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Abstract

My dissertation consists of two chapters on nonparametric inference and model selection in

econometric models.

Researchers in economics and social science need reliable models and statistical tools

to quantify economic relationships and uncertainty associated with data. In practice, re-

searchers often evaluate their object of interests with various specifications in the first stage

of analysis or select model by some criteria. Unfortunately, commonly used statistical meth-

ods may fail to assess uncertainty inherent in the first step specification search. Moreover,

some existing model selection criteria may be fragile due to model misspecification errors.

All these methods can lead to misleading conclusions without valid, robust corrections. To

quantify and test economic theories more accurately in such cases, researchers and policy

makers need more reliable and robust methods. My research investigates these issues and

provides practical methods in empirical research with rigorous theoretical justifications.

First chapter provides new inference methods in nonparametric series regression with

data dependent number of series terms. Nonparametric series estimation have increased their

popularity as it gives flexible method addressing potential misspecification of the parametric

model. However, implementation in practice requires a choice of the number of series terms

and the estimation and inference may largely depend on its choice. Existing asymptotic

theory for inference in nonparametric series estimation typically imposes an undersmoothing

condition that the number of series terms is sufficiently large to make bias asymptotically

negligible. However, there is no formally justified data-dependent method for this in practice.
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This chapter constructs inference methods for nonparametric series regression models and

introduces tests based on the infimum of t-statistics over different series terms. First, I pro-

vide a uniform asymptotic theory for the t-statistic process indexed by the number of series

terms. Using this result, I show that the test based on the infimum of the t-statistics and its

asymptotic critical value controls the asymptotic size with the undersmoothing condition.

We can construct a valid confidence interval (CI) by test statistic inversion that has cor-

rect asymptotic coverage probability. Even when asymptotic bias terms are present without

the undersmoothing condition, I show that the CI based on the infimum of the t-statistics

bounds the coverage distortions. In an illustrative example, nonparametric estimation of

wage elasticity of the expected labor supply from Blomquist and Newey (2002), proposed

CI is close to or tighter than those based on existing methods with possibly ad hoc choice

of series terms.

Second chapter provides instrument selection criteria in instrumental variable (IV) re-

gression model when there is a large set of instruments with potential invalidity. Economic

data identified by IV model sometimes involve large sets of potential instruments and debates

about their validity. Existing methods for instrument selection are largely based on a priori

assumption of an instrument’s validity and/or based on the first-order asymptotics, which

may lead to a large finite sample bias with many and invalid instruments. First, I derive

higher-order mean square error (MSE) approximation for two-stage least squares (2SLS),

limited information maximum likelihood (LIML), modified Fuller (FULL) and bias-adjusted

2SLS (B2SLS) estimator allowing locally invalid instruments. Based on the approximation

to the higher-order MSE, I propose an invalidity-robust instrument selection criteria (IRC)

that capture two sources of finite sample bias at the same time: bias from using many

instruments and bias from invalid instruments. I also show optimality result of choice of

instruments based on the criteria of Donald and Newey (2001) under certain locally invalid

instruments specification.
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Chapter 1

Inference in Nonparametric Series

Estimation with Data-Dependent

Number of Series Terms

1.1 Introduction

Nonparametric series estimation has received attention in both theoretical econometrics and

applied economics. I consider the following nonparametric regression model;

yi = g0(xi) + εi,

E(εi|xi) = 0

(1.1.1)

where {yi, xi}ni=1 is i.i.d. with scalar response variable yi, vector of covariates xi ∈ Rdx ,

and g0(x) = E(yi|xi = x) is the conditional mean function. Examples falling into the model

(1.1.1) include nonparametric estimation of the Mincer equation, gasoline demand, and labor

supply function (see, among many others, Heckman, Lochner and Todd (2006), Hausman and

Newey (1995), Blomquist and Newey (2002), Blundell and MaCurdy (1999), and references

therein). Addressing potential misspecification of the parametric model, nonparametric se-
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ries methods have several advantages, as they can easily impose shape restrictions such as

additive separability or concavity, and implementation is easy because the estimation method

is least squares (LS). However, implementation in practice requires a choice of the number

of series terms (K). Estimation and inference may largely depend on its choice in finite

samples. Moreover, the required K may vary with different data sets to accommodate the

smoothness and nonlinearity of the unknown function and different sample sizes, as well as

whether the goal is estimation or inference.

Existing theory for the asymptotic normality and valid inference imposes so-called under-

smoothing (or overfitting) condition that is a faster rate of K than the mean-squared error

(MSE) optimal convergence rates to make bias asymptotically negligible relative to vari-

ance. The undersmoothing condition has been imposed, particularly for valid inference, in

many nonparametric series methods both in theory and in practice, as there is no theory for

the bias-correction available to date. Ignoring asymptotic bias with this undersmoothing as-

sumption, one can apply the conventional confidence interval (CI) using the standard normal

critical value, with estimate and standard error based on some choice of “large” K. How-

ever, the asymptotic theory does not provide specific guidelines for choosing a “sufficiently

large” number of series terms to make the bias small in practice. Some ad hoc methods in

practice select K̂ = K̃ · nγ, with some pre-selected K̃ and a specific rate of γ that satisfies

the undersmoothing level. However, there is no formally justified data-dependent method to

choose K that gives the desired level of undersmoothing in series regression literature.

Due to these unsatisfactory results for the inference procedure both in theory and prac-

tice, a specification search seems necessary, i.e., search over different series terms K ∈ [K, K̄]

with the given sample sizes n. For example, a researcher may use quadratic, cubic, or quartic

terms in the polynomial regression, or try a different number of knots in the regression spline

to see how the estimate and standard error change. Moreover, some data-dependent selection

rules that are valid for estimation (such as cross-validation or Akaike information criterion

(AIC)) and some rule-of-thumb methods that are suggested for inference, also require eval-
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uating estimates with different Ks. If some researchers evaluate different estimators with

different number of terms, it is not clear how this randomness affects inference.

In this paper, I construct inference methods in nonparametric series regression with data-

dependent number of series terms. I consider the testing problem for a regression function at

a point and introduce tests based on the infimum of the studentized t-statistics over different

series terms. Tests based on the infimum t-statistics and searching for the small t-statistic

have a similar motivation to the one on which the undersmoothing condition is theoretically

based: searching for the “large” K that has a small bias and large variance. Many papers

in nonparametric series estimation literature typically suggested to increase the number of

series terms and include additional terms than those cross-validation chooses, especially for

inference (for example, see Newey (2013), Newey, Powell and Vella (2003)). Here, I formally

justify this conventional wisdom by introducing the infimum test statistic, and provide an

inference method based on its asymptotic distribution.

For this, I first provide a uniform asymptotic theory for the t-statistic process indexed by

the number of series terms. Existing asymptotic normality of the t-statistic in the literature

holds under a deterministic sequence of K → ∞ as the sample size n increases. The main

contribution of this paper is to derive the asymptotic distribution theory for the entire

sequences of t-statistics over a range of K.

Using this result, I show that the test based on the infimum of the t-statistics and its

asymptotic critical value control the asymptotic size (null rejection probability) of the test

with the undersmoothing condition for all Ks in a set. Allowing asymptotic bias without

the undersmoothing condition, I also analyze the effect of bias on the size of the tests. Even

when asymptotic bias terms are present, the tests based on the infimum t-statistic bound the

size distortions, in the sense that the asymptotic size of the tests is bounded above by the

asymptotic size of a single t-statistic with the smallest bias. The infimum t-statistic is less

sensitive to the asymptotic bias; it naturally excludes small K with large bias and selects

among some large Ks under the null.
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I also construct a valid pointwise confidence interval for the true parameter that has

nominal asymptotic coverage probability by test statistic inversion. The proposed CI based

on infimum test statistic can be easily constructed using estimates and standard errors for

the set of Ks. It is obtained as the union of all CIs by replacing the standard normal critical

value with the critical value from the asymptotic distribution of the infimum t-statistic.

We can approximate the asymptotic critical value using a simple Monte Carlo or weighted

bootstrap method. I find that our proposed CI performs well in Monte Carlo experiments;

coverage probability of the CI based on the infimum t-statistics is close to the nominal level in

various simulation setups. I also find that this CI bounds the coverage distortions even when

asymptotic bias is present. As an illustrative example, I revisit nonparametric estimation of

wage elasticity of the expected labor supply, as in Blomquist and Newey (2002).

As a by-product of the joint asymptotic distribution results, this paper also provides a

valid CI after selecting the number of series terms. By adjusting the conventional normal

critical value to the critical value from supremum of the t-statistics over all series terms,

this gives a valid post-selection CI that has a correct coverage with any choice of K̂ among

some ranges. By enlarging the CI with critical values larger than the normal critical value,

this post-selection CI can accommodate bias, although it does not explicitly deal with bias

problems. I expect this lead to a tighter CI than those based on the Bonferroni-type critical

value, as we incorporate the dependence structure of the t-statistics from our asymptotic

distribution theory.

I also investigate inference methods in partially linear model setup. Focusing on the

common parametric part, choice problems also occur for the number of approximating terms

or the number of covariates in estimating the nonparametric part. Unlike the nonparamet-

ric object of interest that has a slower convergence than n1/2 (e.g., regression function or

regression derivative), t-statistics for the parametric object of interest are asymptotically

equivalent for all sequences of K under standard rate conditions, in which K increases much

slower than the sample size n. To fully account for joint dependency of the t-statistics with
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the different sequences of Ks in the partially linear model setup, this requires a different

approximation theory than the nonparametric regression setup. Using the recent results of

Cattaneo, Jansson, and Newey (2015a), I develop a joint asymptotic distribution of the stu-

dentized t-statistics over a different number of series terms. By focusing on the faster rate of

K that grows as fast as the sample size n and using larger variance than the standard vari-

ance formula, we are able to account for the dependency of t-statistics with different Ks. I

also propose methods to construct CIs that are similar to the nonparametric regression setup

and provide their asymptotic coverage properties. Potential empirical applications include,

but are not limited to, estimation of the treatment effect model with series approximations.

1.1.1 Related Literature

The literature on the nonparametric series estimation is vast, but data-dependent series term

selection and its impact on estimation or inference is comparatively less developed. Perhaps

the most widely used data-dependent rule in practice is cross-validation. Asymptotic opti-

mality results have been developed (see, for example, Li (1987), Andrews (1991b), Hansen

(2015)) in terms of asymptotic equivalence between integrated mean squared error (IMSE)

of the nonparametric estimator with K̂cv selected by minimizing the cross-validation crite-

rion and IMSE of the infeasible optimal estimator. However, there are two problems with

cross-validation selected K̂cv for the valid inference. First, it is asymptotically equivalent to

selecting K to minimize IMSE, and thus it does not satisfy the undersmoothing condition

needed for asymptotic normality without bias terms. Therefore, a t-statistic based on K̂cv

will be asymptotically invalid. Second, K̂cv selected by cross-validation will itself be ran-

dom and not deterministic. Thus, it is not clear whether the t-statistic based on K̂cv has a

standard asymptotic normal distribution, derived under a deterministic sequence for K.

Recent papers by Horowitz (2014), Chen and Christensen (2015a) develop novel data-

dependent methods in the nonparametric instrumental variables (NPIV) estimation (see also

other references therein). They develop data-driven methods for choosing sieve dimension
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in that resulting NPIV estimators attain the optimal sup-norm or L2 norm rates adaptive

to the unknown smoothness of g0. In this paper, we focus on the inference problem rather

than estimation with the similar issues arising from cross-validation.

This paper is also closely related to the previous methods that conceptually require

increasing K until t-statistic is “small enough”. For example, among many others, Newey

(2013) suggested increasing K until standard errors are large relative to small changes in

objects of interest, and Horowitz and Lee (2012) suggested increasing K until variance

suddenly increases. They discuss these methods work well in practice and simulation for

the inference. Here, with the similar ideas, we can account the randomness introduced in

the first step specification search by introducing the infimum test statistic and provide formal

inference methods based on its asymptotic distribution results.

Several important papers have investigated the asymptotic properties of series (and

sieves) estimators, including papers by Andrews (1991a), Eastwood and Gallant (1991),

Newey (1997), Huang (2003a), Chen (2007), Belloni, Chernozhukov, Chetverikov, and Kato

(2015), and Chen and Christensen (2015b), among many others. They focused on (pointwise

and uniform) convergence rates, asymptotic normality for series estimators, and inference

on (linear and nonlinear) functionals under a deterministic sequence of K. This paper ex-

tends the asymptotic normality of the t-statistic under a single sequence of K to the uniform

central limit theorem of the t-statistic for the sequences of K over a set.

For the kernel-based density or regression estimation, the data-dependent bandwidth

selection problem is well known. Several rule-of-thumb methods and plug-in optimal band-

widths have been proposed. Calonico, Cattaneo and Farrell (2015) compared higher-order

coverage properties of undersmoothing and explicit bias-corrections, and derived coverage

optimal bandwidth choices in kernel estimation. Hall and Horowitz (2013) proposed CIs

using first-stage bootstrap methods to account for the bias of the kernel estimator. Unlike

the kernel-based methods, little is known about the statistical properties of data-dependent

selection rules (e.g., rates of K̂cv) and asymptotic distribution of nonparametric estimators
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with data-dependent methods in series estimation. In general, the main technical difficulty

arises from the lack of an explicit asymptotic bias formula for the series estimator (see Zhou,

Shen, and Wolfe (1998) and Huang (2003b) for exceptions with some specific sieves). Thus,

it is difficult to derive an asymptotic theory for the bias-correction or some plug-in formula

compare with kernel estimation. In recent paper, Hansen (2014) introduce a bias-robust CI

using the critical value from a non-central normal distribution with an estimated asymptotic

bias.

A recent paper that is concurrent with this paper, Armstrong and Kolesár (2015) consid-

ered inference methods in kernel estimation. Focusing on the supremum of the t-statistics

over the bandwidths, they developed confidence intervals that are uniform in bandwidths.

Considering supremum statistic is motivated by the sensitivity analysis as a usual correc-

tion for the multiple testing problem. Moreover, considering different bandwidths and the

test based on the supremum of the studentized t-statistics has been used to achieve adap-

tive inference procedures when smoothness of the function is unknown (See Horowitz and

Spokoiny (2001), and also Armstrong (2015)). Although this paper has analogous results

with Armstrong and Kolesár (2015) considering supremum of the t-statistics (see Section

1.14), the main focus of this paper is asymptotic bias and undersmoothing condition, which

may be crucial in series estimation. Compare with the new tests based on the infimum t-

statistics, inference based on the supremum t-statistic can be sensitive to the bias problems,

i.e., supremum t-statistics may pick estimator with huge bias under the null that lead to

over-rejection of the test.1

The outline of the paper is as follows. I first introduce basic nonparametric series re-

gression setup in Section 1.2. In Section 1.3, I provide an empirical process theory for the

t-statistic sequences over a set. Section 1.4 introduces infimum of the t-statistic and describes

the asymptotic null distributions of the test statistic. Then, I provide the asymptotic size

1We may also consider other types of t-statistics that is robust to the bias issues such as “median” of
the t-statistics. Any types of test statistics that are continuous transformation of joint t-statistics with its
appropriate critical value leads to the tests that control the asymptotic size with undersmoothing.
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results of the test and implementation procedure for the critical value. Section 1.5 introduces

CIs based on the infimum test statistic and provides their coverage properties. Section 1.6

analyzes valid post-model selection inference in this setup. Section 1.7 extends our inference

methods to the partially linear model setup. Section 1.8 includes Monte Carlo experiments

in various setups. Section 1.9 illustrates proposed inference methods using the nonparamet-

ric estimation of wage elasticity of the expected labor supply, as in Blomquist and Newey

(2002), then Section 1.10 concludes. Section 1.12 and 1.13 include all proofs, figures and

tables. Section 1.14 discuss inference procedures based on the supremum of the t-statistics.

1.1.2 Notation

I introduce some notation will be used in the following sections. I use ||A|| =
√
tr(A′A) for

the euclidean norm. Let λmin(A), λmax(A) denote the minimum and maximum eigenvalues

of a symmetric matrix A, respectively. op(·) and Op(·) denote the usual stochastic order

symbols, convergence in probability and bounded in probability.
d−→ denotes convergence

in distribution and ⇒ denotes weak convergence. I use the notation a ∧ b = min{a, b},

a ∨ b = max{a, b}, and denote bac as a largest integer less than the real number a. For two

sequences of positive real numbers an and bn, an . bn denotes an ≤ cbn for all n sufficiently

large with some constant c > 0 that is independent of n. an � bn denotes an . bn and

bn . an. For a given random variable {Xi} and 1 ≤ p < ∞, Lp(X) is the space of all

Lp norm bounded functions with ||f ||Lp = [E||f(Xi)||p]1/p and `∞(X) denotes the space of

all bounded functions under sup-norm, ||f ||∞ = supx∈X |f(x)| for the bounded real valued

functions f on the support X . Let also R+ = {x ∈ R : x ≥ 0}, R+,∞ = R+ ∪ {+∞},

R[+∞] = R ∪ {+∞} and R[±∞] = R ∪ {+∞} ∪ {−∞}.
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1.2 Nonparametric Series Regression

In this section, I first introduce the nonparametric series regression setup. Given a random

sample {yi, xi}ni=1, we are interested in the conditional mean g0(x) = E(yi|xi = x) at a point

x ∈ X ⊂ Rdx . All the results derived in this paper are pointwise inference in x and I will

omit the dependence on x if there is no confusion.

We consider sequence of approximating model indexed by number of series terms K ≡

K(n). Let ĝK(x) be an estimator of g0(x) using the first K vectors of approximating func-

tions PK(x) = (p1(x), · · · , pK(x))′ from basis functions p(x) = (p1(x), p2(x), · · · )′. Standard

examples for the basis functions are power series, fourier series, orthogonal polynomials (e.g.,

Hermite polynomials), or splines with evenly sequentially spaced knots. Basis functions may

come from set of large number of potential regressors and/or their nonlinear transformations.

Series estimator ĝK(x) is obtained by standard least square (LS) estimation of yi on

regressors PKi

ĝK(x) = PK(x)′β̂K , β̂K = (PK′PK)−1PK′Y (1.2.1)

where PKi ≡ PK(xi) = (p1(xi), p2(xi), · · · , pK(xi))
′, PK = [PK1, · · · , PKn]′, Y = (y1, · · · yn)′.

We can think of ĝK(x) as an estimator of the best linear approximation for g0(x), PK(x)′βK ,

where βK can be defined as the best linear projection coefficients, βK ≡ (E[PKiP
′
Ki])

−1E[PKiyi].

For some x ∈ X , define the approximation error using K series terms as rK(x) = g0(x) −

PK(x)′βK . Also define rKi ≡ rK(xi), pi ≡ p(xi) = (p1i, p2i, · · · , )′. We can write the model

using K approximating terms as the following projection model

yi = P ′KiβK + εKi, E[PKiεKi] = 0 (1.2.2)

where εKi ≡ rKi + εi.

For simplicity of notation, I define the true regression function at a point as θ0 ≡ g0(x).
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Let θ̂K ≡ ĝK(x) and θK ≡ PK(x)′βK . Define the asymptotic variance formula

VK ≡ VK(x) = PK(x)′Q−1
K ΩKQ

−1
K PK(x),

QK = E(PKiP
′
Ki), ΩK = E(PKiP

′
Kiε

2
i )

(1.2.3)

where Q−1
K ΩKQ

−1
K is the conventional asymptotic covariance formula for the LS estimator

β̂K .

We are interested in (two-sided) testing for θ

H0 : θ = θ0, H1 : θ 6= θ0. (1.2.4)

The studentized t-statistic for H0 is

Tn(K, θ0) ≡
√
n(ĝK(x)− g0(x))

V
1/2
K

=

√
n(θ̂K − θ0)

V
1/2
K

. (1.2.5)

Under standard regularity conditions (will be discussed in Section 1.3) including an under-

smoothing rate for deterministic sequence K → ∞ as n → ∞, the asymptotic distribution

of the t-statistic is well known

Tn(K, θ0)
d−→ N(0, 1). (1.2.6)

See, for example, Andrews (1991a), Newey (1997), Belloni et al. (2015), Chen and Chris-

tensen (2015b). In the next section, I formally develop an asymptotic distribution theory of

the t-statistic (1.2.5) in K over a set Kn.
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1.3 Asymptotic Distribution of the Joint t-statistics

1.3.1 Weak Convergence of t-statistic Process

In this section, I provide asymptotic distribution theory of the joint t-statistics over a set.

I introduce following set Kn to construct empirical process theory of the t-statistics over

K ∈ Kn that can be indexed by the continuous parameter π, which is a ‘fraction’ of the

largest series terms K̄.

Assumption 1.1. (Set of number of series terms) Let Kn as

Kn = {K ∈ N+ : K ∈ [K, K̄]}

where K ≡ bπK̄c for π ∈ (0, 1) and N+ is the set of all positive integers.

The standard inference methods in this setup typically consider singleton set Kn = {K}.

Assumption 1.1 considers range of number of series terms and considers (infinite) sequence

of models indexed by π ∈ Π = [π, 1] using K = bπK̄c series terms. Note that Kn is indexed

by sample size n, as I will impose rate conditions for the largest K̄ ≡ K̄(n) in the next

Assumption 1.2.

We now consider the sequence of t-statistics Tn(K, θ) defined in (1.2.5) for K ∈ Kn.

Under Assumption 1.1, I define the t-statistic process , T ∗n(π, θ), indexed by π ∈ Π = [π, 1] as

T ∗n(π, θ) ≡ Tn(bπK̄c, θ). (1.3.1)

T ∗n(π, θ) is the t-statistic using K = bπK̄c number of series terms. Note that T ∗n(π, θ) is a

step function of π.

In addition to imposing the set assumption, I impose mild regularity conditions that are

standard in nonparametric series regression literature and are satisfied by well-known basis

functions. I closely follow assumptions in the recent paper by Belloni et al. (2015), Chen and
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Christensen (2015b) and impose rate conditions of K uniformly over Kn. Other regularity

conditions in the literature (e.g., Newey (1997)) can also be imposed here with different rate

conditions of K.

Define ζK ≡ supx∈X ||PK(x)|| as the largest normalized length of the regressor vector for

each K ∈ Kn, and λK ≡ λmin(QK)−1/2 for K ×K design matrix QK = E(PKiP
′
Ki).

Assumption 1.2. (Regularity conditions)

(1) {yi, xi}ni=1 are i.i.d random variables satisfying the model (1.1.1).

(2) supx∈X E(ε2
i |xi = x) <∞, infx∈X E(ε2

i |xi = x) > 0, and supx∈X E(ε2
i {|εi| > c(n)}|xi =

x)→ 0 for any sequence c(n)→∞ as n→∞.

(3) For each K ∈ Kn, as K →∞, there exists η and cK , `K such that

sup
x∈X
|g0(x)− PK(x)′η| ≤ `KcK , E[(g0(xi)− PK(xi)

′η)2]1/2 ≤ cK .

(4) supK∈Kn λK . 1.

(5) supK∈Kn ζK
√

(logK)/n(1 +
√
K`KcK)→ 0 as n→∞.

Assumption 1.2-(2) imposes moment conditions and standard uniform integrability con-

ditions. Assumption 1.2-(3) is satisfied with various basis functions. If the support X is

a cartesian product of compact connected intervals (e.g. X = [0, 1]dx), then ζK . K for

power series and other orthogonal polynomial series, and ζK .
√
K for regression splines,

Fourier series and wavelet series. cK and `K in Assumption 1.2-(3) vary with different basis

and can be replaced by series specific bounds. For example, if g0(x) belongs to the Hölder

space of smoothness p, then cK . K−p/dx , `K . K for power series, cK . K−(p∧s0)/dx , `K . 1

for spline and wavelet series of order s0 (see Newey (1997), Chen (2007), Belloni et al.

(2015), and Chen and Christensen (2015b) for more discussions on cK , `K , ζK with various

series/sieves basis). When the probability density function of xi is uniformly bounded above



13

and bounded away from zero over compact support X and orthonormal basis is used, then

we have λK . 1 (see, for example, Proposition 2.1 in Belloni et al. (2015) and Remark 2.2 in

Chen and Christensen (2015b)). The rate conditions in Assumption 1.2-(5) can be replaced

by the specific bounds of ζK , cK , `K . For example, for the power series, Assumption 1.2-(5)

reduced to supK∈Kn
√
K2(logK)/n(1 + K3/2−p/dx) =

√
K̄2(log K̄)/n(1 + K̄3/2−p/dx) → 0

with the Assumption 1.1.

Together with the Assumption 1.2, set Kn in Assumption 1.1 considers the sequence of

models that has the same rate of K, i.e., K � K ′ for any K,K ′ ∈ Kn. Dimension of Kn

is |Kn| = bK̄(1 − π)c + 1 → ∞ as n → ∞. Assumption 1.1 does not consider all differ-

ent sequences of K satisfying asymptotic normality of series estimators, however, these are

appropriate sequences to be able to develop joint distributions of the t-statistics. As studen-

tized t-statistic is normalized by variance terms VK which increases differently with different

rates of K, two t-statistics with different rates are asymptotically independent, thus hard to

incorporate dependency (see Section 1.3.2 for formal results). Therefore, this set assumption

is important for our theory to provide uniform central limit theorem of the t-statistic process.

For notational simplicity, it is convenient to define Pπ(x) ≡ PbK̄πc(x), Pπi ≡ Pπ(xi) =

PbK̄πci and rπ ≡ rπ(x) = rbK̄πc(x). Asymptotic variance can be defined as Vπ ≡ Vπ(x) =

||Ω1/2
π Q−1

π Pπ(x)||2, where Ωπ = E(PπiP
′
πiε

2
i ), Qπ = E(PπiP

′
πi). Under Assumptions 1.1 and

1.2, the t-statistic process under H0 can be decomposed as follows

T ∗n(π, θ0) =
1√
n

n∑
i=1

Pπ(x)′Pπiεi

V
1/2
π

−
√
nV −1/2

π rπ + op(1), π ∈ Π (1.3.2)

where
√
nV
−1/2
π rπ is a bias term due to approximation errors. I define the asymptotic bias

for the sequence of models indexed by π as the limit of the second term

ν(π) ≡ lim
n→∞

−
√
nV −1/2

π rπ. (1.3.3)
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Under the following undersmoothing condition, the asymptotic bias ν(π) is 0. To assess the

effect of bias on inference, we will consider distinctions between imposing undersmoothing

condition and not.

Assumption 1.3. (Undersmoothing) sup
K∈Kn

|
√
nV
−1/2
K `KcK | → 0 as n→∞.

When we use explicit bounds cK`K . K−p/dxK for the power series, Assumption 1.3 can

be replaced by supK∈Kn |
√
nK1/2−p/dx| =

√
nK̄1/2−p/dx → 0 since pointwise standard error

V
1/2
K ∝

√
K.

Next theorem is our first main result which provides uniform central limit theorem of the

t-statistic process for nonparametric LS series estimation.

Theorem 1.1. Under Assumptions 1.1, 1.2 and supπ |ν(π)| <∞,

T ∗n(π, θ0)⇒ T(π) + ν(π) (1.3.4)

where T(π) is a mean zero Gaussian process on `∞(Π) with covariance function Σ(π1, π2) =

limn→∞Σn(π1, π2), where

Σn(π1, π2) =
Pπ1(x)′E(Pπ1iP

′
π2i
ε2
i )Pπ2(x)

V
1/2
π1∧π2V

1/2
π1∨π2

(1.3.5)

for any π1, π2 ∈ Π, and ν(π) is defined in (1.3.3). In addition, if Assumption 1.3 is satisfied,

then

T ∗n(π, θ0)⇒ T(π), π ∈ Π. (1.3.6)

Theorem 1.1 provides weak convergence of the t-statistic process T ∗n(π, θ0), π ∈ Π. This is an

asymptotic theory for the entire sequence of t-statistics Tn(K, θ0), K ∈ Kn. The asymptotic

null distribution of the t-statistic process in (1.3.4) is equal to a mean zero Gaussian process

T(π) plus the asymptotic bias ν(π).



15

Remark 1. (Covariance function) Under conditional homoskedasticity, E(ε2
i |xi = x) = σ2,

the covariance function of the limiting Gaussian process reduces to the simple form

Σ(π1, π2) = lim
n→∞

V
1/2
π1∧π2

V
1/2
π1∨π2

(1.3.7)

for any π1, π2 ∈ Π. This is well defined since the rates of Vπ1 and Vπ2 are the same, i.e.,

Vπ1 � Vπ2 . For example, if we consider polynomial basis PK(x) = (1, x1, · · · , xK−1)′ and the

point x = 1, then Σ(π1, π2) = limn→∞K
1/2
π1∧π2/K

1/2
π1∨π2 = (π1∧π2

π1∨π2 )1/2 and it only depends on

π1, π2.

Remark 2. (Other functionals) Here, I focus on the leading example, where θ0 = g0(x) for

some fixed point x ∈ X , but I may consider other linear functionals θ0 = a(g0(·)), such as

the regression derivates a(g0(x)) = d
dx
g0(x). All the results in this paper can be applied to

irregular (slower than n1/2 rate) linear functionals with estimators θ̂ = a(ĝK(x)) = aK(x)′β̂K

and appropriate transformation of basis aK(x) = (a(p1(x), · · · , a(pK(x)))′. While verification

of previous results for regular (n1/2 rate) functionals, such as integrals and weighted average

derivative, is beyond the scope of this paper, I examine analogous results for the partially

linear model in Section 1.7.

Remark 3. (Rate conditions) Note that the asymptotic bias |ν(π)| in (1.3.3) is zero if K̄

increases faster than the optimal MSE rate (undersmoothing), is non-zero but finite if K̄

increases at the optimal MSE rate, and |ν(π)| is infinity if K̄ increases slower than the optimal

MSE rate (oversmoothing). Theorem 1.1 does not allow oversmoothing rates |ν(π)| =∞, as

we require supπ |ν(π)| <∞.

