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Abstract

Climate change is threatening global food production and could potentially exacerbate food

insecurity in many parts of the world. China is the second largest maize producer. Variations in

maize yields in China are likely to have major implications for food security in the world. Based

on longitudinal data of 4,861 households collected annually between 2004 and 2010, we assess

the impact of weather variations on maize yields in the two main producing regions in China, the

Northern spring maize zone and the Yellow-Huai Valley summer maize zone. We also explore

the role of adaptation, by estimating the response of Chinese farmers in both regions, in par-

ticular in terms of income diversification. With the use of household and time fixed effects, our

estimates relate within-household variations in household outcomes (maize yields, net income,

land and input use) to within-location variations in weather conditions. Temperature, drought,

wet conditions, and precipitations have detrimental effects on maize yields in the two maize

zones. The impact is stronger in the Northern spring maize zone where one standard deviation

in temperature and drought conditions decreases maize yields by 1.4% and 2.5%, respectively.

Nonetheless, such impact does not seem to translate into a significant fall in total net income.

Adaptation seems to be key in explaining such a contrast in the Northern spring maize zone

where the largest impact is estimated. On the contrary, we find a lower impact in the other

region, the Yellow-Huai Valley summer maize zone but such impact is likely to intensify. The

lack of adaptation observed in that region results into detrimental impacts on net farm and total

income. Enhancing adaptative behaviors among Chinese farmers even further is likely to be key
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to future food security in China and in the rest of the world.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC, 2014) indicates with high confidence that

climate variability together with extreme climatic events (heat waves, droughts, floods, and wildfires)

threaten natural and human systems across the world. Distributional effects are expected but overall,

climate changes are likely to reduce food production and potentially exacerbate food insecurity in

many parts of the world (Burke et al., 2015). The extent to which economic agents adapt their

production processes to changes in the environment is key to assess food security prospects (Lobell

et al., 2014).

In this paper, we assess the impact of weather variations on maize yields in the two main producing

regions in China. China is the second largest maize producer of the world. Variations in maize yields

and production caused by weather events will strongly affect the world maize supply and demand.

It has even been argued that shocks on Chinese maize supply could bear significant geopolitical

consequences in other parts of world (Sternberg and Thomas, 2014). Moreover, with the dietary

changes and higher meat consumption in China, the domestic demand for maize is strongly increasing.

Maize is indeed widely used not only for human consumption but also for animal feeding and chemical

industry in China. Therefore, understanding both the impacts of weather variations on maize yields

and the ability of Chinese farmers to adapt is key to unleashing the potential of Chinese maize

production under limited land resources, improving food security in China, and foreseeing potential

economic and geopolitical consequences for the rest of the world.

Our contribution is twofold. First, we contribute to the literature seeking to identify the impact of

climatic variations on agriculture (Auffhammer and Schlenker, 2014; Dell et al., 2014; Hsiang, 2016).

At the global level, extreme daytime temperatures have been documented to have a large negative

effect on crop yields (IPCC, 2014). The relationship is unchanged since 1960 in both rich and poor

countries (Burke et al., 2015). Global warming since 1981 has resulted in roughly 40 Mt or 5$ billion

annual combined losses of three crops, wheat, maize and barley (Lobell and Field, 2007). In North

America, although higher precipitation partly contributes to crop yield increases (Pearson et al., 2008;

Nadler and Bullock, 2011), other climatic events, such as extreme heats and droughts have caused a

marked increase in crop losses since 1999 (Hatfield et al., 2011). Temperature has also been found
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to be detrimental to agriculture in the United States (Schlenker et al., 2006; Fisher et al., 2012). So

far, little evidence has been provided for developing countries, especially for Asian countries (IPCC,

2014). Africa has received much of the academic interest, with an overall negative effect on yields of

major cereal crops (Schlenker and Lobell, 2010; Lobell et al., 2011; Roudier et al., 2011; Blanc, 2012).

As reviewed by Dell et al. (2014), the detrimental impact of weather variations, in particular

temperature on rice yields, has also been documented for India (Guiteras, 2007), Indonesia, Thailand,

as well as the Philippines (Welch et al., 2010). Maize has been found to be one of the most sensitive

crops to weather variations, in particular temperature (Schlenker and Lobell, 2010). In China, weather

variations also constitute a crucial determinant of maize yields and production, but there is little

quantitative evidence on the impact of weather variations on maize yields in the main maize producing

regions (Tao and Zhang, 2010; Zhang and Huang, 2012; Yao et al., 2014; Zhang et al., 2015).

In this paper, we assess the impacts of weather variations on maize yields from 2004 to 2010, using

data from 4,861 households across seven Chinese provinces. These provinces are grouped into the

two main producing regions in China, the Northern spring maize zone and the Yellow-Huai Valley

summer maize zone. These provinces account for about two thirds of Chinese maize production. One

of the strengths of our analysis is the use of a panel dataset of households. That allows us to track

maize yields for the same households over time while controlling for unobserved determinants of crop

yields at the farm level. While other approaches, such as the enumerative one, have the advantage

to be based on natural science experiments (Tol, 2009), one of the strengths of panel regression

analyses in this setting is to track maize yields for the same households overtime while controlling

for unobserved determinants of crop yields at the farm level. Such approaches has been popularized

in modern economic analysis since Deschenes and Greenstone (2007) and has been widely used to

assess the impact of weather variations on socio-economic outcomes (Dell et al. 2010, Hsiang 2016),

and agricultural outcomes in particular (Auffhammer and Schlenker 2014). We also use advanced

weather indexes (such as the “standardized precipitation evaporation index”, “moderate degree days”

and “extreme heat days”) to capture extreme weather deviations. Compared to previous studies

on China (Tao et al., 2008; Tao and Zhang, 2010; Li et al., 2011; Zhang and Huang, 2012; Ming

et al., 2015; Zhang et al., 2015), we provide a more credible identification by exploiting within-village
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variations in weather together with observed and unobserved household characteristics to account

for potential heterogeneity within villages. Our results indicate that in the Northern spring maize

zone, an increase by one standard deviation in temperature translates into a fall of about 1.4% in

maize yields. According to the IPCC (2014), average temperature is expected to increase by 2◦C

to 4◦C in the second half of the 21st century and beyond (IPCC 2014). Without adaptation, that

would correspond to a decrease between 1.8% and 3.6% in maize yields in China. The impact of a

similar change in the occurrence of SPEI based drought is almost twice as large, with a partial effect

of -2.5%. Similar results are found for the Yellow-Huai Valley summer maize zone with much smaller

partial effects of -1.09% and -0.8% for temperature and SPEI based drought indexes, respectively.

The second contribution of the paper is to shed light on the issue of adaptation, recognized as

the most pressing research question in the most recent and comprehensive overview on the social and

economic impact of climate (Carleton and Hsiang, 2016). The importance of adaptation has also

been recently recognized as the missing link to bridge short-run impacts to long-run interpolation,

while maintaining careful identification (Burke and Emerick, 2016; Dell et al., 2014). Adaptation

has indeed been found to constitute a key strategy to cope with the negative effects of climate

change (Costinot et al., 2016; Olmstead and Rhode, 2011). On average, adaptation seems to improve

yields by the equivalent of 15-18% of current yields, but the effectiveness of adaptation has varied

significantly across different regions of the world (IPCC, 2014). Adaptation has also been found to

be more limited for maize production, compared to wheat and rice (Lobell et al., 2014). In this

study, information about the sources of income and input use at the household level is exploited to

explore the adoption of adaptation strategies at the micro-level, often overlooked or attenuated at

more aggregated levels (Di Falco et al., 2011). In particular, we investigate how estimated impacts

on maize yields may translate into net income changes at the household level. One approach is to

directly observe behavioral responses of farmers in terms of planting and management practices. For

example, Di Falco et al. (2011) directly analyze how adaptation strategies at the farm level in the

form of changing crop varieties, adoption of soil and water conservation strategies and tree planting

affect food productivity in the Nile Bassin of Ethiopia. In this area, adaptation seems to have been

quite effective in increasing food productivity. Our paper is closer to a second approach that seeks to
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indirectly infer adaptation based on different estimation methods or alternative dependent variables.

Burke and Emerick (2016) have seminally shown how contrasting results from fixed effects model with

those from long difference model can shed light on possible adaptation or intensification. Applying

a similar approach, we do find mixed evidence with respect to adaptation. In the Northern Spring

maize zone, where the short-run impact of weather variations has been the strongest, we do find some

evidence for (limited) adaptation, in particular to temperature variations. About 14% of short-term

yield losses from temperature have been alleviated in the long run. On the contrary, intensification

effects of temperature amounting to about 13% have been observed in the Yellow-Huai Valley summer

maize zone.

Our paper is also related to a literature that seek to infer adaptation by contrasting the impact

on yields to the one on household income. To the best of our knowledge, the literature using micro-

level data is fairly limited in that respect. Most studies have investigated the impact on net farm

income at an aggregated level (Deschenes and Greenstone, 2007; Fisher et al., 2012; Prajapati et al.,

2010). At a household or farm level, there is only limited evidence. Kurukulasuriya et al. (2006)

adopt the Ricardian method to estimate the impacts of climatic variations on total net farm incomes

(defined as the sum of incomes from dryland crops, irrigated crops, and livestock) in Africa. They

find that net income originating from dryland crops fall on average by $27 per hectare following 1 ◦C

increase in temperature. By contrast, revenue from irrigated crops increases on average by $30 per

hectare. Temperature is found to have a muted effect on irrigated crops, partially because irrigation

buffers rainfall shortages and irrigated crops are planted in relatively cool locations in Africa. In the

case of Kazakhstan, heterogeneous effects are also stressed by Bobojonov and Aw-Hassan (2014) with

positive net farm income gains for large-scale commercial farms in the northern regions of Kazakhstan,

and negative impact in small-scale farms in arid zones of Tajikistan. The importance of temperature

is also emphasised by Gbetibouo and Hassan (2005) in their study on South Africa. They indeed find

a stronger positive impact of temperature on net farm income, compared to the positive impact from

rainfall. Interestingly for China,Wang et al. (2010) argue that the detrimental impact on agricultural

production can be compensated by general equilibrium effects, mainly driven by price changes. While

Wang et al. (2009) find that temperature increase and rainfall decrease hurt net farm revenue for
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China as a whole, a rise in annual temperature or in precipitation reduces farmer’s net farm income

in Northern China.

