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Abstract In this paper we propose the integration of column generation in the re-
vised normal boundary intersection (RNBI) approach to compute a representative
set of non-dominated points for multi-objective linear programmes (MOLPs). The
RNBI approach solves single objective linear programmes, the RNBI subproblems,
to project a set of evenly distributed reference points to the non-dominated set of
an MOLP. We solve each RNBI subproblem using column generation, which moves
the current point in objective space of the MOLP towards the non-dominated set.
Since RNBI subproblems may be infeasible, we attempt to detect this infeasibility
early. First, a reference point bounding method is proposed to eliminate reference
points that lead to infeasible RNBI subproblems. Furthermore, different initialisation
approaches for column generation are implemented, including Farkas pricing. We
investigate the quality of the representation obtained.

To demonstrate the efficacy of the proposed approach, we apply it to an MOLP
arising in radiotherapy treatment design. In contrast to conventional optimisation ap-
proaches, treatment design using column generation provides deliverable treatment
plans, avoiding a segmentation step which deteriorates treatment quality. As a result
total monitor units is considerably reduced. We also note that reference point bound-
ing dramatically reduces the number of RNBI subproblems that need to be solved.
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1 Introduction

Multi-objective optimisation (MOO) deals with optimisation problems involving sev-
eral conflicting objectives. In MOO, a single solution that simultaneously optimises
all objectives generally does not exist. Instead, MOO seeks for solutions that cannot
improve in any single objective without deteriorating at least one other objective. So-
lutions with this property are referred to as efficient solutions. The points obtained by
mapping the efficient solutions to the objective space are referred to as non-dominated
points. The purpose of MOO is to obtain the non-dominated set and one efficient so-
lution in the pre-image of every non-dominated point. A decision maker then has
the task to select the most preferred non-dominated point and a corresponding effi-
cient solution for the problem at hand. In multi-objective continuous optimisation,
the non-dominated set consists of infinitely many non-dominated points. It is there-
fore impractical for a decision maker to examine all non-dominated points. Instead,
a practical approach is to obtain a discrete representation of the non-dominated set
satisfying some quality requirements (Sayın, 2000; Faulkenberg and Wiecek, 2010).
Many methods that follow this approach have been proposed in the last two decades,
as the paper by Faulkenberg and Wiecek (2010) shows. Given this representative non-
dominated set, the decision maker can navigate through the non-dominated points and
decide on the most preferred point. In this study we propose to integrate column gen-
eration in an approach to find a representative non-dominated set for multi-objective
linear programmes (MOLPs).

Column generation is a technique that solves linear programmes by considering
only a subset of the decision variables. The technique is particularly beneficial when
the number of variables is much greater than the number of constraints. The idea is
based on the fact that, typically, only a subset of variables is required in the basis
to reach optimality; other variables are non-basic and have a value of zero. Column
generation exploits this fact by only considering variables that have the potential to
improve the objective function value, indicated by negative reduced costs. In each it-
eration of a column generation method, two problems need to be solved successively:
the restricted master problem (RMP) and the subproblem (SP). RMP is the original
problem with only a subset of variables. By solving the RMP, a vector of dual val-
ues associated with the constraints of the RMP is obtained. The dual information is
passed on to the SP. The goal of the SP is to identify a new variable and an associ-
ated coefficient column with negative reduced cost, which can potentially improve
the objective function value of the original problem. If such a variable and column
can be identified, then they are added to RMP, which is re-optimised, and the next
iteration begins. Otherwise, an optimal solution of RMP is also an optimal solution
of the original problem.

Column generation methods in multi-objective optimisation are rare. Moradi et al
(2015) present a column generation approach for the (linear) bi-objective multi-com-
modity minimum cost flow problem. Their algorithm incorporates column genera-
tion within a bi-objective simplex algorithm, which requires a modification of the
objective function of the SP to a linear fractional function. The study of Salari and
Unkelbach (2013) falls into the domain of non-linear programming, thus the sub-
problem is based on partial derivatives of individual objective functions. The aim of
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Salari and Unkelbach (2013) is to approximate the entire non-dominated set using a
limited number of variables. The basic idea is to use column generation to identify
variables that potentially improve the non-dominated set approximation as a whole.
To find such variables, multiple weighted-sum RMPs, where each RMP is associated
with a unique non-negative weight vector, are solved. The partial derivatives obtained
from solving each RMP are passed to a subproblem, which aggregates the individual
subproblems corresponding to each RMP. A column obtained from solving the ag-
gregated subproblem therefore potentially improves the majority of individual RMPs,
thus improving the non-dominated set approximation as a whole. However, due to the
use of weight vectors for the RMPs and the use of an aggregated subproblem, their
method cannot guarantee that the whole non-dominated set is well approximated.

In this study, we propose to use column generation within a procedure that con-
structs an evenly distributed finite representative set of non-dominated points of an
MOLP, i.e. the revised normal boundary intersection (RNBI) method of Shao and
Ehrgott (2007, 2016). The RNBI method combines aspects of the global shooting
method (Benson and Sayın, 1997) and the normal boundary intersection method (Das
and Dennis, 1998) and has been proven to generate evenly distributed non-dominated
points for MOLPs (Shao and Ehrgott, 2007). Unlike the method of Salari and Un-
kelbach (2013) in which a subproblem identifies a variable that improves the non-
dominated set approximation in general, each of the column generation subproblems
in our approach identifies a variable and an associated column to move a point in ob-
jective space in a direction that leads to non-dominance. In fact, if column generation
is run to termination, i.e. optimality of the master problem, the resulting point will be
on the boundary of the feasible set of the MOLP in objective space.

We apply our method to a multi-objective optimisation problem in radiotherapy
treatment design. The goal of this problem is to identify a treatment plan (in the form
of so-called fluence maps for several radiation beams) in order to deliver a tumourici-
dal dose of radiation to a planning target volume, while sparing healthy tissue. These
conflicting goals naturally lead to formulations as multi-objective optimisation prob-
lems. We refer the reader to Ehrgott et al (2008a) for more details on optimisation
methods in radiation oncology. By applying our column generation RNBI method
to the treatment design problem, a set of representative treatment plans, each with a
unique trade-off between objective function values, are generated. Given these plans,
the oncologist can then decide on the plan that best benefits the patient.

Conventional and multi-objective approaches in radiotherapy treatment design
generate treatment plans that often cannot be practically delivered by existing ra-
diotherapy equipment. In order to make them deliverable, one needs to modify the
treatment plans to incorporate physical delivery constraints and to reduce the total
time a patient is exposed to radiation. This modification, which is referred to as seg-
mentation, deteriorates treatment plan quality (Rocha et al, 2012; Craft and Richter,
2013). Thus, should a treatment plan become unsatisfactory after segmentation, the
treatment planner will have to re-optimise and find another plan. This iterative pro-
cess makes the treatment design process inefficient. However, we shall see that the
fluence map optimisation problem can be reformulated via decomposition to include
the physical delivery constraints. It can then be solved by column generation to obtain
treatment plans that are directly deliverable. In fact, we shall see that column gener-
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ation produces plans that are close to optimality with a reduced delivery complexity,
which are often preferable to optimal (but complex) plans in practice (Carlsson and
Forsgren, 2014; Broderick et al, 2009).

