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Abstract

When assessing the risk posed by high temperatures, it is necessary to consider not only the
temperature at separate sites but also how many sites are expected to be hot at the same
time. Hot events that cover a large area have the potential to put a great strain on health
services and cause devastation to agriculture, leading to high death tolls and much economic
damage. South-eastern Australia experienced a severe heatwave in early 2009; 374 people died
in the state of Victoria and Melbourne recorded its highest temperature since records began in
1859 (Nairn and Fawcett, 2013). One area of particular interest in climate science is the effect of
large scale climatic phenomena, such as the El Niño-Southern Oscillation (ENSO), on extreme
temperatures. Here, we develop a framework based upon extreme value theory to estimate
the effect of ENSO on extreme temperatures across Australia. This approach permits us to
estimate the change in temperatures with ENSO at important sites, such as Melbourne, and
also whether we are more likely to observe hot temperatures over a larger spatial extent during a
particular phase of ENSO. To this end, we design a set of measures that can be used to effectively
summarise many important spatial aspects of an extreme temperature event. These measures
are estimated using our extreme value framework and we validate whether we can accurately
replicate the 2009 Australian heatwave, before using the model to estimate the probability of
having a more severe event than has been observed.

Keywords: conditional extremes, covariates, El Niño-Southern Oscillation, extremal depen-

dence, extreme temperature, severity-area-frequency curves, spatial extremes

1 Introduction

The early 2009 heatwave event was one of the most extreme to hit south-eastern Australia. Mel-

bourne recorded its highest temperature since records began in 1859, at 46.4oC, and Adelaide its

third highest temperature over the same observational period at 45.7oC. In total there were 374

heat related deaths in Victoria with over 2,000 people treated for heat related illness (Nairn and

Fawcett, 2013). A particular challenge when modelling any environmental process across Australia

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76962448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is the spatial distribution of the population and agricultural activity across the country. Four of the

five largest cities are located on the coast in the south-eastern region and most agriculture occurs

in the south-eastern region. A hot event occurring over this region will lead to increased mortality

and economic losses. As such, for mitigation purposes, it is necessary to be able to give accurate

estimates of the risk posed by high temperatures over specific regions of interest. Extreme value

theory provides a statistical framework for modelling rare events. To model this problem sufficiently

using extreme value statistics we require not only a univariate extreme value model that focuses on

very high temperatures, but also a flexible model that accurately captures the spatial dependence

between high temperatures at different sites.

There is much interest in how certain large-scale climatic phenomena will affect extreme events;

both currently and under future climate change. One particular phenomenon known to affect

the climate of Australia is the El Niño-Southern Oscillation (ENSO). It is a large-scale naturally

occurring fluctuation in sea surface temperatures (SSTs) in the equatorial Pacific. Two limiting

cases, corresponding to higher and lower SSTs in the equatorial Pacific Ocean, are called El Niño

and La Niña respectively. During El Niño conditions, weaker easterly trade winds blowing across

the Pacific can cause warm surface water to flow eastwards. This leads to increased convection in

the central Pacific and reduces the amount of precipitation over Australia and other countries in

southern Asia. In contrast, during La Niña conditions stronger trade winds blow warmer surface

water to the west Pacific and cooler SSTs are observed in central and eastern Pacific regions (Wang

and Picaut, 2004). The effect of ENSO on mean global temperatures has been well studied but the

impact on extreme temperature is less well understood.

Looking at Australia specifically, Kenyon and Hegerl (2008) showed that El Niño conditions lead

to increased temperatures over eastern and northern regions whereas during La Niña conditions

temperatures will be lower over eastern and northern regions. Strong El Niño conditions do not

guarantee higher temperatures and patterns are not uniform across space. The early 2009 heatwave

event over south-eastern Australia occurred during a moderate La Niña event. The event covered

much of southern and south-eastern Australia and as such had a great impact leading to record

temperatures in certain places; this was not a uniform pattern across the whole of Australia with

some regions affected by moderate heat only.

The aim of this study is to develop a better understanding of how ENSO has an effect on extreme

temperatures over Australia. Perkins and Alexander (2013), Min et al. (2013) and Alexander and

Arblaster (2009) have explored the effect of ENSO on the distribution of annual and seasonal max-

ima temperatures in Australia. They fit the generalised extreme value distribution with covariates

in the location and scale parameters and map return level estimates over sites to produce spatial

plots. However, none of these papers explicitly model spatial dependence and therefore cannot

be used to estimate the probability of heatwave events occurring at multiple sites over space. We

analyse the effect of ENSO on not only the marginal distribution of extreme temperatures, using

more efficient threshold models (Coles, 2001), but also their spatial dependence structure.

Two approaches that have been used for the analysis of spatial processes, when extreme values

are of interest, are geostatistics and max-stable processes. The broad area of geostatistics provides

the most widely used approaches for spatial modelling and is based on an assumption that the

process being modelled is Gaussian (Cressie, 1993). These approaches tend to focus on the main
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body of data and as such can lead to misleading results when analysing rare events such as extreme

temperatures. The most popular approach to spatial extreme value modelling is to fit a max-stable

process to componentwise maxima, such as the site-by-site annual maxima. Key max-stable papers

include Smith (1990), Coles (1993), Schlather (2002), Davison et al. (2012) and Dombry et al.

(2013). A max-stable process arises as the limiting process derived by taking an affine normalisa-

tion of pointwise maxima over a sequence of n independent and identically distributed replicates

of a random spatial process as n → ∞. Max-stable models are often computationally intensive

to fit and difficult to conditionally simulate from. More critically, both Gaussian and max-stable

processes have restrictive features to their extremal dependence structure as explained below.

To help us consider what mathematical properties we require for our model for spatial extreme

events we first introduce an important limiting pairwise measure of extremal dependence between

random variables Y1 and Y2 with continuous distribution functions F1 and F2 respectively. The tail

coefficient χ is given by

χ = lim
p→1

P(F2(Y2) > p | F1(Y1) > p). (1)

When χ > 0, Y1 and Y2 are said to be asymptotically dependent, i.e., the conditional probability of

concurrent extremes in Y1 and Y2 has some non-zero probability in the limit. The variables Y1 and

Y2 are asymptotically independent when χ = 0. All dependent max-stable processes are asymptot-

ically dependent for all pairs of sites. In contrast all non-perfectly dependent Gaussian processes,

are asymptotically independent for all pairs of sites (Ledford and Tawn, 1996). If a spatial process

was asymptotically dependent for nearby sites and dependent but asymptotically independent for

more separated sites neither a max-stable process or a Gaussian process could model its extreme

events without leading to biased inferences.