The literature is even more limited in exploring the impact of weather variations on non-farm

income at the household level. As far as we know, no other study has investigated the impact of

weather variations on non-farm income in China. While Hsiang (2010) and others (see e.g. Dell et al.

2014) analyse the impact of weather variations and the occurrence of cyclones on non-farm income

at a more aggregated level, their approach captures the direct impact on manufacturing through

labor productivity. In our study, we investigate the impact on off-farm income in rural China from a

household perspective to explore the role of income diversification as a source of adaptation. Closer

to this study, Nhemachena and Hassan (2008) show that an increase in mean annual temperature

leads households to diversify their sources of income towards non-farm activities in Southern Africa.

We do find that in the Northern spring maize zone where the largest impact is estimated, such impact

does not seem to translate into a fall in net total income. Adaptation, through income diversification

towards non-agricultural activities seems to be key in explaining such a contrast. However, adaptation

strategies do not only include moving out of agriculture, but also substituting the agricultural land

allocated to other crops and reducing the use of costly inputs (purchase of seeds, pesticide and

payments of irrigation fees). On the contrary, the lower impact found in the other region, the Yellow-

Huai Valley summer maize zone, is low but likely to intensify.

2 Study context

Although maize is cultivated in every Chinese province, maize cropping patterns and productions

vary widely across the country. This study focuses on two maize zones of China, the Northern spring

maize zone, and the Yellow-Huai River Valley maize zone. These regions account for approximately

70% of Chinese maize area and close to 75% of total maize production (Meng et al., 2006). The

principal grain planting area is also concentrated in North and Central China since 1996 (Zhou and

Tian, 2006).

These regions differ substantially. The Yellow-Huai River Valley maize zone is characterized by

warm temperate and semi-humid monsoon climate with hot, dry summers and cool, variably rainy
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winters. The annual precipitation ranges from 500 mm to 900 mm, and 60% precipitations fall in

summer season. Part-time farming is common practice, and the trend has been increasing in recent

years. Brown soil and cinnamon soil dominate in this region. There are three maize systems in the

region: rainfed spring maize, rainfed summer maize, and irrigated summer maize. The predominant

maize system in the Yellow-Huai River Valley zone is irrigated summer maize either rotated or relay-

cropped with winter wheat in the plain areas. Irrigation practices are expected to better resist the

detrimental impact of weather variations. The summer maize growth cycle is on average 110-115

days in this region. The weather conditions in this region are moderate for maize on the whole, but

the extreme heat, drought and the volatility of precipitations may be harmful to maize yields and

production.

In the Northern spring maize zone, the climate is classified as frigid humid/semi-humid temperate

with warm, wet summers and long, very cold winters. The annual precipitation ranges between

500 mm and 800 mm. Two thirds of precipitations fall between July and September. “Drought in

summer and wet in autumn” is one distinct feature in this region. Agricultural profits represent the

main income source for rural population. Maize is the most important crop in terms of area and

production. Most of the crops are cultivated almost completely under rainfed conditions in spring.

Black loamy and brown loamy soils predominate in this region. The average maize growth cycles

are 130 days in Heilongjiang and 150 days in Liaoning, Jilin, and Inner Mongolia. In recent years,

the maize cropping growth cycles have been decreasing. The shortening of growing periods and the

occurrence of drought and excessive wet conditions are likely to hurt maize yields and production.

The growing periods, cropping systems and soil qualities are radically different between the two

maize zones. In the Northern spring maize zone, most villages start sowing in April and harvest at

the end of September. In the Yellow-Huai River Valley summer maize zone, the sowing time starts at

the end of May and harvest at the end of September. The main type of maize in the Northern spring

maize zone and the Yellow-Huai Valley summer maize zone are rainfed spring maize and irrigated

summer maize, respectively. There is no multiple cropping in the Northern spring maize zone, while

multiple cropping is prevalent in the other zone. Such apparent heterogeneity between the two maize

zones calls for a region-specific analysis. The impacts of weather variations in the two maize zones
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are expected to be different.

3 Empirical Analysis

3.1 Data

We use a unique household dataset named the National Fixed Point Survey (NFPS) dataset, imple-

mented by the Research Center of Rural Economy (RCRE), a research unit of the Chinese Ministry

of Agriculture. We combine such household information with weather station data from the Weather

Channel Interactive Company and China Meteorological Bureau. The National Fixed Point Sur-

vey (NFPS) dataset comprises household panel data collected every year between 2004 and 2010 in

seven provinces, Heilongjiang, Jilin, Liaoning, Neimenggu, Hebei, Shandong and Henan. These seven

provinces represented in 2012 approximately 65% of the total maize planting area and nearly 70%

of maize produced in China (Figure A.2). The average yield of 5776.34 kg per hectare in 2010 in

these provinces is 5.8% higher than the national average yield. Given the wide heterogeneity in maize

production described in Section 2, the seven provinces are classified into the abovementioned two

maize zones: Heilongjiang, Jilin, Liaoning, Neimenggu and the north part of Hebei belongs to the

Northern summer maize zone and Shandong, Henan and the south part of Hebei are divided into

Yellow-Huai Valley summer maize zone. Hebei province is divided into two parts, since the ecological

conditions between these two parts are very different. However, our results do not depend on that

geographical division since our results are robust to the exclusion of the Hebei province.

We exploit a sample of 4,861 households, in which 2,039 and 2,822 households are located in

the Yellow-Huai Valley summer maize zone and the Northern summer maize zone, respectively. As

depicted in Figure 1, these households originate from 79 villages and have been surveyed every year

between 2004 and 2010. The dataset provides household information about the maize planting area,

maize production, specific materials, labor days as well as off-farm incomes.

In this study, we use the term weather variations, as we are looking at short-run temporal vari-

ations in climatic conditions, as opposed to climate change, which is a shift in the average climate

or to weather shocks that can be seen as small probability events. As proposed by Dell et al. (2010:
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741) and Hsiang (2016), our paper seeks to exploit these short-term variations in weather to think

about potential longer-run effects of changes in the distribution of weather, which may be either

larger (e.g. due to intensification effects) or smaller (e.g., due to adaptation) than short-run impacts.

The issue of adaptation is at the core of the critical question to know how much the estimated impact

of weather variations may be used to reflect on long-run effects of climates changes (Dell et al., 2014).

To that purpose, we use daily average temperature, daily maximum temperature, daily minimum

temperature and daily precipitations, originating from 63 weather stations in both maize zones. The

villages are linked to the closest weather station since we have almost one weather station per village

at an average distance below 50 kilometers. Besides, the number of weather stations remains stable

overtime and our analysis is not affected by non-random missing data generated by the entry and

exit of weather stations overtime (Auffhammer et al., 2013). When compared to the gridded data, for

instance, the Climatic Research Unit at the University of East Anglia (CRU, 2013) or the Delaware

dataset (Willmott et al., 2015), our data would give us more precise information (the gridded data

would give a grid of about 80 kilometers square at the equator). Although a few very close villages

have a common weather station in our sample, our results are largely unaltered when excluding

one-by-one the groups of villages that share a common weather station.
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Figure 1: Distribution of sampled villages across seven provinces in the Northern spring maize zone

and the Yellow-Huai Valley summer maize zone

Note: Points represent surveyed villages, whose households have been interviewed annually between 2004

and 2010 (balanced panel). According to the official classification of the Chinese Ministry of Commerce,

China is usually divided into six maize zones: Northern spring maize zone, Yellow-Huai River Valley

summer maize zone, Southwest mountainy and hilly maize zone, South hilly maize zone, Northwest

irrigated maize zone and Qinghai-Tibet Plateau maize zone (Figure A.1).

3.2 Estimation framework

Given the large heterogeneity reported above, the analysis will be implemented on two distinct samples

in order to pave the way for a comparative analysis between both regions. Our identification strategy

will assess how within-household variations in maize yields are affected by within-location variations

in weather conditions recorded between 2004 and 2010. More specifically, our estimating equation

takes the following form:

Y ieldh(v)t = β0 + β1Cvt + β2Xht + δh + δt + εhvt (1)

Where, Y ieldh(v)t represents maize yields in household h (living in village v) and year t; Cvt is
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a vector of climatic variables; Xht is a vector of control variables; δh and δt stand for the inclusion

of household and time fixed effects, respectively; h, v and t denote household, village and year,

respectively. εhvt denote the error terms.

We exploit the panel nature of the dataset. The fixed effects, δh and δt, help to ensure that any

perceived effects of weather variations is not due to differences between sites or years that may arise

from omitted variables (Lobell et al., 2011; Dell et al., 2014). Within sites, omitted variables such as

the use of fertilizers, herbicides or labor are more likely to be uniform, and any variation is assumed

orthogonal to weather variations (Lobell et al., 2011; Blanc, 2012). Assume, for example, that on

average less rain-fed areas are more likely to adapt more efficient irrigation systems, a simple OLS

regression is likely to bias our estimates downward. Inversely, the panel data model can precisely

control for unobserved heterogeneity among households. Time dummies would capture changes in

maize yields that would be due to common time shocks or technical progress. For instance, time

dummies would control for the common effects resulting from the total cancellation of agricultural

taxes enforced in 2006 or the general fall in domestic demand experienced in 2009.

