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Inhibitory geostatistical designs for spatial
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Summary: The problem of choosing a spatial sampling design for investigating unobserved spatial

phenomenon S arises in many contexts, for example in identifying households to select for a prevalence

survey in order to study disease burden and heterogeneity in a study region D. We study randomised

inhibitory spatial sampling designs to address the problem of spatial prediction whilst taking account of the

need to estimate covariance structure. Two specific classes of design are inhibitory designs and inhibitory

designs plus close pairs. In an inhibitory design, any pair of sample locations must be separated by at least

an inhibition distance δ. In an inhibitory plus close pairs design , n− k sample locations in an inhibitory

design with inhibition distance δ are augmented by k locations each positioned close to one of the randomly

selected n− k locations in the inhibitory design, uniformly distributed within a disc of radius ζ. We present

simulation results for the Matérn class of covariance structures. When nugget variance is non-negligible,

inhibitory plus close pairs designs demonstrate improved predictive efficiency over designs without close

pairs. We illustrate how these findings can be applied to the design of a rolling Malaria Indicator Survey

that forms part of an ongoing large-scale, five–year malaria transmission reduction project in Malawi.
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1. INTRODUCTION

Geostatistics is concerned with investigation of an unobserved spatial phenomenon S =

{S(x) : x ∈ D ⊂ IR2}, where D is a geographical region of interest. Its particular focus is

on investigations in which the available data consist of measurements yi at a finite set of

locations xi ∈ D. Typically, each yi can be regarded as a noisy version of S(xi). We write

X = {x1, ..., xn} and call X the sampling design. Geostatistical analysis mainly addresses

two broad scientific objectives: estimation of the parameters that define a stochastic model

for the unobserved process S and the observed data Y = {(yi, xi) : i = 1, ..., n}; prediction

of the unobserved realisation of S(x) throughout D, or particular characteristics of this

realisation, for example its average value. The fundamental geostatistical design problem

is the specification of X . A key consideration is that sampling designs that are efficient for

parameter estimation may be inefficient for prediction, and vice versa (Zimmerman, 2006). In

practice, most geostatistical problems focus on spatial prediction, but parameter estimation

is an important means to this end. Hence, there is a need to compromise between designing

for efficient parameter estimation and designing for efficient prediction given the values of

relevant model parameters. In practice, selection of covariates and estimating their effects

are also important considerations for study design. However, in this paper we focus on the

design implications of the spatial covariance structure of S, this being the distinguishing

feature of geostatistical, as opposed to general statistical, methodology.

In a previous paper (Chipeta et al., 2016), we have discussed adaptive geostatistical designs,

in which sampling locations are chosen sequentially, either singly or in batches, and at any

stage the analysis of already collected data can inform the selection of the next batch

of locations. In this paper, we consider non-adaptive geostatistical designs, in which the

complete design X must be chosen in advance of any data-collection.

Two examples of non-adaptive designs are completely random and lattice designs. In a

completely random design the locations xi are an independent random sample from the
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uniform distribution on D. In a lattice design, the xi form a regular (typically square) lattice

to cover D. A combination of theoretical and empirical work, from Matérn (1960) onwards,

has led to general acceptance that lattice designs should lead to efficient spatial prediction

provided model parameters are known. If model parameters are unknown, a completely

random design has the advantage that it will include a wider range of inter-point distances,

and in particular some small inter-point distances, and so provides more information on the

shape of the covariance function of S. Diggle and Lophaven (2006) described and compared

empirically some compromise designs. In their simulations, a lattice design supplemented by

some close pairs of points performed well.

A limitation of lattice-based designs is that their absence of a probability sampling frame

leaves open the possibility of systematic bias. In the present paper we therefore propose

a class of randomised inhibitory plus close pairs designs to address the problem of spatial

prediction whilst taking account of the need to estimate spatial covariance structure. We

evaluate the performance of this class of designs through simulation studies and describe an

application to data from a malaria transmission reduction monitoring and evaluation study

in the Chikwawa district of southern Malawi.

In Section 2 we review the existing literature on non-adaptive geostatistical design

strategies. In Section 3 we describe our proposed class of designs. Section 4 reports on

simulation study of the predictive performance of the proposed design class. Section 5

describes an application to the sampling design of an ongoing malaria prevalence mapping

exercise around the perimeter of the Majete wildlife reserve, Chikwawa district, Malawi.