In Section 2, we provide background and formulations of single objective column
generation and the RNBI method. In Section 3, we introduce the column generation
RNBI formulation and discuss implementation issues associated with the method, i.e.
the detection of infeasibility through a reference point bounding method and initial-
isation of the process. The quality of the representative set obtained by our column
generation based RNBI method is also discussed. In Section 4, we apply the method
to a prostate radiotherapy treatment planning problem, followed by results and dis-
cussion in Section 5.

2 Column generation and the RNBI method

In this section we provide necessary details for column generation and the RNBI
method. For further details of these two topics, we refer the readers to Lübbecke
(2010) and Shao and Ehrgott (2007), respectively.

2.1 Column generation

Consider a single objective linear programme referred to as the master problem MP,

vMP := min ∑
j∈J

c jx j

s.t. ∑
j∈J

a jx j = b,

x j = 0, j ∈ J,

(MP)

with |J| = n variables and m constraints. Each variable x j is associated with a cost
coefficient c j and a constraint column a j ∈ Rm. The right-hand side constraint coef-
ficients are specified by column b ∈ Rm. The column generation technique considers
a restricted master problem (RMP) which uses only a subset J′ ⊆ J of all variables.
Because of this, the optimal solution x∗ of RMP is worse than or equal to the optimal
solution of MP in terms of the objective function. By solving the RMP, we obtain a
dual solution π∗ associated with the constraints of the RMP. In the Simplex method,
the dual solution is used to calculate the reduced cost of each non-basic variable
which indicates the unit change of the objective function value if the variable were
to enter the basis. If the reduced cost of all non-basic variables is non-negative, the
current basic feasible solution of RMP is an optimal solution to MP. Otherwise, a
non-basic variable with negative reduced cost enters the basis, which improves the
objective function if the entering variable takes a value greater than zero.

Column generation works in an analogous way. The vector of dual values π∗

obtained from solving the RMP is passed into a subproblem,
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min c̄ j = c j− (π∗)T a j

s.t. j ∈ J.
(SP)

SP finds a variable x j∗ with lowest reduced cost c̄ j∗ . If c̄ j∗ is negative, the non-

basic variable x j∗ and the coefficient column
(
c j∗ ,a j∗

)T
are added to RMP and RMP

is re-solved. Otherwise, an optimal solution of RMP is also an optimal solution of MP.
Note that SP can be solved as an optimisation problem if the set J can be described
by the feasible set XJ of an optimisation problem

min c(λ )− (π∗)T a(λ )

s.t. λ ∈ XJ ,
(1)

in which c j = c(λ ) and a j = a(λ ) and which has variable vector λ ∈ XJ .
The lowest reduced cost c̄ j∗ can be used to derive a lower bound on the optimal

value vMP of MP. Denote the optimal value of the current RMP as v∗RMP. If there exists
a constant κ with ∑ j∈J x j ≤ κ for any optimal solution of MP, then we have a lower
bound

v∗RMP +κ c̄ j∗ 5 vMP, (2)

since we cannot improve the objective function value v∗RMP by more than κ times the
lowest reduced cost c̄ j∗ (Lübbecke, 2010).

2.2 The RNBI method

Consider an MOLP
min{Cx : x ∈ X}, (MOLP)

where C ∈ Rp×n is the cost coefficient matrix consisting of row vectors ck ∈ Rn for
k = 1, . . . , p. Throughout this paper we will assume that X ⊆Rn is a non-empty com-
pact polyhedral set (a polytope) of feasible solutions. The feasible set in objective
space Y defined by

Y = {Cx : x ∈ X} (3)

is also a polytope since it is the image under a linear mapping of the polytope X .

Definition 1 A feasible solution x̂ ∈ X of MOLP is called efficient if there does not
exist any x ∈ X such that ckx 5 ckx̂ for k = 1, . . . , p, and Cx 6= Cx̂. The set of all
efficient solutions of the MOLP is called the efficient set XE in decision space. The
image in objective space ŷ =Cx̂ of efficient solution x̂ is called non-dominated point.
The set of all non-dominated points is referred to as the non-dominated set YN in
objective space.

We first explain the general idea of RNBI. A simplex S is constructed such that
it contains Y and such that the non-dominated set SN of S is a subsimplex of S. We
denote by Ŝ := SN the reference subsimplex. Reference points are positioned on Ŝ
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Fig. 1 The RNBI method: Illustration of the simplex S containing the feasible set in objective space Y , the
reference subsimplex Ŝ and the half-lines emanating from the reference points.

and for each reference point q, a half-line emanating from q in direction e is gen-
erated, where e is a vector of all ones. The RNBI subproblem then searches for the
intersection point between the half-line and (the boundary of) Y closest to the ref-
erence point. As illustrated in Figure 1, not all half-lines intersect with Y . In this
case the RNBI subproblem will be infeasible. In addition, some intersection points
may be dominated. Hence in the last step, the algorithm checks the non-dominance
of intersection points by solving one LP for each intersection point. The following
subsections outline the RNBI method in more detail.

2.2.1 Constructing the reference subsimplex and choosing reference points

To construct the reference subsimplex Ŝ, we first obtain scalar µ as µ := min
{

eT y : y
∈ Y}. µ is attained at a non-dominated point ŷ of Y , as illustrated in Figure 1. We
then derive the anti-ideal point yAI of the MOLP, where yAI

k := max{yk : y ∈ Y} for
k = 1, . . . , p (Ehrgott, 2005). Based on µ and yAI , we can define the p+ 1 vertices
vk ∈Rp,k = 0,1, . . . , p of the simplex S that contains Y . Let v0 := yAI . For k = 1, . . . , p
and l = 1, . . . , p let

vk
l :=

{
yAI

l if l 6= k,
µ + yAI

k − eT v0 if l = k. (4)

The convex hull of vertices {vk : k = 0,1, . . . , p} is a p-dimensional simplex S
that contains Y , as shown by Benson and Sayın (1997). The reference subsimplex
Ŝ, which is the non-dominated set of S, is defined by the convex hull of vertices
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{vk : k = 1,2, . . . , p}. Reference points on Ŝ can now be chosen as particular convex
combinations of the extreme points of Ŝ, i.e. a reference point q is given by

q =
p

∑
k=1

αkvk, (5)

where αk is the weighting of vertex k for k = 1, . . . , p with 0 5 αk 5 1 and ∑
p
k=1 αk =

1. By varying the weighting for each vertex with a fixed increment η , an evenly dis-
tributed discrete set of points on the reference subsimplex Ŝ can be generated (Benson
and Sayın, 1997). Let the set of reference points be denoted Q.

2.2.2 Computing the intersection points and checking non-dominance

For each reference point q ∈ Q, RNBI computes the intersection point y of the half-
line {q+ te : t = 0} and the boundary of Y by solving the RNBI subproblem

min{t : q+ te ∈ Y ; t = 0}. (RNBISub)

Notice that by construction, the all-ones vector e is the normal of the reference sub-
simplex Ŝ. As illustrated in Figure 1, there are three scenarios for RNBISub:

– RNBISub is infeasible if and only if the half-line {q+te : t = 0} does not intersect
Y .