To accurately model extremal dependence we build a flexible multivariate model based upon the

conditional extremes approach of Heffernan and Tawn (2004) that fully takes into account spatial

dependence on a spatial lattice within the framework of extreme value theory. The conditional

extremes model leads to a class of multivariate distributions that allow for both asymptotic depen-

dence and asymptotic independence between pairs of sites. As such, this model is suitable if the

process being modelled is either max-stable or Gaussian whilst also permitting the analysis of more

general processes. Thus this approach embeds both the two standard approaches within a general

framework. A major benefit of the conditional extremes approach is that inference for extreme

events does not require the choice of asymptotic dependence or asymptotic independence for each

different pair of sites in advance. Uncertainty in estimates of extreme events derived from this

method accounts for the evidence for each type of extremal dependence. Furthermore conditional

simulation of extreme events is straightforward under this approach. The conditional extremes

framework permits the estimation of not only joint extremes at different sites, but also how ENSO

affects the spatial extent of a hot event.

To analyse the marginal effect of ENSO on extreme temperatures we will estimate the change

in return levels at each site. Other existing measures of univariate temperature series quantify the

effect of heat on mortality and other factors; see Alexander and Arblaster (2009) and Winter and

Tawn (2016). A key contribution here is that we are the first to introduce spatial risk measures.

Let the set of all sites be denoted by S, and the values of the daily maximum temperatures at these

sites be Y = (Y1, . . . , Yl), where |S| = l. The most widely used existing measures are based on
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equation (1), but they only describe the dependence between pairs of sites, they do not measure

dependence when the variables are asymptotically independent, and they condition on a specific

site being extreme. Our measures overcome these restrictions. We find the most informative spatial

risk measure to be the severity-area-frequency (SAF) curve, which we adapt from drought analysis

(Henriques and Santos, 1999). The SAF curve (γj , j ≥ 1) gives the average marginal return period

of an event at the j worst affected sites.

By analysing our suite of spatial risk measures we are able to explore the spatial extent of tempera-

ture extremes across Australia and see how the measures alter with ENSO conditions. We also test

the validity of our approach by comparing risk measure values from observations from the heatwave

event in early 2009 to simulations of hot days generated by our model, thus demonstrating that

our model can capture such events accurately. We then illustrate how our approach can be used to

estimate extremal features for rarer events than have been observed previously. Thus for the first

time it is possible to answer questions such as what is the probability of observing a spatial event

more extreme than the early 2009 event?

In Section 2 we introduce the gridded daily maximum temperature data along with the ENSO

covariate. Section 3 presents the models for the margins and dependence structure of spatial ex-

treme temperatures. The measures for assessing spatial risk are developed in Section 4. In Section 5

an approach for simulating spatial fields using the conditional extremes model is given. Results

for the marginal and dependence parameters are provided in Section 6 along with estimates of

important extremal measures. Finally, discussion and conclusions are given in Section 7.

2 Data and Exploratory Analysis

Daily maximum near-surface air temperatures for Australia are taken from HadGHCND, a global

gridded dataset (http://hadobs.metoffice.com/hadghcnd/) of quality-controlled station obser-

vations compiled by the U.S. National Climatic Data Center (Caesar et al., 2006). An angular

distance weighting technique is used to interpolate observed anomalies onto a 2.5o latitude by 3.75o

longitude grid which results in 72 boxes covering Australia over the period 1957-2011. Whilst this

is a relatively coarse resolution heatwaves are large meteorological phenomena and surface air tem-

peratures have long correlation length scales, for which Caesar et al. (2006) found values of between

700km and 1400km for the 0oS to 30oS latitude band. For Australian surface air temperatures Avila

et al. (2015) found that their extremal characteristics and correlations with ENSO were preserved

across a range of grid resolutions from 0.25o to 2.5o. Hot days are most likely to occur in summer

months, here defined as the 90 day period from December to February (91 day period for a leap

year); these three month periods are extracted from each year. No missing data values exist within

the summer months of the years for which the data are provided.

To measure the effect of ENSO the Niño3.4 index is used. This is a measurement of the monthly

SST anomaly, with respect to the average SST for 1981-2010, in a region bounded by 5oN to

5oS and 170oW to 120oW. Other ways of measuring ENSO variability are available; for example

the Southern Oscillation Index which is based on atmospheric changes as opposed to changes in

SSTs (Jones and Trewin, 2000). However, Niño3.4 is commonly used to characterise ENSO (Kenyon

and Hegerl, 2008). Large positive values of this index indicate El Niño events, whereas large nega-

tive values correspond to La Niña events. In this paper values of +1oC and −1oC are used to define
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El Niño and La Niña events respectively. Our framework permits estimates for any value of Niño3.4.

To help determine our modelling strategy we first explore the spatial-temporal dependences be-

tween the daily maximum temperatures at the grid box corresponding to Melbourne. We denote

this temperature at time t by YsM ,t, and at site s at time t−h(s) by Ys,t−h(s) for all s ∈ S. Figure 1

shows the spatial cross-correlation function corr(YsM ,t, Ys,t−h(s)), s ∈ S and for two choices of h(s).

The left plot corresponds to time lag 0, i.e., h(s) = 0, for all s ∈ S, and the right to

max
h(s)

corr(YsM ,t, Ys,t−h(s))− corr(YsM ,t, Ys,t),

with h(s) the value that gives this maximum. These spatial-temporal dependence summaries show

that Melbourne temperatures tend to be strongly positively correlated with concurrent tempera-

tures at other most sites in Australia except for western and north-east regions. For the sites with

positive correlation at lag h(s) = 0, then this is typically the temporal lag with the maximum

dependence. However, for the other sites, the dependence is maximised for h(s) = 1 to 3 for s in

the west and typically h(s) = −1 to −4 for s in the north-east. The correlations highlight that

although spatial dependence does decay broadly with distance it is anisotropic and different pro-

cesses appear to be active in coastal regions. Similar plots for data in high and low ENSO phases

give very similar correlations as ENSO effects are small relative to natural spatial variation.

We also explored the temporal behaviour at different sites, finding stationarity to be a reason-

able description within each summer, that ENSO accounts for a small proportion of temporal

variation, and that the process decorrelates over 5 days in the south and 20 days in the north.
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Figure 1: Estimated spatial cross-correlation function for Melbourne daily maximum temperatures and other sites:

(left) the lag 0 and (right) the difference between the maximum value of the cross-correlation function and value of

the lag 0 cross-correlation function. Data are for the years 1957-2011. Numbers in squares represent the lag value at

which the maximum cross-correlation occurs; a blank square represents lag 0.
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3 Modelling and inference for extreme values

3.1 Strategy

We are interested in modelling the spatial extent of heatwaves over Australia, in particular the

south-east region given its population density and economic importance. Figure 1 shows that there

is little difference between the spatial structure over south-eastern Australia when considering lags

other than lag 0. Therefore, for simplicity, we will model concurrent temperatures, i.e., {Ys,t, s ∈ S}.
We could have studied the field Ys,t−h(s) where h(s) are the lags shown in Figure 1 (right). We do

not feel this extra complication is justified here as extreme values may have different temporal lags

than typical values and given that the ENSO covariate changes monthly.