Section 6 is a concluding discussion. All computations for the paper were run on the High

End Computing Cluster at Lancaster University, using the R software environment (R Core

Team, 2015).
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2. NON-ADAPTIVE GEOSTATISTICAL DESIGN STRATEGIES

Different scientific goals and study settings require different geostatistical design strategies.

Ideally, a design X will be chosen to maximise or minimise a performance criterion that

reflects the primary objective of the study (Jardim and Ribeiro, 2007; Nowak, 2010). For

example, a possible design criterion when the objective is to predict the value of S(x)

throughout the region D is the spatially averaged mean squared prediction error,

MSPE =

∫
D

E[{Ŝ(x)− S(x)}2dx, (1)

where Ŝ(x) = E[S(x)|Y ;X ] is the minimum mean square error predictor of S(x) and

expectations are with respect to S. In practice, any such criterion needs to be tempered

by application-specific considerations of some kind, for example different costs and benefits

of obtaining data and predictions, respectively, at particular locations.

We review the following strategies for geostatistical designs: designing for efficient

parameter estimation; designing for efficient spatial prediction when the covariance function

is assumed completely known; and designing for efficient spatial prediction when the

covariance function is not known and has to be estimated from the same data. Müller (2007,

Chapters 5 – 7) is a relatively recent book length account of geostatistical design strategies.

Much of the work on spatial sampling design for estimating covariance structures has

focused on estimation procedures based on the empirical variogram (Müller and Zimmerman,

1999; Russo, 1984; Warrick and Myers, 1987). Lark (2002) used likelihood estimation

procedures under an assumed Gaussian process model. Pettitt and McBratney (1993) studied

several sampling designs for estimating parameters using the restricted maximum likelihood

(REML) method of parameter estimation. A general consensus fro this body of work is that

completely random designs are efficient for parameter estimation. However, these designs
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have often been criticised because they leave large unsampled “swaths” in the study region

D (Müller, 2007).

Studies of design for efficient spatial prediction with known covariance structure include

McBratney et al. (1981); McBratney and Webster (1981); Yfantis et al. (1987); Ritter (1996);

Su and Cambanis (1993). Spatially regular lattice designs, which achieve an even coverage

of D, have been shown to be optimal in this case. Several variants of these designs have also

been proposed. We provide definitions and an overview in Section 2.1.

The assumption of a known covariance function is in most cases unrealistic (Müller, 2007).

Usually we have to use the same data for estimation of covariance parameters and for spatial

prediction, and effective prediction requires good estimates of the second order characteristics

(Guttorp and Sampson, 1994). Recent work on construction of designs that focus on the goals

of efficient spatial prediction in conjunction with parameter estimation includes Zhu (2002);

Zhu and Stein (2006); Diggle and Lophaven (2006); Pilz and Spöck (2006); Bijleveld et al.

(2012); Banerjee et al. (2008) and Chipeta et al. (2016)

2.1. Classes of non-adaptive geostatistical designs

We now review several design classes that have been used for different analysis objectives:

parameter estimation; spatial prediction; and a combination of the two. Design performance

is largely influenced by sample pattern and sample density (Olea, 1984). ‘Pattern’ here refers

to the geometrical configuration of sample points in a given region, D. ‘Density ’ refers to

the number of sample points per unit area. Both model-dependent and geometry-dependent

designs have been proposed.

2.1.1. Completely randomised designs

In a completely randomised design, locations xi, i = 1, . . . , n are chosen independently, each

with a uniform distribution over D. This ensures that the design is stochastically independent
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of the underlying spatial phenomenon of interest S(x), which is a requirement for the validity

of standard geostatistical inference methods (Diggle et al., 2010). However, the resulting

uneven coverage of D has a negative impact on spatial prediction. Variants of the completely

random design include stratified and cluster random sampling (Cressie, 1991). These design

strategies are well established in classical survey sampling; see, for example, Cochran (1977).

2.1.2. Completely regular lattice designs

Design points in this class form a regular lattice pattern over the study region D, thereby

ensuring an even coverage. The origin of the lattice should strictly be located at random

(Diggle and Ribeiro Jr., 2007), although in practice this is often ignored. These designs

are easy to implement and provide well defined directional classes within which variograms

can be computed. Regular designs also have the potential of yielding computational savings

over irregular designs such as those resulting from random sampling (Cressie, 1991). Regular

lattice designs can use square, equilateral triangular or hexagonal grids. A comparison of the

three suggests that the equilateral triangular grid design is the most efficient (McBratney

et al., 1981; McBratney and Webster, 1981; Olea, 1984; Yfantis et al., 1987). However, square

lattices are more common in practice.

