- ¹ Pollution pathways and release estimation of
- ² perfluorooctane sulfonate (PFOS) and
- ³ perfluorooctanoic acid (PFOA) in central and
- 4 eastern China
- 5 Zhaoyang Liu ^{a,b}, Yonglong Lu ^{a,*}, Pei Wang ^a, Tieyu Wang ^a, Shijie Liu ^c, Andrew C.
- 6 Johnson ^d, Andrew J. Sweetman ^{d,e}, Baninla Yvette ^{a,b}
- 7 ^a State Key Laboratory of Urban and Regional Ecology, Research Center for
- 8 Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- 9 ^b University of Chinese Academy of Sciences, Beijing 100049, China
- ^c State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese
- 11 Research Academy of Environmental Sciences, Beijing 100012, China
- ¹² ^d Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford
- 13 Wallingford, Oxon, OX 10 8BB, UK
- ¹⁴ ^e Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
- 15
- 16 Corresponding author:
- 17 *Yonglong Lu
- 18 Tel: 86-10-62917903
- 19 Fax: 86-10-62918177
- 20 E-mail: <u>yllu@rcees.ac.cn</u>
- 21

22	ABSTRACT: China has gradually become the most important manufacturing and
23	consumption centre of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid
24	(PFOA) and the world's major contamination hotspots. However, a systematic
25	analysis of pollution pathways for PFOS/PFOA into the different environmental
26	compartments and their quantification in China are less known. This paper provided a
27	comprehensive estimation on PFOS and PFOA release into the environment in the
28	central and eastern region of China, which accounted for vast majority of national
29	emission. About 80-90% of PFOS/PFOA contamination in the Chinese environment
30	was estimated to come from manufacturing and use facilities mostly via industrial
31	wastewater discharge. The other major contamination sources were screened to be
32	aqueous fire-fighting foams (AFFF), and pesticides including sulfluramid the
33	breakdown of the pesticide sulfluramid-for PFOS. For PFOA, following some way
34	behind industrial wastewater, were industrial exhaust gas, domestic wastewater and
35	landfill leachate as contamination sources. For surface water contamination, the major
36	pollution contributors after industrial wastewater were AFFF spill runoff for PFOS,
37	and domestic wastewater and precipitation-runoff for PFOA. The majority PFOS that
38	contaminated soil was associated with infiltration of AFFF and <u>pesticidessulfluramid</u>
39	pesticide, while most PFOA in soil was attributed to atmospheric deposition and
40	landfill leachate. Where groundwater had become contaminated, surface water
41	seepage was estimated to contribute about 50% of PFOS and 40% of PFOA whilst the
42	remainder was mostly derived from soil leaching. A review of the available
43	monitoring data for PFOS/PFOA in the field confirmed industrial wastewater, landfill

Formatted: Font color: Red

Formatted: Font color: Red

leachate and AFFF application as important sources. Higher concentrations of PFOA
than PFOS in precipitation also corroborated more PFOA release in the air
compartment. To reduce PFOS/PFOA contamination of the Chinese environment the
focus for control should be on industrial wastewater emissions.

48 KEYWORDS: PFOS/PFOA; pollution pathway; release estimation; environmental
49 risk; pollution hotspot

50 **1. Introduction**

Having excellent chemical stability, high surface activity, with water and oil 51 repellence (Giesy and Kannan, 2001; 2002), perfluoroalkyl acids (PFAAs) have been 52 53 widely used as surfactants and surface protectors, performance chemicals, lubricants and pesticides. However, concerns have been raised due to their environmental 54 persistence, toxicity, long-range transport and bioaccumulation properties (Takagi et 55 al., 2011; Lescord et al., 2015; Liu et al., 2015b). These chemicals have been detected 56 in many components of the environment, and some of PFAAs are believed to be 57 ubiquitously present in both the natural environment and the biotaContinuous release 58 of these substances has resulted in them becoming ubiquitous in the environment 59 (Post et al., 2013; Miralles-Marco and Harrad, 2015). They are transported in surface 60 water and air (Wang et al., 2015) leading to their deposition in oceans, soil and 61 62 groundwater (Sharma et al., 2015; Zhao et al., 2016; Armitage et al., 63 2006)(Prevedouros et al., 2006; Sharma et al., 2015).

Formatted: Font color: Red

Formatted: Font color: Red

64 Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two of 3/37

the most frequently detected PFAAs in the environment (Wang et al., 2015). Due to 65 their adverse environmental impacts and potential health risks, PFOS have been listed 66 in a series of national and multilateral regulation agreements including the Stockholm 67 68 Convention in 2009 (UNEP, 2009; USEPA, 2009); while 2010/2015 PFOA Stewardship Program was implemented to reduce PFOA emission (USEPA, 2006). 69 Although production and application of PFOS and PFOA have been discontinued in 70 Europe and America (USEPA; 2009), they have continued to increase in China due to 71 72 on-going domestic and international demands (Wang et al., 2016). After a decade of 73 continuous expansion, China's annual production capacity of PFOS and PFOA 74 plateaued at approximately 220-240 t/yr by 2011 and 150 t/yr by 2013, respectively (Liu et al., 2008; Li et al., 2015). The widespread contamination and the associated 75 risks to environment and human health remain a concern for the scientific community 76 77 and government regulators.

PFOS and PFOA can be released to the surrounding environment during 78 manufacturing and application of PFOS/PFOA-containing products (Wang et al., 79 2014a). Local PFOS contamination is usually associated with discharge from 80 industries such as metal plating, textile treatment and PFOS manufacturing, whilst hot 81 spots of PFOA contamination are derived from production and fluoropolymer (FP) 82 manufacturing and processing (Lim et al., 2011; Prevedouros et al., 2006)(Xie et al., 83 84 2013b; Li et al., 2015). The occurrence of PFOS/PFOA pollution hotspots in soil, 85 water and air associated with manufacturing facilities have been increasingly reported in China (Chen et al., 2009; Wang et al., 2015). However, the broader picture of 86 4 / 37

pollution pathways for PFOS/PFOA into different environmental compartments and
their quantification across China are less well known. The purpose of this study was
to provide a comprehensive estimation of PFOS and PFOA release into the Chinese
environment.

91 **2. Identification of sources and pollution pathways**

Formatted: Normal, Left, No bullets or numbering

94	Fig.1 Sch	nematic diagram	of sources and	pollution	pathway	ys for PFOS/PFOA	
						1	

There are two major sources of PFOS/PFOA pollution in China, that from the 95 domestic source and that from the industrial source (a major component in China) 96 97 (Fig. 1). The initial recipients for this release are soil and surface water. Industrial emission of PFOS/PFOA mainly includes two pollution pathways: (i) PFOS/PFOA 98 discharged into surface waters via industrial wastewater (Wang et al., 2012); and (ii) 99 100 PFOS/PFOA emission to air followed by deposition to surface water and terrestrial 101 surfaces. Given their mobile characteristics, those in deposited into the terrestrial 102 environment will ultimately run off into surface water or infiltrate deeper into soil 103 (Xiao et al., 2012a; Shan et al., 2015). The PFOS/PFOA in domestic products can be released into surface water through municipal wastewater treatment plants 104 105 (MWWTPs) (Zhang et al., 2013), In certain cases, the concentrations of PFAAs especially for PFOA increase from the influent to the effluent of MWWTPs, 106 suggesting the biodegradation of precursors during the biological wastewater 107 108 treatment (Xiao et al., 2012b). Those that do not escape directly may be trapped in 109 biosolids in the MWWTPs or enter landfill with the disposal of unwanted products. In 110 both cases further leaching into soils and surface/groundwater are possible. Other 111 sources include the dispersion of aqueous fire-fighting foam (AFFF), and in agriculture from the natural breakdown of the pesticides including sulfluramid the 112 113 natural breakdown of the pesticide sulfluramid both of which can be released into soil 114 (Chen et al., 2012; Zhang et al., 2013; Löfstedt Gilljam et al., 2015; Yan et al., 2015). 115 Both PFOS and PFOA can enter into groundwater mainly through surface water 6/37

