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Extrapolating from information available on one patient group to support conclusions about another is common
in clinical research. For example, the findings of clinical trials, often conducted in highly selective patient cohorts,
are routinely extrapolated to wider populations by policy makers. Meanwhile, the results of adult trials may be
used to support conclusions about the effects of a medicine in children. For example, if the effective concentration
of a drug can be assumed to be similar in adults and children, an appropriate paediatric dosing rule may be
found by ‘bridging’, that is, by matching the adult effective concentration. However, this strategy may result
in children receiving an ineffective or hazardous dose if, in fact, effective concentrations differ between adults
and children. When there is uncertainty about the equality of effective concentrations, some pharmacokinetic-
pharmacodynamic data may be needed in children to verify that differences are small. In this paper we derive
optimal group sequential tests that can be used to verify this assumption efficiently. Asymmetric inner wedge
tests are constructed which permit early stopping to accept or reject an assumption of similar effective drug
concentrations in adults and children. Asymmetry arises because the consequences of under- and over-dosing may
differ. We show how confidence intervals can be obtained on termination of these tests and illustrate the small
sample operating characteristics of designs using simulation. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. Introduction

Tests of equivalence have been widely considered in the context of early phase clinical trials for demonstrating the
bioequivalence of a test and reference drug [1]. This paper formulates group sequential equivalence tests to verify
similarities between the pharmacokinetic-pharmacodynamic (PK-PD) relationships of a drug in adults and children. The
need to verify similarities between patient populations may arise when determining which clinical trials are needed to
properly evaluate the risks and benefits of a new medicine for children. Medicine development programmes usually begin
with early phase trials in adults before a separate sequence of studies is initiated in children. In the US and Europe, details
of paediatric studies must be agreed upon ahead of time with the relevant regulatory agency. Smaller or shorter trials in
children may suffice if one can extrapolate from existing relevant data to support claims of efficacy in children. Adult data
will be relevant for predicting drug effects in children only if disease progression and the PK-PD relationship are consistent
across populations for a PD endpoint predictive of clinical efficacy. If these similarities are plausible, the optimal dose for
children can be found by conducting PK studies to match the adult effective concentration [2, 3]. Furthermore, given these
data, we may then extrapolate from evidence that a drug is efficacious in adults to support a claim of efficacy in children.
Such an approach has been referred to as complete extrapolation of efficacy data [4]. However, a bridging approach to
dose-finding will result in children receiving an ineffective or hazardous dose if, in fact, there are differences between
PK-PD relationships in adults and children. The size and nature of expected differences should be summarised in an
‘extrapolation concept’ [5, 6]: prior uncertainty about potential differences may then prompt investigators to collect data
to verify that differences are small.

We propose group sequential tests (GSTs) of equivalence for PK-PD studies in children which allow early stopping
either to conclude that there are important differences between PK-PD relationships in adults and children, or to conclude
that relationships are similar enough. Throughout we consider frequentist designs since in a Bayesian setting, strong prior
opinion on differences may be impossible to shift with limited data. Jennison & Turnbull [7] derive group sequential
tests of equivalence from a sequence of repeated confidence intervals. Liu & Li [8] propose exact error spending tests of
equivalence based on bivariate non-central t-statistics. Whitehead [9] considers the double triangular test [10] and a design
from the power family of tests due to Pampallona & Tsiatis [11], both of which allow early stopping to reject or accept
equivalence. Müller & Schäfer [12] find optimal boundaries and interim analysis timings minimising the average expected
sample size of GSTs permitting early stopping only to declare equivalence. In this paper, we formulate asymmetric inner
wedge group sequential tests (IW GSTs) of equivalence, so-called because the region of the outcome space on which
equivalence is accepted forms an inner wedge inside the continuation region. Asymmetry arises because the consequences
of under- and over-dosing may differ.

Rather than verify that PK-PD relationships are identical in adults and children, we propose that studies focus on
a particular quantile of this relationship. This is because it is differences between effective concentrations that will
determine the accuracy of paediatric dosing recommendations when a complete extrapolation of efficacy data is made
from adults to children. This approach is commonly taken in bioequivalence studies where traditional criteria are based on
one or two summaries of the concentration-time profile. Such studies conclude bioequivalence if the difference between
mean pharmacokinetic parameters on the test and reference products is small. The two one-sided tests procedure [13]
declares average bioequivalence at the 5% significance level if the 90% confidence interval for the difference in population
mean log PK parameters is contained within the interval (log(0.8), log(1.25)) [14]. Population bioequivalence [15] and
the Kullback-Leibler divergence [16] attempt to capture more completely differences between the distributions of PK
parameters. Alternative approaches have also been proposed which measure differences between entire concentration-
time profiles [17]. Pei and Hughes [18] test whether the probability that a child experiences a PK parameter less than a
quantile estimated from adults exceeds a design value by more than an acceptable margin ∆U .
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In Section 2 we formulate flexible asymmetric IW GSTs for verifying similar effective concentrations in adults and
children. We derive optimal versions of our designs in Section 3 before using simulation to estimate their small sample
operating characteristics in Section 4.

2. Asymmetric error spending IW GSTs

We define a drug’s effective concentration as its ECγ , that is, the concentration achieving γ% of a drug’s maximum
efficacy. Assuming a patient’s risk of toxicity increases monotonically with dose, γ will reflect a compromise between
seeking a dose that is highly effective yet safe. Typically an estimate of the ECγ can be derived from fitting a nonlinear
model relating drug exposure to a short-term PD response predictive of the clinical outcome of interest. Let µA and µC
denote the logarithm of the ECγs in adults and children, respectively, and let θ = µA − µC measure differences between
PK-PD relationships in adults and children. If θ > 0, defining the optimal paediatric dose as one that achieves the adult
effective concentration will lead to ‘over-dosing’, as children are exposed to an excessive risk of toxicity. If θ < 0, this
dose-selection strategy will result in children receiving a sub-therapeutic dose.

Suppose a bridging approach to dose-finding in children would be acceptable if there was supportive evidence to verify
a claim that δL < θ < δU . We propose generating this evidence by comparing existing adult data with data generated by
a new PK-PD study in children. These data are then used to test H0 : θ ≤ δL or θ ≥ δU against H1 : δL < θ < δU with
power 1− β at θ = 0 and type I error rate α at θ = δL and θ = δU . Note that only children participate in the new PK-PD
study; an estimate of µA is derived from existing adult data. Since our aim is to verify an assumption rather than test it
definitively, tests of H0 with higher than conventional significance levels may be acceptable. After all, in verifying an
assumption we do not wish to find ourselves conducting the trial we had hoped to avoid by extrapolating. Equivalence
limits for bioequivalence trials are traditionally taken as ± log(1.25) for analyses of log-transformed PK parameters. In
this context, however, δL and δU are likely to be asymmetric about 0 since the effects of over- and under-dosing children
may differ in their severity. Section 4 outlines one approach for determining these limits.