1.3.2 Alternative Set with Different Rates

Next, we provide different approximations to the sequence of t-statistics with an alternative

set Kn constructed to allow different rates of Ks. This alternative set assumption considers
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broader range of Ks than the Assumption 1.1, as it considers different rates and allows

oversmoothing rates of K which increases slower than the optimal rate.

Assumption 1.4. (Alternative set with different rates) Let Kn as

Kn = {K = K1, · · · , Km, · · · , K̄ = KM} where Km ≡ τnφm for constant τ > 0,

0 < φ1 < φ2 < · · · < φM , and fixed M . Define asymptotic bias for the sequence

of models as ν(m) ≡ − lim
n→∞

√
nV
−1/2
Km

rKm. Assume that the largest model K̄ satisfies

√
nV
−1/2

K̄
`K̄cK̄ → 0 as n→∞.

If |ν(m)| =∞ for some m, alternative set assumption considers rates of K from oversmooth-

ing to undersmoothing with different φm. Here, K can increases slowly and K̄ satisfies

undersmoothing rates. Undersmoothing assumption for the K̄, i.e. ν(M) = 0, may be re-

strictive. However, this is merely a modeling device considering broad rage of K and taking

some large enough K̄ so that satisfy undersmoothing.

Note that Assumption 1.4 only considers finite K sequences, i.e., |Kn| = M . In finite

samples, we only consider finite set Kn, so the difference between Assumption 1.1 and 1.4

only matters in large samples. Different rate conditions lead to different approximations to

the sequence of t-statistics. As shown in Theorem 1.1, we can incorporate dependency of

the t-statistics under Assumption 1.1. However, as it considers the sequence of K with the

same growth rates which only differ in constant π, Theorem 1.1 gives the joint asymptotic

distribution of t-statistics that has either zero bias for all K ∈ Kn or non-zero bounded bias

for all K ∈ Kn. Although, Assumption 1.4 only considers the finite sequence of t-statistics,

it is useful to consider the effect of bias on inference problems that will be considered in

Section 1.4.

Similar to Theorem 1.1, if we impose supm |ν(m)| < ∞, then the joint t-statistics con-

verge in distribution to a normal distribution with the asymptotic bias terms under the

alternative set assumption. However, joint t-statistics do not converge in distribution to a

bounded random vector if some of the elements |ν(m)| =∞ with oversmoothing sequences.
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This matters when we obtain the asymptotic distribution of the test statistic that is some

continuous transformation of the joint t-statistics, and I will discuss this in Section 1.4.

Theorem 1.2. Under Assumptions 1.2, 1.4 and supm |ν(m)| <∞,

(Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z + ν

where Z = (Z1, · · · , ZM)′ ∼ N(0, IM) and ν = (ν(1), · · · , ν(M))′ are M × 1 vectors.

If supm |ν(m)| =∞, then following holds for any strictly increasing continuous distribu-

tion function on R, G(·),

Gn ≡ (Gn,1, · · · , Gn,M)′
d−→ (G(Z1 + ν(1)), · · · , G(ZM + ν(M)))′

where Gn,m = G(Tn(Km, θ0)), and G(Zm + ν(m)) denotes G(+∞) = 1 when ν(m) = +∞,

and G(−∞) = 0 when ν(m) = −∞.

1.4 Test Statistic

In this section, I introduce an infimum test statistic and analyze its asymptotic null dis-

tribution based on Theorem 1.1 and 1.2. Then, I provide the asymptotic size result of the

tests, and methods to obtain the critical value for our inference procedures.

I consider following test statistic

Inf Tn(θ) ≡ inf
K∈Kn

|Tn(K, θ)|. (1.4.1)

As I denoted in the introduction, there are several reasons to consider Inf Tn in series re-

gression context. First of all, small t-statistic centered at the true value corresponds to the

approximation with K that has a small bias and large variance, which is good for the coverage
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(for the size as well) as what undersmoothing assumption does for eliminating asymptotic

bias, theoretically. This is also closely related to some rule-of-thumb methods suggested by

several papers to choose undersmoothed K (see, for example, Newey (2013), Newey, Powell

and Vella (2003)).

1.4.1 Asymptotic Distribution of the Test Statistic

Asymptotic null limiting distribution of the infimum test statistic follows immediately from

Theorem 1.1 and 1.2.

Corollary 1.1. 1. If Assumptions 1.1, 1.2 and supπ |ν(π)| <∞ are satisfied, then Inf Tn(θ0)
d−→

infπ∈[π,1] |T(π) + ν(π)|, where T(π) is the mean zero Gaussian process defined in Theo-

rem 1.1. In addition, if Assumption 1.3 holds, then Inf Tn(θ0)
d−→ ξinf ≡ infπ∈[π,1] |T(π)|.

2. Under Assumptions 1.2 and 1.4, Inf Tn(θ0)
d−→ infm=1,···,M |Zm + ν(m)|, where Zm is

an element of M ×1 normal vector Z ∼ N(0, IM) and ν = (ν(1), · · · , ν(M))′ is defined

in Theorem 1.2.

Corollary 1.1-1 derives the asymptotic null limiting distribution of Inf Tn(θ) under Kn with

same rates of K (Assumption 1.1). Corollary 1.1-2 provides the asymptotic distribution

under alternative Kn with different rates of K (Assumption 1.4).

Whether some |ν(m)| are bounded or not, Corollary 1.1-2 shows that Inf Tn(θ0) converge

in distribution to the bounded random variable. Under H0, Inf Tn(θ) exclude all small Ks

corresponding to oversmoothing (where the bias is of larger order than the variance) and

select among large Ks with optimal MSE rates and undersmoothing rates (where the bias

is of smaller order), asymptotically. Using this Corollary, I discuss the effect of asymptotic

bias on the inference in Section 1.4.2 (for size results) and Section 1.5 (for coverage results).
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1.4.2 Asymptotic Size of the Test Statistic

I start by defining critical value cinf
1−α as (1− α) quantile of the asymptotic null distribution

ξinf = infπ∈[π,1] |T(π)| in Corollary 1.1-1, i.e., solves

P (ξinf > cinf
1−α) = α (1.4.2)

for 0 < α < 1/2. The asymptotic null distribution, ξinf , can be completely defined by

covariance kernel of the limiting Gaussian process T(π) in Theorem 1.1. Since the limit-

ing process can not be written as some transformation of Brownian motion process, the

asymptotic critical value cannot be tabulated, in general. However, critical value can be

obtained by standard Monte Carlo method or by the weighted bootstrap method. I will

discuss approximation of the critical value in Section 1.4.3.2

Next, we define z1−α/2 as (1 − α/2) quantile of standard normal distribution function,

which also solves P (|Z| > z1−α/2) = α where Z ∼ N(0, 1). Next corollary provides the

asymptotic size results of the tests based on Inf Tn(θ) follow from the asymptotic distribution

results in Corollary 1.1.

Corollary 1.2. 1. Under Assumptions 1.1, 1.2 and 1.3, following holds with critical val-

ues cinf
1−α defined in (1.4.2) and the normal critical value z1−α/2,

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) = α, lim sup

n→∞
P (Inf Tn(θ0) > z1−α/2) ≤ α. (1.4.3)

2. Suppose Assumptions 1.1 and 1.2 hold. If supπ |νπ| < ∞, then following inequality

2Without imposing the undersmoothing assumption, asymptotic distribution of Inf Tn(θ0) in Corollary
1.1-1 also depend on asymptotic bias ν(π) as well. If ν(π) can be replaced by some estimates ν̂(π), then the
critical value from infπ∈Π |T(π) + ν̂(π)| can be used. This approach is a difficult problem that is beyond the
scope of this paper. See Hansen (2014) for this important direction with single Π = π and the critical value
from |N(0, 1) + ν̂(π)|.
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holds

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) ≤ F (cinf

1−α, inf
π
|ν(π)|), (1.4.4)

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) ≤ F (z1−α/2, inf
π
|ν(π)|), (1.4.5)

where F (c, |ν|) = 1−Φ(c− |ν|) + Φ(−c− |ν|) with standard normal cumulative distri-

bution function Φ(·).

3. Under Assumptions 1.2 and 1.4, following holds

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) =

M∏
m=1

F (cinf
1−α, |ν(m)|), (1.4.6)

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) ≤ α. (1.4.7)

Corollary 1.2-1 shows that the tests based on the infimum test statistic asymptotically control

size with the undersmoothing condition. As Inf Tn(θ0) ≤ |Tn(K, θ0)| and |Tn(K, θ0)| d→ |N(0,

1)| for any single K ∈ Kn, the test based on Inf Tn(θ) using normal critical value also controls

the asymptotic size.

Without undersmoothing assumption, Corollary 1.2-2 derives the upper bounds of the

asymptotic null rejection probability of the tests based on Inf Tn(θ). Equations (1.4.4) and

(1.4.5) show that the asymptotic size is bounded above by the asymptotic size of a single

t-statistic with the smallest asymptotic bias. Note that F (c, |ν|) is a monotone decreasing

function of c. Typically cinf
1−α < z1−α/2 holds, so that F (z1−α/2, 0) = α < F (cinf

1−α, 0). More-

over, F (c, |ν|) is a monotone increasing function of |ν| (see also Hall and Horowitz (2013),

Hansen (2014) for the similar function F and Figure 1.2 for the plots of F as a function of

|ν| with different c). Also note that the right hand side of (1.4.5) is exactly equal to α if the

smallest bias is 0, infπ |ν(π)| = 0.

Corollary 1.2-3 shows the asymptotic size results of the test under the alternative set
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assumption (Assumption 1.4). Equation (1.4.6) gives useful information about the effect

of asymptotic bias on the asymptotic size by allowing ‘large’ asymptotic bias |ν(m)| = ∞.

First, the asymptotic size of the test based on Inf Tn(θ) is not affected by Km such that

|ν(m)| =∞ (oversmoothing), as F (c,∞) = 1 for any bounded c > 0. Suppose that the last

M1 number of Ks satisfy undersmoothing conditions and the others satisfy oversmoothing

rates, i.e., |ν(m)| = ∞ for m = 1, · · · ,M −M1 and |ν(m)| = 0 for the others. Then, the

asymptotic size is equal to αM1/M , as cinf
1−α = z1−α1/M/2 follows from Theorem 1.2. In this

special case, the asymptotic size is a decreasing function of the number of undersmoothing

sequences M1, and is equal to α when |ν(m)| = 0 for all m, similar to Corollary 1.2-1.

Second, the asymptotic size is an increasing function of bias term |ν(m)|, as F (c, |ν|) is an

increasing function of |ν|. Third, (1.4.6) also gives the bound of the asymptotic size similar to

Corollary 1.2-2, as
∏M

m=1 F (c, |ν(m)|) ≤ F (c, inf |ν(m)|) = F (c, 0). Using this upper bound,

equation (1.4.7) shows that the test based on Inf Tn(θ0) with normal critical value controls

size asymptotically.

Note that the asymptotic size result in (1.4.7) relies on the inequality Inf Tn(θ0) ≤ |Tn(K̄,

θ0)| and the fact that Tn(K̄, θ0)
d−→ N(0, 1) under Assumption 1.4. If we know that K̄

satisfies undersmoothing condition and others not, then there’s no point of searching over

different K; we may just use K̄ for the inference. This may work well if K̄ coincides with some

infeasible size-optimal sequence K∗(n) that minimizes |P (Tn(K, θ0) > z1−α/2)−α|. However,

in practice, choice of K̄ can be ad hoc. Heuristically, if we use too large K̄, then the power

of the test based on Tn(K̄, θ) with the normal critical value can be low, as Tn(K̄, θ) can be

very small with large variance VK̄ under alternatives. However, the test based on Inf Tn(θ0)

and its asymptotic critical value cinf
1−α may have better power, as this test compare with the

smaller critical value than the normal critical value. Further, our theory still provides the

bound of the asymptotic size in (1.4.7) without any undersmoothing conditions on K ∈ Kn,

as F (z1−α/2, infm |ν(m)|). Asymptotic distribution result in Corollary 1.1-2 is still valid, as

long as at least one ν(m) is bounded, i.e., |ν(M)| = O(1).
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In sum, Inf Tn(θ) leads to the tests that control the asymptotic size or bound the size

distortions. One possible concern is that the low power property of the test using Inf Tn(θ)

compare with the other statistics (e.g., the supremum of the t-statistics). Investigating

local power comparisons of the level α test based on the other statistics, and the effect of

asymptotic bias on subsequent power function are very important, but these are beyond

the scope of this paper. However, I want to emphasize that inference based on the other

transformation of the t-statistics can be highly sensitive to the bias problems, thus may lead

to over-rejection of the test (see Section 1.14 for the inference based on the supremum test

statistic). I will discuss the length of CIs based on the infimum test statistic in Section 1.5

and calibrate the length of CIs in various simulation setup in Section 1.8.

1.4.3 Critical Values

In this section, I discuss detail descriptions to approximate critical value defined in (1.4.2).

Here, I suggest using simple Monte Carlo method to obtain critical value. To make imple-

mentation procedures simple and feasible, I impose following set assumption and conditional

homoskedasticity.

Assumption 1.5. (Set of finite number of series terms)

Kn = {K ≡ K1, · · · , Km, · · · , K̄ ≡ KM} where Km = bπmK̄c for constant πm, 0 < π =

π1 < π2 < · · · < πM = 1, and fixed M .

Assumption 1.6. (Conditional homoskedasticity) E(ε2
i |xi = x) = σ2.

Assumption 1.5 is a finite dimensional version of Assumption 1.1, and is different with an

alternative set (Assumption 1.4) that considers different rate of Ks. As we have shown

in Theorem 1.1, if Assumptions 1.2, 1.3, 1.5 and 1.6 are satisfied, then following finite
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dimensional convergence of the t-statistics holds

(Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z = (Z1, · · · , ZM)′, Z ∼ N(0,Σ), (1.4.8)

where Σ is a variance-covariance matrix defined in (1.3.7), Σjl = limn→∞ V
1/2
Kj

/V
1/2
Kl

for

any j < l. Under Assumptions 1.2, 1.3 and 1.4, (1.4.8) also holds with Σ = IM follows

by Theorem 1.2. Note that the limiting distribution does not depend on θ0 and variance-

covariance matrix Σ can be consistently estimated by its sample counterparts. This requires

estimators of the variance VK that are consistent uniformly over K ∈ Kn. Define least square

residuals as ε̂Ki = yi − P ′Kiβ̂K , and let V̂K as the simple pluig-in estimator for VK

V̂K = PK(x)′Q̂−1
K Ω̂KQ̂

−1
K PK(x),

Q̂K =
1

n

n∑
i=1

PKiP
′
Ki, Ω̂K =

1

n

n∑
i=1

PKiP
′
Kiε̂

2
Ki.

(1.4.9)

Then, I define ĉinf
1−α based on the asymptotic null distribution of Inf Tn(θ0) as follows

ĉinf
1−α ≡ (1− α) quantile of inf

m=1,···,M
|Zm,Σ̂|,

where ZΣ̂ = (Z1,Σ̂, · · · , ZM,Σ̂)′ ∼ N(0, Σ̂), Σ̂jj = 1, Σ̂jl = V̂
1/2
Kj

/V̂
1/2
Kl

.

(1.4.10)

One can compute ĉinf
1−α by simulating B (typically B = 1000 or 5000) i.i.d. random vectors

Zb
Σ̂
∼ N(0, Σ̂) and by taking (1−α) sample quantile of {Inf T bn = inf

m
|Zb

m,Σ̂
| : b = 1, · · · , B}.3

I impose following additional assumption about the variance estimator V̂K to show the

validity of using Monte-Carlo simulation critical values.

Assumption 1.7. sup
K∈Kn

| V̂K
VK
− 1| = op(1) as n,K →∞.

3Conditional homoskedasticity assumption is only for a simpler implementation. Based on the general

covariance function defined in (1.3.5), we can construct Σ̂ under general heteroskedastic error; Σ̂j,l =
V̂Kjl

V̂
1/2
Kj

V̂
1/2
Kl

for any j < l, where V̂Kjl
is an sample analog estimator of PKj (x)′E(PKjiP

′
Kli
ε2
i )PKl

(x) and V̂Kj , V̂Kl
are

estimator of the variance VKj
, VKl

, respectively.
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Assumption 1.7 holds under the regularity conditions (Assumption 1.2) with an additional

assumption. I discuss sufficient conditions to this holds in the Section 1.12 (see proof of

Corollary 1.3 ).

Next, we consider following t-statistic Tn,V̂ (K, θ) replacing variance of the series estimator

VK with V̂K

Tn,V̂ (K, θ0) ≡
√
n(θ̂K − θ0)

V̂
1/2
K

. (1.4.11)

Following corollary shows the first-order joint asymptotic distribution of Tn,V̂ (K, θ0) to

those of Tn(K, θ0) in (1.4.8) for K ∈ Kn. It also provides the validity of Monte Carlo critical

values ĉinf
1−α defined in (1.4.10).

Corollary 1.3. Under Assumptions 1.2, 1.3,1.5, 1.6 and 1.7, ĉinf
1−α

p−→ cinf
1−α holds where ĉinf

1−α

are defined in (1.4.10) and cinf
1−α are the (1− α) quantile of the asymptotic null distribution

inf
m=1,···,M

|Zm| with Z = (Z1, · · · , ZM)′ ∼ N(0,Σ), Σ defined in (1.3.7). This also holds under

Assumptions 1.2, 1.3 and 1.4 with Σ = IM .

Alternatively, we can use weighted bootstrap method to approximate asymptotic critical

value. Implementation of the weighted bootstrap method is as follows. First, generate i.i.d

draws from exponential random variables {ωi}ni=1, independent of the data. Then, for each

draw, calculate LS estimator weighted by ω1, · · · , ωn for each K ∈ Kn and construct weighted

bootstrap t-statistic as follows

β̂bK = arg min
b

1

n

n∑
i=1

ωi(yi − P ′Kib)2, ĝbK(x) = PK(x)′β̂bK ,

T bn(K) =

√
n(ĝbK(x)− ĝK(x))

V̂
1/2
K

.

(1.4.12)

Then, construct Inf T bn = infK |T bn(K)|. Repeat this B times (1000 or 5000) and define ĉinf,WB
1−α

as conditional 1− α quantile of {Inf T bn : b = 1, · · · , B} given the data. The idea behind the
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weighted bootstrap methods may work is as follows; if the limiting distribution of weighted

bootstrap process is equal to the original process conditional on the data, then the weighted

bootstrap process Inf T bn also approximate the original limiting distribution infπ∈[π,1] T(π).

However, validity of the weighted bootstrap is beyond the scope of this paper and will be

pursued for the future work.

1.5 Confidence Intervals

Now, I introduce CIs for θ0 = g0(x) and provide their coverage properties. We consider a

confidence interval based on inverting a test statistic for H0 : θ = θ0 against H1 : θ 6= θ0.

Thus, we collect all values of θ where the test statistic Inf Tn(θ) defined in Section 1.4 does

not exceed its critical value. I first define CIRobustinf based on Inf Tn(θ) and critical value ĉinf
1−α

defined in Section 1.4.3.

CIRobustinf ≡ {θ : inf
K∈Kn

|Tn,V̂ (K, θ)| ≤ ĉinf
1−α}

= {θ : |Tn,V̂ (K, θ)| > ĉinf
1−α,∀K}C =

⋃
K∈Kn

{θ : |Tn,V̂ (K, θ)| ≤ ĉinf
1−α}

= [inf
K

(θ̂K − ĉinf
1−αs(θ̂K)), sup

K
(θ̂K + ĉinf

1−αs(θ̂K))]

(1.5.1)

where s(θ̂K) ≡
√
V̂K/n is a standard error of series estimator using K series terms, and

AC denotes the complement of a set A. Note that CIRobustinf can be easily obtained by using

estimates θ̂K , standard errors s(θ̂K), and critical value ĉinf
1−α. CIRobustinf can be constructed as

the lower and the upper end point of confidence intervals for all K ∈ Kn using ĉinf
1−α.

Note that the last equality in (1.5.1) holds only when there is no dislocated CI, i.e.,

intersection is nonempty for any two CIs using ĉinf
1−α. As the variance of series estimator

increases with K, we expect that the union of all confidence intervals may only be determined

by some large Ks so that there is no dislocated CI. However, in general, there is no guarantee

that the union of the confidence intervals are connected. Dislocated confidence interval may
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show some evidence of bias for the specific model, but using superset can widen CIRobustinf in

this case. Although this paper does not consider data-dependent set Kn, i.e., data-dependent

choice of K and K̄, possible large length of CI can be avoidable if K is reasonably large and

this is exactly the condition needed in the next Corollary 1.4 to have a correct coverage. I

will also discuss the coverage property of CIRobustinf even with large bias of some models. Note

that possible large length of the CIRobustinf is also related to the possible low power property

of the test.

Next, I define CIinf based on Inf Tn(θ) and the normal critical value z1−α/2 as follows,

CIinf ≡ {θ : inf
K∈Kn

|Tn,V̂ (K, θ)| ≤ z1−α/2}

= [inf
K

(θ̂K − z1−α/2s(θ̂K)), sup
K

(θ̂K + z1−α/2s(θ̂K))]

(1.5.2)

Note that CIinf is the union of all standard confidence intervals for K ∈ Kn using conven-

tional normal critical value z1−α/2, thus it can be easily constructed.

Next Corollary shows valid coverage property of the above CIs, and it follows from

Corollary 1.2 and 1.3.

Corollary 1.4. 1. Under Assumptions 1.2, 1.3, 1.5, 1.6, and 1.7,

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1− α, lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− α (1.5.3)

2. Under Assumptions 1.2, 1.5, 1.6, 1.7, and supm |ν(m)| < ∞ where ν(m) ≡ ν(πm) as

in (1.3.3),

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) ≥ 1− F (cinf
1−α, inf

m
|ν(m)|) (1.5.4)

lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− F (z1−α/2, inf
m
|ν(m)|) (1.5.5)
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3. Under Assumptions 1.2, 1.4, and 1.7,

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1−
M∏
m=1

F (cinf
1−α, |ν(m)|) (1.5.6)

lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− α (1.5.7)

Corollary 1.4-1 shows the validity of CIRobustinf and CIinf, i.e., asymptotic coverage of CIs

are greater than or equal to 1 − α. Note that the Corollary 1.4-1 requires undersmoothing

condition, i.e., there is no asymptotic bias for all Ks in Kn.

Without undersmoothing condition, Corollary 1.4-2 and 1.4-3 show that the coverage

probability of CIRobustinf and CIinf are bounded below by the coverage of single K with smallest

bias, similarly to the asymptotic size results in Corollary 1.2. Equation (1.5.6) also implies

that the asymptotic coverage of CIRobustinf does not affected by oversmoothing sequence (small

Km) such that |ν(m)| = ∞, as F (c,∞) = 1. Similar to the asymptotic size results, the

asymptotic coverage is equal to 1 − αM1/M when |ν(m)| = ∞ for m = 1, · · · ,M −M1 and

|ν(m)| = 0 for the others, and is an increasing function of the number of undersmoothing

sequences. The asymptotic coverage is equal to 1− α when |ν(m)| = 0 for all m. Although

the coverage is a decreasing function of |ν(m)|, (1.5.6) implies that it is bounded below by

1 − F (cinf
1−α, 0). Furthermore, (1.5.7) shows that CIinf using normal critical value achieve

nominal coverage probability 1 − α. CIinf and CIRobustinf bound coverage distortions even

when asymptotic bias terms are present for several Ks in a set, in this sense they are robust

to the bias problems.

Although CIinf gives formally valid coverage allowing asymptotic bias, coverage property

of the CIinf in (1.5.3) and (1.5.7) holds with inequality, not equality. Therefore, it can be

conservative. As the variance of series estimator increases with K, we expect CIinf can be

comparable to the standard CI using normal critical values with some large K around the

K̄. In contrast, CIRobustinf may have shorter length by using smaller critical value than the

normal critical value.
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1.6 Post-Model Selection Inference

In this section, I provide methods to construct a valid CI that gives correct coverage even

after selecting he number of series terms using any type of selection rules.

I first consider the ‘post-model selection’ t-statistic

|Tn(K̂, θ)|, K̂ ∈ Kn (1.6.1)

where K̂ is a possibly data-dependent rule chosen from Kn. Then, we can define following

‘naive’ post-selection CI with K̂ using the normal critical value z1−α/2,

CINaivepms ≡ {θ : |Tn(K̂, θ)| ≤ z1−α/2} = [θ̂K̂ − z1−α/2s(θ̂K̂), θ̂K̂ + z1−α/2s(θ̂K̂)]. (1.6.2)

The conventional method of using normal critical value in (1.6.2) comes from the asymptotic

normality of the t-statistic under deterministic sequence, i.e., when Kn = {K}. However, it

is not clear whether the asymptotic normality of the t-statistic Tn(K̂, θ0)
d→ N(0, 1) holds

with some random sequence of K̂ (e.g., K̂ = K̂cv selected by cross-validation). Even if we

assume the asymptotic bias is negligible, the variability of K̂ introduced by some selection

rules can affect the variance of the asymptotic distribution. Thus, it is not clear whether

naive inference using standard normal critical value is valid. If the post-model selection

t-statistic, Tn(K̂, θ0) with some K̂, has non-normal asymptotic distribution, then the naive

confidence interval CINaivepms may have coverage probability less than the nominal level 1− α.

Furthermore, K̂ with some data-dependent rules may not satisfy the undersmoothing rate

conditions which ensure the asymptotic normality without bias terms. For example, suppose

a researcher uses K̂ = K̂cv selected by cross-validation (or other asymptotically equivalent

criteria such as AIC). It is well known that the K̂cv is typically too ‘small’, so that lead to a

large bias by violating undersmoothing assumption needed to ensure asymptotic normality

and the valid inference. If K̂ increases not sufficiently fast as undersmoothing condition
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does, then the asymptotic distribution may have bias terms and resulting naive CI may have

large coverage distortions.

Here, I suggest constructing a valid post-selection CI with K̂ ∈ Kn by adjusting standard

normal critical value to critical value from a ‘supremum’ test statistic,

SupTn(θ) ≡ sup
K∈Kn

|Tn(K, θ)|. (1.6.3)

Note that |Tn(K̂, θ0)| ≤ SupTn(θ0) for any choice of K̂ ∈ Kn, and SupTn(θ0)
d−→ ξsup ≡

supπ∈[π,1] |T(π)| under the same assumptions as in Corollary 1-1. Therefore, inference based

on |Tn(K̂, θ0)| using asymptotic critical values from the limiting distribution of SupTn(θ0)

will be valid, but conservative. Similar to the cinf
1−α defined in (1.4.2), I define asymptotic

critical value csup
1−α as 1− α quantile of ξsup. We can approximate this critical value by using

Monte Carlo simulation based method similarly as in Section 1.4.3. To be specifically, I

define

ĉsup
1−α ≡ (1− α) quantile of sup

m=1,···,M
|Zm,Σ̂|, (1.6.4)

where ZΣ̂ = (Z1,Σ̂, · · · , ZM,Σ̂)′ ∼ N(0, Σ̂) and Σ̂ are defined in (1.4.10). Under the same

assumptions as in Corollary 1.3, we can also verify ĉsup
1−α

p−→ csup
1−α.

Next, I define the following robust post-selection CI using the critical value ĉsup
1−α rather

than the normal critical value z1−α/2 compare to the CINaivepms in (1.6.1),

CIRobustpms ≡ [θ̂K̂ − ĉ
sup
1−αs(θ̂K̂), θ̂K̂ + ĉsup

1−αs(θ̂K̂)], K̂ ∈ Kn. (1.6.5)

For example, we can construct CIRobustpms with K̂cv selected by cross-validation among Kn

using the critical value ĉsup
1−α.

Next Corollary shows that the robust post-selection CIRobustpms guarantees asymptotic cov-

erage as 1− α.
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Corollary 1.5. Under Assumptions 1.2, 1.3, 1.5, 1.6, and 1.7,

lim inf
n→∞

P (θ0 ∈ CIRobustpms ) ≥ 1− α. (1.6.6)

Even though Corollary 1.5 does not implicitly use randomness of the specific data-

dependent selection rules of K̂, CIRobustpms can be useful as it can be applied to any type

of data-dependent selection criteria or any selection rules researchers might want to use.

Here, I impose an undersmoothing (Assumption 1.3) and therefore CIRobustpms does not dealing

with the bias problem explicitly. However, it accommodates bias by enlarging confidence

interval using larger critical values ĉsup
1−α than the normal critical value. Moreover, we also

expect ĉsup
1−α is smaller than the usual Bonferroni-type critical value. Bonferroni corrections

use normal critical value z1− α
2M

replacing α with α/M . However, Bonferroni critical value

can be too large especially when |Kn| = M is large, as it ignores dependence structure of

the t-statistics.

1.7 Extension: Partially Linear Model

In this section, I provide inference methods for the partially linear model (PLM) similar to

those in the nonparametric regression setup.

Suppose we observe random samples {yi, wi, xi}ni=1, where yi is scalar response variable,

wi ∈ W ⊂ R is treatment/policy variable of interest, and xi ∈ X ⊂ Rdx is a set of explanatory

variables. I consider following partially linear model

yi = θ0wi + g0(xi) + εi, E(εi|wi, xi) = 0. (1.7.1)

We are interested in inference on treatment/policy effect θ0 after approximating unknown

function g0(xi) by regressors p(xi) among a set of potential control variables. Number of

regressors could be large if there are many available control variables, i.e., p(xi) = xi or if
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there are large number of transformations of p(xi) are available such as polynomials and

interactions of xi. Parametric part wi is always included in the model, however, we are

unsure which covariates/transformations of xi should be used.

Suppose we use K regressors PKi = PK(xi), where PK(x) = (p1(x), · · · , pK(x))′ from the

basis functions p(x). The approximating model can be written as

yi = θ0wi + P ′KiβK + rKi + εi, (1.7.2)

where the approximation error rKi is defined similarly as in Section 1.2. Then, similar to

nonparametric regression model, series estimator θ̂K for θ0 using the first K approximating

functions is obtained by standard LS estimation of yi on wi and PKi

θ̂K = (W ′MKW )
−1
W ′MKY (1.7.3)

where W = (w1, · · · , wn)′,MK = IK − PK(PK′PK)−1PK′ , PK = [PK1, · · · , PKn]′, Y = (y1,

· · · , yn)′. Estimator for βK is given by (θ̂K , β̂
′
K)′ = (HK′HK′)−1HK′Y where HK = [W,PK ].

