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Abstract (125 words):  19 

Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit 20 

leaves are shaded by clouds or other leaves, this protective dissipation continues for many 21 

minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up 22 

to 20% of their potential yield.  Here we describe the bioengineering of an accelerated response 23 

to natural shading events in Nicotiana (tobacco), resulting in increased leaf carbon dioxide 24 

uptake and plant dry matter productivity by about 15% in fluctuating light.  Since the 25 

photoprotective mechanism that has been altered is common to all flowering plants and crops, 26 

the findings provide proof of concept for a novel route to obtaining a sustainable increase in 27 

productivity for food crops and a much needed yield jump. 28 

  29 
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One Sentence Summary (122 characters):  30 

Altering the regulation of light harvesting increases photosynthetic efficiency and biomass 31 

productivity in a crop plant.  32 

  33 
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Main Text (2411 words):  34 

Based on detailed forecasts of future global food demand, current rates of increase in crop yields 35 

per hectare of land are inadequate. Based on prior model predictions of opportunities to improve 36 

photosynthetic efficiency and thus improve crop yield (1), we here show improvement of 37 

photosynthetic efficiency and productivity through genetic manipulation of photoprotection. 38 

Light in plant canopies is very dynamic, and leaves routinely experience sharp fluctuations in 39 

levels of absorbed irradiance. When light intensity is too high or increases too fast for 40 

photochemistry to utilize the absorbed energy, several photoprotective mechanisms are induced 41 

to protect the photosynthetic antenna complexes from over-excitation (2). Excess excitation 42 

energy in the photosystem II (PSII) antenna complex can be harmlessly dissipated as heat, which 43 

is observable as a process named non-photochemical quenching of chlorophyll fluorescence 44 

(NPQ, (3)). Changes in NPQ can be fast but are not instantaneous, and therefore lag behind 45 

fluctuations in absorbed irradiance. In particular, the rate of NPQ relaxation is slower than the 46 

rate of induction, and this asymmetry is exacerbated by prolonged or repeated exposure to 47 

excessive light conditions (4). This slow rate of recovery of PSII antennae from the quenched to 48 

the unquenched state implies that the photosynthetic quantum yield of CO2 fixation is transiently 49 

depressed by NPQ upon a transition from high to low light intensity (Fig. 1). When this 50 

hypothesis was tested in model simulations and integrated for a crop canopy over a diurnal 51 

course, corresponding losses of CO2 fixation were estimated to range between 7.5% - 30% (5-7). 52 

Based on these computations, increasing the relaxation rate of NPQ has been highlighted as a 53 

very promising strategy to improve crop photosynthetic efficiency and in turn yield (8). 54 

While the exact NPQ quenching site and nature of the quenching mechanisms involved are 55 

still debated (9), it is clear that for NPQ to occur, PSII-associated antennae need to undergo a 56 

conformational change to the quenched state, which can be induced by a number of different 57 
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mechanisms with contrasting time constants (3). So-called energy-dependent quenching (qE, 58 

(10)) requires low thylakoid lumen pH and is greatly aided by the presence of PSII subunit S 59 

(PsbS) (11, 12) and de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin via the 60 

xanthophyll cycle (13, 14). Expression of PsbS strongly affects the amplitude of qE formation, 61 

and overexpression results in an increased rate of induction and relaxation of qE (15-17). As a 62 

result, the effects of PsbS overexpression on CO2 fixation and plant growth depend on the 63 

prevailing light environment. Enhancement of qE via PsbS overexpression may offer increased 64 

photoprotection under high light or rapidly fluctuating conditions (18), but can be at the expense 65 

of CO2 fixation under less stressful conditions (15). An alternative route of NPQ manipulation is 66 

to modify xanthophyll cycle kinetics. The xanthophyll cycle de-epoxidation state (DES) 67 

influences the level of NPQ (19), due to the stimulating effect of zeaxanthin on qE and on 68 

zeaxanthin-dependent quenching (qZ, (20)). qZ has slower relaxation kinetics (10-15 min) than 69 

qE (10-90 s), which are linked to the kinetics of the zeaxanthin pool. Arabidopsis mutants with 70 