We formulate IW GSTs of H0 which permit early stopping either to declare similar effective concentrations in adults
and children or important differences. At the time the PK-PD study in children is designed, the available adult data
are summarised by the maximum likelihood estimate (MLE) of µA, denoted µ̂A, obtained from fitting a robust PK-PD
model whose goodness-of-fit to the adult data has been established. In most practical applications µ̂A ∼̇N(µA, I−1

A ),
where ∼̇ means approximately distributed and IA is the Fisher information for µA [19]. Let D = {d1, . . . , dM} be the
set of ordered active doses available for the PK-PD study in children. The number and positioning of these doses must
be carefully chosen to ensure that candidate PK-PD models can be fitted on termination of the trial. We propose that the
PK-PD study in children proceeds group sequentially, randomising each new group of children between doses d1, . . . , dM .
We note that the proposed study is not a Phase I trial; the drug will already have been well characterised in adults and
some PK data may be available in children, so that a fixed randomisation scheme will be acceptable in terms of ethics and
safety. Blood samples are taken from each patient at follow-up times t1, . . . , tB . From these we can determine a patient’s
concentration-time profile which we shall assume is summarised by a single measure of exposure (E) predictive of the PD
response (Y ). If PK sampling is rich, E can be well estimated using non-compartmental methods, otherwise model-based
estimates can be derived. Using these estimates of exposure, at interim analysis k all accummulated data from children
are used to fit a nonlinear model relating E to Y to obtain a MLE of µC , denoted µ̂Ck. It follows from standard sampling
theory that at least asymptotically µ̂Ck ∼ N(µC , I−1

Ck), where ICk is the Fisher information for µC at stage k. Define
Sk = Ik(µ̂A − µ̂Ck), where Ik = ICkIA/(ICk + IA) is the information for θ at analysis k. We seek IW GSTs of the
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form:
At interim analysis k = 1, . . . ,K:

If Sk ≥ u2,k Stop and accept H0

If Sk ≤ l2,k Stop and accept H0

If l1,k ≤ Sk ≤ u1,k Stop and reject H0

Otherwise Continue to stage (k + 1).

(1)

We set u1,K = u2,K and l1,K = l2,K to ensure the test terminates properly at analysis K. Monitoring data group
sequentially means we have the flexibility to respond to emerging evidence on the size of differences between populations.
If test (1) rejects H0 and concludes similar PK-PD relationships in adults and children, recruitment would cease and all
available PK data in children would be used to derive estimates of the dose(s) achieving expected exposure eµA . If, instead,
important differences are detected, an estimate of the effective concentration in children could be derived using the data
accumulated so far. If the standard error of this estimate is large, PK-PD data from the current study could be used to
optimise the decision on which additional data are needed to improve the precision of the current estimate of eµC , and
could be incorporated into the analysis of these new data as informative Bayesian prior distributions for PK-PD model
parameters.

We seek error spending versions [20] of test (1) which are flexible enough to accommodate unpredictable information
sequences. The proposed tests are not derived from a sequence of repeated confidence intervals. Instead Critical values for
monitoring score statistics are derived directly by extending the approach of Schuirmann [13] to define an error spending
test of H0 as the union of two one-sided error spending tests: a test of H0U : θ ≥ δU , which we label Test U , and a test of
H0L : θ ≤ δL, labelled Test L. Each test is designed with nominal type I error probability α and target information level
Imax > Ifix, where Ifix is the information required by the fixed sample test ofH0 which rejectsH0 if lfix ≤ Sfix ≤ ufix.
Boundaries of Tests L and U are found spending error probabilities as a function of the Fisher information for θ. Let
rk = Ik/Imax and define f and g as monotonic increasing functions satisfying f(r) = g(r) = 0 for r ≤ 0, and f(r) = α

and g(r) = 1− α for r ≥ 1. Then the stage k boundaries of Test U are found as solutions to

P{S1 ∈ (u1,1, u2,1), . . . , Sk−1 ∈ (u1,k−1, u2,k−1), Sk ≤ u1,k; θ = δU} = f(rk)− f(rk−1) and (2)

P{S1 ∈ (u1,1, u2,1), . . . , Sk−1 ∈ (u1,k−1, u2,k−1), Sk ≥ u2,k; θ = δU} = g(rk)− g(rk−1), (3)

and the stage k boundaries of Test L are found as solutions to

P{S1 ∈ (l1,1, l2,1), . . . , Sk−1 ∈ (l1,k−1, l2,k−1), Sk ≥ l1,k; θ = δL} = f(rk)− f(rk−1) and (4)

P{S1 ∈ (l1,1, l2,1), . . . , Sk−1 ∈ (l1,k−1, l2,k−1), Sk ≤ l2,k; θ = δL} = g(rk)− g(rk−1). (5)

The IW GST in (1) is formed as the superposition of Test U and Test L, with the boundaries of Test U defining the critical
values {(u1,k, u2,k) ; k = 1, 2, . . .} in (1) and the boundaries of Test L fixing critical values {(l2,k, l1,k) ; k = 1, 2, . . .}.
At early interim analyses when information levels are small, we may find that l1,k > u1,k, in which case we set l1,k = u1,k

to prevent early stopping to reject H0. Similarly, we set u2,k = max{u2,k, l1,k} and l2,k = min{l2,k, u1,k} to ensure final
decisions for H0 are consistent with the conclusions of both one-sided tests. The design of the IW GST is completed by
using a numerical search to yield the target information level Imax for which it achieves power 1− β at θ = 0 under a
plausible assumption for the information timings of interim analyses.

We calculate stopping probabilities in equations (2)-(5) assuming that conditional on I1, I2, . . ., the sequence of score
statistics follows a multivariate normal distribution with the same mean and covariance structure as a Brownian motion
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with drift θ. Jennison & Turnbull [21] prove that score statistics derived from MLEs of a parameter of a generalised
linear model follow this canonical joint distribution at least asymptotically, although no work exists establishing this result
for score statistics based on MLEs of a parameter in a non-linear model. The impact of deviations from distributional
assumptions on attained type I error rates will be assessed via simulation in Section 4.4. For now we also proceed assuming
that information levels I1, . . . , Ik are known exactly by interim analysis k, although this will not be the case in general
since information may depend on unknown variances and/or PK-PD model parameters. In such cases, error spending IW
GSTs can proceed calculating stopping probabilities in equations (2)-(5) conditioning on estimated information levels; the
impact of such approximations on operating characteristics will be investigated in Section 4.4.

In all evaluations of methods, we will spend cumulative stopping probabilities according to the simple family of
(1− α)− and α-spending functions

g(r) = (1− α) min{1, rρ1} and f(r) = αmin{1, rρ2}, (6)

where ρ1 > 0 and ρ2 > 0 are constants which must be pre-specified before the GST begins. We adopt this family of
spending functions because it is simple and the efficiency of one-sided tests based on the related ρ-family of error spending
functions (as defined in Section 7.2 of [22]) has been well characterised and shown to be close to optimal in a range of
testing scenarios [23, 24]. Spending stopping probabilities according to functions g and f in (6) also ensures that Test L
and Test U terminate properly at the same information level [25].