For notational simplicity, I use the similar notation as defined in nonparametric regression

setup.

The asymptotic normality and valid inference for the partially linear model has been

developed in the literature. Donald and Newey (1994) derived the asymptotic normality of

θ̂K under standard rate conditions K/n → 0. Belloni, Chernozukhov and Hansen (2014)

analyzed asymptotic normality and uniformly valid inference for the post-double-selection

estimator even when K is much larger than n under some form of sparsity condition. Recent

paper by Cattaneo, Jansson, and Newey (2015a) provided a valid approximation theory for

θ̂K even when K grows at the same rate of n.

Different approximation theory, using faster rate of K that grows as fast as sample size

n, is particularly useful for our purpose. Under K/n → c, the limiting normal distribution

has a larger variance than the standard asymptotic variance derived under K/n → 0, and
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the adjusted variance depends on the number of terms K. Unlike the nonparametric object

of interest in fully nonparametric model where variance term increases with K, θ̂K has

parametric (n1/2) convergence rate and variances are same as the semiparametric efficiency

bound for all sequences under K/n → 0, i.e., all estimators θ̂K with different rate of Ks

satisfying K/n → 0, are all asymptotically equivalent. This is also related to the well

known results of the series based two-step semiparametric estimation (see Newey (1994b)).

However, using the large sample approximation that allow the number of series can grow

with the same rate of sample size, we can construct a joint distribution of the t-statistics with

different sequence of models. This provides a useful approximation theory to fully account

the dependency of the t-statistics with different Ks.

I impose an assumption that are same as in Cattaneo, Jansson, and Newey (2015a)

uniformly over the model K ∈ Kn, where Kn is same as in the Assumption 1.5. Let vi ≡

wi − gw0(xi) where gw0(xi) ≡ E[wi|xi]. Then, by construction E[vi|xi] = 0.

Assumption 1.8. (Regularity conditions for Partially Linear Model: Assumption PLM in

Cattaneo, Jansson, and Newey (2015a))

1. {yi, wi, xi} are i.i.d random variables satisfying the model (1.7.1).

2. There exists constant 0 < c ≤ C < ∞ such that E[ε2
i |wi, xi] ≥ c and E[v2

i |xi] ≥ c,

E[ε4
i |wi, xi] ≤ C and E[v4

i |xi] ≤ C.

3. rank(PK) = K(a.s) and Mii,K ≥ C for C > 0 uniformly over K ∈ Kn.

4. For all K ∈ Kn, there exists γg, γgw ,

min
ηg

E[(g0(xi)− η′gPKi)2] = O(K−2γg), min
ηgw

E[(gw0(xi)− η′gwPKi)
2] = O(K−2γgw ).

Assumption 1.8 does not require K/n→ 0 which is required to get asymptotic normality

in the literature (e.g., Donald and Newey (1994)). Assumption 1.8-(4) typically holds for the
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polynomials and splines basis, similar to the nonparametric setup. For example, Assumption

1.8-(4) holds with γg = pg/dx, γgw = pw/dx when X is compact and unknown functions g0(x),

gw0(x) has pg, pw continuous derivates, respectively.

From the results in Cattaneo, Jansson, and Newey (2015a), we have following decompo-

sition for any K ∈ Kn under Assumptions 1.5 and 1.8,

√
n(θ̂K − θ) = (

1

n
W ′MKW )−1 1√

n
W ′MKY

= Γ̂−1
K (

1√
n

∑
i

viM
K
ii εi +

1√
n

n∑
i=1

n∑
j=1,j 6=i

viM
K
ij εj) + op(1)

(1.7.4)

where Γ̂K = W ′MKW/n. Note that under K/n → 0, the leading term 1√
n

∑
i viM

K
ii εi =

1√
n

∑
i viεi+op(1). Thus t-statistics TK(θ) are asymptotically equivalent under any sequences

K → ∞ satisfying the standard rate conditions. However, under the faster rate conditions

on K imposed here, the second term is not negligible and converges to bounded random

variables. Cattaneo, Jansson, and Newey (2015a) apply central limit theorem of degenerate

U-statistics for the second term, similar to the many instrument asymptotics analyzed in

Chao, Swanson, Hausman, Newey and Woutersen (2012).

Now, consider the sequence of t-statistics Tn(K, θ). Under Assumptions 1.5, 1.8 and

undersmoothing condition nK−2(γg+γgw ) → 0, we get following asymptotic distributional

results for a deterministic sequence of K assuming conditional homoskedasticity.

Tn(K, θ) =
√
nV
−1/2
K (θ̂K − θ)

d−→ N(0, 1),

VK = (1−K/n)−1V, V = σ2
εE[v2

i ]
−1,

where VK coincides with the standard asymptotic variance formula V under K/n → 0.

Allowing K/n need not converge to zero requires “correction” term, (1 − K/n)−1 taking

into account for the remainder terms that are assumed ‘small’ with the classical condition

K/n→ 0. Note that the adjusted variance VK is always greater than V when K/n9 0.
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Next theorem is the main result for the partially linear model setup, analogous to non-

parametric setup. Theorem 1.3 provides joint asymptotic distribution of the t-statistics

Tn(K, θ0) over K ∈ Kn. It also provides the asymptotic coverage results of the CIs that are

similarly defined as in Section 1.5 and 1.6.

Theorem 1.3. Suppose Assumptions 1.5 and 1.8 hold. Also, nK̄−2(γg+γgw ) → 0 as K̄ →∞.

Assume K̄/n → c (0 < c < 1) and E[ε2
i |wi, xi] = σ2

ε , E[v2
i |xi] = E[v2

i ]. Then the joint null

limiting distribution is given by

(Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z = (Z1, · · ·ZM)′ ∼ N(0,Σ)

with variance-covariance matrix Σjl where Σjl ≡ limn→∞ V
1/2
Kj∧l

/V
1/2
Kj∨l

for j 6= l, and 1 for

j = l. Moreover, under Assumptions 1.5, 1.7 and 1.8, coverage probability holds for the

following CIs

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1− α, lim inf
n→∞

P (θ0 ∈ CIinf) ≥ 1− α (1.7.5)

lim inf
n→∞

P (θ0 ∈ CIRobustpms ) ≥ 1− α (1.7.6)

where CIRobustinf , CIinf, and CIRobustpms are similarly defined as in Section 1.5 and 1.6 with PLM

estimator θ̂K and variance estimator V̂K, and the critical values ĉinf
1−α, ĉ

sup
1−α.

Theorem 1.3 derives the joint asymptotic distribution of the Tn(K, θ0) over K ∈ Kn for

the parametric part in partially linear model. Note that the variance-covariance matrix Σ is

same as in nonparametric model setup (see equation (1.3.7) or (1.4.8)). Variance-covariance

matrix Σjl for any j 6= l can be reduced under the condition K̄/n→ c,

Σjl = lim
n→∞

V
1/2
Kj∧l

V
K

1/2
j∨l

= lim
n→∞

(1−Kj∧l/n)−1/2V 1/2

(1−Kj∨l/n)−1/2V 1/2
= lim

n→∞

(1− πj∧lK̄/n)−1/2

(1− πj∨lK̄/n)−1/2
= (

1− cπj∨l
1− cπj∧l

)1/2.

(1.7.7)
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Theorem 1.3 also shows the asymptotic coverage property of CIs similar to Corollary 1.4

in the nonparametric setup. The lower bounds of the asymptotic coverage for CIRobustinf , CIinf

can be also derived without undersmoothing assumption (nK̄−2(γg+γgw ) → 0), thus omitted

here.

Note that construction of CIs also requires consistent variance estimators V̂K ,

V̂K = s2Γ̂−1
K , s2 =

1

n− 1−K

n∑
i=1

ε̂2
i , ε̂2

i =
n∑
j=1

MK,ij(yj − θ̂Kwj). (1.7.8)

For consistency results and more discussions, see section 3.2 (Theorem 2) of Cattaneo,

Jansson, and Newey (2015a) and also Cattaneo, Jansson, and Newey (2015b) under het-

eroskedasticity.

1.8 Simulations

This section investigates the small sample performance of the proposed methods in Sections

1.5 and 1.6. We are mainly interested in empirical coverage of CIs for the true value of g(x)

over the support of x for various functions g(x) and different basis.

I consider the following data generating process similar to Newey and Powell (2003),

Chen and Christensen (2015a),

yi = g(xi) + εi,

xi = Φ(x∗i ),

x∗i
εi

 ∼ N


0

0

 ,

1 0

0 σ2


 (1.8.1)

where Φ(·) is the standard normal cdf need to ensure compact support. I investigate following

four functions for g(x): g1(x) = 4x − 1, g2(x) = ln(|6x − 3| + 1)sgn(x − 1/2), g3(x) =

sin(7πx/2)
1+2x2(sgn(x)+1)

, g4(x) = x − 1/2 + 5φ(10(x − 1/2)), where φ(·) is standard normal pdf. The
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functions g1(x) and g2(x) are used in Newey and Powell (2003), Chen and Christensen (2015)

and we label them as linear and nonlinear designs. g3(x) and g4(x) are rescaled version of Hall

and Horowitz (2013), and we denote these as highly nonlinear designs. See Figure 1.1 for the

shape of all functions on the support X = [0, 1]. In addition, I set σ2 = 1 for all simulations

results below. Results for σ2 = 0.5, 0.1 show similar patterns from my experience.

I generate 5000 simulation replications for each different design with sample size n =

100. Then, I implement nonparametric series estimators using both power series bases with

different orders and quadratic splines with evenly placed knots. In either case, K denotes the

number of estimated coefficients. I also set Kn = [2, 10] for the polynomials and Kn = [3, 13]

for the splines. Then, I calculate pointwise coverage properties of various CIs for all 40 grid

points of x on [0,1]. To calculate critical values, 1000 additional Monte Carlo replications are

also performed on each simulation iteration. Results for different sample sizes n = 200, 400

and results for the cubic spline regressions show similar patterns, thus omitted for brevity.

As a benchmark, I first consider post-selection CI with K̂cv ∈ Kn selected to minimize

leave-one-out cross-validation and using (naive) normal critical value, CINaivepms = [θ̂K̂cv
−

z1−α/2s(θ̂K̂cv
), θ̂K̂cv

+ z1−α/2s(θ̂K̂cv
)]. I also report coverage of CImaxK = [θ̂K̄ − z1−α/2s(θ̂K̄),

θ̂K̄ + z1−α/2s(θ̂K̄)] using the largest number of series terms K̄. Next, I consider new CIs

proposed in this paper, CIRobustinf and CIinf, based on the test statistics Inf Tn(θ) defined

in Section 1.5. Finally, I examine robust post-selection CI, CIRobustpms with K̂cv, defined in

Section 1.6. The critical values, ĉinf
1−α and ĉsup

1−α are constructed using the Monte-Carlo method

described in Sections 1.4.3 and Section 1.6.

Figure 1.3 reports nominal 95% coverage probability of all five CIs. Overall, CIRobustinf

performs very well across the different simulation designs. Its empirical coverage is close

to the nominal 95% level at many points over the support. CIinf using normal critical

value also performs well, as coverage is no less than the nominal level at almost all points.

However, CIinf seems quite conservative. CINaivepms using cross-validation selected series terms

undercovers most of the cases: K̂cv is small and CINaivepms is somewhat narrow to cover the
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true value. CImaxK slightly undercovers at many points, and works quite poorly especially at

the boundary. CIRobustpms with the adjustment of using larger critical value ĉsup
1−α than normal

critical value seems also work well, but does not solve bias problem completely (for example,

see coverage probability of g2(x = 0.4)).

For the linear function g1(x), polynomials should approximate unknown function very

well for all K, i.e., finite sample bias is expected to be very small over K ∈ Kn. In this

setup, coverage of CIRobustinf , CImaxK are expected to be close to 95 % and CIinf, CI
Robust
pms are

expected to be conservative. Slightly undercover results in Figure 1.3-(a) for CImaxK are

mostly due to the small sample size. However, given the small sample size, coverage CIRobustinf

is still fairly close to 95%.

For the slightly nonlinear function g2(x), coverage of all confidence intervals except CIinf

is less than 0.95 at some points. For example, at x = 0.4 and 0.6, the coverage of CINaivepms ,

CIRobustpms are 0.77, 0.87, respectively. Although it is slightly below than 0.95, coverage of

CIRobustinf is 0.93, and this is consistent with our theory that CIRobustinf bounds the size distor-

tions even when there are large biases for all polynomial approximations over K ∈ Kn. In

highly nonlinear function g4(x), CIRobustinf does not achieve nominal coverage at point x = 0.5.

At this single peak at x = 0.5, every polynomial approximation has large bias. Possibly poor

coverage property at this point was also described in Hall and Horowitz (2013, Figure 3).

In this case, regression spline seems much better for approximating this local point. Figure

1.4 shows the coverage probability of CIs using quadratic splines with different number of

knots. As we can see from Figure 1.4, CIRobustinf with splines works better to achieve correct

coverage for g2(x = 0.4), g4(x = 0.5), and for other different functions as well.

In Figure 1.5, I compare the length of the five CIs for the polynomial series. In the

linear and nonlinear designs, rank of the length in a narrower order is as follows; CINaivepms <

CIRobustpms ≤ CIRobustinf < CImaxK < CIinf. This is what we expected as CINaivepms is too narrow,

CImaxK is somewhat wide because of large variance using K̄. For the highly nonlinear design,

CIRobustinf and CIinf become wider at some points where estimates are relatively sensitive
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across K. Length of CImaxK is similar for g3(x) or shorter for g4(x) compare than CIRobustinf .

Figure 1.6 compares the length of CIs for the splines, and it shows similar patterns with

polynomial approximation. Given that CIRobustinf has a similar or only a slightly wider length

than the others, we want to highlight that it has better or similar coverage probability at

most points than CImaxK, CI
Naive
pms and CIRobustpms , as in Figure 1.4.

We expect that the coverage probability of CImaxK can be better when K̄ coincides with

coverage optimal K∗ that minimizes the distance |P (θ0 ∈ CI(K))− (1− α)|, where CI(K)

is a standard CI using K series terms and the normal critical value. However, as I already

emphasized, there is no formal data-dependent method to choose such large enough K∗: It

also depends on the sample sizes and unknown smoothness of the underlying function. If K̄

is smaller than the K∗, then CImaxK may undercover because of bias problems. If K̄ is larger

than K∗, then CImaxK may be too wide because of large variance, or the normal distribution

may be a poor approximation with K̄ in small sample size. In contrast, CIRobustinf and CIinf

is least affected with those small K with large bias, and performs quite well even in small

sample size.

In sum, CIRobustinf seems to work well in various simulation experiments. It is the only

method close to nominal coverage and it is least affected by biases. CIinf also performs well,

but it can be conservative. In some simulation results, coverage of CIRobustpms is close to the

nominal level, thus it is also advisable to report.

In addition to length comparisons, I also provide power of the different test statistics. In

Figure 1.7, I report power functions of the three different test statistics to test H0 : θ = θ0

against fixed alternatives H1 : θ = θ0 + δ where θ0 = g2(x) evaluated at some point x. Of

course, the power depends on different point of interest x. I consider two cases where bias

of series estimator for g2(x) is small (x = 0.5) and relatively large (x = 0.4). I plot following

rejection probability based on Inf Tn(θ), SupTn(θ), and |Tn(K̂, θ)| with appropriate critical

values as a functions of δ: (1) P (|Tn(K̂cv, θ0 + δ)| > z1−α/2) with K̂cv; (2) P (Inf Tn(θ0 +

δ) > ĉinf
1−α); (3) P (Inf Tn(θ0 + δ) > z1−α/2); (4) P (SupTn(θ0 + δ) > ĉsup

1−α); (5) P (|Tn(K̂cv,
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θ0 + δ)| > ĉsup
1−α). As expected, Figure 1.7-(a) and (b) show that the tests based on Inf Tn(θ)

are the only method to control size or bound the size distortions when bias exists for some

Ks.

In Figure 1.8, I report typical t-statistic patterns as a function of number of series K.

Specifically, I plot E[Tn(K, θ0)] evaluated at the true value θ0 = g0(x) as a function of

K. I also calculate Kinf ≡ arg minK |Tn(K, θ0)| that minimizes t-statistics evaluated at the

unknown true function g0(x), which is infeasible, but feasible in simulations. I also plot

the median values of K̂cv selected by cross-validation as vertical lines. We can easily see

that typical t-statistic patterns shows asymmetric V-shape: decrease rapidly with K, but

increases slightly. Moreover minimizer of the Inf Tn(θ) is not always coincide with the largest

K in Kn. This is because series estimation with large K also leads to unreliable estimates

due to the estimation variance similar to the problem of using too small bandwidth in kernel

estimation. In each simulations, Kinf is likely to be larger than K̂cv when bias are large, and

Kinf is equal or slightly larger than K̂cv when bias terms are small.

1.9 Illustrative Empirical Application : Nonparamet-

ric Estimation of Labor Supply Function and Wage

Elasticity with Nonlinear Budget Set

In this section, I illustrate robust inference procedures by revisiting a paper by Blomquist

and Newey (2002). For this, I exploit the covariance structure in the joint asymptotic distri-

bution of the t-statistics under homoskedastic error; the variance-covariance matrix is only

a function of the variance of series estimators. Therefore, construction of the critical value

using the Monte Carlo method only requires estimated variance for different specifications

that are reported in the table of Blomquist and Newey (2002). It is quite straightforward to

construct the proposed CI without any replication of the data sets in this case and this is
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one of the computational advantages of our procedure.

Understanding how tax and policy affect individual labor supply has been central issues

in labor economics (see Hausman (1985) and Blundell and MaCurdy (1999), among many

others). Focusing on the conditional mean of hours of work given the individual budget

set, Blomquist and Newey (2002) estimate labor supply function using nonparametric series

estimation. They also estimate other functionals such as wage elasticity of the expected

labor supply and find some evidence of possible misspecification of the usual parametric

model (e.g. maximum likelihood estimation (MLE)).

Specifically, they consider following models by exploiting additive structure follows from

the utility maximization with piecewise linear budget sets.

hi = g(xi) + εi, E(εi|xi) = 0, (1.9.1)

g(xi) = g1(yJ , wJ) +
J−1∑
j=1

[g2(yj, wj, `j)− g2(yj+1, wj+1, `j)], (1.9.2)

where hi is the hours of the ith individual and xi = (y1, · · · , yJ , w1, · · · , wJ , `1, · · · , `J) is the

budget set that can be represented by intercept yj (non-labor income), slope wj (marginal

wage rates) and the end point `j of the jth segment in a piecewise linear budget with J

segments. Here, I use the similar notations with theirs. Equation (1.9.2) for the conditional

mean function follows from Theorem 2.1 of Blomquist and Newey (2002), and this additive

structure greatly reduce dimensionality. They consider following power series for g(x)

pk(x) = (y
p1(k)
J w

q1(k)
J ,

J−1∑
j=1

`
m(k)
j (y

p2(k)
j w

q2(k)
j − yp2(k)

j+1 w
q2(k)
j+1 )). (1.9.3)

Using the data from the Swedish “Level of Living” survey in 1973, 1980 and 1990, they

pool the data from three waves and use the data from married or cohabiting men of ages

20-60. Changes in tax system over three different time periods gives a large variation in the

budget sets. Sample size is n = 2321. See Section 5 of Blomquist and Newey (2002) for more
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detail descriptions. They estimate wage elasticity of the expected labor supply

Ew = w̄/h̄[
∂g(w, · · · , w, ȳ, · · · , ȳ)

∂w
]|w=w̄, (1.9.4)

which is the regression derivative of g(x) evaluated at the mean of the net wage rates w̄,

income ȳ and level of hours h̄.

Table 1.1 is exactly the same table used in Blomquist and Newey (2002, Table 1). They

report estimates Êw and standard errors SEÊw with a different number of series terms by

adding additional series terms for each row. For example, estimates in the second raw use

the term in the first row (1, yJ , wJ) with additional terms (∆y,∆w). Here, `m∆ypwq denotes

approximating term
∑

i `
m
j (ypjw

q
j − ypj+1w

q
j+1). They also report cross-validation criteria,

CV , for each model specification. In their formula, series terms are chosen to maximize CV,

which minimizes asymptotic MSE. In addition to their original table, I also report CI for

each specification. As we can see from the table, it is ambiguous which large K should be

used for the inference. We do not have compelling reason to select one of the large K for

the confidence interval to be reported.

I report proposed robust confidence interval, CIRobustinf as well as CIinf, CI
Robust
pms defined

in Sections 1.5 and 1.6. One nice feature of the new method is that we can construct critical

values and CIs without any replication of the data under homoskedastic assumption. Monte

Carlo methods defined in (1.4.10) only requires variance estimates, thus we can simply

construct critical value from estimated standard errors. If we have the dataset, then we

could also implement critical value based on general variance forms under heteroskedasticity

or bootstrap critical value. Using Monte-Carlo method, estimated critical values are ĉinf
1−α =

0.9668, ĉsup
1−α = 2.4764, respectively.

Robust CI based on the infimum of the t-statistics, CIRobustinf is [0.0271, 0.1111] and this

is quite comparable to the CI with some large K, for example, CI = [0.0273, 0.1045] using

all the additional terms up to the 6th row. Morover, CIRobustinf is substantially tighter than
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CImaxK = [0.0148, 0.1280] using the largest number of series terms K̄ as well as those based

on the second largest series terms, [0.0214, 0.1336].

CIinf using normal critical value is [0.0148, 0.1384], and this turns out to be the union

of CI with the largest and the third largest number of series terms. Naive post-selection CI

with K̂cv is CINaivepms = [0.0247, 0.0839], and this seems somewhat narrow in this case. CIRobustpms

widens naive confidence interval to [0.0169, 0.0916].

1.10 Conclusion

This paper considers the construction of inference methods with data-dependent number of

series terms in nonparametric series regression model. New inference methods proposed in

this paper are based on two innovations. First, I provide an empirical process theory for the t-

statistic sequences indexed by the number of series terms over a set. Second, I introduce tests

based on the infimum of the t-statistics over different series terms and show that the tests

control the asymptotic size with undersmoothing condition or bound the size distortions

without undersmoothing condition. Pointwise confidence interval for the true regression

function is obtained by test statistic inversion. To construct the critical value and a valid

CI, I suggest using a simple Monte Carlo simulation based method. In various simulation

experiments, CI based on the infimum t-statistics performs well; coverage is close to the

nominal level and least affected by finite sample bias. I illustrate proposed CI by revisiting

empirical example of Blomquist and Newey (2002). I also provide methods of constructing

a valid CI after selecting the number of series terms by adjusting the conventional normal

critical value to the critical value based on the supremum of the t-statistics. Furthermore, I

provide an extension of the proposed methods in the partially linear model setup.
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1.12 Proofs

In this section, we define additional notations for the empirical process theory used in the

proof of Theorem 1.1. Given measurable space (S,S), let F as a class of measurable functions

f : S → R. We define N(ε,F , L2(Q)) as covering numbers relative to the L2(Q) norms,

which is the minimal number of the L2(Q) balls of radius ε to cover F with L2(Q) norms

||f ||Q,2 = (
∫
|f |2dQ)1/2 and measure Q. Uniform entropy numbers relative to L2 are defined

as supQ logN(ε||F ||Q,2,F , L2(Q)) where supremum is over all discrete probability measures

with an envelope function F . Let the data zi = (εi, xi) be i.i.d. random vectors defined on

probability space (Z = E × X ,A, P ) with common probability distribution P ≡ Pε,x. We

think of (ε1, x1), · · · (εn, xn) as the coordinates of the infinite product probability space. For

notational convenience, we avoid to discuss nonmeasurability issues and outer expectations

(for the related issues, see van der Vaart and Wellner (1996)). Throughout the proofs, we

denote c, C > 0 as universal constant that does not depend on n.

Proof of Theorem 1.1

For any sequence {K = bπK̄c : n ≥ 1} ∈
∏∞

n=1Kn under Assumptions 1.1 and 1.2, we first

define orthonormalized vector of basis functions P̃K(x).

P̃K(x) ≡ Q
−1/2
K PK(x) = E[PKiP

′
Ki]
−1/2PK(x),

P̃K = [P̃K1, · · · , PKn]′

where P̃Ki = P̃K(xi) is similarly defined as in the original basis functions. We observe that

ĝK(x) = PK(x)′(PK′PK)−1PK′y = P̃K(x)′(P̃K′P̃K)−1P̃K′y,

VK(x) = PK(x)′Q−1
K ΩKQ

−1
K PK(x) = P̃K(x)′Ω̃KP̃K(x),

Ω̃K = E(P̃KiP̃
′
Kiε

2
i ).
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Without loss of generality, we may impose normalization of QK̄ = I or QK = E(PKiP
′
Ki) =

IK uniformly over K ∈ Kn, since ĝK(x) is invariant to nonsingular linear transformations

of PK(x). However, we shall treat Q as unknown and deal with non-orthonormalized series

terms here.

Next, we re-define, with abuse of notation, pseudo-true value βK in (1.2.2) with orthornor-

malized series terms P̃Ki. That is, yi = P̃ ′KiβK + εKi, E[P̃KiεKi] = 0 where εKi = rKi + εi,

rK(x) = g0(x) − P̃K(x)′βK . Define rK ≡ (rK1, · · · rKn)′, rKi = rK(xi). We also define

Q̂K ≡ 1
n
P̃K′P̃K , σ2 ≡ infxE[ε2

i |xi = x], σ̄2 ≡ supxE[ε2
i |xi = x]. We first provide useful

lemmas which will be used in the proof of Theorem 1.1. Versions of proof of Lemma 1.1

are available in the literature, such as Newey (1997), Belloni et al. (2015) and Chen and

Christensen (2015b), among others. For completeness, we provide the results of Lemma

1.1. Note that different rate conditions can be used in Assumption 1.2, but lead to different

bounds in (1.12.1)-(1.12.3) for the following Lemma 1.1.

Lemma 1.1. Under Assumptions 1.1 and 1.2, for any K ∈ Kn, following holds

||Q̂K − IK || = Op(

√
ζ2
Kλ

2
K logK

n
), (1.12.1)

R1(K) ≡
√

1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′(ε+ rK) = Op(

√
λ2
Kζ

2
K logK

n
(1 + `KcK

√
K)),

(1.12.2)

R2(K) ≡
√

1

nVK
P̃K(x)′P̃K′rK = Op(`KcK). (1.12.3)

To provide (1.12.1) in Lemma 1.1, we first introduce matrix Bernstein inequality in Tropp

(2015). See also Lemma 2.1 of Chen and Christensen (2015b).

Lemma 1.2 (Theorem 6.1.1 of Tropp (2015)). Consider a finite sequence {Si} of indepen-

dent, random matrices with common dimension d1 × d2. Assume that ESi = 0, ||Si|| ≤ L
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for each i. Let Z =
∑

i Si, and define

v(Z) = max{||E(ZZ ′)||, ||E(Z ′Z)||}.

Then,

P (||Z|| ≥ t) ≤ (d1 + d2) exp(
−t2/2

v(Z)Lt/3
) ∀t ≥ 0,

E||Z|| ≤
√

2v(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Proof of Lemma 1.1.

To provide bound in (1.12.1), we apply Lemma 1.2 by setting Si = 1
n
(P̃KiP̃

′
Ki−E(P̃KiP̃

′
Ki)).

Note that ESi = 0, ||Si|| ≤ L = 1
n
(λ2

Kζ
2
K + 1), and v(Z) = 1

n
||E(P̃KiP̃

′
KiP̃KiP̃

′
Ki) −

E(P̃KiP̃
′
Ki)E(P̃KiP̃

′
Ki)|| ≤ 1

n
(λ2

Kζ
2
K + 1). By Lemma 1.2, we have

E||Q̂K − IK || = E||
∑
i

1

n
(P̃KiP̃

′

Ki − IK)|| ≤ C(
√
λ2
Kζ

2
K log(K)/n+ λ2

Kζ
2
K log(K)/n).

Then we have ||Q̂K − IK || = OP (
√
λ2
Kζ

2
K log(K)/n) by Markov inequality.

For (1.12.2), we first look at the terms
√

1
nVK

P̃K(x)′
(
Q̂−1
K − IK

)
P̃K′ε. Conditional on

the sample X = [x1, · · · , xn], this term has mean zero and variance,

1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′E(εε′|X)P̃K

(
Q̂−1
K − IK

)
P̃K(x)

≤ σ̄2

VK
P̃K(x)′

(
Q̂−1
K − IK

)
Q̂K

(
Q̂−1
K − IK

)
P̃K(x)

=
σ̄2

VK
P̃K(x)′

(
Q̂K − IK

)
Q̂−1
K

(
Q̂K − IK

)
P̃K(x)

≤ σ̄2P̃K(x)
′
P̃K(x)

VK
||Q̂−1

K || · ||
(
Q̂K − IK

)
||2

= OP (λ2
Kζ

2
K log(K)/n)
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where the first and the last inequality uses VK ≤ σ̄2P̃K(x)
′
P̃K(x), VK ≥ σ2P̃K(x)

′
P̃K(x) by

Assumption 1.2-(2), ||Q̂K − IK || = OP (
√
λ2
Kζ

2
K log(K)/n) by (1.12.1) and ||Q̂−1

K || . 1 by

Assumption 1.2-(4). Then by Chebyshev’s inequality, we have that

√
1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′e = OP (

√
λ2
Kζ

2
K log(K)/n).

Next, consider the terms
√

1
nVK

P̃K(x)′
(
Q̂−1
K − IK

)
P̃K′rK . Observe that || 1√

n

∑n
i=1 P̃KirKi|| =

Op(`KcK
√
K) since

E[|| 1√
n

n∑
i=1

P̃KirKi]||2] = E[
K∑
j=1

P̃ 2
jir

2
Ki] ≤ `2

Kc
2
KE[||P̃Ki||2] = `2

Kc
2
KK. (1.12.4)

Combining (1.12.1) and (1.12.4) yields the results

|
√

1

nVK
P̃K(x)′

(
Q̂−1
K − IK

)
P̃K′rK | ≤ ||Q̂−1

K || · ||
(
Q̂K − IK

)
|||| 1√

n

n∑
i=1

P̃KirKi||

= Op(

√
λ2
Kζ

2
K log(K)

n
`KcK

√
K)

by Assumption 1.2-(4).