2.1.3. Modified regular lattice designs

Diggle and Lophaven (2006) propose and develop two different two-step (augmented lattice)

designs. These designs supplement a lattice with closely spaced pairs of points which, as note

earlier, are important for estimating certain parameters of the underlying spatial covariance

structure, especially when this includes a nugget variance (Diggle and Ribeiro Jr., 2007,

Chapter 8) or a smoothness parameter such as the shape parameter of a Matérn correlation

function (Zhu and Stein, 2006).
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1) Lattice plus close pairs design

Each design in this class is initialised with an even coverage of locations in D; forming a k × k

regular lattice at spacing ∆. The design points are then augmented by a further location

distributed uniformly at random within a disc of radius δ = α∆ centred on each of the m

randomly selected lattice locations.

2) Lattice plus infill design

This class is again initialised with an even coverage of k × k regular lattice at spacing ∆,

but is augmented with further locations in a more finely spaced lattice within m randomly

selected primary lattice cells.

2.1.4. Geometric designs

Royle and Nychka (1998) describe a purely geometric design criterion for spatial prediction.

This approach, commonly known as ‘space-filling’ design, identifies sample locations by

minimising a criterion that favours more regular geometrical configurations of sample

locations (Nychka and Saltzman, 1998).

2.1.5. Summary

Some general conclusions are the following. Good spatial prediction favours more regular

than completely random designs when model parameters are known. When the analysis

objective is parameter estimation, designs with a random configuration of design points

are preferable. These two points suggest that some compromise is therefore needed when

constructing designs for spatial prediction when model parameters have to be estimated

from the same data.

A good geostatistical design strategy also needs to be able to deal with a range of practical

constraints. For example, potential sampling points may be limited to a finite set. This holds,
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for example, in our application to malaria monitoring, where data can only be collected from

existing houses, within the study region.

3. INHIBITORY GEOSTATISTICAL DESIGNS

3.1. Design criterion

We propose a class of inhibitory geostatistical designs for spatial prediction when model

parameters need to be estimated. We use [·] to mean “the distribution of” and incorporate a

stochastic process S = {S(x) : x ∈ IR2} into a statistical model [S, Y ] = [S][Y |S], where Y =

(Y1, . . . , Yn) are the measured data-values at the points of X and S = {S(x1), . . . , S(xn)}.

The distribution for predictive inference is then the conditional distribution, [S|Y ], which

follows from an application of Bayes’ theorem as

[S|Y ] = [S][Y |S]/

∫
[S][Y |S]dS (2)

A typical spatial prediction problem involves making inferences about a functional T =

T ({S(x) : x ∈ D}) given data (Yi, Xi), i = 1, . . . , n. In what follows, we use as performance

criterion the average prediction variance,

APV =

∫
D

Var{S(x)|Y }dx (3)

3.2. Simple inhibitory designs

An inhibitory design consists of n locations chosen at random in D but with the constraint

that no two locations are at a distance of less than some value δ. Formally, the resulting design

X is a realisation of a simple inhibitory point process that is itself a special case of a pairwise
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interaction point process; see, for example, Diggle (2013, Chapter 6). This construction

respects the established principles of random sampling theory, while guaranteeing some

degree of spatial regularity. All designs X that meet the inhibitory constraint are equally

likely to be picked. Also, the construction can be applied whether or not the potential

sampling locations are confined to a finite set of points, although in either case the value of

δ will limit the maximum achievable sample size.

We define the “packing density” of the design to be the proportion of the total region

covered by n non-overlapping discs of diameter δ, hence ρ = (nπδ2)/(4|D|). We use the

notation SI(n, δ) and compare the performance of designs with fixed n fixed and varying δ.

The formal construction of an SI(n, δ) design on a region D proceeds as follows:

1. Draw a sample of locations xi : i = 1, . . . , n completely at random in D;

2. Set i = 1;

3. Calculate the minimum, dmin, of the distances from xi to all other xj in the current

sample;

4. If dmin ≥ δ, increase i by 1 and return to step 3 if i ≤ n, otherwise stop;

5. If dmin < δ, replace xi by a new location drawn completely at random in D and return

to step 4.