As an aside, note that rather than finding stopping boundaries as solutions to equations (2)-(5), an alternative approach
would be to extend the methods of Kosorok et al. [26] to find critical values as solutions to

P{Stop at stage k with Sk ≥ u2,k; θ = 0}

= P{Stop at stage k with Sk ≤ l2,k; θ = 0} = (m(rk)−m(rk−1))/2

and

P{Stop at Stage k with l1,k ≤ Sk ≤ u1,k; θ = δL}

= P{Stop at Stage k with l1,k ≤ Sk ≤ u1,k; θ = δU} = f(rk)− f(rk−1),

where m is an error spending function satisfying m(t) = 0 for t ≤ 0, and m(t) = β for t ≥ 1. However, under this
approach, it is not guarenteed that sequences of critical values {l2,1, l2,2, . . .} and {l1,1, l1,2, . . .} will cross at the same
information level as boundary sequences {u1,1, u1,2, . . .} and {u2,1, u2,2, . . .}, in which case it would not be clear how the
test should proceed beyond the first observed stage of crossing. Therefore, in what follows, we will restrict attention to
error spending IW GSTs found by solving equations (2)-(5).

Appendix A of the Supplementary Materials accompanying this manuscript presents a comprehensive evaluation of
the operating characteristics of error spending IW GSTs for various configurations of (δL, δU ) and the error spending
parameters (ρ1, ρ2). In general, we see that IW GSTs formed as the superposition of Test L and Test U are conservative in
the sense that attained type I error rates are less than the nominal level α. Such conservatism arises because at each interim
analysis, procedure (1) can continue sampling with values of Sk that would otherwise trigger termination of Test L or Test
U . The degree of conservatism decreases as ρ2 increases so that more type I error is spent at higher information levels.
Based on our numerical investigations, we have found setting ρ2 = 2 to be an adequate compromise between achieving
a low expected sample size and an attained type I error rate close to α. In all future evaluations of methods, we proceed
setting ρ1 = 1 and ρ2 = 2. For example, Figure 1(a) plots the boundaries of a three-stage IW GST designed and conducted
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Figure 1. Stopping rules and expected information on termination of three-stage error spending IW GSTs and optimal versions minimising F when: (a) - (b) δL = log(0.7)

and Imax = 102.46; (c) - (d) δL = log(0.5) and Imax = 96.802. All tests are designed and conducted with α = 0.1, β = 0.2, δU = log(1.25) and for information
sequence (7).

with ρ1 = 1, ρ2 = 2, α = 0.1, β = 0.2, δL = log(0.7) and δU = log(1.25), scheduling interim analyses at information
levels

Ik = k Imax/K for k = 1, . . . ,K. (7)

This test attains type I error rate 0.096 under θ = δL and θ = δU rather than the nominal level 0.1. The impact of this
conservatism on efficiency is evaluated in Section 3.2.

Frequentist group sequential stopping rules can be interpreted using Bayesian predictive probabilities to measure the
degree of (in-)consistency between the observed data and an extrapolation assumption needed to trigger termination.
Table 1 lists predictive probabilities

P{Sk ≥ s?} =

∫
Θ

h(θ; ξ, ω2, η)Φ

(
Ikθ − s?√
Ik

)
dθ (8)

and
P{s?1 ≤ Sk ≤ s?2} =

∫
Θ

h(θ; ξ, ω2, η)

{
Φ

(
uk − θIk√
Ik

)
− Φ

(
lk − θIk√
Ik

)}
dθ (9)
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Table 1. Bayesian predictive probabilities assuming θ ∼ SN(0.134, 0.063,−1.913). Probabilities are evaluated at the
boundaries of an error spending IW GST. Figures in parentheses are corresponding probabilities for an optimal IW GST
minimising F . Both tests are designed and conducted with K = 3, α = 0.1, β = 0.2, δL = log(0.7), δU = log(1.25),

Imax = 102.46 and information sequence (7)

k P{Sk ≤ l2,k} P{Sk ≥ u2,k} P{l1,k ≤ Sk ≤ u2,k}
1 0.055 (0.068) 0.069 (0.056) 0 (0)
2 0.091 (0.133) 0.121 (0.135) 0.279 (0.335)
3 0.181 (0.195) 0.260 (0.255) 0.559 (0.550)

for the error spending IW GST in Figure 1(a), with h the prior probability density function (pdf) for θ consistent with an
assumption of similar PK-PD relationships in adults and children. Such a prior distribution would be asymmetric, having
zero mode and placing small probability mass on the events {θ ≥ δU} and {θ ≤ δL}. We choose to evaluate predictive
probabilities setting h as the pdf of a skew normal random variable, written θ ∼ SN(ξ, ω2, η) [27], although in principle
other skew distributions would be acceptable. We choose the parameters of this distribution such that θ has a prior mode
of zero and such that there is a prior probability of α/2 that θ ≥ δU and probability α/2 that θ ≤ δL. For this choice of
prior

h(θ; ξ, ω2, η) =
2

ω
φ

(
θ − ξ
ω

)
Φ

(
η(θ − ξ)

ω

)
,

where φ and Φ are the pdf and cumulative distribution function of a standard normal variate. If predictive probability (8)
is close to 0, this implies that observing Sk = s? is inconsistent with the extrapolation assumption since we would be
unlikely to observe such an event if θ was a sample from a SN(ξ, ω2, η) distribution. Probabilities (9) close to 1 imply that
Sk would lie in the interval (s?1, s

?
2) with high probability if θ was consistent with the extrapolation assumption. Returning

to the error spending IW GST illustrated in Figure 1(a), the skew normal distribution for θ consistent with the extrapolation
assumption is defined by ξ = 0.13, ω2 = 0.06 and η = −1.91. From Table 1, we see that in the early stages of this trial,
early stopping to accept H0 is permitted only when there is strong evidence of discrepancies between the data and the
extrapolation assumption. For example, the test stops at the first interim analysis to declare θ ≤ δL (θ ≥ δU ) if and only if
the predictive probability of observing a more extreme test statistic under the extrapolation assumption is less than 0.055
(0.068). It is not possible to reject H0 at the first interim analysis and so predictive probability (9) is 0.

