
Charting an Intent Driven Network

Yehia Elkhatib•, Gareth Tyson‡, and Geoff Coulson•
•Lancaster University, United Kingdom

‡Queen Mary, University of London, United Kingdom

Abstract

The current strong divide between applications and the
network control plane is desirable for many reasons; but
a downside is that the network is kept in the dark regard-
ing the ultimate purposes and intentions of applications
and, as a result, is unable to optimize for these. An al-
ternative approach, explored in this paper, is for appli-
cations to declare to the network their abstract intents
and assumptions; e.g. “this is a Tweet”, or “this appli-
cation will run within a local domain”. Such an enriched
semantic has the potential to enable the network better
to fulfill application intent, while also helping optimize
network resource usage across applications. We refer to
this approach as intent driven networking (IDN), and we
sketch an incrementally-deployable design to serve as a
stepping stone towards a practical realization of the IDN
concept within today’s Internet.

1 Introduction

A key principle of the early Internet was the provision of
a very simple send/receive interface for applications. As
the complexity of the Internet has grown, and new capa-
bilities been added (multicast, streaming, mobility, etc.),
we have attempted to continue to live with this very sim-
ple API. Although the approach has served us well so far,
clear downsides are emerging. In particular, applications
essentially operate in the dark with respect to the capabil-
ities and functioning of the underlying network, and are
therefore obliged to include (complex) logic to handle
network related events such as faults, performance fluc-
tuations, service changes (e.g. mobility), etc. Similarly,
the network operator does not understand the needs of
applications beyond the issuance of apparently isolated
send and receive calls, thus it is unable to optimize per-
formance for applications or to optimally conserve its
own resources.

At the heart of the matter is the inability of the net-
work to see the underlying intent of the application. In-
stead, the network only sees a series of seemingly unre-
lated micro-transactions (send and receive calls).

One solution might be to extend the network API to
give direct access to all the individual network elements
such as caches, middleboxes, routers, etc. But this is
clearly problematic for many reasons: application devel-
opers would find it too hard to understand, the API would
regularly mutate in line with corresponding changes in
the technologies, and it would promote unforeseen inter-
actions between per-technology API elements, with un-
predictable and probably undesirable consequences.

In this paper, we propose Intent Driven Networking
(IDN) as an alternative approach. It enables the formula-
tion of an application’s “intents” as high level statements
of its predicted macro-level behaviour, i.e. an abstract
formulation of what it desires from the network, while re-
maining agnostic about the underlying means used to sat-
isfy them (protocols, etc.). For example, one particular
intent might be to communicate with a particular group
of users (e.g. collaborative document editing); another
might be to stream a video uninterruptedly while switch-
ing between a laptop and a smartphone as well as from
an 802.11 network to a cellular one. Whereas the cur-
rent Internet sees such intents as sets of isolated micro-
transactions, an intent driven Internet would understand
their aims, and therefore be in a position to optimize ac-
cordingly.

IDN also allows us to simplify the development of ap-
plications by removing the need for them to provide the
“cover all cases” logic. Instead, we feed user require-
ments straight down to the network thus providing flexi-
bility in how different user application requirements are
met without predefined restrictions. For instance, it mi-
ght implicitly ensure the availability of a certain service
despite the failure of a remote server; or ensure a certain
level of Quality of Experience (QoE) even if the applica-
tion is not designed to seek alternative potentially better

1

ar
X

iv
:1

60
4.

05
92

5v
1

 [
cs

.N
I]

 2
0

A
pr

 2
01

6
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76963008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

routes; etc. As a consequence, IDN facilitates more fluid
development of end user applications and is conducive to
better alignment of the network to application needs.