To deal with spatial and time dependency in the error terms usually encountered in climate studies

(Auffhammer et al., 2013), we use the Driscoll and Kraay (1998) standard errors for coefficients

estimated by fixed-effects (within) regression. Such a method has the advantage to deal with within-

and between- correlations that are likely to constitute major concerns in our study. Driscoll and Kraay

method can indeed adjust the bias caused by within- and between-groups correlation of residuals.

In addition, this method is also suitable for the large cross-sectional and small time dimensions, as

featured in the dataset.

We now turn to the definition of the main variables. First, the dependent variable is defined as

the amount of maize harvested per unit area for a given time, this is the standard measurement of

yields. A logarithm transformation is applied. Second, the climatic variables, designated as Cvt in

Equation (1), seek to capture the weather changes in annual growing conditions in a particular village,

v, and the correspondent extreme weather variations on agriculture. For the former, we use rainfall

and temperature data from the Weather Channel Interactive Company and China Meteorological

Bureau recorded across village-level weather stations during the growing periods between 2004 and
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2010. Average temperature is defined as the mean daily average temperature over the whole growing

period. The rainfall variable results from the aggregation of daily data, accumulated over the whole

growing period.

Although widely used in the literature, temperature and rainfall are limited in capturing extreme

events, potentially more detrimental to crop growth (Lobell et al., 2011, 2014). That is likely to be

particularly the case in the Northern spring maize zone and the Yellow-Huai Valley summer maize

zone where drought is a recurrent phenomenon. Drought is a complex phenomenon to capture with

observational data. However, drought is usually characterized by a combination of abnormally high

temperature (causing unusually high evaporation) combined with abnormally low or failing rainfall. In

this paper, we use the Standardized Precipitation Evapotranspiration Index (SPEI) that has emerged

as one of the most comprehensive index over the recent years (Begueria et al., 2010; Cook et al., 2014).

The Standardized Precipitation Evapotranspiration Index (SPEI) is a multi-scalar drought indicator

that includes both rainfall and temperature. The SPEI is based on a monthly climatic water balance

(precipitation minus potential evapotranspiration, called PET) and is expressed as a standardized

Gaussian variate with a mean of zero and a standard deviation of one. The SPEI uses the monthly

difference between precipitation and PET. But unlike other water balance-based drought indices such

as the Palmer Drought Severity Index, the SPEI does not rely on the water balance of a specific soil

system (Begueria et al., 2010). It can be calculated for different time scales, and hence the SPEI has

a much wider range of applications than the PDSI (Begueria et al., 2010). Since the SPEI includes

the effect of the evaporative demand on its calculation, it is more suited to explore the effects of

warming temperatures on the occurrence of droughts (Begueria et al., 2010).

Our SPEI based drought variable is generated by summing, over the growing period, indicator

variables equal to one if the monthly SPEI value is below the 5th percentile of the monthly dis-

tribution. Such computation results in a continuous variable ranging from 0 (“no drought-month

during the growing period”) to 5 (“the maximum drought-months during the growing periods”) in

the Northern spring maize zone, while a continuous variable ranging from 0 to 6 in the Yellow-Huai

Valley summer maize zone. We proceed to a similar construction for the abnormally wet climatic

conditions by summing, over the growing period, indicator variables equal to one if the monthly SPEI
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value is above the 95th percentile of the monthly distribution.

Third, the National Fixed Point Survey (NFPS) dataset also provides information about the

households and their farming activities, such as the off-farm income, total income, household size,

education level of the household head, etc. Of key importance for our analysis on adaptation is

the construction of the household income. We compute the net total, farm, and off-farm income by

subtracting the total input costs from the respective gross income reported by the surveyed farmers.

Although our results do not depend on that restriction, net income variables do not include payments

from crop insurance to which only 0.9% of the surveyed farmers participated between 2004 and 2010

and also exclude received subsidies. We also use the NFPS to construct the following variables: the

labor days inputs per Mu, and the total material inputs per Mu. Mu is a commonly used planting

area statistic unit in China, 1 Mu equivalent to 0.067 hectares. Inputs per Mu are transformed into

logarithm. The advantage of exploiting that information is twofold. First, we use these household

(behavioral) characteristics as control variables, in Equation (1). While better controlling for chang-

ing characteristics, the inclusion of these variables are likely to be endogenous to changes in maize

yields and to introduce potential multi-collinearity with our climatic variables. In other words, these

variables can act as “bad controls” (Angrist and Pischke, 2013) or an “over-controlling problem” (Dell

et al., 2014). We will therefore use these additional control variables as robustness checks, without

over-emphasizing their interpretation. Second, we use off-farm income, net farm income and net total

income, the maize share in total agricultural land, the labour inputs, the seed inputs, the fertilizer

inputs, the pesticide inputs and the irrigation inputs as alternative dependent variables to assess the

adaptation strategies adopted by maize farmers or the risk of intensification in Rural China (Section

4).

3.3 Descriptive Statistics

Descriptive statistics are provided in Table 1. The Northern spring maize zone, with an average yield

of 499.64 kg/Mu, has a relatively higher yield level than the one prevailing in the Yellow-Huai Valley

summer maize zone. These two regions have also experienced an increasing yield growth from 2004

to 2010 (Figure A.3). Maize planting area is on average larger in the Northern spring maize zone,
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with an average planting area of 13.58 Mu, 4 times larger than the one in the Yellow-Huai River

Valley summer maize zone. The increasing trend in maize yields has gone along with a similar rise

in planting area.

The Northern spring maize zone also appears to be colder and receive less rainfall during the

growing period. The average temperature in the Northern spring maize zone and the Yellow-Huai

Valley summer maize zone stand at about 18◦C and 25◦C, respectively. Precipitations in the Northern

spring maize zone amounts to about 332 millimeters, on average 16 millimeters less precipitations

than in the Yellow-Huai River Valley zone. Cross-sectional differences in average temperature in our

sample call for a fixed-effect framework, more likely to capture within-village variations in temperature

(Figures A.4 and A.5). Regarding the SPEI, the Northern spring maize zone appears to be dryer

than the Yellow-Huai Valley summer maize zone. In both regions, high values are recorded in 2004

and 2010, while low values are found in 2006 and 2009 (Figure A.6). Wet-prone conditions have also

been recorded in 2007 and 2008 in the Yellow-Huai summer maize zone (Figure A.7). High values

translate into a high SPEI based wet index, and the reverse for the SPEI based drought index (Figure

A.7). Such patterns correspond to major droughts and floods that occur in China. Major floods were

recorded in 2004 and 2010 by EM-DAT – an international disaster database – in both zones. A severe

drought was also recorded in the Yellow-Huai summer maize zone (see Table A.1).

Net farm income is computed as total revenue minus the input costs, without including received

subsidies. In the Northern spring maize zone, net farm income per household amounts to about

6605.85 Yuan, while it stands at about 2907.78 Yuan in the Yellow-Huai Valley maize zone. Such

contrast is mainly explained by differences in yields and farm size. Net total income also varies

significantly between the two maize zones. In the Northern spring maize zone, net total income

reaches on average 29524.03 Yuan per household, which is higher than the one in the Yellow-huai

maize zone (24867.43 Yuan per household). Off-farm labor markets are expanding rapidly in China,

especially in the Northern and Eastern parts. Nowadays, off-farm income constitutes the main source

of income in China, even in rural areas (Zhang, 2011). In the Northern spring maize zone, net off-farm

income is on average 20121.020 Yuan, while net off farm income in the Yellow-Huai maize zone is

lower, at 15425.61 Yuan.
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The total maize material inputs per Mu in the Northern spring maize zone and the Yellow-Huai

Valley maize zone are 207.10 Yuan/Mu and 170.98 Yuan/Mu, respectively. As for the labor input, the

average number of days per Mu amounts to about 10 days in the Northern spring maize zone, while

producing maize requires approximately 6 additional days in the Yellow-Huai River Valley maize

zone. Positive and negative trends are observed for the use of total material inputs per Mu and for

the number of labor days per Mu, respectively. Controlling for farm characteristics is likely to be

important given the apparent heterogeneity within each region.
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Table 1: Descriptive Statistics

Variables Mean Std. Dev. Min. Max. N

Panel A. Northern spring maize zone

Maize yield (Kg/Mu) 499.642 163.58 50 1666.667 16296

Maize planting area (Mu) 13.581 12.879 0 149 11545

Average temperature in growing period (◦C) 17.918 1.581 12.771 22.727 16296

Cumulative precipitation in growing period (mm) 332.389 160.841 0 789.700 16296

SPEI based drought 0.282 0.61 0 3 16296

SPEI based wet 0.267 0.618 0 3 16296

SPEI of one month 0.011 0.671 -1.122 1.349 16296

SPEI of three month 0.029 0.775 -1.451 1.437 16296

Net farm income (Yuan/Household) 6605.853 7634.117 101 100240 12625

Net off farm income (Yuan/Household) 20121.020 28924.020 0 718816 12625

Net total income(Yuan/Household) 29524.030 38553.130 300 923220 12625

Maize material inputs (Yuan/Mu) 207.102 130.153 0 2976.389 11480

Maize labour inputs (Day/Mu) 10.096 9.432 0 257.143 11460

Panel B. Yellow-Huai Valley summer maize zone

Maize yield (Kg/Mu) 416.804 119.855 50 1500 13992

Maize planting area (Mu) 3.394 2.328 0 20 11420

Average temperature in growing period (◦C) 24.937 1.158 18.554 26.574 13992

Cumulative precipitation in growing period(mm) 348.925 120.228 129.1 926.4 13992

SPEI based drought 0.289 0.573 0 2 13992

SPEI based wet 0.253 0.556 0 3 13992

SPEI of one month 0.027 0.693 -1.329 1.467 13992

SPEI of three month 0.034 0.808 -1.76 1.408 13992

Net farm income (Yuan/Household) 2907.781 3280.308 102 99000 17510

Net off farm income (Yuan/Household) 15425.610 26377.080 0 800000 17510

Net total income(Yuan/Household) 24867.430 26677.860 63 810030 17510

Maize material inputs (Yuan/Mu) 170.976 98.249 0 3335 11387

Maize labour inputs (Day/Mu) 16.53 19.083 0.8 450 11303

Note: 1 Yuan= 0.1572 USD (Nov 09, 2015); 1 Mu=0.067 Hectare.