3. Optimal asymmetric IW GSTs

3.1. Optimising the boundaries of an asymmetric IW GST

To evaluate the efficiency of the proposed error spending IW designs, we seek optimal versions of tests which come to a
rapid conclusion when effective concentrations in adults and children are similar. Let T represent the stage at which an
IW GST terminates and let IT and ST represent the Fisher information for θ and score statistic on termination. Symmetric
IW GSTs minimising the expected sample size on termination have been found by Eales [28] and Chang [29]. We extend
this work to find optimal K-stage asymmetric IW GSTs minimising

F =

∫
Eθ(IT )h(θ; ξ, ω2, η)dθ, (10)

subject to having type I error rate α at θ = δL and θ = δU , and power 1− β at θ = 0. Tests minimising F minimise the
average expected information on termination, taking averages across a skew normal distribution for θ chosen to have
mode zero and to place probability α/2 on events {θ ≥ δU} and {θ ≤ δL}. If δL = −δU , the distribution thus defined is
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equivalent to a N(0, δ2
U [Φ−1(1− α/2)]−2) distribution.

Aside from the stated type I and type II error rate constraints, no further restrictions are placed on the form of the
boundaries of the optimal test although we will check that they follow the general pattern shown in (1). The optimal
test could be found using Lagrangian multipliers [30] or by optimising directly over all possible configurations of the
[4(K − 1) + 2] boundaries. However, as K increases, this latter approach quickly becomes computationally burdonsome.
A more feasible approach is to find the optimal frequentist GST as the solution to an unconstrained Bayes problem, a
strategy which has been adopted by several authors to find optimal frequentist designs [31, 32, 24]. The novelty of our
problem is that optimal tests must control the type I error rate at two values of θ unequally spaced about 0 and minimise
the expected information averaging over a skew normal distribution for θ. We define a Bayes decision problem with
prior, decision loss and sampling cost functions carefully chosen to ensure the problem has a solution of the form we seek.
Specifically, let L(A, θ) measure the loss incurred by taking actionAwhen the true difference between adult and paediatric
log effective concentrations is θ. Letting A1 represent the decision to reject H0, and A2 represent the decision to accept
H0, we define L(A1, θ = δL) = d1, L(A1, θ = δU ) = d2, L(A2, θ = 0) = d3 and L(A, θ) = 0 otherwise. We incur a cost
of c(θ) per unit of information sampled, where c(δL) = c(0) = c(δU ) = 0 and c(θ) = 1 otherwise. Finally, we define a
prior distribution for θ which places probability 1/4 on the cases that θ = δL, θ = 0, θ = δU and θ ∼ SN(ξ, ω2, α). Under
this specification, the total expected cost of the IW GST is given by

r(d) = 1/4{d1P{Reject H0 | θ = δL}+ d2P{Reject H0 | θ = δU}+ d3P{Accept H0 | θ = 0}+ F}, (11)

where d = (d1, d2, d3). The Bayes test minimising r(d) can be found using backwards induction and the dynamic
programming algorithm is listed in Supplementary Appendix B. Let α?1(d) and α?2(d) denote the attained type I error
rates of the Bayes test at θ = δL and θ = δU , and let β?(d) denote this test’s attained type II error rate at θ = 0. Standard
arguments imply that the Bayes test minimising r(d) also minimises F in the class of tests with frequentist error rates
α?1(d), α?2(d) and β?(d). However, for any particular choice of decision costs, these attained error rates may deviate from
their nominal values. We therefore perform an unconstrained three-dimensional search over the vector of log decision
costs to find the configuration defining the Bayes problem whose solution minimises

η(log(d1), log(d2), log(d3)) =
√{[

(α?1(d)− α)2 + (α?2(d)− α)2 + (β?(d)− β)2
]
/3
}
. (12)

It follows that the Bayes test minimising (12) with frequentist error rates satisfying α?1 = α?2 = α and β? = β is the optimal
frequentist IW GST we seek.

Figure 1(a)-1(b) plots the boundaries and operating characteristics of the optimal three-stage IW GST minimising F
with type I error rate α = 0.1 at θ = log(0.7) and θ = log(1.25), and type II error rate β = 0.2 at θ = 0, when interim
analyses are equally spaced in information up to Imax = 102.46. This optimal frequentist test was found as the solution
to a Bayes problem of the form described above defined by decision costs d1 = 80.1, d2 = 433.2 and d3 = 290.2.

3.2. Efficiency of IW error spending tests

Figure 2(a) plots values of F attained by optimal and error spending IW GSTs as a percentage of Ifix. All tests are
designed and conducted for information sequence (7) setting δU = log(1.25). For each pair of equivalence limits, Imax
is chosen as the information target needed for the error spending test to achieve power 1− β at θ = 0. Error spending
tests are designed with nominal type I error rate α = 0.1 although Figure 2(b) illustrates how attained error rates deviate
from this level. Only attained type I error rates at θ = δL are plotted; lines for type I error rates at θ = δU and θ = δL are
almost indistinguishable. To assess the impact on efficiency of the conservatism of the error spending test, we consider
two versions of the optimal test. Version (i) is derived to attain type I error rate α = 0.1. Version (ii) has type I error rate
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Figure 2. a): Values of F achieved by three-stage error spending and optimal IW GSTs of H0 : θ ≤ δL or θ ≥ δU expressed as a percentage of Ifix; b) Type I error rate at
θ = δL attained by error spending IW GSTs. For each pair (δL, δU ), version (i) of the optimal test has type I error rate α; version (ii) controls the type I error rate at the level
attained by the error spending test. All tests are designed and conducted for information sequence (7) setting δU = log(1.25), α = 0.1 and β = 0.2.

equal to that attained by the error spending test but minimises the average expected sample size across a skew normal
distribution for θ placing probability 0.05 on events {θ ≥ δL} and {θ ≤ δU}.

From Figure 2(a) we see that, in general, error spending tests are efficient, attaining values of F within 10% of Ifix of
the optimal test in many cases, and offering savings for expected information of more than 13% on the fixed sample test in
all cases. When δL is close to log(0.8) and we approach the case of a symmetric hypothesis test, values of F attained by
error spending tests tend towards the values attained by optimal versions of IW GSTs with the same attained type I error
rates. This implies that in these settings, differences in efficiency between the error spending IW GSTs and version (i) of
the optimal tests with type I error rate α are largely due to the conservatism of the former rather than differences between
the shapes of the test boundaries. To illustrate this, Figures 1(a)-1(b) compare properties of three-stage error spending and
optimal IW GSTs designed with δL = log(0.7) and δU = log(1.25). The boundaries of both procedures and the expected
information curves are similar, while the power curves are almost indistinguishable. Values of F attained by the optimal
and error spending tests are 81.1% and 84.8% of Ifix, respectively. However, for more extreme values of δL, the error
spending test is less efficient. Comparing the performance of versions (i) and (ii) of the optimal test, we deduce that these
losses are not due to the conservatism of the error spending test; rather it is the shape of the error spending boundaries that
is suboptimal. This is reflected in Figures 1(c)-1(d) comparing properties of tests designed with δL = log(0.5).

