glacier 
terminus (A), 
intermediate 
(B) and 
upper sector 
(C) in 2013. 
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4.4.4 - Icefall  

The icefall dataset is characterised by significantly reduced error values at the 

monthly scale (Fig. 67-69). In 2011, the icefall exhibits relatively stable flow 

throughout the tracked period, with a velocity range of just 0.4 m d-1 (Fig. 67). 

However, these data are reasonably correlated with meteorological data as an 

increase in surface velocity from April to June is coeval with a seasonal increase in 

surface melt production. Similarly, the steady decrease in surface velocities through 

to October is in agreement with a reduction in surface melt at this time.     

In contrast, both 2012 and 2013 exhibit greater intra-annual surface velocity 

variability. In 2012, a clear speed up is evident from January through to April before 

a sustained slowdown into October (Fig. 68). Coupling with melt is reasonable in 

2012 although peak velocities occur before peak monthly melt. 2013 exhibits the 

greatest intra-annual variability with glacier flow of just 0.55 ± 0.02 m d-1 in January, 

increasing to 2.11 ± 0.06 m d-1 in June (Fig. 69). Surface velocities exceed 1.96 m d-1 

between May and July in line with peak melt. However, while surface velocities 

decrease through to September (1.57 ± 0.09 m d-1), a clear late season speed up 

appears at odds with deceasing surface melt production at this time. Surface 

velocities of 1.96 ± 0.08 m d-1 and 1.88 ± 0.05 m d-1 are recorded in November and 

December respectively despite a negative surface energy balance in these months. 

Clearly, surface melt production is not the only factor which determines icefall 

movement. 

 Figure 67. Monthly icefall dynamics (2011) 
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Figure 68. Monthly icefall dynamics (2012) 

Figure 69. Monthly icefall dynamics (2013) 
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Chapter 5 - Discussion 

5.1 - Do the results from time-lapse data accurately reflect 

surface dynamics? 

5.1.1 - Validating time lapse data using GNSS data output 

At Falljökull, GNSS measurements from Phillips et al., (2014) provide a useful 

comparison for velocities generated using time-lapse photography (Fig. 70). 

Unfortunately, direct data comparison is challenging as these data cover different 

time periods. While this project has focused on intra-annual velocity variation, 

Phillips et al., (2014) report surface velocities from April 2012 to April 2013. This 

reflects annual movement between the start dates of concurrent melt seasons and is 

therefore not directly comparable with intra-annual movement i.e. January to 

December. This is complicated by the limited timespan of glacial feature tracks. The 

presence of the winter snowpack prevents intensive feature tracking during this 

period with only a limited number of visible surface features during late-2012 and 

early-2013. Extrapolating surface velocities derived from the spring-autumn interval 

is unlikely to generate reliable results given the observed winter slowdown at 

Falljökull (Phillips et al., 2014). However, the magnitude of this seasonal slowdown 

decreases towards the glacier front (Fig. 70), with only marginal decrease in surface 

velocities at the lowest two GNSS stations. Therefore, velocities were calculated over 

the same 12 month period to enable comparison with GNSS data.  

 

 

 

Figure 70. GNSS locations (a) and ice surface velocities between April 2012 and April 
2013 (b). Insets show the ice movement vector at each of the four GNSS stations 
located along the axis of Falljökull with the length of the arrow reflecting ice surface 
velocity. From Phillips et al., (2014). 
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Unfortunately, the first 6 months of GNSS data are “noisy” due to the malfunction of 

the base station (after 28 days). While this was corrected in August 2012, with 

positional accuracy improved for the remainder of the study period (Phillips et al., 

2014), this introduces additional uncertainty to these data. The impact of GNSS 

malfunction is most pronounced at VIRK4 as surface velocity data from this 

installation are only available up to September 2012 when it was removed following 

collapse of the margin. Given that this encompasses the period when base station 

malfunction had not been corrected, data from VIRK4 should be treated with caution. 

Data from the remaining GNSS stations (VIRK 1-3) are available through to April 

2013 with “noise” significantly reduced for the remaining 6 months of data 

acquisition. However, these stations are located up/downstream of the glacier 

front/icefall cameras respectively, further complicating the validation of time-lapse 

derived velocities with GNSS data. 

Between April and September 2012, a surface displacement of 3 m was recorded at 

VIRK4, equivalent to just 0.008 m d-1. This displacement is solely attributed to 

displacement on the major normal faults during collapse of the ice front (Phillips et 

al., 2014) with negligible movement due to ice deformation or sliding at the bed. The 

lower reaches of Falljökull below VIRK3 are interpreted to be “stagnant”, 

characterised by limited forward movement and passive downwastage i.e. decay in-

situ (Phillips et al., 2014). In contrast, surface velocities from time-lapse imagery 

indicate displacement of 9.2 m yr-1 in the glacier terminus dataset over the same 

period. However, as this dataset incorporates surface features up to ~ 200 m from the 

glacier front, it is unsurprising that calculated velocities are higher than those 

generated through GNSS. As intra-group variability over small spatial scales is 

evident (Fig. 39-41), comparison with the closest tracked surface features to the 

glacier terminus is more appropriate. In 2012 and 2013, the mean velocity of these 

closest terminus features is 0.01 - 0.015 m d-1, equivalent to a velocity range of 3.8 - 5.4 

m yr-1. This is in better agreement with data from Phillips et al., (2014). However, 

while this previous study inferred restricted surface velocities for the entire glacier 

front based on VIRK4 i.e. stagnant ice below GNSS station VIRK3, time-lapse derived 

surface velocities indicate a progressive increase in surface velocities with altitude in 

2012 (R2 = 0.51) and 2013 (R2 = 0.77). In 2011, the mean velocity of the four closest 

surface features to the terminus was just 0.008 ± 0.002 m d-1, equivalent to an annual 

displacement of 2.82 ± 0.65 m. Both GNSS and time-lapse data confirm extremely 

restricted surface velocities within ~ 50 m of the glacier terminus throughout the 

period 2011-2013.  

However, time-lapse data appears poorly correlated with VIRK3. This GNSS station 

is ~600 m from the glacier terminus and recorded a surface displacement of 17 m yr-1, 

equivalent to 0.047 m d-1. While this is in reasonable agreement with the intermediate 



87 
 

sector, which exhibits a surface velocity of 13.5 m yr-1 over the same period, VIRK3 is 

up glacier of the highest tracked surface features from AWS1. As such, comparison 

with the upper sector is more appropriate. However, the mean surface velocity of this 

sector was equivalent to 50.1 m yr-1, nearly three times faster than GNSS derived 

velocities.  While VIRK3 is ~100 m from the upper sector, it seems unlikely that such a 

significant flow deceleration would occur within this distance.   

High surface velocities generated from time-lapse data at the glacier front appear to 

contradict the hypothesis of Phillips et al., (2014) as ice is flowing substantially faster 

than can be accommodated solely by displacement along normal faults. These data 

indicate that the ice front at Falljökull is still ‘active’, although forward motion 

through ice deformation is insufficient to offset retreat. The Falljökull terminus 

retreated at a rate of 0.193 m d-1, 0.159 m d-1 and 0.126 m d-1 in 2011, 2012 and 2013 

respectively, equivalent to a total retreat of ~155 m between April 2011 and December 

2013. Furthermore, significant intra-annual variability in surface velocities have been 

demonstrated at Falljökull, variability that is unlikely to be observed in stagnant ice 

that is wasting away in-situ. Instead, this is perhaps accounted for by basal sliding 

(Section 2.1.2) or subglacial deformation (Section 2.1.3) as a function of meltwater 

input.  While stagnant ice would exhibit intra-annual variability in thinning rates due 

to seasonal changes in surface energy balance, surface velocities should be stable as 

movement would be unaffected by sliding at the bed. Given that periods of 

hydrodynamic coupling are evident throughout the period 2011-2013, it seems 

unlikely that the lower reaches of Falljökull are stagnant and “glaciotectonically 

detached” from the active ice above (Phillips et al., 2014).  

Finally, time-lapse data from the icefall confirms that the upper reaches of Falljökull 

are active with ice transfer from the summit area of Öræfajökull down the mountain 

flank (Phillips et al., 2014). Unfortunately, due to the relatively slow surface velocities 

down glacier, it was not possible to study the effect of longitudinal coupling. Fast 

surface velocities and consistent icefall hypsometry i.e. based on the limited inter-

annual variability of surface lowering rates, indicates a close connection between 

Falljökull and its accumulation area. Additionally, given the acceleration of the icefall 

in 2013 (1.58 ± 0.08 m d-1), a slowdown in the rate of glacier retreat may be observed 

in subsequent seasons if fast icefall velocities are maintained.  