3.3. Inhibitory design with close pairs

This class is defined by four scalars, namely: n, the total number of points; δ, the minimum

distance between any two locations; k, the number of close pairs and ζ, the radius of the

disc from the primary point within which to add a paired point. For a total of n points, this

design consists of n− k points in an inhibitory design with inhibition distance δ, augmented

by k points each positioned relative to one of the randomly selected n− k points in the

inhibitory design according to the uniform distribution over a disc of radius ζ. We use the
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notation ICP(n, k, δ, ζ). The formal construction of an ICP(n, k, δ, ζ) design on a region D

proceeds as follows:

1. Construct a simple inhibitory design SI(n− k, δ);

2. Sample k from x1, . . . , xn−k without replacement and call this set of locations x∗j , j =

1, . . . , k;

3. For j = 1, . . . , k, xn−k+j is uniformly distributed on the disc with centre x∗j and radius

ζ.

Note that in the ICP(n, k, δ, ζ) design, k must be less than or equal to n/2. Also, when

comparing an SI(n, δ) design with one or more ICP(n, k, δ, ζ) designs, it is appropriate to

require all of the inhibitory components have the same degree of spatial regularity. This

requires δ to become a function of k, namely

δ(k) = δ0
√
n/(n− k), (4)

with δ0 held fixed. For fixed n, the minimum spacing between any two inhibitory points

therefore increases with k. We also insist that ζ ≤ δ(k)/2. Finally, when the potential

sampling locations are restricted to a finite set of points {Xi, i = 1, . . . , N}, the above

constructions are modified in the obvious way, with sampling at random from the N potential

locations replacing uniform random sampling of points x ∈ D, with the proviso that it will

be impossible to construct an ICP(n, k, δ, ζ) design for some combinations of n, k, δ and ζ.

4. SIMULATION STUDY

We have carried out simulation studies of our proposed designs to illustrate the gains

in predictive efficiency that can be achieved using inhibitory designs when covariance

parameters have to be estimated. In our simulation studies, we evaluate our performance

criterion (3) at the estimated parameter values using the plug-in prediction method (Diggle
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and Ribeiro Jr., 2007). We simulate data on the unit square [0, 1]2 evaluate the integral in (3)

by numerical quadrature over a 64 × 64 prediction grid, and approximate the expectation

of thew integral by a Monte Carlo average over s = 1500 independent simulations of

measurement data Y . We consider two model classes for the data-generation process, namely

the linear Gaussian and logistic binomial geostatistical models. Both include an unobserved

stationary Gaussian process S(x) with mean zero, variance σ2 = 1 and Matérn correlation

(Matérn, 1960).

In the linear Gaussian model,

Y |S ∼ N(µ, τ 2) (5)

where µ = S(x), whilst in the logistic binomial model,

Y |S, U ∼ Bin(n, p), (6)

where log(p/1− p) = S(x) + U and U is Gaussian white noise with variance τ 2. In both

cases, the predictive target is S.

We used a fixed value of the correlation shape parameter, κ = 1.5, but varied the correlation

range parameter φ and the nugget variance τ 2.

4.1. Linear Gaussian Model

For each parameter combination, we generated data at n = 150 sampling locations. Figure 1a

shows an inhibitory design without close pairs and δ = 0.06, corresponding to packing density

ρ ≈ 0.424, whilst Figure 1b shows a design with k = 75 close pairs and δ = 0.085, so that

the n− k = 75 inhibitory design points also have packing density 0.424.

Figure 2 shows the design performance as δ varies between 0.01 and 0.06, φ =
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0.15, 0.30, 0.25 and 0.3, and for noise-to-signal ratios τ 2 = 0 and 0.2. Results (not shown) for

τ 2 = 0.05, 0.1 and 0.4 show similar trends. These results indicate that designs with larger

δ perform better, i.e. spatial predictions become more precise with increasing regularity of

the design.

[Figure 1 about here.]

[Figure 2 about here.]

Our comparison of inhibitory designs with and without close pairs indicates that designs

with an intermediate number of close pairs give the best performance. However, when τ 2 is

close to zero the benefits of close pairs are negligible, see Figure 3 panels A – B. In contrast,

when τ 2 is larger, close pairs show substantial benefit, see Figure 3 panels C – E.

[Figure 3 about here.]

4.2. Binomial Model

We simulated binomial data-sets with 10 trials at each of n = 150 grid points and

probabilities given by the anti-logit of the simulated values of the Gaussian process. For

each combination of parameters, we approximated the expectation in Equation (3) by a

Monte Carlo average over s = 1000 independent simulations of Y. Figures 4a to 4b show

that inhibitory designs with δ = 0.06 give the best results, agreeing with the findings in

Section 4.1, Figure 2. Similarly, Figure 4c again shows that inhibitory designs with an

intermediate number of close pairs give the best performance when τ 2 is relatively large.