Formatted: Font color: Red

Formatted: Font color: Red

117	4.3. Estimation methods of environmental releases	
118	The production process commonly used by Chinese PFOS and PFOA manufacturers	Formatted: Font color: Red
119	is electrochemical fluorination (ECF), which was previously used by global producers.	
120	The ratio of linear to branched perfluorinated C chains is roughly 70% to 80% linear	
121	and 20% to 30% branched in the case of the synthesis of PFOS and PFOA (Buck et al.,	
122	2011). Considering a large part of PFOS/PFOA produced in China meets the domestic	
123	demands, the release estimation took into account both the linear and branched	
124	isomers of PFOS/PFOA. After a decade of substantial increase in production and use	
125	of PFOS and PFOA in China there has been a plateau over the period of 2010 to 2013	
126	(Wang et al., 2015; Li et al., 2015). The vast majority of PFOS-(98%) and PFOA	
127	(87%) were emitted in the central and eastern region of China, which are developed	
128	industrial and commercial areas are centred. The first step was to collect and further	
129	process emission data for PFOS and PFOA from the central and eastern region of	
130	China in 2010-2013. The next step was to estimate environmental release for transport	
131	processesprocess such as atmospheric deposition, runoff, soil leaching and surface	Formatted: Font color: Red
132	water seepage. The presence of PFOS/PFOA in different environmental compartments,	
133	following the release from different routes was then calculated.	
134	In the present study, main precursors of PFOS/PFOA were considered as possible	Formatted: Font color: Red Formatted: Indent: First line: 1 ch
135	when collecting and further processing the emission data for PFOS and PFOA. PFOS	
136	precursors mainly included perfluorooctane sulfonamides (FOSAs) and	
	7 / 37	

137	perfluorooctane sulfonamidoethanol (FOSEs) while PFOA precursors primarily	
138	refered to fluorotelomer alcohols (FTOHs), FOSAs and FOSEs (Buck et al., 2011).	
139	Some precursors such as FTOHs, FOSAs and FOSEs are industrial products, and may	
140	be released to the environment during the process of manufacturing and using. FOSAs	
141	and FOSEs are produced based on perfluorooctane sulfonyl fluoride (POSF); while	
142	FTOHs is manufactured based on fluorotelomer (FT) (Prevedouros et al., 2006). In	
143	addition, these precursors were also released as impurities or by-products when	
144	manufacturing other FT-based or POSF-based products including PFOS and PFOA	
145	(Lim et al., 2011; Wang et al., 2014a). Environmental release data of these precursors	/
146	we collected or calculated were based on the production or use amount and	
147	corresponding emission factors and/or content as impurities in a certain industrial or	
148	use process (Xie et al., 2013b; Li et al., 2015). Then, these precursors were uniformly	
149	converted to PFOS/PFOA equivalents through respective transformation factors,	
150	which meant the degradation yields of PFOS/PFOA by weight from PFOS/PFOA	
151	precursors.	
152	3.1 Contamination of surface water and soil	
153	3.1.1 Wastewater and sewage sludge discharge	
154	For industrial wastewater, the release estimation of PFOS/PFOA were based on the	/
155	production or use amount of PFOS/PFOA-related chemicals and the emission factors	
156	to water in a certain industry. According to the above method, Consideration of the	
157	emission data suggested the release of PFOS and PFOA through industrial	
	•	

Formatted: Font color: Red

Formatted: Font color: Red

158	wastewater discharge have been were estimated to be 58 t/yr and 27.3 t/yr,	Fo
159	respectively (Xie et al., 2013b; Li et al., 2015). The starting point for an estimation	
160	of PFOS/PFOA release through domestic wastewater discharge was the assumption	
161	that PFOS, PFOA and precursors would enter the drain/sewer system and further	Fo
162	<u>WWTPs</u> following cleaning, wiping and washing of the products in the domestic	
163	indoor environment-(Xie et al., 2013a). Regional emission of PFOS/PFOA from	Fo
164	local WWTPs have been found to be estimated from corresponding statistical data on	
165	population density (PD) and per capita disposable income (PCDI) (Xie et al., 2013a;	
166	Li et al., 2015). Based on the estimation equations and regional statistical data,	
167	release of PFOS/PFOA via MWWTP emission (E _{MWWTP}) was calculated in this	Fo Fo
168	study (detailed description and data in Supplementary Material and Table S1). Total	Fo Fo
169	discharge amount of FOSA and N-Ethyl perfluorooctane sulfonamidoacetic acid	
170	(EtFOSAA), which passed the WWTPs without degradation, were averagely ~5% of	
171	those for PFOS and ~2% of those for PFOA, based on monitoring data from 28	
172	MWWTPs in 11 cities of central and eastern China (Zhang et al., 2013). The release	
173	of these precursors from MWWTPs were also calculated according to the above	
174	proportions and the estimated release of PFOS/PFOA, and then further converted to	
175	PFOS and PFOA equivalents through respective transformation factors (detailed	
176	description in Supplementary Material). The detailed description of estimation	
177	methods for MWWTP emission (E_{MWWTP}) and supporting data was contained in the	
178	Supplementary Material and Table S1. Degradation of PFOS/PFOA precursors, for	
179	example Σ FOSA (N alkyl substituted perfluorooctane sulfonamides) was also	

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red Formatted: Font color: Red Formatted: Font color: Red Formatted: Font color: Red 180 considered in MWWTP emission. Mass flow of PFOS/PFOA in wastewater and 181 sewage sludge from 43 MWWTPs in in these regions the central and eastern region 182 of China was also collected to calculate emission proportion through domestic 183 wastewater ($P_{MWWTP water}$) and through sewage sludge ($P_{MWWTP sludge}$) (reviewed 184 in Table S2). Eq. (1) was used to estimate the release of PFOS/PFOA (W_{MWWTP}) in 185 domestic wastewater to surface water.

186
$$W_{MWWTP} = E_{MWWTP} \times P_{MWWTP water}$$
 (1)

187 In China, approximately 8.5 million tons dry weight of municipal sewage sludge (biosolid) are generated each year (Zhang et al., 2013). It is calculated that the 188 189 biosolids would contain average concentrations of 18 ng/g for PFOS and 8.3 ng/g for 190 PFOA. About 48% of these biosolids were applied to land via agriculture and urban 191 greening ($P_{Biosolid application}$) as a soil amendment while 35% of them were disposed 192 as landfill (P_{Biosolid land fill}) (Chen et al., 2012). No further treatment occurs for these PFOS/PFOA in biosolids in landfill or applied to the local soil compartment 193 (Lindstrom et al., 2011). Eqs. (2) and (3) were used to estimate the release and 194 195 leaching of PFOS/PFOA into soil from biosolid application to the land 196 $(S_{Biosolid application})$ and landfill $(S_{Biosolid landfill})$.

197
$$S_{Biosolid\ application} = E_{MWWTP} \times P_{MWWTP\ biosolid} \times P_{Biosolid\ application}$$
 (2)

- 198 $S_{Biosolid \ landfill} = E_{MWWTP} \times P_{MWWTP \ biosolid} \times P_{Biosolid \ landfill}$ (3)
- 199 3.1.2 Aqueous Fire-fighting Foam(AFFF) runoff and infiltration

Formatted: Font color: Red

200	Perfluorooctane sulfonyl fluoride (POSE) based AEEE mainly produced by	Form
200	remuorooctane sunonyi nuonue (rosr)-based Arri, manny produced by	
201	consuming the PFOS-salts, is the predominant type of foam in China and is also	
202	known to contain PFOA impurities (Lim et al., 2011; Andreas and Leo, 2009). During	Form
203	the application of AFFF, PFOS is directly released to the environment as main	
204	ingredients, while PFOA is released in the form of impurities. Due to unavailability of	
205	PFOS/PFOA precursors content, these substances was not taken into account for my	
206	calculation present in the foam formulation. The concentration ratio of PFOS:PFOA	
207	in POSF-based AFFF, produced by similar process to those in China, has been	
208	estimated to be 10:1 or even lower (Andreas and Leo, 2009). Emission of PFOS in	
209	AFFF application to the environment was estimated to be 7 t/yr (Xie et al., 2013b).	
210	According to the PFOS:PFOA ratio (10:1) in POSF-based AFFF, a more modest	Form
211	emission of PFOA was estimated at 0.7 t/yr. When estimating the environmental	
212	release of PFOS/PFOA in AFFF, fire training and fire intervention are both considered	
213	in the present study (Zhang et al., 2012). The environmental release of PFOS/PFOA	
214	during AFFF application was estimated based on a commonly used scenario (Brooke	
215	et al., 2004), that there is no containment of this fire-fighting foam after discharge,	
216	which is the case in China, and 50% of the release goes to surface water without	
217	treatment and 50% to soil which could ultimately, if present, lead to groundwater.	
218	According to the assumed PFOS:PFOA ratio (10:1) in AFFF (Andreas and Leo,	
219	2009), a more modest emission of PFOA was estimated at 0.7 t/yr. This ratio was	
220	informed by data on consumption of PFOS (100 t/a) and PFOA (9t/a) in AFFF	
221	production in China (Mei, 2007; Yu, 2010). Based on the assumption that there is no	