Another good example arises in the context of mobil-
ity support [23]. Currently, host mobility is an extremely
complicated process, typically managed in the lower lay-
ers of the network stack by Mobile IP. In essence, these
lower layers attempt to hide the effects of host mobil-
ity (e.g. changes in IP addresses) from the higher layers
(e.g. applications) using costly mechanisms such as tun-
nelling. This measure is necessary as nearly all appli-
cations assume stable, globally reachable addressing, as
well as consistent connectivity, none of which are valid
in the case of mobility. These needs, however, often only
emerge because the lower layers have no understanding
of the intents that exist at the higher layers. Imagine that
an application, for example, has no need for consistent
addressing or, alternatively, only requires access to con-
tent within the local domain (i.e. no need for global ad-
dressing). In such circumstances, the constraints are re-
laxed and Mobile IP’s blanket-style behaviour becomes
unnecessary. However, due to the network’s inability to
see the application’s intent, there is no way to decide
when such principles should or should not be applied.
Consequently, the lowest common denominator must al-
ways prevail.

In order to attain the IDN vision, we need means by
which application intents are formulated, compiled, and
ultimately reified (i.e. acted upon) in the network. The
structure implicit in this statement is illustrated in Fig-
ure 1, which serves as the orienting architecture for the
remainder of this paper.

Intent
Formulation

Intent
Reification

A
p

p
lic

a
ti

o
n

N

et
w

o
rk

Intent
Compilation

Figure 1: High level view of an intent driven network.

We present the concept of an intent driven network
using both a straw man design (§2) and illustrative ex-
amples (§3). We focus particularly on the practical con-
cern of how IDN might be incrementally and partially de-
ployed in the existing Internet without restarting at year
zero. We then comment on the implications of this IDN
design (§4) and lay out a roadmap for the incremental
realisation of IDN (§6).

2 Intents

This section provides a straw man design of IDN. Firstly,
we define what an intent is (§2.1). We then propose an
approach for the formulation of intents based on compo-
sitions of primitive verbs (§2.2). Lastly, we discuss the
mechanics of reifying intents in terms of a structure of
“mediators” in the network (§2.3).

2.1 What is an Intent?
An intent is an abstract declaration of what the applica-
tion desires from the network on behalf of the user. It is
a composition of a set of primitive “verbs”, each describ-
ing a specific but high-level operation. For example, an
intent to update an Instagram feed might be composed
of primitive verbs to reconfigure the application topol-
ogy (connect to a service and to peers), exchange data
(update the content), and uphold a certain QoE level (al-
locate sufficient network resources). In response to this,
the network carries out the necessary configuration in or-
der to best serve such an intent. This could entail setting
up direct connections between users, and allocating fair
shares of router queues considering other services in the
network.

In more detail, the primitive elements that comprise in-
tents are expressed as <verb, object, modifiers, subject>
tuples. A verb is an operation that describes the intent
based on an ontology (described next in §2.2). Object
identifies a service, process or item that is the objective of
the verb. Modifiers are then used to specialize or param-
eterize this; each modifier can be tagged as either ‘essen-
tial’ or ‘desirable’, indicating prioritization preference.
Subject is an (optional) identifier of another service/pro-
cess/item that is to be linked to that defined in object.

Essentially, intent expression is based on the verb-
object-subject sentence structure used in linguistics, sup-
plemented by modifiers as an additional set of words.
Primitive intents expressed using such sentences are then
composed using recursive encapsulation to form a full in-
tent.

Intents are not limited to only user applications; they
extend to applications operated by other players in the
network (such as ISPs, cloud service providers, content
providers) to express their own intents.

2.2 Formulating Intents
An intent verb is expressed using one of the ontology en-
tries in Figure 2. This is not a comprehensive ontology;
modification and expansion is possible through collabo-
ration with the wider systems research community. The
ontology is divided into three operation categories: Con-
struct, Transfer, and Regulate. Each of these categories

2

has a number of sub-operations from which the verb is
chosen. Categories are just logical groupings; it is the
verbs that signify the primitive intent.

Verb
Transfer

Regulate

Construct

Push

Pull

Prioritize

Block

Advertize

Discover

Allocate

Level 1
Categories

Level 2
Primitive verbs

Figure 2: A basic ontology of primitive verbs.

Construct is used when an application needs to form
connections to another application (the object) in a peer-
to-peer fashion, either locally over a broadcast address
or remotely. An example is a request of intent for a VoIP
client to connect to another VoIP client. Discover is is-
sued to look for certain applications, whilst Advertize al-
lows an application to announce a new service that is able
to serve the intents of other applications. Examples in-
clude nodes spawning a caching or load balancing ser-
vice.