– RNBISub has an optimal solution t∗, but the intersection point q+ t∗e of the half-
line {q+ te : t = 0} and Y is dominated.

– RNBISub has an optimal solution t∗ and q+ t∗e is a non-dominated point of Y .

The first case is detected by infeasibility of RNBISub. Because an intersection
point may be a dominated point, it is necessary to check every intersection point for
non-dominance. To do so, after obtaining all intersection points, a non-domination
filter can be used to exclude some of the dominated points (Messac et al, 2003).
This method allows fast elimination of some dominated intersection points but cannot
guarantee the remaining points are non-dominated. Hence the non-dominance of the
remaining intersection points ȳ must be verified, e.g. by solving the linear programme

min{ωT y : y 5 ȳ;y ∈ Y}, (6)

where 0 < ω ∈ Rp is an arbitrary strictly positive weight vector, for instance ω = e.
Then ȳ is non-dominated if and only if the optimal value of (6) is equal to ωT ȳ
(Ehrgott, 2005).

3 The RNBI method using column generation

To integrate column generation in the RNBI framework we solve RNBISub using
column generation. To do so, we adopt RNBISub as the master problem. Following
the background definitions for column generation in Section 2.1, we formulate the
restricted master problem with a subset J′ ∪ {t} of variables and with feasible set
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defined by constraints ∑ j∈J′ a jx j = b, x j = 0 for all j ∈ J′ and t = 0. The condition
q+ te ∈Y of RNBISub is rewritten as constraints qk + t = ∑ j∈J′ ck

jx j for k = 1, . . . , p.
In this way, the objective functions of the original MOLP are incorporated in the
restricted master problem as constraints of RNBISub, i.e. (7b), in addition to the
original constraints of MP, i.e. (7c). The corresponding RMP is referred to as RMP-
RMBISub, and is shown as follows.

min t (7a)

s.t. qk + t = ∑
j∈J′

ck
jx j, k = 1, . . . , p, (7b)

∑
j∈J′

a jx j = b, (7c)

x j = 0, j ∈ J′ (7d)
t = 0. (7e)

Notice that RMP-RNBISub is essentially the same as the RNBI subproblem but
with only a subset of variables j ∈ J′. To conduct column generation on this RNBI
subproblem, we solve RMP-RNBISub and the corresponding SP sequentially and
iteratively. We remark that, in case column generation is terminated early, i.e. an op-
timal solution of RNBISub is not yet confirmed, the intersection point may be dom-
inated. In contrast to the original RNBI method, non-dominance of the intersection
points will not be checked, because only an optimal solution of RNBISub can define
a non-dominated point.

As indicated in Section 2.2.2 RNBISub may be infeasible even in the presence
of all variables. Hence, if we solve RMP-RNBISub with a subset of variables, it may
be infeasible because either the constraints (7c) are not satisfied with a subset of
variables or because the master problem RNBISub is infeasible, i.e. {q+ te : t = 0}
does not intersect Y . The former case can be dealt with by the use of artificial variables
to satisfy constraints (7c), see also Section 3.1. But in the latter case, many iterations
of column generation may be wasted to detect the infeasibility. In fact, infeasibility of
RNBISub could only be determined once all artificial variables are eliminated from
the solution.

It will therefore be beneficial to identify reference points for which this is the case
early to avoid attempts to solve RNBISub for such reference points. For convenience,
we will from now on refer to reference points for which RNBISub is infeasible as in-
feasible reference points. In Section 3.1 we present a method, which we call reference
point bounding, to identify infeasible reference points. To deal with infeasibility due
to the restricted number of variables in RMP-RNBISub, we present three methods
of initialisation in Section 3.2. Finally, we discuss the quality of the representation
generated by column generation RNBI in Section 3.3.
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3.1 Reference point bounding

One issue with the RNBI method, which stems from the use of the anti-ideal point
in the definition of the covering simplex S and the reference subsimplex Ŝ, is that
there can be infeasible reference points, i.e. reference points for which RNBISub is
infeasible such that {q+ te : t = 0} ∩Y = /0. Because the components of yAI may
be far larger than the objective values of any non-dominated point, there can poten-
tially be many reference points for which this is also the case, as shown in Fig. 1.
Obviously, any effort invested in solving RNBISub for infeasible reference points is
wasted in the sense that it does not contribute to the computation of a representative
set of non-dominated points. Therefore, solving RNBISub using column generation
if RNBISub is in fact infeasible, can dramatically increase the computational time
(see Section 4.2). In order to identify infeasible reference points we provide Theorem
1 characterising infeasible reference points and therefore defining the subset of fea-
sible reference points of Ŝ. We first state a lemma concerning the set of all feasible
reference points.

Lemma 1 The subset Q̂⊂ Ŝ of points q such that {q+te : t = 0}∩Y 6= /0 is a polytope.

Proof The result follows, because Q̂ is the projection of polytope Y onto Ŝ, which is
a simplex on the hyperplane eT y = µ .

Theorem 1 Let q ∈ Ŝ be a reference point. Then q is infeasible if and only if there is
some d ∈ Rp \{0} such that dT q < min{dT z : z+ te ∈ Y,z ∈ Ŝ, t = 0}.

Proof We first observe that the LP min{dT z : z+ te ∈ Y,z ∈ Ŝ, t = 0} is always fea-
sible, because z∗ = ŷ, t∗ = 0 with ŷ as defined in Section 2.2.1 is a feasible solution.
It is also bounded, because Y is a compact set by assumption. Then dT q < min{dT z :
z+ te ∈ Y,z ∈ Ŝ, t = 0} implies that q does not satisfy q+ te ∈ Y for any t = 0. Now
let q be an infeasible reference point. Then q /∈ Q̂ as defined in Lemma 1. Hence there
exists a hyperplane strictly separating q from Q̂, i.e. there is d ∈ Rp \ {0} such that
dT q < min{dT z : z ∈ Q̂}= min{dT z : z+ ty ∈ Y,z ∈ Ŝ, t = 0}.

Although Theorem 1 provides a theoretical characterisation of all feasible ref-
erence points, it is clearly impractical for implementation. Hence, we restrict our-
selves to finding minimum and maximum values of each individual co-ordinate zk of
points on the reference subsimplex Ŝ that are feasible reference points, i.e. we use
the sufficient condition of Theorem 1 and apply it to vectors d = ek and d = −ek

for k = 1, . . . , p, where ek is the kth unit vector. We call this method reference point
bounding.

The linear programme min{dT z : z+ te ∈ Y,z ∈ Ŝ, t = 0} is solved for d = ek

and d = −ek for k = 1, . . . , p. Let the optimal values be zmin
k and zmax

k , respectively.
Then according to Theorem 1, reference points q with qk < zmin

k or qk > zmax
k for any

k ∈ {1, . . . , p} will be infeasible. Corollary 1 summarises the above argument.