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red

222 containment of this fire-fighting foam after discharge, an arbitrary value of 50% 223 release was presumed to go to surface water and 50% to soil which could ultimately, if present, lead to groundwater (Brooke et al., 2004). Therefore, the release of PFOS 224 225 in AFFF application to both surface water and soil were 3.5t/yr respectively, while 226 those of PFOA were 0.35t/yr respectively.

227 3.1.3 Atmospheric deposition, runoff and infiltration

The air emission of PFOS from production and metal plating was estimated to be 1.3 228 t/yr. For PFOA emissions to the atmosphere were estimated at 7.3 t/yr according to 229 230 previous calculations of total environmental emission (40t) (Xie et al., 2013b; Li et al., 231 2015). Except for small amount of PFOS/PFOA precursors, most airborne 232 PFOS/PFOA were combined with particulate matters, which was easily deposited to land and ocean (Harada et al., 2006; Barton et al., 2006). Liu et al. (2015b) estimated 233 234 that ~65% of PFOS generated from air emission can deposit to the local region and the remaining will transport to a longer distance. Based on the asumption that the 235 236 precursors were instantly degraded to PFOS, about 65% of PFOS from air emission 237 would reach to land in a typical region, the Bohai Rim, which were simulated by the Berkeley-Trent model (Liu et al., 2015b). Although higher proportion of airborne 238 239 PFOS/PFOA would be deposited to land in some inland regions, the proportion (65%) 240 were conservatively used due to shortage of detailed information about atmospheric 241 transport. Air emission of PFOS/PFOA was assumed to be evenly deposited to a large 242 surrounding expanse of terrestrial surface and surface water.

Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Indent: First line: 0 cm

The maximum mass fractions of airborne PFOS and PFOA were observed in 243 244 particulate matter of $<0.3\mu m$ and $<10\mu m$, respectively, most of which would be 245 removed by wet precipitation (Barton et al., 2006; Harada et al., 2006). Removal by 246 precipitation was also expected to take out both the smallest size particles ($<1\mu m$) as well as the coarser size particles ($<10\mu$ m) (Taniyasu et al., 2013; Drever et al., 2015). 247 In general, 80%-90% of atmospheric particulate matter were presumed to be captured 248 in wet deposition while dry deposition would only account for 10%-20% (Dai, 2006; 249 Shan et al., 2015). In this study, proportions of wet deposition (P_{wet deposition}) was 250 251 conservatively estimated to be 80% and the remaining 20% (Pdrv deposition) were attributed to dry deposition. The proportion of exposed surface water, both rivers and 252 lakes, in the provinces of central and eastern China were calculated to be 5.7% for 253 254 average percentage of surface water area ($P_{Surface water}$) (IGSNNR, 2014). Eq. (4) 255 can be used to calculate the contamination of surface water by PFOS/PFOA 256 $(W_{deposition})$ via air emission and subsequent direct deposition, where E_{air} represented air emission of PFOS/PFOA and PLand represented the proportion of 257 airborne PFOS/PFOA deposited to the land. 258

259
$$W_{deposition} = E_{air} \times P_{Land} \times P_{Surface water}$$
 (4)

What is the fate of the PFOS/PFOA that is deposited on the terrestrial environment? With the exception of direct deposition to surface water, most PFOS/PFOA arriving through dry deposition would reach soil and vegetation, and those present in vegetation would also reach the soil through litter fall and precipitation washout. Both

the EU system for the evaluation of substances model and the Berkeley-Trent model 264 265 estimate that less than 0.3% of PFOS in soil would be entrained in runoff and be transported to surface water, which was an negligible proportion negligible (Brooke et 266 267 al., 2004; Liu et al., 2015b). Due to similar physicochemical properties (e.g. $\log K_{oc}$) between PFOS and PFOA, this study assumed that PFOS and PFOA in soil entrained 268 by runoff to surface water could be negligible and these substances carried by runoff 269 270 to surface water came from precipitationthis study assumed that all PFOS/PFOA 271 would behave in the same way. Based on annual precipitation and runoff, an average 272 runoff coefficient (C_{runoff}) in eastern and central China was calculated to be 0.34, 273 which was approximate to the median of runoff coefficients (0-0.8) for natural surface (IGSNNR, 2014). The PFOS/PFOA not captured in runoff, would enter deeper within 274 275 soil through infiltration. Eqs. (5) and (6) can be used to calculate the release of PFOS/PFOA through runoff to surface water (W_{runoff}) and through atmosphere 276 277 deposition to soil (Sprecipitation).

278
$$W_{runoff} = E_{air} \times P_{Land} \times P_{wet \ deposition} \times (1 - P_{surface \ water}) \times C_{runoff}$$
 (5)

279 $S_{deposition} =$

280
$$E_{air} \times P_{Land} \times (1 - P_{surface water}) \times [P_{dry deposition} + P_{wet deposition} \times (1 - P_{surface water})]$$

$$281 \quad C_{runoff})]$$

In China, most landfills are not adequately lined to prevent leachate migration. The total leakage of PFAAs from landfill leachate ($E_{landfill}$) to local soil and groundwater

(6)

Formatted: Font color: Red

Formatted: Font color: Red

in China was estimated to be 3.1 t/yr with approximately 81% of the national leakage 285 286 coming from the central and eastern regions (NBS, 2014). Based on the 287 concentrations of individual PFAA found in landfill leachate (Yan et al., 2015), the percentage of PFOS and PFOA in landfill that could enter the leachate $(P_{landfill})$ were 288 estimated to be 3.3% and 60%, respectively. Eq. (7) can be used to estimate the 289 290 amount of PFOS/PFOA released from landfill to soil (Slandfill). As landfill in China mainly consists of biosolids and municipal solid waste (MSW), PFOS/PFOA (S_{MSW}) 291 derived from MSW can be estimated by total release in landfill leachate $(S_{landfill})$ 292 293 and those derived from biosolid landfill ($S_{Biosolid \ landfill}$) (Eq. 8).

294
$$S_{landfill} = E_{landfill} \times P_{Landfill,central and eastern China} \times P_{landfill}$$
 (7)

$$295 \quad S_{MSW} = S_{landfill} - S_{Biosolid\ landfill} \tag{8}$$

296 3.1.5 Pesticide infiltration

297	In China, sulfluramid is the predominant PFOS/PFOA-related pesticide, which was
298	used to estimate PFOS/PFOA release from pesticide in this study (Zhang et al., 2012).
299	The main active ingredient in sulfluramid is N-ethyl perfluorooctane sulphonamide
300	(Et-FOSA) (Löfstedt Gilljam et al., 2015), which would ultimately transform to PFOS
301	and PFOA through photolysis, oxidation, biotransformation, and so forth (Tomy et al.,
302	2004; Martin et al., 2006; Plumlee et al., 2009). Furthermore, PFOS and PFOA were
303	also released to the environment as impurities in sulfluramid. The pesticide
304	sulfluramid, which is still licensed for use in China, contains PFOS/PFOA precursors
305	(eg. n ethyl perfluorooctane sulfonamide) which can be transformed back into these
	15 / 37