We have investigated the efficiency of the error spending IW GSTs in the somewhat idealised scenario that the target
maximum information level is attained exactly and score statistics follow the asymptotic canonical joint distribution
defined in [21]. In the absence of similar finite sample distributional results for score statistics based on MLEs of a
parameter in a non-linear model, we cannot comment on whether this efficiency is maintained in small samples. However,
the flexibility of the error spending designs will likely compensate for small losses in efficiency incurred due to deviations
from the canonical joint distribution.

3.3. Optimising interim analysis timings

When differences between adults and children exist, we will measure the efficiency of an IW GST in terms of the accuracy
of the final estimate of θ available on termination of the test, where narrow confidence intervals for θ are preferred to better
inform subsequent dose-finding trials in children. The analysis schedule of a GST will determine the information available
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for θ and thus the width of the confidence interval (CI) for θ calculated on termination of the trial. Thus, one may wish
to optimise the test analysis schedule to minimise the average expected width of the CI for θ on termination, taking
averages across null values of θ. In what follows, let W (k, s?) denote the width of the (1− α) CI for θ calculated upon
terminating the GST at stage T = k with ST = s?. Suppose the first interim analysis is scheduled at information level I1

and subsequent analyses are timed at

Ik = I1 + (k − 1)(Imax − I1)/(K − 1) for k = 2, . . . ,K. (13)

Choosing the boundaries of test (1) to minimise F , we seek I1 minimising

G =
ωa F

Ifix
+

ωb
Wfix

[
E(W (T, ST ); θ = δL) + E(W (T, ST ); θ = δU )

2

]
,

where ωa and ωb are non-negative weights satisfying ωa + ωb = 1, and Wfix is the average expected width of the (1− α)

CI for θ on termination of the fixed sample test under θ = δL and θ = δU . The definition of G reflects our wish to come to
a rapid conclusion when effective concentrations in adults and children are similar, and to make precise statements about
differences when these exist.

We have not yet said how we will calculate the (1− α) CI for θ on termination of test (1). Clearly it is desirable that the
CI be consistent with the final decision of the IW GST, being entirely contained within the equivalence interval if and only
if the test stops to reject H0. It would be particularly difficult to claim similar effective concentrations if the CI for θ on
termination contained δL or δU . We therefore seek sharp CIs which are consistent with the final decision of the IW GST
with high probability. Hsu et al. [33] consider (1− α) CIs associated with tests of interval null hypotheses. Generalising
Theorem 2.5 of that paper to the case of IW GSTs, if θU (T, ST ) and θL(T, ST ) are (1− α) upper and lower confidence
limits satisfying

P{θU (T, ST ) ≥ θ} = P{θL(T, ST ) ≤ θ} = 1− α for all θ, (14)

the interval [
min

{
δL + δU

2
, θL(T, ST )

}
,max

{
δL + δU

2
, θU (T, ST )

}]
(15)

has coverage probability 1 if θ = (δL + δU )/2, and (1− α) otherwise. In the case of fixed sample tests, Hsu et al. [33]
note that CIs of this form have typically smaller effective length (defined as the supremum of distances between points
in the CI and zero) than conventional (1− α) CIs and so will be properly contained in the equivalence interval with
higher probability when equivalence holds. We thus prefer to consider CIs of the form (15), despite their drawback that
confidence interval limits are allowed to depend on δL and δU .

We now turn our attention to finding upper and lower confidence limits satisfying equation (14) on termination of the
IW GST. For k = 1, . . . ,K, let Ck = (l2,k, l1,k) ∪ (u1,k, u2,k) and define Ω = {(k, sk); sk /∈ Ck, k = 1, . . . ,K} as the set
of outcomes with which the IW GST can terminate. To find θU and θL we first note that since the continuation regions
are not intervals, the stage-wise ordering [34] cannot be applied to Ω [22]. Instead, we order Ω with respect to the MLE
of θ [35]. If the IW GST terminates with (T, ST ) = (k?, s?), this ordering stipulates that an outcome (k′, s′) lies equal to
or above (k?, s?) in the ordering of Ω, that is, (k′, s′) � (k?, s?), if and only if s′/Ik′ ≥ s?/Ik? . Clearly the ordering of
Ω depends upon information levels I1, . . . , IK , which may be unknown if the test stops early with IT < Imax and group
sizes are unpredictable. In such cases, we propose calculating the CI assuming that in the absence of early stopping, the
test would have evolved with IT+k = IT + k (Imax − IT )/(K − T ), for k = 1, . . . ,K − T .
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Figure 3. Values of 100×G attained by optimal three-stage IW GSTs minimising F with α = 0.1, β = 0.2, δL = log(0.7), δU = log(1.25), Imax = 102.46 and
where interim analyses are scheduled according to information sequence (13).

If the distribution of (T, ST ) is stochastically ordered on Ω with respect to θ, the (1− α) confidence limits satisfy

P{(T, ST ) � (k?, s?); θU (k?, s?)} = P{(T, ST ) � (k?, s?); θL(k?, s?)} = 1− α.

Emerson (Chapter 4 of [36]) has proved that the MLE ordering has this monotonicity property for GSTs with interval
continuation regions. It follows from Emerson’s proof that this property must also hold for IW GSTs. Given the
monotonicity condition, CI (15) will be consistent with the decision of the IW GST if: (a) for k = 1, . . . ,K − 1,
u2,k/Ik ≥ u2,K/IK ≥ u1,k/Ik ≥ l1,k/Ik ≥ l2,K/IK ≥ l2,k/Ik; and (b) P{Accept H0 and conclude θ ≥ δU ; θ = δU} =

P{Accept H0 and conclude θ ≤ δL; θ = δL} = 1− α. Condition (a) stipulates that Ω can be partitioned into three sets,
all outcomes for which the GST stops to accept H0 concluding θ ≤ δL being lower in the ordering than outcomes for
which the test stops to reject H0, which in turn are lower in the ordering than outcomes for which the test stops to accept
H0 concluding θ ≥ δU . While this condition is not guarenteed to hold for optimal or error spending IW GSTs, we have
found that it does for almost all of the designs we have considered. Similarly, condition (b) is unlikely to hold exactly.
Despite this, we have found that the probability of a conflict between the IW GST and the (1− α) CI remains small.
For example, boundary condition (a) is satisfied by the three-stage error spending IW GST illustrated in Figure 1(a). For
this test, P{Accept H0 and conclude θ ≥ δU ; θ = δU} = 0.903 and P{Accept H0 and conclude θ ≤ δL; θ = δL} = 0.903,
thus violating condition (b), although the probability of a conflict between the test and the (1− α) CI is less than 0.008.