 

5.1.2 - How does Falljökull compare to similar glaciers?  

5.1.2.1 - Surface velocities 

Given the conflict between GNSS and time-lapse datasets, it is necessary to compare 

these data with similar glaciers. Firstly, it is evident that time-lapse derived surface 
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velocities are reasonable as they are within the range of velocities observed at similar 

small alpine and polythermal glaciers (Table 12) and are distinct from fast velocities 

observed at maritime terminating glaciers (Fig. 71). Importantly, while upper sector 

velocities (0.077 - 0.158 m d-1) appear significantly faster than expected i.e. relative to 

GNSS data, these also corroborate with data from similar maritime glaciers. Surface 

velocities of 0.17 m d-1 and 0.20 m d-1 have been recorded at distances of < 1 km from 

the terminus of Sólheimajökull, SE Iceland (James et al., 2016) and Variegated Glacier, 

Table 12. Glacier surface velocities recorded at alpine, polythermal, surge-type, arctic 
and marine-terminating glaciers using time-lapse, GNSS and remote sensing. 
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Alaska (Harrison et al., 1996) respectively. Fast glacier flow in the upper sector, at a 

distance of ~500 - 800 m from the Falljökull terminus, is not unprecedented.  

 

 

However, significantly slower surface velocities have been measured for glacier 

termini. At Bench glacier, Alaska, GNSS data demonstrated surface velocities of just 

0.025 - 0.038 m d-1 (Anderson et al., 2004). At the small, polythermal Fountain Glacier 

in the Canadian Arctic, restricted terminus velocities have been demonstrated using 

GNSS (0.007 - 0.015 m d-1), photogrammetry (0.004 - 0.017 m d-1) and inSAR (0.008 - 

0.015 m d-1) by Whitehead et al., (2010). Further studies at this glacier have confirmed 

limited surface movement at the terminus of < 0.005 m d-1 (Whitehead et al., 2013) and 

0.006 - 0.012 m d-1 (Whitehead et al., 2014). These data provide a range of velocities 

which appear well correlated with GNSS data from VIRK4 (0.008 m d-1) and feature 

Figure 71. Flow variability between alpine and marine-terminating glaciers (data from 
Table 12). 
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tracking of the closest glacier surface features to the terminus (0.008 - 0.015 m d-1). 

While terminus sector surface velocities (< 200 m from the glacier front) are slightly 

faster (0.017 - 0.025 m d-1), they are not unexpected given the temperate thermal 

regime of Falljökull. As ice is above the pressure melting point throughout, englacial 

hydrology would be well developed relative to cold-based and polythermal glaciers, 

leading to enhanced basal sliding as a result of more efficient meltwater input to the 

subglacial system. Importantly, the studies at Bench Glacier and Fountain Glacier 

demonstrate that slow surface velocities, often less than 0.01 m d-1, are not necessarily 

an indication of stagnant ice. Both glaciers are still active with movement at the 

terminus through ice deformation.  

 

5.1.2.2 - Thinning rates 

It is clear that Falljökull is not in equilibrium with climate. The lower reaches of the 

glacier are thinning substantially with a mean surface lowering of 17 m in 2011 and 

further thinning of 13.2 m in 2012 and 10.6 m in 2013. However, surface lowering in 

the terminal zone at Falljökull is estimated at just 2 - 6 m yr-1 (Bradwell et al., 2013) 

with only ~ 50 m of vertical thinning over the last 15 years (BGS, 2010). As such, the 

~40.8 m of surface lowering derived from time-lapse data indicates that either (1) 

surface lowering was significantly enhanced over the period 2011-2013 or (2) time-

lapse data are not representative of glacier front thinning. Unfortunately, comparison 

with similar glaciers is challenging due to the limited availability of thinning rate 

data. However, at Sólheimajökull, SE Iceland, a reasonably consistent 3 m vertical 

change is observed over a 73 day period, equivalent to a mean surface lowering of 

0.041 m d-1, although some tracked surface features demonstrate lowering at rates of 

up to 0.068 m d-1 (James et al., 2016). These data are in agreement with data from 

Falljökull with mean surface lowering of 0.052 m d-1, 0.039 m d-1 and 0.032 m d-1 in 

2011, 2012 and 2013 respectively. Sólheimajökull has experienced thinning of 120 - 

150 m (0.023 - 0.029 m d-1) between 1996 and 2010 (Schomacker et al., 2012).  

Rapid rates of thinning are also evident at many alpine glaciers. Between 1985 and 

1999, extreme thickness losses of up to ~ 80 m were evident for glaciers in the Swiss 

Alps (Paul and Haeberli, 2008), equivalent to 0.016 m d-1. At Mer de Glace, France, 

thinning of 4.1 ± 1.7 m yr-1 (0.011 ± 0.005 m d-1) was recorded between 2000 and 2003 

(Berthier et al., 2004). Thinning rates in excess of 4 m yr-1 were maintained through to 

2008 at this glacier (Berthier and Vincent, 2012). Surface lowering of ~ 4.5 m yr-1 

between 1986-1990 (Nuth and Kääb, 2011) and 4.2 ± 1.4 m yr-1 between 1990-2007 

(Quincey and Glasser, 2009) have been demonstrated at the Tasman and Murchison 

glaciers in New Zealand. However, while all these glaciers are experiencing 

significant surface lowering, thinning rates are markedly lower than at 

Sólheimajökull and Falljökull. High rates of thinning in these maritime glaciers 
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perhaps reflects their sensitivity to climate (Sigurðsson et al., 2007; Gudmundsson et 

al., 2011) and high mass turnover (Aðalgeirsdóttir et al., 2011).  

 

5.2 - Surface melt and thinning rates 

5.2.1 - Inter-annual variability 

Surface melt production is a function of energy balance and the spatio-temporal 

variability in inputs to and outputs from the glacier surface. As such, periods of 

significant surface melt production should be intimately coupled with periods of 

glacier surface lowering. However, this is not evident at Falljökull at the inter-annual 

scale as peak annual melt in 2012 (8714 mm w.e.) is not correlated with peak annual 

thinning which occurs in 2011 (10,065 mm yr-1). Surface melt production increased by 

8.7% from 2011 to 2012 but this was coeval with a significant reduction in mean 

thinning rate (9,204 mm yr-1, April - December). By 2013, both surface melt and 

thinning rates were suppressed relative to 2012 values, decreasing to 6974 mm w.e. 

and 7,552 mm yr-1 respectively (April - December). To account for asynchroneity 

between melt and thinning in 2011-2012, it is necessary to use time-lapse imagery to 

determine any change in glacier surface conditions.  

Surface melt production is strongly modulated by spatio-temporal variability in 

albedo and surface roughness parameters (Klok and Oerlemans, 2004) due to the 

presence of debris, snow cover, dust and liquid water (Munro, 1991) which can 

suppress or enhance melt production relative to modelled values. To represent the 

predominantly snow free, debris covered environment at Falljökull, energy balance 

model parameters were chosen to maximise melt production (albedo = 0.1, roughness 

= 0.03). However, even with these parameters, modelled melt still does not equal 

thinning rates as determined through time-lapse imagery. It is clear that the EBM 

(Brock and Arnold, 2000) does not adequately account for all energy fluxes at the 

glacier surface.  

As a result, asynchroneity in 2011-2012 is best explained by the eruption of 

Grímsvötn in late May 2011 (Petersen et al., 2012) and the deposition of a thin layer of 

tephra on the glacier surface (Fig. 72). While the energy balance model can account 

for this through albedo modification, it does not incorporate the spatial distribution 

or thickness of debris. Several studies have demonstrated the importance of debris 

thickness in determining melt rates (e.g. Mattson et al., 1993; Kayastha et al., 2000) 

with a non-linear relationship between these variables as per the Østrem (1959) 

curve. Thin debris cover acts as a source of retained heat and enhances melt (Carenzo 

et al., 2016). When debris cover exceeds a critical threshold of 20 - 30 mm (Warren, 

1984), melt is supressed (Brock et al., 2010). This debris was ubiquitous at Falljökull in 
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2011 although was less extensive towards the end of the melt season, most likely due 

to supraglacial runoff and aeolian removal of sediment. Despite this, debris cover 

was still markedly more extensive than in subsequent years and probably accounts 

for enhanced rates of thinning in 2011. Unfortunately, without information regarding 

debris thickness or thermal properties (Reid and Brock, 2010), it is difficult to 

establish this beyond doubt.  