increased xanthophyll cycle pigment pool size were shown to have slower rates of NPQ 71 

formation and relaxation, due to slower DES kinetics (21). Thus, the rate of adjustment of DES 72 

appears to be affected by the xanthophyll cycle pool size relative to the rate of turn-over via 73 

violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP), which in turn affects the 74 

adjustment rate of NPQ.  75 

We hypothesized that by accelerating the xanthophyll cycle and increasing PsbS, NPQ would 76 

decline more rapidly on transfer of leaves to shade (Fig. 1), leading to faster restoration of the 77 

maximum efficiency of CO2 assimilation that can be achieved at a given light intensity in the 78 

shade, which in turn would allow increased productivity.  79 

  80 
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Results 81 

Transgene mRNA and protein expression  82 

Nicotiana tabacum was transformed with the coding sequences of Arabidopsis VDE, ZEP and 83 

PsbS under the control of different promoters for expression in leaves (Fig. S1). Two 84 

transformants with a single T-DNA integration (VPZ-34 and 56) and one transformant with two 85 

T-DNA insertions (VPZ-23) were selected based on a seedling NPQ screen (Fig. S2 and S3) and 86 

self-pollinated to obtain homozygous T2 progeny for further investigation. All three VPZ-lines 87 

showed increases in total (transgenic plus native) transcript levels of VDE (10-fold), PsbS (3-88 

fold) and ZEP (6-fold) relative to wild-type (WT) (Fig. 2A, C and E). For PsbS the increase in 89 

transcript levels translated into approximately 4-fold higher PsbS protein level (Fig. 2D), as 90 

exemplified in bands at 21 kDa (AtPsbS) and 24 kDa (NtPsbS; Fig. 2G). For VDE and ZEP the 91 

increase in transcript levels corresponded to 30-fold for VDE (Fig. 2B and G, 45 kDa) and 74-92 

fold for ZEP (Fig. 2F and G, 73 kDa) increases over WT protein levels. Field-grown plants 93 

showed similar increases in protein levels (47-, 3- and 75-fold for VDE, PsbS and ZEP, Fig. S4), 94 

although increases in transcript levels were less pronounced (4-, 1.2- and 7-fold for VDE, PsbS 95 

and ZEP, Fig. S4).  96 

Faster relaxation of NPQ and recovery of CO2 fixation rate 97 

To compare the kinetics of dynamic NPQ adjustment, a double exponential model was fitted to 98 

dark relaxation of NPQ in young seedlings after exposure to fluctuating light between 2000 and 99 

200 µmol photons m-2 s-1 (Fig. 3A).  The qZ phase of NPQ relaxation (τ2) was significantly faster 100 

in VPZ-lines at an average of 753 s versus 2684 s in WT (p<0.05), and qE relaxation (τ1) was 101 

also noticeably faster at an average of 15 s versus 21 s (significant in VPZ-23 and VPZ-56, 102 

p<0.05). To see if this faster relaxation translated into higher leaf CO2 uptake, leaves were 103 
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exposed to a sharp transition in light from 2000 to 200 µmol photons m-2 s-1. CO2 assimilation 104 

declined immediately after the decrease in light intensity in both WT and VPZ lines (Fig. 3B), 105 

reaching a minimum at 30 s. During the following 150 s, CO2 fixation rate increased gradually, 106 

but more rapidly in the VPZ lines compared to WT, leading to significantly higher CO2 fixation 107 

rates, averaging an increase of 9% (p<0.02). 108 

Effects of fluctuating light on the efficiency of photosynthetic CO2 assimilation 109 

To evaluate the dynamic effect of VPZ overexpression on the response of leaf CO2 uptake to 110 

light, light intensity was varied in two different ways. First, light intensity was varied from low 111 

to high (Fig. S5A), taking care to allow gas exchange and fluorescence to achieve steady state at 112 

each light intensity. Second, light intensity was varied in 4 min alternating steps of high to low 113 

light (Fig. S5B). The resulting steady-state and fluctuating light response curves of CO2 fixation 114 

and linear electron transport rate were distinctly different between WT and VPZ lines. In steady 115 

state, the maximum quantum yield of CO2 fixation (ΦCO2-max) was not different between WT 116 

and VPZ lines, averaging 0.092 CO2/absorbed photon (Fig. 4A). Fluctuating light decreased 117 