306	molecules (Löfstedt Gilljam et al., 2015). For sulfluramid containing pesticides, the	
307	vast majority are released into the terrestrial environment during application. The	/
308	environmental release of PFOS has been estimated to be 2.6 t/a by Zhang et al. (2012),	
309	while those of PFOA was calculated to be 1.4 t/a based on the annual consumptions of	
310	Et-FOSA for sulfluramid, emission factors in use process, transformation rate to	
311	PFOA and PFOA content as impurities in sulfluramid (detailed description in	
312	Supplementary Material). The use amount of sulfluramid in the central and eastern	
313	region of China accounted for 96% of total national use amount	
314	(Presticide, central and eastern China) (Zhang et al., 2012). In China, environmental	_
315	releases of PFOS/PFOA (Epesticide) have been estimated to be 2.6 t/a and 1.4 t/a,	
316	respectively (detailed description in Supplementary Material) (Zhang et al., 2012).	
317	The proportion of sulfluramid used in the central and eastern region of China	
318	(Ppesticide, central and eastern china) has been estimated to be 96% (Zhang et al., 2012).	
319	According to emission factors for pesticides used in personal/domestic situations from	
320	the Technical Guidance Documents (TGD) (European Commission, 2003), 90% of	
321	sulfluramid (P_{soil}) would release to local soil during use the proportion of sulfluramid	
322	(Protect) which is released to local soil was estimated to be 90%. Infiltration The release	
323	of PFOS/PFOA ($S_{nesticide}$) from pesticide application to soil can be estimated by Eq.	
324	(9).	
325	$S_{pesticide} = E_{pesticide} \times P_{Pesticide,central and eastern China} \times P_{soil} $ (9)	

Formatted: Font color: Red

Formatted: Font color: Red Formatted: Font color: Red Formatted: Font color: Red

Formatted: Font color: Red

Formatted: Font color: Red
Formatted: Font color: Red

325

3.2 Groundwater contamination 326

16 / 37

327 *3.2.1 Surface water seepage*

Contaminated surface water seepage is a major pollution pathway of PFOS/PFOA in 328 groundwater (Lin et al., 2015; Liu et al., 2016). Official data concerning total 329 330 groundwater recharge $(V_{total recharge}),$ recharge from surface water 331 $(P_{surface water recharge})$ and total surface water volume $(V_{surface water})$ in central and 332 eastern region of China were used to calculate seepage rates of PFOS/PFOA from surface waters (SR_{surface water}) (Table S4) (MWR, 2011; 2013) [Eq.(10)]. Using a 333 334 multimedia fate model for PFOS in the Bohai Rim of China, the proportion adsorbed 335 by sediment was calculated to be about 5% of total release in surface 336 water($P_{Sediment \ absorption}$) (Liu et al., 2015b). Due to a similar log $K_{\rho c}$ between PFOS (2.4-4.7) and PFOA (1.3-4.5), this proportion was used to estimate the amount 337 adsorbed by sediment (Higgins and Luthy, 2006; Johnson et al., 2007; Ferrey et al., 338 2009; Ahrens et al., 2011; Li et al., 2012). Eq.(11) was used to estimate the release of 339 PFOS/PFOA through surface water seepage to groundwater ($G_{seepage}$). 340

341
$$SR_{surface water} = \frac{V_{total recharge} \times P_{surface water recharge}}{V_{surface water}}$$
 (10)

342
$$G_{seepage} = E_{surface water} \times (1 - P_{Sediment absorption}) \times SR_{surface water}$$
 (11)

343 3.2.2 Soil leaching into groundwater

Due to their relatively high solubility in water and low $\log K_{oc}$ ($\log K_{oc}$ of 3.0 and 2.8), the potential for PFOS/PFOA in soil (E_{soil}) to be leached into groundwater by precipitation or irrigation is <u>found assumed</u> to be high (Zareitalabad et al., 2013; Xiao

1	Formatted: Font color: Red
-	Formatted: Font color: Red
1	Formatted: Font color: Red
Ϊ	Formatted: Font color: Red
1	Formatted: Font color: Red
Ϊ	Formatted: Font color: Red

Formatted: Font color: Red

347	et al., 2015). In the present study, the high leaching potential was mainly attributed to	Formatted: Font color: Red
348	The assumption was also based on the fact that relatively high irrigation intensity and	
349	precipitation occurred in central and eastern China (NBS, 2014), which had a big	
350	contribution to soil leaching of PFOS/PFOA. The leaching percentage of PFOS/PFOA	
351	$(P_{leaching})$ in soil was estimated to be 90% based on a dissipation model, which was	
352	based on results observed during leaching experiments (Gellrich et al., 2012;	
353	Zareitalabad et al., 2013). According to a long-term pilot study, only 0.001% of PFOA	Formatted: Font color: Red
354	and 0.004% of PFOS in soil could be accumulated by vegetation (winter rye, canola,	
355	winter wheat and winter barley), which was negligible in this estimation (Stahl et al.,	Formatted: Font color: Red
356	2013). As the main grain producing areas, large areas of the same or similar crops are	Formatted: Font color: Red
357	planted in the central and eastern regions of China (NBS, 2014). Therefore, Eq. (12)	
358	was used to estimate release of PFOS/PFOA through soil leaching into groundwater	
359	$(G_{soil \ leaching}).$	
360	$G_{soilleaching} = E_{soil} \times P_{leaching} \tag{12}$	

- 361 **4. Results and discussion**
- 362 4.1 Major sources screening and release comparison

365 Fig.2 Environment release of PFOA and PFOS in different pollution pathways.

Note: a was calculated by data from Xie et al. (2013b) and Li et al. (2015); b, c and j were calculated by Eq. (4, 5, 6) and data from Xie et al. (2013b), Li et al. (2015), Dai (2006), IGSNNR (2014) and Liu et al. (2015b) ; d, g and h were calculated by Eq. (1, 2, 3, S1, S2, S3, S4) and data from Zhang et al. (2013), Chen et al. (2012) and references listed in Table S1; e and f were

calculated by data from Xie et al. (2013b), Andreas and Leo (2009) and Brooke et al. (2004); i
was calculated by Eq. (7, 8) and data from Yan et al. (2015) and (NBS, 2014); k was calculated by

372 Eq. (9, S5) and data from Zhang et al. (2012) and European Commission (2003).

373 Overall about 70t of PFOS and 40t of PFOA were estimated to be released into the environment in central and eastern China (Fig. 2). The most important observation 374 here is that this contamination was dominated by industrial emissions which 375 contributed 86% of PFOS and 87% of PFOA to this environmental release. This 376 377 clearly shows the unique challenge faced by China. The vast majority of this 378 industrial emission was in wastewater discharged to surface water. Although not important in terms of quantity of release, it can be observed that the release of PFOS 379 to the air compartment from industrial emission (1.3 t/yr and 1.9% of the total 380 environmental emission) was significantly lower than for PFOA (7.3 t/yr and 18% of 381 the total emission). This is linked to the facts assumption that only two PFOS-related 382 383 industrial processes, which are PFOS production and metal plating, contribute to air emissions of PFOS (Paul et al., 2008) whilst each main PFOA-related industrial 384 processes, which included PFOA production, FP manufacturing and processing, use of 385 aqueous fluoropolymer dispersions (AFDs) and industrial processes of POSF- and 386 FT-based products, contributed air emission of PFOA, and the total release is 387 388 considerablePFOA production and nearly all related industrial processes make 389 considerable emissions of PFOA into the atmosphere (Wang et al., 2014a; b).

Formatted: Font color: Red Formatted: Font color: Red

Formatted: Font color: Red

390 Overall, domestic emissions are a much less important source of contamination in

391	central and eastern China in terms of quantity (Fig. 2). The higher emissions of PFOS
392	compared to PFOA were linked to its use in AFFF and in sulfluramid-pesticides. The
393	release of PFOA in domestic wastewater was about 4 times of those of PFOS.
394	However, the emission proportion of PFOA (3.2%) derived from sewage sludge
395	(biosolid) was much lower than those of PFOS (21%). This is linked to the slightly
396	higher $\log K_{oc}$ of PFOS compared to PFOA (Higgins and Luthy, 2006). Release of
397	PFOA in landfill leachate derived from municipal solid waste (mainly consisting of
398	domestic garbage) was two orders of magnitude higher than that of PFOS. The higher
399	PFOA releases from domestic wastewater and garbage were considered to be linked to
400	its higher relative use in the home following the gradual phase-out of PFOS-based
401	chemicals by the Chinese government (Wang et al., 2009).