3.4 Main Results

Table 2 shows the main results of weather variations on maize yields in our two analytical samples.

Column (1) of Panel A introduces the most straight-forward measurements of weather variations,
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total rainfall and average temperature over the growing periods in the fixed-effect framework for the

Northern spring maize zone. Temperature seems to decrease maize yields, but the effect is different

from zero at only 75 percent level of confidence. Rainfall is far from significant in this specification.

Column (2) introduces the SPEI based drought and wet indexes. As expected, drought has a negative

and significant effect on maize yields. That result is confirmed when rainfall, temperature and the

SPEI based variables are introduced within the same specification (Column (3)). An increase by one

standard deviation in temperature translates into a fall of about 1.4% in maize yields. The impact of

a similar change in the SPEI based number of drought months is almost twice bigger, with a partial

effect of -2.5%. Similar results are found in Panel B for the Yellow-Huai Valley zone with much

smaller partial effects of -1.09% and -0.8% for temperature and the SPEI based drought, respectively

(a impact of -0.5% on maize yield due to a change of one standard deviation is found for the SPEI

based wet indicator at 85 percent of level of confidence). For presentation purpose, Column (1) of

Table 3 provides the partial effects on maize yields following a change by one standard deviation in

the corresponding variables, based on the estimated coefficients of Column (3) of Table 2.

The detrimental impact of temperature and drought is largely in line with the existing literature

on various countries and regions, such as the United States, Sub-Saharan Africa and Asia. Many

papers on China also show the same sign of average temperature on maize yields (Liu et al., 2014;

Zhang et al., 2015). We confirm such a detrimental effect using a fixed-effect framework, more likely

to identify a causal relationship, and for a sample large enough to cover about 70 percent of the

Chinese maize-producing areas, in contrast to a coverage of about 30% in Liu et al. (2014) or 39%

in Li et al. (2011). Section 4 will discuss further the magnitude of the impact, which, at first sight,

seems relatively low against international standards. For precipitation, our results give an unexpected

negative sign. In the existing literature, the evidence is rather mixed. Positive effects on crop yields

have been found in global studies on the US or Sub-Saharan Africa (Lobell and Field, 2007; Schlenker

and Lobell, 2010; Blanc, 2012; Burke and Emerick, 2016). Other papers conclude that precipitation

has no effect or negative effect on crop yields (Li et al., 2011; Zhang and Huang, 2012; Massetti et al.,

2014), especially in China. For example, Zhang and Huang (2013) indicate that precipitation has

negative effects on maize yields in the Middle East and parts of the Northern-East China. Li et al.
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(2014) also show that a 1mm increase in precipitation decreases maize production by 0.02%. Liu et al.

(2014) also find a negative correlation between precipitations and maize yields in the northern plain of

China, while an insignificant impact on wheat yields is reported by You et al. (2005). Finally, Zhang

and Huang (2012) confirm the mixed bature of existing results for China with a negative correlation

between precipitations and rice yields for 32% of the rice-producing areas, a negative impact for

18.5% of the cultivated areas, and no significant impact in over half of the maize-cultivated regions.

When it comes to the SPEI based drought and wet conditions, the signs of both indicators are neg-

ative as expected. Ming et al. (2015) also conclude that in most provinces of China, extreme droughts

and wet conditions have detrimental effects on maize yields. Our paper confirms that threat with a

wider coverage of maize producing regions and more precise measurements of extreme events (SPEI).

The occurrence of drought has the largest impact in the Northern spring maize zone. The impact

of about 2.5% following an increase by one standard deviation (about half a drought month) in the

variable of interest is 3 times bigger than the effect in the Yellow-Huai Valley summer maize zone.

The impact of average temperature in the Northern spring maize zone is also slightly bigger than

the one in the Yellow-Huai Valley summer maize zone and more precisely estimated. A possible

explanation is that the rain-fed type maize in the Northern spring maize zone makes yields more

vulnerable to extreme drought and temperature. In the Yellow-Huai Valley summer maize zone, the

relatively smaller maize farming size may also play a drought-mitigating role owing to larger margins

of cost adjustments. Section 4 will further discuss how household strategies may help to cope with

the harmful effects of weather variations.

3.5 Robustness

Our main results may be sensitive to the adopted specifications. Therefore, we check the robustness

of our results in Table 2 to (a) the choice of model specification, (b) the definition and the choice of

functional forms of the weather-based variables, and (c) the definition of the analytical samples.

First, a legitimate concern may be that our results are capturing a spurious correlation. No

spurious trend is apparent in the geographical representations of our main variables, in particular

18



Table 2: Weather effects on maize yields

Dep. Var. Maize yields (log)

Panel A. North spring maize zone

(1) (2) (3)

Average temperature in growing period -0.01251 -0.00888**

(0.01204) (0.00436)

Cumulative precipitation in growing period -0.00006 -0.00007***

(0.00005) (0.00002)

SPEI based drought -0.04077* -0.04424***

(0.02465) (0.00373)

SPEI based wet -0.00467 -0.00503

(0.00632) (0.00342)

Observations 16,296 18,508 16,296

R-squared 0.041 0.041 0.041

Panel B. Yellow Huai Valley summer maize zone

Average temperature in growing period -0.01222* -0.00949*

(0.00502) (0.00533)

Cumulative precipitation in growing period -0.00014** -0.00014***

(0.00004) (0.00002)

SPEI based drought -0.01142** -0.01350***

(0.00495) (0.00500)

SPEI based wet -0.01096** -0.01244**

(0.00550) (0.00551)

N 13,992 13,992 13,992

R-squared 0.059 0.059 0.064

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard

errors in parentheses. * significant at 10%, ** at 5%, *** at 1%.
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between trends in weather and maize yields for the whole sample (Figures A.2-A.7). However, we

cannot exclude that it may be the case at the village level. To deal with that concern, we augment

our baseline model with village-specific time trends. The partial effects (following a change of one

standard deviation) shown in column (2) of Table 3 suggest that it is a minor issue. The partial

effects are pushed downward but the impact remains in a similar range with the introduction of

village-specific time trends. We also face the risk of attributing to weather variations changes in

the composition of the village populations. To assess that risk, we also control for (potentially

endogenous) household characteristics such as the total material inputs per Mu and the labour days

per Mu of each household. The addition of control variables only slightly changes the coefficients of

the weather variables in both maize zones. In contrast to this augmented model, the small impact

of weather variations on maize yields identified in a household-fixed-effect framework may be argued

to be relying on too small margins. We cannot exclude that controlling for unobserved household

heterogeneity may come at the cost of removing much variation. Nonetheless, our results appear to

be unaltered when estimated with more aggregated village fixed effects, excepting for temperature in

the Northern spring maize zone. The related partial effects are reported in column (3) of Table 3.

The detailed results corresponding to columns (2) and (3) of Table 3 are given in Table A.2 of the

Appendix.

Second, the weather-based variables are assumed to impact maize yields in a linear manner. The

literature has pointed to the limited nature of such an assumption (Lobell et al., 2011; Schlenker

and Lobell, 2010; Burke and Emerick, 2016; Massetti et al., 2014; Dell et al., 2014). We check the

validity of that assumption by introducing quadratic terms of our main variables of interest. The

linear form seems to be a good approximation of a potentially more complex response function. The

coefficients of SPEI based drought and wet conditions keep a similar negative sign in the two maize

zones, when significant. Detailed results are provided in Table A.3. In columns (1) and (4) of Table

A.3, we estimate the quadratic terms of average temperature and precipitation. We then augment

the model with the SPEI based indexes (columns (2) and (5)). In columns (3) and (6), we introduce

the linear and quadratic terms of the same SPEI based indexes. It could be noted that precipitation

shows an inverted U-shaped relationship in column (1) but such non-monotonicity disappears while
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Table 3: Partial effects of weather variations

Dep. Var. Maize yields (log)

Panel A. Northern spring maize zone

(1) (2) (3) (4)

Average Temperature -0.01423 (-0.00728) (-0.00953) -0.02254

Cumulative Precipitation -0.01365 -0.02654 -0.04785 -0.01227

SPEI based drought -0.02495 -0.01720 -0.02692 -0.02856

SPEI based wet (-0.01049) -0.01931 -0.02604 (0.00514)

Panel B. Yellow-Huai Valley summer maize zone

Average Temperature -0.01089 (-0.00872) (-0.00785) (-0.00550)

Cumulative Precipitation -0.01709 -0.01365 -0.01759 -0.02764

SPEI based drought -0.00770 -0.00801 -0.00877 (-0.00519)

SPEI based wet -0.00689 -0.00621 -0.00825 (0.00588)

In regressions used to compute partial effects in Panels A and B

Time fixed effects Yes Yes Yes Yes

HH fixed effects Yes Yes No No

Village fixed effects No No Yes Yes

Village time trends No Yes No No

Drop Hebei Province No No No Yes

Note: 1.“()” means that the estimated coefficient used to compute the partial effects is

not significant at, at least, 90% level of confidence; 2. Partial effect = βi ∗ SDi

MeanY ield
,

in which i is the set of independent variables; 3. Village specific-time trends are

generated by interacting the village fixed effects with time trends.
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estimated together with the SPEI based indexes, assumed to constitute better proxies for extreme

weather deviations.

For temperature, we find an unexpected non-linear relationship between temperature and yields

when adding the quadratic terms of temperature. In light of this mixed evidence for temperature, we

further check the non-linearity of weather variables assuming more complex forms of non-linearity.