Construct intents can be extended to another level that
defines various applications to be discovered or adver-
tized, such as data storage, caching, compression, etc.
This would enable an application to offload common pro-
cessing tasks to the network. These enable an applica-
tion to dynamically employ external third party modules
without the latter being a component of the native appli-
cation code. This is of particular use to applications run-
ning on machines with scarce resources, like a mobile
gaming application offloading its transcoding processes.

Transfer intents allow applications to pull and push
content (the object). An item of content could be referred
to in any of a number of different ways, as illustrated in
Table 1. In this sense, a Transfer intent is analogous to
an ICN abstraction, where the Push verb corresponds to
a prefix announcement whilst Pull corresponds to an in-
terest packet.

Finally, Regulate intents capture the desire of an ap-
plication to have traffic handled in a certain way in the
network rather than locally. This is helpful for propagat-
ing traffic management higher up the network closer to
the source, which facilitates better network management

and aggregation of interests. An example is an intent to
block ssh login attempts from a certain address block, or
to prioritize traffic from a service like hulu.com, or to
apply QoE fairness policy (e.g. [12]).

2.3 Reifying Intents
Our conceptual architecture relies on a hierarchical stru-
cture of mediators deployed in the network. These are
middleboxes that arbitrate between user intents, network
and service operator policies, and the current state of
the network. We refer to this mediation presence in
the network as Maat and each of the middleboxes as a
Maat agent, in reference to the ancient Egyptian concept
of conflict resolution to achieve harmonious equilibrium
and order.

Given this, user intents are initially sent on a specific
broadcast address to be picked up by a local Maat agent.
If a Maat agent is not available as signified by the ex-
piry of a timer since issuing the intent, the application
can widen the address scope to seek another agent in the
parent subnetwork, or alternatively it could choose to fall
back to non-IDN behaviour.

If a Maat agent finds that it is able to satisfy an in-
tent, its job is to “reify” this intent by deploying or acti-
vating the required mechanisms (such as an in-network
function) or identifying candidate services (a nearby de-
ployment), and consequently sending the relevant info-
rmation back to the user application to realign itself ac-
cordingly. The Maat agent is also required to create a
session to keep track of how the intent was met. This is
important for auditing mediation efficiency.

In realizing IDN we do not propose the re-writing of
the entire network stack1. Instead, we propose to over-
lay the concept of intents onto the existing Internet ar-
chitecture. As such, our straw man IDN architecture
has been designed to support backward compatibility
(falling back to non-IDN behaviour) and incremental/
partial deployment. We will discuss this further in §4.2.

3 Examples

We now provide a set of use case examples to further
illustrate the formulation of intent and its corresponding
reification.

3.1 Use case #1: Clustering
Imagine that Alice is editing a document with her col-
leagues Bob and Charlie on the Google Docs cloud ser-
vice. Currently, this is handled in a manner that is anal-

1Although an IDN architecture could indeed be approached from
this angle, it is likely to create excessive disincentives that limit its
deployment.

3

Table 1: Examples of different ways to refer to content in a Transfer intent.

URL http://releases.ubuntu.com/15.04/ubuntu-15.04-server-i386.iso
CCN ubuntu.com/torrent/ubuntu-15.04-server-i386.iso
BitTorrent 05E965AC45FF0D739B3B8998FFFB815D1F238DE9

ogous to a chat server where the collaborators connect
to the Google backend to push edits and/or receive up-
dates. The problem with this is that it involves unneces-
sary communication back and forth to where the remote
service is hosted when some or all of the collaborators
may be within a short network distance of each other.

Using IDN, the local application on Alice’s device
(Google Docs in this case) would express its intent to
share updates between Alice and a set of other users. For
that, it needs to communicate with the Google backend to
fetch the addresses of the collaborators’ devices. These
are then used to formulate an intent as follows:

<allocate,
ip_multicast,
(ttl=32,essential),
<discover,

GoogleDocs,
(userID=92cd701c0be,essential),
(userID=33a88280853,essential),
NULL

>
>

Note that the intent here takes the form of a composition
between discover and allocate verbs. Having first dis-
covered the various players in this scenario (the Google-
Docs application and the relevant users), the network al-
locates a multicast group, and Maat responds with the
group address. From then onwards, local communica-
tions are exchanged over this group, and Alice’s appli-
cation is responsible for sending periodic updates to the
Google backend for backup if it requires. If the collab-
orator devices move or change, Alice will issue a new
intent accordingly.