 

 

Figure 72. Tephra deposition at Falljökull on 23/05/2011 from the Grímsvötn 
eruption. Tephra was present on the glacier surface throughout 2011. 
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However, field experiments at Svínafelsjökull, Iceland (Möller et al., 2016), a glacier 

only ~3 km from Falljökull, demonstrated the impact of supraglacial tephra 

deposition from the Grímsvötn eruption on ablation rates. Ablation was maximised 

under tephra layers of 1-2 mm thick, increasing by almost 25% relative to bare ice 

conditions (Möller et al., 2016) while layers in excess of 100 mm were shown to 

decrease ablation by ~ 80%. While an albedo reduction was key to increased ablation 

rates (Warrant and Wiscombe, 1980), the thermal resistance of the particle layer was 

also important in controlling the heat conduction towards the glacier surface 

(Nicholson and Benn, 2006; Möller et al., 2016). However, the spatial distribution of 

volcanic tephra is highly variable (Brown et al., 2012), resulting in high spatio-

temporal variability in albedo (Möller et al., 2014). Additionally, while tephra layers 

are thickest close to the eruption site, distal sites are covered by millimetre to sub-

millimetre scale layers (Möller et al., 2016). At a distance of ~58 km from Grímsvötn, it 

is probable that the tephra layer deposited at Falljökull would be significantly less 

than 100 mm and is likely to be closer to the optimal 1-2 mm thickness for melt 

enhancement, although tephra dispersal would be strongly controlled by wind speed 

and direction (Gudmundsson et al., 2012). Given the spatial ubiquity of this debris 

layer, all sectors would be expected to exhibit peak thinning in 2011. This is evident 

at Falljökull with calculated thinning of 0.060 ± 0.003 m d-1, 0.052 ± 0.003 m d-1 and 

0.044 ± 0.004 m d-1 for the terminus, intermediate and upper sectors respectively. 

Higher than expected rates of thinning i.e. relative to modelled surface melt 

production, are accounted for tephra deposition from Grímsvötn. This demonstrates 

the importance of glacier surface characteristics in controlling melt and thinning rates 

but also the value of time-lapse imagery in determining variability in glacier surface 

conditions at a high temporal resolution.  

 

5.2.2 - Glacier terminus 2011-2013 

Over seasonal timescales, surface melt and thinning rates are reasonably well 

coupled at the glacier terminus. Despite this, a number of consistent inter-annual 

trends are evident, as discussed in Section 4.3.1. 

Firstly, an early melt season lag between modelled melt and calculated thinning is 

evident in 2012 and 2013. This may be a function of the heat from conduction 𝑄𝑔 i.e. 

the energy required to raise the ice surface layer to 0°C, which delays the onset and 

reduces the total amount of supraglacial melt (Greuell and Oerlemans, 1986; 

Oerlemans and Klok, 2002). This energy flux was not incorporated by Brock and 

Arnold (2000) but should be added to model calculations for high alpine or polar 

glaciers (Price, 1986: Braithwaite, 1995) or glaciers characterised by a deep snowpack 

or firn layer (e.g. Hofsjökull, Iceland, de Woul et al., 2006). However, the consistent 
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early melt season lag at Falljökull indicates that conduction may also be an important 

process for glaciers with restricted seasonal snow cover. Temperature profiles at 

cold-based glaciers (Fig. 73) demonstrate the variation of temperature with depth, 

with low temperatures (< -6°C) present at the glacier surface throughout the year. Ice 

temperatures at temperate glaciers are significantly higher (Harrison, 1972), although 

a sub-freezing near-surface layer can occur in the ablation area (Maohuan, 1990). 

While ice is above the pressure melting point throughout at Falljökull, seasonal 

freezing of the surface layer may occur and delay the shift to an isothermal ice 

surface (≥ 0°C).  

 

 

However, the longevity of the early melt season lag is strongly modulated by glacier 

surface conditions, as thick snow and debris cover can decrease the conduction of 

heat within the ice (Nicholson and Benn, 2006) and delay the onset of enhanced melt. 

As such, the magnitude of this temporal offset varies between years with an extended 

offset in 2013 (Fig. 51) but a much shorter lag in 2012 (Fig. 50). A longer delay 

between increasing energy inputs to the glacier surface and the onset of enhanced 

melt in 2013 is accounted for by a fall in surface melt production in 2013 (6974 mm 

w.e.) which is exacerbated by the perseveration of the winter snowpack and the 

presence of thick debris cover at the terminus.  

Figure 73. Variation of temperature with depth for the conditions at Colle Gnifetti. 
Numbers next to curves indicate months (1: Jan, 2: Feb). From Lüthi et al., (2001). 
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In 2013, the winter snowpack was significantly more extensive than in previous years 

but was also present on the glacier surface until mid-April with numerous snow 

events observed in May. The extended preservation of the snowpack would supress 

total melt, as radiative fluxes would be reduced due to albedo, but also delay the 

onset of peak thinning as greater surface energy inputs would be required to raise the 

snowpack to 0°C and initiate melting. However, this is further complicated by the 

extension of a thick debris band across the glacier terminus in 2013, sourced from the 

medial moraines between Virkisjökull and Falljökull. Without any supplementary 

data, it is difficult to estimate the thickness or thermal properties of this debris. 

However, based on time-lapse imagery, it appears that debris cover is substantially 

thicker and more extensive than in previous years (Fig. 74). Furthermore, debris is 

markedly less extensive in the intermediate and upper sectors. If it is assumed that 

this debris layer is > 20 - 30 mm thick (Warren, 1984), it would insulate the ice and 

suppress melt (Østrem, 1959). As such, the extended preservation of the seasonal 

Figure 74. Extension of the debris band across the Falljökull terminus. The terminus 
is free of thick debris cover in 2012 (A). Debris is present in 2013, with thickness 
varying with altitude (B).  
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snowpack and the presence of thicker debris cover at the glacier terminus, in 

combination with restricted surface melt production in 2013, account for melt 

suppression and an increased offset between peak modelled melt and calculated 

thinning. These factors lead to a reduction in energy inputs to the glacier surface, due 

to the higher albedo of snow and the insulating properties of thick debris cover, and 

thus delay the shift to an isothermal snowpack (Oerlemans and Klok, 2002).  

The glacier terminus also experiences elevated thinning rates during the melt season 

relative to the values generated via EBM. This leads to a late season offset between 

modelled melt and calculated thinning which is consistent throughout the period 

2012-2013. Modelled melt is significantly underestimated by the EBM, despite the use 

of maxima/minima albedo and surface roughness parameters to account for surface 

debris cover. This underestimation is equivalent to ~2.1 m in 2012 and ~1.6 m in 2013 

and corroborates with data from Virkisjökull (Thompson, 2016). Poor model 

optimisation of thin debris cover may explain the consistent thinning 

underestimation at low elevations and could also be linked to the temporal offset 

between peak melt and peak thinning throughout the period 2011-2013. Thin debris 

cover has been shown to act as a source of retained heat (Carenzo et al., 2016) and 

may lead to melt enhancement even when surface energy inputs decline. For energy 

balance modelling of glaciers characterised by thin surface debris, the new model by 

Reid and Brock (2010) may be able to reproduce observed changes in melt rates 

below debris layers of variable thickness.   

 

5.2.3 - Intermediate sector 2011-2013 

The intermediate sector exhibits reasonable coupling between surface melt 

production and thinning rates throughout the period 2011-2013. However, although 

many of the trends observed at the glacier terminus are also evident at this higher 

elevation, asynchronous behaviour is evident with clear spatial variability in 

calculated thinning rates.  

In 2011, the intermediate sector demonstrates intimate coupling between melt and 

thinning (R2 = 0.83, p = 0.002). In contrast, there is a two month offset between peak 

melt and peak thinning at the glacier terminus. However, variability in surface 

conditions between these sectors is negligible, with extensive coverage of volcanic 

tephra from Grímsvötn. Tephra deposits may account for the tight coupling between 

modelled melt and calculated thinning at the intermediate sector in 2011 as this 

debris would condition the glacier to respond more rapidly to surface energy inputs. 