Based on the exploratory data analysis, during our modelling and inference we will ignore the

effect of temporal dependence to focus on the impact of ENSO on spatial dependence. Thus we

follow a similar strategy to Chavez-Demoulin and Davison (2005) and derive estimates by making a

false assumption of temporal independence. If we derived the sampling distribution under this false

assumption we would underestimate the variability of this distribution but our estimates will be

unbiased (Self and Liang, 1987). So, we recognise the effect of temporal dependence in our inference

through the use of a model-based block bootstrap approach to derive the sampling distributions of

our estimates. Specifically, we take temporal blocks of 20 days.

In summary we will model the daily maximum temperatures process {Ys,t, s ∈ S} as indepen-

dent over time with a covariate gt which varies with time but not space that effects both marginal

and dependence structure of {Ys,t, s ∈ S}. Our strategy for modelling the probabilistic behaviour

of extremes {Ys,t, s ∈ S} is two-fold. Firstly, we model the marginal structure using a threshold

based approach at each site s ∈ S separately. Once the marginal structure has been modelled,

we transform the data from each site onto common margins and model the extremal dependence

structure using the conditional extremes approach. The sampling distribution of estimates accounts

for the temporal structure through the use of a block bootstrap.

3.2 Marginal modelling

Daily maximum temperatures at a site vary with the ENSO covariate gt. As we are interested in

the behaviour of extreme temperatures we need to be able to model the effect of a covariate on tail

behaviour at a site. Davison and Smith (1990) and Northrop and Jonathan (2011) propose different

modelling approaches to achieve this by focusing exclusively on the effect of the covariate on the

tail. Here we adopt the pre-processing approach of Eastoe and Tawn (2009) where a pre-processing

step removes covariate effects from the body of the distribution and then residual influences of

the covariates on the tails are accounted for using the methods of Davison and Smith (1990). As

noted in Section 2, the ENSO signal has a small effect on the series relative to natural spatio-

temporal variations and so modelling of pre-processed extreme residuals corresponds to modelling

the extremes of the original series. The pre-processing approach has close parallels with Northrop

and Jonathan (2011) since the threshold for the extreme value modelling is derived to be covari-

ate dependent. However, the pre-processing approach has major benefits in efficiently estimating

covariate effects if the effect of covariates is somewhat similar in the body and tail of the distribution.

For the pre-processing we fit a location-scale model in the margins, i.e., for daily maximum tem-
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perature Ys,t at location s and time t we have

Ys,t = ψs(gt) + τs(gt)Ws,t, (2)

for t = 1, . . . , n and s ∈ S, where (ψs(gt), τs(gt)) are the location-scale parameters, gt is a time-

varying covariate and Ws,t is the zero mean residual. In this paper all covariates are included

linearly with an appropriate link function such that

ψs(gt) = ψ(0)
s + ψ(1)

s gt log τs(gt) = τ (0)s + τ (1)s gt,

with parameters ψ
(0)
s , ψ

(1)
s , τ

(0)
s and τ

(1)
s each in R. It is assumed that covariate effects in the body

of the distribution are accounted for by the location-scale transform and as such the distribution of

Ws,t is independent of t in its body. In contrast this transformation may not completely capture all

the covariate effect in the extremes of Ws,t, defined by Ws,t > us, where us is a high threshold. The

distribution of Ws,t | Ws,t > us is therefore modelled as a generalised Pareto distribution (GPD)

with scale and shape parameters that depend the covariates s and gt. Exploratory data analysis

revealed that the shape parameter was independent of gt and the scale parameter was log-linear in

gt. Although both parameters were dependent on s, there was no simple relationship on latitude

and longitude and so s is treated as categorical. Hence we denote the shape parameter by ξs and

the scale parameter by σs(gt), with log σs(gt) = σ
(0)
s +σ

(1)
s gt, with parameters σ

(0)
s , σ

(1)
s and ξs each

in R. As a result, our model for the distribution function of the residual variable is Ws,t is such

that

FW (w; s, t) =

{
1− F̃W (us; s) [1 + ξs (w − us) /σs(gt)]−1/ξs+ if w > us

F̃W (w; s) if w ≤ us,
(3)

where F̃W (·; s) is the empirical cumulative distribution function of {Ws,t}nt=1 at site s.

3.3 Dependence modelling

The conditional extremes method of Heffernan and Tawn (2004) is used here to model extremal de-

pendence. Using the methods outlined in Section 3.2, data are transformed onto common margins.

The transformation onto common margins simplifies the estimation of extremal dependence quan-

tities. This is especially important in the spatial problems encountered here since we are interested

whether different sites have rare values simultaneously irrespective of the value of these rare values

on the original temperature scale. Modelling using the conditional extremes approach is simplified

if the choice of common margin is assumed to be the Laplace distribution, as the margins have

exponential upper and lower tails which ensures models for positive and negative dependence are

symmetric (Keef et al., 2013). As a consequence we make the transformation

Xs,t =

{
log {2FW (Ws,t; s, t)} if FW (Ws,t; s, t) < 1/2

−log {2 [1− FW (Ws,t; s, t)]} if FW (Ws,t; s, t) ≥ 1/2,

where FW (·; s, t) is given by equation (3), and Xs,t is now identically distributed over s and t.

Let Xt = (X1,t, . . . , Xl,t), where l is the number of sites in the region S, so the marginal dis-

tributions of Xt are all Laplace. Furthermore, define X−s,t as all the components of the vector

Xt without Xs,t. In what follows all vector calculations are to be interpreted as componentwise.
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The aim is to model the distribution of X−s,t given that Xs,t exceeds some high threshold u. It

is necessary that the conditional distribution P {X−s,t ≤ x−s,t | Xs,t = xs,t} is non-degenerate as

xs,t →∞ and hence normalising sequences are required to ensure x−s,t changes appropriately with

xs,t. Heffernan and Tawn (2004), Heffernan and Resnick (2007) and Keef et al. (2013) show that un-

der broad conditions there exists vectors α−s,t = (α1|s,t, . . . , αs−1|s,t, αs+1|s,t, . . . , αl|s,t) ∈ [−1, 1]l−1

and β−s,t = (β1|s,t, . . . , βs−1|s,t, βs+1|s,t, . . . , βl|s,t) ∈ (−∞, 1)l−1 such that for z ∈ Rl−1 and x > 0

P

X−s,t −α−s,tXs,t

X
β−s,t

s,t

≤ z, Xs,t − u > x | Xs,t > u

→ G−s,t(z) exp(−x), (4)

as u→∞ where G−s,t is a time-varying (l − 1)-dimensional distribution function, non-degenerate

in each margin, i.e., for j ∈ S\{s} the jth margin G
(j)
−s,t of G−s,t is non-degenerate. Different

values of the dependence parameters α−s,t and β−s,t arise for different types of tail dependence.