ΦCO2-max to 0.058 CO2/absorbed photon in the WT plants (Fig. 4B), whereas ΦCO2-max in the 118 

VPZ lines showed a far smaller depression to 0.066 CO2/absorbed photon (p<0.05). Similarly, 119 

under fluctuating light, maximum quantum yield of whole chain electron transport (ΦPSII-max) 120 

declined from an average value of 0.73 (Fig. 4C) to 0.54 e-/absorbed photon in the WT plants 121 

(Fig. 4D), compared to 0.60 e-/absorbed photon in the VPZ lines (p<0.05). Thus, under these 122 

fluctuating conditions, average ΦCO2-max and ΦPSII-max of the VPZ lines were 11.3% and 14.0% 123 

higher than WT. These differences were also confirmed in plants grown under field conditions 124 

(Fig. S6A and B) and were not caused by a difference in photosynthetic capacity, as shown by 125 

the lack of differences in ΦCO2-max and ΦPSII-max between VPZ lines and WT when measured at 126 
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steady state (Fig. 4A and C).  There were also no differences in the maximum carboxylation 127 

capacity (Vcmax) or ribulose bis-phosphate regeneration capacity (Jmax) derived from CO2 128 

response curves (Table S1) nor were there differences in the levels and stoichiometry of the 129 

major photosynthetic complexes (Fig. S7). Instead, the differences under fluctuating conditions 130 

corresponded to the faster relaxation of NPQ resulting from VPZ overexpression. Steady-state 131 

NPQ below 400 µmol photons m-2 s-1 was very low (Fig. 4E and S5G) and did not differ between 132 

WT and VPZ lines. However, under fluctuating light intensity, NPQ was significantly higher in 133 

the WT compared to the VPZ lines at low light (Fig. 4F), whereas NPQ in high light did not 134 

differ between WT and VPZ lines (Fig. S5G and H).  135 

Productivity under field conditions 136 

Whether this greater photosynthetic efficiency during shading events would affect productivity 137 

was evaluated under field conditions in a randomized block design with 12 blocks (Fig. 5D and 138 

S8). Plants from VPZ lines exhibited greater total dry weight per plant by 14 to 20% relative to 139 

WT (Fig. 5A), which was evident in increases in leaf, stem and root weights (Fig. S9A-C). 140 

Additionally, plants from VPZ lines showed increases in leaf area (Fig. 5B) and plant height 141 

(Fig. 5C), relative to WT. Similar productivity increases were found under greenhouse 142 

conditions (Fig. S10A-F). 143 

Xanthophyll cycle de-epoxidation as a function of different light treatments 144 

In dark-acclimated leaves from both WT and VPZ lines, the xanthophyll cycle pool was 145 

completely epoxidated, i.e., entirely in the form of violaxanthin, (Table 1). Exposure to 400 146 

µmol photons m-2 s-1 constant light did not lead to substantial de-epoxidation, but 2000 µmol 147 

photons m-2 s-1 constant light led to accumulation of antheraxanthin and especially zeaxanthin. 148 

VPZ lines retained more violaxanthin and accumulated less zeaxanthin and antheraxanthin 149 
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compared to WT, which led DES in the VPZ lines to be about half that of WT (26% versus 150 

46%). Exposure to fluctuating light led to similar results as high light exposure, but with even 151 

less xanthophyll de-epoxidation in the VPZ lines, relative to WT (18% versus 53%), and field-152 

grown plants of VPZ-23 showed significantly lower DES than WT throughout a diurnal period 153 

(Fig. S11). Because of the lower DES in the VPZ lines, a concern was that they would be more 154 

vulnerable to photoinhibition. However, photoprotection in seedlings after 2 h exposure to 155 

excessive light (λmax=470nm, 2000 μmol photons m-2 s-1) appeared to be equal (VPZ-56) or even 156 

higher (VPZ-23 and VPZ-34; p<0.05) than WT (Fig. S12). 157 

 158 

Discussion 159 

How does introduction of the VPZ construct accelerate NPQ relaxation on transfer of leaves 160 

from high to low light, as would occur in a shading event? NPQ is a compound variable, 161 

encompassing several quenching mechanisms with contrasting relaxation kinetics (22). Whereas 162 