Corollary 1 If q is a reference point with qk < zmin
k or qk > zmax

k for some k ∈
{1, . . . , p}, then {q+ te : t = 0}∩Y = /0.
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Fig. 2 Reference point bounding illustration. The red points indicate the bounding points for objective 1
and the green points are the eliminated reference points. Hence in this case, only the RNBI subproblems
corresponding to the cyan reference points are solved.

Reference points that satisfy the condition of Corollary 1 are eliminated from the
set Q of reference points and the corresponding RNBI subproblems are not solved.
Figure 2 illustrates the bounds obtained by Corollary 1 for k = 1 in the same example
used in Figure 1. In addition, we show the bounds obtained in the application of
Section 4 in Figure 5.

3.2 Initialisation of RMP-RNBISub

Constraints (7b) may not be feasible given a limited set of variables. In addition,
even after the reference point bounding procedure is applied, infeasible reference
points may remain due to {q+ te : t = 0}∩Y = /0. In this section we discuss how the
infeasibility of RMP-RNBISub can be managed.

One way to handle the infeasibility is the Phase-1 approach, see e.g. Chvátal
(1983), which adds non-negative artificial variables to satisfy constraints (7b) and
(7c) while changing the objective function of the problem to minimise the sum of
the artificial variables. The Big-M approach assigns large costs M to the artificial
variables and minimises the sum of the original objective function plus the sum of
the costed artificial variables. Using artificial variables, feasibility of RMP-RNBISub
is assured. As soon as any of the artificial variables has a value of zero in a solution,
the artificial variable can be removed. If any of the artificial variables remain positive
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when the optimality condition is satisfied, we can conclude that RMP-RNBISub is
infeasible because {q+ te : t = 0}∩Y = /0.

We notice that in practice, column generation is rarely used to solve a (single
objective) linear programme to optimality. In this situation, a possible approach is to
perform column generation iterations on RMP-RNBISub until a specified termina-
tion condition, such as a pre-specified number of columns, is reached. One can, for
example, conclude that a reference point is (approximately) feasible, if the solution
satisfies constraints (7c) and the remaining total infeasibility in constraints (7b) is
small enough, i.e. below a certain pre-determined threshold.

An alternative approach to manage infeasibility is to generate coefficient columns
that show that the RMP is feasible (Andersen, 2001). The method is based on Farkas’
lemma, which states that either Ax = b,x = 0 is feasible or there is a vector π with
πT A = 0 and πT b < 0. The vector π corresponds to the dual vector of a linear pro-
gramme. A linear programme is proved to be infeasible by finding a dual vector such
that the condition πT Ax = πT b can never be met due to opposite signs on the right-
hand side and the left-hand side of the equation. Thus to prove that the restricted
master problem is feasible, we can add a column a to A with πT a 5 0. Such a column
can be found by solving min{πT a(λ ) : πT a(λ )5 0,λ ∈ XJ}. If no such column ex-
ists, we can conclude the corresponding master problem is infeasible. We will refer
to this approach as Farkas pricing.

3.3 Quality of the representative set computed by the column generation RNBI
method

Sayın (2000) defines three measures, coverage, uniformity and cardinality, to quan-
tify the quality of a discrete representation of a set. A good representation of the
non-dominated set should not contain an excessive number of points (low cardinal-
ity), should have points significantly different from one another (as indicated by high
uniformity level) and should not neglect large portions of the non-dominated set (low
coverage error).

Let G ⊂ YN be a finite set of non-dominated points generated by the standard
RNBI method using reference points q∈Q. Let H be the representative set generated
by the RNBI method using column generation based on the same set of reference
points. We shall write g(q) and h(q), respectively, to indicate the dependence of rep-
resentative points on reference point q. The distance between two adjacent reference
points is denoted as dq. Cardinality represents the number of points contained in the
representation. It is clear that the number of points contained in H depends on the
distance between adjacent reference points. In the rest of this section we discuss the
quality of H in terms of uniformity level and coverage error.

The uniformity level δ of a representative set is measured by the distance between
a pair of closest points in the set. The uniformity level of H can therefore be expressed
by

δ := min
hi,h j∈H,hi 6=h j

d(hi,h j) (8)
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with d being a metric. We shall use the Euclidean distance as metric in this paper.
Assume hk and hl are the two closest points in H and let qk and ql be the correspond-
ing reference points, as illustrated in Figure 3. By definition of the RNBI method, we
know that vector vN = hl − ql must be perpendicular to vector vq = ql − qk. Hence
we have cosθ = ‖vq‖/‖vh‖ where vector vh = hl − hk and θ is the angle between
vectors vh and vq. To satisfy hl = ql + tle with tl = 0 being the absolute difference
between ql and hl in all objectives, we must have 0 5 θ < π/2, which corresponds to
0 < cosθ 5 1. Therefore, minimal ‖vh‖ occurs when cosθ = 1 and in that case the
distance between hl and hk is ‖vh‖ = ‖vq‖ = dq. Therefore the lower bound on the
uniformity level of H is dq, which is the same as that of G (Shao and Ehrgott, 2007).

Fig. 3 An illustration of the uniformity level for a representation produced by the RNBI method using
column generation. The two diamonds represent a pair of closest representative points hl and hk and the
circles represent the corresponding reference points ql and qk .

The coverage error ε indicates how accurately set H represents YN and can be
expressed as

ε := max
y∈YN

min
h∈H

d(y,h). (9)

Essentially, the coverage error ε is the maximum distance between a point in
the non-dominated set and its closest point in the representation H. Notice that if
RMP-RNBISub is not solved to optimality by column generation, h ∈ H can be an
intersection point of {q+ te : t = 0} with Y that is dominated even though {q+ te :
t = 0} intersects Y in a non-dominated point.

Shao and Ehrgott (2007) show that the coverage error of G is at most (
√

pdq)/2.
Hence the coverage error of H is bounded by the maximum distance between points
g(q) and h(q) of H and G generated for reference points q ∈ Q plus the coverage
error of G which can be expressed as

ε 5 max
q∈Q

d (g(q),h(q))+
√

pdq/2. (10)

The term d(g(q),h(q)) can be derived from the difference between the objective
function values of RNBISub and RMP-RNBISub for reference point q. If RNBISub is
not solved to optimality, one can use a lower bound on the optimal value of RNBISub,
e.g. equation (2), to estimate the coverage error.
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Based on the above discussion, we can see that the quality of a representation
generated by column generation RNBI depends on the distance between adjacent ref-
erence points. As the distance decreases, cardinality increases, the uniformity level
decreases and the coverage error decreases. In addition, the coverage error also de-
pends on the maximum distance between representative points g(q) and h(q) for
reference points q ∈ Q, which depends on the termination condition of the column
generation process. Consequently, given a problem at hand, one should select a dq
and a column generation termination condition that results in appropriate uniformity
level and coverage level for the representative non-dominated set.