[Figure 4 about here.]
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5. APPLICATION: ROLLING MALARIA INDICATOR SURVEY

SAMPLING FOR MALARIA PREVALENCE IN THE MAJETE

PERIMETER

In this section, we illustrate the use of our proposed inhibitory design strategy to construct a

survey sample for mapping malaria prevalence in an area surrounding Majete wildlife reserve

(MWR) within Chikwawa district, Malawi. The MWR is situated in the lower Shire valley at

the edge of the African Rift Valley in the southern part of Malawi (15.97◦ S; 34.76◦ E). The

reserve is crossed by two perennial rivers, the Shire and Mkurumadzi Rivers. Mwanza River

runs near the western and southern boundaries of the park. In the wet season, there are also

seasonal pools and many seasonal streams. Most rainfall occurs in the wet season, which

lasts from November to April. Annually, the precipitation is 680 to 800 mm in the eastern

lowlands and 700 to 1000 mm in the western highlands (Wienand, 2013). With an average

daily temperature of 28.4 ◦C, the wet season is slightly warmer than the dry season (average

daily temperature 23.3 ◦C), though the hottest months are September to November, at the

end of the dry season (Staub et al., 2013).

The Majete malaria project (MMP) is a five-year monitoring and evaluation study of

malaria prevalence, with an embedded randomised trial of community-level interventions

intended to reduce malaria transmission. The study takes place in the “Majete Perimeter”,

which is the zone surrounding the MWR. The whole perimeter is home to a population

of ≈ 100,000. Figure 5 shows the location of the study area, covering the unprotected

zone surrounding the game park. The perimeter is subdivided into 19 community-based

organizations (CBOs). Three sets of these CBOs (CBOs – 1 & 2, CBOs – 6, 7 & 8 and CBOs

–15 & 16) are administrative units, which within MMP are called focal areas A, B and C.

The first stage in the geostatistical design was a complete enumeration of households in the

study region, including their geo-location coll, ected using Global Positioning System (GPS)

devices on a Samsung Galaxy Tab 3 running Android 4.1 Jellybean operating system. These
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devices are accurate to within 5m.

[Figure 5 about here.]

The sampling unit is a household. We first fit a Binomial model, with four parameters

representing the mean, two variance components and the rate of decay of spatial correlation

with distance, to data from focal area B, then use the resulting estimated covariance model

to inform an optimal sampling design for focal area A, whilst allowing for re-estimation

of the model parameters. Table 1 shows the estimated covariance parameters. Using these

estimates, the optimal design in focal area A is shown in Figure 6. From a candidate set of

857 households we sample 200, of which 20 are close pairs. The blue dots represent the 200

sampled households and the black dots the locations of the other 657 households in focal

area A. The optimised sampling locations provide a good spatial coverage of the study area,

which is advantageous for efficient spatial prediction, whilst the inclusion of the close pairs

is advantageous for parameter estimation.

[Table 1 about here.]

[Figure 6 about here.]

6. DISCUSSION

Parameter values are usually unknown in practice. Designing for efficient spatial prediction

with estimated parameters involves a compromise. In this paper we have proposed and

demonstrated a class of inhibitory sampling designs for accurate spatial prediction with

estimated covariance model parameters. The design strategies described in Section 3

are specifically intended to deliver efficient mapping of the complete surface, S(x), over

the region of interest. We considered inhibitory designs with and without close pairs of

sampling locations. Inhibitory designs are random designs that generate spatially regular

configurations of design points.
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Our proposed designs incorporate the widely accepted concept that spatial prediction

is improved by using a more-regular-than-randomly configuration of sampling locations

(Olea, 1984). Our simulation studies show that when the same data are used for both

parameter estimation and spatial prediction, the optimum inhibitory design includes a small

proportion of close pairs (between 10% and 30% in our examples). This is consistent with

previously expressed views that in order to compromise between prediction accuracy and

efficient parameter estimation, optimal geostatistical designs should include close pairs in an

otherwise spatially regular design (Lark, 2002; Diggle and Lophaven, 2006; Müller, 2007).

However, our results also show that with our proposed class of designs, clear benefits for

including close pairs are only realised when the nugget variance is relatively large. We

conjecture that this is a consequence of the fact that inhibitory designs avoid the rigidity of

lattice designs, resulting in a more varied set of inter-point distances.