If αj|s,t = βj|s,t = 0 and G
(j)
−s,t is the Laplace distribution function, for j ∈ S\{s}, the variables

(Xs,t, Xj,t) are independent. On the other hand for (Xs,t, Xj,t), αj|s,t = 1 and βj|s,t = 0, for

j ∈ S\{s}, corresponds to the situation of asymptotic dependence, −1 ≤ αj|s,t ≤ 0 is negative

extremal dependence and 0 < αj|s,t < 1 or αj|s,t = 0 and βj|s,t > 0 corresponds to asymptotic

independence with positive extremal dependence. Here, a time-varying covariate gt is introduced

into the dependence parameters such that

tanh−1 [α−s,t] = α
(0)
−s + α

(1)
−sgt tanh−1

[
β−s,t

]
= β

(0)
−s + β

(1)
−sgt, (5)

with parameters α
(0)
−s, α

(1)
−s, β

(0)
−s and β

(1)
−s are each in Rl−1. The inverse tanh link function is used

to ensure the parameters α−s,t and β−s,t are restricted to the range [−1, 1]l−1. The restriction

on β−s,t is satisfactory since in practice it is very unlikely that βj|s,t < −1, for j ∈ S\{s}, as

this corresponds to X−s,t − α−s,tXs,t rapidly tending to zero as u → ∞ i.e., X−s,t is essentially

deterministic given large Xs,t.

Modelling using the conditional extremes approach requires the assumption that the limiting form

of equation (4) holds exactly for all values of Xs,t > u given that u is a sufficiently high threshold,

from now on called the modelling threshold. From equation (4) we have our model for Xs,t > u

that

X−s,t = α−s,tXs,t +X
β−s,t

s,t Z−s,t,

where Z−s,t = (Z1|s,t, . . . , Zs−1|s,t, Zs+1|s,t, . . . , Zl|s,t) is a random variable with distribution function

G−s,t that is independent of Xs,t.

The multivariate distribution G−s,t does not take any simple parametric form, which motivates

the inclusion of a false working assumption of Gaussianity as in Keef et al. (2013) solely for the

estimation of αj|s,t and βj|s,t with j 6= s. That is Zj|s,t ∼ N(µj|s,t, θ
2
j|s,t) and as such for each

j ∈ S\{s}

Xj,t | {Xs,t = x} ∼ N
(
αj|s,tx+ µj|s,tx

βj|s,t , θ2j|s,tx
2βj|s,t

)
for x > u.

The working assumption permits the estimation of the set of parameters (αj|s,t, βj|s,t, µj|s,t, θj|s,t)

by standard likelihood approaches. Each element of α−s,t and β−s,t is estimated pairwise for a
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particular s ∈ S. Covariates are included in the nuisance parameters such that

µ−s,t = µ
(0)
−s + µ

(1)
−sgt log θ−s,t = θ

(0)
−s + θ

(1)
−sgt, (6)

where µ−s,t = (µ1|s,t, . . . , µs−1|s,t, µs+1|s,t, . . . , µl|s,t) and θ−s,t = (θ1|s,t, . . . , θs−1|s,t, θs+1|s,t, . . . , θl|s,t)

and the parameters µ
(0)
−s, µ

(1)
−s, θ

(0)
−s and θ

(1)
−s are each in Rl−1.

At this stage the Gaussian assumption is discarded and a non-parametric estimate of the dis-

tribution for Z−s,t is formed. We assume that the effect of the time varying covariate on Z−s,t is

through its mean and variance only and so the distribution of (Z−s,t −µ−s,t)/θ−s,t is independent

of t. Defining a new multivariate distribution G−s by

G−s(z) = G−s,t

(
z− µ−s,t
θ−s,t

)
,

gives that G−s is independent of t. We estimate the distribution G−s non-parametrically using

replicates of (Z−s,t−µ−s,t)/θ−s,t over t. Specifically, where nu is the number data points exceeding

the threshold u, let t1, . . . , tnu be the indices of t = 1, . . . , n where xs,t > u then let

ẑ−s,i =
x−s,ti − α̂−s,tixs,ti − µ̂−s,ti (xs,ti)

β̂−s,ti

θ̂−s,ti (xs,ti)
β̂−s,ti

, (7)

for i = 1, . . . , nu. In this way the empirical distribution of sample ẑ−s,i provides a non-parametric

estimate, G̃−s, to the distribution function G−s for conditioning site s.

4 Measures for summarising spatial dependence

To analyse the spatial behaviour of hot events, we require measures that can adequately capture

spatial characteristics. As noted in Section 1, the limiting measure χ, defined in expression (1),

has a number of limitations for spatial risk assessment. Our solution is to propose a number of

measures to address these weaknesses. By using a selection of different measures, we aim to char-

acterise extremal dependence well and identify any changes in spatial structure that may occur

due to a change in ENSO. These measures are valuable for model checking and enable comparisons

between empirical and modelled values. For notational simplicity we drop the time index on the

variables in this section. Here we define the marginal distribution function of Ys, incorporating all

steps of the pre-processing outlined in Section 3.2, by Fs.

First we present a pairwise sub-asymptotic extension of χ, proposed by Coles et al. (1999), namely

χs2|s1(p) = P (Fs2(Ys2) > p | Fs1(Ys1) > p) , (8)

where s1, s2 ∈ S and p is some high level. Often p is taken to be the non-exceedance probability

associated with a critical return level. The benefit of this measure over χ is that is able to dis-

criminate between different levels of extremal dependence irrespective of whether the variables are

asymptotically dependent or asymptotically independent, particularly when studied over a range

of large p. In the spatial context, χs2|s1(p) is most usefully applied by fixing s1 and p as the site

and level of interest respectively and estimating χs2|s1(p) for all other sites s2 ∈ S. If s2 = s1 then

χs2|s1(p) = 1, but for s2 6= s1 values of χs2|s1(p) typically decrease as sites are further apart. By
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assessing this measure for a range of large p, we can discriminate between pairs of asymptotically

dependent and asymptotically independent pairs of sites as for the former (latter) χ̂s2|s1(p) is con-

stant (decreasing), other than for sampling variability, as p is increased.