We now prove (1.12.3). Consider
√

1
nVK

P̃K(x)′P̃K′rK ,

E[(

√
1

nVK
P̃K(x)′P̃K′rK)2] = E[(

P̃K(x)′P̃Ki

V
1/2
K

rKi)
2] ≤ (cK`K)2

since E[( P̃K(x)′P̃Ki

V
1/2
K

)2] � 1 by Assumption 1.2-(2) and E(rKi)
2 ≤ `KcK by Assumption 1.2-(3).

Therefore, we have (1.12.3) by Chebyshev’s inequality and E[P̃KirKi] = 0. This completes

the proof. Q.E.D.

Proof of Theorem 1.1. For any π ∈ Π = [π, 1], we first show the decomposition of the t-



52

statistic in equation (1.3.2).

T ∗n(π, θ0) = Tn(bπK̄c, θ)

=

√
n

Vπ
P̃π(x)′(β̂bπK̄c − βbπK̄c)−

√
n

Vπ
rπ

=

√
1

nVπ
P̃π(x)′P̃ bπK̄c

′
(ε+ rbπK̄c′)

+

√
1

nVπ
P̃π(x)′

(
Q̂−1
bπK̄c − IbπK̄c

)
P̃ bπK̄c

′
(ε+ rbπK̄c′)−

√
n

Vπ
rπ

=
1√
n

n∑
i=1

P̃π(x)′P̃πiεi

V
1/2
π

+R1(bπK̄c) +R2(bπK̄c)−
√
nV −1/2

π rπ

where R1(K), R2(K) are defined in (1.12.2), (1.12.3).

By Lemma 1.1, we have R1(K) = Op(

√
ζ2K logK

n
(1 + `KcK

√
K)) = op(1), R2(K) =

Op(`KcK) = op(1) for any K = bπK̄c ∈ Kn under Assumptions 1.1 and 1.2. Therefore

we have following decomposition for any π ∈ Π

T ∗n(π, θ0) = t∗n(π)−
√
nV −1/2

π rπ + op(1), (1.12.5)

where

t∗n(π) ≡ 1√
n

n∑
i=1

P̃π(x)′P̃πiεi

V
1/2
π

. (1.12.6)

Now we show weak convergence of the empicial process {t∗n(·) : n ≥ 1} to the mean zero

Gaussian process T(·) defined in the Theorem 1.1. Let Fn = {fn,π : π ∈ Π} be a sequence

of classes of measurable functions fn,π : (E × X ) to R indexed by π,

fn,π(ε, t) =
P̃π(x)′P̃π(t)ε

V
1/2
π (x)

=
P̃bK̄πc(x)′P̃bK̄πc(t)ε

V
1/2

bK̄πc(x)
, (ε, t) ∈ E × X . (1.12.7)

Consider empirical process {t∗n(π) : π ∈ Π} = {n−1/2
∑n

i=1 fn,π(εi, xi) : π ∈ Π} indexed by

classes of functions Fn = {fn,π : π ∈ Π}. We want to show weak convergence of the stochastic
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process in the space `∞(Π) with totally bounded semimetric space (Π, ρ), where ρ is defined

as ρ(π1, π2) = |π1 − π2|. Weak convergence results follows from marginal convergence to

a Gaussian process and asymptotic tightness. We closely follow Section 2.11.3 in van der

Vaart and Wellner (1996) and verify conditions for the asymptotic tightness as in Theorem

2.11.22.

Note that the covariance kernel can be derived as follows

Efn,π1fn,π2 − Efn,π1Efn,π2 =
P̃π1(x)′E(P̃π1(xi)P̃π2(xi)

′ε2
i )P̃π2(x)

V
1/2
π1 V

1/2
π2

. (1.12.8)

This term converges to the claimed covariance function Σ(π1, π2). This covariance kernel

can be bounded below and above some constant 0 < c,C <∞ for all n,

c ≤ σ2V
1/2
π1

V
1/2
π2

≤ P̃π1(x)′E(P̃π1(xi)P̃π2(xi)
′ε2
i )P̃π2(x)

V
1/2
π1 V

1/2
π2

≤ σ̄2V
1/2
π1

V
1/2
π2

≤ C (1.12.9)

by using σ2P̃π(x)′P̃π(x) ≤ Vπ ≤ σ̄2P̃π(x)′P̃π(x) from Assumption 1.2-(2). We also use the

fact that V
1/2
π1 � V

1/2
π2 � ||P̃K̄ || for any π1, π2 under Assumption 1.1 and 1.2. Thus, there

exist c, C > 0 which is independent of n, π such that 0 < c ≤ V
1/2
π1

V
1/2
π2

≤ C < 1.

We first show the finite dimensional convergence. It suffices to show that

t∗n(π1)

t∗n(π2)

 d−→ N


0

0

 ,

 1 v12

v12 1


 ∀π1 < π2, (1.12.10)

where v12 = limn→∞ v12,n, v12,n ≡
P̃π1 (x)′E(P̃π1iP̃

′
π2i

ε2i )P̃π2 (x)

V
1/2
π1

V
1/2
π2

. By Cramér-Wold device, above

holds if for any π1 < π2,

(δ2
1 + δ2

2 + 2δ1δ2v12,n)−1δ1t
∗
n(π1) + δ2t

∗
n(π2) =

1√
n

n∑
i=1

ωni
d−→ N(0, 1) ∀(δ1, δ2) ∈ R2

(1.12.11)
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where ωni = (δ2
1 + δ2

2 + 2δ1δ2v12,n)−1(δ1
P̃π1 (x)′P̃π1iεi

V
1/2
π1

+ δ2
P̃π2 (x)′P̃π2iεi

V
1/2
π2

).

To show (1.12.11), we need to verify Lindberg’s condition. Note that Eωni = 0, and

1
n

∑n
i=1 E[ω2

ni] = 1, since

E[ω2
ni] = (δ2

1 + δ2
2 + 2δ1δ2v12,n)−1(δ2

1E[(
P̃π1(x)′P̃π1iεi

V
1/2
π1

)2] + δ2
2E[(

P̃π2(x)′P̃π2iεi

V
1/2
π2

)2]

+ δ1δ2E[(
P̃π1(x)′P̃π1iεi

V
1/2
π1

)(
P̃π2(x)′P̃π2iεi

V
1/2
π2

)]) = 1.

By Assumption 1.2, we have ||δ1
P̃π1 (x)′P̃π1i

V
1/2
π1

+ δ2
P̃π2 (x)′P̃π2i

V
1/2
π2

||∞ . ζK̄λK̄ . Therefore, for any

a > 0,

1

n

n∑
i=1

E(|ωni|21{|ωni| > a
√
n})

. 2E[| P̃π1(x)′P̃π1iεi

V
1/2
π1

|21{|ωni| > a
√
n}] + 2E[| P̃π2(x)′P̃π2iεi

V
1/2
π2

|21{|ωni| > a
√
n}]

≤ 2(E[| P̃π1(x)′P̃π1iεi

V
1/2
π1

|2 + E[| P̃π2(x)′P̃π2iεi

V
1/2
π2

|2) sup
x
E[ε2

i 1{|εi| > a(
√
n/(ζK̄λK̄)}|xi = x],

where the last term goes to 0 under n→∞ by Assumption 1.2-(2), since E[( P̃π(x)′P̃πiεi

V
1/2
π

)2] � 1

for any π by Assumption 1.2-(2) and (ζK̄λK̄)/
√
n = o(1) by Assumption 1.2-(4). Thus, Lind-

berg condition is verified and (1.12.11) holds by Lindberg-Feller CLT. Therefore (1.12.10)

holds by Slutzky’s Theorem. We show that the finite dimensional convergence to a Gaussian

distribution with covariance kernel in the Theorem 1.1.

Now, we only need to show stochastic equicontinuity. Define α(x, π) ≡ P̃π(x)/V
1/2
π (x) =

P̃π(x)/||Ω1/2
π P̃π(x)||. Note that |fn,π(ε, t)| = |α(x, π)′Pπ(t)ε| ≤ |V

1/2
1

V
1/2
π

fn,1(ε, t)| We define

envelope function Fn(ε, t) ≡ |V
1/2
1

V
1/2
π

fn,1(ε, t)| ∨ 1. Without loss of generality, we assume that

Fn ≥ 1. Note that Ef 2
n,π = 1 for any π, thus EF 2

n = O(1). Moreover, Lindeberg conditions
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can be verified easily as follows. For any a > 0,

E(F 2
n1{Fn > a

√
n}) = E[(

P̃1(x)′P̃1(xi)

V
1/2
π

εi)
21{ε2

i |εi| > a(
√
n/(ζK̄λK̄)}] (1.12.12)

≤ sup
x
E[ε2

i 1{|εi| > a(
√
n/(ζK̄λK̄)}|Xi = x] = o(1) (1.12.13)

since (ζK̄λK̄)/
√
n = o(1) by Assumption 1.2-(2). Moreover, for every δn → 0,

sup
ρ(π1,π2)<δn

E(fn,π1 − fn,π2)2 → 0 (1.12.14)

since Efn,π1fn,π2 → 1 as ρ(π1, π2)→ 0.

Define also κ ≡ supπ 6=π′
Vπ(x)−Vπ′ (x)

||π′−π|| . For any π, π′ ∈ Π = [π, 1] such that π < π′,

|α(x, π′)′Pπ′(t)− α(x, π)′Pπ(t)| = | P̃π
′(x)′P̃π′(t)

V
1/2
π′ (x)

− P̃π(x)′P̃π(t)

V
1/2
π (x)

| (1.12.15)

≤ | P̃π
′(x)′P̃π′(t)− P̃π(x)′P̃π(t)

V
1/2
π′ (x)

|+ |P̃π(x)′P̃π(t)(
1

V
1/2
π′ (x)

− 1

V
1/2
π (x)

)| (1.12.16)

= | P̃π
′−π(x)′P̃π′−π(t)

V
1/2
π′ (x)

|+ |P̃π(x)′P̃π(t)(
Vπ′(x)− Vπ(x)

V
1/2
π (x)V

1/2
π′ (x)(V

1/2
π (x) + V

1/2
π′ (x))

)| (1.12.17)

≤ | P̃π
′−π(x)′P̃π′−π(t)

V
1/2
π (x)

|+ | P̃1(x)′P̃1(t)

V
1/2
π (x)

(
Vπ′(x)− Vπ(x)

2Vπ(x)
)| (1.12.18)

= | P̃1(x)′P̃1(t)

V
1/2
π (x)

|(| P̃π
′−π(x)′P̃π′−π(t)

P̃1(x)′P̃1(t)
|+ |Vπ

′(x)− Vπ(x)

2Vπ(x)
|) (1.12.19)

≤ | P̃1(x)′P̃1(t)

V
1/2
π (x)

|(C||(π′ − π)||+ κ||π′ − π||
2Vπ(x)

) (1.12.20)

≤ | P̃1(x)′P̃1(t)

V
1/2
π (x)

| · A||π′ − π|| (1.12.21)

where the second inequality uses Vπ(x) ≤ Vπ(x) for any π ∈ Π. The thid inequality uses

|| P̃π(x)′P̃πi

V
1/2
π

||∞ . ζK̄π and the definition of κ. The last inequality uses the P̃π(x)′P̃π(t) ∝ K̄π,

κ . V1(x), Vπ(x) � Vπ′(x) and this holds for some constant A and sufficiently large n. From
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this, we have

|fn,π′ − fn,π| = |εα(x, π′)′Pπ′(t)− εα(x, π)′Pπ(t)| ≤ |ε|| P̃1(x)′P̃1(t)

V
1/2
π (x)

|A||π′ − π|| = |Fn|A||π′ − π||.

(1.12.22)

Therefore, the class of functions Fn = {fn,π : π ∈ Π} satisfy Lipschitz conditions, thus it is

VC classes, and we have that

sup
Q
N(ε||Fn||L2(Q),Fn, L2(Q)) ≤ (A/ε)V , 0 < ∀ε ≤ 1, V > 0 (1.12.23)

for some A > 0 and for each n with some constant V independent of n. Then, following

uniform-entropy condition holds for every δn → 0.

J(δn,Fn, L2(Q)) =

∫ δn

0

√
log sup

Q
N(ε||Fn||L2(Q),Fn, L2(Q)) −→ 0. (1.12.24)

Thus, by the Theorem 2.11.22 in van der Vaart and Wellner (1996), we have shown that the

sequence {t∗n(π) : π ∈ Π} is asymptotically tight in `∞(Π). Together with the definition of

ν(π) = limn→∞−
√
nV
−1/2
π rπ and the equation (1.12.5), we have T ∗n(π, θ0)⇒ T(π) + ν(π) for

π ∈ Π. In addition, if Assumption 1.3 holds, then |
√
nV
−1/2
π rπ| = O(

√
nV
−1/2
π `bπK̄ccbπK̄c) =

o(1) for any π ∈ Π. Therefore, T ∗n(π, θ0)⇒ T(π). This completes the proof.

Q.E.D.

Proof of Theorem 1.2

Proof. We prove the finite dimensional convergence use similar arguments to those used in

the proof of Theorem 1.1. We repeat this here, as Assumption 1.4 impose different rates of

K compare with the Assumption 1.1. Similar to the proof in Theorem 1.1, we have following
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decompositions for any m = 1, 2, · · ·M ,

Tn(Km, θ0) = tn(m) + νn(m) + op(1)

where tn(m) = 1√
n

∑n
i=1

P̃Km (x)′P̃Kmiεi

V
1/2
Km

and νn(m) = −
√
nV
−1/2
Km

rKm(x) from Assumption 1.2.

For any Km1 . Km2 , we need to show

tn(m1)

tn(m2)

 d−→ N(0, I2).

By Cramér-Wold device, it also suffices to show that δ1tn(m1) + δ2tn(m2)
d−→ N(0, δ2

1 + δ2
2)

for ∀δ1, δ2 ∈ R. For any δ1, δ2, define

(δ2
1 + δ2

2 + 2δ1δ2v12,n)−1(δ1tn(m1) + δ2tn(m1) =
1√
n

n∑
i=1

ωni

where v12,n =
P̃Km1

(x)′E(P̃Km1 i
P̃ ′Km2 i

ε2i )P̃Km2
(x)

V
1/2
Km1

V
1/2
Km2

, and ωni = (δ2
1+δ2

2+2δ1δ2v12,n)−1/2(δ1
P̃Km1

(x)′P̃Km1 i
εi

V
1/2
Km

+

δ2
P̃Km1

(x)′P̃Km1 i
εi

V
1/2
Km

are defined similarly as in the proof of Theorem 1.1. Observe that Eωni = 0,

and 1
n

∑n
i=1E[ω2

ni] = 1, and

||
P̃Kπ1 (x)′P̃Kπ1√

VKπ1
+
P̃Kπ2 (x)′P̃Kπ2√

VKπ2
||∞ . ζKm1

λKm1
+ ζKm2

λKm2
. ζKm2

λKm2

by Assumptions 1.2 and 1.4. Therefore, Lindberg’s condition can be verified similarly as in

the proof of Theorem 1.1.

Moreover,

v12,n =
P̃Km1

(x)′E(P̃Km1 i
P̃ ′Km2 i

ε2
i )P̃Km2

(x)

V
1/2
Km1

V
1/2
Km2

≤ C
V

1/2
Km1

V
1/2
Km2

for some constant C > 0 by Assumption 1.2-(2). The latter term converges to 0 as n → 0
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by Assumption 1.4, thus v12,n → 0. Therefore, finite dimensional convergence holds by

Lindberg-Feller CLT and Slutzky’s Theorem. Under supm |ν(m)| < ∞, joint asymptotic

distributions of (Tn(K1, θ0), · · · , Tn(KM , θ0))′ also holds with the definition of ν = (ν(1), · · · ,

ν(M))′.

If ν(m) = ∞ for some ν(m), then Tn(Km, θ0)
p−→ +∞, or if ν(m) = −∞ then Tn(Km,

θ0)
p−→ −∞. Let G(·) be a strictly increasing continuous df on R, for example standard

normal cdf Φ(·). For any m,

Gn,m = G(Tn(Km, θ0)) = G(tn(m) + νn(m) + op(1)).

If |ν(m)| <∞, then we have

Gn,m
d−→ G(Zm + ν(m)) (1.12.25)

by finite dimensional CLT under Assumptions 1.2, 1.4 and the continuous mapping theorem.

If ν(m) = +∞

Gn,m
p−→ 1 (1.12.26)

since tn(m) = Op(1), and G(x)→ 1 as x→∞, and by CLT. Moreover, if ν(m) = −∞

Gn,m
p−→ 0 (1.12.27)

as G(x) → 0 as x → −∞. Since (1.12.25), (1.12.26), and (1.12.27) holds jointly, this

completes the second part of the proof, as

Gn = (Gn,1, · · · , Gn,M)′
d−→ G∞ ≡ (G(Z1 + ν(1)), · · · , G(ZM + ν(M)))′ (1.12.28)

where G(∞) = 1 if ν(m) = +∞ and G(−∞) = 0 if ν(m) = −∞. Q.E.D.
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Proof of Corollary 1.1

Proof. Under Assumptions 1.1, 1.2 and supπ |ν(π)| < ∞, we have T ∗n(π, θ0) ⇒ T(π) +

ν(π) by Theorem 1.1. Then for any continuous function l(·) : `∞(Π) → R, l(T ∗n(π, θ0))
d→

l(T(π) + ν(π)) holds by continuous mapping theorem. Thus, Inf Tn(θ0) = infK∈Kn |Tn(K,

θ0)| = infπ∈Π |T ∗n(π, θ0)| d→ infπ |T(π) + ν(π)| holds. In addition, if Assumption 1.3 holds,

Inf Tn(θ0)
d→ infπ |T(π)| by Theorem 1.1. This completes the Corollary 1.1-1.

For the second part in Corollary 1.1, remaining proof use similar approach those of

Andrews and Guggenberger (2009) in the moment inequality literature. If some elements

of |νm| = +∞ under oversmoothing sequences, joint distribution of (TK1 , · · · , TKM )′ does

not converge in distribution to a profer bounded random vector. Thus, continuous mapping

theorem cannot be directly applied to obtain asymptotic distribution results in the Corollary.

We first define S(t) ≡ infm |tm| for t = (t1, · · · , tM) ∈ RM
[±∞] \ (∞M ∪ (−∞)M) where

∞M = (+∞, · · · ,+∞), (−∞)M = (−∞, · · · ,−∞) (M copies). Define also T̄n(θ) ≡ (Tn(K1,

θ), · · · , Tn(KM , θ))
′. Then, under Assumption 1.4

Inf Tn(θ0) = inf
m
|Tn(Km, θ0)| = S(T̄n(θ0)). (1.12.29)

We define G−1(·) as the inverse of G(·). For x = (x1, · · · , xM)′ ∈ RM−1
[±∞] × R, define

G(M)(x) ≡ (G(x1), · · · , G(xM))′ ∈ [0, 1]M−1 × (0, 1). For y = (y1, · · · , yM)′ ∈ [0, 1]M−1 × (0,

1), define G−1
(M)(y) ≡ (G−1(y1), · · · , G−1(yM))′ ∈ RM−1

[±∞] × R. Define also S∗(y) for y ∈ [0,

1]M−1 × (0, 1),

S∗(y) ≡ S(G−1
(M)(y)). (1.12.30)

Note that S∗(y) is continuous at all y ∈ [0, 1]M−1 × (0, 1) since S(x) is continuous at all

x ∈ RM−1
[±∞] × R. We define the continuous function on the extended real space as follows;

S : A→ B is continuous at x ∈ A if x′ → x for x ∈ A implies G(x′)→ G(x) for any set A.
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Assumption 1.4 (especially, assumption of at least one |νm| = O(1)) excludes the possibility

of ∞M , (−∞)M and thus restricts the domain of functions appropriately. Therefore, we can

immediately show S(x) is continuous at all x ∈ RM−1
[±∞] × R. Then, we have

Inf Tn(θ0) = S(G−1
(M)(Gn))

= S∗(Gn)

d→ S∗(G∞)

= S(G−1
(M)(G∞)) = S(Z + ν)

= min
m
|Zm + νm|

where the first equality holds by the definition of G−1
(M)(·), the second equality uses the

definition of S∗. Convergence in the third line holds by Theorem 1.2, and the fourth and fifth

equality uses the definition of S∗. If |νm| = +∞, corresponding elements of |Zm+νm| = +∞

by construction. This completes the proof of Corollary 1.1. Q.E.D.

Proof of Corollary 1.2

Proof. We first provide (1.4.3) in Corollary 1.2-1. Under Assumptions 1.1-1.3, we have shown

that Inf Tn(θ0)
d−→ ξinf = infπ∈[π,1] |T(π)| in Corollary 1.1-1. Therefore,

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) = lim

n→∞
P (Inf Tn(θ0) > cinf

1−α) = P (ξinf > cinf
1−α) = α

where the first equality holds under subsequence {un} of {n} by the definition of lim sup and

the second equality uses the Corollary 1.1-1 and the definition of cinf
1−α in (1.4.2). Moreover,

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) = P (ξinf > z1−α/2) ≤ P (|T(π)| > z1−α/2) = α
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where the inequality uses ξinf = infπ∈[π,1] |T(π)| ≤ |T(π)| and T(π)
d
= N(0, 1) for any single

π.

Next, we prove Corollary 1.2-2. Under Assumptions 1.1, 1.2 and supπ |ν(π)| < ∞, we

have Inf Tn(θ0)
d−→ infπ∈[π,1] |T(π) + ν(π)| with asymptotic bias ν(π). First, we have

lim sup
n→∞

P (Inf Tn(θ0) > cinf
1−α) = P ( inf

π∈[π,1]
|T(π) + ν(π)| > cinf

1−α)

≤ inf
π
P (|T(π) + ν(π)| > cinf

1−α)

= inf
π

[1− (P (Z ≤ cinf
1−α − |ν(π)|)− P (Z ≤ −cinf

1−α − |ν(π)|))]

= inf
π
F (cinf

1−α, |ν(π)|) = F (cinf
1−α, inf

π
|ν(π)|)

where the first inequality uses infπ∈[π,1] |T(π) + ν(π)| ≤ |T(π) + ν(π)| for all π, the second

equality uses T(π)
d
= Z ∼ N(0, 1) and the definition of F (·). Finally, the last equality holds

since F (c, |ν|) is monotone increasing function of |ν|. Similarly,

lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) = P ( inf
π∈[π,1]

|T(π) + ν(π)| > z1−α/2) ≤ F (z1−α/2, inf
π
|ν(π)|).

Next consider Corollary 1.2-3. We have Inf Tn(θ0)
d−→ infm=1,···,M |Zm + ν(m)| by Corol-

lary 1.1-2 under Assumptions 1.2 and 1.4. Then, for any 0 < c <∞,

lim sup
n→∞

P (Inf Tn(θ0) > c) = P ( inf
m=1,···,M

|Zm + ν(m)| > c)

=
M∏
m=1

P (|Zm + ν(m)| > c) =
M∏

m=M−M1+1

F (c, |ν(m)|)

by Corollary 1.1-2 and the definition of F and the fact that F (c, |ν(m)|) = 1 for |ν(m)| =∞.

Last equality holds when |ν(m)| = ∞ for m = 1, · · · ,M − M1 since F (c,∞) = 1. By

similar derivations we have shown above,
∏M

m=1 F (c, |ν(m)|) ≤ F (c, infm |ν(m)|) = F (c,

0) by Assumption 1.4. Moreover, if c = z1−α/2 then the asymptotic size is controlled, as
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lim sup
n→∞

P (Inf Tn(θ0) > z1−α/2) ≤ F (z1−α/2, 0) = α. This completes the proof.

Q.E.D.

Proof of Corollary 1.3

Proof. Note that Assumption 1.7 holds under Assumptions 1.1, 1.2 with the following addi-

tional assumption, and this is essentially by Lemma 3.2 of Chen and Christensen (2015b).

||
n∑
i=1

P̃KiP̃
′
Kiε

2
i − E[P̃KiP̃

′
Kiε

2
i ]|| = op(1)

Under Assumptions 1.2, 1.3, 1.5, and 1.6, following finite dimensional convergence holds

by Theorem 1.1,

T̄n(θ) = (Tn(K1, θ0), · · · , Tn(KM , θ0))′
d−→ Z = (Z1, · · · , ZM)′, Z ∼ N(0,Σ) (1.12.31)

Under Assumptions 1.2-1.4, above also holds with Σ = IM by Theorem 1.2. Note that

Tn,V̂ (K, θ) =
√
n(θ̂K−θ0)

V̂
1/2
K

=
V

1/2
K

V̂
1/2
K

Tn(K, θ). Then following holds

(Tn,V̂ (K1, θ0), · · · , Tn,V̂ (KM , θ0))′ = AT̄n(θ)
d−→ Z (1.12.32)

by Assumption 1.7 and Slutzky Theorem, where A ≡ diag{
V

1/2
K1

V̂
1/2
K1

, · · · ,
V

1/2
KM

V̂
1/2
KM

}, and A
p−→ IM

Next consider ĉinf
1−α which is (1− α) quantile of inf

m=1,···,M
|Zm,Σ̂| defined in (1.4.10),

ĉinf
1−α = inf{x ∈ R : P ( inf

m=1,···,M
|Zm,Σ̂| ≤ x) ≥ 1− α}

where ZΣ̂ = (Z1,Σ̂, · · · , ZM,Σ̂)′ ∼ N(0, Σ̂), Σ̂jj = 1, Σ̂jl = V̂
1/2
Kj

/V̂
1/2
Kl

. Note that for any
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j < l,

Σ̂jl =
V̂

1/2
Kj

V̂
1/2
Kl

=
V̂

1/2
Kj

V
1/2
Kj

V
1/2
Kj

V
1/2
Kl

V
1/2
Kl

V̂
1/2
Kl

p−→ Σjl (1.12.33)

by Assumption 1.7. Therefore, Σ̂
p−→ Σ, ZΣ̂

d−→ ZΣ, and inf
m=1,···,M

|Zm,Σ̂|
d−→ inf

m=1,···,M
|Zm,Σ|

hold. Thus, ĉinf
1−α

p−→ cinf
1−α. Q.E.D.

Proof of Corollary 1.4

Proof. We first show Corollary 1.4-1.

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = lim inf
n→∞

P (Inf Tn(θ0) ≤ cinf1−α + op(1))

= P (inf
m
|Zm| ≤ cinf1−α) = 1− α

where the first equality holds by Corollary 1.3 under Assumptions 1.2, 1.3, 1.5, 1.6, and 1.7,

and the second equality holds by Corollary 1.1-1. Similarly, we can show

lim inf
n→∞

P (θ0 ∈ CIinf) = P (inf
m
|Zm| ≤ z1−α/2) ≥ P (|Zm| ≤ z1−α/2) = 1− α. (1.12.34)

Next, consider Corollary 1.4-2.

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1− lim sup
n→∞

P (Inf Tn(θ0) > ĉinf1−α) ≥ 1− F (cinf
1−α, inf

m
|ν(m)|)

(1.12.35)

by Corollary 1.2-2 and Corollary 1.3. Equation (1.5.5) can be similarly derived from Corollary

1.2-2.
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Finally, consider Corollary 1.4-3.

lim inf
n→∞

P (θ0 ∈ CIRobustinf ) = 1− lim sup
n→∞

P (Inf Tn(θ0) > ĉinf1−α) (1.12.36)

= 1− P ( inf
m=1,···,M

|Zm + ν(m)| > cinf
1−α) (1.12.37)

= 1−
M∏
m=1

F (cinf
1−α, |ν(m)|) (1.12.38)

where the second equality uses Corollary 1.1-2 and Corollary 1.3, and the third equality

uses asymptotic independence of Zm by Theorem 1.2. Similarly, we have that lim inf
n→∞

P (θ0 ∈

CIinf) ≥ 1− F (z1−α/2, 0) = 1− α under Assumption 1.4. Q.E.D.

Proof of Corollary 1.5

Proof. Similar to the proof of Corollary 1.3, we can also verify sup
m=1,···,M

|Zm,Σ̂|
d−→ sup

m=1,···,M
|Zm,Σ|,

ĉsup
1−α

p−→ csup
1−α, and SupTn(θ0) = sup

m
|Tn,V̂ (Km, θ0)| d−→ sup

m
|Zm,Σ| under Assumptions 1.2,

1.3, 1.5, 1.6, and 1.7. Therefore, we have

lim inf
n→∞

P (θ0 ∈ CIRobustpms ) = lim inf
n→∞

P (|Tn,V̂ (K̂, θ0)| ≤ ĉsup1−α) (1.12.39)

≥ lim inf
n→∞

P (SupTn(θ0) ≤ ĉsup1−α) (1.12.40)

= P (sup
m
|Zm,Σ| ≤ csup1−α) = 1− α (1.12.41)

where the first inequality uses |Tn,V̂ (K̂, θ0)| ≤ SupTn(θ0) for all K̂ ∈ Kn. Q.E.D.
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Proof of Theorem 1.3

Proof. Conditional on X = [x1, · · · , xn]′, following decomposition holds for any single se-

quence K ∈ Kn

√
n(θ̂K − θ0) = Γ̂−1

K SK

Γ̂K =
1

n
(W ′MKW ), SK =

1√
n
W ′MK(g + ε)

where g = [g1, · · · , gn]′, gi = g0(xi), gw = [gw1, · · · , gwn]′, gwi = gw0(xi) = E[wi|xi], v = [v1,

· · · , vn].