By acting as a source of retained heat, tephra may accelerate the shift to an isothermal 

snowpack and result in the earlier onset of melt.  
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However, tephra coverage is also extensive at the glacier terminus and is unlikely to 

vary in thickness over such small spatial scales. As such, surface energy balance 

variability cannot fully explain the asynchroneity between these sectors. Instead, the 

offset between melt and thinning at the terminus may be accounted for by the 

expansion of the proglacial-lake at Falljökull and increased contact with the glacier 

snout from late-May 2011. Based on time-lapse imagery, there is limited contact 

between the glacier snout and the pro-glacial lake prior to this date as the snout is 

buttressed by a thick layer of debris (Fig. 75). During this time, retreat of the glacier 

front is marginal. However, from June onwards, this debris layer is not observed and 

there is direct contact between the snout and the pro-glacial lake. Retreat of the 

glacier front and rates of thinning are enhanced from June onwards. 

It is suggested that higher rates of thinning at the glacier terminus after June, briefly 

exceeding 0.07 m d-1 in August, are accounted for by increased basal heating. This 

energy flux is unlikely to be important at higher elevations as water-ice contact is 

limited to the terminus. This spatial variability is not captured by the EBM. Pro-

glacial lakes have been shown to accelerate terminus retreat (Funk and Röthlisberger, 

1989; Warren and Aniya, 1999) and increase thinning rates (Naruse and Skvarca, 

2000; Tsutaki et al., 2011; 2013). The absence or presence of pro-glacial lakes can 

account for within-mountain range variability in glacier-climate response (Salinger et 

Figure 75. Development of and increased contact with the pro-glacial lake by 
26/06/2011. 
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al., 2008) with their importance demonstrated for alpine glaciers in New Zealand (e.g. 

Quincey and Glasser, 2009; Robertson et al., 2013), the Himalaya (e.g. Thompson et al., 

2012) and the European Alps (e.g. Haeberli et al., 2001).  

Further spatial variability is evident in the intermediate sector in 2013, as thinning 

rates are suppressed in March and April. This could reflect early melt season uplift at 

Falljökull. Glacier uplift has been observed at many alpine glaciers (Iken et al., 1983; 

Humphrey et al., 1986; Jansson and Hooke, 1989; Raymond et al., 1995) as high water 

pressures in cavities and subglacial channels result in hydraulic jacking (Iken et al., 

1996; Jansson et al., 2003). Alternatively, this period of “uplift” could simply be 

accounted for by the growth of the snowpack at this time (Fig. 76). However, this is 

unlikely as surface features were selected which were observable throughout this 

period i.e. extensive/tall debris structures. These structures are unlikely to be uplifted 

by the snowpack. In contrast, snowpack growth would obscure low lying surface 

features. Therefore, meltwater-induced uplift is a plausible explanation as the 

magnitude and duration of the early melt season uplift at Falljökull, at + 0.85 m and ~ 

36 days respectively, is in agreement with observations at Unteraargletscher, 

Switzerland (+ 0.6 m, 21 days, Iken et al., 1983). However, similar patterns of uplift 

are not observed in previous years while spatial variability is evident in 2013. Given 

this asynchroneity in early melt season behaviour, it is necessary to determine the 

key drivers of uplift.  

Firstly, the occurrence of uplift would be strongly controlled by the structure of the 

subglacial network (Section 2.3.3) and the presence of discrete or distributed 

drainage. Based on the spatial distribution of uplift at Falljökull, with no evidence of 

uplift at the terminus, it is interpreted that this sector is underlain by a channelised, 

discrete system at this time with the intermediate sector characterised by inefficient, 

distributed drainage. In the latter, increased meltwater input would over-pressurize 

the distributed system and lead to glacier uplift as basal shear stress is reduced. In 

contrast, meltwater input to the glacier terminus would be transferred more 

efficiently out of the glacier via channels. This interpretation conforms to the 

arborescent structure of subglacial networks (Hooke, 1987) with channel size 

decreasing up glacier.  

However, a similar pattern of glacier uplift is not evident in 2012, despite the 

presence of distributed drainage at Falljökull throughout the early melt season. 

Therefore, subglacial drainage structure is not the only control on early melt season 

uplift. Instead, uplift may be dependent on the preservation and size of the winter 

snowpack. Snowpack thickness is an important control on subglacial drainage 

morphology (Nienow et al., 1998) and thus rates of basal motion (Fischer et al., 1999) 

while the timing of snowpack removal is also key to surface energy balance (Willis et 

al., 2002; Hock et al., 2005). Snow generally retards the flow of water into the englacial  
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Figure 76. Extended preservation of the seasonal snowpack in 2013, relative to 
previous years. 



100 
 

system through water storage (Schneider, 2000) and by decreasing surface melt 

production due to albedo (Willis et al., 2002). As such, the seasonal snowpack 

suppresses total meltwater generation but also delays the movement of meltwater to 

the subglacial system. As a result, distributed subglacial drainage is more likely 

under a substantial snowpack as over-pressurization is unlikely. In contrast, the 

presence of discrete drainage at the glacier terminus indicates that the snowpack may 

be thinner at lower elevations. A thinner snowpack would have a smaller negative 

impact on surface melt production with a shorter lag between meltwater generation 

and input to the glacier. Channelization due to over pressurisation is more likely at 

this lower elevation.  

Therefore, the varying thickness of the snowpack with elevation explains the spatial 

distribution of subglacial drainage. However, the snowpack not only provides the 

conditions for uplift i.e. by reducing meltwater inputs and preserving distributed 

drainage, but is also a key driver of uplift by acting as a source of water.  This layer 

can undergo rapid melt relative to the underlying ice and lead to large meltwater 

inputs to the englacial system. In 2013, this is supplemented by numerous 

precipitation events in March and April. Early melt season uplift at Falljökull is 

strongly controlled by glacier surface conditions (presence of the snowpack), weather 

(precipitation events) and spatial variability in subglacial hydrology 

(discrete/distributed).    

 

5.2.4 - Upper sector 2011-2013 

Surface melt and thinning rates exhibit reasonable coupling in the upper sector from 

2011-2013 while intra-annual trends are generally consistent with those observed at 

the terminus and intermediate sectors. Firstly, there is a consistent late season 

underestimation of thinning by the energy balance model, which reflects the poor 

parameterisation of thin surface debris by the EBM. This may also account for the 

offset between peak melt and peak thinning in each year. Glacier uplift may also be 

evident in March 2013, in agreement with observations at the intermediate sector. 

However, cumulative thinning values fluctuate over this period and it is not possible 

to confirm this beyond error. If this does reflect meltwater induced uplift, the upper 

sector is likely underlain by distributed subglacial drainage to accommodate this.  

Thinning rates exhibit limited intra-annual variability in 2011, a trend which is poorly 

correlated with data from subsequent years. Significant seasonal shifts in thinning 

rate are evident for the upper sector in 2012-2013 (Fig. 59 - 60). Despite this, melt and 

thinning are reasonably coupled in 2011 (R2 = 0.70, p = 0.009), with thinning in excess 

of 0.05 m d-1 from May to September, decreasing to ~ 0.03 m d-1 in October-November 

coeval with a signification reduction in surface melt production. This extended 
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period of high thinning rates may be accounted for by the eruption of Grímsvötn, 

with melt and thinning enhanced from May and sustained through the melt season. 

The tailing off of thinning rates from September may reflect the decreasing spatial 

coverage of the debris layer as well as the late season reduction in surface melt 

generation.  

Further spatial variability is evident in 2012, as an early melt season lag between 

modelled melt and calculated thinning is not evident in the upper sector. Clear 

asynchroneity between the upper and terminus-intermediate sectors is also evident 

in early April as calculated thinning actually exceeds modelled melt at this time (Fig. 

62, A). Unfortunately, time-lapse imagery cannot provide a satisfactory explanation 

for this variability as glacier surface conditions appear similar in each sector. One 

possible explanation is that faster surface velocities in the upper sector at this time 

(Fig. 65, C), generally in excess of 0.16 m d-1, may have resulted in more rapid 

collapse of surface features i.e. debris cones. This glacier surface evolution may have 

been poorly capture by feature tracking due to the distance to these features (> 600 m) 

and the restricted image resolution. Despite this currently unexplained variability, 

these data are important as they demonstrate small spatial scale variability in 

thinning rates.  

 

5.2.5 - Melt-thinning coupling at Falljökull 

Based on these data, reasonable coupling between surface energy balance and time-

lapse derived thinning rates is evident at Falljökull from 2011-2013. However, 

thinning rates are strongly modulated by spatio-temporal variability in glacier 

conditions which are not fully accounted for by the energy balance model of Brock 

and Arnold (2000).  