Figure 3 compares the efficiencies of three-stage optimal IW GSTs under analysis schedule (13) for a range of values
of I1 and weights (ωa, ωb). Setting ωb = 1 and choosing I1 to minimise the expected CI width, it is most efficient
to time the first interim analysis as late as possible. Setting ωa = 1, our focus is on minimising F and the optimum
analysis schedule sets I1 = 55.7. If ωa = ωb = 0.5, the trade-off between competing objectives means G is minimised by
scheduling I1 = 65.2.
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4. Simulation study

Valsartan is an antihypertensive drug indicated for patients aged 6 years and above. Its antihypertensive effect in adults
has been established through seven placebo-controlled trials randomising over 2 000 adults to receive doses between 10
to 320 mg/day, and 800 adults to receive placebo (Section 14.1 of [37]). The clinical benefits of valsartan in hypertensive
children have been tested in a dose-ranging trial which randomised 261 children aged 6 to 16 years to a low, medium or
high (weight-based) dose between 10 to 160 mg/day. A similar trial was conducted in 90 infants aged 1 to 5 years. For
antihypertensives it is plausible, but not obvious, that PK-PD relationships should be similar in adults and children. If
relationships were similar for valsartan, we speculate that it may have been sufficient to extrapolate from the substantial
adult database to support claims of efficacy in children. In the following, we consider how error spending IW GSTs could
have been used to verify whether the EC90 of valsartan is similar for adults and children aged 6 to 18 years. For present
purposes, we measure valsartan exposure by AUC(0,∞) and pharmacodynamics by change from baseline in systolic
blood pressure at 4 weeks.

4.1. Valsartan population PK and PK-PD models

The population pharmacokinetics of valsartan when administered as a suspension to hypertensive children follow a two
compartment model with zero-order absorption, linear elimination and lag time. There is an effect of fat free mass
(FFM) on the following parameters: apparent clearance C`, apparent central volume of distribution Vc, apparent inter-
compartmental distributional clearance C`d, and apparent peripheral volume of distribution Vp; and an additional effect
of age on C` [38]. We simulate adult pharmacokinetics using a variation on the paediatric PK model, scaling typical
values of population parameters by 1.7 to account for differences in bioavailability as adults receive valsartan as a tablet
rather than an oral suspension [39]. Furthermore, we also omit an effect of age on C` for adults. Since valsartan does
not accummulate markedly in blood plasma with repeated dosing (Section 12.3 of [37]), simulated concentrations depend
only on the time since the preceeding dose. Labelling children and adults as populations C and A, letETi = AUCTi(0, ∞)
denote the exposure of patient i in population T ∈ {C,A} who is aged ATi years and has fat free mass FMTi. We simulate
patient-specific apparent clearances as

C`Ci = {4.32(FMCi/44)0.75 + 0.06(ATi − 7.8)}ebCi

C`Ai = 1.7 {4.32(FMAi/44)0.75 + 0.06(18− 7.8)}ebAi

where bA1, bA2, . . . and bC1, bC2, . . . are independent random effects and each bTi ∼ N(0, 0.107). For a patient receiving
dose d, ETi = d/C`Ti.

Demographics of hypertensive patients are simulated from log-normal distributions specified based on baseline data
from multicentre trials of valsartan [40, 41]. Fat free mass is a function of weight (kg) and BMI (kg/m2), and the
logarithm of these variables for adults are generated as independent realisations of N(4.52, 0.05) and N(3.47, 0.03)

random variables, respectively. Furthermore, adults are female with probability 0.47. The logarithms of the weight and
BMI of a hypertensive child are generated as independent realisations of N(4.07, 0.24) and N(3.24, 0.12) random
variables, respectively; children are female with probability 0.39. We simulate 11 PK samples per adult taken at 0.5,
1, 1.5, 2, 2.5, 3, 4, 6, 7, 12, 24 hours post dose (with a sampling window of ±0.05 hours). Nine PK samples are simulated
per child taken at 0.5, 1, 2, 3, 4, 6, 8, 12, 24 hours post dose (±0.1 hours).

Dose-response curves for many compounds can be adequately approximated by a hyperbolic (i.e., three-parameter)
Emax model [42]. Since valsartan exposure is proportional to dose, we simulate the PD response of patient i in population
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T as
YTi = y0T −

0.9RTETi
0.1eµT + 0.9ETi

+ εTi, (16)

where εTi ∼ N(0, σ2
T ) are independent random errors. In all evaluations we set y0A = y0C = −5,RA = RC = 10, σA = 4,

µA = log(28) and µC = µA − θ. Simulated adult and paediatric data are analysed using a two-stage approach, first
approximating a patient’s exposure by a non-compartmental estimate of the AUC over their period of observation, and
then using these estimates to fit model (16) to obtain µ̂A or µ̂C .

We verify whether PK-PD relationships in adults and children are similar by testing H0 : θ ≤ θL or θ ≥ δU . In practice,
the choice of equivalence limits would be informed by clinical considerations. For example, suppose it would be acceptable
to dose children targeting the adult EC90 if the expected effect of this exposure in children was between 80% and 93%
of the maximum expected reduction in systolic blood pressure that can be achieved. These opinions and model (16)
would imply that δL = log(28/63) and δU = log(28/19). Setting the equivalence limits such that |δL| < |δU | implies the
consequences of over-dosing are more severe than those of under-dosing, and vice-versa.

4.2. Simulating a PK-PD study in children to verify similar effective concentrations

We simulated PK-PD studies in children proceeding according to an error spending IW GST with up to K = 3 analyses.
Here we describe the process used to simulate each study. Locally optimal designs minimising the variance of a quantile of
an Emax model are supported by 3 design points [43]. However, in practice, parameters of the exposure-response curve are
unlikely to be known exactly at the design stage so that it is good practice to use 4 to 7 active doses in dose-finding studies
[44]. We simulate studies randomising equal numbers of children between placebo, 10, 20, 150 and 160 mg/day, where
these are the four active doses from the set {10, 20, . . . , 160} maximising the Fisher expected information for µC when
PK-PD relationships are identical in adults and children. IW GSTs are conducted setting α = 0.1, ρ1 = 1 and ρ2 = 2. We
choose Imax to ensure the GST has power 1− β to reject H0 when θ = 0 when interim analyses follow pattern (7).

We imagine that before the PK-PD study in children begins, data are available on 2 000 adults of whom equal numbers
have received placebo, 20, 30, 40 or 320 mg/day of valsartan. These active doses are the four doses from the set
{20, 30, . . . , 320}mg maximising the Fisher information for µA. Simulated adult data are used to fit model (16) to obtain
µ̂A. MLEs of y0A, RA and µA are found fitting the hyperbolic Emax model in R [45] using nls; we set σ̂C as the
unbiased least squares estimate. We approximate IA by an estimate ÎA derived substituting estimates for unknown model
parameters. From this we can deduce a target information level for µC , denoted ÎCmax, and thus a sample size requirement
for the paediatric trial. Let nmax,0 denote our initial estimate of the total number of children needed to generate information
ÎCmax assuming PK-PD parameters in children are equal to the adult estimates. To ensure that target information level
ÎCmax will be met in the absence of early stopping, we adopt an information monitoring approach [46, 47], at each interim
analysis using the most recent estimate of σC to refine the initial sample size calculation. We denote the stage k estimate
by nmax,k. Further details on simulated trials can be found in Supplementary Appendix C.