Under Assumption 1.8 and conditional homoskedastic error terms, E[v2
i |xi] = E[v2

i ],

Γ̂K = ΓK + op(1), ΓK = (1−K/n)E[v2
i ] (1.12.42)

by Lemma 1 of Cattaneo, Jansson and Newey (2015a). Moreover,

SK =
1√
n
v′MKε+

1√
n
g′wMKg +

1√
n

(v′MKg + g′wMKε) (1.12.43)

=
1√
n

n∑
i=1

MK,iiviεi −
1√
n

n∑
i=1

n∑
j=1,j<i

PK,ij(viεj + vjεi) + op(1) (1.12.44)

since MK,ij = −PK,ij for j < i, 1√
n
g′wMKg = Op(

√
nK̄−γg−γgw ) = op(1), 1√

n
(v′MKg +

g′wMKε) = Op(K̄
−γg +K̄−γgw ) = op(1) by Lemma 2 of Cattaneo, Jansson and Newey (2015a)

under Assumption 1.8. Under conditional homoskedastic error E[ε2
i |wi, xi] = σ2

ε following

holds

Tn(K, θ0) =
√
nV
−1/2
K (θ̂K − θ0) = V

−1/2
K Γ−1

K

1√
n
v′MKε+ op(1)

d−→ N(0, 1)

by Theorem 1 of Cattaneo, Jansson and Newey (2015a) which follows from Lemma A2 in

Chao, Swanson, Hausman, Newey and Woutersen (2012).
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To show joint convergence, it suffices to show for any K1 < K2 in Kn

δ1Tn(K1, θ0) + δ2Tn(K2, θ0)
d−→ N(0, (δ2

1 + δ2
2 + 2δ1δ2v12)) ∀(δ1, δ2) ∈ R2 (1.12.45)

where v12 = limn→∞ V
1/2
K1

/V
1/2
K2

. We closely follows the proof of Lemma A2 in Chao, Swanson,

Hausman, Newey and Woutersen (2012). Define Yn, Y1,n and Y2,n as follows

Yn = δ1Y1,n + δ2Y2,n, (1.12.46)

Y1,n = ω1,1n +
n∑
i=2

y1,in, y1,in = ω1,in + ȳ1,in, (1.12.47)

Y2,n = ω2,1n +
n∑
i=2

y2,in, y2,in = ω2,in + ȳ2,in, (1.12.48)

where ω1,in = V
−1/2
K1

Γ−1
K1
MK1,ii/

√
n, ȳ1,in =

∑
j<i(u1,jPK1,ijεi+u1,iPK1,ijεj)/

√
n, u1,i = V

−1/2
K1

Γ−1
K1
vi

and ω2,in, ȳ2,in are similarly defined with appropriate terms PK2 , VK2 ,ΓK2 with K2. Similar

to the proof of Lemma A2 in Chao, Swanson, Hausman, Newey and Woutersen (2012),

ω1,1n = op(1), ω2,1n = op(1). Thus, we only need to show that following holds conditional on

X with probability one.

n∑
i=2

(δ1y1,in + δ2y2,in)
d−→ N(0, δ2

1 + δ2
2 + 2δ1δ2v12). (1.12.49)

It remains to provide Lindeberg-Feller condition.

E[(
n∑
i=2

δ1y1,in + δ2y2,in)2|X] = δ2
1E[(

n∑
i=2

y1,in)2|X] + δ2
2E[(

n∑
i=2

y2,in)2|X]

+2δ1δ2E[
n∑
i=2

n∑
j=2

y1,iny2,in|X], (1.12.50)

where the first and second terms in (1.12.50) goes to δ2
1, δ

2
2 a.s., respectively, as in the

proof of Lemma A.2 in Chao, Swanson, Hausman, Newey and Woutersen (2012). Note that

E[ω1,inȳ2,jn|X] = 0, E[ω2,inȳ1,jn|X] = 0 for all i, j, and E[ω1,1nω2,in|X] = 0, E[ω2,1nω1,in|X] =
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0 for any i > 1. Followings are the key calculations for the asymptotic variance of leading

terms in Yn:

E[Y1,nY2,n|X] =
1

n
V
−1/2
K1

Γ−1
K1
E[v′MK1εv

′MK2ε|X]Γ−1
K2
V
−1/2
K2

(1.12.51)

=
1

n
V
−1/2
K1

Γ−1
K1
σ2
εE[v′MK2v|X]Γ−1

K2
V
−1/2
K2

(1.12.52)

= V
−1/2
K1

Γ−1
K1
σ2
εΓK2Γ

−1
K2
V
−1/2
K2

(1.12.53)

= V
1/2
K1

/V
1/2
K2

(1.12.54)

where the second equality uses conditional homoskedasticity E[ε2|X,Z] = σ2
ε andMK1MK2 =

MK2 , the third equality uses tr(MK2) = n−K2 and E[v2|X] = E[v2], and the last equality

uses VK1 = σ2
εΓ
−1
K1

. Therefore, we calculate components of last terms in (1.12.50) as follows

E[
n∑
i=2

n∑
j=2

y1,iny2,in|X] = E[Y1,nY2,n|X]−
n∑
i=2

E[ω1,1ny2,in|X]

−
n∑
i=2

E[ω2,1ny1,in|X]− E[ω1,1nω2,1n|X] (1.12.55)

= V
1/2
K1

/V
1/2
K2
− E[ω1,1nω2,1n|X]→ v12 a.s. (1.12.56)

Also as in the proof of Lemma A.2 of Chao, Swanson, Hausman, Newey and Woutersen

(2012), we have

n∑
i=2

E[(δ1y1,in + δ2y2,in)4|X] .
n∑
i=2

E[(y1,in)4|X] +
n∑
i=2

E[(y2,in)4|X]→ 0 a.s. (1.12.57)

Thus, by similar arguments following the proof of Lemma A.2 in Chao, Swanson, Hausman,

Newey and Woutersen (2012), we can apply the martingale central limit theorem. Then,

by Slutzky theorem, joint convergence holds with the claimed covariance. We can show

the coverage results using similar arguments to those used in the proof of Corollary 1.4.

By Theorem 2 in Cattaneo, Jansson and Newey (2015a), Assumption 1.7 holds with the
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following variance estimator for VK

V̂K = s2Γ̂−1
K , s2 =

1

n− 1−K

n∑
i=1

ε̂2
i , ε̂2

i =
n∑
j=1

MK,ij(yj − θ̂Kwj). (1.12.58)

Q.E.D.
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1.13 Figures and Tables
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Figure 1.1: Different functions of g(x).
Solid lines (Black) are g1(x) = 4x− 1; Dashed lines (Green) are
g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2); Dotted lines (Blue) are

g3(x) = sin(7πx/2)/[1 + 2x2(sgn(x) + 1)]; and Dash-dot lines (Red) are
g4(x) = x− 1/2 + 5φ(10(x− 1/2)), where φ(·) is standard normal pdf.
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Figure 1.2: Plots of F (c, ν) as a function of ν for c = 1.5, 1.96, and 2.4.
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Figure 1.3: Coverage - Polynomials
Nominal 95% Coverage of Various CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv.

(a) g1(x) = 4x− 1
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(b) g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)
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(c) g3(x) = sin(7πx/2)
1+2x2(sgn(x)+1)
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(d) g4(x) = x− 1/2 + 5φ(10(x− 1/2))
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Figure 1.4: Coverage - Splines
Nominal 95% Coverage of Various CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv.

(a) g1(x) = 4x− 1
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Figure 1.5: Length of CIs - Polynomials
Average lengths of nominal 95% CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv.

(a) g1(x) = 4x− 1

x
0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
en

gt
h 

of
 C

Is

0

0.5

1

1.5

2

2.5

3

CI-Naive
CI-maxK

CI
Inf
Robust

CI
Inf

CI
Pms
Robust

(b) g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2)

x
0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
en

gt
h 

of
 C

Is

0

0.5

1

1.5

2

2.5

3

CI-Naive
CI-maxK

CI
Inf
Robust

CI
Inf

CI
Pms
Robust

(c) g3(x) = sin(7πx/2)
1+2x2(sgn(x)+1)

x
0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
en

gt
h 

of
 C

Is

0

0.5

1

1.5

2

2.5

3

CI-Naive
CI-maxK

CI
Inf
Robust

CI
Inf

CI
Pms
Robust

(d) g4(x) = x− 1/2 + 5φ(10(x− 1/2))

x
0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 L
en

gt
h 

of
 C

Is

0

0.5

1

1.5

2

2.5

3

CI-Naive
CI-maxK

CI
Inf
Robust

CI
Inf

CI
Pms
Robust



74

Figure 1.6: Length of CIs - Splines
Average lengths of nominal 95% CIs for g(x):

(1) CINaivepms with K̂cv (2) CImaxK with K̄ (3) CIRobustinf (4) CIinf (5) CIRobustpms with K̂cv.
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Figure 1.7: Power function against fixed alternatives. Design 2 :
g2(x) = ln(|6x− 3|+ 1)sgn(x− 1/2). H0 : θ = θ0 vs H1 : θ = θ0 + δ, where θ0 = g2(x) at

x = 0.4 for figure (a) and x = 0.5 for figure (b). Using Polynomials.
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Figure 1.8: Patterns of t-statistics with K - Polynomials.
Plots of E[Tn(K, θ0)] as a function of K at different points x = 0.1, 0.25, 0.5, 0.75, 0.9.

Vertical Lines are median of selected K by cross validation (The first two graphs coincide
with K).
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Table 1.1: Nonparametric Wage Elasticity of Hours of Work
Estimates in Blomquist and Newey (2002, Table 1). Wage elasticity

evaluated at the mean wage and income.

Additional Terms1 CV 2 Êw SEÊw CIÊw

1, yJ , wJ 0.00472 0.0372 0.0104 [0.0168, 0.0576]
∆y∆w 0.0313 0.0761 0.0128 [0.0510, 0.1012]
`∆y 0.0305 0.0760 0.0127 [0.0511, 0.1009]
y2
J , w

2
J 0.0323 0.0763 0.0129 [0.0510, 0.1016]

∆y2,∆w2 0.0369 0.0543 0.0151 [0.0247, 0.0839]
yJwJ 0.0364 0.0659 0.0197 [0.0273, 0.1045]
∆yw 0.0350 0.0628 0.0223 [0.0191, 0.1065]
`2∆y 0.0364 0.0636 0.0223 [0.0199, 0.1073]
y3
J , w

3
J 0.0331 0.0845 0.0275 [0.0306, 0.1384]

`∆y2, `∆w2, `∆yw 0.0263 0.0775 0.0286 [0.0214, 0.1336]
y2
JwJ , yJw

2
J 0.0252 0.0714 0.0289 [0.0148, 0.1280]

MLE estimates 0.123 0.0137

Critical values: ĉinf
1−α = 0.9668, ĉsup

1−α = 2.4764

Test H0 : Ew = 0, Inf Tn(θ0) = 2.4706 > ĉinf
1−α

CIRobustinf = [0.0271, 0.1111]
CIinf = [0.0148, 0.1384], CIRobustpms = [0.0169, 0.0916]

1 y : non-labor income, w : marginal wage rates, `: the end point
of the segment in a piecewise linear budget set.

2 CV denotes cross-validation criteria defined in Blomquist and
Newey (2002, p.2464).
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1.14 Supplementary Material

The Supremum of the t-statistics and Confidence Intervals Uniform

in the Number of Series Terms

In this supplementary material, we consider the supremum of the t-statistics over all series

terms and discuss more about inference methods based on this test statistic.

In another direction, this paper also derives the robust inference method after search-

ing over different specifications for nonparametric series estimation. Specification search is

also widely used in estimating the parametric model in a less clear way. Nonparametric

series estimation gives systematic way of doing specification search by restricting domain of

search as K ∈ [K, K̄] (see Ichimura and Todd (2007) for pointing this out). However, even

though the specification search are extensively used in nonparametric series estimation, little

justification has been done, especially for the inference problems.

Suppose a researcher reports only ‘favorable’ subset of positive results and hiding large

different specifications which shows overall mixed results or pretending not to search. These

practices may lead to distorted inference and the misleading conclusion if we take variability

of the first step specification search into account. For example, if a researcher computes

many t-statistics and chooses the largest one, then usual standard normal critical value

must be adjusted to control size. The importance of this ‘model uncertainty’ introduced

by specification search (or data mining/ data snooping) has been widely alerted in various

other contexts (see Leamer (1983), White (2000), Romano and Wolf (2005), Hansen (2005),

and recent papers by Varian (2014), Athey and Imbens (2015), and Armstrong and Kolesár

(2015)). Considering the supremum statistic is quite natural to control size of the joint test

in multiple testing literature.

Here, we introduce the tests based on the supremum of the t-statistics over all series

terms using the critical values from its asymptotic distribution. We show that this also

controls size with undersmoothing conditions. This tests can be used to construct CIs which
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are uniform in K that have a correct coverage. That is, all confidence intervals using the

critical value from supremum t-statistics jointly cover the true parameter at the nominal

level, asymptotically. Our robust inference method is one way to improve the credibility of

inference by admitting search over large sets of different models in nonparametric regression

and doing some corrections as usual in multiple testing literature.

We consider a following ‘supremum’ t-statistic

SupTn(θ) ≡ sup
K∈Kn

|Tn(K, θ)|. (1.14.1)

The supremum of the t-statistics is appropriate in the context of multiple testing, and

is known to control the size of the family wise error rate (FWE). We may consider the

specification search over large sets of Kn as simultaneously testing a single hypothesis H0

based on different test statistics Tn(K, θ) over K ∈ Kn. Multiple testing setup is more

natural when we focus on the pseudo-true parameter θK . One can consider simultaneous

testing of individual hypothesis HK,0 : θK = θ0 vs HK,1 : θK 6= θ0 for different K ∈ Kn.

Here, controlling FWE corresponds to control following probability asymptotically, FWE =

P (reject at least one hypothesis HK,0, K ∈ Kn) ≤ α.

To derive asymptotic size of the test and coverage of CI based on the SupTn(θ), we first

provide asymptotic null limiting distribution of the supremum statistics analogous to the

Corollary 1 for the infimum test statistic, Inf Tn(θ).

Corollary 1.6. 1. Under Assumptions 1.1-1.2 and supπ |ν(π)| < ∞, SupTn(θ0)
d−→

supπ∈[π,1] |T(π) + ν(π)|, where T(π) is the mean zero Gaussian process defined in

Theorem 1.1. In addition, if Assumption 1.3 holds, then SupTn(θ0)
d−→ ξsup =

supπ∈[π,1] |T(π)|.

2. Suppose Assumptions 1.2 and 1.4 hold. In addition, if supm |ν(m)| <∞ are satisifed,

then SupTn(θ0)
d−→ supm=1,···,M |Zm + ν(m)| where Zm is an element of M × 1 nor-

mal vector Z ∼ N(0, IM) and ν = (ν(1), · · · , ν(M))′ defined in Theorem 1.2. If
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supm |ν(m)| =∞, then SupTn(θ0)
p−→∞.

Corollary 1.6-2 shows that SupTn(θ0) converges in probability to infinity under alterna-

tive set assumption. This implies that the supremum of the t-statistics may be sensitive

to those oversmoothing sequences (small K) with high bias. Next Corollary provides the

asymptotic size of the test based on SupTn(θ) similar to the Corollary 1.2.

Corollary 1.7. 1. Under Assumptions 1.1-1.3, following holds

lim sup
n→∞

P (SupTn(θ0) > csup
1−α) = α. (1.14.2)

2. Under Assumptions 1.1-1.2, and supπ |νπ| <∞, following holds

lim sup
n→∞

P (SupTn(θ0) > csup
1−α) ≥ F (csup

1−α, sup
π
|ν(π)|) (1.14.3)

where F (c, |ν|) = 1−Φ(c− |ν|) + Φ(−c− |ν|) with standard normal cumulative distri-

bution function Φ(·).

3. Under Assumptions 1.2, 1.4, and supm |ν(m)| =∞, lim sup
n→∞

P (SupTn(θ0) > c) = 1 for

any 0 < c <∞.

Contrary to the Inf Tn(θ),(1.14.3) in Corollary 1.7-2 shows that the test based on SupTn(θ)

may suffer from the asymptotic bias, thus lead to size distortions. Suppose F (csup
1−α, q) = α

for some q > 0. If supπ |ν(π)| > q, then the asymptotic size is strictly greater than α. This

also can be seen from the results in Corollary 1.7-3 under different rate conditions for the Kn

in Assumption 1.4. If supm |ν(m)| = ∞, then the asymptotic size of the test is equal to 1.

The asymptotic size of the test based on SupTn(θ) may be sensitive to the large asymptotic

bias, and this leads to the over-rejection of the test.



81

Next, we define CIsup based on SupTn(θ) and the critical value ĉsup
1−α in Section 1.6.

CIsup ≡ {θ : sup
K∈Kn

|Tn,V̂ (K, θ)| ≤ ĉsup
1−α}

=
⋂

K∈Kn

{θ : |Tn,V̂ (K, θ)| ≤ ĉsup
1−α} = [sup

K
(θ̂K − ĉsup

1−αs(θ̂K)), inf
K

(θ̂K + ĉsup
1−αs(θ̂K))].

(1.14.4)

Note that CIsup is an intersection of all CIs in Kn using critical value ĉsup
1−α.

Corollary 1.8. 1. Under Assumptions 1.2, 1.5, 1.6, and 1.7,

lim inf
n→∞

P (θK ∈ [θ̂K ± ĉsup
1−αs(θ̂K)] ∀K ∈ Kn) = 1− α. (1.14.5)

In addition, if Assumption 1.3 (undersmoothing) holds,

lim inf
n→∞

P (θ0 ∈ CIsup) = lim inf
n→∞

P (θ0 ∈ [θ̂K ± ĉsup
1−αs(θ̂K)] ∀K ∈ Kn) = 1− α.

(1.14.6)

2. Under Assumptions 1.2, 1.5, 1.6, 1.7, and supm |ν(m)| < ∞ where ν(m) ≡ ν(πm) as

in (1.3.3),

lim inf
n→∞

P (θ0 ∈ CIsup) ≤ 1− F (csup
1−α, sup

m
|ν(m)|). (1.14.7)

3. Under Assumptions 1.2, 1.4, 1.7, and supm |ν(m)| =∞, lim inf
n→∞

P (θ0 ∈ CIsup) = 0.

Note that (1.14.5) gives asymptotic coverage of the uniform confidence intervals over K ∈

Kn for the pseudo-true value θK . (1.14.6) gives asymptotic coverage probability of CIsup for

the true value θ0 with undersmoothing assumption, which is same as joint coverage of uniform

confidence intervals overK ∈ Kn. By using an appropriate critical value from the distribution

of SupTn, (1.14.5) and (1.14.6) show that joint coverage of CIs, CIK = [θ̂K ± ĉsup
1−αs(θ̂K)],
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K ∈ Kn for the pseudo-true value θK (for true parameter θ0 with undersmoothing) is equal

to 1− α, asymptotically.

However, Corollary 1.8-2 and 1.8-3 show that the coverage can be sensitive to the asymp-

totic bias. Especially, uniform coverage results based on SupTn in (1.14.6) can be highly

sensitive to the finite sample bias when some small K ∈ K has large bias (when some K

violate undersmoothing assumption), so that the coverage probability can be far below than

the nominal level. Recall that CIsup is constructed by intersection of all confidence intervals

in Kn using larger critical value ĉsup
1−α than the normal critical value. Intersection can give

tighter CI, however, if one of the estimator has a large bias, resulting CI can be too narrow

to cover the true parameter. In worst scenario, intersection can be empty sets so that the

coverage of uniform CIs can be 0. This was formally stated in 1.8-3. Under Assumption 1.4,

if |ν(m)| =∞ for some m then asymptotic coverage probability of CIsup is exactly 0. For the

testing problem in Corollary 1.7, over-rejection property of SupTn was also demonstrated.

Proof of the Results in Section 1.14

Proof of Corollary 1.6

Proof. The first part follows from Theorem 1.1 and continuous mapping theorem similar to

the proof of Corollary 1.1. For the second part of Corollary 1.6, consider S1(t) = supm |tm|

for t = (t1, · · · , tM) similarly as in the proof of Corollary 1.1. We have

SupTn(θ0) = sup
m
|Tn(Km, θ0)| = S1(T̄n(θ0)). (1.14.8)

Under the assumpion supm |ν(m)| < ∞, S1(t) is continuous at all t ∈ RM . Therefore,

following holds

SupTn(θ0)
d−→ S1(Z + ν) = sup

m
|Zm + ν(m)| (1.14.9)
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by Theorem 1.2 and continuous mapping theorem. If |νm| = +∞ for some m, then then

|Tn(Km, θ0)| p−→ +∞, therefore SupTn(θ0)
p−→ +∞. Q.E.D.

Proof of Corollary 1.7

Proof. First, we observe that |Tn(K̂, θ0| ≤ SupTn(θ0) for any K̂ ∈ Kn. Then we have

lim sup
n→∞

P (|Tn(K̂, θ)| > csup
1−α) ≤ lim sup

n→∞
P (SupTn(θ0) > csup

1−α) = P (ξsup > csup
1−α) = α

by Corollary 1.6-1. Next, without assuming Assumption 1.3, we have

lim sup
n→∞

P (SupTn(θ0) > csup
1−α) = P ( sup

π∈[π,1]

|T(π) + ν(π)| > csup
1−α)

= 1− P ( sup
π∈[π,1]

|T(π) + ν(π)| ≤ csup
1−α)

≥ sup
π

[1− P (|T(π) + ν(π)| ≤ csup
1−α)]

= sup
π
F (csup

1−α, |ν(π)|) = F (csup
1−α, sup

π
|ν(π)|)

where the first inequality uses P (supπ∈[π,1] |T(π) + ν(π)| ≤ csup
1−α) ≤ P (|T(π) + ν(π)| ≤ csup

1−α)

for all π. The third and last equality use the definition of F and monotone increasing

property of F (c, |ν|) with respect to |ν|.

Next, we consider Corollary 1.7-3 under alternative set assumption. If supm |ν(m)| =∞,

then SupTn(θ0)
p−→ +∞ by Corollary 1.6-2. Thus, for any 0 < c <∞, lim sup

n→∞
P (SupTn(θ0) >

c) = 1. Q.E.D.
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Proof of Corollary 1.8

Proof. This follows from Corollary 1.3 and Corollary 1.7 similar to the proof of Corollary

1.5. Recall that the t-statistic in (1.4.11) can be written as

Tn,V̂ (K, θ0) =

√
n(θ̂K − θ0)

V̂
1/2
K

=

√
n(θ̂K − θK)

V̂
1/2
K

+

√
nrK

V̂
1/2
K

(1.14.10)

First, consider (1.14.5),

lim inf
n→∞

P (θK ∈ [θ̂K ± ĉsup
1−αs(θ̂K)] ∀K ∈ Kn) (1.14.11)

= lim inf
n→∞

P (|
√
n(θ̂K − θK)

V̂
1/2
K

| ≤ ĉsup1−α ∀K ∈ Kn) = lim inf
n→∞

P (sup
K
|
√
n(θ̂K − θK)

V̂
1/2
K

| ≤ ĉsup1−α)

(1.14.12)

= P (sup
m
|Zm| ≤ csup1−α) = 1− α (1.14.13)

where the last equality follows from Theorem 1.1 and Corollary 1.3 under Assumptions 1.2,

1.5, 1.6, and 1.7. Under Assumption 1.3, we have that

lim inf
n→∞

P (θ0 ∈ CIsup) = lim inf
n→∞

P (SupTn(θ0) ≤ ĉsup1−α) (1.14.14)

(= lim inf
n→∞

P (|Tn,V̂ (K, θ0)| ≤ ĉsup1−α ∀K ∈ Kn)) (1.14.15)

= P (sup
m
|Zm| ≤ csup1−α) = 1− α. (1.14.16)

This completes the first part of Corollary 1.8. The second part can be shown similarly

to the proof of Corollary 1.7-2. For the last part, if supm |ν(m)| = ∞, then lim inf
n→∞

P (θ0 ∈

CIsup) = 0 by Corollary 1.7-3 and Corollary 1.3.

Q.E.D.
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Chapter 2

Higher Order Approximation of IV

Estimators with Locally Invalid

Instruments

2.1 Introduction

This paper studies the instrument selection problem in an instrumental variable (IV) model

with many instruments and their potential invalidity. Many empirical setups in the IV model

involve large sets of potential instruments and debates about their validity, which I refer to

as the exogeneity condition, i.e., instruments are uncorrelated with the error term in the

structural equation.

Finite sample performance of the IV estimator is sensitive to the choice of instruments.

The well-known finite sample bias-variance trade-off exists when choosing among valid in-

struments: using more instruments reduces asymptotic variance and thus achieve efficiency,

but it may increase the finite sample bias of the IV estimator. The finite sample bias of the

two-stage least squares (2SLS) estimator and the generalized method of moments (GMM)

estimator are proportional to the number of instruments; the bias becomes more severe when
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the instruments are weak (see Morimune (1983); Bekker (1994); Staiger and Stock (1997);

Newey and Smith (2004); Chao and Swanson (2005); and Hansen, Hausman and Newey

(2008)).

In addition to the many instruments issue, detecting instruments that are not valid

and excluding them is also important for consistent estimation and inferences. In practice,

researchers carefully pick their instruments, and firmly believe that their instruments are

valid, by institutional features or by the nature of the experimental (or quasi-experimental)

design. However, seemingly valid instruments can be correlated with an unobserved error

term, and thus are invalid. The validity of instruments is, generally, uncertain; the reasons

behind this are at least two-folds. First, instruments may have direct effects on the outcome

variables. Second, model misspecification can make instruments invalid. There may also be

omitted control variables that are highly correlated with instruments.1

The purpose of this paper is to develop an instrument selection criterion that addresses

these two issues together. The main contributions of this paper are as follows. 1) I derive a

higher-order mean square error (MSE) approximation of the IV estimators including 2SLS

estimator, limited information maximum likelihood (LIML), modification of Fuller, and bias-

adjusted version of the 2SLS (B2SLS) estimator in linear IV model with many instruments,

allowing possible locally invalid instruments. 2) Based on these higher-order approxima-

tions, I propose an Invalidity-Robust Criterion (IRC) that can be used in empirical practice

to choose instruments. The IRC captures two sources of finite sample bias at the same time:

bias from using many instruments and bias from using invalid instruments. Thus, the cri-

terion is robust to potentially invalid instruments than the existing literature that assumes

an instrument’s validity a priori. Furthermore, we expect to have better finite sample per-

formance than existing consistent moment selection methods or criteria based on first-order

asymptotics, which do not consider finite sample bias from using many instruments.

1For questionable IVs with potential invalidity in various empirical applications, see Guggenberger (2012,
Section 2.1) and references therein. See also Kolesár et al. (2014) for an interesting empirical application
with invalid instruments, even when the instruments are assigned randomly.
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Our question was originally motivated from two seminal papers by Donald and Newey

(2001) and Andrews (1999). Donald and Newey (2001) developed optimal instrument selec-

tion methods among a set of many valid instruments. They derived higher-order MSE of

IV estimators, and their criteria are based on these higher-order approximations. However,

they assume all instruments are valid. If some set of instruments are invalid, then using

these criteria may result in incorrect sets.

Andrews (1999) developed consistent moment selection procedures in GMM setup with

valid and invalid moment conditions. Analogous to the widely used model selection crite-

ria, they showed BIC (Bayesian) type criterion consistently select valid moment conditions.

They also considered downward and upward testing procedures originating from Sargan-

Hansen’s over identification test, which is often used in empirical research to choose moment

conditions. However, they assume a fixed number of moment conditions, so performance is

questionable when the number of moments is large, and the original criteria may need some

modifications. Moreover, all criteria based on consistent moment selection and first-order

asymptotics will include all valid instruments and locally invalid ones by construction, which

may raise the finite sample bias in many instruments setup.

The IRC captures the best of both of worlds by considering the potential invalidity of

the instrument in the selection criterion as well as higher-order bias and variance from many

instruments. Even if all instruments are truly valid, our method may suggest nearly the

same set of instruments as the criterion of Donald and Newey (2001) does, without large

additional computational costs.

Implementing our criterion involves some preliminary estimates and reduced-form crite-

ria, such as Mallows’ (1973) Cp or cross-validation (CV), which are easy to implement in

practice. I also show that optimality of the choice of instruments selected by original Donald

and Newey (2001) criteria under certain locally invalid instrument specifications. When we

consider drifting sequences faster than N1/2 invalid instruments specification, I show that

higher-order MSE approximation reduces to the one in Donald and Newey (2001).
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2.1.1 Related Literature

There are many influential papers about instrument and/or weight selection in the IV (or

GMM) model. Donald, Imbens, and Newey (2009) provided moment selection criteria for the

GMM, generalized empirical likelihood estimator (GEL), and continuous updating estimator

(CUE) in conditional moment restriction models. Kuersteiner (2012) extended the moment

selection problem to linear time series models using a kernel-weighted GMM. Okui (2011)

considered shrinkage parameter selection of the first-stage shrinkage IV estimator, and Canay

(2010) addressed simultaneous moments and weight selection by using a kernel-weighted

GMM with a flat-top kernel. Also, Kuersteiner and Okui (2010) developed an optimal

weight selection for the first-stage prediction model averaging IV estimator. Lee and Zhou

(2014) considered averaged IV estimators. Another direction was considered by Carrasco

(2012). They analyzed the asymptotic properties of regularized IV estimators and smoothing

parameter selection while keeping all the instruments. See also the bootstrap approach by

Inoue (2006), and the random effects approach by Chamberlain and Imbens (2004). However,

all these papers developed selection criteria among valid instruments.