402 4.2 Contribution estimation of PFOS and PFOA in different pathways

403

404

405 Fig. 3 Contribution of PFOS (a) and PFOA (b) in different pathways.

Note: a was calculated by data from Xie et al. (2013b) and Li et al. (2015); b and j were calculated
by Eq. (1, 2, S1, S2, S3, S4) and data from Zhang et al. (2013), Chen et al. (2012) and references
listed in Table S1; c and g were calculated by data from Xie et al. (2013b), Andreas and Leo
(2009) and Brooke et al. (2004); d, e and f were calculated by Eq. (4, 5, 6) and data from Xie et al.
(2013b), Li et al. (2015), Dai (2006), IGSNNR (2014) and Liu et al. (2015b); h was calculated by
Eq. (9, S5) and data from Zhang et al. (2012) and European Commission (2003); i was were

calculated by Eq. (3, 7) and data from Yan et al. (2015) and (NBS, 2014); k was calculated by Eq.
(10, 11) and data from MWR (2011; 2013) and Liu et al. (2015b); l was calculated by Eq.(12) and
data from Gellrich et al. (2012) and Zareitalabad et al. (2013).

In China, from all sources about 62 t/yr of PFOS were estimated to be released into surface water. Industrial wastewater was the dominant pollution pathway of PFOS in surface water and contributed about 93% (Fig. 3). Due to the relatively high content of PFOS (0.4-0.6% by weight) in AFFF, this was the second most important source. The release of PFOS to soil was estimated at 7 t/yr in central and eastern China. The majority of soil contamination <u>coming-came</u> from the use of AFFF and <u>sulfluramid</u> pesticide. Total contribution from other pollution pathways was less than 11%.

Like PFOS, the major release to surface water from PFOA came from industry (Fig 3). However, a larger proportion of PFOA emission came from MWWTP discharge (5.8%) and precipitation-runoff (4%). About 6 t/yr of PFOA was released into soil and much of this was attributed to atmospheric deposition. Landfill leachate and pesticide application were next in proportion as sources of soil contamination.

Because of their persistence and mobility, groundwater and ocean were the predominant ultimate sinks of PFOS/PFOA. The majority of PFOS/PFOA in surface water will eventually flow into the ocean (Liu et al., 2015b). Surface water seepage and soil leaching contributed almost all of the PFOS/PFOA in groundwater. Due to absorption and retardation by soil particles, the leaching of PFOS/PFOA would occur in a relatively long and slow process of several years depending on groundwater depth 24/37 Formatted: Font color: Red Formatted: Font color: Red

433	(Xiao et al., 2015). Therefore, transport of PFOS/PFOA through surface water
434	seepage was transient and fast, whilst the movement of PFOS/PFOA through soil
435	leaching was expected to be long lasting and slow.

436 *4.3 Uncertainty analysis and study limitation*

437	Some uncertainty analysis and study limitations were discussed in this release
438	estimation. As emerging pollutants, sufficiently detailed information on PFOS/PFOA
439	consumption are still lack, and emission data of PFOS and PFOA are only available
440	for major sources. In fact, other industrial sources including paper making, oil
441	exploitation, cleaning products and domestic sources such as traffic, outdoor
442	commercial activities and sulfotine pesticide may also contribute small quantities of
443	PFOS and PFOA in the environment. Therefore, environmental release of PFOS and
444	PFOA in central and eastern China might be underestimated. Some emission data of
445	PFOS/PFOA impurities may be conservative compared to the actual values, due to
446	application of emission factors for the developed countries, which have enforced more
447	strict emission regulations.
448	Due to shortage of sufficient data on PFOS/PFOA transport, only the major \clubsuit
449	pollution pathways were discussed in this study. Actually, plant bioaccumulation,
450	runoff scouring, and diffusion between different environmental media, which
451	contributed very small quantities of PFOS and PFOA, are also potential pollution
452	pathways in the environment. Less consideration of these factors may lead some

453 uncertainties for release estimation. In addition, some detailed information on

Formatted: Indent: First line: 1 ch

Formatted: Font color: Red

454	PFOS/PFOA emission at subregional levels cannot be available. Thus, some transport	
455	parameters of PFOS/PFOA in the processes such as runoff, surface water seepage and	
456	sediment adsorption had to be conservatively homogenized to roughly estimate	
457	environmental release within a large scope. Although the variation of these parameters	
458	in these subregions were limited, the estimates may also lead some disparities	
459	compared to the actual values.	
460	To the best of our knowledge, there are no precise data on degradation rates of the	_
461	precursors, or the extent to which PFOS/PFOA may be produced, so the estimated	Fo
462	release in this study could merely reflect the worst case in which all precursors would	
463	transform to PFOS/PFOA instantly.In addition, it is unclear about the degradation	
464	rates of airborne PFOS/PFOA precursors, so the estimated release in this study could	
465	merely reflect the worst case in which all precursors would convert to PFOS/PFOA.	
466	In fact, the transformation process of some precursors may be very slow, which may	Fo
467	lead underestimation of PFOS/PFOA generated by precursors in the different studied	
468	media. Although degradation of Σ FOSA were considered in release estimation from	
469	MWWTP, there is a shortage of information on other precursors such as FTOHs as	
470	another source for PFOS/PFOA in MWWTP emission. Furthermore, the lack of	
471	discharge load of PFOS/PFOA precursors in landfill leachate and AFFF, although	
472	their release contribution may be very low, led another underestimation of	
473	PFOS/PFOA release to the environment.	
474	Compared to those (65%) in coast regions, the proportions of airborne PFOS/PFOA	

Formatted: Font color: Auto

Formatted: Font color: Red

475	deposited to land are much higher in inland regions. Use of the conservative value
476	may cause a release underestimation (0-35%) of PFOS/PFOA through pollution
477	pathways associated with air emission. However, the release underestimation does not
478	significantly change the contribution structure of PFOS/PFOA from these pathways in
479	soil and surface water, for the total air emission of PFOS was relatively small while
480	that of PFOA was very large. Despite the above mentioned uncertainties, this study
481	seemed to provide a reasonable approach to estimate contribution of air emission to
482	PFOS/PFOA in soil and surface water.

483 *4.4 <u>Confirmation of field monitoring data for the release estimations</u> Corroboration of*

Formatted: Font color: Red

Formatted: Font: 12 pt

485

486

Fig.4 Occurrence of PFOS and PFOA in surface water(a), precipitation(b) and landfillleachate(c).

489 Note: Monitoring data were reviewed from Liu et al. (2009), Shan et al. (2015), Yi et al. (2012),

490 Yan et al. (2015), Zhang et al. (2014), Wu et al. (2012) and other references listed in Table S5.

491 It has been demonstrated that the emissions from industry appear to be the most 492 important for pollution in China (Fig. 2 and 3). Evidence already exists for industrial 493 wastewater discharge leading to hotspots of PFOS/PFOA in the most developed 494 regions of China (Fig. 4a). Some of these polluted sites have levels comparable or 495 even much higher than health risk assessment thresholds for drinking water, such as 496 the provisional health advisory (PHA) set by the USEPA (Fig.4a) (USEPA, 2014). 497 After receiving effluent from PFOS/PFOA-related facilities, the concentrations of PFOA in adjacent river and groundwater were up to 1.7 mg/L and 240 µg/L in Zibo 498

City (Liu et al., 2016); while PFOS levels were 5.4 µg/L and 61 ng/L respectively in
nearby surface water and groundwater in Taiwan (Lin et al., 2009). Wastewater
discharge from numerous PFOS and PFOA related facilities led to high concentrations
of these two substances <u>in the surface water in Hubei Province (Wang et al., 2013;</u>
Zhou et al., 2013).