The sum of degree days over the growing seasons is argued to better capture the effect of temperature

on yields (Schlenker and Lobell, 2010; Lobell et al., 2011; Massetti et al., 2014). We follow Schlenker

et al. (2006) and Schlenker and Lobell (2010) in introducing two related indexes, the Moderate Degree

Days (MDD) and the Extreme Degree Days (EDD). Using daily temperature, Moderate Degree Days

result from the sum of Celsius degrees falling in a range between a lower threshold and an upper

threshold. Extreme Degree Days are computed based on the sum of Celsius degrees above an upper

threshold. In the case of the Sub-Saharan Africa and based on agronomic literature, Schlenker

and Lobell (2010) define the upper and lower thresholds at 10◦C and 30◦C . However, there is no

consensus on the thresholds to be adopted, especially the upper one (Massetti, 2013). Similar to

Burke and Emerick (2016), the choice of upper threshold is based on minimizing the Root Mean

Square Error (RMSE). We found that the optimal upper thresholds in the Northern spring maize

zone and the Yellow-Huai Valley summer maize zone are 20◦C and 24◦C, respectively. In terms of the

lower threshold, we adopt a 8◦C lower-bound similar to Schlenker et al. (2006), Lobell et al. (2011),

and Massetti et al. (2014).

Adding MDD and EDD only causes a slight variation in magnitude of the SPEI based drought

and wet indexes (Table A.4). An increase by one standard deviation in the SPEI based number

of drought months and wet months decreases maize yields by 2.5% and 1.0%, respectively, in the

Northern spring maize zone, and 0.8% and 0.7%, respectively, in the Yellow-River maize zone. We

find an insignificant positive effect of a change in MDD on yields in both maize zones, meaning that

an increase in temperature within the range of moderate degree days might benefit maize yields but is

estimated with low confidence. By contrast, the increase of temperature within the range of extreme

degree days has a significant and negative impact on maize yields in the Yellow-Huai summer maize

zone and, to a lesser extent in the Northern spring maize zone. An increase by one standard deviation

22



in EDD would translate into a decrease in maize yields by 1.3% in the Northern spring maize zone and

1.6% in the Yellow-River Valley summer maize zone, respectively, compared with the corresponding

change of 2.5% and 0.9% for the SPEI based drought index. The impacts of MDD and EDD on maize

yields are consistent to most of the above-mentioned related literatures. Nonetheless, the magnitude

of these impacts remains low, strengthening our confidence in the used combination of linear weather

variations in “levels” and SPEI based nonlinear extreme events.

A final point on the functional form of our weather-based variables relates to the threshold adopted

to define an extreme event. One could argue that the thresholds used (5th and 95th percentiles) are

somehow arbitrary. We test the robustness of the drought and wet effects to the use of different

thresholds. We assess the robustness of our main results to three alternative measurements of SPEI

drought and wet based on the criteria of two-sided 10 percent percentile, one standard deviation,

and two standard deviations. Detailed results are provided in Table A.5 in Appendix. The drought

index which is measured by SPEI lower than the value of minus two standard deviations consistently

has negative effects on maize yields in both regions (in the Yellow-Huai Valley summer maize zone

only at 85% level of confidence). In the Northern spring maize zone, all the drought and wet indexes

show negative relationships with maize yields. In the Yellow-Huai Valley maize zone, mild drought

and wet indexes (based on one standard deviation and below 10% of the drought distribution) do

not have significant effects on maize yields, which confirms the lower vulnerability of the Yellow-Huai

Valley maize zone to droughts.

Third, our main analysis is based on the comparison of two analytical samples. As indicated in

Section 3, the Hebei province is split into two, the North being part of the Northern summer maize

zone and the South belonging to the Yellow-Huai Valley summer maize zone. That division may

not be universally accepted since it is not based on an official administrative division. We test the

robustness of our results to that sample choice. To that purpose, we alternatively drop the Heibei

province from the analytical samples. When compared with the main results, we did not find large

differences in the magnitude and signs of coefficients. Table A.6 in Appendix presents the estimated

results, excluding the Hebei province.
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4 Income diversification as adaptation?

In this paper, we find average temperature, the SPEI based drought and wet indexes, as well as

precipitations have negative effects on maize yields in the two maize zones. In the Northern spring

maize zone, an increase by one standard deviation in temperature translates into a minor fall of

about 1.4% in maize yields. The impact of a similar change in the occurrence of SPEI based drought

is almost twice bigger, with a partial effect of -2.5%. Similar results are found for the Yellow-Huai

Valley maize zone with much smaller partial effects of -1.09% and -0.8% for temperature and SPEI

based drought, respectively. The SPEI based wet variables have lower impacts on yields compared

to the SPEI based drought. One standard deviation change in SPEI based wet indexes will decrease

maize yields by about 1.05% and 0.69% in the Northern spring maize zone and the Yellow-Huai Valley

summer maize zone, respectively. The weather variations in the Northern spring maize zone have

more impacts on maize yields than the variations in the Yellow-Huai maize zone.

Table 4 lists the impact of weather variations on different crop yields found in the literature. Our

estimated impact of weather variations on maize yields in China is relatively small. First, compared

with other studies in China, we find a relatively small temperature impact on maize yields. Based on

a first-difference model, Xiong et al. (2014) find that a 1◦C increase in temperature decreases average

maize yields in most regions of China by around 8% between 1981 and 2006. Liu et al. (2014) also

use the linear regression method to investigate the impact of weather variations on maize yields. An

increase by 1 ◦C deteriorates maize yields in Henan and Hebei provinces by 3%. Using a different

approach, a multiple linear regression (MLR) to simulate the impacts of average temperature on

Maize yields between 1980 to 2008, Zhang and Huang (2013) find that a 1◦C increase in temperature

reduces maize yield by up to 10% in Northern east China, while Li et al. (2014) find similar impact

at about 10.18% for the region between 1988 and 2008, using fixed effect panel data model. Second,

compared with studies outside of China (Table 4), the estimated impacts appear to be relatively small

compared to other countries or regions, such as the United States, Sub-Saharan Africa, India, or at

the global level. The difference in the comparability of studies can obviously be called into question

given the underlying differences in methods and sample designs. But the difference in magnitude is

puzzling enough to motivate further investigation on possible explanations.
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The lower magnitude of the impact may be partly explained by the lower exposure of China to

the occurrence of weather variations, compared to other parts of the world. The SPEI in China is

relatively mild compared to other parts of the world such as Sub-Saharan Africa and the Western

part of the United States. However, the relatively low SPEI may not explain why the impact is much

smaller compared to other maize zones such as the East of United States, the Southern part of India

or Argentina with similar levels of SPEI or drought occurrence. In these parts of the world, the SPEI

is in a range of -0.84 to 1.28 similar to our sample, but as reported in Table 4, the impact is 3 to 4

times larger in magnitude.

One possible explanation for the low estimated effects of weather variations on maize yields in

rural China may be that the most affected farmers have no other choice than migrating. Weather

variations have indeed been found to significantly affect migration (Feng et al., 2010; Marchiori et al.,

2012; Gray and Mueller, 2012). Although we will discuss possible adaptation outside of agriculture,

the migration channel does not seem to be driving our results. Estimating the same models with

unbalanced panel and village fixed effect, our results for temperature and drought are largely unaltered

(see appendix Table A7). Coefficients for the average temperature seem to be slightly lower in

magnitude in the unbalanced panel, suggesting a migration selection towards the most productive

households. Although the effect seems to be marginal in affecting our results, such selection of the

most productive households is in line with the emerging literature showing that those moving as a

response to weather variations are rather those able to overcome the migration costs under credit

constraints (Maystadt et al., 2016; Mueller et al., 2014; Dillon et al., 2011).

The lower magnitude of the impact may also be due to a high degree of adaptation from Chinese

farmers to weather variations. Adaptation would consist of adjustments that individuals and other

economic agents make to cope with a change in the expected distributions of weather (Dell et al.

2014, Burke and Emerick 2016, Hsiang 2016). In turn, intensification points to damages that are not

revealed by short-term weather variations as the associated damages can accumulate over time in

a non-linear and unsustainable fashion (e.g. desertification). The main potential downside of panel

data is that they mainly capture short-run variations in weather and may tell us little about the long-

term effects of climate change given possible processes of adaptation or intensification. Panel data
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Table 4: The list of climate effects in other papers

Author Changes of weather indexes Method Location Impact

This paper 1SDb ∆ Temperature FE1 China(maize zone 1-2)a -1.4%,-1.06%

This paper 1SD ∆ Rainfall FE China(maize zone 1-2) -1.3%,-1.7%

This paper 1SD ∆ droughtc FE China(maize zone 1-2) -2.4%,-0.8%

This paper 1SD ∆ wetc FE China(maize zone 1-2) -1.0%,-0.5%

This paper 1SD ∆ DDM FE China(maize zone 1-2) 1.2%,1.2%

This paper 1SD ∆ EDD FE China(maize zone 1-2) -1.3%,-1.6%

Ming et al. (2015) SPEI < -1 CS2 China(5 provinces)d,i Yield<0

Ming et al. (2015) SPEI < -0.7 CS China(5 provinces) Yield<0

Ming et al. (2015) SPEI > 0.9 CS China(5 provinces) Yield<0

Xiong et al. (2014) 1◦C ∆ temperature TS3 Most regions of China ii -8%f

Liu et al. (2014) 1◦C ∆ temperature CS China(2 provinces)e,iii -3%f

Li et al. (2011) 1◦C ∆ temperature FE North-east of China -10.18%

Li et al. (2011) 1◦C ∆ temperature FE South-west of China -10.98%

Zhang and Huang (2013) 1◦C ∆ temperature MLR4 Northern-east of Chinaiiii 0 to -10%

Li et al. (2014) 1◦C ∆ temperature FE Northern-east of Chinaiiii -10.18%

Li et al. (2011) 1mm ∆ Precipitation FE North-east of China -0.02%

Zhang and Huang (2013) 1mm ∆ Precipitation MLR Northern-east of China Mixed effects