3.2 Use case #2: Discovery

Serendipitous peer discovery is important for emerging
Internet applications. A particularly important applica-
tion of discovery is in Internet of Things (IoT) environ-
ments where a large number of hosts would be operating
different services in any one locality. Currently, discov-
ery relies on the presence of directory or similar services,
which obviously has its limitations in terms of consis-
tency, scalability (considering the scale of IoT swarms to
come [16]), and crossing vendor and operator divides [8].

In such a context we might signal an intent to build
a new overlay structure from a set of suitable nodes
(e.g. [6, 2]). This would work in a fashion similar to
ARP; a node would seek other nodes that fit certain cri-
teria on the service(s) they operate, location, communi-
cation mode, QoS metrics, etc. The network would then
propagate this intent announcement according to the cri-
teria laid out in the intent modifiers.

Consider for instance an actuator in an IoT deploy-
ment that wants to find a nearby node capable of run-
ning a MapReduce analytics workflow over a collection
of sensor data. In this case, the intent is formed by com-
posing a discover primitive verb with a push one as fol-
lows:

<push,
dataset-201507-1800,
(net=1.2.3.0/24,essential),
<discover,
hadoop,
(rtt<50ms,desirable) &

(rtt<80ms,essential),
hadoop-workflow.jar

>
>

This would be examined and collated by Maat in order
to allow the intent to be expanded and traverse across dif-
ferent networks and operational environments (if within
the specified criteria). As another example, an intent
could emanate from a node in a sensor network seeking
secure data storage, and use IDN to explore options as
diverse as local fixed-power nodes and remote data cen-
ters. Such discovery may also extend beyond IoT and in-
clude intents formed at different levels, such as the ability
to choose which middlebox (intrusion detection, proxies,
interceptors, anonymizers, etc.) to go through.

It is important to explicitly note that this is not a pro-
posal for another discovery broadcast protocol. On the
contrary, a key objective of IDN is to enable applications
to express high level intents and be agnostic about the
protocols used to satisfy them.

3.3 Use case #3: Edge Deployment

Finally, let us consider an example involving different
stakeholders: content and service providers. Both of

4

these stakeholders have a lot to gain from a strong pres-
ence towards the edge of the network in areas where there
is demand for their services.

Consider for instance a content provider that finds an
increase in the consumption of certain content (say the
feature film “A Beautiful Mind” following the death of
John Nash) in a particular area (say large metropolises
in the US). It is in the provider’s interest to provide good
viewing QoE for its customers and at the same time man-
age increased load on its backend services. Accordingly,
it might decide to push copies of the content to cache in
different cities.

In this case, the intent will be expressed as a compo-
sition of a verb that discovers suitable caching services
(the object) in certain locales (the modifiers), a verb that
pushes content to the discovered caching points, and a
final verb to announce the new content once cached.

The full intent will look like this:

<push,
ABeautifulMind,
(auth=https://provider.com/oauth),
<push,

831FD96B0.mp4,
NULL,
<discover,

cache,
(asn=123456,essential),
NULL

>
>

>

where asn represents the AS number which signifies a
certain customer base. Other modifiers could be used
to identify target locales at a finer grain. In a similar
fashion, a service provider might deploy applications to
nodes offering hosting services. This could be to balance
load at the edge, mitigate flash crowds, or improve user
QoE.

4 Implications

As already described, IDN pushes some of the meta-
logic of a deployed application to the network in a form
that can be reified by Maat. As such, IDN opens up a
whole new set of opportunities in research and opera-
tional circles, and also creates some challenges. We now
discuss some of these.

4.1 Opportunities
IDN opens up self-adaptation opportunities for all play-
ers in the network space, e.g. users, developers and ser-
vice providers. Users benefit from improved QoE thro-

ugh service provisioning that is dynamic and adaptive to
their requirements and contexts. Application developers
gain access to higher programming primitives that facil-
itate fluid application behaviour at runtime, with less re-
liance on ad hoc means of connecting services and miti-
gating failures. Service providers are empowered to pro-
vision their services in a migration-ready form so that
they will be able to compete to provide better QoE for
their end users.