4 Application of the column generation RNBI method in radiotherapy
treatment design

In this section, we consider the so called fluence map optimisation problem of ra-
diotherapy treatment design and describe how the column generation RNBI method
can be applied to find a set of fluence maps that are deliverable without solving an
additional segmentation problem and that define a representation of the entire set of
non-dominated points of the multi-objective fluence map optimisation problem. The
design of a radiotherapy treatment for cancer using optimisation methods has become
an important application of optimisation with the introduction of intensity modulated
radiotherapy treatment. It involves the determination of beam angles, beam intensities
and a delivery schedule for the radiation using a gantry equipped with a linear accel-
erator. Its goal is to deliver a high and uniform radiation dose to the treatment plan-
ning target volume (PTV) while sparing surrounding healthy organs at risk (OARs)
as much as possible. In the delivery of radiotherapy treatments, radiation fields pass
through a device called multileaf collimator (MLC), which consists of a number of
pairs of metal leaves that can move into and out of the path of the radiation indepen-
dently (as illustrated in Figure 4). The MLC leaves block part of the radiation field
which results in a radiation field of an irregular shape. An MLC leaf opening that is
applied in the delivery of radiation is referred to as an aperture or a segment. For any
beam direction, the application of multiple segments, each applied for a certain time,
allows the delivery of modulated radiation intensity that results in the desired dose
distribution. For further reading on radiotherapy treatment design, we refer readers to
specialised textbooks e.g. Webb (2001); Schlegel and Mahr (2002).

From now on, we assume that beam directions are given and refer to Ehrgott
et al (2008c) for an overview of the problem of determining beam directions. Hence,
given a set of beam directions, we are interested in finding a design, consisting of a set
of segments and the associated radiation intensities, which best benefits the patient.
Conventionally, the radiotherapy treatment design problem is split into two sequen-
tial optimisation problems, the fluence map optimisation (FMO) problem and the
segmentation problem. FMO is the problem of finding the optimal modulated radia-
tion intensity for each beam direction. To model the FMO problem mathematically,
the radiation field at a beam direction is discretised into small sized rectangular sub-
fields called bixels. These correspond to the smallest openings of the MLC, i.e. are
of the width of one of the leafs of the MLC and of the length that corresponds to the
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Fig. 4 Illustration of an MLC device.

distance between two stop positions of the leaf. FMO finds the radiation intensity for
each bixel such that a desirable dose distribution that meets the goals of the treatment
can be delivered to the patient. The intensities for the bixels are referred to as the in-
tensity pattern. In principle, one can deliver the intensity pattern bixel-by-bixel using
bixel-sized segments. However, doing so would lead to an unrealistically long treat-
ment time. In practice, the intensity pattern is realised by stacking a limited number
of shaped radiation fields, each passing through an associated segment. Therefore,
after obtaining the intensity pattern as output from solving the FMO problem, it is
necessary to solve a so-called segmentation problem, which finds a set of segments
that best realise the intensity pattern by, for instance, minimising the total beam-on
time required to deliver the intensity pattern or by minimising the required number
of segments (see Baatar et al (2005)).

The segmentation problem is an optimisation problem that needs to incorporate
physical constraints of the MLC leaves. The elementary ones are collision constraints,
that prevent opposing leaves to overlap and constraints that ensure the opening in any
MLC row is continuous, i.e. all open bixels in a row are consecutive. Other con-
straints are specific to particular brands of MLCs, which is why we concentrate on
the basic ones in this study. To avoid generating overly complex treatment plans that
cannot be practically delivered, the bixel intensities are discretised into a range of in-
tensity levels at the beginning of the segmentation process. As a result, the intensity
pattern is realised approximately and the quality of the treatment plan deteriorates
after segmentation. A survey of the literature on segmentation problems can be found
in Ehrgott et al (2008b).

FMO needs to deal with several conflicting objectives associated with the PTV
and the surrounding structures. The conflicting objectives in FMO have convention-
ally been handled by scalarisation (see Ehrgott et al (2008a) for a review). However,
using this approach, if the generated intensity pattern is not satisfactory, the plan-
ner will have to iteratively adjust the plan optimisation parameters and re-optimise
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until a satisfactory intensity pattern is found. This process is time consuming and
without guarantee of finding the best possible intensity pattern under the patient spe-
cific conditions. Instead, multi-objective optimisation has been introduced to solve
the FMO problem. By generating a representative set of non-dominated plans, the
planner can browse the plans and choose the best one available without the iterative
process. Several approaches have been proposed to solve multi-objective FMO prob-
lems, including goal programming methods (Falkinger et al, 2012; Breedveld et al,
2009; Wilkens et al, 2007; Jee et al, 2007), constraint methods (Hoffmann et al, 2006;
Craft et al, 2005; Küfer et al, 2003; Hamacher and Küfer, 2002) and approximation
methods (Shao and Ehrgott, 2008; Craft et al, 2006). In addition, RNBI has also been
applied to multi-objective FMO problems by Shao and Ehrgott (2007).

Recently, a multi-objective FMO optimisation approach has been deployed in
clinical practice (Craft and Richter, 2013). The approach approximates the non-do-
minated set using convex combinations of efficient solutions. However, since FMO
does not consider plan delivery, the treatment plan generated from FMO needs to
go through the segmentation process, which transforms an optimal intensity pat-
tern into a limited number of segment intensities, thereby deteriorating plan quality,
as demonstrated by Rocha et al (2012). If the deliverable plan is not satisfactory,
the planner will have to re-optimise and find another plan. To avoid this drawback,
Craft and Richter (2013), Salari and Unkelbach (2013) and Fredriksson and Bokrantz
(2013) have proposed multi-objective approaches to find deliverable plans. These ap-
proaches use convex combinations of the segmented plans or conical combinations of
the segments to approximate the feasible set of the FMO problem and then use multi-
objective interactive optimisation methods to navigate among the non-dominated set
of the approximated feasible set.

The clinically adopted MOO method uses a sandwiching method (see, e.g., Ren-
nen et al (2011) and Bokrantz and Forsgren (2013)) to generate an approximation of
the non-dominated set, followed by plan navigation on the convex hull of a set of
plans (Monz et al, 2008). While approximating the non-dominated set based on inter-
polation of a set of existing plans can reduce the computational expense, compared
to generating a discrete representative non-dominated set, we note that the interpo-
lated solution may be subject to further improvement potential due to approximation
error (see, e.g., Bokrantz and Miettinen (2015)). In contrast, the RNBI procedure
produces a discrete set of efficient plans that captures all potential treatment trade-
offs. Moreover, it is guaranteed that each non-dominated point is no further than a
known coverage error from the objective vector of one of the computed plans. Since
it is also guaranteed that the objective vectors of the computed plans cover the entire
non-dominated set (in terms of a guaranteed minimum distance, called the uniformity
level, between any two of them) there is no need to consider convex combinations of
plans. As interpolation is not used to form plans, each plan is given freedom in beam
angle configuration, segment shapes and segment intensities and hence allows one to
achieve the best-quality plans for different treatment trade-offs. In addition, since a
set of discrete plans that captures different treatment trade-offs are generated, navi-
gation can be conducted by examining the existing set of plans. Consequently, one
can extract relevant (non-convex) clinical evaluation criteria, e.g., the dose-volume
parameters and treatment delivery time, from the plans and use these criteria to find
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the most preferable plan from the representative non-dominated set (Lin and Ehrgott,
2016).