Li et al. (2011) 1mm ∆ Precipitation FE South-west of China 0.06%

Li et al. (2014) 1mm ∆ Precipitation FE North-east of China -0.02%

Guiteras (2007) +0.5◦C , +4% rain FE India -13%

Guiteras (2007) 1SD ∆ temperature FE India -4.30%

Guiteras (2007) 1SD ∆ rainfall FE India -1.10%

Prajapati et al. (2010) 1◦C ∆ temperature GCMs5 India -3.20%

Lobell and Asner (2003) 1◦C ∆ temperature TS USA -17%

Hong et al. (2016) 1◦C ∆ temperature DEM 6 USA(IOWA) -15%

Kucharik and Serbin (2008) 1◦C ∆ temperature FE USA(Wisconsin) -13%
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The list of climate effects in other papers (Table 4 Continued)

Author Changes of weather indexes Method Location Impact

Barros et al. (2015) 1◦C ∆ temperature GCMs Argentina (Pampas) -4.64%

Osborne et al. (2016) 1◦C ∆ temperature GLAM7 Argentina -6%

Osborne et al. (2016) 1◦C ∆ temperature GLAM Brazil -11%

Osborne et al. (2016) 1◦C ∆ temperature GLAM Mexico -8%

Osborne et al. (2016) 1◦C ∆ temperature GLAM France -18%

Osborne et al. (2016) 1◦C ∆ temperature GLAM Romania -15%

Osborne et al. (2016) 1◦C ∆ temperature GLAM Italy -19%

Osborne et al. (2016) 1◦C ∆ temperature GLAM Ukraine -18%

Blanc (2012)) 1SD ∆ rainfall GCMs Sub-Saharan Africa (SSA) 9.16%

Schlenker and Lobell (2010) 1SD ∆ Temperature FE SSA -24.6%

Schlenker and Lobell (2010) 1SD ∆ Precipitation FE SSA -10%

Lobell et al. (2011) 1◦C∆ in EDD above 30◦C FE SSA -2.7%

Osborne et al. (2016) 1◦C ∆ temperature GLAM South Africa -12%

Lobell and Field (2007) 1◦C ∆ in temperature FE Average global -8.30%

Lobell and Burke (2010) +1◦C temperature FE 198 sites in 16 countries -7.20%

Lobell and Burke (2010) +20% precipitation FE 198 sites in 16 countries +5.8%

Note: a: Maize zone 1 is Northern spring maize zone and maize zone 2 is the Yellow-Huai Valley summer maize zone.

b: SD means standard deviation. c: The value of 5% percentile monthly SPEI is -1.01 in our dataset and the value

of 95% percentile monthly SPEI is 1.13. d: Including Hebei, Henan, Shandong, Tianjin, Beijing. e: Including Harbin,

Hefei, Chengdu, Nanchang, Changsha, Guangzhou. f : Results are calculated or deductive by authors based on the

estimations and graphs. g: Including Hena and Hebei. i covers 1962-2011, ii: 1981-2006, iii: 1956-2006, and iii:

1980-2008. 1:Fixed effect panel data model; 2:Linear regression with cross section data; 3: Time series; 4: Multiple

Linear Regression; 5: General Climate Models; 6: Dynamic Ecosystem Model; 7: General Large Area Model.
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analysis would tend to overestimate (underestimate) the damages in case of adaptation (intensifica-

tion). Although our SPEI index partly takes into account the cumulative nature of water deficiencies

as a result of higher temperature, the low magnitude of the impact may be due to the inability of the

data to capture adaptation effects. To assess the importance of adaptation and intensification, we

proceed in two ways, by exploring: i) the use of long differences; ii) the changes in household income,

land allocation and input uses at the farm level.

First, we follow Burke and Emerick (2016) in contrasting our panel results with a long difference

model. To do so, we average the main variables for 2004-2006 and 2008-2010, respectively. Aggrega-

tion aims at lessening random shocks that might appear in one single year (aggregating on shorter

periods, 2004-2005 and 2009-2010, does not alter our main results). We then first-difference the av-

erages. In Columns (1) and (4) of Table 5, we estimate the long difference models in the two maize

zones. Columns (2) and (5) further control for provincial fixed effects. By controlling for provincial

fixed effects, our estimation better controls for possible policy changes. For comparability reasons,

we include the panel results with household fixed effects in columns (3) and (6) of Table 5. We then

compare the long difference models with the panel data models. As discussed in Dell et al. (2014)

paper, intensification effects denote that longer-run weather effects are larger than short-run weather

effects, and adaptation, the reverse. In the Yellow-Huai Valley summer zone, the effects of tempera-

ture, precipitation, drought and wet conditions are larger in magnitude compared to those obtained

with the long difference estimations (with or without province fixed effects). Such differences provide

evidence of intensification, pointing to a possible downward bias of our fixed-effects estimates. Such

observation echoes Zhang et al. (2015) studies, according to which short term climate effects on yields

are much smaller than long term effects in China. In the Northern spring maize zone, where larger

impacts had been estimated, we find supportive evidence for adaptation, rather than intensification.

Effects only seem to intensify under wet conditions. We also quantify the extent of adaptation or

intensification, using the formula 1 − βLD

βFE
. Table 6 illustrates further the evidence that there is more

intensification in the Yellow-Huai Valley summer maize zone, while adaptation is more prevalent in

the Northern spring maize zone.
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Table 5: Comparison of long difference estimations with fixed-effects estimations

Dep. Var. Maize yields (log)

Northern spring maize zone Yellow-Huai Valley summer maize zone

LD LD FE LD LD FE

(1) (2) (3) (4) (5) (6)

Temperature 0.10554*** 0.06851 -0.00888** -0.11766*** -0.18793*** -0.00949*

(0.02468) (0.04247) (0.00436) (0.03328) (0.04442) (0.00533)

Precipitation 0.00034*** 0.00019* -0.00007*** -0.00041*** -0.00037*** -0.00014***

(0.00011) (0.00011) (0.00002) (0.00010) (0.00010) (0.00002)

SPEI drought -0.02098* -0.00123 -0.04424*** -0.01226 0.01894 -0.01350***

(0.01130) (0.01208) (0.00373) (0.03287) (0.03418) (0.00500)

SPEI wet -0.02627* -0.02099 -0.00503 -0.05506** -0.04496** -0.01244**

(0.01426) (0.01850) (0.00342) (0.02163) (0.02152) (0.00551)

Fixed effects No Province FE HH FE No Province FE HH FE

N 17,713 17,713 16,296 12,907 12,907 13,992

R-squared 0.05517 0.13330 0.04081 0.04463 0.05695 0.06418

Note: Driscoll and Kraay (1998) standard errors in parentheses.*** p<0.01, ** p<0.05, * p<0.1.

Table 6: Difference between the first-difference and the fixed effect models

Northern spring maize zone Yellow-Huai maize zone

Temperature 14.074% 8.625% -13.065% -21.929%

Precipitation 5.214% 1.88% -1.739% -1.521%

SPEI drought 0.827% 1.574% 0.121% 2.322%

SPEI wet -3.603% -0.735% -4.351% -3.588%

Fixed effect No FE Provincial FE No FE Provincial FE

Note: The difference is calculated by the formula 1 − βLD

βFE
.

Second, we explore the role of adaptation by investigating the effects of weather variations on net

total income, net farm and off-farm income, and the maize share of cropped land. We then look at

possible changes in the use of intermediate inputs. We use these results to indirectly infer the possible

sources of adaptation available to farmers in rural China. There are basically three channels to cope

with the negative effects of weather variations on maize: i) going out of the agricultural sector; ii)

reallocating part of the planting area of maize in favor of other crops, iii) changing the intermediate

inputs of maize planting if farmers keep planting maize.
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In Table 7, we estimate the effects of weather variations on net total income, net farm and off-

farm income, and the maize share of cropped land. Table 7 offers a few interesting results. In the

Northern spring maize zone, where the first difference model gives us some evidence of adaptation, the

detrimental impact of drought, precipitation, and temperature on maize yields does not seem to have

affected net farm income. Net total income has even increased as a result of increased precipitation

and drought conditions (columns (1) and (3) of Panel A). Similar results hold when received subsidies

are included in the net income computation. These results suggest that farmers have been able to

compensate the detrimental shock on maize yields. Column (1) of table B further indicates that such

compensation has been possible for farmers by diversifying their income outside of agriculture. Off-

farm income is indeed increasing as a response to weather variations. Such results echo Nhemachena

and Hassan (2007) who find evidence of income diversification as a result of increased temperatures

in Southern Africa. As illustrated in column (3) of Panel B, the negative coefficient obtained for the

share of agricultural land allocated to maize also points to income diversification within agriculture

at times of drought. Adaptation within agriculture may call for adopting other farming practices and

techniques (e.g. irrigation, multiple cropping, adjusting planting dates, etc). Unfortunately, we do

not directly observe such adaptative behaviors but we can conjecture that such diversification may go

along with adjustments of the input use. In the Northern spring maize zone, Table 8 indicates that

farmers also increase the use of fertilizers with the increase of temperature, precipitation, drought,

but decrease the use of pesticide, seeds, irrigation and labor inputs as a response to temperature or

drought. Such results are consistent with Smit and Skinner (2002) who find that in Ontario (Canada),

farmers did nothing or reduced inputs or crop types in response to dry years. In that case, the main

objective is to lower the costs or balance the profits, by reducing the most costly inputs. Coupled

with the move out of agriculture, farmers seem to adapt to weather variations in this maize zone by

decreasing the input costs.