IDN also opens a market for hosting services towards
the edge. This can be beneficial particularly for small
and medium sized service providers who cannot afford a
highly customized CDN presence like the Googles and
Facebooks of the world. Instead, they would be able to
bid for edge resource provisioning that in many parts of
the world has a wider reach that traditional CDNs [7, 9].
As such, there is also room for intermediaries to broker
between the above parties.

4.2 Challenges

With the benefits that IDN brings, it also generates a
number of challenges. The most prominent of these are
trust – specifically in terms of security and efficiency –
and deployment.

The security challenge could be summarized by the
following question: Could the application trust the net-
work to interfere with its communications, potentially
redirecting it to an unintended destination? This is in-
deed a major challenge that we recognize. We should
first clarify that the in-network Maat agents receive
and compile intents, not the subsequent communication
which is more likely to contain sensitive information.
Based on this, Maat would have information about the
desires of the application such as connecting with peers,
advertizing services or content, regulating network traf-
fic, etc. There is potentially a lot of risk in divulging such
information to outside parties. It is also noteworthy that
such challenges are also being faced by the current Inter-
net architecture.

The efficiency concern is summarized with a subtly
different question: Would the application trust the net-
work to potentially impede or interfere with its perfor-
mance? Maat will have significant influence on where
the application is redirected to serve its intent. As far as
the application is concerned, Maat mediators are black
boxes that might have interests conflicting with those of
the application users. They could also be misconfig-
ured, resulting in non-optimal mediation. We perceive
this challenge to in fact be an opportunity for auditing
schemes that ensure the efficiency of mediation. For this,
we envisage regular reporting of intent, and resulting
“mediation logs” that could be scrutinized to ascertain ef-
ficiency. In a multi-mediator market, the mediation score

5

resulting from such auditing mechanisms would engen-
der competition.

Another challenge relates to deployment and scala-
bility. The core IDN design lends itself to partial deploy-
ment through independent rollout of Maat agents most
likely at the edge. There are different ways of doing this,
one of which is to augment wireless routers with addi-
tional modules. Such devices, however, are typically re-
source constrained and might suffer from performance
issues if a large number of services are advertized on
their local address spaces. One way of avoiding this is
to deploy dedicated Maat agents instead of piggyback-
ing them on existing infrastructure. This comes with its
own cost, but is fairly feasible using commodity hard-
ware Linux boxes.

5 Related Work

We discuss work that is relevant to our IDN concept, and
briefly discuss some of the technologies that will enable
the reification of intents in the network.

5.1 x-Centric Approaches
Bringing application awareness to networks has been a
long sought after goal, with a number of technologies
and network architectures being presented.

Resource-centric. The Representational State Trans-
fer (REST) architectural principle [10] reduces network
interactions to a few verbs (GET, POST, DELETE, etc.).
REST professes an entirely stateless, resource-oriented
architectural style, transitioning between states using the
data included in the requests. This makes infrastructure
scalability and manageability much easier. However, the
REST philosophy continues to adopt the “narrow” net-
work API approach and, thus, continues to suffer from
all of the associated problems discussed in §1.

Network-centric. Information-centric networking
(ICN) solutions have been proposed to convert networks
into inherent content delivery systems [14]. Similarly,
service-centric networking (SCN)2 [11, 4, 13, 22, 19] ex-
tends ICN principles to apply to services as well as con-
tent. Both ICN and SCN attempt to break away from
statically binding to specific network resources. How-
ever, they only partly address the problems we have out-
lined in the specific cases of accessing content/services:
they do not naturally generalize to other scenarios, e.g.
those involving switching of networks.

Stakeholder-centric. The Experience-oriented net-
work architecture (EONA) [15] is one in which applica-
tion and content providers as well as infrastructure oper-
ators exchange information from their respective control

2Also known as service-oriented networking.

loops to improve user experience. We take inspiration
from EONA, but are concerned about the viability of its
approach. In a world where data is the new oil, we can
not imagine such cooperative exchange of information
happening between parties with sometimes conflicting
interests [5]. The authors do not provide a reasonable
argument for how this would be realized.