PsbS is exclusively associated with rapidly relaxing energy-dependent quenching (qE), the 163 

xanthophyll cycle is involved in multiple components of NPQ, especially qE and qZ. Even 164 

though VPZ lines had lower xanthophyll de-epoxidation state (DES) under high and fluctuating 165 

light intensity (Table 1), levels of NPQ were similar to WT at high light (Fig. S3B and S5H) 166 

implying that the relationship between xanthophyll DES and NPQ has been altered by PsbS 167 

overexpression, allowing for higher NPQ at lower DES. The presence of zeaxanthin correlates 168 

with faster induction and slower relaxation of NPQ, with respect to qZ and qE (4, 20, 23). 169 

Consistent with the lower DES in the VPZ-lines, relaxation of both qE (τ1) and qZ (τ2) was 170 

accelerated by the VPZ overexpression. The faster relaxation of NPQ by VPZ overexpression 171 

can thus be explained by two parallel manipulations of NPQ. Combined overexpression of VDE 172 
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and ZEP decreased xanthophyll DES, which in turn increased NPQ relaxation rate through qZ, 173 

qE and zeaxanthin-associated effects on NPQ kinetics. Second, the overexpression of PsbS led to 174 

an increase in qE, which more than offset the decrease due to lower DES (Fig. S3B).  175 

The hypothesis that photosynthetic efficiency could be increased through acceleration of 176 

NPQ relaxation (8, 24) relies on the inverse correlation between NPQ and photosynthetic 177 

efficiency. Under fluctuating light, the VPZ lines showed faster and greater decreases in NPQ 178 

following transitions from high to low light, relative to WT (Fig. 4F and S5H), which increased 179 

quantum yield of CO2 assimilation by 14% (Fig. 4B), providing proof that on transition from 180 

high to low light, NPQ does indeed limit photosynthetic efficiency. Xanthophyll DES is 181 

correlated with NPQ (19), which suggests that limiting violaxanthin de-epoxidation may also 182 

increase NPQ relaxation rate. However, decreased zeaxanthin formation by antisense VDE 183 

expression in tobacco in previous studies did not lead to an increase in photosynthetic efficiency 184 

and growth (25, 26). Reduction in NPQ amplitude (27) and anti-oxidant capacity (28) leads to 185 

greater sensitivity to damage by excessive light in mutants with reduced zeaxanthin (29). Here 186 

expression of VDE and PsbS was increased to balance the up-regulation of ZEP and avoid such 187 

damage (Fig. S12). This conservation of photoprotection in the VPZ lines most likely originates 188 

from an increase in qE, reflecting the positive correlation between photoprotection and PsbS 189 

content (18).  190 

About 50% of canopy carbon gain in crops occurs under light-limitation (5). Efficiency of 191 

photosynthesis in the shade declines even further with rapid light transitions caused by clouds 192 

and wind-driven movement of overshadowing leaves. Higher yields have followed increased 193 

planting densities, which also caused denser canopies and increased the proportion of partially 194 

shaded leaves, leading to more irregular light conditions for each leaf. Even for upper leaves on a 195 
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clear day, daily changes in sun angle cause light transitions that are rapid at the chloroplast level 196 

(7). Thus, light conditions in the field are anything but steady state. Under steady state light, the 197 

VPZ lines evaluated here would have shown no yield advantage over WT. Their yield advantage 198 

becomes apparent under more realistic, irregular, lighting conditions.  199 

Because the xanthophyll cycle and PsbS are common to all vascular plants (11, 19), we 200 

expect that similar results would pertain to all major crops. Although this work has focused on 201 

crop light use efficiency, stomatal conductance also remains high during the first few minutes 202 

after transfer to shade. Increasing the rate of relaxation of NPQ will therefore not only increase 203 

net carbon gain, but also increase crop water use efficiency. This may be an important attribute 204 

given forecast climate change impacts on future crop production (30).  205 

Transgenic expression of Arabidopsis VDE, PsbS and ZEP (VPZ) in combination in tobacco 206 

led to a marked and statistically significant acceleration of NPQ relaxation on transfer of leaves 207 

from high light to shade. As hypothesized, this led to a more rapid recovery of the efficiency of 208 

photosynthetic CO2 assimilation in the shade. Results from field and greenhouse experiments 209 

showed that this corresponded to increased productivity in terms of final dry mass. Increases in 210 

crop productivity of 15%, as obtained here, demonstrate an important means to achieve the 211 

increases in crop yield forecast to be necessary by 2050 (31, 32).  212 
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Figure/table captions: 743 words 342 