Although trends for surface melt production and thinning are generally coeval, an 

early melt season lag is evident in many datasets (e.g. Fig. 47). This delay in the onset 

of increased rates of thinning relative to surface melt production is accounted for by a 

delayed shift to an isothermal ice surface. Conversely, the energy balance model 

appears poorly optimised for thin debris cover with consistent late season offset, with 

thinning consistently underestimated by the EBM. The use of more innovative 

models which better parameterise surface melt under thin debris cover (e.g. Reid and 

Brock, 2010) and include the heat from conduction may generate more accurate data 

on surface energy balance. Despite this, these data clearly show that time-lapse 

imagery can be used to generate consistent and accurate data on thinning rates which 

generally corroborate with energy balance modelling and fit a pattern established at 

similar glaciers (e.g. Schomacker et al., 2012).  
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Time-lapse imagery can also be used to account for intra-annual variability in 

thinning rates. In 2011, the Grímsvötn eruption and the deposition of tephra 

significantly enhanced surface melt, in excess of modelled values. In the same year, 

the expansion of the pro-glacial lake and its increased contact with the Falljökull 

glacier snout resulted in asynchronous behaviour of the terminus compared to the 

intermediate and upper sectors. In 2013, the extended preservation of the winter 

snowpack may account for the offset between peak melt and peak thinning, although 

this offset increased at the terminus due to the extension of a thick debris band across 

the glacier snout. Finally, early melt season uplift of Falljökull may be evident in the 

intermediate and upper sectors in March and April 2013. Glacier uplift is strongly 

dependent on the preservation of the snowpack, regular precipitation events and the 

structure of the subglacial hydrological system. Thinning rates at Falljökull are 

strongly modulated by individual events i.e. volcanic eruption, pro-glacial lake 

development, debris band extension, early melt season uplift. However, these events 

do not obscure the seasonal pattern of thinning as a function of surface energy 

balance. High temporal resolution time-lapse imagery can be used to identify the 

form and timing of these events to better understand perceived anomalous thinning 

rate behaviour.  

 

5.3 - Linking surface dynamics to glacier hydrology 

Time-lapse derived thinning rates and modelled surface melt production are well 

coupled when spatio-temporal variability in glacier surface conditions and 

individual events are taken into consideration. As such, thinning rate data at 

Falljökull can be considered to be representative of the input of supraglacial 

meltwater to the englacial and subglacial system. Given the importance of basal 

sliding and subglacial deformation in temperate glaciers (Section 2.1), variability in 

meltwater input should have a significant impact on surface dynamics (Jansson et al., 

2003). While intermediate water storage does introduce complexity to this 

relationship (Jansson et al., 2003), this should have a limited impact at Falljökull due 

to the absence of a firn layer (de Woul et al., 2006). While short term storage in 

englacial and subglacial channels may also occur, it was not impossible to detect this 

signal using time-lapse imagery of limited temporal resolution i.e. maximum 3 

photographs per day.  

Periods of hydrodynamic coupling/de-coupling are identified as discussed in Section 

2.3.4. However, as hydrological forcing of ice velocity can still occur despite the 

existence of channels (Bartholomew et al., 2011), the following interpretations of 

subglacial drainage configuration must be validated by other techniques (e.g. Iken 

and Bindschadler, 1986; Sharp et al., 1993; Tranter et al., 1993; Hubbard et al., 1995). 
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Note hydrodynamic de-coupling in this section is distinct from the sedimentary de-

coupling process (Iverson et al., 1995) and refers to periods in which high basal water 

pressures are not associated with enhanced forward motion.  

 

5.3.1 - Evidence for hydrodynamic coupling in 2011 

Interpreting the controls on surface velocities in 2011 is challenging due to the limited 

timespan of surface feature tracks which prevents study of early and late melt season 

trends. Furthermore, “noise” in the upper sector prevents any interpretation of these 

data. However, both the glacier terminus and intermediate sectors demonstrate clear 

periods of hydrodynamic coupling.  

At both these sectors, surface velocities and thinning rates are correlated from April 

to early-May. Glacier flow and thinning are relatively stable over this period, 

probably reflecting movement through internal deformation when meltwater inputs 

to the subglacial system are limited. Further coupling is evident later in the melt 

season from early-June until August at both sectors, as thinning and surface 

velocities shift to above average rates. This is broadly supportive of a forcing model 

whereby over-pressurisation of the inefficient subglacial drainage system by surface 

meltwater leads to basal sliding and increases in forward motion.  

However, throughout this model of a coupled hydrological system, there are short-

lived periods where surface melt and ice velocity become de-coupled. At the glacier 

terminus, hydrodynamic de-coupling is evident in May and June (Fig. 64, A) as 

thinning rates fall below average while average surface velocities are maintained. 

This demonstrates the importance of variable meltwater input in determining the 

relative importance of internal and basal derived movement. When surface melt 

production is restricted and water flux to the subglacial system is limited, surface 

velocities are primarily a function of internal deformation. Limited surface velocity 

variability is evident at this time, relative to the peak melt season. Further de-

coupling is evident at the intermediate sector in October (Fig. 64, B) and reflects a 

similar process. A reduction in thinning rate over this period is not correlated with 

ice dynamics, reflecting the seasonal reduction in surface melt production and a 

return to movement through internal deformation. Therefore, when meltwater inputs 

are high or rising faster than the drainage system can adjust to e.g. June - August, 

basal sliding and enhanced glacier flow can occur. However, when meltwater inputs 

are suppressed during the early and late melt season e.g. April or September - 

November, flow variability is limited.  Restricted meltwater fluxes during the early-

melt season would be insufficient to over-pressurise the immature subglacial 

drainage system while declining meltwater inputs in the late melt season would be 

rapidly transferred out of the glacier via efficient, discrete drainage. As such, these 
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data demonstrate the impact of variable meltwater input in determining the relative 

importance of internal or basal derived flow (Copland et al., 2003).  

Determining the timing of drainage system evolution i.e. distributed to discrete, is 

challenging as long periods of hydrodynamic coupling are evident throughout 2011 

at both the terminus and intermediate sectors. Coupling between thinning and 

surface velocities during the peak melt season i.e. late-June to August, could indicate 

the presence of distributed drainage at this time. However, this interpretation 

contrasts markedly with the paradigm of arborescent subglacial networks (Hooke et 

al., 1987). A more plausible explanation is that discrete drainage was present 

throughout 2011 at Falljökull at a distance of < 400 m from the glacier front. As 

substantial surface lowering is evident in 2011 due to the Grímsvötn eruption (0.052 

m d-1), it seems likely that significant meltwater inputs would be transferred to the 

subglacial system during the peak melt season. This input of meltwater may have 

occurred faster than the drainage system could adjust to, resulting in flow variability 

and hydrodynamic coupling in a discrete system (Bartholomew et al., 2011).  

 

5.3.2 - Evidence for hydrodynamic coupling in 2012 

Extended periods of hydrodynamic coupling are evident at the terminus, 

intermediate and upper sectors in 2012. This reflects a coupled hydrological system 

as inputs of meltwater to the subglacial system during the early melt season (April to 

May) are correlated with increased surface velocities. Glacier flow variability is 

generally enhanced during the first half of the year in all sectors and probably reflects 

temporal variability in meltwater input and periods of basal sliding. In contrast, flow 

variability is markedly reduced after June in all sectors. This demonstrates the 

temporal evolution of the subglacial system as enhanced surface meltwater input 

from May are responsible for increasing channel efficiency and a shift to discrete 

drainage. Despite these consistent trends, spatio-temporal variability is evident as 

two clear periods of hydrodynamic de-coupling are identified at the terminus and 

intermediate sectors (Fig. 65). However, rather than two distinct events, it is 

interpreted that they are intimately coupled and reflect the commencement and 

culmination of a period of sedimentary deformation. Subglacial derived flow (Section 

2.1.3) is interpreted as a key control on Falljökull surface velocities in 2012.  