A restriction of χs2|s1(p) is that it provides only pairwise dependence information, so tells us

nothing about the occurrence of concurrent extremes at more than two sites at a time. Many

extensions are possible, but we propose a useful and practically informative measure that evaluates

the expected number of sites in the set of interest, R say with R ⊆ S, that exceed a critical level

given that Ys exceeds the same critical level. Specifically,

φR|s(p) = E(NR(p) | Fs(Ys) > p), (9)

where NR(p) = # {j ∈ R : Fj(Yj) > p} gives the number of variables that concurrently exceed the

probability level p in R. Therefore larger values of this measure suggest that there is a greater

spatial risk from the event. Again this measure is studied over all s ∈ S.

Measure (9) requires a particular conditioning site to be defined prior to estimation. In gen-

eral assuming that a hot event must strike a particular site is restrictive. We propose a measure

corresponding to the probability of an exceedance of a critical level in a region R
′

given that there

is an exceedance somewhere within a region R, i.e.,

ωR′ |R(p) = P(NR′ (p) ≥ 1 | NR(p) ≥ 1),

for some regions R,R
′ ⊆ S. Mostly we are interested in sets of the form R

′ ⊂ R; but other sets,

such as R
′ ∩R = ∅, can be considered. A special case of this measure occurs where R

′
= {s} which

gives the probability of an exceedance at site s given that there is an exceedance in region R.

A weakness of the χs2|s1(p), φR|s(p) and ωR′ |R(p) measures of spatial risk is the requirement to

select a critical level p. Our final risk measure overcomes this weakness as well as the limitations

of the other measures. This measure is an adaption of the severity-area-frequency (SAF) curves

used in hydrology (Henriques and Santos, 1999). The SAF curve (γj , j ≥ 1) gives the average

marginal return period of an event at the j worst affected sites, where the sites affected need not

be contiguous. Specifically

γj =
1

j

j∑
i=1

[
1− F(i)

(
Y(i)
)]−1

, j = 1, . . . , l, (10)

where F(1)

(
Y(1)

)
≥ · · · ≥ F(l)

(
Y(l)
)

are the ordered values of (F1(Y1), . . . , Fl(Yl)) for the event.

The SAF measure permits spatial information to be compressed into a single curve that is easily

interpretable by statisticians and climate scientists. The SAF curve is a monotone non-increasing

function; the larger the value of γj the more severe the event is at that scale. In cases where the

SAF curve for one event exceeds the SAF curve for another event we can talk about an ordering

between the size of these events. Otherwise we need to reference against the spatial scale j. SAF

curves can have distinctly different behaviours for different types of spatial process. If the process

is strongly asymptotically dependent at all sites, the SAF curve will decrease very slowly with

increasing j. If it is asymptotically dependent only very locally and independent otherwise there

10



will be a sudden drop off in values for some j with j � l. For asymptotically independent processes

the SAF curve will decay more rapidly for events with larger γ1. For asymptotically independent

processes the SAF curve decays faster as the level of dependence becomes weaker.

We can use the SAF curve is assess the probability of an event being more severe than a pre-

viously observed event, such as the early 2009 event. Let γobs
j be the SAF curve of an observed

event. Here, we evaluate

ρj(R) = P
(
γj > γobs

j

)
, j = 1, . . . , |R|, (11)

where the distribution of (γj , j ≥ 1) is derived using the methods of Section 5 for the fitted model.

5 Simulating spatial fields

To estimate the measures of spatial dependence introduced in Section 4 we need to be able to simu-

late spatial gridded fields from the model fitted in Section 3. Heffernan and Tawn (2004) and Keef

et al. (2013) give simulation schemes for the conditional extremes approach conditional upon an

exceedance at a specified site. These schemes are adequate to obtain estimates of χs′ |s(p) and

φR|s(p) and they form the basis of the simulation schemes outlined here. Estimation of measures

that condition upon an exceedance within a region require a more involved algorithm for gener-

ating simulated spatial gridded fields. The use of SAF curves for model validation also requires

conditions on the value taken by the maximum spatial event. To distinguish between observed

and simulated fields we use X∗ to denote the simulated variable X, and X∗|s when the simulated

variable is conditional on the field being extreme at site s.

Throughout this section we present simulations of the spatial field on the Laplace margin scale, i.e.,

for {X∗s,t; s ∈ S}. If interest is in fields on the temperature scale, each simulated field can simply be

transformed back to the original temperature scale as follows. For a simulated field {X∗s,t; s ∈ S}
the simulated field on the temperature scale is {Y ∗s,t; s ∈ S} where

Y ∗s,t = ψs(gt) + τs(gt)F
−1
W {FX(Xs,t); s, t)},

for all s ∈ S and any t, where (ψs(gt), τs(gt)) and FW are given in expressions (2) and (3) respec-

tively, and FX is the distribution function of a Laplace random variable. As we evaluate these fields

only at fixed time/covariate values we drop reference to t in our notation, but in Section 6 we will

simulate fields for a range of covariate values.

First we present the simplest algorithm for simulating spatial fields conditional on the field be-

ing extreme at a specified site s, i.e., simulating from X−s|Xs > vp, where vp = − log{2(1− p)} is

the critical level on Laplace scale associated to the non-exceedance probability p.

Algorithm 1: Generates fields with exceedances at site s

1. Sample z̃
∗|s
−s from G̃−s, i.e., the empirical distribution of the sample in equation (7).

2. Obtain z
∗|s
−s = µ−s + θ−sz̃

∗|s
−s where µ−s and θ−s are defined by equation (6).

3. Simulate an exceedance X
∗|s
s > v as the sum of v and a unit Exponential random variable.
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4. Spatial field X
∗|s
−s = α−sX

∗|s
s +

(
X
∗|s
s

)β−s
z
∗|s
−s, where α−s and β−s are from equation (5).