Application-centric. Closer to our proposal are re-
cent efforts in the direction of enabling applications to
express their requirements and allowing these to perco-
late down to the underlying network. Pyretic [18] is an
open source Python framework that raises the level of ab-
straction of writing network policies, enabling the defini-
tion of sophisticated network structures through a high-
level language. Merlin [20] is another declarative lan-
guage that enables the specification of a global network-
ing policy, which is expressed as a collection of logical
predicates to identify traffic subsets and a set of state-
ments indicating the action(s) to be taken on each sub-
set. However, both Pyretic and Merlin focus on issues
relating to unifying network administration rather than
identifying and addressing application requirements.

Other relevant efforts include: yanc [17], an ab-
straction in Linux to facilitate network control logic
to be written in any language; FlowOS [1], a pro-
gramming model to capture and process Internet flows;
NOSIX [24], an abstraction layer to enable portable de-
ployments; and P4 [3], a language to configure switches
to process packets and match header fields.

5.2 Enabling Technologies
The Active networking (AN) paradigm enables users to
modify network behavior by sending custom code to be
executed on network devices (cf. [21]). Software defined
networking (SDN) removes the need for bit-wise config-
uration of network components, and instead allows a cen-
tral policy to be applied system-wide. Both AN and SDN
technologies could be used to the benefit of users, but
neither helps the application signify its needs. Thus, they
are complementary to IDN by providing mechanisms to
manage and modify the network in order to reify intents.

6 Summary and Roadmap

We have proposed the concept of Intent Driven Net-
working (IDN) in which applications and also other
players such as content providers formulate their
communication-related “intents” in high-level terms that
get transformed into network-level reifications that bet-
ter support the application’s declared intents. We put
forward a straw man design which specifies how intents
might be formulated (§2.1). Formulation involves an on-
tology of intent verbs to signify various application de-

6

Formulation Compilation Mediation Brokerage Reification

Common
Ontologies
Common

Ontologies
Prioritization Prioritization SDN Mappings SDN Mappings

Conflict
Resolution

Conflict
Resolution

Trust Trust

Security Security

Compositional
Semantics

Compositional
Semantics

Developer
Tools

Developer
Tools

Auditing &
Arbitration
Auditing &
Arbitration

Figure 3: A roadmap for the realization of IDN.

sires (§2.2). Reification relies on the Maat system that
provides in-network mediation between user intents and
policies of network and service operators (§2.3).

Apart from enjoying network service levels that better
match their intents, applications also benefit from IDN
in that some of their logic could be pushed to the net-
work. No longer are they expected to ship with intricate
conditional logic to work around unexpected network be-
haviour. (They still could employ such logic, but they
would thereby be limiting their ability to be deployed in
foreign environments and under unforeseen conditions.)

Maat also exploits the high semantic content of intent
specification to optimize resource usage within the net-
work. It does this by explicitly negotiating how each in-
tent might best be reified to produce the most “friendly”
way in which each network interaction can be performed,
considering the needs of all stakeholders.

There is a huge body of future work required to de-
velop IDN into a viable implementation. We tried to
capture some of the required next steps in a roadmap
depicted in Figure 3. This, however, is undoubtedly a
non-exhaustive plan of action. Therefore, we solicit con-
tributions from the wider systems research community,
architects and developers of different disciplines.

We see the process of developing a proof-of-concept
realisation of our design as falling into three main work-
packages. First, we will work on the formalism of intent
specification and its compilation into a format that can
be used by Maat. This will involve refining the ontology
presented in this paper and defining a domain-specific
language for the formulation of intents on the basis of
this, and also the creation of associated developer tools.
It will also involve investigating the semantics of the (re-
cursive) composition of intents in terms of existing in-
tents and ultimately in terms of primitive verbs. Com-
position semantics must take into account the effects of
composing network functions that interact in complex

ways: for example how caching strategies change when
associated with mobility.