At the terminus, hydrodynamic de-coupling is evident in late April as a distinct shift 

to above average velocities is poorly correlated with sustained below average 

thinning. This contrasts markedly with the coupled hydrological model proposed 

above as the onset of flow acceleration cannot be directly linked to over-

pressurisation of the subglacial system. The transition to above average surface 

velocities occurs ~3 weeks before thinning rates increase. As such, basal sliding is 
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probably limited at this time as meltwater inputs are unlikely to be rising quickly 

enough to over-pressurise the subglacial system. Therefore, a more plausible 

explanation is that asynchronous flow acceleration from late-April reflects the 

saturation and deformation of subglacial sediment. Although thinning rates are 

below average in April, this still accounts for surface lowering of 0.02 m d-1, sufficient 

to transfer a significant meltwater flux to the subglacial system. This is enhanced by a 

number of large precipitation events at this time which may have accelerated 

sediment saturation and deformation. Although sediment deformation rates 

probably decrease during May (Kamb, 1991; Iverson et al., 1995), basal sliding is 

maintained by significant melt (2184 mm w.e.) and above average thinning from mid-

May.  Accelerated rates of sediment deformation during late April are likely to be an 

important control on glacier instability and act as a catalyst for sustained basal 

sliding.  

In contrast, the extended period of hydrodynamic de-coupling throughout June 

reflects the culmination of this process. Fast velocities, instigated by rapidly 

deforming sediment and maintained by high basal water pressures, are curtailed at 

the end of May with a shift to below average surface velocities. The timing of this 

slowdown appears to be coeval with a reduction in thinning rate in late-May and 

early-June, which would decrease the meltwater flux to the base which in turn would 

lower the ice, increase the applied shear stress and increase the strength of the 

subglacial sediment due to an increase in intergranular friction (Iverson et al., 1995). 

Additionally, subglacial channels are likely to have undergone adjustment in 

response to enhanced meltwater fluxes, with increasing network efficiency and 

channel size due to enhanced frictional melting as a result of consistently high water 

pressures. The maintenance of sedimentary deformation requires basal water 

pressures to remain high to prevent intergranular friction from increasing. Therefore, 

a reduction in subglacial water pressure in June, due to a slowdown in thinning rate 

and more developed and efficient subglacial channels, accounts for glacier slowdown 

in this month. 

A similar pattern of hydrodynamic de-coupling is evident at the intermediate sector, 

reflecting the sedimentary deformation process described above. However, the 

transition to above average surface velocities occurs in early April, 2 - 3 weeks before 

the glacier terminus. This offset indicates that the saturation and deformation of 

sediment varies spatially and is propagated down glacier. In contrast, the switching 

off of this mechanism is a rapid and spatially ubiquitous process as the shift from 

above to below average velocities occurs towards the end of May for the intermediate 

sector and within a few days at the terminus. This implies that a reduction in basal 

water pressure is rapidly propagated down glacier. This is attributed to a slowdown 

in thinning rate and an increase in channel efficiency at this time. In contrast, there is 
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no evidence of hydrodynamic de-coupling in the upper sector during the first half of 

the year, with coeval peaks and troughs in surface velocities and thinning rates (Fig. 

65, C). This implies that sediment deformation was largely restricted to within ~ 350 

m of the glacier front. However, clear hydrodynamic de-coupling occurs from June, 

although this is complicated by considerable data “noise” for surface velocity tracks.  

Based on these data, it is interpreted that the glacier front was characterised by 

distributed subglacial drainage in the early part of 2012. Although the glacier front 

was underlain by discrete drainage in late 2011, deterioration of the basal drainage 

network during winter is likely (Flowers and Clarke, 2002) due to limited meltwater 

inputs, restricted subglacial flow and channel closure via ice creep due to reduced 

frictional melting (Hooke et al., 1990). The existence of distributed drainage in 2012 is 

reflected in the tight hydrodynamic coupling evident in all sectors during March. 

However, as meltwater inputs increase and channels become over-pressurised 

through April and May, the subglacial system shifts from a hydrologically 

unconnected to a connected state (Flowers and Clarke, 2002).  This is characterised by 

channelised, discrete drainage which is present by early June, as all sectors 

demonstrate hydrodynamic de-coupling at this time. Although surface velocities and 

thinning rates are well coupled at both the terminus and intermediate sectors after 

this date, this perhaps reflects hydrodynamic coupling in a discrete system 

(Bartholomew et al., 2011).    

 

5.3.3 - Evidence for hydrodynamic coupling in 2013 

Similar shifts from distributed to discrete drainage are interpreted in 2013 although 

spatial variability is evident. Asynchronous trends for surface velocities and thinning 

are evident from mid-March at the glacier terminus and are sustained throughout the 

year. However, although hydrodynamic coupling is evident prior to this date, this is 

unlikely to reflect the presence of distributed drainage and movement through basal 

sliding. Surface meltwater production is extremely restricted during these months 

and would be insufficient to over pressurise the subglacial system (Iken et al., 1983) 

and promote hydraulic jacking (Hooke et al., 1990). Below average thinning rates 

until early April reflects restricted energy inputs to the glacier surface. This is 

exacerbated by the survival and replenishment of the glacier snowpack, which is 

present much later in the season relative to previous years, as well as the extension of 

a debris band across the glacier snout. This debris, combined with extensive snow 

cover and favourable meteorological conditions, would have suppressed melt and 

led to a reduction in thinning rate. As such, the maintenance of average surface 

velocities during March and April reflects movement via internal deformation as the 
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restricted meltwater flux would be insufficient to promote sliding at the bed, 

irrespective of subglacial drainage structure.   

However, surface velocities remain stable from late April to early May, when 

thinning rates shift from below to above average and meltwater fluxes to the 

subglacial system are enhanced. If a distributed network was present at the time, 

hydrodynamic coupling would be evident as rising subglacial water pressures would 

promote basal sliding. As coupling is not evident, it is likely that the terminus is 

characterised by discrete drainage, with subglacial channels maintained over the 

winter period. Extremely restricted glacier velocities in early 2013 (February: 0.008 ± 

0.003 m d-1), reflecting movement via ice creep, may be insufficient to force channel 

closure. Limited flow variability is evident throughout 2013, reflecting the rapid 

transit of meltwater out of the glacial system via efficient subglacial channels. Surface 

velocities at the terminus are therefore predominantly controlled by internal 

deformation rates. However, there is a marked acceleration at the terminus in mid-

August which is coeval with peak monthly thinning (0.070 ± 0.004 m d-1). This further 

demonstrates the potential for hydrodynamic coupling in discrete systems. This 

acceleration is short lived as thinning rates fall in September (Fig. 66, A), perhaps 

reflecting a reduction in subglacial water pressure and the curtailment of basal 

sliding.  

In contrast, the intermediate sector demonstrates hydrodynamic coupling until mid-

June, with asynchronous trends for surface velocities and thinning rates after this 

date reflecting a shift to discrete drainage. Early-melt season coupling (January to 

June) reflects the presence of distributed drainage. Variability in subglacial drainage 

structure between the terminus and intermediate sector over the early melt season is 

attributed to spatial variability in basal water pressure. As all meltwater which 

reaches the subglacial network is routed through the terminus, this sector will be 

subject to higher water pressures, increased frictional melting and channel growth. 

This also explains the preservation of discrete drainage through the winter as water 

fluxes, although reduced relative to summer discharge, will have a disproportionate 

impact on terminus drainage with enhanced frictional melting and the suppression of 

channel closure via ice creep. In contrast, given the arborescent structure of 

subglacial networks, the same meltwater flux at higher elevations will equate to 

lower basal water pressures, as water is distributed in a greater number of channels. 

As a result, the terminus is characterised by a heightened sensitivity to meltwater 

input. By comparison, the meltwater flux required to instigate reorganisation of the 

subglacial network will increase exponentially up glacier. This interpretation is 

supported by melt data as the inferred shift to discrete drainage at the intermediate 

sector occurs in early June after peak melt of 1647 mm w.e. In contrast, channels are 
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maintained at the terminus throughout early 2013, when surface melt production is 

significantly reduced.   

This trend is also evident in the upper sector which exhibits intimate hydrodynamic 

coupling throughout much of 2013, with the exception of a late melt season de-

coupling in late-July through to mid-August (Fig. 66, C). Prior to this, surface 

velocities are well correlated with thinning rates with periods of fast glacier flow 

closely linked to glacier thinning and meltwater input. Basal sliding due to over-

pressurisation of the subglacial system is a key driver of glacier flow in the upper 

sector. However, the late-melt season de-coupling reflects a shift to discrete drainage. 

Peak thinning (0.077 m d-1) occurs prior to this date and probably accounts for 

enhanced basal sliding and peak surface velocities in July (0.22 m d-1). A marked 

glacier slowdown from late July is correlated with sustained above average thinning 

and is indicative of increasing channel efficiency due to high basal water pressures 

and a shift to discrete drainage. As such, the extended preservation of distributed 

drainage i.e. relative to the terminus and intermediate sectors, is a function of 

arborescent subglacial drainage structure. The temporal evolution of subglacial 

drainage is strongly dependent on subglacial water pressure but this varies spatially 

with decreasing sensitivity to meltwater input with elevation.    