The final simulated spatial field generated using Algorithm 1 is

X∗|s = (X∗|ss ,X
∗|s
−s) = (X

∗|s
1 , . . . , X

∗|s
l ),

where X
∗|s
s > v. To estimate extremal measures χs′|s(p) and φR|s(p) for s′ ∈ S and R ⊆ S,

Algorithm 1, with v = vp, is repeated m times to obtain X
∗|s
1 , . . . ,X

∗|s
m and then

χ̂s′|s(p) =
1

m

m∑
i=1

I
(
X
∗|s
s′ ,i

> vp

)
and φ̂R|s(p) =

1

m

m∑
i=1

∑
j∈R

I
(
X
∗|s
j,i > vp

)
, (12)

where I(·) is the indicator function, and the second subscript denotes the ith replicated field. For

later use, note that the probability that site s is the maximum of the field over R, given that

Xs > vp, is denoted by

q|ss (p;R) = P

(
Xs = max

k∈R
(Xk) | Xs > vp

)
, (13)

and can be estimated as

q̂|ss (p;R) =
1

m

m∑
i=1

I
(
X
∗|s
s,i > max

k∈R\{s}
(X
∗|s
k,i )

)
. (14)

To estimate ωR′ |R(p) and the SAF curve, extensions of Algorithm 1 are required as we are interested

in events that are hot for at least one site over a region R, i.e., NR(p) ≥ 1 for R ⊆ S as opposed to

an extreme temperature at site s. Our strategy for this simulation is as follows. We select a site

that exceeds vp by picking it to be the site with the maximum value of the spatial field over R. The

probability that site j is largest over R, given that NR(p) > 1, varies with j due to the changing

dependence structure over space; we denote this probability by qj , with

qj(p;R) = P

(
Xj = max

k∈R
(Xk) | NR(p) ≥ 1

)
, j ∈ R. (15)

We then use Algorithm 1 with s set at the site selected to be the maximum over R. As Algorithm 1

can generate fields with the maximum over R larger than at site s we reject these fields. This is

captured by Algorithm 2.

Algorithm 2: Generates fields with at least one exceedance in R

1. Sample J with probability P(J = j) = qj(p;R) with j ∈ R.

2. Set s = J and apply Algorithm 1.

3. If maxk∈R

(
X
∗|s
k

)
> X

∗|s
s reject this spatial field and repeat Algorithm 1 for the selected s

until the simulated field is not rejected. The rejection probability is 1 − q|ss (p;R) given by

expression (13).

Algorithm 2, with v = vp, is repeated m times, giving values j1, . . . , jm for J and the resulting

fields X
∗|j1
1 , . . . ,X

∗|jm
m and then

ω̂R′ |R(p) =
1

m

m∑
i=1

I
(

max
k∈R′

X
∗|ji
k,i > vp

)
.
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Similarly we can derive SAF curves using the fields generated in Algorithm 2 with R = S, giving

for large p

γ̂j =
2

m

m∑
k=1

j∑
i=1

exp
(
X
∗|jk
(i)

)
,

where X
∗|jk
(1) > . . . > X

∗|jk
(l) are the ordered values of the simulated field on Laplace margins.

To use SAF curves for validation, we need to simulate replicate events that have similar character-

istics to a particular event, e.g., the early 2009 heatwave. This necessitates fixing the maximum

at the observed peak and corresponding site s, (η, s) say, with η being the maximum value of

the field after transformation to the Laplace marginals. This restriction is achieved using Algo-

rithm 2 with steps 1 and 2 removed and Algorithm 1 step 3 changed to X
∗|s
s = η. See Winter

(2016) for details of simulating these fields under the additional constraints that the maximum of

the field is either equal to, or greater than, η when the site that maximum occurs at is not specified.

It remains to provide an estimate for qj(p;R) defined in expression (15). If vp is small enough

an empirical estimate of this probability may be sufficient but for large vp we need to use our fitted

conditional model. First note that

P(NR(p) ≥ 1) =
∑
k∈R

P

(
Xk = max

i∈R
(Xi), Xk > vp

)
=
∑
k∈R

pq
|k
k (p;R).

It follows that

qj(p;R) = P

(
Xj = max

i∈R
(Xi) | NR(p) ≥ 1

)
=

P (Xj = maxi∈R(Xi), NR(p) ≥ 1)

P (NR(p) ≥ 1)

=
P (Xj,t = maxi∈R(Xi), Xj > vp)

P (Xj > vp)

P (Xj > vp)

P (NR(p) ≥ 1)

= P

(
Xj = max

i∈R
(Xi) | Xj > vp

)
p∑

k∈R pq
|k
k (p;R)

=
q
|j
j (p;R)∑

k∈R q
|k
k (p;R)

. (16)

Thus we can estimate qj(p;R) using expression (16) and estimate (14).

6 Analysis of Australia temperature data

The extreme value framework built in Section 3 is now combined with the summary measures

defined in Section 4 to evaluate the characteristics of hot days over Australia for the gridded

observations introduced in Section 2. Firstly, pre-processing is applied to the original data to model

the marginal structure and transform values onto identical margins. The choice of the conditional

extremes approach is validated by comparing against other extreme value approaches that do not

account for asymptotic independence. Finally, the variability of the spatial extent of hot events

under El Niño and La Niña conditions is estimated. This culminates in estimating whether the

framework can replicate similar events to the early 2009 heatwave event over Australia and how

this event varies with the phase of ENSO.
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6.1 Marginal structure

The pre-processing approach of Section 3.2 is now used to estimate the effect of ENSO on marginal

quantities such as return levels. The covariate used to summarise the effect of SST on tempera-

tures is Niño3.4 as introduced in Section 2. Figure 2 gives plots of the pre-processing parameters,

with hashed boxes indicating sites where the parameter does not exhibit a significant change with

the ENSO covariate (at the 5% significance level) based on a likelihood ratio test. In the right

hand plots of Figure 2 darker shaded boxes show an increase in parameter values with an increase

in Niño3.4 from -1oC to +1oC; i.e., the difference between estimates under El Niño and La Niña

conditions. The top row gives estimates of the location parameters (ψ
(0)
s , ψ

(1)
s ) with the estimates

of ψ
(0)
s showing that warmer extreme temperatures are observed in northern and central regions

of Australia but with cooler temperatures in coastal areas. The estimate of ψ
(1)
s shows that an in-

crease in Niño3.4 causes an increase in the location parameter over the most of Australia, with the

largest increases being in eastern and western regions. For the scale parameter τs(gt), the largest

changes seem to be over western regions where El Niño conditions reduce temperature variability.

For each parameter we investigate for how many grid boxes the covariate is significant using like-

lihood ratio tests for each site at the 5% significance level. A decision is then made as to whether

the covariate effect is included in the final model. The right hand plot of Figure 2 shows that

out of a total of 72 grid boxes, 64 show a significant change in the location parameter with the

ENSO covariate. This clear signal is not fully repeated by the scale parameter τs(gt) which shows

a significant change in 29 grid boxes out of 72. Although the result for the scale parameter is less

significant we keep both covariate effects for all grid squares as we desire to have the same covariate

structure incorporated in each parameter for all grid boxes. As such, we use the most general form

of pre-processing outlined in Section 3.2.