We have approached the sampling design problem using inhibitory designs assuming a

stochastic process with a stationary covariance structure. These are common and reasonable

assumptions to make in geostatistics. However, one limitation is that when explanatory

variables are available, their spatial distribution will also affect design performance. However,

numerical optimisation of a performance criterion such as Equation (3) in the presence of

explanatory variables involves no additional principles.
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Pilz, J. and G. Spöck (2006). Spatial sampling design for prediction taking account of uncertain covariance

structure. In 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and

Environmental Sciences.

R Core Team (2015). R: A Language and Environment for Statistical Computing. Technical report, R

Foundation for Statistical Computing, Vienna, Austria.

Ritter, K. (1996). Asymptotic optimality of regular sequence designs. Ann. Stat. 24 (5), 2081–2096.

Royle, J. and D. Nychka (1998, jun). An algorithm for the construction of spatial coverage designs with

implementation in SPLUS. Comput. Geosci. 24 (5), 479–488.

Russo, D. (1984, feb). Design of an Optimal Sampling Network for Estimating the Variogram. Soil Science

Society of America Journal 48 (4), 708–716.

Staub, C. G., M. W. Binford, and F. R. Stevens (2013). Elephant Browsing in Majete Wildlife Reserve,

South-western Malawi. African Journal of Encology 51, 536–543.

17



Environmetrics M. G. Chipeta, D. J. Terlouw, K. S. Phiri and P. J. Diggle

Su, Y. S. Y. and S. Cambanis (1993). Sampling Designs for Estimation of a Random Process. Stoch. Process.

their Appl. 46, 47–89.

Warrick, A. W. and D. E. Myers (1987). Optimization of sampling locations for variogram calculations.

Water Resour. Res. 23 (496), 496.

Wienand, J. (2013). Woody vegetation change and elephant water point use in Majete Wildlife Reserve:

implications for water management strategies. Ph. D. thesis, Stellenbosch.

Yfantis, E. A., G. T. Flatman, and J. V. Behar (1987). Efficiency of Kriging Estimation for Square ,

Triangular , and Hexagonal Grids. Math. Geol. 19 (3), 183 – 205.

Zhu, Z. (2002). Optimal Sampling Design and Parameter Estimation of Gaussian Random Fields. Ph. D.

thesis, University of Chicago.

Zhu, Z. and M. L. Stein (2006, mar). Spatial sampling design for prediction with estimated parameters.

Journal of Agricultural, Biological, and Environmental Statistics 11 (1), 24–44.

Zimmerman, D. L. (2006, sep). Optimal network design for spatial prediction, covariance parameter

estimation, and empirical prediction. Environmetrics 17 (6), 635–652.

18



FIGURES Environmetrics

FIGURES

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X

Y

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X

Y

(b)

Figure 1. Simple inhibitory design, δ = 0.06 (a). Inhibitory design with k = 75 close pairs, δ = 0.085 for n− k inhibitory design points

(b). The inhibitory distance δ for (b) varies with number of close pairs k. Sample size n = 150 for each of the designs.
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Figure 2. Average prediction variance for varying simple inhibitory designs, δ = 0.01 to 0.06, κ = 1.5, σ2 = 1 and n = 150. Panel (a)

τ2 = 0 and panel (b) τ2 = 0.2.
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Figure 3. Comparing the efficiencies of inhibitory designs: without close pairs, with 15, 45 and 75 close pairs. The fixed total n = 150

for each of the designs.
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Figure 4. Average prediction variance for varying simple inhibitory designs - Binomial model, δ = 0.01 to 0.06, κ = 1.5, σ2 = 1 and

n = 150. Panel (a) τ2 = 0 and panel (b) τ2 = 0.4. Panel (c) compares the efficiencies of inhibitory designs with 15, 45 and 75 close

pairs. The fixed total n = 150 for each of the designs.
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Figure 5. The map of Malawi, showing Majete Wildlife Reserve highlighted (left) and its perimeter with focal areas A, B and C

highlighted (right).
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Figure 6. Inhibitory plus close pairs design locations (blue dots) and all potential sampling locations (black dots), in focal area A
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Term Estimate 95 % confidence interval
Intercept -1.90986 (-2.19000, -1.62973)

σ2 0.53016 (0.31787, 0.88422)
τ 2 0.26328 (0.07426, 0.93341)
φ 0.31913 (0.13320, 0.76459)

Table 1. Monte Carlo maximum likelihood estimates and 95 % confidence intervals for the
covariance model fitted to malaria prevalence data in Majete focal area B.
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