Column generation has been used to generate deliverable plans for single ob-
jective radiotherapy plan optimisation (Preciado-Walters et al, 2004; Romeijn et al,
2005). Here, the physical delivery constraints in the segmentation process are consid-
ered in the column generation subproblem. Essentially, each column generated from
the subproblem represents a segment that is likely to improve the objective function
value. As a result, the solutions produced from column generation can be delivered
without additional segmentation. As will be demonstrated by our results, column gen-
eration produces plans that are near-optimal and can be delivered with dramatically
lower total monitor units than the corresponding optimal ones followed by segmenta-
tion. Such plans are desirable as they can be delivered with a shorter treatment time,
i.e., exposing patients to radiation for a shorter time, and with lower radiation leakage
from the MLCs (Broderick et al, 2009). In fact, near-optimal plans that can be deliv-
ered efficiently and accurately are often preferable to complex optimal solutions in
practice (Carlsson and Forsgren, 2014). Earlier studies on deliverable multi-objective
optimisation in radiotherapy limit the number of segments requiring that all computed
plans use either the same segments (Salari and Unkelbach, 2013), that the number of
segments in each plan is limited (Craft and Richter, 2013), or that the plans use both a
subset of segments from a common pool and some individual ones (Fredriksson and
Bokrantz, 2013). We use column generation within the RNBI method to control the
number of segments that are generated for each plan, making no restrictions on the
set from which these segments are drawn. Because the method provides quality guar-
antees for the computed plans, the planner is then able to decide how many segments
to allow solely based on plan quality without setting any a-priori limits.

In this paper, we apply column generation within the RNBI framework for multi-
objective radiotherapy treatment design. This approach produces a representative set
of plans that are deliverable and are close to efficient plans that do not consider the
deliverability of intensity patterns. The approach therefore combines the advantage of
considering multiple objectives in the FMO problem with the advantage of producing
deliverable intensity maps without much deterioration of treatment quality, which
column generation delivers.

4.1 Formulation

To formulate a mathematical model of the FMO problem, the patient volume is dis-
cretised into m small volume elements called voxels. The radiation fields for all beams
are discretised into n small rectangular fields called bixels, as explained above. The
dose for each voxel is calculated by

d = Ax, (11)

where d ∈ Rm is the dose vector in which di represents the dose delivered to voxel
i. Vector x ∈ Rn is the radiation intensity vector in which x j describes the radiation
intensity for bixel j. A ∈ Rm×n is the dose deposition matrix. Element ai j of A rep-
resents the dose deposited to voxel i from bixel j under unit intensity. A is specific
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to the radiation source (modality, energy) used for the treatment and the patient vol-
ume. Different dose calculation algorithms can be used to calculate A (Reynaert et al,
2007; Jeleń et al, 2005; Keall and Hoban, 1996). For convenience, A can be par-
titioned and re-ordered into submatrices according to the structure type of the voxel
i.e. AT ∈RmT×n, AC ∈RmC×n and AN ∈RmN×n for PTV T with mT voxels, for critical
organs C with mC voxels and for normal tissue N with mN voxels, respectively.

In the treatment planning process, the oncologist determines a prescription dose
to be delivered to the PTV, respectively not to be exceeded for organs at risk and
normal tissue. The planner attempts to achieve the prescription dose by setting the
appropriate optimisation parameters. The formulation used in this study is based on
the model of Holder (2003), as shown in (12), but with slight variation. The param-
eters include the dose lower bound LBT ∈ RmT for the tumour and upper bounds
UBT ∈ RmT , UBC ∈ RmC and UBN ∈ RmN for the tumour, critical organs and nor-
mal tissue, respectively. Variables α ∈ RmT , β ∈ RmC and γ ∈ RmN are voxel-wise
one-sided dose deviations from tumour lower bound, critical organ upper bound and
normal tissue upper bound, respectively.

min
(

1
mT

eT
α,

1
mC

eT
β ,

1
mN

eT
γ

)
s.t. LBT −α 5 AT x 5UBT ,

ACx 5 UBC +β ,

ANx 5 UBN + γ,

α 5 UBα ,

β 5 UBβ ,

γ 5 UBγ ,

0 5 x,α,β ,γ.

(12)

Different from Holder’s model, we introduce upper bounds UBα ∈ RmT , UBβ ∈
RmC and UBγ ∈ RmN for α , β and γ , respectively. These upper bounds can easily be
set so that the Y is bounded and thus allows us to compute yAI . Note that the unit of the
objective functions is Gray (unit for radiation dose), since we are trying to minimise
dose deviations. The RNBI subproblem of (12) is simply (7) with constraints (7c)
and (7d) replaced by the constraints of (12) and with the objective functions of (12)
incorporated in the form of constraint (7b).

An optimal fluence map obtained by solving the RNBI subproblem of (12) with
variables representing bixel intensities may not be practically deliverable. Alterna-
tively, deliverable plans can be generated from a reformulation in which the bixel
intensity variables x are replaced by segment intensity variables x̄ and the dose de-
position matrix A based on bixel columns is replaced by the dose deposition matrix
Ā using segment columns. Column s of Ā, denoted as ās ∈ Rm, represents the dose
deposited to the m voxels by segment s at unit intensity. Column ās is derived by

ās = Aus, (13)

where us ∈ {0,1}n is a vector defining segment s with us
j = 1 if bixel j is open and

us
j = 0 if bixel j is closed in segment s. Note that the two formulations have the same
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optimal values since feasible solutions in terms of variables x can be represented by
variables x̄ and vice versa, through the relationship

x =Ux̄, (14)

with U being a matrix containing all feasible segment columns u.
Due to the large number of feasible segments, Ā has a much larger number of

columns than A, which makes the reformulation hard to solve. Therefore it is benefi-
cial to use column generation to solve the reformulation in which we only consider a
subset of segments in the RMP. By solving the RMP, we obtain a vector of dual val-
ues π∗, which is passed to the subproblem to find a nonbasic variable (representing
the radiation intensity for a segment) with the most negative reduced cost. Here the
subproblem is

min{−π
∗T Au : u ∈U}, (15)

where, as before, u ∈ {0,1}n is a vector defining a segment and U , in slight abuse
of notation introduced above, is the set of all feasible segment columns satisfying
the MLC constraints. Note that the objective function coefficients of the segment
intensity variables, with model (12) reformulated to the form of RNBISub, are zero,
thus they are not included in subproblem (15). Let u∗ be an optimal solution of (15).
Given u∗, we can derive the dose deposition column a∗ = Au∗ to be added to the
RMP-RNBISub reformulation of (12).

Since we consider only the leaf collision constraint and the constraint that the
opening for each row of collimator leaves must be contiguous, all MLC rows are
independent of one another. Therefore, (15) can be further decomposed by MLC
row. For a given row, the objective of the decomposed problem is to find the leaf
positions that result in the lowest reduced cost for the MLC row. To decompose (15)
by MLC row, one needs to change the index of each bixel to its corresponding beam
index, MLC row position and MLC column position. Let τ = −(π∗)T A and denote
by τb,r,c the objective function coefficient of (15) corresponding to the bixel at beam
b, MLC row position r and MLC column position c. We assume that each MLC row
consists of t bixels, with MLC column positions indexed incrementally from left to
right. Denote by t1 the column index of the right-most bixel covered by the left leaf
and by t2 the column index of the left-most bixel covered by the right leaf. Then the
decomposed subproblem (15) for beam b and MLC row r is

min
t2−1

∑
c=t1+1

τb,r,c

s.t. t1 5 t2−1,
t1 ∈ {0, . . . , t},
t2 ∈ {1, . . . , t +1}.