Estimates of the GPD scale and shape parameters are given in Figure 2 (bottom row) and in

Figure 3 respectively. Standard diagnostics (Coles, 2001) suggest the 90% quantile at each site is

an appropriate threshold choice. As outlined in Section 3.2, the aim of this step is to take the

approximately stationary time-series and ensure that the extremes are identically distributed over

time. The estimates for τ
(1)
s and σ

(1)
s possibly offset one another in the south-east corner of Aus-

tralia. To check this we fixed the value of τs(gt) = τ
(0)
s at all sites and re-estimated σ

(1)
s and found

that the significant changes in the south-east are still present and therefore the changes are real.

The shape parameter of the GPD is found to be negative at all sites over Australia, indicating a

finite upper bound to the distribution at each site.

The clearest picture of the effect of the covariate can be seen when examining return levels after

transforming onto the original scale. Figure 4 gives the 1- and 50-year return levels on the original

margins during an El Niño event (i.e., the value of Niño3.4 is +1oC) along with the change relative

to a La Niña event (i.e., the value of Niño3.4 is −1oC). It is observed that the central regions of

Australia are hotter than coastal regions as expected. There is an increase of up to 1oC in the

1-year return level between an El Niño event and a La Niña event. From a spatial perspective, the

largest increases in the temperature occur in western and mid-eastern regions. The change in the

50-year return level is broadly similar, however southern and some northern areas show a larger

decrease in temperatures with an increase in Niño3.4 due to the covariate effect on the GPD scale

parameter shown in Figure 2.

14



26

28

30

32

34

36

38

40

se
q(

−
47

.5
, −

7.
5,

 le
ng

th
.o

ut
 =

 y
.le

ng
th

)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

1.0

1.5

2.0

2.5

3.0

3.5
se

q(
−

47
.5

, −
7.

5,
 le

ng
th

.o
ut

 =
 y

.le
ng

th
)

−0.10

−0.05

0.00

0.05

0.10

−1.2

−1.0

−0.8

−0.6

−0.4

se
q(

−
47

.5
, −

7.
5,

 le
ng

th
.o

ut
 =

 y
.le

ng
th

)

−0.10

−0.05

0.00

0.05

0.10

Figure 2: Estimates of pre-processing location and scale parameters (ψ
(0)
s , ψ

(1)
s ) (top) and (τ

(0)
s , τ

(1)
s ) (middle) and

GPD scale parameters (σ
(0)
s , σ

(1)
s ) (bottom). Hashed squares correspond to boxes where the change with covariate is

not significant at a 5% significance level, tested using a likelihood ratio test.
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Figure 3: Estimates of the GPD shape parameter ξs.

6.2 Pairwise spatial dependence

We now model the spatial pairwise dependence of the transformed data. Here we focus our pre-

sentation on pairs with Melbourne, sM , being one of the sites. First we show that our conditional

approach, that covers both asymptotic independence and asymptotic dependence, fits the data sub-

stantially better than the methods that can account for asymptotic dependence only. This initial

analysis is with ENSO ignored, we then examine the effect of ENSO on our conditional model fit.

This is appropriate as our exploratory analysis reveals that the covariate effects are small relative

to spatial variation more generally.

Figure 5 shows estimates of the extremal dependence measure χs|sM (v) with v = v0.9 and the

one-year return level v = vRL1 . There are three estimates: empirical using the observed data

and model-based using the stationary conditional extremes approach with both αs|sM and βs|sM
unconstrained and with αs|sM = 1 and βs|sM = 0 for all s ∈ S (i.e., asymptotic dependence).

The empirical estimates of χs|sM (v) show that for fixed v the decay of extremal dependence is

not directly proportional to distance or invariant to direction, and that as v increases extremal

dependence weakens. Critically this means that when an extreme event at a site is defined as the

temperature exceeding the marginal T year return level, then the most extreme events at Mel-

bourne become more localised as T increases. Both model-based estimates appear to be capturing

the spatial dependence well for level v0.9. However at higher levels the asymptotically dependent

approach is substantially overestimating the amount of dependence across the field, especially at

sites further from Melbourne. This is because the modelled dependence is independent of level once

the levels are sufficiently extreme. In contrast, the general conditional extremes approach captures

the observed weakening of dependence, with increasing levels, very well at all spatial separations.

Now we include the ENSO covariate in the analysis. Figure 6 gives estimates of the extremal depen-

dence parameters α−sM ,t and β−sM ,t. We observe that the value of α̂
(0)
s|sM is broadly higher for sites

s that are located closer to site sM . The change in α−sM ,t with the covariate is shown by the esti-

mate α̂
(1)
s|sM which demonstrates an increase in extremal dependence, as gt increases, over northern
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Figure 4: 1-year (left) and 50-year (right) return levels plotted on original margins during El Niño conditions with

SST temperature anomaly of +1oC (top) and change between return levels for El Niño and La Niña conditions under

temperature anomaly of +1oC and −1oC respectively (bottom).

regions with a slight decrease in the east. The estimates of β̂
(1)
s|sM seem to be consistently negative

across northern region. These parameter estimates suggest that extreme temperature events that

are occurring over Melbourne are more likely to extend over northern regions of Australia during

El Niño conditions. It is easier to understand how the covariates effect the extremal dependence

measures as the dependence parameters are not orthogonal. In Figure 7 a map of χ̂s|sM (vRL1 ) is

given for an El Niño event along with a map of the difference in χ̂s|sM (vRL1 ) between El Niño and

La Niña conditions. This inference suggests that if a hot day occurs at Melbourne, then if it was

an El Niño year, the spatial extent of the event is likely to increase over southern coastal regions,

including Adelaide, but it will not cover as much of the south-eastern region.

6.3 Spatial dependence measures

We now look at the characteristics of extreme spatial events by estimating the new quantities de-

fined in Section 4. Firstly, we estimate the expected number of sites across Australia affected by

extreme hot temperatures, given site s is extreme; i.e., φR|s(p) for s ∈ R = S and p corresponding
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Figure 5: Values of χs|sM (v) with v = v0.9 (left) and one v = vRL
1 the one year return level (right) for empirical

(top), conditional extremes (centre) and asymptotic dependence (bottom) approaches. Here, the conditioning site

sM is the Melbourne grid-box. No ENSO covariate effects are included.
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Figure 6: Conditional extremes dependence parameters α̂
(0)

s|sM
(top left), α̂

(1)

s|sM
(top right), β̂

(0)

s|sM
(bottom left) and

β̂
(1)

s|sM
(bottom right), conditioning on site sM (black hashed).

to the 1 year level, defined in equation (9). Estimates of φR|s(p) are given in Figure 8 under El

Niño conditions and showing the change in estimates between El Niño and La Niña. It is observed

that events occurring in the middle and east of Australia seem to have a greater spatial extent than

for the west side during an El Niño event. The change in φR|s(p) between an El Niño event and

a La Niña event suggests that El Niño conditions lead to a reduction in the spatial extent of hot

days across most of Australia. Figure 8 suggests that during La Niña conditions the difference in

the spatial extent of hot days between the east and west will become more pronounced. We also

observe that results obtained conditioning upon Melbourne are typical of coastal grid boxes in the

south-eastern region.