A different and important direction of studies considered moment selection criteria to

separate valid moments from the set of invalid moments. Andrews and Lu (2001) extended

the ideas of Andrews (1999) to the simultaneous selection of moments and regressors, and

Hong, Preston, and Shum (2003) extended to the GEL estimator. Hall and Peixe (2003)

proposed selecting valid and relevant moment conditions by a sequential combination of their

canonical correlations information criteria with Andrews’ (1999) method. Recently, Liao

(2013) developed consistent moment selection by using a shrinkage-type GMM estimator.

However, all these papers only deal with a fixed number of moment conditions; they do not

address higher-order bias from using many moments.

Furthermore, consistent moment selection methods may include all locally invalid mo-

ments because these moments are all asymptotically valid. Including slightly invalid moments

might increase finite sample bias, but help to reduce variance. An important contribution in
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this direction is the recent work of DiTraglia (2014), who developed moment selection crite-

ria based on the first-order asymptotic MSE with possible locally invalid moment conditions

in GMM setups. As I mentioned, criteria based on first-order asymptotics include all valid

instruments by construction. Our higher-order MSE includes first-order asymptotic MSE

as well as higher-order bias and variance terms, which other selection criteria do not have.

Another important advantage of higher-order approximations is that under a certain rate

of drifting sequences faster than N−1/2, only higher-order approximations can capture bias-

variance trade-off from many and potentially invalid instruments (see Section 2.4). However,

our method should be viewed as complementary to existing literature since they all address

different aspects of the problems and/or consider more general setups.

Our results also complement the recent moment selection literature based on high-

dimensional estimation and model selection methods (e.g., the Lasso estimator and Dantzig

selector). Belloni et al. (2012) proposed the Lasso-based method to construct first-stage opti-

mal instruments, considering only valid instruments. Gautier and Tsybakov (2014) provided

an estimation and inference technique allowing invalid instruments based on the Dantzig

selector. Some advantages of these methods are that their results do not rely on prior

knowledge of the order of the instruments, and can be applied even when the number of in-

struments is much larger than the sample size. In GMM setups, Caner, Han, and Lee (2013)

proposed simultaneous model and moment selection using an adaptive elastic net estimator.

Finally, the work of Cheng and Liao (2014) is closely related to our paper. They developed

consistent moment selection methods based on adaptive GMM shrinkage estimation, which

consistently select valid and relevant moments, even allowing the number of moment condi-

tions to grow with the sample size. However, their method may not be able to avoid finite

sample bias from many relevant moment conditions. If there are truly many valid and rele-

vant instruments, the bias of the 2SLS estimator using all those instruments is likely to be

large. This situation can be thought of as a violation of the so-called ‘sparsity’ assumption

in the Lasso literature, and requires careful attention (Hansen (2013)). Our method differs
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from all these papers as I focus on the higher-order MSE approximations of the IV estimator.

Our paper also contributes to the literature that considered estimation and inference

issues coping with invalid instruments. Many papers deal with the size distortion of testing

problems (Berkowitz, Caner, and Fang (2008, 2012) and Guggenberger (2012)) and estima-

tion issues with local violation of exogeneity conditions (Hahn and Hausman (2005) and

Caner (2014)). Different types of estimation and inference methods were also proposed by

Conley, Hansen, and Rossi (2012), Kolesár et al. (2014), Kraay (2012), and Nevo and Rosen

(2012). However, they all focused on the estimation and inference rather than instrument

selection.

Moreover, our MSE approximation extends the results of Hahn and Hausman (2005).

They derived first-order asymptotics of the 2SLS estimator with scalar endogenous variable

and normal error terms under similar many and locally invalid instruments setup considered

here. Our by-product result can be used as MSE (or bias) comparison with the ordinary

least-squares (OLS) estimator and the 2SLS estimator for more general setups, such as vector

endogenous variables and non-normal error cases.

The outline of the paper is as follows. Section 2.2 introduces the basic model setup

and notation. Section 2.3 describes formal higher-order MSE approximations of the IV esti-

mators. Section 2.4 provides MSE approximations under different local sequence of invalid

instruments, and Section 2.5 gives first-order approximation of 2SLS under different rates

of the number of instruments. Section 2.6 discusses how to estimate our selection criterion

and proposes detailed implementation procedures, and Section 2.7 concludes. All proofs are

provided in Section 2.9.



91

2.2 Linear IV Model With Locally Invalid Instruments

I consider following linear IV model similar to Donald and Newey (2001) allowing potentially

invalid instruments,

yi = Y ′i θ0 + x′1iβ0 + εi = W ′
iδ0 + εi,

Wi = f(xi) + ui =

 E(Yi|xi)

x1i

+

 ξi

0

 , δ0 = (θ′0, β
′
0)′,

εi = E(εi|xi) + vi =
g(xi)√
N

+ vi, E(vi|xi) = 0, for i = 1, · · · , N,

(2.2.1)

where yi is a scalar outcome variable and Wi is a p × 1 vector that includes endogenous

variables Yi and d × 1 vector of exogenous variables x1i. δ0 ∈ Rp is a parameter of interest

and x1i are assumed to be a subset of the potential exogenous variables xi. Here, p and d

are finite and fixed, i.e., they don’t change with sample size N .

The last line in (2.2.1) indicates a model specification allowing locally invalid instruments.

In this model, E(εi|xi) is not necessarily zero for any finite N unless g(xi) = 0, therefore

the unconditional moment condition E(ψ(xi)εi) = 0 does not necessarily hold for poten-

tial instruments ψ(xi). However, with this definition of local invalidity of xi, all potential

instruments are asymptotically valid, i.e., E(ψ(xi)εi)→ 0 as N →∞.

Here, I consider the local-to-zero specification and provides a MSE approximation theory

for the IV estimators centered with δ0, not the pseudo-true parameter that is the probability

limit of each IV estimator. Under the local misspecification setup with drifting sequences

g(xi)/N
−γ for γ ≥ 1/2, all IV estimators considered in this paper are consistent under the

standard rate conditions of the number of instruments that increases slower than the sample

size.

We may consider global invalidity of instruments with the rates N−γ with γ = 0 or other

rates with 0 < γ < 1/2, and provide a MSE approximation centered with pseudo-true value

(or sequence of pseudo-true value depending on sample size). However, such theory may not
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be useful to investigate bias-variance trade-off of IV estimators as there is no “bias” term

arising from invalid instruments if we focus on the pseudo-true value. Moreover, different

choice of instruments and different IV estimators can lead to a different pseudo-true value,

which makes us hard to compare MSE approximations across different number of instruments

as well as different estimators. As g(xi) can be allowed to be large numbers for any finite N ,

our local misspecification setup may not significantly restrict our approximation theory by

providing finite sample behavior of IV estimators with invalid instruments. Particularly with

this knife-edge rate, N−1/2, the stochastic order of the bias from a locally invalid instrument

is Op(1) that is equal to those of the first-order asymptotic variance. In Section 2.4, I also

provide an approximation theory for the sequences N−γ with γ > 1/2.

2.3 Higher-Order MSE Approximation with Locally

Invalid Instruments

I first characterize the higher-order MSE formula for the IV estimators under similar regu-

larity conditions that are imposed in Donald and Newey (2001). Recall the model (2.2.1) in

previous section with vector forms

y = Wδ0 + ε = Wδ0 + g/
√
N + v,

W = f + u,

(2.3.1)

where y = (y1, · · · , yN)′, Y = [Y1, · · · , YN ]′, X1 = [x11, · · · , x1N ]′,W = [Y,X1], f = [f1, · · · ,

fN ]′, fi = f(xi), and g = [g1, · · · , gN ]′, gi = g(xi). I also define H = f ′f/N,Hg = f ′g/N,

X = [x1, ..., xN ]′, σuv = E(uivi|xi), σ2
v = E(v2

i |xi), σ2
ε = E(ε2

i |xi) and Σu = E(uiu
′
i|xi). Let A−

denotes any generalized inverse of A. Also, op(·) and Op(·) denote the usual stochastic order

symbols, convergence in probability, and bounded in probability, respectively.

I define ψKi ≡ ψK(xi) = (ψ1K(xi), ..., ψKK(xi))
′ as a K×1(K ≥ d) vector of instrumental

variables (or basis functions). Throughout the paper, I assume that ψKi includes exogenous
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variables x1i. For notational simplicity, K indicates both the number of instruments and the

index of the instrument sets ψKi .

We first consider the 2SLS estimator,

δ̂2SLS(K) = (W ′PKW )−1(W ′PKy),

where PK = ΨK(ΨK′ΨK)−ΨK′ is the projection matrix for the instrument vector ΨK = [ψK1 ,

..., ψKN ]′. Next, we consider LIML estimator,

δ̂LIML(K) = (W ′PKW − Λ̂(K)W ′W )−1(W ′PKy − Λ̂(K)W ′y),

where

Λ̂(K) = min
δ

(y −Wδ)′PK(y −Wδ)

(y −Wδ)′(y −Wδ)
.

We also consider modified Fuller’s (1977) estimator (FULL),

δ̂FULL(K) = (W ′PKW − Λ̌(K)W ′W )−1(W ′PKy − Λ̌(K)W ′y),

where

Λ̌(K) =
Λ̂(K)− C/N(1− Λ̂(K))

1− C/N(1− Λ̂(K))
.

for some constant C. Popular choices are C = 1 or C = 4. Finally, we consider B2SLS

estimator suggested by Donald and Newey (2001) as a modification of the Nagar (1959)

estimator with Λ̄(K) = (K − d− 2)/N ,

δ̂B2SLS(K) = (W ′PKW − Λ̄(K)W ′W )−1(W ′PKy − Λ̄(K)W ′y).
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Following Donald and Newey (2001), I derive the Nagar (1959) type higher-order asymp-

totic MSE for the IV estimators. Specifically, I will find a decomposition for δ̂(K) with

following form:

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E(Q̂(K)|X) = σ2
vH
−1 +H−1HgH

′
gH
−1 + L(K) + T (K),

[r̂(K) + T (K)]/tr(L(K)) = op(1), K →∞, N →∞.

(2.3.2)

The dominating terms in the conditional MSE approximation in (2.3.2) are σ2
vH
−1 and

H−1HgH
′
gH
−1 that corresponds to the standard first-order asymptotic variance and the

square of the asymptotic bias from locally invalid instrument, respectively. Note that these

are the dominating terms that does not depend on K in our large K approximation. Next

leading term in the MSE approximation, L(K), includes the higher-order bias and variance

terms due to many and invalid instruments, and has different form with each IV estimator.

r̂(K) and T (K) are the remainder terms goes to 0 faster than S(K).2

To derive specific terms in L(K), I impose the following assumptions. Define ‖A‖ =√
tr(A′A) as an Euclidean norm.

Assumption 2.1. {yi, Yi, xi}Ni=1 are independent and identically distributed (i.i.d.). E(v2
i |xi) =

σ2
v > 0, and E(‖ξi‖4|xi),E(|vi|4|xi) are bounded.

Assumption 2.2. (i) H̄ = E(fif
′
i) exists and is nonsingular, H̄g = E(figi) exists. (ii)

there exists πK , π
g
K such that E(‖f(x)− πKψK(x)‖2)→ 0 and E(|g(x)− πgKψK(x)|2)→ 0 as

K →∞.

Assumption 2.3. (i) E((vi, ξ
′
i)
′(vi, ξ

′
i)|xi) is constant. (ii) ΨK ′ΨK is nonsingular with prob-

ability approaching one. (iii) maxi≤NP
K
ii

p→ 0. (iv) fi and gi are bounded.

2Under the global misspecification setup (εi = g(xi) + vi), δ̂(K)
p→ δ0 + H̄−1H̄g where H̄ = E(fif

′
i),

H̄g = E figi (assuming expectation exists). In the following results, we may have similar MSE approximations
as in (2.3.2) by centering at the pseudo-true value, δ0 + H−1Hg. We can easily verify that leading term
L(K) reduces to the results of Donald and Newey (2001) in this case, thus omitted.
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Assumptions 2.1-2.3 are similar to those imposed in Donald and Newey (2001). As-

sumption 2.1 imposes boundedness of the fourth conditional moments of the error terms.

Assumption 2.2(i) is imposed for a usual identification assumption and for the existence of

the first-order bias from invalid instruments. Assumption 2.2(ii) requires the mean square

approximation error of the f(x) and g(x) by a linear combination of instruments ψK(x)

goes to 0 as the number of instrument increases. Assumption 2.2 and 2.3 also impose ho-

moskedasticity and restrict the growth rate of K.

Our first result, Proposition 2.1 gives the MSE approximation for the 2SLS estimator.

Proposition 2.1 is a generalization of the result in Donald and Newey (2001) allowing possibly

invalid instruments.

Proposition 2.1. If Assumptions 2.1, 2.2, 2.3 are satisfied, σuv 6= 0, Hgσ
′
uv 6= 0, Hg 6= 0,

and K2/N → 0, then the approximate MSE for the 2SLS estimator satisfies decomposition

(2.3.2) with the following terms

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

+HgH
′
gH
−1f

′(I − PK)f

N
+
f ′(I − PK)f

N
H−1HgH

′
g

− f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1.

(2.3.3)

Moreover, ignoring terms of order Op(K
2/N) = op(K/

√
N), we have

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv + σuvH

′
g) + σ2

v

f ′(I − PK)f

N
+HgH

′
gH
−1f

′(I − PK)f

N

+
f ′(I − PK)f

N
H−1HgH

′
g −

f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1.

(2.3.4)

We have the following simplifications of the above result if Hg = 0. In this case, MSE
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approximation results in (2.3.3) reduce to Proposition 1 in Donald and Newey (2001)

L(K) = H−1[σuvσ
′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N
]H−1.

Therefore, L(K) in (2.3.3) includes higher-order terms in Donald and Newey (2001) as well

as additional higher-order terms because of invalid instruments. Hg = 0 holds if g(xi) = 0

(i.e., no invalid instruments). However, Hg = 0 may hold allowing g(xi) 6= 0 if the direct

effect of the instruments to the outcome variable (g) are orthogonal to the effect of the

instruments on the endogenous variable (f). Suppose f = Ψπ, g = Ψγ, then Hg = 0 holds

when π′Ψ′Ψγ/N = 0 and this is closely related to the identifying assumption in Kolesar et

al (2015, Assumption 5).

The second term in (2.3.2) and the first three terms of L(K) in (2.3.3) are approximately

the MSE of the following random vectors for large K

H−1u′PKv/
√
N +H−1f ′g/N.

Their conditional expectations are E(H−1u′PKv/
√
N |X) = H−1Kσuv/

√
N , and H−1Hg,

respectively. Square and cross products of these two terms generate the leading terms in

MSE approximation, and this correspond to the two sources of bias we consider: bias from

many instruments and bias from invalid instruments. The remaining terms in L(K) regarding

f ′(I−PK)f/N represent higher order variance term as it denotes the error of approximation

of the reduced form f(x) by a linear combination of instrument sets K, and it decreases as

K increases. Additional higher-order variance terms appeared in L(K) because of invalid

instruments. Note that the instruments selection criteria without these additional terms may

lead to a misleading balance of bias and efficiency. Our MSE approximation is valid under

local misspecification and contains higher-order bias and variance from potentially invalid

instruments in addition to the many instruments.

It is also interesting to see that the order of the bias from invalid instruments dominates
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the bias from many instruments under locally invalid instruments. Moreover, as shown in the

equation (2.3.4), the dominating terms in MSE approximation is order of Op(K/
√
N) which

is larger order than those of Donald and Newey (2001), Op(K
2/N), with all valid instruments.

Terms of order Op(K/
√
N) arise from cross-product of many and invalid instrument bias.

However, this is not the case for the other estimators such as LIML and B2SLS because they

do not possess, to the order I consider, bias terms depend on K in higher-order approximation

(see discussions following Proposition 2.2 and 2.3).

Although it is not clear that increasing number of instrument increase or decrease the

higher-order variance terms regarding f ′(I − PK)g/N , it is worth mentioning how these

terms can help to reduce higher-order MSE. This is easiest to see under linear specification

of f(x) and g(x). Suppose f = Z1π and g = Z2γ with relevant instrument Z1 and invalid

instrument Z2 with scalar π and γ, then f ′(I−PK)g
N

H ′g = Z ′1(I − PK)Z2Z
′
2Z1(πγ

N
)2. If the

choice of instruments ψK include invalid instrument Z2, then (I − PK)Z2 is zero, thus the

above term will be zero. However, if the choice of instruments is independent of the direct

effects of instruments, i.e., ψK is orthogonal to invalid instrument Z2, (I − PK)Z2 term is

non-zero, thus may help to decrease L(K) as long as sign is positive.

Next, I give the MSE approximation for the LIML and FULL estimator. Let ηi =

ui − viσuv/σ
2
v and Ση = E(ηiη

′
i). Note that I restrict the growing rate of K that allowed

in Donald and Newey (2001) for the simplification, ignoring terms of order 1/
√
N that is

o(K/N) under the rate conditions I consider.

Proposition 2.2. If Assumptions 2.1, 2.2, 2.3 are satisfied, E(v2
i ηi|xi) = 0, K/N → 0,

K2/N → ∞, Ση 6= 0, Hg 6= 0 and E(‖ξi‖5|xi),E(|vi|5|xi) are bounded, then the approximate

MSE for the LIML or FULL estimator satisfies decomposition (2.3.2) with the following
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terms

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N
+HgH

′
gH
−1f

′(I − PK)f

N

+
f ′(I − PK)f

N
H−1HgH

′
g −

f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1.

(2.3.5)

This is also an extension of Proposition 2 in Donald and Newey (2001). For the LIML or

FULL estimator, L(K) does not include higher order bias from many instruments, and the

terms in L(K) shows higher-order variance trade-off with many invalid instruments. Similar

to Donald and Newey (2001), the third moment condition E(v2
i ηi|xi) = 0 is imposed for

the simplification, which holds when (vi, η
′
i)
′ is normally distributed. Without this moment

conditions, L(K) will have an additional term that could be estimated. Note also that the

LIML and FULL estimator has the same approximate MSE to the order I consider here.

Next result is for B2SLS estimator. Similar to Donald and Newey (2001), MSE approx-

imation for B2SLS is larger than MSE for LIML or FULL, which shows the higher order

efficiency of LIML or FULL estimator with locally invalid instruments.

Proposition 2.3. If Assumptions 2.1, 2.2, 2.3 are satisfied, σuv 6= 0, Hg 6= 0,E(v2
i ui|xi) =

0, K/N → 0, K2/N → ∞, then the approximate MSE for the B2SLS estimator satisfies

decomposition (2.3.2) with the following terms

L(K) = H−1
[
(σ2

vΣη + 2σuvσ
′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N
+HgH

′
gH
−1f

′(I − PK)f

N

+
f ′(I − PK)f

N
H−1HgH

′
g −

f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1.

(2.3.6)
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2.4 Higher Order MSE Approximation under Drifting

Sequences Faster than N 1/2

In this section, I consider different drifting sequences of the model considered in (2.2.1).

Specifically, I consider

yi = W ′
iδ0 +

g(xi)

Nγ
+ vi,

Wi = f(xi) + ui,

(2.4.1)

where γ > 1/2. With this specification, bias term H−1HgH
′
gH
−1 in the decomposition

(2.3.2) is now smaller order than the first-order variance, thus move to higher-order term.

Higher-order approximation theory is useful to capture changes in the order of the terms in

Proposition 2.1-2.3, whereas first-order asymptotic theory can not capture.

Under the model (2.4.1) with fixed γ, I will find a following decomposition for δ̂(K) in

this section,

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E(Q̂(K)|X) = σ2
vH
−1 +G+ L(K) + T (K),

[r̂(K) + T (K)]/tr(G+ L(K)) = op(1), K →∞, N →∞

(2.4.2)

Unlike the N−1/2 rates considered in Section 2.3, first-order variance, σ2
vH
−1, is the only

first-order asymptotic term in conditional MSE approximations (2.4.2). Next leading term

in the MSE approximation includes higher-order bias from locally invalid instruments, G,

that does not depend on K. Moreover, L(K) is also a leading term that includes the higher-

order bias and variance terms due to many instruments. It is important to note that the

results generally depend not only on γ, but also on the specific rate of K allowed. For exam-

ple, terms of order Op(1/N
2γ−1) is dominated by Op(K

2/N) under certain rate of K, thus

we can set G = 0, and L(K) is the only higher-order leading term in the MSE approximation.
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For all γ > 1/2, the following Corollary provides a higher-order MSE approximation

result for 2SLS estimator.

Corollary 2.1. Suppose Assumptions 1, 2 and 3 are satisfied with the model (2.4.1). If

K2/N → 0, and σuv 6= 0, Hgσ
′
uv 6= 0, Hg 6= 0, then the approximate MSE for the 2SLS

estimator satisfies decomposition (2.4.2) with G = 1
N2γ−1H

−1HgH
′
gH
−1, and the following

dominating terms

L(K) = H−1
[ K
Nγ

(Hgσ
′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (2.4.3)

We have further simplifications when K
N1−γ →∞, with G = 0,

L(K) = H−1
[
σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (2.4.4)

In the first result of Corollary 2.1 in equation (2.4.3), G and L(K) contain all four higher-

order bias terms and higher-order variance from many instruments. Furthermore, Corollary

2.1 shows that Donald and Newey (2001)’s MSE approximation for 2SLS estimator is robust

to a very small degree of invalid instruments such that γ ≥ 1. If we consider the case γ ≥ 1

then K/N1−γ →∞ always holds in the assumption of the second result, and L(K) in (2.4.4)

has the same form of dominating terms in the MSE approximations of Donald and Newey

(2001). Therefore, for any γ ≥ 1 with the same rate conditions they allow (K2/N → 0),

their selection criterion based on MSE approximation still valid without estimating Hg and

g. Furthermore, optimality results in Donald and Newey (2001, Proposition 4) also hold

without any modifications under γ ≥ 1.

This finding should not be surprising. If we consider smaller degree of invalidity than

N−1/2 invalidity, higher-order bias and variance terms from many instruments dominate all

other bias terms due to the invalid instruments. Nevertheless of these intuitive results, the
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relationship between the magnitude of γ and the dominating terms in L(K) is not clear as

they depend on the specific rate of K. Here, I quantify the magnitude of the robustness of

the MSE approximation of 2SLS estimator in Donald and Newey (2001).

Next result is for LIML and FULL estimator.

Corollary 2.2. Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied with the model (2.4.1).

Assume K/N → 0,Ση 6= 0, Hg 6= 0,E(v2
i ηi|xi) = 0, and E(‖ξi‖5|xi),E(|vi|5|xi) are bounded.

Then the approximate MSE for the LIML or FULL estimator satisfies decomposition (2.4.2)

with G = 1
N2γ−1H

−1HgH
′
gH
−1, and the following dominating terms

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (2.4.5)

Furthermore, if K
N2−2γ → ∞, then LIML or FULL estimator satisfies decomposition (2.4.2)

with G = 0 and the same L(K) terms above.

We have similar results for the B2SLS estimator.

Corollary 2.3. Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied with the model (2.4.1).

Assume K/N → 0, σuv 6= 0, Hg 6= 0, and E(v2
i ui|xi) = 0. Then the approximate MSE for

the B2SLS estimator satisfies decomposition (2.4.2) with G = 1
N2γ−1H

−1HgH
′
gH
−1, and the

following dominating terms

L(K) = H−1
[
(σ2

vΣη + 2σuvσ
′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N

]
H−1 (2.4.6)

Furthermore, if K
N2−2γ →∞, then B2SLS estimator satisfies decomposition (2.4.2) with G = 0

and the same L(K) terms above.

Corollary 2.2 and 2.3 shows that the leading terms (that depends on K) in MSE approxi-

mation for LIML, FULL and B2SLS estimator under local invalid instruments is same as the
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leading terms in Donald and Newey (2001) when γ > 1/2. This also shows that robustness

of instrument selection criteria based on LIML, FULL and B2SLS in Donald and Newey

(2001) under locally invalid instruments when γ > 1/2.

2.5 MSE Approximation of 2SLS under K = O(
√
N)

This section provides MSE approximation of 2SLS under different rates of K with the sample

size N . I consider faster growing rate of K = O(
√
N) than the rate conditions imposed in

the Proposition 2.1. This rate is considered in existing many instruments literature, such as

Morimune (1983) and Hahn and Hausman (2005). Note that assumption in Proposition 2.1

limit the growth rate of the number of instruments to K = o(
√
N), and this guarantees first-

order asymptotic properties of the 2SLS estimator, where the bias from many instruments

(Op(K/
√
N)) is dominated by the bias from invalid instruments (Op(1)). However, the

bias from many instruments has the same first-order magnitude with the bias from invalid

instruments under K = O(
√
N). Therefore, I will find a different decomposition rather than

the equation (2.3.2) for this case. Specifically, in the next corollary, I will find the following

first-order approximations of the conditional MSE,

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + op(1),

E(Q̂(K)|X) = σ2
vH
−1 +H−1HgH

′
gH
−1 + L(K) + op(1), K →∞, N →∞.

(2.5.1)

Corollary 2.4. Suppose Assumptions 2.1-2.3 are satisfied. If K/
√
N → α(0 < α <∞) and

σuv 6= 0, then the approximate MSE for the 2SLS estimator satisfies decomposition (2.5.1)

with following terms

L(K) = H−1
[ K√

N
(Hgσ

′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N

]
H−1. (2.5.2)

Corollary 2.4 is an extension of the first-order asymptotic MSE results of the Hahn
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and Hausman (2005). For a linear specification of f = Xπ, g = Xτ with all instruments

PK = X(X ′X)−1X ′, a scalar endogenous variable Wi, Corollary 2.4 becomes

H−1HgH
′
gH
−1 + L(K) = (

Ξ + ασuv
H

)2 (2.5.3)

where Ξ = π′X ′Xτ/N . L(K) in equation (2.5.3) corresponds exactly to Theorem 3 of Hahn

and Hausman (2005). Under the same rate conditions K = O(
√
N), they derived first-order

asymptotic results for the 2SLS estimator when the endogenous variable Yi is scalar, no

included exogenous variables and the error terms are normally distributed. I provide an

extension of their results to the general setup. Our MSE results imply that the normality,

scalar endogenous variable, and linearity assumption of f and g are not essential for their

result, and thus it can be applied in more general cases. This result is new if someone

is interested in a MSE (or bias) comparison between the OLS and 2SLS estimators with

potential invalid instruments in more general setups, e.g., multivariate endogenous variables,

nonlinear reduced-form conditional expectation and non-normal error terms.

2.6 Invalidity-Robust Criteria to Choose Instruments

In this section, I propose the invalidity-robust instrument selection criterion (IRC) based on

the MSE approximation in the Section 2.3 and 2.4. The selection of the instrument K is

based on the approximation to the higher order MSE of λ′δ̂ defined in (2.3.2) or (2.4.2) for

some fixed λ ∈ Rp. Specifically, we choose K to minimize L̂λ(K) which is an estimate of

Lλ(K) = λ′L(K)λ, where L(K) is a part of the dominating term in the MSE approximation.

Estimation of Lλ(K) requires some preliminary estimates of g(xi). I assume throughout

this paper that we have some known to be valid instrument sets zi. Note that our derivation

of the MSE approximation in the previous Sections does not need this assumption. The

assumption of having a small number of valid instruments is also used for identification and

similar estimation purposes in recent papers which address similar questions. (e.g., DiTraglia
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(2014) and Cheng and Liao (2014)).

Assumption 2.4. Assume that we have valid instrument sets zi such that E(ziεi) = 0 holds,

where zi is q × 1 vector including x1i and q ≥ p.3

These conservative sets , zi is only for preliminary estimates of Hg and g(·). Our method

still allows choosing among zi when they are also large dimensions. With known to be valid

instrument sets zi, we can have an asymptotically unbiased estimator of g(xi).

An empirical researcher may want to use only conservative sets if they are already known.

Assumption of having small set of valid instruments may be restrictive in some applications,

although it would be less restrictive than assuming all instruments’ validity a priori. We

may obtain better instrument sets that have lower MSE of the estimator if we could distin-

guish valid instruments from questionable sets and choose an optimal number of instruments

among many valid instruments. By considering the bias-variance trade-off of many and

invalid instruments, it is possible that including more instrument from questionable set in-

crease or decrease MSE of the estimator. Our goal is to find the best instrument choices

which minimize the MSE of the IV estimator. Even if instrument sets are all (locally) invalid,

i.e. E(ψKi εi) 6= 0 for all choice of ψKi , our approximation theory still can provide guidelines

to find the best instruments which has the smallest MSE among IV estimators with given

(locally) invalid instrument sets.

Similar to the Donald and Newey (2001), estimating the MSE requires preliminary es-

timates of some parameters of the model and goodness of fit criterion for the first-stage

reduced form equation. Let δ̃ be some preliminary estimator, e.g., the IV estimator using all

available instruments, or IV estimator where the instruments K̃ are chosen to minimize the

first-stage CV or Mallows’ criteria. Let ε̃ as residuals ε̃ = y −Wδ̃, and let Ĥ = W ′P K̃W/N

3Set of instruments can satisfy moment conditions E(ziεi) = 0, for example, if the direct effect of in-
strument g(xi) is only a function of a subset of xi, and if zi are uncorrelated with (or independent of) the
invalid instruments. In certain case, we do not need known valid sets. If endogenous variables Yi are scalar,
and explanatory variables x1i are exogenous and do not include intercepts, then we can use zi = (1, x′1i)

′ as
known valid instruments.
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as a prelim estimator of H = f ′f/N . Also, let ũ = (I − P K̃)W as a preliminary residual

vector of the first-stage reduced-form regression. Define ũλ = ũĤ−1λ,4 and

σ̂2
v = ε̃′ε̃/N, σ̂2

u = ũ′ũ/N, σ̂uv = ũ′ε̃/N, σ̂2
uλ

= ũ′λũλ/N, σ̂uλv = ũ′λε̃/N.

Define also IV estimator δ̂∗ with known valid instruments z, and residuals as ε̂∗ = y−Wδ̂∗.