(16)

This decomposed problem is then solved by the algorithm described in Section
3.1.1 of Romeijn et al (2005). It is important to note, that the non-dominated set of the
original formulation of (12) and its column generation reformulation are identical.
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4.2 The test case

We apply both the original RNBI method and the column generation RNBI method
to a prostate radiotherapy treatment design problem. The RNBI method solves the
RNBISub reformulation of (12) with bixel intensity variables x, producing a set of
(not necessarily deliverable) intensity patterns that define a representatve set of non-
dominated points for MOLP (12). The column generation RNBI method solves the
RMP-RNBISub reformulation of (12) with a subset of segment intensity variables
x̄. We consider three objective functions: one for the PTV (objective 1), one for the
rectum (objective 2) and one for the bladder (objective 3). Other clinically relevant
structures such as the prostate, the right and left femural head and normal tissues,
are involved in the formulation as constraints, e.g. voxels of the prostate are given a
lower bound and an upper bound on the delivered dose and voxels of femural heads
and normal tissues are given structure specific upper bounds. By only involving three
objective functions, we are able to illustrate the results graphically.

The dose deposition matrix A consists of 593 columns (corresponding to bixels)
for 11 equi-spaced coplanar beam angles and 20000 rows (corresponding to voxels).
Both methods use the set of reference points generated by the standard RNBI method.
Therefore, we are able to identify feasible reference points, and we apply the column
generation RNBI method only to feasible reference points. The column generation
process terminates when any one of the following termination conditions is satisfied:

– no variable with a negative reduced cost can be found
– the number of segments assigned with a positive intensity in a solution exceeds

100
– the number of column generation iterations (or equivalently the number of seg-

ments) exceeds 150 .

We implement the Phase-1 approach, the Big-M approach and Farkas pricing
to handle infeasibility of RMP-RNBISub. The initialisation phase stops when the
feasibility of RMP-RNBISub without artificial variables is guaranteed or when the
termination condition is reached. The column generation model starts with only one
coefficient column representing fully closed MLC segments (i.e. u = 0) in all beam
directions. If a segment is assigned a positive intensity, we refer to this segment as
a “positive segment”. Positive segments are those segments that will be delivered
in a treatment plan. This is in contrast to the zero-intensity segments, which will
not be part of the treatment plan. We limit the number of positive segments in each
plan so that the plans can be delivered in a reasonable treatment time. Radiotherapy
treatment plan quality depends on the number of segments involved in a treatment,
therefore only solutions of similar number of positive segments should be compared.
A solution is separately recorded when the number of positive segments in the solu-
tions first exceeds 40, 50, 60, 70, 80, 90 and 100. These solutions are grouped into
representative sets according to the number of positive segments.
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4.3 Results

For convenience, representative points generated using RNBI and column generation
RNBI will be referred to as RNBI points and the CG-RNBI points, respectively. The
representative sets of the CG-RNBI points, grouped according to the number of pos-
itive segments, will be denoted as CG-number with number being the corresponding
number of positive segments.

Using the standard RNBI method with increment η = 0.08 (see Section 2.2.1) or
a distance of 3.2153 Gray between closest reference points, we identify that 17 of 91
reference points are feasible. Figure 5 illustrates the reference points and the RNBI
points. We then initialise the column generation RNBI subproblems with the Phase-1
approach, the Big-M approach or Farkas pricing, followed by RMP-RNBISub when
feasibility of RMP-RNBISub is guaranteed.

Fig. 5 Illustration of the reference points and standard RNBI intersection points. The blue lines indicate
the bounding for reference points that lead to infeasible RNBISub.

The colour of the intersection points indicates the value of bladder deviation.

Figure 6 shows RMP-RNBISub objective function values versus column gener-
ation iteration for the first 4 of the 17 reference points after the initialisation stage.
In each column generation iteration, one newly generated column, which represents
a segment, is added to RMP-RNBISub. The red dashed line, blue solid line and
green dash-dot line indicate the objective function values of the corresponding RMP-
RNBISub problem initialised with the Big-M approach, the Phase-1 approach and
Farkas pricing, respectively. The starting point of these lines indicates the number of
iterations used to reach RMP-RNBISub feasibility using the three approaches. The
dark line parallel to the horizontal axis represents the objective function value ob-
tained using the standard RNBI method for the same reference point. The results show
that, for all 17 cases, an initialisation using the Big-M approach reaches feasibility
with the same or a smaller number of iterations compared to an initialisation with the
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Fig. 6 RMP-RNBISub objective function values (vertical axis) versus column generation iteration (hori-
zontal axis) for the first four reference points.

other two approaches. In addition, during the early stages of the column generation
process, initialisation with the Big-M approach generally produces a lower objective
function value compared to initialisations with the other two approaches. The results
indicate that the Big-M approach is superior to the other two approaches in terms of
identifying columns that contribute to the objective function value. However, the dif-
ference in objective function values among different initialisation strategy diminishes
as more columns are added to the model.

The next results are based on the solutions obtained from runs that employ an
initialisation with the Big-M approach. Figure 7 shows the RNBI points (solid circle)
and the points of CG-40 (asterisk) and CG-100 (empty circle). The figure illustrates
how intersection points gradually move toward the boundary of the feasible set in
objective space during the column generation process. Notice that in each of the col-
umn generation representative sets, there can be points dominated by other points.
Our results show that the number of dominated points in a representative set ranges
from one point in CG-60 to 5 points in CG-90.

The objective function values and the average computation time of the RNBI
points, CG-40 and CG-100 are shown in Table 1. The objective function values of
the points in CG-40 and CG-100 are on average 0.3647 and 0.1264 Gray higher than
the objective function values of the RNBI points. The average computation time used
to obtain the RNBI points, CG-40 and CG-100 are approximately 17, 43 and 553
seconds, respectively. We observe that, as the number of generated columns increases,
the computation effort for solving RMP-RNBISub increases as well.

We apply the segmentation algorithm by Engel (2005) to the optimal intensity
patterns generated by the standard RNBI method. The results show that the intensity
patterns (after discretisation by rounding to integers) can be reproduced with an av-
erage of 91.1 segments. In addition, as shown in Table 2, the total monitor units for
delivering the segmented patterns (an average of 408.8 MUs) is much higher than that



22 Kuan-Min Lin et al.

Fig. 7 The RNBI points (solid circle) and the points in CG-40 (asterisk) and CG-100 (empty circle). The
colour indicates the value of bladder deviation.

of the segment patterns generated by column generation (an average of 76.7 MUs and
123.8 MUs for CG-40 and CG-100, respectively).