Once the PK-PD study in children is underway, interim analysis k, for k ≤ K − 1, is conducted once data are available
on nk patients. All available paediatric data are then used to fit model (16) to deduce µ̂Ck and ÎCk. We do not permit early
stopping if MLEs of model parameters cannot be found due to non-convergence of the optimisation routine. Instead we set
nmax,k = nmax,k−1 and continue to stage (k + 1) recruiting (nmax,k − nk)/(K − k) additional children. We also prohibit
early stopping if MLEs of model parameters can be found but ÎCkÎA/(ÎCk + ÎA) ≤ Îk−1. Otherwise early stopping at
stage k is permitted and hypothesis decisions are based on Sk = (µ̂A − µ̂C)Îk. Since this statistic does not follow a
known distribution, we approximate and compare Sk with error spending boundaries (l2,k, l1,k) and (u1,k, u2,k) found for
monitoring a sequence of score statistics assuming Ij = Îj , for j = 1, . . . , k. If the optimisation routine fitting the Emax
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model converges and sampling continues to stage (k + 1), the current estimate of σ2
C is used to refine the target sample

size. Decreases in sample size targets are permitted as well as increases. We specify a minimum group size of one child
per dose and a maximum group size with the adult sample size per dose.

In the absence of early stopping, if MLEs of the PK-PD model parameters cannot be found at analysis K, we fit a linear
model to the paediatric data

YCi = γ0 + γ1 log(ECi + 1) + εCi εCi ∼ N(0, σ2
C) (17)

and obtain µ̂CK = log(exp{(X̂ − γ̂0)/γ̂1} − 1), where X̂ = 0.1 X̄0 + 0.9 X̄4, and X̄0 and X̄4 are the sample mean PD
responses on placebo and the highest valsartan dose. Otherwise, if theEmax model can be fitted but ÎCK ÎA/(ÎCK + ÎA) ≤
ÎK−1, we recalculate the Fisher information for µC using stage (K − 1) estimates of model parameters. If the information
sequence is still decreasing, we fit model (17). The stage K error spending boundaries are then found to spend the
remaining type I error probability.

4.3. An example simulated trial

To illustrate how a simulated trial might proceed, suppose that we wish to use existing adult data and data generated from a
PK-PD study in children to testH0 settingK = 3, α = 0.1, β = 0.3, δL = log(28/108) and δU = log(28/13.26). From the
existing adult data, suppose we obtain estimates ŷ0A = −4.98, R̂A = 10.64, µ̂A = 3.43, σ̂A = 4.02 and thus ÎA = 127.53.
The paediatric trial is planned assuming interim analyses will be equally spaced in information, in which case a three-stage
error spending IW GST must be designed to accrue Fisher information Imax = 6.70 for θ in the absence of early stopping
(corresponding to an information target of 7.07 for µC). Assuming PK-PD parameters for children are equal to the adult
estimates, we estimate that up to 24 children will be needed per dose level, and the trial begins randomising 8 children to
each active dose and placebo.

At the first interim analysis, model (16) is fitted to the first group of responses to obtain µ̂C,1 = 6.63 (IC,1 = 0.34),
σ̂C,1 = 3.90, Î1 = 0.34 and S1 = −1.08. Given Î1 = 0.34, boundaries of Test L and Test U spending error probabilities
f(r1) = 2.54× 10−4 and g(r1) = 0.05 are (−1.44, 1.57) (Test L) and (−1.77, 1.24) (Test U). These are combined so that
the stage 1 boundaries for testingH0 are l2,1 = −1.77, l1,1 = −0.10, u1,1 = −0.10 and u2,1 = 1.56. Since l2,1 ≤ S1 ≤ l1,1
the trial continues to the next stage. Using the latest estimate of σC , we refine our initial sample size calculation to
nmax,1 = 110, and the second interim analysis is conducted when data are available on a total of 15 children per dose.
At analysis k = 2, model (16) is fitted to obtain µ̂C,2 = 3.78 (ÎC,2 = 4.11), Î2 = 3.98 and S2 = −1.43. Second stage
boundaries of Test L and Test U spending additional error probabilities f(r2)− f(r1) = 0.04 and g(r2)− g(r1) = 0.49

are (−5.26, −1.77) (Test L) and (−0.63, 2.85) (Test U). These are combined to derive l2,2 = −5.26, l1,2 = −1.77,
u1,2 = −0.63 and u2,2 = 2.85. Since l1,2 ≤ S2 ≤ u1,2 the GST stops to reject H0. The 90% CI for θ is (−0.97, 0.17)

assuming that we would have observed Î3 = Imax had the test continued to the final stage. Thus the 90% CI is consistent
with the decision of the IW GST since it excludes δL and δU .

4.4. Results of the simulation study

Table 2 lists results for 100 000 simulated PK-PD studies. Estimated type I error rates based on 100 000 simulations will
lie between (0.098, 0.102) with probability 0.95 if the true error rate is 0.1. Estimated coverage rates will lie between
(89.8, 90.2)% with probability 0.95 if 90% CIs attain their nominal levels. The proposed designs appear to successfully
control error rates at levels reasonably close to their nominal values. Attained type I error rates are consistently higher
under θ = δL than under θ = δU . Discrepancies between attained and nominal error rates are not solely due to deviations
from the assumed joint distribution of test statistics used to derive test boundaries. Indeed, in results not presented here, we
have simulated three-stage IW GSTs with fixed group sizes basing test statistics on successive MLEs of the log-effective
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concentration in a hyperbolicEmax model, and found the canonical joint distribution described in [21] is accurate for group
sizes as small as 75 patients (spread across four active doses and placebo). The simulation study described in Section 4.2
considers a much more complex setting such that several factors may cause deviations from nominal error rates. Allowing
mid-trial adaptations to the target paediatric sample size; deriving error spending boundaries conditioning on estimated
information levels; and using ad-hoc strategies to proceed when the Emax model cannot be fitted will all influence attained
error rates.

From Table 2 we see that attained error rates are robust to misspecification of σ2
C in the initial sample size calculation

for the paediatric trial. Indeed, the procedure is able to adapt to accumulating evidence on σC to appropriately refine the
sample size requirement. The coverage of 90% CIs remains close to the nominal level in all scenarios, with deviations
within ±5%. The proposed designs are feasible in the sense that estimation of the hyperbolic Emax model rarely failed:
the highest failure rate observed in any simulation scenario was 3.1%. The highest observed rate of conflict between the
decision of the IW GST and the 90% confidence interval was 1.4%.