Compared with industrial wastewater release, PFOS and PFOA levels caused by 504 505 domestic wastewater discharge were, as expected, generally low. According to data 506 from 43 MWWTPs in central and eastern China, the average concentrations of PFOS and PFOA in MWWTP effluent were 9.7 ng/L and 33 ng/L, respectively (reviewed in 507 508 Table S3). PFOS/PFOA slightly increase in concentration through the MWWTP activated sludge system, probably due to precursor degradation (Dinglasan et al., 2004; 509 510 Rhoads et al., 2008). In general, the baseline concentrations of PFOS/PFOA in major 511 rivers and lakes were far below assessment threshold of aquatic ecological risk (Fig. S1) (Giesy et al., 2010). 512

Monitoring data of PFOS/PFOA in wet deposition support the release <u>estimations</u> assumptions that were made for the air compartment (Fig. 4b). In particular, in most monitoring sites, PFOA in precipitation showed higher concentrations than PFOS. Due to the limited transport of particle-borne PFOS/PFOA, some high concentrations of PFOS/PFOA in precipitation occurred near industrial sources. The highest concentrations of PFOS and PFOA in precipitation were up to 545ng/L and 107ng/L, respectively (Liu et al., 2009; Shan et al., 2015).

Formatted: Font color: Red

AFFF application and landfill leachate were also prone to cause local risk hotspots. 520 521 In fire accidents or drills, instantaneous release of hundreds or even thousands liters of 522 AFFF caused 511 ng/g of PFOS and 418 ng/g of PFOA in local soil (Yi et al., 2012). In China, a landfill was reported to lose average 7.6×10^4 m³/yr of leachate with high 523 concentrations of PFOS (1.2-6µg/L) and PFOA (0.3-214µg/L) to local soil and 524 groundwater (Fig. 4c) (Zhang et al., 2014; Yan et al., 2015). Some sites of soil and 525 landfill leachate in Guangzhou showed higher concentrations of PFOS than PFOA, 526 527 which may be due to waste from the local semiconductor industry (Wu et al., 2012). 528 Except for these hotspots, the concentrations of PFOS/PFOA in soil in most areas 529 were at relatively low levels, far below a residential soil screening level by the USEPA (USEPA, 2014) (Fig.S2). 530

531

4<u>5</u>. Conclusion and observations

Overall, the results of this study indicated that:

About 80-90% of PFOS/PFOA contamination in the Chinese environment was 533 534 estimated to come from manufacturing and use facilities mostly via industrial wastewater discharge. 535

Formatted: Font color: Red

539 For PFOA the most important losses after industrial wastewater were deemed to

538

540	be from	domestic	wastewater.	industrial	exhaust gas	and landfill.
					8	

541	• Industrial wastewater, landfill leachate and AFFF application often cause local	
542	risk hotspots of PFOS/PFOA in the Chinese environment.	
543	• The most beneficial way to reduce environmental contamination by PFOS/PFOA	
544	in China would be to focus on controlling release from industrial wastewater.	
545	Besides, local pollution hotspots caused by AFFF application and landfill leachate	
546	should also be paid attention.	
547	Acknowledgements	
548	This study was supported by the National Natural Science Foundation of China [Grant	
549	No. 414201040045 and No. 41371488]; the International Scientific Cooperation	
550	Program [Grant No. 2012DFA91150]; and the Key Project of the Chinese Academy of	
551	Sciences [Grant No.KZZD-EW-TZ-12]. The UK authors are grateful for support from	
552	the NERC Newton fund to assist their collaboration with China.	
553 554		
555	References	
556 557 558 559	 Andreas Buser and Leo Morf. 2009 Substance flow analysis for Switzerland (EB/OL). http://wwwbafuadminch/publ (accessed 14.08.16). <u>Ahrens, L., Yeung, L. W., Taniyasu, S., Lam, P. K., Yamashita, N. 2011. Partitioning of perfluorooctane (PFOA). perfluorooctane sulfonate (PFOS) and perfluorooctane</u> 	
560	sulfonamide (PFOSA) between water and sediment. Chemosphere. 85(5): 731-737.	
561 562	Armitage, J., Cousins, I. T., Buck, R. C., Prevedouros, K., Russell, M. H., MacLeod, M., Korzeniowski, S. H. 2006. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct	
563	sources. Environmental science & technology 40(22): 6969-6975.	

Barton, C. A., Butler, L. E., Zarzecki, C. J., Flaherty, J., Kaiser, M. 2006. Characterizing

564

565

Formatted: Font color: Red

Formatted: Font color: Red

perfluorooctanoate in ambient air near the fence line of a manufacturing facility: comparing $$31\,/\,37$$

566	modeled and monitored values. Journal of the Air & Waste Management Association. 56(1):	
567	48-55.	
568	Brooke, D., Footitt, A., Nwaogu, T., 2004. Environmental risk evaluation report:	
569	Perfluorooctanesulphonate (PFOS), Environment Agency Wallingford.	
570	Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan,	Formatted: Font color: Red
571	K., Mabury, S. A., van Leeuwen, S. P. 2011. Perfluoroalkyl and polyfluoroalkyl substances in	
572	the environment: terminology, classification, and origins. Integrated environmental assessment	
573	and management. 7(4): 513-541.	
574	Cai, M., Xie, Z., Möller, A., Yin, Z., Huang, P., Cai, M., Yang, H., Sturm, R., He, J., Ebinghaus, R.	
575	2012. Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan	
576	Sea to the Arctic Ocean. Chemosphere. 87(9): 989-997.	
577	Chen, C., Lu, Y., Zhang, X., Geng, J., Wang, T., Shi, Y., Hu, W., Li, J. 2009. A review of spatial and	
578	temporal assessment of PFOS and PFOA contamination in China. Chemistry and Ecology.	
579	25(3): 163-177.	
580	Chen, H., Yan, S., Ye, Z., Meng, H., Zhu, Y. 2012. Utilization of urban sewage sludge: Chinese	
581	perspectives. Environmental Science and Pollution Research. 19(5): 1454-1463.	
582	Dai, J. 2006. Environmental Chemistry (in Chinese). Higher education press, Beijing.	
583	Dinglasan, M. J. A., Ye, Y., Edwards, E. A., Mabury, S. A. 2004. Fluorotelomer alcohol biodegradation	
584	vields poly-and perfluorinated acids. Environmental science & technology, 38(10):	
585	2857-2864	
586	Drever, A., Kirchgeorg, T., Weinberg, I., Matthias, V. 2015, Particle-size distribution of airborne	
587	poly-and perfluorinated alkyl substances. Chemosphere, 129: 142-149.	
588	Ferrey, M., Adair, C., Wilson, J. 2009, Sorption of PEOA and PEOS to aquifer sediment. Reproductive	Formatted: Font color: Red
589	Toxicology. 27(3): 416.	
590	European Commission, 2003. Technical Guidance Document in support of Commission Directive	
591	93/67/EEC on Risk Assessment for New Notified Substances. Commission Regulation (EC)	
592	No. 1488/94 on Risk Assessment for Existing Substances and Directive 98/8/EC of the	
593	European Parliament and of the Council Concerning the Placing of Biocidal Products on the 19	
594	Market, Joint Research Centre, European Chemicals Bureau, Brussels, Belgium	
595	Gellrich V. Stahl, T., Knepper, T. 2012, Behavior of perfluorinated compounds in soils during leaching	
596	experiments Chemosphere 87(9): 1052-1056	
597	Giesv I P Kannan K 2001 Global distribution of perfluorooctane sulfonate in wildlife	
598	Environmental science & technology 35(7): 1339-1342.	
599	Giesv I P Kannan K 2002 Peer reviewed: perfluorochemical surfactants in the environment	
600	Environmental science & technology 36(7): 146A-152A	
601	Giesv J. P. Naile, J. E. Khim, J. S. Jones, P. D. Newsted, J. L. 2010, Aquatic toxicology of	
602	perfluorinated chemicals. Reviews of environmental contamination and toxicology 202: 1-52.	
603	Harada K. Nakanishi S. Sasaki K. Furuyama K. Nakayama S. Saito N. Yamakawa K. Koizumi	
604	A 2006 Particle Size Distribution and Respiratory Deposition Estimates of Airborne	
605	Perfluorooctanoate and Perfluorooctanesulfonate in Kvoto Area Japan Bulletin of	
606	Environmental Contamination & Toxicology 76(2): 306-310	
607	Higgins C. P. Luthy R. G. 2006. Sorption of perfluorinated surfactants on sediments. Environmental	
608	Science & Technology 40(23): 7251-7256	
609	IGSNRR (Institute of geographical sciences and natural resources research Chinese Academy of	
007	restrict (instante of geographical sciences and natural resources research, clinicst Academy of	