Table 1 Objective values and average computation time (rounded to seconds) of RNBISub and CG-
RNBISub with 40 positive segments (CG-40) and 100 positive segments (CG-100).

Reference point Standard CG-40 CG-100

1 1.7450 1.9880 1.8140
2 2.6806 2.9661 2.7525
3 0.4216 0.7765 0.5019
4 1.7451 2.0407 1.8215
5 4.0186 4.2616 4.0875
6 2.6941 2.9738 2.7695
7 1.5498 1.9892 1.7157
8 1.5417 1.9638 1.7104
9 1.8497 2.2986 1.9810
10 4.0186 4.2959 4.0916
11 3.8230 4.2212 3.9890
12 3.8108 4.1933 3.9770
13 3.8108 4.2176 3.9943
14 3.8112 4.2856 3.9865
15 3.8153 4.3023 3.9846
16 6.0843 6.4450 6.2286
17 6.0843 6.4846 6.2481
Average time 17 43 553

We use (8) to measure the uniformity of the representative sets. The results show
that the uniformity levels for all representative non-dominated sets are the same up to
4 decimal places, with a value of 3.2153 Gray, which is the same as the distance be-
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Table 2 Total monitor units for delivering the intensity patterns generated by RNBI and CG-RNBI with
40 positive segments (CG-40) and 100 positive segments (CG-100).

Reference point Standard CG-40 CG-100

1 494 97.8 155.4
2 474 82.2 146.6
3 444 79.1 138.0
4 493 97.2 152.3
5 494 97.8 155.4
6 469 72.9 136.8
7 341 66.4 119.7
8 354 70.0 116.3
9 446 79.7 135.6
10 493 87.1 144.8
11 343 65.8 103.6
12 350 67.2 94.6
13 350 60.8 106.5
14 351 68.9 95.9
15 354 77.9 108.0
16 350 65.7 98.8
17 350 66.7 96.3
Averge MUs 408.8 76.7 123.8

Table 3 Minimum and maximum value for each objective based on the reference point bounding solved
to optimality and solved by column generation (CG).

Optimal Minimum Optimal Maximum CG Minimum CG Maximum

Objective 1 -7.5352 3.9529 -7.2641 3.5035
Objective 2 -4.4038 9.159 -4.0101 8.9119
Objective 3 -4.5379 9.1226 -4.2902 8.8587

tween any two closest reference points. However, the two closest intersection points
that define the uniformity level are different for the different representative sets.

Next, we apply the reference point bounding method described in Section 3.2 to
the column generation RNBI method. Column generation is typically used for prob-
lems that cannot be practically solved by standard linear optimisation algorithms due
to a large number of variables. When applying column generation RNBI to these
problems, one also needs to solve the reference point bounding problem using col-
umn generation. Therefore, to assess how reference point bounding can be affected
by column generation, reference point bounding is firstly solved to optimality (with
the bixel intensity based formulation) and then solved using column generation (with
the segment intensity based formulation). The column generation process terminates
when the number of positive segments exceeds 40. The objective function values for
reference point bounding are shown in Table 3. We can see that the minima and max-
ima produced using column generation are very close to the corresponding minima
and maxima solved to optimality, with a maximum absolute difference of 0.4494. In
fact, using either set of minima and maxima, we are able to eliminate 67 out of 91
(73.63%) reference points. Out of the remaining 24 reference points, only 7 lead to
RNBISub infeasibility.
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Table 4 Number of iterations required for Farkas pricing to identify RNBISub infeasibility.

Iterations used to identify infeasibility 2 3 4 5 10 >150

Number of RNBISub instances 48 10 1 6 1 8

We also test the performance of Farkas pricing in concluding the infeasibility of
RNBISub instances. Note that we have 91 reference points in total, with 74 reference
points leading to RNBISub infeasibility. Table 4 shows that Farkas pricing is capable
of concluding the infeasibility of 66 out of 74 RNBISub instances using 10 or fewer
iterations. The average computation time for these 66 instances is 0.4 seconds. How-
ever, Farkas pricing is incapable of concluding infeasibility within 150 iterations for
the remaining 8 instances. The computation time for each of these 8 instances ranges
from 1179 to 7084 seconds, with an average of 4396 seconds and a standard devia-
tion of 1676 seconds. For comparison, we apply column generation with the big-M
initialisation to 10 reference points leading to RNBISub infeasibility. With a termi-
nation condition of 150 column generation iterations, the average computation time
for solving each of the 10 reference points is 1213 seconds, with a standard devia-
tion of 71 seconds. The results suggest that Farkas pricing can potentially be quite
time consuming. Thus, if Farkas pricing cannot identify the infeasibility of a RN-
BISub instance in a small number of iterations, it would be beneficial to change the
initialisation method to another approach.

5 Discussion and conclusion

In this paper we propose the use of column generation in the revised normal boundary
intersection method to compute a finite representative subset of the non-dominated
set of a multi-objective linear programme. We introduced a reference point bounding
procedure to eliminate the investigation of infeasible reference points. In terms of
the quality of a discrete representation computed with the column generation RNBI
method we showed that the uniformity level is at least dq, the distance between clos-
est reference points, and therefore the same as that of standard RNBI representative
set. The coverage error is bounded by the the distance of CG-RNBI points to the
non-dominated set plus

√
pdq/2. This feature allows one to choose a value of dq to

produce a representative set that suits decision making in the application considered.
To illustrate the method and demonstrate the advantages of using column genera-

tion to solve the RNBI subproblems, we apply the method to an MOLP formulation of
a radiotherapy treatment design problem, which can be solved by both the standard
RNBI and the column generation RNBI method. In agreement with the remark in
Lübbecke (2010) that column generation is in general not a competitive technique in
solving linear programmes, we observe that computation times using column gener-
ation are longer. However, column generation allows us to use variables representing
segment intensities, as opposed to bixel intensities which are used in the conven-
tional formulation. As a consequence, the number of variables involved in the model
is much greater than for a model formulated with bixel intensities, since the number
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of possible segment shapes, formed by all possible combinations of opening bixels,
is much greater than the number of bixels. On the other hand, the column generation
formulation avoids the segmentation step which deteriorates treatment quality. Our
results show that plans generated by column generation are near-optimal and can be
delivered with dramatically lower monitor units than the corresponding optimal ones
followed by segmentation. This reduced delivery complexity is desirable in practice
due to shorter treatment time and lower radiation leakage from the MLCs (hence
better delivery accuracy) (Broderick et al, 2009; Carlsson and Forsgren, 2014).

Fredriksson and Bokrantz (2013) introduce a concept of non-dominance called
the “n-aperture Pareto set”, which is a set of efficient plans given that each plan is
formed by only n segments. However, to our knowledge, there is no practical method
available to generate the n-aperture Pareto set. The concept of the n-aperture Pareto
set can be generalised to the n-column non-dominated set for problems solved by col-
umn generation. Further research is required to extend the column generation RNBI
method to ensure n-column non-dominance. Another topic for future research is the
extension of the column generation RNBI method to nonlinear multi-objective op-
timisation problems. This will, e.g., allow us to consider other formulations of the
radiotherapy treatment design problem.
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