Specification of δL and δU requires careful consideration since these equivalence limits have an important impact
on sample size requirements. Large numbers of children are needed to make precise statements about the similarity of
effective concentrations in adults and children. On average, setting 1− β = 0.7, a total of 394 children (interquartile
range: 325 - 500) are needed to verify whether the effect of the adult EC90 in children is between 70% and 93% of the
maximum possible effect when in fact effective concentrations are equal. Relaxing this equivalence criterion slightly so
that it would be acceptable to dose children targeting the adult EC90 if the expected effect of this exposure was between
70% to 95% of the maximum effect implies a large saving in expected sample size. Under the relaxed criterion, the
proposed approach appears feasible, requiring on average a total of 109 children (IQR: 85 - 125), which represents an
expected saving of over 9% on the corresponding fixed sample test.

Note that the simulation study described in Section 4.2 was conducted assuming that a hyperbolic Emax model would
always be an appropriate fit to the adult PK-PD data and the accummulating data in children. In practice, in each population
model fit would need to be carefully monitored to ensure the accuracy of the MLEs µ̂A and µ̂Ck, for k = 1, 2, . . ., upon
which the procedure is based. For instance, the goodness-of-fit of the adult PK-PD model would need to be established in
order for it to be sensible to take µ̂A forwards to be used as the benchmark for comparison in the paediatric PK-PD study.
When this study is underway, the goodness-of-fit of the PK-PD model for children should be assessed at each interim
analysis. In the context of the trials simulated in this paper, a lack of fit of the adult PK-PD model to paediatric data
would indicate that an alternative to the hyperbolic Emax model is needed to derive µ̂Ck. Strictly speaking, this would not
trigger termination of the GST in itself since the objective of the procedure is to verify whether a particular quantile of the
PK-PD relationship is similar in adults and children, not whether the relationships are identical. However, it is unlikely
that qualitatively different PK-PD relationships would be consistent with similar effective concentrations; indeed, different
shaped relationships may imply that the drug has a quite different mode of action in children to adults. The decision of
whether to continue in such cases should be guided by scientific considerations, and we do not attempt to propose a formal
quantitative stopping rule based on goodness-of-fit statistics.

5. Discussion

In this paper we have shown how asymmetric IW GSTs can be used to learn about the similarities between adults and
children to support extrapolation decisions. We have derived optimal versions of tests and discussed how confidence
intervals can be derived. There are a number of practical and ethical considerations which may influence the conduct
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Table 2. Operating characteristics of three-stage error spending IW GSTs of H0 : θ ≤ δL or θ ≥ δU intended to have
power 1− β at θ = 0 and type I error rate α = 0.1 at θ = δL and θ = δU . NT represents the total number of children
recruited on termination of the paediatric PK-PD study. IQR represents the interquartile range. Results are based are

100 000 simulations.

Expected effect at % of times reject H0

adult EC90 (% Emax) (% times 90% CI contains θ)
δL δU θ = 0 θ = δL θ = δU E(NT ; θ = 0) (IQR) E(nmax,0) (IQR)

1− β = 0.8, σC = 4
80 93 77.0 (91.5) 12.3 (87.4) 8.6 (91.2) 602.5 (500, 750) 797.7 (745, 845)
70 93 76.8 (91.4) 12.9 (87.0) 8.6 (91.4) 553.8 (430, 730) 786.1 (735, 835)
80 95 78.0 (91.5) 12.3 (87.2) 10.0 (89.6) 199.5 (165, 235) 235.5 (225, 245)
70 95 77.9 (91.2) 13.6 (86.1) 10.6 (89.2) 141.0 (115, 170) 173.6 (165, 180)

1− β = 0.7, σC = 4
80 93 66.7 (91.2) 12.0 (87.6) 8.6 (91.1) 432.1 (355, 525) 534.5 (500, 565)
70 93 66.9 (91.5) 12.5 (87.4) 8.8 (91.1) 393.7 (325, 500) 516.9 (485, 545)
80 95 68.1 (91.6) 12.1 (87.2) 10.0 (89.3) 165.2 (140, 195) 189.6 (180, 200)
70 95 66.8 (91.4) 13.6 (85.8) 10.4 (89.1) 109.2 ( 90, 130) 129.4 (125, 135)

1− β = 0.8, σC = 3
80 95 78.5 (91.4) 12.7 (87.0) 10.3 (89.6) 108.7 (85, 125) 235.5 (225, 245)
70 95 77.9 (91.0) 13.9 (85.9) 10.6 (89.3) 78.1 (60, 90) 173.7 (165, 180)

1− β = 0.7, σC = 5
80 95 68.6 (91.8) 12.0 (87.4) 9.7 (89.7) 264.0 (225, 305) 189.6 (180, 200)
70 95 67.2 (91.5) 13.2 (86.2) 10.3 (89.3) 174.7 (140, 205) 129.4 (125, 135)

of the proposed study designs. Specifically, designs assume that the PK-PD study in children will proceed randomising
patients between placebo and active doses d1, . . . , dM fixed ahead of time. In practice, specification of these active dose
levels will likely be informed by extensive simulations, which in turn would draw on existing relevant adult data and
paediatric PK data available, for example, from trials of drugs in the same class as the new medicine of interest. Data
from an initial cohort of N1 < (M + 1)n1 children entered into the PK-PD study could be used to refine the positioning
of the active dose levels if discrepancies emerged between the observed PK data and the simulation model used to design
the trial. In case of safety concerns, the risk of excessive concentrations could be reduced by staggering the entry of these
first N1 children, so that some PK data are available on lower doses before randomising children to the highest doses. A
fixed randomisation scheme may not be ethically acceptable in therapeutic areas such as oncology, where drugs have toxic
side-effect profiles. The designs proposed in this paper do not permit response adaptive randomisation, although future
work could explore extensions which incorporate PK-PD data into dose assignments while preserving error rate control.

This paper has proposed methods facilitating the extrapolation of efficacy data from adults to children. It should be
noted that smaller trials in children will inevitably reduce the size of the safety database on the dose that is eventually
recommended. For example, in the second simulation scenario reported in Table 2, between 109 and 432 children spread
across four active doses and placebo were, on average, recruited into the paediatric PK-PD trial when the extrapolation
assumption was accurate, with the average sample size depending on δL and δU . The acceptability of such sample sizes
for confirming the safety of a drug in children will depend on what is understood about the relationship between dose, PK
and safety outcomes. Furthermore, it may not be permissible to augment the safety database in children by extrapolating
from adult data if important issues specific to children, such as growth, pubertal or cognitive development, cannot be
detected in adults. The question of how to establish the safety of a drug in children is an important and complex issue, but
is considered beyond the scope of the current paper.
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Throughout, derivations of optimal designs have relied on certain assumptions that may not be appropriate in all cases.
For example, for the purposes of optimisation, we have used a skew normal distribution to represent prior beliefs that
are consistent with an assumption of similar effective concentrations in adults and children. However, it is clear that the
techniques proposed here could be extended to accommodate other choices of prior. In addition, we have formulated
designs for the purpose of verifying similarities between adults and children. However, the ideas proposed here are more
generally applicable to other scenarios in which we wish to verify similar drug effects in patients from different countries,
or patients treated for different indications, in order to support extrapolation decisions.
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