On the contrary, the negative impact of weather variations on maize yield is not compensated by

a move out of agriculture in the Yellow-Huai valley summer maize zone (Panel B). That is consistent

with the lack of adaptation observed in the long difference estimations. As a result, although the

detrimental impact on maize yields is less severe compared to the Northern Spring Maize zone,
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we do find a negative impact on the net farm income and net total income. The income regressions

therefore confirm our previous results that point to intensification in this part of China. Farmers only

seem to reduce the share of land allocated to maize as a result of increased temperature. In terms

of input use, evidence for intensification and the lower impact of weather variations is coupled with

farmers increasing their seed inputs, increasing pesticide fees, and decreasing labor allocated to maize

production to cope with the increase in temperature. That type of adjustment within agriculture

may well result in long-run intensification of the impact of weather shocks on maize yields. Owing

to the irrigated maize type in this maize zone, precipitations have a negative effect on the inputs of

irrigation fees, indicating that farmers would decrease the irrigation inputs with abundant rainfall.

We found a somewhat unexpected negative impact of drought on irrigation fees. Similar to Smit and

Skinner (2002), that could potentially be explained by the increase of irrigation costs due to water

scarcity under aridity conditions. Farmers would rather minimize the input costs by reducing the

irrigation inputs.
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Table 7: Weather effects on net farm, off-farm and total income

Panel A: Net total and farm income

(1) (2) (3) (4)

Dep. Var. Net farm income(log) Net total income(log)

Northern spring Yellow-Huai Northern spring Yellow-Huai

LD LD LD LD

Temperature -0.09686 -0.15074** -0.03509 -0.12901***

(0.08397) (0.06202) (0.05497) (0.04411)

Precipitation 0.00085** -0.00061*** 0.00036* -0.00018

(0.00033) (0.00021) (0.00020) (0.00017)

SPEI based drought 0.01865 -0.02824 0.04048* -0.06265

(0.03438) (0.08677) (0.02152) (0.08658)

SPEI based wet -0.02913 -0.14006*** 0.02641 0.02559

(0.04304) (0.04581) (0.02724) (0.03156)

N 17,704 12,941 17,704 12,941

Panel B: Off-farm income and maize share

Dep. Var. Off-farm income (log) Maize share in total agricultural land

Northern spring Yellow-Huai Northern spring Yellow-Huai

LD LD LD LD

Temperature 0.11692* 0.00289 -0.03893 -0.05595***

(0.07267) (0.07800) (0.02805) (0.01907)

Precipitation 0.00091** -0.00066*** 0.00009 0.00005

(0.00037) (0.00023) (0.00010) (0.00004)

SPEI based drought 0.09617*** 0.10312 -0.01963** -0.01852

(0.03385) (0.10427) (0.00828) (0.02756)

SPEI based wet -0.04917 0.02481 -0.00018 0.00268

(0.04002) (0.04981) (0.01671) (0.01258)

N 17,480 12,788 17,591 12,843

Note: Driscoll and Kraay (1998) standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

32



Table 8: Input adjustments as a response to weather variations

(1) (2) (3) (4) (5)

Dep. Var. Labour Seed Fertiliser Pesticides Irrigation

Day/Mu Yuan/Mu Yuan/Mu Yuan/Mu Yuan/Mu

Panel A. Northern spring maize zone

Temperature 0.023587 -0.118659** 0.095785* -0.252883*** -0.354636*

(0.049989) (0.056965) (0.050299) (0.070769) (0.187420)

Precipitation -0.000703*** -0.000125 0.000415* -0.000373 -0.000965

(0.000172) (0.000212) (0.000225) (0.000274) (0.000903)

SPEI based drought -0.048342*** -0.042552* 0.027305 -0.204016*** -0.104528***

(0.018264) (0.024153) (0.018189) (0.027866) (0.038836)

SPEI based wet -0.005785 0.022066 -0.077493*** 0.022645 0.060109

(0.024639) (0.026835) (0.025167) (0.032035) (0.045973)

N 17,588 17,491 17,589 17,528 17,100

R-squared 0.034357 0.011995 0.016014 0.112437 0.060329

Panel B. Yellow-Huai Valley summer maize zone

Temperature -0.048826 0.159015*** 0.176924*** 0.291797*** 0.237188***

(0.045063) (0.047501) (0.045965) (0.065460) (0.083394)

Precipitation 0.000388** 0.000106 0.000119 0.000191 -0.000808***

(0.000176) (0.000170) (0.000201) (0.000194) (0.000260)

SPEI based drought -0.163353** -0.099029 -0.189213** -0.059587 -0.684949***

(0.070820) (0.066730) (0.073529) (0.089237) (0.126903)

SPEI based wet -0.057036* 0.017542 -0.123912*** -0.021986 -0.203081***

(0.029895) (0.036446) (0.039424) (0.040820) (0.062493)

N 12,835 12,792 12,841 12,796 12,599

R-squared 0.031199 0.021231 0.036477 0.036700 0.100955

Note: Driscoll and Kraay (1998) standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

5 Conclusions

In this paper, we assess the impact of weather variations on maize yields in the two main producing

regions in China. One of the strengths of our analysis is the use of a panel dataset of households.

That allows us to track maize yields for the same households over time while controlling for observed

and unobserved determinants of crop yields at the farm level. We also use advanced weather indexes
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(such as the standardized precipitation evaporation indexes, moderate degree days and extreme heat

days) to capture extreme weather deviations. Compared to previous studies on China, we provide

a more credible identification by exploiting within-village variation in weather conditions together

with observed and unobserved household characteristics to account for potential heterogeneity within

villages.

We find average temperature, the SPEI based drought and wet indexes, as well as precipitations

have negative effects on maize yields in the two maize zones. In the Northern spring maize zone,

an increase by one standard deviation in temperature translates into a minor fall of about 1.4% in

maize yield. The impact of a similar change in the occurrence of the SPEI based drought is almost

twice bigger, with a partial effect of -2.5%. Similar results are found for the Yellow-Huai Valley maize

zone with much smaller partial effects of -1.06% and -0.9% for temperature and SPEI based drought,

respectively. The SPEI based wet conditions have lower impacts on yields compared to the SPEI

based drought index. One standard deviation change of SPEI based wet index will decrease maize

yields by about 1.09% and 0.86% in the Northern spring maize zone and the Yellow-Huai Valley

summer maize zone, respectively. The weather variations in the Northern spring maize zone have

larger impacts on maize yields than the variations occurring in the Yellow-Huai maize zone.

The impact of weather variations on maize yields is low when compared to other countries and

regions, such as the United States, Africa, Argentina, or India. Adaptation, in particular outside of

agriculture and maize production, seems to be key in the region where the largest impact is estimated

but remains limited to at best 14% of the short-run impact. It seems to be however enough to com-

pensate and to improve net farm income and total income at the household level. The lower impact

found in the Yellow-Huai Valley summer maize zone is a good news in the short run but evidence

of intensification suggests that the impact may exacerbate in the future. The lack of adaptation

results into detrimental impact on net farm income and total income. Further research should focus

on better understanding the market and non-market conditions that facilitate the adoption of coping

strategies. The implications for food security are likely to be of major importance.
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A Supplementary Figures

Figure A1: Six maize zones in China

Figure A2: The planting area and production in two maize zones as a share of the total in China

Data Resource: China Ministry of Agriculture dataset (2014)
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Figure A3:Maize yields and maize planting areas in two maize zones

Figure A3a: Maize yield Figure A3b: Planting area

Figure A4:Average temperature and Cumulative precipitation in the growing period

Figure A4a: Average temperature Figure A4b: Precipitation
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Figure A6:Annual SPEI in growing period

Figure A6a: SPEI (1 month) Figure A6b: SPEI (3 month)

Figure A5:Average temperature and Cumulative precipitation

Figure A5a: Average temperature
Figure A5b: Precipitation
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Figure A7:SPEI based indexes in growing periods

Figure A7a: SPEI based drought index Figure A7b: SPEI based wet index

B Supplementary Tables

Table A1.Weather-related disasters in Yellow-Huai Valley summer maize zone and in the Northern

spring maize zone between 2003 and 2010

Start End Geo info. Location Disaster Total affected
(Persons)

00/1/2003 00/1/2003 China P Rep Inner Mongolia Autonomous region, Drought 48000000

Henan, Anhui, Shanxi, Shaanxi,

00/11/2008 00/2/2009 China P Rep Shandong, Hubei, Gansu, Hebei, Hebei Drought 3700000

Anhui, Gansu, Henan, Jiangsu provinces

00/12/2010 00/5/2011 China P Rep Jiangsu, Shaanxi, Shandong, Shaanxi Drought 35000000

Chaiyang, Fuxin, Jinzhou

00/6/2009 00/7/2009 China P Rep Huludao districts (Liaoning province) Drought 160000

00/6/2010 00/8/2010 China P Rep Jilin province,Shandong, Henan Flood 6000000

Hunan, Hubei

15/7/2004 20/7/2004 China P Rep Guangxi, Chongqing, Yunnan provinces Flood 33652026

24/8/2003 12/11/2003 China P Rep Shaanxi, Gansu, Henan, Hubei Flood 200000

Shandong provinces

Sources: EM-DAT: The OFDA/CRED International Disaster Database www.emdat.be, Universite catholique de Louvain,

Brussels (Belgium)
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Table A2.Robustness to alternative specification

Dep.Variable Maize yield(log) Maize yield(log)

Variables
North spring maize zone Yellow-Huai Valley summer maize zone

(1) (2) (3) (4) (5) (6)

Panel A. With time trends

Average Temperature
-0.00874 -0.00454 -0.00987 -0.00760

(0.01785) (0.00534) (0.00791) (0.00591)

Cumulative Precipitation
-0.00013* -0.00014*** -0.00011* -0.00011***

(0.00008) (0.00002) (0.00006) (0.00002)

SPEI based drought
-0.02715** -0.03050*** -0.01174** -0.01404***

(0.01155) (0.00357) (0.00512) (0.00518)

SPEI based wet
-0.00836* -0.00927*** -0.00883 -0.01122**

(0.00434) (0.00336) (0.00545) (0.00548)