For example, 2SLS estimator δ̂∗ = (W ′PZW )−1(W ′PZy) where Z = [z1, · · · , zn]′, PZ =

Z(Z ′Z)−1Z ′. Finally, let Ĥg = W ′P K̃ ε̂∗/
√
N as a prelim estimator of Hg = f ′g/N , let

λ′Ĥ−1Ĥg = Ĥgλ. It is important to note that all of these preliminary estimates remain fixed

(does not depend on K) while the criterion is calculated for different sets of instruments. I use

corresponding IV estimator for each criterion. Based on Proposition 2.1-2.3, the invalidity-

robust criterion (IRC) L̂λ(K) is5

IRC − 2SLS : L̂λ(K) = Ĥgλσ̂uλv
2K√
N

+ σ̂2
uλv

K2

N
+ σ̂2

v(R̂λ(K)− σ̂2
uλ

K

N
) + 2Ĥgλ(F̂λ(K)− Ĝλ(K))

IRC − LIML : L̂λ(K) = σ̂2
v(R̂λ(K)−

σ̂2
uλv

σ̂2
v

K

N
) + 2Ĥgλ(F̂λ(K)− Ĝλ(K))

IRC −B2SLS : L̂λ(K) = σ̂2
v(R̂λ(K) +

σ̂2
uλv

σ̂2
v

K

N
) + 2Ĥgλ(F̂λ(K)− Ĝλ(K)).

(2.6.1)

where ûK = (I − PK)W , ûKλ = ûKĤ−1λ denote residual vectors, F̂λ(K) = λ′Ĥ−1(R̂(K) −

σ̂2
u
K
N

)Ĥ−1Ĥg, and Ĝλ(K) = λ′Ĥ−1W ′(I − PK)ε̂∗/
√
N . For the R̂(K) and R̂λ(K), I use the

following Mallows’ criterion in (2.6.1),

R̂λ(K) =
ûK
′

λ û
K
λ

N
+ 2σ̂2

uλ

K

N
R̂(K) =

ûK
′
ûK

N
+ 2σ̂2

u

K

N
.

4Note that ũλ are preliminary residuals of the regression WH−1λ = fH−1λ+ uH−1λ⇔Wλ = fλ + uλ,
which is obtained by multiplying H−1λ with first-stage regression.

5Since higher-order MSE approximation for FULL estimator is same with those of LIML as in Proposition
2.2, one can choose K by using IRC-LIML for the FULL estimator, thus omitted here.
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CV criterion can also be used

R̂λ(K) =
1

N

N∑
i=1

(ûKλi)
2

(1− PK
ii )2

R̂(K) =
1

N

N∑
i=1

(ûKi )2

(1− PK
ii )2

.

Following Donald and Newey (2001) (see also Li (1987)), the goodness of fit criterion for

the first-stage reduced form is used for the estimation of f ′(I − PK)f/N . For practical im-

plementation, Mallows’ criterion is simpler to use, however, the difference between Mallows’

criterion and the CV criterion are not significant in the preliminary simulation results.

Next, I also consider Donald and Newey (2001)’s original criterion (DN, hereafter) which

coincides to IRC criterion based on the MSE approximation under N−γ locally invalid in-

strument specification as in Corollary 2.1 (γ ≥ 1), and Corollary 2.2-2.3 (γ > 1/2).

DN − 2SLS : L̂λ(K) = σ̂2
uλv

K2

N
+ σ̂2

v(R̂λ(K)− σ̂2
uλ

K

N
),

DN − LIML : L̂λ(K) = σ̂2
v(R̂λ(K)−

σ̂2
uλv

σ̂2
v

K

N
),

DN −B2SLS : L̂λ(K) = σ̂2
v(R̂λ(K) +

σ̂2
uλv

σ̂2
v

K

N
).

(2.6.2)

Now we define K̂ as the instrument set which minimizes the criterion L̂λ(K) over some

user-specified consideration set K,

K̂ = arg min
K∈K

L̂λ(K).

This requires calculating L̂λ(K) over different set of instruments K ∈ K. The IRC selected

IV estimator of δ can be defined as δ̂(K̂) for each IV estimator.

In the important special case when there is only one endogenous variable, i.e., Yi is a
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scalar, approximate MSE for 2SLS with Proposition 2.1 can be reduced to

Lλ(K) = (λ′H−1e1)2(σ2
ξv

K2

N
+ σ2

v

Ȳ ′(I − PK)Ȳ

N
)

+ (λ′H−1Hg)(λ
′H−1e1)

(
σξv

2K√
N

+ 2(e′1H
−1Hg)

Ȳ ′(I − PK)Ȳ

N
− 2

Ȳ ′(I − PK)g

N

)
(2.6.3)

where Ȳ = (E[Y1|x1], · · · ,E[YN |xN ])′, σuv = σξve1, σξv = E(ξivi) and e1 = (1, 0, · · · , 0)′ is the

p × 1 first unit vector. The choice of λ such that H−1λ = e1 makes further simplifications

as follows, which can be used for implementation,

2SLS : L(K) = σ2
ξv

K2

N
+ (σ2

v + 2(e′1H
−1Hg)Hg1)

Ȳ ′(I − PK)Ȳ

N
+ 2Hg1(σξv

K√
N
− Ȳ ′(I − PK)g

N
)

where Hg1 = Ȳ ′g/N . We can get similar results for LIML and B2SLS in Proposition 2.2 and

2.3,

LIML : L(K) = (σ2
ξσ

2
v − σ2

ξv)
K

N
+ (σ2

v + 2(e′1H
−1Hg)Hg1)

Ȳ ′(I − PK)Ȳ

N
− 2Hg1

Ȳ ′(I − PK)g

N
,

B2SLS : L(K) = (σ2
ξσ

2
v + σ2

ξv)
K

N
+ (σ2

v + 2(e′1H
−1Hg)Hg1)

Ȳ ′(I − PK)Ȳ

N
− 2Hg1

Ȳ ′(I − PK)g

N

with σ2
ξ = E(ξ2

i ). In this case, the IRC criterion are also simplified with preliminary estimates

Ĥ, Ĥg, σ̂
2
v , σ̂

2
u, σ̂uv and estimate of each term in L(K) using Mallows or Cross-validation that

are defined same as in general vector cases. With a conservative set of valid instruments zi,

we have an asymptotically unbiased estimator for the terms involving Ȳ ′(I − PK)g/N . As

pointed out in Donald and Newey, we can easily see that DN criterion is a multiplication of

(λ′H−1e1)2 from (2.6.3) in the scalar endogenous case, so that choice of K does not depend

on λ.6

6In a simple case with scalar endogenous regressor and no additional exogenous regressors (i.e., Wi is
scalar), then K that minimizes IRC criterion Lλ(K) does not depend on λ as the Lλ(K) is the scaled by
(λH−1)2. We can think of this case as the covariates have already been partialled out. Specifically, from
the original data, (ỹ, Ỹ , X̃), y = MX1

ỹ, Y = MX1
Ỹ , X = MX1

X̃ where MX1
= I − X1(X ′1X1)−X ′1 is the

orthogonal projection matrix of exogenous covariates x1i.
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To provide optimality properties of DN criterion under locally invalid instruments, I im-

pose following assumption similar to those of Donald and Newey (2001) including consistency

of the preliminary estimators.

Assumption 2.5. Yi is scalar, σ̂2
v − σ2

v = op(1), σ̂uλv − σuλv = op(1), σ̂2
uλ
− σ2

uλ
= op(1),

σ̂2
u − σ2

u = op(1), σ̂uv − σuv = op(1), Ĥ − H = op(1), λ′H̄−1σuv 6= 0, and var(λ′H−1ηi) >

0. Also assume, supK supi P
K
ii

p→ 0, E(u8
i |xi) < ∞, infK NR(K) → ∞ where R(K) =

σ2
uλ

(K/N) + λ′H−1[f ′(I − PK)f/N ]H−1λ.

Corollary 2.5. Suppose that the same assumptions as in Corollary 2.1 hold, and that, in

addition, Assumption 2.5 hold. For 2SLS estimator with K̂ = arg minK∈K L̂λ(K), where

L̂λ(K) is defined in (2.6.2), following holds for all γ ≥ 1,

Lλ(K̂)

infK Lλ(K)

p−→ 1. (2.6.4)

For LIML (and FULL) or B2SLS estimator, with L̂λ(K) is defined in (2.6.2), (2.6.4) holds

for all γ > 1/2 under the same assumptions as in Corollary 2.2 or Corollary 2.3.

2.7 Conclusions

In this paper, we develop an instrument selection criteria that are robust to the potential inva-

lidity of instrument in many instruments setup. We derive higher-order MSE approximations

of the IV estimator allowing locally invalid instruments. Based on these higher-order ap-

proximations, we propose an instrument selection criteria. By considering the bias-variance

trade-off from using many instruments and using invalid instruments at the same time, our

robust instrument selection criteria can be useful in practice when researchers have poten-

tially large sets of instruments without assuming perfectly valid instruments.

This paper has some limitations. First, here, we only focused on the linear IV model,

which we believe will be the most useful to many empirical researchers. We believe that our
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locally invalid instrument specification can be generalized to GMM settings by combining

the ideas in this paper with existing work of Donald, Imbens, and Newey (2009). Assessing

the cost of not imposing nonlinear model and heteroskedasticity assumption will be inter-

esting future research. Second, though our model considers some weak instruments, one of

our assumptions explicitly rules out the case where all instruments are weak. Third, the

assumption of having small set of valid instruments may be restrictive in some applications,

although it would be less restrictive than assuming all instruments’ validity a priori. It

would be desirable to extend the analysis without these conservative sets. Finally, our paper

does not discuss post-model selection inference issues. This is another possible direction for

future research.
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2.9 Proofs

This section contains the proofs of the lemma, proposition, and corollary. We closely follows

the steps of MSE derivations to those of Donald and Newey (2001) allowing possibly invalid

instruments. This requires some modifications of lemmas.

In the following proofs of proposition and corollary, each IV estimator has a representation
√
N(δ̂(K)− δ0) = Ĥ−1ĥ+ Ĥ−1ĥg. Define h = f ′v/

√
N,H = f ′f/N , and Hg = f ′g/N . Also,

define ρK,N = tr(L(K)). Throughout the section, we will denote
∑

i =
∑N

i=1,
∑

i 6=j =∑N
i=1

∑
j 6=i. LLN denotes (weak) law of large numbers, and CLT denotes Lindberg-Levy

central limit theorem.

Lemma 2.1. If there is a decomposition ĥ = h + T h + Zh, Ĥ = H + TH + ZH , ĥg =

Hg + T g + Zg, and

(h+ T h)(h+ T h)′ − hh′H−1TH
′ − THH−1hh′ = Â1(K) + ZA1(K),

(Hg + T g)(Hg + T g)′ −HgH
′
gH
−1TH

′ − THH−1HgH
′
g = Â2(K) + ZA2(K),

(h+ T h)(Hg + T g)′ − hH ′gH−1TH
′ − THH−1hH ′g = Â3(K) + ZA3(K),

such that T h = op(1), h = Op(1), Hg = Op(1), T g = op(1), and H = Op(1), the determinant

of H is bounded away from zero with probability 1, ρK,N = tr(L(K)), and ρK,N = op(1),

‖TH‖2 = op(ρK,N), ‖T h‖‖TH‖ = op(ρK,N), ‖Zh‖ = op(ρK,N), ‖ZH‖ = op(ρK,N),

‖Zg‖ = op(ρK,N), ‖T g‖‖TH‖ = op(ρK,N), ZAi(K) = op(ρK,N) for all i = 1, 2, 3,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = HΦH +HL(K)H + op(ρK,N),
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then

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E(Q̂(K)|X) = Φ + L(K) + T (K),

[r̂(K) + T (K)]/tr(L(K)) = op(1), as K →∞, N →∞.

Proof of Lemma 2.1 The proof closely follows the steps in Donald and Newey (2001)

with modifications due to the invalid instruments specification. First, we observe that

Ĥ−1ĥ+Ĥ−1ĥg = H−1(ĥ− (Ĥ −H)H−1h) + Ẑ +H−1(ĥg − (Ĥ −H)H−1Hg) + Ẑg,

Ẑ = H−1(H − Ĥ)Ĥ−1(H − Ĥ)H−1h+ Ĥ−1(H − Ĥ)H−1(ĥ− h),

Ẑg = H−1(H − Ĥ)Ĥ−1(H − Ĥ)H−1Hg + Ĥ−1(H − Ĥ)H−1(ĥg −Hg).

Also note that, Ĥ − H = TH + ZH , ‖TH‖2 = op(ρK,N), ‖ZH‖2 = op(ρK,N), ‖T g‖‖TH‖ =

op(ρK,N), ‖Zg‖ = op(ρK,N), and ĥg = Hg + T g +Zg = Op(1). Thus, ‖Ĥ −H‖2 ≤ 2(||TH ||2 +

||ZH ||2) = op(ρK,N), and ‖ĥg − Hg‖‖H − Ĥ‖ ≤ ‖T g‖‖TH || + ‖Zg‖‖TH || + ‖T g‖‖ZH‖ +

‖Zg‖‖ZH‖ = op(ρK,N). Also, H is nonsingular wpa 1 by assumption in the lemma, so that

H−1 = Op(1). Moreover, Ĥ = H + op(1) and Ĥ−1 = H−1 + op(1) = Op(1). Thus,

‖Ẑg‖ ≤ ‖H−1‖‖H − Ĥ‖2‖Ĥ−1‖‖H−1Hg‖+ ‖ĥg −Hg‖‖H − Ĥ‖‖H−1‖‖Ĥ−1‖ = op(ρK,N).

Similarly, we can show that ‖Ẑ‖ = op(ρK,N). Next, define τ̃g = Hg +T g −THH−1Hg. Then,

we obtain

Ĥ−1ĥg = H−1τ̃g + op(ρK,N)

by using ‖Ẑg‖ = op(ρK,N), ‖Zg‖ = op(ρK,N), ‖H−1ZHH−1Hg‖ = op(ρK,N). Similarly, for

ĥ = h+T h+op(ρK,N) = Op(1), we obtain Ĥ−1ĥ = H−1τ̃+op(ρK,N) with τ̃ = h+T h−THH−1h
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by using ‖Ẑ‖ = op(ρK,N), ‖Zh‖ = op(ρK,N), and ‖ZH‖ = op(ρK,N).

Then,

τ̃ τ̃ ′ = Â1(K) + ZA1(K)− T hh′H−1TH
′ − THH−1hT h

′
+ THH−1hh′H−1TH

′

= Â1(K) + op(ρK,N)

by ‖T h‖‖TH‖ = op(ρK,N), ‖TH‖2 = op(ρK,N), and ‖ZA1(K)‖ = op(ρK,N). Also,

τ̃g τ̃
′
g = Â2(K) + ZA2(K)− T gH ′gH−1TH

′ − THH−1HgT
g ′ + THH−1HgH

′
gH
−1TH

′

= Â2(K) + op(ρK,N)

by using ‖T g‖‖TH‖ = op(ρK,N), ‖TH‖2 = op(ρK,N), and ‖ZA2(K)‖ = op(ρK,N).

For the cross term, we obtain

τ̃ τ̃ ′g = Â3(K) + ZA3(K)− T hH ′gH−1TH
′ − THH−1hT g ′ + THH−1hH ′gH

−1TH
′

= Â3(K) + op(ρK,N)

by ‖T h‖‖TH‖ = op(ρK,N), ‖T g‖‖TH‖ = op(ρK,N), ‖TH‖2 = op(ρK,N) and ‖ZA3(K)‖ =

op(ρK,N).

Since
√
N(δ̂(K)− δ0) = H−1τ̃ +H−1τ̃g + op(ρK,N), it follows that

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = H−1(Â1(K) + Â2(K) + Â3(K) + Â3(K)′)H−1 + op(ρK,N).

Then, desired conclusion directly follows from the assumption in the Lemma. Q.E.D.

Next we provide useful lemmas for the proof of Proposition 2.1-2.3. We do not provide

proofs of Lemma 2.2, as they are available in Donald and Newey (2001). Define ef (K) =

f ′(I − PK)f/N , ∆(K) = tr(ef (K)), eg(K) = g′(I − PK)g/N , and ∆g(K) = tr(eg(K)).
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Lemma 2.2. (Donald and Newey (2001) Lemma A.2, A.3) If Assumptions 2.1-2.3 are

satisfied, then we have

(i) tr(PK) = K, (ii)
∑

i(P
K
ii )2 = op(K), (iii)

∑
i 6=j P

K
ii P

K
jj = K2 +op(K), (iv)

∑
i 6=j P

K
ij P

K
ij =

K + op(K),

(v) h = f ′v/
√
N = Op(1), H = f ′f/N = Op(1),

(vi) ∆(K) = op(1),

(vii) f ′(I − PK)v/
√
N = Op(∆(K)1/2),

(viii) u′PKv = Op(K),

(ix) E(u′PKvv′PKu|X) = σuvσ
′
uvK

2 + (σ2
vΣu + σuvσ

′
uv)K + op(K) = σuvσ

′
uvK

2 + op(K
2),

(x) E(f ′vv′PKu) =
∑

i fiP
K
ii E(v2

i u
′
i|xi) = Op(K),

(xi) ∆(K)1/2/
√
N = op(K/N + ∆(K)),

(xii) E(hh′H−1u′f/N |X) =
∑

i fif
′
iH
−1 E(v2

i ui|xi)f ′i/N2 = Op(1/N),

(xiii) E(f ′(I − PK)vv′PKu/N |X) = op(∆(K)1/2
√
K/
√
N).

Next, lemma gives useful calculations that will appear in the MSE approximation due to

the invalid instruments.

Lemma 2.3. If Assumptions 2.1-2.3 are satisfied, then we have

(i) Hg = f ′g/N = Op(1),

(ii) ∆g(K) = op(1),

(iii) g′(I − PK)v/
√
N = Op(∆g(K)1/2), f ′(I − PK)g/N = Op((∆(K)∆g(K))1/2),

(iv) E(f ′vg′u/N |X) = Hgσ
′
uv,

(v) E(u′PKv|X) = Kσuv,

(vi) E((u′f+f ′u)/NH−1f ′v
√
N |X) = (

∑
i σuvf

′
iH
−1fi+

∑
i fiσ

′
uvH

−1fi)/N
3/2 = Op(1/

√
N),

(vii) E(f ′v(f ′g)′H−1(u′f + f ′u)|X) = Σifi(f
′g)′H−1σuvf

′
i + Σifi(f

′g)′H−1fiσ
′
uv.

Proof of Lemma 2.3 (i) holds by LLN. Observer that (I − PK) is idempotent, and

E(∆g(K)) ≤ E[tr(g −Ψπg
′

K)′(g −Ψπg
′

K)]/N = E(|g(x)− πgKψ
K(x)|2)→ 0,
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by Assumption 2.2(ii). Thus, ∆g(K) = op(1) by Markov inequality. Next, observe that

E(g′(I − PK)v/
√
N |X) = 0, and

E(g′(I − PK)vv′(I − PK)g/N |X) = σ2
veg(K).

Therefore, g′(I − PK)v/
√
N = Op(∆g(K)1/2) by Chebyshev inequality. Moreover,

‖f ′(I − PK)g/N‖ ≤
√
f ′(I − PK)f/N

√
g′(I − PK)g/N = Op(∆(K)1/2∆g(K)1/2),

by Cauchy-Schwarz inequality, (I − PK) is idempotent.

Also, E(f ′vg′u/N |X) =
∑

i,j E(fivigju
′
j|X)/N =

∑
i figi E(viu

′
i|xi)/N = Hgσ

′
uv, and this

gives (iv). Moreover, E(u′PKv|X) =
∑

i E(uiP
K
ii vi|X)+

∑
i,j E(uiP

K
ij vj|X) =

∑
i P

K
ii E(uivi|X) =

Kσuv, so that (v) holds. Next, E(u′f/NH−1f ′v/
√
N |X) =

∑
i E(uif

′
iH
−1fivi|xi)/N3/2 =

σuv(
∑

i f
′
iH
−1fi/N

3/2) = Op(1/
√
N), and similarly, E(f ′u/NH−1f ′v/

√
N |X) = (

∑
i fiσ

′
uvH

−1fi)/N
3/2 =

Op(1/
√
N). This gives (vi). Similarly, E(f ′v(f ′g)′H−1u′f |X) = Σi E(fivi(f

′g)′H−1uif
′
i |X) =

Σifi(f
′g)′H−1σuvf

′
i , and E(f ′v(f ′g)′H−1f ′u|X) = Σifi(f

′g)′H−1fiσ
′
uv gives (vii). Q.E.D.

Proof of Proposition 2.1

The 2SLS estimator, δ̂(K) = (W ′PKW )−1(W ′PKy) has the following decomposition with

locally invalid instruments specification

√
N(δ̂(K)− δ0) = Ĥ−1ĥ+ Ĥ−1ĥg,

where,

Ĥ =
W ′PKW

N
, ĥ =

W ′PKv√
N

, ĥg =
W ′PKg

N
.
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Also, ĥ, Ĥ and ĥg can be decomposed as

ĥ = h+ T h1 + T h2 ,

T h1 = −f ′(I − PK)v/
√
N = Op(∆(K)1/2), T h2 = u′PKv/

√
N = OP (K/

√
N),

Ĥ = H + TH1 + TH2 + ZH ,

TH1 = −f ′(I − PK)f/N = −ef (K) = Op(∆(K)), TH2 = (u′f + f ′u)/N = Op(1/
√
N),

ZH = (u′PKu− u′(I − PK)f − f ′(I − PK)u)/N = Op(K/N + ∆(K)1/2/
√
N),

ĥg = Hg + T g1 + Zg,

T g1 = −f ′(I − PK)g/N = Op(∆(K)1/2∆g(K)1/2),

Zg = u′g/N − u′(I − PK)g/N = Op(1/
√
N + ∆g(K)1/2/

√
N).

We show that the conditions of Lemma 2.1 are satisfied, and L(K) has the representations

given in the proposition. Note that L(K) contains the terms of order K/
√
N and K2/N .

Thus to show the term is op(ρK,N), it is enough to show op(K/
√
N +K2/N + ∆(K)).

Note that h = Op(1), H = Op(1) by Lemma 2.2 (v). Also, T h = −f ′(I − P )v/
√
N +

u′Pv/
√
N = Op(∆(K)1/2)+Op(K/

√
N) = op(1) by Lemma 2.2(vii), (viii), and using ∆(K) =

op(1), K/
√
N = o(1). Moreover, TH1 = −f ′(I − P )f/N = Op(∆K) by the definition of ∆K ,

and TH2 = (u′f + f ′u)/N = Op(1/
√
N) by the CLT. Thus ‖TH‖2 ≤ ‖TH1 ‖2 + ‖TH2 ‖2 +

2‖TH1 ‖‖TH2 ‖ = Op(∆(K)2) +Op(1/N) +Op(∆(K)/
√
N) = op(ρK,N). Also,

‖T h‖‖TH‖ = Op(∆(K)3/2) +Op(∆(K)1/2/
√
N) +Op(∆(K)K/

√
N) +Op(K/N) = op(ρK,N),

since ∆(K)1/2/
√
N = op(ρK,N) by Lemma 2.2 (xi). In addition, Zh = 0 in this case,

thus ‖Zh‖ = op(ρK,N). Next, ZH = (u′Pu − u′(I − P )f − f ′(I − P )u)/N = Op(K/N) +

Op(∆(K)1/2/
√
N) = op(ρK,N) by Lemma 2.2 (vii), (viii), (xi).

Next, Hg = Op(1) by Lemma 2.3 (i), and T g1 = Op(∆(K)1/2∆g(K)1/2) = op(1) by Lemma

2.2 (vi), 2.3 (ii), (iii). Morover, u′g/N = Op(1/
√
N) = op(ρK,N) by CLT and 1/

√
N =
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o(K/
√
N). Also, u′(I − PK)g/N = Op(∆g(K)1/2/

√
N) = op(ρK,N) by Lemma 2.3 (iii)

(replacing v with u) and this gives ‖Zg‖ = op(ρK,N).

Also,

‖T g‖‖TH‖ = Op(∆(K)3/2∆g(K)1/2) +Op(∆(K)1/2∆g(K)1/2/
√
N) = op(ρK,N),

by ∆(K)3/2 = op(ρK,N), ∆(K)1/2/
√
N = op(ρK,N) using Lemma 2.2 (xi).

Next, we calculate the expectation of each term Â1(K), Â2(K), and Â3(K) defined in

Lemma 2.1. For ZA1(K) = 0, Â1(K) = (h + T h1 + T h2 )(h + T h1 + T h2 )′ − hh′H−1(TH1 +

TH2 )′ − (TH1 + TH2 )H−1hh′, by the proof of the Proposition 1 in Donald and Newey (2001),

E(Â1(K)|X) = σ2
vH + σ2

vef (K) + σuvσ
′
uvK

2/N + op(ρK,N).

Next, for ZA2(K) = 0, we analyze expectation of Â2(K) = (Hg + T g1 )(Hg + T g1 )′ −

HgH
′
gH
−1(TH1 +TH2 )′−(TH1 +TH2 )H−1HgH

′
g. First of all, E(HgT

g
1
′|X) = −Hgg

′(I−PK)f/N

and E(T g1H
′
g|X) = −f ′(I − PK)g/NH ′g. Second, E(T g1 T

g
1
′|X) = Op(∆K∆g,K) = op(ρK,N) by

Lemma 2.3 (ii), (iii). Next,

E(HgH
′
gH
−1TH1

′|X) = −HgH
′
gH
−1ef (K).

Lastly,

E(HgH
′
gH
−1TH2

′|X) = HgH
′
gH
−1 E(

u′f + f ′u

N
|X) = 0.

Thus,

E(Â2(K)|X) = HgH
′
g +HgH

′
gH
−1ef (K) + ef (K)H−1HgH

′
g −Hgg

′(I − PK)f/N

− f ′(I − PK)g/NH ′g + op(ρK,N).

For ZA3(K) = (
∑2

j=1 T
h
j )T g1

′, we investigate expectation of Â3(K) = h(Hg + T g1 )′ +
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(T h1 + T h2 )H ′g − hH ′gH−1(TH1 + TH2 )′ − (TH1 + TH2 )H−1hH ′g. First, observe that E(hH ′g|X) =

E(f ′v/
√
N(f ′g/N)′|X) = 0, E(hT g1

′|X) = −E(f ′v/
√
N(f ′(I − PK)g/N)′|X) = 0, and

E(T h1 H
′
g|X) = −E(f ′(I − PK)v/

√
NH ′g|X) = 0. Second,

E(T h2 H
′
g|X) = E(u′PKv

√
NH ′g|X) =

K√
N
σuvH

′
g

by Lemma 2.3 (v). Second, E(hH ′gH
−1TH1

′|X) = E(f ′v/
√
N |X)H ′gH

−1(f ′(I − P )f/N) = 0,

and E(TH1 H
−1hH ′g|X) = 0. Third, by Lemma 2.3 (vii)

E(hH ′gH
−1TH2

′|X) = E[
f ′v√
N
H ′gH

−1u
′f + f ′u

N
|X]

= (ΣifiH
′
gH
−1σuvf

′
i + ΣifiH

′
gH
−1fiσ

′
uv)/N

3/2 = Op(
1√
N

)

Fourth, by Lemma 2.3 (vi),

E(TH2 H
−1hH ′g|X) = E[

u′f + f ′u

N
H−1 f

′v√
N
H ′g|X]

=

∑
i σuvf

′
iH
−1fi +

∑
i fiσ

′
uvH

−1fi
N3/2

H ′g = Op(
1√
N

)

Note that ‖T h1 ‖‖T
g
1 ‖ = Op(∆(K)∆g(K)1/2) = op(ρK,N) by ∆(K) = Op(ρK,N) and ‖T h2 ‖‖T

g
1 ‖ =

Op(K/
√
N∆(K)1/2∆g(K)1/2) by ∆(K)1/2K/

√
N ≤ K2/N + ∆K , thus ZA3(K) = (T h1 +

T h2 )T g1
′ = op(ρK,N). Thus, we have

E(Â3(K)|X) =
K√
N
σuvH

′
g + op(ρK,N),

by 1/
√
N = o(K/

√
N).
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In sum,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = σ2
vH + σ2

vef (K) + σuvσ
′
uvK

2/N+

+HgH
′
g +HgH

′
gH
−1ef (K) + ef (K)H−1HgH

′
g +

K√
N

(Hgσ
′
uv + σuvH

′
g)

−Hgg
′(I − PK)f/N − f ′(I − PK)g/NHg + op(ρK,N)

= HΦH +HL(K)H + op(ρK,N)

with Φ = σ2
vH
−1 +H−1HgH

′
gH
−1. We have further simplification, since K2/N = o(K/

√
N)

and this complete the proof. Q.E.D.

We also use following Lemma from Donald and Newey (2001). Let σ̃2
v = v′v/N , and

Λ̃(K) = v′PKv/Nσ2
v . For the next lemma and the proof of Proposition 2, we denote ρK,N =

tr(L(K)) for L(K) from Proposition 2.2 .

Lemma 2.4. If the hypotheses of Proposition 2.2 are satisfied, then we have

(i) Λ̂(K) = Λ̃(K) − (σ̃2
v/σ

2
v − 1)Λ̃(K) − v′f(f ′f)−1f ′v/2Nσ2

v + R̂Λ = Λ̃(K) + op(K/N),
√
NR̂Λ = op(ρK,N)

(ii) u′PKu/N − Λ̃(K)Ση = op(K/N),

(iii) E(hΛ̃(K)v′η/
√
N |X) = (K/N)Σifi E(v2

i η
′
i|xi)/N +Op(K/N

2),

(iv) E(hh′H−1h/
√
N |X) = Op(1/N),

(v) E(v′PKvη′v/
√
N |X) =

∑
i Pii E(v3

i ηi|xi)/
√
N = O(K/

√
N)

Proof of Lemma 2.4 Proof of Lemma 2.4 (i)-(iv) immediately follows from the proof of
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Lemma A.7 and A.8. of Donald and Newey (2001). For (v), observe that

E(v′PKvη′v/
√
N |X) =

∑
i,j,k

E(viP
K
ij vjηkvk|X)/

√
N

=
∑
i

PK
ii E(v3

i ηi|xi)/
√
N +

∑
i

E(v2
i |xi)PK

ii E(ηjvj)

= O(K/
√
N)

because E(v3
i ηi|xi) is bounded by Assumption 2.2 and E(ηjvj) = 0 by construction. Q.E.D.