 

5.3.4 - Potential controls on glacier front dynamics  

Based on time-lapse imagery, periods of internal, basal and subglacial derived glacier 

flow have been identified throughout the period 2011-2013, although significant 

spatial variability is evident. Surface velocities at Falljökull are strongly controlled by 

surface meltwater production. When surface energy inputs are restricted and 

meltwater inputs to the englacial and subglacial system are limited, glacier flow is 

predominantly controlled by internal deformation.  

However, when meltwater inputs are enhanced, basal sliding and subglacial 

deformation can occur although this is highly dependent on the structure of the 

subglacial network (Bingham et al., 2006). This undergoes significant temporal 

evolution at Falljökull with a melt season shift from discrete to distributed drainage 

(Alley, 1989; Harbor et al., 1997; Arnold et al., 1998). However, the timing of this shift 

varies spatially. This is most apparent in 2013 as discrete drainage is maintained at 

the terminus throughout the year, while the intermediate and upper sectors 

demonstrate hydrological adjustment in June and late-July respectively. In contrast, 

channel closure by ice creep occurs during the winter due to the seasonal reduction 

in energy inputs to the glacier surface and restricted meltwater production. This 

results in the reestablishment of distributed drainage by the early months of both 

2012 and 2013. The timing of hydrological adjustments is strongly dependent on 
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meltwater input (Flowers and Clarke, 2002) and this varies spatially, with the 

terminus exhibiting a heightened sensitivity to meltwater input due to higher basal 

water pressures and increased frictional heating.  

However, although periods of discrete drainage are identified at Falljökull 

throughout 2011-2013, hydrodynamic coupling is still evident in these efficient 

systems when meltwater inputs increase faster than the drainage system can adjust to 

(Bartholomew et al., 2011). As such, while fast glacier flow predominantly occurs 

when the lower reaches of Falljökull are underlain by distributed drainage (e.g. 

Upper, May-August 2013), short term flow accelerations (e.g. Terminus, August 

2013) can occur when meltwater inputs are significant. While it is interpreted that fast 

glacier flow at Falljökull is predominately attributed to basal sliding as a function of 

high basal water pressures, it is suggested that subglacial deformation may be an 

important control on flow variability. However, while deformation may not be the 

primary driver of fast glacier flow (Iverson et al., 1995), the presence of saturated and 

deforming sediment may be important to the timing of these events by providing a 

smooth surface to support concentrated sheer stresses and higher basal water 

pressures. 

 

5.3.5 - Potential controls on icefall dynamics 

Few studies have focused on icefall dynamics due to the difficulties of data collection. 

Icefalls are characterised by intense brittle fracturing and heavily crevassed surfaces 

as glacier flow is faster than can be accommodated by ice creep (Hambrey, 1994). 

Feature tracking, although made challenging by the complexity of the terrain, is one 

of only a few feasible methods for determining icefall velocities. Advancements in 

terrestrial radar interferometry may also be of value in dynamic, inaccessible 

locations (Allstadt et al., 2015). However, understanding icefall dynamics at Falljökull 

is important, as variability in balance velocity over longer timescales (Bingham et al., 

2006) determines the transfer of ice from the accumulation to the ablation areas 

(Quincey and Glasser, 2009). Acceleration or deceleration of the icefall will determine 

the transfer of ice from Öræfajökull which may have an impact in subsequent seasons 

and enhance or suppress glacier front retreat.   

Unfortunately, it is not within the scope of this project to determine all of the driving 

controls on icefall dynamics, as no data are available on the structure of the icefall 

basin or the underlying topography. Furthermore, georeferencing strategies for these 

data were less robust due to limited data availability (Section 3.2.3). Despite these 

limitations, surface velocities at the Falljökull icefall (1.35 - 1.58 m d-1) are in good 

agreement with velocities observed at icefalls at the Nisqually and Emmons glaciers, 

USA, at 1.0 - 1.5 m d-1 (Allstadt et al., 2015). However, significant intra-annual flow 
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variability is evident at Falljökull in 2012 and 2013, although variability was limited 

in 2011. In contrast, the main Nisqually icefall showed limited seasonal variability, 

with a slight increase in surface velocities from July through to the winter, indicating 

that this icefall may be relatively well drained throughout the year and is unaffected 

by seasonal changes in subglacial hydrology (Allstadt et al., 2015). In contrast, similar 

ice cliffs at the Nisqually glacier, which were characterised by steep surface slopes 

and high crevasse density, did exhibit intra-annual variability. These seasonal shifts 

in icefall velocity corroborate with trends observed at the main Nisqually glacier, 

with periods of glacier sliding due to evolving subglacial hydrology (Fountain and 

Walder, 1998). This may reflect a heightened sensitivity to meltwater input in these 

ice cliffs (Allstadt et al., 2015). Based on these data, it is suggested that the Falljökull 

icefall may be well lubricated by subglacial water during the melt season which 

promotes fast glacier flow. In contrast, restricted surface melt production during the 

winter may account for icefall slowdown. However, inter-annual variability is 

evident. Icefall velocities are generally stable throughout 2011, probably reflecting 

surface melt enhancement and increased basal lubrication due to Grímsvötn in the 

late melt season. In contrast, enhanced seasonal variability in 2013 is probably 

accounted for by the preservation of the winter snowpack which restricts surface 

energy inputs and basal sliding during the early part of the year but significantly 

enhances glacier flow during the peak season by acting as a source of surface 

meltwater. Although additional asynchronous behaviour is evident in 2013, this 

cannot be explained by surface melt data. Although subglacial hydrology may be an 

important driver of icefall dynamics, topographic and structural factors, which 

cannot be determined here, are likely to be of importance.  
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Chapter 6 - Conclusions 

6.1 - Controls on surface melt production at Falljökull  

High temporal resolution datasets of surface melt production have been generated at 

Falljökull through EBM (Brock and Arnold, 2000). These data corroborate with trends 

established at similar Icelandic glaciers as melt production is dominated by 

shortwave radiative inputs (Jóhannesson and Sigurðsson, 1998; Sigurðsson et al., 

2007). However, due to its maritime setting, melt production at Falljökull is 

significantly enhanced by turbulent heat fluxes (Laumann and Reeh, 1993). Energy 

inputs from precipitation are generally marginal although are of increasing 

importance when shortwave radiative inputs decline (Thompson, 2016). While inter-

annual variability in total melt production is evident, seasonal trends are relatively 

consistent between years.  

Comparison of modelled melt data with calculated thinning rates derived from time-

lapse imagery has demonstrated some variability between these techniques.  Rates of 

thinning and melt production are generally well correlated at the intra-annual scale, 

with enhancement of melt and thinning during the peak melt season and suppression 

during the winter. However, thinning is consistently underestimated by the EBM, 

despite the use of maxima/minima albedo and surface roughness parameters to 

maximise melt production in the predominantly snow-free, debris-covered 

environment at Falljökull. An early season lag and a late season offset between 

modelled melt and calculated thinning are evident in many datasets. Enhanced rates 

of thinning, relative to the values predicted by EBM, are maintained throughout the 

peak melt season and result in significant melt underestimation by ~1-3 m. This 

inconsistency may be addressed by the use of models which incorporate the heat 

from conduction and are better optimised for thin debris cover (Price, 1986; 

Braithwaite, 1995).  

Furthermore, it has been shown that thinning of Falljökull is strongly affected by 

individual events which enhance or supress surface melt production. The eruption of 

Grímsvötn, the growth and increased contact with the pro-glacial lake, the 

preservation of the winter snowpack and the presence of thick debris cover have all 

been shown to affect thinning rates. These individual events are difficult to 

incorporate into energy balance modelling. In contrast, time-lapse imagery can be 

used to determine the form, timing and duration of these events and their potential 

impact on surface energy balance. Thinning rates at Falljökull, in excess of 0.029 m d-1 

throughout 2011-2013, are significantly higher than similar alpine glaciers (e.g. 

Berthier et al., 2004; Paul and Haeberli, 2008). However, these data corroborate with 

substantial thinning at Solheimajökull (Schomacker et al., 2012; James et al., 2016) and 



112 
 

indicate the sensitivity and rapid response of these maritime glaciers to climate 

forcing (Sigurðsson et al., 2007; Gudmundsson et al., 2011) 

 

6.2 - Controls on glaciers dynamics at Falljökull 

A clear relationship between ice melt and ice dynamics is identified in these data. 