HH fixed effects Yes Yes Yes Yes Yes Yes

Panel B. With time trends and control variables

Average Temperature
-0.01533 -0.00594 -0.00886 -0.00684

(0.03455) (0.00873) (0.00947) (0.00735)

Cumulative Precipitation
-0.00023* -0.00025*** -0.00014** -0.00015***

(0.00013) (0.00003) (0.00007) (0.00003)

SPEI based drought
-0.04230*** -0.04773*** -0.01042 -0.01538**

(0.01639) (0.00565) (0.00683) (0.00690)

SPEI based wet
-0.01022* -0.01250*** -0.01090 -0.01489**

(0.00607) (0.00448) (0.00677) (0.00682)

HH fixed effects Yes Yes Yes Yes Yes Yes

Panel C. Using village fixed effect

Average Temperature
-0.01251 -0.00888** 0.09005** 0.03492***

(0.01115) (0.00436) (0.03710) (0.00544)

Cumulative Precipitation
-0.00006 -0.00007*** -0.00005 -0.00011***

(0.00005) (0.00002) (0.00008) (0.00002)

SPEI based drought
-0.04077* -0.04424*** -0.02160*** -0.02936***

(0.02282) (0.00373) (0.00526) (0.00532)

SPEI based wet
-0.00467 -0.00503 0.00005 -0.00537

(0.00585) (0.00342) (0.00587) (0.00589)

HH fixed effects No No No No No No

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard errors in parentheses. * significant

at 10%, ** at 5%, *** at 1%.
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Table A3. Non-linearity of weather variations effects

Dep.Variable Maize yield(log) Maize yield(log)

Variables
North spring maize zone Yellow-Huai Valley summer maize zone

(1) (2) (3) (4) (5) (6)

Average Temperature -0.11106 0.189137** 0.174892* 0.189137**

(0.075160) (0.091519) (0.096457) (0.091519)

Square of Temperature 0.002821 -0.004073** -0.003839** -0.004073**

(0.002042) (0.001846) (0.001951) (0.001846)

Cumulative Precipitation 0.000640*** -0.000011 0.000009 -0.000011

(0.000230) (0.000196) (0.000199) (0.000196)

Square of precipitation -0.000001*** -0.000000 -0.000000 -0.000000

(0.000000) (0.000000) (0.000000) (0.000000)

SPEI based Drought(<5%) -0.000484** -0.003852* -0.000484** -0.00083

(0.000199) (0.002105) (0.000199) (0.000000)

Square of Drought (<5%) 0.000038 0.000006

(0.000024) (0.000000)

SPEI based Wet(>95%) -0.000297* 0.000627 -0.000297* -0.00027

(0.000154) (0.000512) (0.000154) (0.000000)

Square of Wet(>95%) -0.000012** 0

(0.000005) (0.000000)

Observations 16,296 13,992 18,508 13,992 13,992 13,992

Number of groups 2,328 1,999 2,644 1,999 1,999 1,999

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard errors in parentheses. * significant

at 10%, ** at 5%, *** at 1%.
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Table A4. Effects of Moderate Degree days and Extreme Heat days

Dep.Variable Maize yield(log) Maize yield(log)

Variables
North spring maize zone Yellow-Huai Valley summer maize zone

(1) (2) (3) (4) (5) (6)

Average Temperature 0.026154*** 0.012646

(0.008630) (0.010012)

Cumulative Precipitation -0.000056 -0.000106*** -0.000133*** -0.000139*** -0.000132***

(0.000050) (0.000023) (0.000040) (0.000017) (0.000018)

SPEI based Drought (<5%) -0.001338* -0.001518*** -0.000497*** -0.000515***

(0.000731) (0.000124) (0.000157) (0.000159)

SPEI based Wet (>95%) -0.000154 -0.000105 -0.000337** -0.000276*

(0.000183) (0.000113) (0.000150) (0.000143)

DDM between 8&24 0.000028 0.00005

(0.000033) (0.000033)

Extreme Heat days above 24 -0.000204*** -0.000199*** -0.000273***

(0.000066) (0.000062) (0.000105)

DDM between 8&20 0.000009 0.000046

(0.000210) (0.000189)

Extreme Heat days above 20 -0.000108 -0.000095 -0.000476***

(0.000268) (0.000236) (0.000101)

Observations 18,508 18,508 16,296 13,992 13,992 13,992

R-squared 0.042 0.042 0.042 0.065 0.065 0.065

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard errors in parentheses.* significant

at 10%, ** at 5%, *** at 1%.
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Table A5. Different measurements of Drought and Wet

Dep.Variable Maize yield(log) Maize yield(log)

Variables
North spring maize zone Yellow-Huai Valley summer maize zone

(1) (2) (3) (4) (5) (6)

SPEI based Drought (<10%) -0.000031 0.000057

(0.000191) (0.000412)

SPEI based Wet (>90%) -0.000204* -0.000382*

(0.000114) (0.000199)

Drought (SPEI<-1∗SD) -0.000480* 0.00021

(0.000247) (0.000282)

Wet (SPEI>1∗SD) -0.000215* 0.000292***

(0.000125) (0.000103)

Drought (SPEI<-2∗SD) -0.001768*** -0.002206

(0.000641) (0.000000)

Wet (SPEI>2∗SD) -0.000318 0.000643

(0.001346) (0.000000)

Observations 18,508 18,508 18,508 13,992 13,992 13,992

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard errors are in parentheses.

* significant at 10%, ** at 5%,*** at 1%.

Table A6. Estimations excluding Hebei Province

Dep.Variable Maize yield(log) Maize yield(log)

Variables
North spring maize zone Yellow-Huai Valley summer maize zone

(1) (2) (3) (4) (5) (6)

Average Temperature -0.01658 -0.01406*** -0.00722 -0.00480***

(0.01460) (0.00543) (0.01155) (0.00860)

Cumulative Precipitation -0.00005 -0.00006*** -0.00023*** -0.00023***

(0.00005) (0.00002) (0.00002) (0.00002)

SPEI based Drought -0.04763* -0.05064*** -0.00363 -0.00909***

(0.02854) (0.00456) (0.00569) (0.00595)

SPEI based Wet 0.00191 0.00247 0.01102* 0.01061

(0.00936) (0.00449) (0.00645) (0.00646)

Observations 16,296 18,508 16,296 13,992 13,992 13,992

R-squared 0.041 0.041 0.041 0.064 0.059 0.064

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard errors are in parentheses.

* significant at 10%, ** at 5%,*** at 1%.
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Table A7. The main results of unbalanced panel

Dep.Variable Maize yield(log) Maize yield(log)

Variables
North spring maize zone Yellow-Huai Valley summer maize zone

(1) (2) (3) (4) (5) (6)

Average Temperature -0.012045 -0.008708** -0.013142*** -0.009965*

(0.010937) (0.004157) (0.004787) (0.005214)

Cumulative Precipitation -0.000062 -0.000078*** -0.000134*** -0.000138***

(0.000044) (0.000021) (0.000043) (0.000017)

SPEI based Drought -0.001341* -0.001493*** -0.000454*** -0.000509***

(0.000732) (0.000115) (0.000155) (0.000156)

SPEI based Wet -0.000094 -0.000091 -0.000317** -0.000368***

(0.000203) (0.000105) (0.000141) (0.000141)

Observations 18,570 21,421 18,570 15,016 15,016 15,016

R-squared 0.038 0.038 0.038 0.059 0.059 0.064

Note: Household and year fixed effects are included. Driscoll and Kraay (1998) standard errors are in parentheses.

* significant at 10%, ** at 5%,*** at 1%.
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Table A8. Direct and indirect effects of weather variables in dynamic models

Labor Seed Fertilizer fee Pesticide fee Irrigation fee

Northern spring maize zone

Diff(Temperature) -0.035832 -0.083248 -0.078689 -0.365948*** -0.138923

(0.069888) (0.071882) (0.068080) (0.082476) (0.218502)

Diff (Precipitation) -0.000340* 0.000168 0.000246 -0.000199 0.000028

(0.000206) (0.000242) (0.000213) (0.000313) (0.001307)

Diff(Drought) -0.002181*** -0.001128 0.001186* -0.005286*** -0.004052***

(0.000665) (0.000879) (0.000660) (0.001067) (0.001473)

Diff(Wet) 0.00019 0.00078 -0.000954 0.000979 0.005683***

(0.000854) (0.001010) (0.000902) (0.001175) (0.001499)

Constant -0.214273*** -0.091074 -0.050812 -0.659241*** -0.290153

(0.072296) (0.062316) (0.071423) (0.192310) (0.232120)

Observations 17622 17524 17621 17560 17108

R-squared 0.0485 0.0231 0.045 0.154 0.143

FE Province FE Province FE Province FE Province FE Province FE

Yellow-Huai Valley summer maize zone

Diff(Temperature) -0.122948 0.000843 0.154491* 0.335533*** 0.024101

(0.077089) (0.081165) (0.080412) (0.108224) (0.145098)

Diff (Precipitation) 0.000169 0.000091 -0.000281 0.000146 -0.000811***

(0.000189) (0.000166) (0.000190) (0.000217) (0.000237)

Diff(Drought) -0.003790* -0.002439 -0.003199 -0.00437 -0.017603***

(0.002163) (0.002132) (0.002286) (0.003006) (0.004712)

Diff(Wet) -0.001487* -0.000257 -0.002556*** -0.001192 -0.002489

(0.000804) (0.000789) (0.000812) (0.001151) (0.001603)

Constant -0.097587** -0.163287*** 0.151445*** 0.121351* 0.164127**

(0.040431) (0.052025) (0.052544) (0.063370) (0.073164)

Observations 12809 12763 12811 12767 12581

R-squared 0.043 0.023 0.018 0.052 0.085

FE Province FE Province FE Province FE Province FE Province FE
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