We are also interested in the probability of a hot event occurring over Melbourne given that an

extreme temperature is observed somewhere in south-east Australia, i.e., ω{sM}|R(p) defined in Sec-

tion 4 with R the set of 14 sites in south east Australia and p corresponding to the 1 year level. We

have that ω̂sM |R(p) = 0.20 (0.19) under El Niño (La Niña) conditions respectively. This feature of

the extreme events appears insensitive to the ENSO signal.
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Figure 7: Extremal dependence measure χs|sM (v) for control site over Melbourne under El Niño conditions gt = +1

(left) and difference between extremal dependence measures during El Niño and La Niña (gt = −1) years (right).
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Figure 8: Estimates of φR|s(p) across Australia under El Niño conditions (left) and the change in estimates of

φR|s(p) between an El Niño and La Niña year.

6.4 SAF results

Figure 9 shows estimated SAF curves for the early 2009 heatwave in the form of an estimate and

95% confidence intervals for γj . We fix the maximum value of our simulated fields to agree with

the observed maximum value. We compare with the observed SAF curve with estimates obtained

under both the conditional extremes model and its restriction to asymptotic dependence, with and

without accounting for ENSO. Although we had earlier identified asymptotic dependence as a poor

model formulation, we retain that model here to show how we could make incorrect inferences for

SAF curves under the assumption of asymptotic dependence.

As expected, the model that allows asymptotic independence provides a better fit to the observed
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SAF curve than the asymptotically dependent estimate. Asymptotic dependence leads to a group-

ing of large return periods that is too strong, with estimates that decay too slowly, irrespective of

whether knowledge of ENSO is incorporated. Notice that the observed SAF curve corresponds to

the lower endpoint of the 95% confidence interval of the SAF curve under asymptotic dependence as

under this modelling assumption extrapolated spatial events simply scale observed events in terms

of size but keep relative values identical to each other. So when the maximum of the event is the

observed maximum then one realisation of the sampling distribution will be our observed event.

The asymptotically dependent model produces much wider confidence intervals for SAF curves as

it is a poor model fit and so the confidence intervals try to match both the false model and the

structure of observed heatwaves.

For the conditional extremes approach ignoring ENSO leads to an overestimation for SAF at scales

of up to 30 grid squares. However the observed SAF fits well inside 95% confidence intervals when

the phase of the observed ENSO is accounted for. These results highlight the need to account for

both asymptotic independence and ENSO in the spatial dependence structure.
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Figure 9: Severity-area-frequency (SAF) curves, on a log scale, for the early 2009 heatwave: observed curve (black),

γ̂j under conditional extremes model (blue solid) and under asymptotically dependence (red solid). Left: no ENSO

effect. Right: ENSO fixed at level observed on the day. Dotted lines are 95% confidence intervals obtained from

10000 replicates.

We estimate ρj(R) from equation (11) with R a region of 14 sites in south-eastern Australia includ-

ing Melbourne, where the field maximum can occur at any site in R. Figure 10 shows estimates of

ρj(R) under the observed La Niña (gt = −0.7) and typical El Niño (gt = 1) conditions. In the left

plot, the maximum value is taken to be greater than vRL1 . The left plot shows for low j (1 ≤ j ≤ 5),

i.e., events considered locally, the observed event is rarer under El Niño, than La Niña, conditions.

As j is increased there seems to be little difference between the ENSO conditions. It is noted that

irrespective of the ENSO conditions, the observed event was very rare. The right plot shows the

rarity of the observed event given that the maximum is fixed at the peak of the observed event.

In this situation, at all values of j there is a difference between ENSO phases, with the observed

event much less rare if it was to occur under El Niño conditions than for La Niña conditions.
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Figure 10: Estimates of ρj(R) conditional upon the maximum field value in R being: (left) greater than vRL
1 and

(right) equal to the observe value in the early 2009 heatwave. Estimates are given for observed La Niña conditions

(black) and typical El Niño conditions (grey). Here R is a set of 14 sites in south east Australia.

7 Discussion and Conclusion

In this paper we have modelled the spatial extent of extreme temperature events over Australia and

motivated an approach for modelling gridded spatial data using the conditional extremes approach.

Within this framework we have included the ability to account for covariates within the margins

and the dependence structure which has allowed us to understand the effect of ENSO on extreme

temperatures. Our approach has confirmed that El Niño conditions lead to higher temperatures

across most of Australia and that the increase in temperature might not be uniform at all return

levels, i.e., the effect of ENSO does not just cause a shift in the distribution of temperatures.

Results regarding the change in the spatial extent of heatwaves with ENSO value are more subtle

than the changes in marginal structure and vary for different sites. We have shown that a hot event

over Melbourne is likely to cover more of the south-eastern region during La Niña conditions. We

have also estimated quantities that are not dependent on the process being extreme at a particular

site, which have greater practical importance. These measures have highlighted drawbacks in cur-

rent pairwise measures and as such need to be considered in future spatial analyses. In particular

our proposed SAF curves succinctly present complex space-time information in a highly informative

and interpretable way. We have also used the observations from the early 2009 heatwave event to

estimate whether the event would have been more likely under El Niño or La Niña conditions. The

quantities presented here are just a subset of potential measures that could be estimated. We have

outlined a general approach for simulating spatial extreme temperature events that could be used

to generate any quantity of interest for decision makers.

The impact of climate change on the spatial distribution of extreme temperature events has not

been dealt with in this paper. This is clearly an important issue that could be included into our

framework as another covariate, see Winter et al. (2016) for an illustration of such an approach

for a single site. One problem concerns the uncertainty regarding the effect of climate change on
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ENSO which is currently not well known and would preclude a comprehensive study of the joint

effects of ENSO and climate change on extreme temperatures.

Finally, it is also noted that from a mortality perspective we may be interested in different mea-

sures. For example, fires can be caused from the combination of hot temperatures, low rainfall,

high winds and low humidity. In many situations, runs of hot temperatures are more important

than particular hot days. Winter and Tawn (2016) showed how temporal heatwave events can be

simulated using the conditional extremes framework for a single site. The next step will be to

combine these temporal approaches with the spatial approaches outlined in this paper to generate

full space-time model on a lattice which incorporate asymptotic independence as well as asymp-

totic dependence, hence expanding on max-stable spatio-temporal models of Davis et al. (2013)

and Huser and Davison (2014).
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