Proof of Proposition 2.2

LIML estimator, δ̂(K) = (W ′PKW − Λ̂(K)W ′W )−1(W ′PKy − Λ̂(K)W ′y) has the following

form with locally invalid instruments specification;

√
N(δ̂(K)− δ0) = Ĥ−1ĥ+ Ĥ−1ĥg,

where,

Ĥ =
W ′PKW

N
− Λ̂(K)

W ′W

N
, ĥ =

W ′PKv√
N
− Λ̂(K)

W ′v√
N
, ĥg =

W ′PKg

N
− Λ̂(K)

W ′g

N
.



125

Similar to Donald and Newey (2001), we have following decomposition for ĥ and Ĥ

ĥ = h+
5∑
j=1

T hj + Zh,

T h1 = −f ′(I − PK)v/
√
N = Op(∆(K)1/2), T h2 = η′PKv/

√
N = OP (

√
K/
√
N),

T h3 = −Λ̃(K)h = Op(K/N), T h4 = −Λ̃(K)η′v/
√
N = Op(K/N),

T h5 = −h′H−1hσuv/2
√
Nσ2

v = Op(1/
√
N),

Zh = (Λ̃(K)− Λ̂(K) + R̂Λ)
√
N(

W ′v

N
− σuv)− R̂Λ

W ′v√
N

Ĥ = H +
3∑
j=1

THj + ZH ,

TH1 = −f ′(I − PK)f/N = −ef (K) = Op(∆(K)), TH2 = (u′f + f ′u)/N = Op(1/
√
N),

TH3 = −Λ̃(K)H = Op(K/N)

ZH =
u′PKu

N
− Λ̃(K)Σu − Λ̂(K)

W ′W

N
+ Λ̃(K)(H + Σu)− u′(I − PK)f/N − f ′(I − PK)u/N

where theOp results, T h = op(1), ‖TH‖2 = op(ρK,N), ‖T h‖‖TH‖ = op(ρK,N), ‖Zh‖ = op(ρK,N),

and ‖ZH‖ = op(ρK,N) follows similarly to the proof of Proposition 2 in Donald and Newey

(2001).

Also, ĥg is decomposed as

ĥg = Hg +
4∑
j=1

T gj + Zg,

T g1 = −f ′(I − PK)g/N = Op(∆(K)1/2∆g(K)1/2),

T g2 = u′g/N = Op(1/
√
N), T g3 = −u′(I − PK)g/N = Op(∆g(K)1/2/

√
N),

T g4 = −Λ̃(K)Hg = Op(K/N)

Zg = −Λ̂(K)
W ′g

N
+ Λ̃(K)Hg
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where the Op results follows from the proof of Proposition 2.1 and Λ̃(K) = Op(K/N). Also,

Λ̂(K)
W ′g

N
− Λ̃(K)Hg = (Λ̂(K)− Λ̃(K))

W ′g

N
+ Λ̃(K)(

W ′g

N
−Hg)

= op(K/N) +Op(K/N)op(1) = op(ρK,N)

by Lemma 2.4 (i), and by the LLN, W ′g/N = Hg + op(1), which implies ‖Zg‖ = op(ρK,N).

Note that ‖TH1 ‖ = Op(∆(K)), ‖TH3 ‖ = Op(K/N). Since op(ρK,N) = op(K/n + ∆(K)),

‖T g‖‖TH1 ‖ = op(ρK,N), ‖T g‖‖TH3 ‖ = op(ρK,N). Moreover,

‖T g‖‖TH2 ‖ = Op(∆(K)1/2∆g(K)1/2/
√
N) +Op(1/N) +Op(∆g(K)1/2/N) +Op(K/N

3/2)

= op(ρK,N)

by Lemma 2.2 (xi), 1/N = o(K/N), and K/N3/2 = o(K/N). Thus, ‖T g‖‖TH‖ = op(ρK,N)

holds by Cauchy-Schwarz inequality.

Next, we calculate expectation of each term Â1(K), Â2(K), and Â3(K) to apply Lemma

2.1. First, for Â1(K) = hh′+h(
∑5

j=1 T
h
j )′+(

∑5
j=1 T

h
j )h′+(

∑2
j=1 T

h
j )(
∑2

j=1 T
h
j )′−hh′H−1TH

′−

THH−1hh′,

E(Â1(K)|X) = σ2
vH + σ2

vef (K) + σ2
vΣη

K

N
+ ζ̂ + ζ̂ ′ + op(ρK,N),

and ‖ZA1(K)‖ = op(ρK,N) by the proof of Proposition 2 in Donald and Newey (2001), where

ζ̂ =
∑
i

fiP
K
ii E(v2

i η
′
i|X)/N − K

N

∑
i

fi E(v2
i η
′
i|X)/N.

Next, for ZA2(K) = (
∑4

j=2 T
g
j )(
∑4

j=2 T
g
j )′, we analyze expectation of Â2(K) = (Hg +

T g1 )(Hg +T g1 )′+(Hg +T g1 )(
∑4

j=2 T
g
j )′+(

∑4
j=2 T

g
j )(Hg +T g1 )′−HgH

′
gH
−1TH

′−THH−1HgH
′
g.

First, note that HgT
g
4
′ − HgH

′
gH
−1TH3

′
= 0. Second, E(HgT

g
2
′|X) = E(Hgg

′u/N |X) =

Hg

∑
i E(u′i|X)gi/N = 0. Similarly, we have E(HgT

g
3
′|X) = 0, E(T g1 T

g
2
′|X) = 0, and



127

E(T g1 T
g
3
′|X) = 0. Also,

E(T g1 T
g
4
′|X) = E(

f ′(I − PK)g

N
Λ̃(K)H ′g|X) =

K

N

f ′(I − PK)g

N
H ′g = op(ρK,N)

by E(Λ̃(K)|X) = E(v′PKv/Nσ2
v |X) = K/N and using K/N = O(ρK,N). Lastly, 1/N =

o(ρK,N), ∆g(K) = op(1), and K/N3/2 = o(K/N) so that ‖T g2 ‖‖T
g
j ‖ for each j ≥ 2. It also

follows similarly that ‖T g3 ‖‖T
g
3 ‖, ‖T

g
3 ‖‖T

g
4 ‖ and ‖T g4 ‖‖T

g
4 ‖ are op(ρK,N). Thus, ZA2(K) =

op(ρK,N).

With the calculations in the proof of Proposition 2.1, we have

E(Â2(K)|X) = HgH
′
g +HgH

′
gH
−1ef (K) + ef (K)H−1HgH

′
g −Hgg

′(I − PK)f/N

− f ′(I − PK)g/NH ′g + o(ρK,N).

Next, for ZA3(K) = (
∑5

j=3 T
h
j )(
∑4

j=1 T
g
j )′ + (

∑2
j=1 T

h
j )(
∑4

j=2 T
g
j )′, we investigate expec-

tation of Â3(K). From the proof of Proposition 2.1, we have calculations of E(h(Hg +T g1
′) +

(T h1 + T h2 )H ′g − hH ′gH−1(TH1 + TH2 )′ − (TH1 + TH2 )H−1hH ′g|X), except the term

E(T h2 H
′
g|X) = E(η′PKv/

√
NH ′g|X) = 1/

√
N
∑
i

PK
ii E(ηivi)H

′
g = 0.

First, note that hT g4
′ − hHg

′H−1TH3
′
= 0 and T h3 H

′
g − TH3 H−1hH ′g = 0. Second, by Lemma

2.3(iv),

E(hT g2
′|X) = E(f ′v

√
Ng′u/N |X) =

1√
N
Hgσ

′
uv = Op(1/

√
N)

Third,

E(hT g3
′|X) = −E(f ′v

√
Ng′(I − PK)u/N |X) = − 1√

N

f ′(I − PK)g

N
σ′uv = op(ρK,N)

Fourth, E(T h1 T
g
1
′|X) = E(f ′(I − PK)v

√
Ng′(I − PK)f/N |X) = 0. Fifth, E(T h2 T

g
1
′|X) =
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−E(η′PKv
√
N |X)g′(I − PK)f/N = 0 as E ηivi = 0.

Sixth,

E(T h4 H
′
g|X) = −E(

v′PKv

Nσ2
v

η′v/
√
NH ′g|X) = Op(

√
K/N3/2) = op(ρK,N)

by Lemma 2.4(v). Seventh,

E(T h5 H
′
g|X) = −E(h′H−1h|X)

σuv

2
√
Nσ2

v

H ′g =
∑
i

E(v2
i |xi)f ′iH−1fi/N

σuv

2
√
Nσ2

v

H ′g = Op(1/
√
N).

Lastly, K/N = o(
√
K/
√
N), 1/

√
N = o(

√
K/
√
N), and op(

√
K/
√
N(∆(K)1/2∆g(K)1/2 +

1/
√
N + ∆g(K)1/2/

√
N) +K/N)) = op(ρK,N), thus ‖T hj ‖‖T

g
k ‖ = op(ρK,N) for j ≥ 3 and each

k. It also follows similarly that ‖T h1 ‖‖T
g
j ‖ = op(ρK,N) and ‖T h2 ‖‖T

g
j ‖ = op(ρK,N) for j ≥ 2,

and this gives ZA3(K) = op(ρK,N). Thus,

E(Â3(K)|X) = Op(1/
√
N).

In sum, we have,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = σ2
vH + σ2

vef (K) + σ2
vΣηK/N + ζ̂ + ζ̂ ′

+HgH
′
g +HgH

′
gH
−1ef (K) + ef (K)H−1HgH

′
g +Op(1/

√
N)

−Hgg
′(I − PK)f/N − f ′(I − PK)g/NHg + op(ρK,N)

= HΦH +HL(K)H + op(ρK,N),

where Φ = σ2
vH
−1+H−1HgH

′
gH
−1 and 1/

√
N = o(K/N) under the assumption K2/N →∞.

If we assume E(v2
i η
′
i|X) = 0, then ζ̂ = 0 and we get the desired results.
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For the FULL estimator, observe that

Λ̌(K) = Λ̂(K)− C(1− Λ̂(K))2

N − C(1− Λ̂(K))

= Λ̂(K) +Op(1/N)

by 0 ≤ 1− Λ̂(K) ≤ 1. Therefore we have

W ′PKW

N
− Λ̌(K)

W ′W

N
=
W ′PKW

N
− Λ̂(K)

W ′W

N
+ op(ρK,N),

W ′PKv√
N
− Λ̌(K)

W ′v√
N

=
W ′PKv√

N
− Λ̂(K)

W ′v√
N

+ op(ρK,N),

W ′PKg

N
− Λ̌(K)

W ′g

N
=
W ′PKg

N
− Λ̂(K)

W ′g

N
+ op(ρK,N),

by using W ′W/N = Op(1),W ′v/
√
N = Op(1),W ′g/N = Op(1) and 1/N = op(ρK,N). Thus,

FULL estimator δ̂(K) = (W ′PKW − Λ̌(K)W ′W )−1(W ′PKy − Λ̌(K)W ′y) has the same

higher-order MSE decomposition with LIML estimator. Q.E.D.

Proof of Proposotion 2.3

For B2SLS estimator, δ̂(K) = (W ′PKW − Λ̄(K)W ′W )−1(W ′PKy− Λ̄(K)W ′y) with Λ̄(K) =

(K − d− 2)/N has the following decomposition

√
N(δ̂(K)− δ0) = Ĥ−1ĥ+ Ĥ−1ĥg,

where,

Ĥ =
W ′PKW

N
− Λ̄(K)

W ′W

N
, ĥ =

W ′PKv√
N
− Λ̂(K)

W ′v√
N
, ĥg =

W ′PKg

N
− Λ̄(K)

W ′g

N
.
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We have following decomposition for ĥ, Ĥ and ĥg,

ĥ = h+
4∑
j=1

T hj ,

T h1 = −f ′(I − PK)v/
√
N = Op(∆(K)1/2), T h2 = u′PKv/

√
N −

√
N Λ̄(K)σuv = OP (

√
K/
√
N),

T h3 = −Λ̄(K)h = Op(K/N), T h4 = −Λ̄(K)(u′v/N − σuv) = Op(K/N),

Ĥ = H +
3∑
j=1

THj + ZH ,

TH1 = −f ′(I − PK)f/N = −ef (K) = Op(∆(K)), TH2 = (u′f + f ′u)/N = Op(1/
√
N),

TH3 = −Λ̄(K)H = Op(K/N)

ZH =
u′PKu

N
− Λ̄(K)Σu − Λ̄(K)(

W ′W

N
−H − Σu)− u′(I − PK)f/N − f ′(I − PK)u/N

ĥg = Hg + T g1 + T g2 + T g3 ,

T g1 = −f ′(I − PK)g/N = Op(∆(K)1/2∆g(K)1/2),

T g2 = u′g/N = Op(1/
√
N), T g3 = −u′(I − PK)g/N = Op(∆g(K)1/2/

√
N),

T g4 = −Λ̄(K)Hg = Op(K/N), Zg = −Λ̄(K)(
W ′g

N
−Hg),

where theOp results, T h = op(1), ‖TH‖2 = op(ρK,N), ‖T h‖‖TH‖ = op(ρK,N), ‖Zh‖ = op(ρK,N),

and ‖ZH‖ = op(ρK,N) follows immediately from the proof of Proposition 3 in Donald and

Newey (2001), and ‖Zg‖ = op(ρK,N), ‖T g‖‖TH‖ = op(ρK,N) similarly to the proof of Propo-

sition 2.2 using Λ̄(K) = O(K/N).

Next, we calculate expectation of each term Â1(K), Â2(K), and Â3(K) to apply Lemma

2.1. First, for Â1(K) = hh′+h(
∑4

j=1 T
h
j )′+(

∑4
j=1 T

h
j )h′+(

∑2
j=1 T

h
j )(
∑2

j=1 T
h
j )′−hh′H−1TH

′−

THH−1hh′

E(Â1(K)|X) = σ2
vH + σ2

vef (K) + (σ2
vΣu + σuvσ

′
uv)

K

N
+ ζ̂ + ζ̂ ′ + o(ρK,N)
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by the proof of Proposition 2 in Donald and Newey (2001), where

ζ̂ =
∑
i

fiP
K
ii E(v2

i u
′
i|X)/N − K

N

∑
i

fi E(v2
i u
′
i|X)/N.

Next, for ZA2(K) = (
∑4

j=2 T
g
j )(
∑4

j=2 T
g
j )′, we analyze expectation of Â2(K) = (Hg +

T g1 )(Hg +T g1 )′+(Hg +T g1 )(
∑4

j=2 T
g
j )′+(

∑4
j=2 T

g
j )(Hg +T g1 )′−HgH

′
gH
−1TH

′−THH−1HgH
′
g.

Observe that HgT
g
4
′ − HgH

′
gH
−1TH3

′
= 0 and E(T g1 T

g
4
′|X) = Λ̄(K)f

′(I−PK)g
N

H ′g = op(ρK,N).

Similar to the proof of Proposition 2.2 by replacing Λ̄(K) with Λ̃(K), we have

E(Â2(K)|X) = HgH
′
g +HgH

′
gH
−1ef (K) + ef (K)H−1HgH

′
g −Hgg

′(I − PK)f/N

− f ′(I − PK)g/NH ′g + o(ρK,N).

and ZA2(K) = op(ρK,N). Lastly, for ZA3(K) = (
∑4

j=3 T
h
j )(
∑4

j=1 T
g
j )′+(

∑2
j=1 T

h
j )(
∑4

j=2 T
g
j )′,

we investigate expectation of Â3(K). From the proof of Proposition 2.2, we have

E(h(Hg + T g1 + T g2 + T g3 )′ + T h1 (Hg + T g1 )′ − hH ′gH−1(TH1 + TH2 )′ − (TH1 + TH2 )H−1hH ′g|X) = Op(
1√
N

)

and ZA3(K) = op(ρK,N). Also observe that hT g4
′−hHg

′H−1TH3
′
= 0 and T h3 H

′
g−TH3 H−1hH ′g =

0. Next,

E(T h2 H
′
g|X) = E((u′PKv/

√
N −

√
N Λ̄(K)σuv)H

′
g|X) = (K/

√
N −

√
N Λ̄(K))σuvH

′
g = Op(1/

√
N)

by K/
√
N −

√
N Λ̄(K) ≤ C/

√
N for some large C. Similarly,

E(T h2 T
g
1
′|X) = Op(

1√
N
f ′(I − PK)g/N) = op(ρK,N).
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Lastly, E(T h4 H
′
g|X) = −E(Λ̄(K)(u′v/N − σuv)H ′g|X) = 0, and thus

E(Â3(K)|X) = Op(1/
√
N) + o(ρK,N).

Thus, we have,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = σ2
vH + σ2

vef (K) + (σ2
vΣu + σuvσ

′
uv)K/N + ζ̂ + ζ̂ ′

+HgH
′
g +HgH

′
gH
−1ef (K) + ef (K)H−1HgH

′
g −Hgg

′(I − PK)f/N

− f ′(I − PK)g/NHg +Op(1/
√
N) + op(ρK,N)

= HΦH +HL(K)H + op(ρK,N).

where Φ = σ2
vH
−1+H−1HgH

′
gH
−1 and 1/

√
N = o(K/N) under the assumption K2/N →∞.

Using σ2
vΣu = σ2

vΣη + σuvσ
′
uv and assuming E(v2

i u
′
i|X) = 0, we get the desired conclu-

sion. Q.E.D.

For the proof of Corollary 2.1-2.3, we use the following Lemma to handle higher-order

terms due to the N−γ (γ > 1/2) locally invalid instruments specification. This is a slight

modification of Lemma 2.1 without Op(1) term in the decomposition of ĥg. We define

ρK,N = tr(G+ L(K)).

Lemma 2.5. If there is a decomposition ĥ = h+T h+Zh, Ĥ = H+TH +ZH , ĥg = T g +Zg,

and

(h+ T h)(h+ T h)′ − hh′H−1TH
′ − THH−1hh′ = Â1(K) + ZA1(K),

T gT g ′ = Â2(K) + ZA2(K), (h+ T h)T g ′ = Â3(K) + ZA3(K),

such that T h = op(1), h = Op(1), T g = op(1), and H = Op(1), the determinant of H is
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bounded away from zero with probability 1, ρK,N = tr(G+ L(K)), and ρK,N = op(1),

‖TH‖2 = op(ρK,N), ‖T h‖‖TH‖ = op(ρK,N), ‖Zh‖ = op(ρK,N), ‖ZH‖ = op(ρK,N),

‖Zg‖ = op(ρK,N), ‖T g‖‖TH‖ = op(ρK,N), ZAi(K) = op(ρK,N) for all i = 1, 2, 3,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = HΦH +H(G+ L(K))H + op(ρK,N),

then

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E(Q̂(K)|X) = Φ +G+ L(K) + T (K),

[r̂(K) + T (K)]/tr(G+ L(K)) = op(1), as K →∞, N →∞.

Proof of Lemma 2.5 Follows by Lemma 2.1 replacing Hg = 0 with ρK,N = tr(G +

L(K)). Q.E.D.

Proof of Corollary 2.1

The 2SLS estimator, δ̂(K) = (W ′PKW )−1(W ′PKy) has the following decomposition with

N−γ locally invalid instruments specification in model (2.4.1)

√
N(δ̂(K)− δ0) = Ĥ−1ĥ+ Ĥ−1ĥg,

where ĥ, Ĥ is defined and decomposed as in the proof of Proposition 2.1, but ĥg can be

decomposed as follows,

ĥg =
W ′PKg

N1/2+γ
= T g0 + T g1 + Zg,

T g0 =
Hg

Nγ−1/2
= Op(

1

Nγ−1/2
), T g1 =

−f ′(I − PK)g

N

1

Nγ−1/2
= Op(∆(K)1/2∆g(K)1/2/Nγ−1/2),

Zg = (
u′g

N
− u′(I − PK)g

N
)

1

Nγ−1/2
= Op(1/N

γ + ∆g(K)1/2/Nγ),
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where Op results immediately follows from the proof of Proposition 2.1. We show that the

conditions of Lemma 2.5 are satisfied. Note that G + L(K) in the Corollary 2.1 contains

the terms of order 1/N2γ−1, K/Nγ, and K2/N . It is important to note that these terms may

have same order, thus can be the dominant terms in MSE approximation. For example, if

K = O(N1−γ) for 1/2 < γ < 1. Thus to show the term is op(ρK,N), it is enough to show

op(K/N
2γ−1 +K/Nγ +K2/N + ∆(K)).

By similar arguments as in the proof of Proposition 2.1, T g = op(1), ‖Zg‖ = op(ρK,N) by

1/Nγ = o(K/Nγ) and ‖T g‖‖TH‖ = o(K/Nγ). Calculation of the expectation of Â1(K) and

ZA1 = op(ρK,N) defined in Lemma 2.5 follows similarly to the proof of Proposition 2.1. For

Â2(K) = (
∑1

j=0 T
g
j )(
∑1

j=0 T
g
j )′ and ZA2(K) = 0, we have

E(Â2(K)|X) = E(T g0 T
g
0
′|X) + E(T g0 T

g
1
′|X) + E(T g1 T

g
0
′|X) + E(T g1 T

g
1
′|X)

=
HgH

′
g

N2γ−1
−Hg

g′(I − PK)f

N

1

N2γ−1
− f ′(I − PK)g

N
H ′g

1

N2γ−1
+ op(1/N

2γ−1)

=
HgH

′
g

N2γ−1
+ op(ρK,N),

by Lemma 2.3 (iii) and 1/N2γ−1 = Op(ρK,N).

For ZA3(K) = (T h1 + T h2 )T g1
′, we can easily show E(hT g0

′|X) = 0,E(hT g1
′|X) = 0,

E(T h1 T
g
0
′|X) = 0, and

E(T h2 T
g
0
′|X) = E(

u′PKv√
N

H ′g
Nγ−1/2

|X) =
K

Nγ
σuvH

′
g

Moreover, ZA3(K) = op(ρK,N) by inspection. Thus, E(Â3(K)|X) = K
Nγ σuvH

′
g. In sum,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = σ2
vH + σ2

vef (K) + σuvσ
′
uvK

2/N+

+
HgH

′
g

N2γ−1
+

K

Nγ
(Hgσ

′
uv + σuvH

′
g) + op(ρK,N)

= HΦH +H(G+ L(K))H + op(ρK,N)
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with Φ = σ2
vH
−1, G = H−1HgH

′
gH
−1/N2γ−1. Second result holds because Op(1/N

2γ−1) =

Op((
N1−γ

K
)2K2

N
) = op(K

2/N) under K
N1−γ →∞, and this complete the proof. Q.E.D.

Proof of Corollary 2.2

For LIML estimator, we have similar decomposition as in the proof of Proposition 2.2 with

ĥg,

ĥg =
2∑
j=0

T gj + Zg,

T g0 =
Hg

Nγ−1/2
= Op(

1

Nγ−1/2
), T g1 = −f

′(I − PK)g

N

1

Nγ−1/2
= Op(∆(K)1/2∆g(K)1/2/Nγ−1/2),

T g2 =
u′g

N

1

Nγ−1/2
= Op(

1

Nγ
)

Zg = −u
′(I − PK)g

N

1

Nγ−1/2
− Λ̃(K)

Hg

Nγ−1/2
− Λ̂(K)

W ′g

Nγ−1/2
+ Λ̃(K)

Hg

Nγ−1/2

where the Op results and T g = op(1), Zg = op(ρK,N), ‖T g‖‖TH‖ = op(ρK,N) follows from the

proof of Proposition 2.2, and using 1/Nγ = op(
1

N2γ−1 + K
N

). To see 1/Nγ = op(
1

N2γ−1 + K
N

),

consider the function (K/a)+a which is convex, and has a global minimum at a =
√
K which

gives function value 2
√
K. Therefore, for a = N1−γ, (1/Nγ)/(1/N2γ−1 + K/N) = 1/(a +

K/a) ≤ 1/(2
√
K) → 0. To show the term is op(ρK,N) it is enough to show op(K/N

2γ−1 +

K/N + ∆(K)).

Calculation of the expectation of Â1(K) and ZA1 = op(ρK,N) follows from the proof of

Proposition 2.2. Next, for ZA2(K) = 0, we have E(T g0 T
g
2
′|X) = 0,E(T g1 T

g
2
′|X) = 0, and

E(T g2 T
g
2
′|X) =

1

N2γ−1

1

N2
E(u′gg′u|X) =

1

N2γ−1

g′g

N2
Σu = op(ρK,N)

by 1/N2γ−1 = Op(ρK,N), g′g/N = Op(1). Therefore, with calculations in the proof of Corol-
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lary 2.1, we have

E(Â2(K)|X) =
HgH

′
g

N2γ−1
+ op(ρK,N).

Next, for ZA3(K) = (
∑5

j=3 T
h
j )(
∑2

j=0 T
g
j )′ + (T h1 + T h2 )T g2

′, observe that E(hT g0
′|X) = 0,

E(hT g1
′|X) = 0,E(T h1 T

g
0
′|X) = 0,E(T h1 T

g
1
′|X) = 0,E(T h1 T

g
2
′|X) = 0, and E(hT g2

′|X) =

1
NγHgσ

′
uv. Similar to the proof of Proposition 2.2, E(T h2 T

g
0
′|X) = E(η′PKv/

√
NH ′g/N

γ−1/2|X) =

0, E(T h2 T
g
1
′|X) = 0 by using σηv = 0. Thus,

E(Â3(K)|X) =
1

Nγ
Hgσ

′
uv = op(ρK,N)

by using Op(1/N
γ) = op(ρK,N). We can also verify ZA3(K) = op(ρK,N) from the proof of

Proposition 2.2 and by inspections. In sum,

E(Â1(K) + Â2(K) + Â3(K) + Â3(K)′|X) = σ2
vH + σ2

vef (K) + σ2
vΣηK/N + ζ̂ + ζ̂ ′ +

HgH
′
g

N2γ−1
+ op(ρK,N)

= HΦH +H(G+ L(K))H + op(ρK,N)

with Φ = σ2
vH
−1, G = H−1HgH

′
gH
−1/N2γ−1. Second result holds because Op(1/N

2γ−1) =

Op((
N2−2γ

K
)K
N

) = op(K/N) under K
N2−2γ → ∞. The results for FULL estimator follows simi-

larly to the proof of Proposition 2.2, and this complete the proof. Q.E.D.

Proof of Corollary 2.3

This follows similarly as in the proof of Corollary 2.2 with the results in the proof of Propo-

sition 2.3. Q.E.D.

Proof of Corollary 2.4

Similar to the Proof of Proposition 2.1, the 2SLS estimator, δ̂(K) = (W ′PKW )−1(W ′PKy)
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has the following form with locally invalid instruments specification;

√
N(δ̂(K)− δ0) = Ĥ−1ĥ+ Ĥ−1ĥg,

where,

Ĥ =
W ′PKW

N
, ĥ =

W ′PKv√
N

, ĥg =
W ′PKg

N
.

Also, ĥ, Ĥ and ĥg are decomposed as

ĥ = h+ T h,

h =
f ′v√
N

+ u′PKv/
√
N = Op(1), T h = −f ′(I − PK)v/

√
N = op(1)

Ĥ = H + TH ,

TH = −f ′(I − PK)f/N + (u′f + f ′u)/N + (u′PKu− u′(I − PK)f − f ′(I − PK)u)/N = op(1),

ĥg = Hg + T g,

T g = −f ′(I − PK)g/N + u′g/N − u′(I − PK)g/N = op(1)

It is important to note that h includes term u′PKv/
√
N which is Op(K/

√
N) = Op(1) by

K/
√
N = O(1), where op(1) results immediately follows from the proof of Proposition 2.1.

By using similar arguments as in the proof of Lemma 2.1, we have

√
N(δ̂(K)− δ0) = H−1τ̃ +H−1τ̃g + op(1)

where τ̃ = h+ T h − THH−1h = h+ op(1), τ̃g = Hg + T g − THH−1Hg = Hg + op(1) by using

T h = op(1), TH = op(1), h = Op(1), Hg = Op(1), T g = op(1), and H−1 = Op(1), Ĥ−1 = Op(1).
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Since
√
N(δ̂(K)− δ0) = H−1h+H−1Hg + op(1), it follows that

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = H−1(hh′ + hH ′g +Hgh
′ +HgH

′
g)H

−1 + op(1).

First, we have

E(hh′|X) = E
( f ′v√

N
+
u′PKv√

N

)( f ′v√
N

+
u′PKv√

N

)′
= E

(f ′vv′f
N

)
+ E

(f ′vv′PKu

N

)
+ E

(u′PKvv′f

N

)
+ E

(u′PKvv′PKu

N

)
= σ2

vH + σuvσ
′
uv

K2

N
+

1

N

∑
fiP

K
ii E(v2

i u
′
i|xi) +

1

N

∑
PK
ii E(uiv

2
i |xi)f ′i + op(

K2

N
)

= σ2
vH + σuvσ

′
uv

K2

N
+ op(1).

by Lemma 2.2 (ix), (x), and K/N = o(K/
√
N), K2/N = O(1) Second,

E(hH ′g|X) = E
[
(
f ′v√
N

+
u′PKv√

N
)H ′g|X

]
=

K√
N
σuvH

′
g.

Therefore,

E(hh′ + hH ′g +Hgh
′ +HgH

′
g) = σ2

vH + σuvσ
′
uv

K2

N
+

K√
N

(σuvH
′
g +Hgσ

′
uv) +HgH

′
g + op(1),

so that we get the desired conclusion. Q.E.D.

Proof of Corollary 2.5

This immediately follows by Corollary 2.1-2.3 and the Proposition 4 of Donald and Newey

(2001) with the Assumption 2.5. Q.E.D.