The second workpackage involves the definition of
the negotiation protocol employed between Maat agents.
This should be independent of any particular set of verbs
and rely on generic notions of utility and priority as de-
rived from intent specification, and be capable of han-
dling negotiations between multiple stakeholders and
converging on distributed consensus. It is clear that me-
diation is a highly complex task as it is likely that many
conflicts will emerge. For example, a user streaming con-
tent would want high quality delivery at low cost, a pub-
lisher would wish to have their content viewed as many
times as possible, and an ISP would prefer to only have
low-cost (locally available) content viewed. Such po-
tentially conflicting viewpoints will need to ensure thor-
ough negotiation to ensure that all stakeholders are in-
centivized to cooperate in the scheme.

The third workpackage would then focus on practical
aspects of the deployment of Maat agents, as discussed
in §4.2.

As a final consideration, marketplace brokerage is an
area with a lot of potential for reifying spontaneous and
strategic intent. Reification is likely to create the need
for running in-network services towards the edge. Mar-
ketplaces of resources to host such services might benefit
from the operation of brokerage and arbitrage agencies,
a role which might be co-located with Maat. For this,
thorough investigation is required to alleviate concerns
regarding trust and security. Efforts are also sought for
reifying mediation outcomes in the form of adjusting the
network control plane (using SDN technologies) or pro-
viding information that could be used for late-binding.

We hope that our proposed architecture will serve as
an initial step towards a long-term research campaign
that focuses on the higher-layer wants and needs of In-
ternet stakeholders rather than forcing them into using
fixed and constrained abstractions.

7

References

[1] BEZAHAF, M., ALIM, A., AND MATHY, L.
FlowOS: A flow-based platform for middleboxes.
In HotMiddlebox (2013), ACM, pp. 19–24.

[2] BLAIR, G. S., BROMBERG, Y.-D., COULSON,
G., ELKHATIB, Y., RÉVEILLÈRE, L., RIBEIRO,
H. B., RIVIÈRE, E., AND TAÏANI, F. Holons: To-
wards a systematic approach to composing systems
of systems. In Workshop on Adaptive and Reflective
Middleware (Dec 2015), ACM, pp. 5:1–5:6.

[3] BOSSHART, P., DALY, D., GIBB, G., IZ-
ZARD, M., MCKEOWN, N., REXFORD, J.,
SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Program-
ming protocol-independent packet processors. SIG-
COMM Computer Communication Review 44, 3
(Jul 2014), 87–95.

[4] BRAUN, T., MAUTHE, A., AND SIRIS, V. Service-
centric networking extensions. In Symposium on
Applied Computing (2013), ACM, pp. 583–590.

[5] CLARK, D. D., BAUER, S., LEHR, W., CLAFFY,
K. C., DHAMDHERE, A. D., HUFFAKER, B.,
AND LUCKIE, M. Measurement and analysis of in-
ternet interconnection and congestion. In Telecom-
munications Policy Research Conference (2014).

[6] COULSON, G., BLAIR, G. S., ELKHATIB, Y.,
AND MAUTHE, A. The design of a generalised ap-
proach to the programming of systems of systems.
In Proceedings of the workshop on Autonomic and
Opportunistic Computing (Jun 2015).

[7] ELKHATIB, Y. Building cloud applications for
challenged networks. In Embracing Global Com-
puting in Emerging Economies, R. Horne, Ed.,
vol. 514 of Communications in Computer and Info-
rmation Science. 2015, pp. 1–10.

[8] ELKHATIB, Y. Mapping cross-cloud systems:
Challenges and opportunities. In HotCloud (Jun
2016).

[9] FANOU, R., TYSON, G., FRANCOIS, P., AND
SATHIASEELAN, A. Pushing the frontier: Explor-
ing the African web ecosystem. In WWW (2016).

[10] FIELDING, R. T. Architectural Styles and the De-
sign of Network-based Software Architectures. PhD
thesis, University of California, Irvine, 2000.

[11] FREEDMAN, M. J., ARYE, M., GOPALAN, P.,
KO, S. Y., NORDSTROM, E., REXFORD, J., AND

SHUE, D. Service-centric networking with SCAF-
FOLD. Tech. Rep. TR-885-10, Princeton Univer-
sity, Sep 2010.