 343 

Fig. 1. Interaction between photoprotection and CO2 fixation during sun-shade transitions. 344 

When leaves are exposed to high light, the rate of CO2 fixation is high and excessive excitation 345 

energy is harmlessly dissipated through non-photochemical quenching (NPQ). The level of NPQ 346 

is positively correlated with the abundance of Photosystem II subunit S (PsbS) and further 347 

stimulated by the de-epoxidation of violaxanthin to zeaxanthin, catalyzed by violaxanthin de-348 

epoxidase (VDE). Upon transition to low light, CO2 fixation becomes limited by NADPH and 349 

ATP derived from photosynthetic electron transport, which in turn is limited by high levels of 350 

NPQ. The rate of CO2 fixation therefore remains depressed until relaxation of NPQ is complete. 351 

This can take minutes to hours and is correlated with the rate of zeaxanthin epoxidation, 352 

catalyzed by zeaxanthin epoxidase (ZEP). The text underneath the figure describes the strategy 353 

employed to accelerate NPQ relaxation compared to wild-type (WT) tobacco. 354 

 355 
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  357 

Fig. 2. Levels of mRNA and protein of VDE, PsbS and ZEP.  358 

Native (Nt) and transgenic (At) violaxanthin de-epoxidase (VDE), photosystem II subunit S 359 

(PsbS) and zeaxanthin epoxidase (ZEP) in leaves of wild-type N. tabacum (WT) and three lines 360 

expressing AtVDE, AtPsbS and AtZEP (VPZ) grown under greenhouse conditions. (A, C, E) 361 

mRNA levels relative to actin and tubulin. (B, D, F) Protein levels relative to WT, determined 362 

from densitometry on immunoblots. Error bars indicate SEM (n=5), and asterisk indicates 363 

significant differences between VPZ lines and WT (α = 0.05). (G) Representative immunoblots 364 

for VDE, PsbS and ZEP.  365 

 366 

 367 
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Fig. 3. Transient adjustment of NPQ and net CO2 assimilation  369 

(A) Dark relaxation of NPQ after exposure to alternating high/low light in young seedlings of 370 

wild-type N. tabacum (WT) and three lines expressing AtVDE, AtPsbS and AtZEP (VPZ). SEM 371 

were less than symbol size (n=18). Lines depict best fits of a double exponential model for WT 372 

(τ1 = 21.4 ± 1.2 s and τ2 = 2641.1 ± 821.2 s), VPZ-23 (τ1 = 13.3 ± 1.3 s and τ2 = 792.6 ± 131.7 s), 373 

VPZ-34 (τ1 =19.4 ± 1.4 s and τ2 = 692.6 ± 77.9 s) and VPZ-56 (τ1 =13.2 ± 1.0 s and τ2 = 774.9 ± 374 

94.5 s). (B) Time course of net CO2 fixation rate in fully expanded leaves in response to a 375 

decrease in light intensity of 2000 to 200 µmol photons m-2 s-1 at time zero, indicated by the 376 

black arrow. Error bars indicate SEM (n=5). Asterisk indicates significant difference (α = 0.05). 377 
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Fig. 4. Photosynthetic efficiency and NPQ under steady-state and fluctuating light. 379 

(A) Quantum efficiency of leaf net CO2 assimilation (ΦCO2max) under steady-state light. (B) 380 

ΦCO2max under fluctuating light. (C) Quantum efficiency of linear electron transport (ΦPSIImax) 381 

under steady-state light. (D) Quantum efficiency of linear electron transport (ΦPSIImax) under 382 

fluctuating light. (E) Average NPQ corresponding to (A) and (C). (F) Average NPQ 383 

corresponding to (B) and (D). Data were derived from light response curves in which light 384 

intensity was either increased from low to high PFD, while waiting for steady state at each step 385 