610	Science). 2014 Thematic database for human-earth system (DB/OL).	
611	http://wwwdataaccn/jieshaoasp (in Chinese) (accessed 14.08.16).	
612	Johnson, R. L., Anschutz, A. J., Smolen, J. M., Simcik, M. F., Penn, R. L. 2007. The adsorption of	Formatted: Font color: Red
613	perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. Journal of Chemical &	
614	Engineering Data. 52(4): 1165-1170.	
615	Li, C., Ji, R., Schäffer, A., Sequaris, JM., Amelung, W., Vereecken, H., Klumpp, E. 2012. Sorption of	
616	a branched nonylphenol and perfluorooctanoic acid on Yangtze River sediments and their	
617	model components. Journal of Environmental Monitoring. 14(10): 2653-2658.	
618	Lim, T. C., Wang, B., Huang, J., Deng, S., Yu, G. 2011. Emission inventory for PFOS in China: review	
619	of past methodologies and suggestions. TheScientificWorldJournal. 11: 1963-1980,	Formatted: Font color: Red
620	Löfstedt Gilljam, J., Leonel, J., Cousins, I. T., Benskin, J. P. 2015. Is ongoing Sulfluramid use in South	
621	America a significant source of perfluorooctane sulfonate (PFOS)? Production inventories,	
622	environmental fate, and local occurrence. Environmental science & technology.	
623	Lescord, G. L., Kidd, K. A., De Silva, A. O., Williamson, M., Spencer, C., Wang, X., Muir, D. C. 2015.	
624	Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high	
625	Arctic. Environ Sci Technol. 49(5): 2694-2702.	
626	Li, L., Zhai, Z., Liu, J., Hu, J. 2015. Estimating industrial and domestic environmental releases of	
627	perfluorooctanoic acid and its salts in China from 2004 to 2012. Chemosphere. 129: 100-109.	
628	Lin, A. YC., Panchangam, S. C., Lo, CC. 2009. The impact of semiconductor, electronics and	
629	optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese	
630	rivers. Environmental Pollution. 157(4): 1365-1372.	
631	Lin, YC., Lai, W. WP., Tung, Hh., Lin, A. YC. 2015. Occurrence of pharmaceuticals, hormones,	
632	and perfluorinated compounds in groundwater in Taiwan. Environmental monitoring and	
633	assessment. 187(5): 1-19.	
634	Lindstrom, A. B., Strynar, M. J., Delinsky, A. D., Nakayama, S. F., McMillan, L., Libelo, E. L., Neill,	
635	M., Thomas, L. 2011. Application of WWTP biosolids and resulting perfluorinated compound	
636	contamination of surface and well water in Decatur, Alabama, USA. Environmental science &	
637	technology. 45(19): 8015-8021.	
638	Liu, B., Zhang, H., Yao, D., Li, J., Xie, L., Wang, X., Wang, Y., Liu, G., Yang, B. 2015a. Perfluorinated	
639	compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and	
640	health risk assessment. Chemosphere. 138: 511-518.	
641	Liu, C., Hu, J., Liu, J., Wan, D. 2008. Pollution status and release of perfluorooctane sulfonate (PFOS)	
642	and risk analysis for PFOS in China. Environmental Pollution. 7: 1-9.	
643	Liu, S., Lu, Y., Xie, S., Wang, T., Jones, K. C., Sweetman, A. J. 2015b. Exploring the fate, transport and	
644	risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia	
645	model. Environment international. 85: 15-26.	
646	Liu, W., Jin, Y., Quan, X., Sasaki, K., Saito, N., Nakayama, S. F., Sato, I., Tsuda, S. 2009.	
647	Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China.	
648	Environment international. 35(4): 737-742.	
649	Liu, Z., Lu, Y., Wang, T., Wang, P., Li, Q., Johnson, A. C., Sarvajayakesavalu, S., Sweetman, A. J. 2016.	
650	Risk assessment and source identification of perfluoroalkyl acids in surface and ground water:	
651	Spatial distribution around a mega-fluorochemical industrial park, China. Environment	
652	international. 91: 69-77.	
653	Martin, J. W., Ellis, D. A., Mabury, S. A., Hurley, M., Wallington, T. 2006. Atmospheric chemistry of	Formatted: Font color: Red

654	perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom	
655	initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environmental science &	
656	technology. 40(3): 864-872.	
657	Mei, S. 2007. Report on Production and Application of Perfluorooctane Sulfonate Related Chemicals	
658	and Perfluorooctane Acid (PFOS/PFOA) in China. China Association of Fluorine and Silicone	
659	Industry (CAFSI), Beijing (in Chinese).	
660	Miralles-Marco, A., Harrad, S. 2015. Perfluorooctane sulfonate: A review of human exposure,	
661	biomonitoring and the environmental forensics utility of its chirality and isomer distribution.	
662	Environment international. 77: 148-159.	
663	MWR (Ministry of Water Resources, the People's Republic of China). 2011. Water Resources Bulletin	
664	(EB/OL) http://wwwmwrgovcn/zwzc/hygb/szygb/qgszygb/201212/t20121217_335297html	
665	(in Chinese) (accessed 14.08.16).	
666	MWR (Ministry of Water Resources, the People's Republic of China). 2013 Water Resources Bulletin	
667	(EB/OL) http://wwwmwrgovcn/zwzc/hygb/szygb/qgszygb/201411/t20141120_582980html (in	
668	Chinese) (accessed 14.08.16).	
669	NBS (National Bureau of Statistics, the People's Republic of China). 2014. China Statistical Yearbook	
670	(M/CD). http://www.statsgovcn/tjsj/ndsj/2014/index.chhtm (in Chinese) (accessed 14.08.16).	
671	Paul, A. G., Jones, K. C., Sweetman, A. J. 2008. A first global production, emission, and environmental	
672	inventory for perfluorooctane sulfonate. Environmental Science & Technology. 43(2):	
673	386-392.	
674	Plumlee, M. H., McNeill, K., Reinhard, M. 2009. Indirect photolysis of perfluorochemicals: hydroxyl	Formatted: Font color: Red
675	radical-initiated oxidation of N-ethyl perfluorooctane sulfonamido acetate (N-EtFOSAA) and	
676	other perfluoroalkanesulfonamides. Environmental science & technology. 43(10): 3662-3668.	
677	Post, G. B., Louis, J. B., Lippincott, R. L., Procopio, N. A. 2013. Occurrence of perfluorinated	
678	compounds in raw water from New Jersey public drinking water systems. Environmental	
679	Science & Technology. 47(23): 13266-13275.	
680	Prevedouros, K., Cousins, I. T., Buck, R. C., Korzeniowski, S. H. 2006. Sources, fate and transport of	
681	perfluorocarboxylates. Environmental Science & Technology. 40(1): 32-44.	
682	Rhoads, K. R., Janssen, E. ML., Luthy, R. G., Criddle, C. S. 2008. Aerobic biotransformation and fate	
683	of N-ethyl perfluorooctane sulfonamidoethanol (N-EtFOSE) in activated sludge.	
684	Environmental science & technology. 42(8): 2873-2878.	
685	Stahl, T., Riebe, R. A., Falk, S., Failing, K., Brunn, H. 2013. Long-term lysimeter experiment to	Formatted: Font color: Red
686	investigate the leaching of perfluoroalkyl substances (PFASs) and the carry-over from soil to	
687	plants: results of a pilot study. Journal of agricultural and food chemistry. 61(8): 1784-1793.	
688	Shan, G., Chen, X., Zhu, L. 2015. Occurrence, fluxes and sources of perfluoroalkyl substances with	
689	isomer analysis in the snow of northern China. Journal of Hazardous Materials. 299: 639-646.	
690	Sharma, B. M., Bharat, G. K., Tayal, S., Larssen, T., Bečanová, J., Karásková, P., Whitehead, P. G.,	
691	Futter, M. N., Butterfield, D., Nizzetto, L. 2015. Perfluoroalkyl substances (PFAS) in river and	
692	ground/drinking water of the Ganges River basin: Emissions and implications for human	
693	exposure. Environmental Pollution.	
694	Takagi, S., Adachi, F., Miyano, K., Koizumi, Y., Tanaka, H., Watanabe, I., Tanabe, S., Kannan, K. 2011.	
695	Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes.	
696	Water Research. 45(13): 3925-3932.	
697	Taniyasu, S., Yamashita, N., Moon, H. B., Kwok, K. Y., Lam, P. K., Horii, Y., Petrick, G., Kannan, K.	
077		