[12] GEORGOPOULOS, P., ELKHATIB, Y., BROAD-
BENT, M., MU, M., AND RACE, N. To-
wards network-wide QoE fairness using openflow-
assisted adaptive video streaming. In Proceed-
ings of the ACM SIGCOMM Workshop on Future
Human-Centric Multimedia Networking (FhMN
2013) (Aug 2013), ACM, pp. 15–20.

[13] GRIFFIN, D., RIO, M., SIMOENS, P., SMET,
P., VANDEPUTTE, F., VERMOESEN, L., BURSZ-
TYNOWSKI, D., AND SCHAMEL, F. Service ori-
ented networking. In European Conference on Net-
works and Communications (Jun 2014), pp. 1–5.

[14] JACOBSON, V., SMETTERS, D. K., THORNTON,
J. D., PLASS, M. F., BRIGGS, N. H., AND BRAY-
NARD, R. L. Networking named content. In
CoNEXT (2009).

[15] JIANG, J., LIU, X., SEKAR, V., STOICA, I., AND
ZHANG, H. Eona: Experience-oriented network
architecture. In HotNets (2014), ACM, pp. 11:1–
11:7.

[16] LEE, E., RABAEY, J., HARTMANN, B., KU-
BIATOWICZ, J., PISTER, K., SANGIOVANNI-
VINCENTELLI, A., SESHIA, S., WAWRZYNEK,
J., WESSEL, D., ROSING, T., BLAAUW, D.,
DUTTA, P., FU, K., GUESTRIN, C., TASKAR,
B., JAFARI, R., JONES, D., KUMAR, V., MANG-
HARAM, R., PAPPAS, G., MURRAY, R., AND
ROWE, A. The swarm at the edge of the cloud.
IEEE Design & Test 31, 3 (2014), 8–20.

[17] MONACO, M., MICHEL, O., AND KELLER, E.
Applying operating system principles to SDN con-
troller design. In HotNets (2013), ACM, pp. 2:1–
2:7.

[18] REICH, J., MONSANTO, C., FOSTER, N., REX-
FORD, J., AND WALKER, D. Modular SDN
programming with Pyretic. Technical Report of
USENIX (2013).

[19] SATHIASEELAN, A., WANG, L., AUCINAS, A.,
TYSON, G., AND CROWCROFT, J. SCANDEX:
Service centric networking for challenged decen-
tralised networks. In Proceedings of the 2015
Workshop on Do-it-yourself Networking: An Inter-
disciplinary Approach (2015), DIYNetworking’15,
ACM, pp. 15–20.

8

[20] SOULÉ, R., BASU, S., KLEINBERG, R., SIRER,
E. G., AND FOSTER, N. Managing the network
with merlin. In HotNets (2013), ACM, pp. 24:1–
24:7.

[21] TENNENHOUSE, D., SMITH, J., SINCOSKIE, W.,
WETHERALL, D., AND MINDEN, G. A survey
of active network research. IEEE Communication
Magazine 35, 1 (Jan 1997), 80–86.

[22] TSCHUDIN, C., AND SIFALAKIS, M. Named func-
tions and cached computations. In IEEE Consumer

Communications and Networking Conference (Jan
2014), pp. 851–857.

[23] TYSON, G., SASTRY, N., CUEVAS, R., RIMAC,
I., AND MAUTHE, A. Where is in a name? A
survey of mobility in information-centric networks.
Commun. of ACM 56, 12 (Dec 2013), 90–98.

[24] YU, M., WUNDSAM, A., AND RAJU, M. NOSIX:
A lightweight portability layer for the SDN OS.
SIGCOMM Computer Communication Review 44,
2 (Apr 2014), 28–35.

9

	1 Introduction
	2 Intents
	2.1 What is an Intent?
	2.2 Formulating Intents
	2.3 Reifying Intents

	3 Examples
	3.1 Use case #1: Clustering
	3.2 Use case #2: Discovery
	3.3 Use case #3: Edge Deployment

	4 Implications
	4.1 Opportunities
	4.2 Challenges

	5 Related Work
	5.1 x-Centric Approaches
	5.2 Enabling Technologies

	6 Summary and Roadmap