(steady-state), or varied from high to low PFD with 4 min of 2000 µmol photons m-2 s-1 before 386 

each light intensity change (fluctuating). Error bars indicate SEM (n=6), and asterisks indicate 387 

significant differences (α=0.05) between wild-type N. tabacum (WT) and three lines expressing 388 

AtVDE, AtPsbS and AtZEP (VPZ). 389 
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Fig. 5. Productivity of field-grown plants N. tabacum plants.  391 

Lines expressing AtVDE, AtPsbS and AtZEP (VPZ) produced 15% larger plants than did the 392 

wild-type line (WT). (A) Total dry-weight. (B) Leaf area. (C) Plant height. Data were 393 

normalized to WT. Error bars indicate SEM (n=12), asterisk indicates significant differences 394 

between VPZ lines and WT (α=0.05). (D) Top-view of the field experiment in Urbana, Illinois 395 

(40.11 oN, 88.21 oW, photo credit: D. Drag) in the summer of 2016.  396 
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Table 1. Xanthophyll cycle pigment concentrations and de-epoxidation state (DES).  397 

Samples were taken from greenhouse-grown fully expanded leaves of wild-type N. tabacum 398 

(WT) and three lines overexpressing AtVDE, AtPsbS and AtZEP (VPZ) in dark-acclimated state 399 

or after exposure to constant 400 or 2000 µmol photons m-2 s-1 (when steady state photosynthesis 400 

was reached) or 3 cycles of 3 min 2000 / 3 min 200 µmol photons m-2 s-1. Pigment 401 

concentrations (mean ± SEM, n = between 3 to 6) were normalized per unit leaf area (g m-2). 402 

Asterisks indicate significant differences between VPZ lines and WT (α = 0.05). Vio = 403 

violaxanthin, Ant = antheraxanthin, Zea = Zeaxanthin. DES (%) = (Zea + 0.5Ant)/(Zea + Ant + 404 

Vio), n.d. = not detected.  405 

Light treatment 

 

Pigment 

 

 

WT 

 

 

VPZ-23 

 

 

VPZ-34 

 

 

VPZ-56 

 

 

Dark-acclimated 

Vio 7.72 ± 0.37 6.64 ± 0.45 6.94 ± 0.64 6.70 ± 0.40 

Ant 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 

Zea n.d. n.d. n.d. n.d. 

DES 0.0 0.0 0.0 0.0 

Constant at 400 µmol 

photons m-2 s-1  

Vio 6.68 ± 0.62 7.29 ± 0.47  7.05 ± 0.48 7.07 ± 0.31 

Ant 0.03 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 

Zea 0.20 ± 0.10 0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00 

DES 2.9 ± 1.4 0.1 ± 0.0 0.7 ± 0.6 0.1 ± 0.0 

 

Constant at 2000 µmol 

photons m-2 s-1  

Vio 4.47 ± 0.41 5.09 ± 0.52 3.63 ± 0.59 5.02 ± 0.09  

Ant 0.07 ± 0.00 0.08 ± 0.01 0.06 ± 0.00 0.09 ± 0.01 

Zea 3.81 ± 3.81 *1.48 ± 0.48 *1.23 ± 0.24 *1.94 ± 0.49 

DES 46.2 ± 2.8 *22.9 ± 7.5 *26.2 ± 5.3 *27.4 ± 5.1 

Fluctuating between 

2000 and 200 µmol 

photons m-2 s-1  

Vio 4.20 ± 0.16 *7.11 ± 0.57 *5.72 ± 0.15 *6.14 ± 0.34 

Ant 0.16 ± 0.02 *0.08 ± 0.01 0.13 ± 0.03 *0.08 ± 0.01 

Zea 4.70 ± 0.36 *0.88 ± 0.08 *2.29 ± 0.85 *1.20 ± 0.21 

DES 52.5 ± 5.5 *11.4 ± 0.9 *25.5 ± 17.3 *16.4 ± 4.2 

 406 
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