698	2013. Does wet precipitation represent local and regional atmospheric transportation by		
699	perfluorinated alkyl substances? Environment international. 55: 25-32.		
700	Tomy, G. T., Tittlemier, S. A., Palace, V. P., Budakowski, W. R., Braekevelt, E., Brinkworth, L., Friesen,	Formatted: Font co	olor: Red
701	K. 2004. Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout		
702	(Onchorhynchus mykiss) liver microsomes. Environmental science & technology. 38(3):		
703	<u>758-762.</u>		
704	A	Formatted: Font co	olor: Red
705	UNEP. 2009. The conference of the parties 4 of the Stockholm Convention (COP-4) in Geneva placed		
706	perfluorooctane sulfonate and perfluorooctane sulfonyl fluoride (PFOS and PFOSF) in Annex		
707	В.		
708	http://chmpopsint/Convention/Pressrelease/COP4Geneva9May2009/tabid/542/language/en-U		
709	S/Defaultaspx (accessed 14.08.16).		
710	USEPA. 2006. 2010/2015 PFOA Stewardship Program.		
711	https://wwwepagov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-		
712	stewardship-program (accessed 14.08.16).		
713	USEPA. 2009. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctyl		
714	Sulfonate (PFOS).		
715	https://wwwepagov/sites/production/files/2015-09/documents/pfoa-pfos-provisionalpdf		
716	(accessed 14.08.16).		
717	USEPA. 2014. Emerging Contaminants-Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic		
718	Acid (PFOA). https://nepisepagov/Exe/ZyPDFcgi/P100EIVCPDF?Dockey=P100EIVCPDF		
719	(accessed 14.08.16).		
720	Wang, B., Cao, M., Zhu, H., Chen, J., Wang, L., Liu, G., Gu, X., Lu, X. 2013. Distribution of		
721	perfluorinated compounds in surface water from Hanjiang River in Wuhan, China.		
722	Chemosphere. 93(3): 468-473.		
723	Wang, P., Lu, Y., Wang, T., Meng, J., Li, Q., Zhu, Z., Sun, Y., Wang, R., Giesy, J. P. 2016. Shifts in		
724	production of perfluoroalkyl acids affect emissions and concentrations in the environment of		
725	the Xiaoqing River Basin, China. Journal of Hazardous Materials. 307: 55-63.		
726	Wang, T., Khim, J. S., Chen, C., Naile, J. E., Lu, Y., Kannan, K., Park, J., Luo, W., Jiao, W., Hu, W.,		
727	Giesy, J. P. 2012. Perfluorinated compounds in surface waters from Northern China:		
728	comparison to level of industrialization. Environment international. 42: 37-46.		
729	Wang, T., Wang, P., Meng, J., Liu, S., Lu, Y., Khim, J. S., Giesy, J. P. 2015. A review of sources,		
730	multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China.		
731	Chemosphere. 129: 87-99.		
732	Wang, T., Wang, Y., Liao, C., Cai, Y., Jiang, G. 2009. Perspectives on the Inclusion of Perfluorooctane		
733	Sulfonate into the Stockholm Convention on Persistent Organic Pollutants 1. Environmental		
734	science & technology. 43(14): 5171-5175.		
735	Wang, Z., Cousins, I. T., Scheringer, M., Buck, R. C., Hungerbuhler, K. 2014a. Global emission		
736	inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030,		
737	Part I: production and emissions from quantifiable sources. Environment international. 70:		
738	62-75.		
739	Wang, Z., Cousins, I. T., Scheringer, M., Buck, R. C., Hungerbuhler, K. 2014b. Global emission		
740	inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030,		
741	part II: the remaining pieces of the puzzle. Environment international. 69: 166-176.		

742	Wu, K., Xu, X., Peng, L., Liu, J., Guo, Y., Huo, X. 2012. Association between maternal exposure to
743	perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes.
744	Environment international. 48: 1-8.
745	Xiao, F., Simcik, M. F., Gulliver, J. S. 2012a. Perfluoroalkyl acids in urban stormwater runoff:
746	influence of land use. water research. 46(20): 6601-6608.
747	Xiao, F., Halbach, T. R., Simcik, M. F., Gulliver, J. S. 2012b. Input characterization of perfluoroalkyl
748	substances in wastewater treatment plants: source discrimination by exploratory data analysis.
749	Water research. 46(9): 3101-3109.
750	
751	Xiao, F., Simcik, M. F., Halbach, T. R., Gulliver, J. S. 2015. Perfluorooctane sulfonate (PFOS) and
752	perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: Migration
753	and implications for human exposure. Water research. 72: 64-74.
754	Xie, S., Lu, Y., Wang, T., Liu, S., Jones, K., Sweetman, A. 2013a. Estimation of PFOS emission from
755	domestic sources in the eastern coastal region of China. Environment international. 59:
756	336-343.
757	Xie, S., Wang, T., Liu, S., Jones, K. C., Sweetman, A. J., Lu, Y. 2013b. Industrial source identification
758	and emission estimation of perfluorooctane sulfonate in China. Environment international. 52:
759	1-8.
760	Yan, H., Cousins, I. T., Zhang, C., Zhou, Q. 2015. Perfluoroalkyl acids in municipal landfill leachates
761	from China: Occurrence, fate during leachate treatment and potential impact on groundwater.
762	Science of The Total Environment. 524: 23-31.
763	Yi, L. I., Zhu, J., Geng, H. 2012. Health risks of aqueous film forming foam extinguishing agent in a
764	polluted soil site. Journal of Environment & Health. 29(12): 1096-1100.
765	Young, C. J., Furdui, V. I., Franklin, J., Koerner, R. M., Muir, D. C., Mabury, S. A. 2007. Perfluorinated
766	acids in arctic snow: new evidence for atmospheric formation. Environmental science &
767	technology. 41(10): 3455-3461.
768	Yu, W., Wang, P., Tian, L., Fu, X, Bao, Z. 2010. The latest information of the Stockholm Convention
769	and an introduction of the using of PFOS in China fire industry. Fire Sci Technol. 29: 513-515
770	(in Chinese with English abstract).
771	Zareitalabad, P., Siemens, J., Hamer, M., Amelung, W. 2013. Perfluorooctanoic acid (PFOA) and
772	perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater-a
773	review on concentrations and distribution coefficients. Chemosphere. 91(6): 725-732.
774	Zhang, C., Peng, Y., Niu, X., Ning, K. 2014. Determination of perfluoroalkyl substances in municipal
775	landfill leachates from Beijing, China. Asian Journal of Chemistry. 26(13): 3833.
776	Zhang, L., Liu, J., Hu, J., Liu, C., Guo, W., Wang, Q., Wang, H. 2012. The inventory of sources,
777	environmental releases and risk assessment for perfluorooctane sulfonate in China. Environ
778	Pollut. 165: 193-198.
779	Zhang, W., Zhang, Y., Taniyasu, S., Yeung, L. W., Lam, P. K., Wang, J., Li, X., Yamashita, N., Dai, J.
780	2013. Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment
781	plants in economically developed areas of China. Environ Pollut. 176: 10-17.
782	Zhao, L., Zhu, L., Zhao, S., Ma, X. 2016. Sequestration and bioavailability of perfluoroalkyl acids
783	(PFAAs) in soils: Implications for their underestimated risk. Science of The Total
784	Environment. 572: 169-176.
785	

Zhou, Z., Liang, Y., Shi, Y., Xu, L., Cai, Y. 2013. Occurrence and transport of perfluoroalkyl acids
(PFAAs), including short-chain PFAAs in Tangxun Lake, China. Environmental science &
technology. 47(16): 9249-9257.