This is most evident at the icefall as surface velocities and melt production are 

generally well correlated throughout the period 2011-2013. It is likely that the icefall 

is well lubricated by subglacial water during the melt season which promotes sliding 

at the ice-bed interface (Allstadt et al., 2015). In contrast, the glacier front 

demonstrates a variety of flow dynamics in response to surface lowering, perhaps 

reflecting the influence of subglacial drainage structure. These can be summarised as: 

1. Events which exhibit close coupling between surface melt production and 

forward motion i.e. when distributed systems become over-pressurised 

leading to glacier uplift and basal sliding (e.g. Iken et al., 1983). 

 

2. Events which demonstrate a clear disconnection between melt and forward 

motion, accounted for by the process of hydrodynamic de-coupling. This can 

take the form of (A) the suppression of meltwater input, resulting in a return 

to internal deformation derived flow (e.g. Hooke et al., 1989) or (B) when 

enhanced meltwater input to discrete systems has no impact on glacier 

dynamics (e.g. Mair et al., 2002). 

 

3. Events where drainage system configuration appears to hold little influence 

upon dynamics i.e. when discrete channelised configurations become over-

pressurised due to overwhelming meltwater generation (e.g. Bartholomew et 

al., 2011).  

These models can be seen to operate variably throughout the study period and 

spatially across the glacier. However, the dominant trends observed include a 

seasonal shift in subglacial drainage structure as hydrodynamic de-coupling is 

representative of the transition from distributed to discrete drainage during the peak 

melt season (Alley, 1989). In contrast, meltwater inputs are suppressed over winter, 

with channel closure via creep (Hooke et al., 1990) leading to deterioration of the 

basal drainage network (Flowers and Clarke, 2002) and reduced flow variability. 

Furthermore, fast glacier flow is most likely when inefficient distributed drainage is 

present as these configurations can be rapidly over-pressurised by meltwater inputs, 

leading to hydraulic jacking and forward motion. However, meltwater induced flow 

variability can also occur in discrete systems if meltwater inputs are rising faster than 

the drainage system can adjust to (Bartholomew et al., 2011). Hydrologically induced 
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speed-up events are identified at Falljökull and may occur more readily due to 

substantial retreat and thinning which enhance meltwater input and instigate basal 

sliding, irrespective of subglacial drainage structure. However, these events are 

typically short-lived, as fast glacier flow is dependent on rising basal water pressures. 

Previous studies have shown that hydrological forcing of ice velocity can lead to 

limited dynamic sensitivity to inter-annual variability in surface melt (Sole et al., 

2013) as enhanced summer velocities condition the ice-bed interface for reduced 

winter motion (Van de Wal et al., 2015). A similar trend is evident at Falljökull as 

inter-annual velocity variability is limited (Table 9), despite periods of surface 

meltwater-induced basal sliding.  

These models may be complicated by the presence of deformable subglacial 

sediments, as interpreted at Falljökull (Björnsson et al., 2003; Phillips et al., 2013). 

Although fast glacier flow is dependent on high basal water pressures, a rapidly 

deforming sediment may be an important catalyst for enhanced velocities by 

providing a smooth surface to support concentrated shear stresses (Iverson et al., 

1995). This process may be an important control on glacier dynamics, particularly for 

temperate glaciers underlain by soft sediments.  

 

6.3 - Application of time-lapse data to glacier dynamics 

Time-lapse imagery has shown that Falljökull is not in equilibrium with climate, 

retreating ~155 m over the period 2011-2013. However, the lower reaches of the 

glacier are still “active” as seasonal variability in glacier flow and hydrodynamic 

coupling are evident. This is unlikely to be observed in stagnant ice that is wasting 

away in-situ (Phillips et al., 2014). Forward motion is insufficient to offset retreat, 

which accounts for the cessation of annual push moraine formation since 2004 

(Bradwell et al., 2013). Slow glacier velocities (~0.01 m d-1), as demonstrated by GNSS 

and time-lapse data, are not necessarily indicative of stagnant ice (Anderson et al., 

2004; Whitehead et al., 2010). While there is some conflict with GNSS data, time-lapse 

velocities are in good agreement with similar mountain glaciers (Harrison et al., 1996; 

James et al., 2016).  

Predicting the response of Falljökull to future climate change is particularly 

challenging as glacier surface conditions and subglacial hydrology exhibit significant 

spatio-temporal variability and strongly modulate the relationship between ice melt 

and ice dynamics. Ultimately, the survival of Falljökull is dependent on its 

connection, via the icefall, to its accumulation area on Öræfajökull. Based on these 

data, the icefall is still active and is feeding ice to the lower reaches of the glacier, in 

agreement with observations from GNSS (Phillips et al., 2014). A weakened or absent 
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connection to Öræfajökull would lead to complete retreat of the lower reaches of 

Falljökull within only a few years.  

 

6.4 - Achieving project objectives  

To conclude, this study has shown that time-lapse imagery can be used to generate 

high spatio-temporal resolution datasets of glacier thinning and ice dynamics 

(Objective 1). These data were compared to high resolution meteorological datasets 

to determine the key controls on surface melt production (Objective 2). Finally, the 

degree of connectivity between ice melt and ice dynamics has been used to 

demonstrate the importance of subglacial drainage configuration, bed rheology and 

surface conditions in controlling glacier movement (Objective 3). 

Many researchers establish time-lapse cameras for glacier monitoring but often don’t 

analyse the data quantitatively (e.g. Bradwell et al., 2013; Phillips et al., 2014). This 

study has shown that these datasets are underutilised and could provide valuable 

long term records of glacier dynamics. Furthermore, time-lapse imagery has a 

number of advantages over existing techniques. Firstly, it provides a valuable record 

of glacier surface conditions which are difficult to incorporate into energy balance 

modelling. While these conditions can be captured by high resolution satellite 

imagery (e.g. Fugazza et al., 2015), these data are generally characterised by poor 

temporal resolution. Furthermore, time-lapse imagery permits study of glacier 

dynamics at a high spatial resolution i.e. by tracking numerous glacier surface 

features through an image sequence. Rates of thinning and glacier surface velocities 

do vary significantly over small spatial scales (e.g. Allstadt et al., 2015). Therefore, 

feature tracking reflects a natural progression from GNSS based studies (Phillips et 

al., 2014) which are unlikely to capture this small spatial scale variability. Time-lapse 

imagery provides high spatio-temporal resolution data which is cost efficient to 

acquire, can be analysed robustly in Pointcatcher (James et al., 2016) and can be 

compared directly to local meteorological data.   

 

6.5 - Further work 

To build on the results presented in this study, further work is necessary to address 

the degree of connectivity between ice melt and ice dynamics. While interpretations 

of subglacial drainage configuration and hydrodynamic coupling are in agreement 

with previous research, they have not been independently verified. Integration of 

time-lapse imagery with direct measurements of subglacial drainage structure (e.g. 

Sharp et al., 1993) and bed rheology (Björnsson et al., 2003) could be used to 
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demonstrate the importance of hydrology in controlling ice movement. Furthermore, 

glacier surface conditions i.e. debris thickness, snowpack extent, are simply estimated 

based on time-lapse images. On-site verification of surface conditions and use of 

EBMs which are optimised for debris cover (Reid and Brock, 2010) should result in 

better agreement between modelled melt data and time-lapse derived thinning rates. 

Collection of ablation stake data would also be useful to confirm substantial thinning 

at Falljökull.  

For further time-lapse based studies, the use of a higher resolution camera would 

enable more precise tracking of surface features while more regular LiDAR 

acquisition would permit more robust georeferencing (e.g. James et al., 2016). 

However, further in-depth study at the Falljökull glacier front may be challenging as 

the snout is increasingly covered in thick debris. As such, identifying suitable 

features for tracking may not be possible using the current camera set-up. However, 

continued monitoring and research of Falljökull may be of value although will 

require a new focus on the icefall and its connection to Öræfajökull. Icefalls place a 

key control on glacier dynamics but are poorly understood (Allstadt et al., 2015) and 

changes in icefall structure and motion could lead to rapid and irreversible changes 

in glacial systems. Study of bed rheology (e.g. Hart et al., 2011), subglacial drainage 

configuration (e.g. Hubbard et al., 1995) and internal structure (e.g. Phillips et al., 

2014) and integration of these data with EBM and time-lapse imagery could 

demonstrate the key controls on icefall dynamics.  
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