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Properties of extremal dependence models built on bivariate

max-linearity

Mónika Kereszturi∗ and Jonathan Tawn

STOR-i Centre for Doctoral Training, Lancaster University, UK

Abstract

Bivariate max-linear models provide a core building block for characterizing bivariate max-stable
distributions. The limiting distribution of marginally normalized component-wise maxima of bivariate
max-linear models can be dependent (asymptotically dependent) or independent (asymptotically in-
dependent). However, for modeling bivariate extremes they have weaknesses in that they are exactly
max-stable with no penultimate form of convergence to asymptotic dependence, and asymptotic inde-
pendence arises if and only if the bivariate max-linear model is independent. In this work we present
more realistic structures for describing bivariate extremes. We show that these models are built on
bivariate max-linearity but are much more general. In particular, we present models that are dependent
but asymptotically independent and others that are asymptotically dependent but have penultimate
forms. We characterize the limiting behavior of these models using two new different angular measures
in a radial-angular representation that reveal more structure than existing measures.
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1 Introduction

When modeling extremes of spatial environmental processes we often care about both local dependence
and long-range dependence. For example, in an oceanographic application, we would be interested in the
relationship between extreme significant wave heights at two locations that might be close by or located far
apart. In particular, we want to know how likely it is that both locations are affected by the same storm and
have high waves simultaneously; see, e.g., [8]. Since interest lies in the extremes, the standard measures of
spatial dependence are not appropriate and alternative dependence measures and models should be used.
Here we introduce a family of bivariate distributions, with simple multivariate extensions, that exhibits
all the required features of short, medium and long range extremal dependence for spatial applications.
This family is shown to capture all possible bivariate distributions with these properties. We propose
novel bivariate characterizations of the extremal dependence structure that reveal structure of this family
of distributions that standard measures of extremal dependence fail to identify.

First we identify the two core extremal dependence measures. Let X and Y be identically distributed
random variables. Then, an intuitive measure of extremal dependence is the tail dependence measure χ,
which is defined as the limiting probability that Y is extreme given that X is extreme,

χ = lim
z→zF

Pr(Y > z | X > z), (1)

where zF is the upper end point of the common marginal distribution. When χ > 0, X and Y are said
to be asymptotically dependent (AD) and the value of χ signifies the strength of asymptotic dependence.
This means that X and Y can be extreme simultaneously. However, when the variables are asymptotically
independent (AI), χ = 0 and hence χ does not contain any information about the sub-asymptotic depend-
ence structure. Coles et al. [1] argue that to give a more complete summary of extremal dependence a
second measure is needed to describe the rate of convergence of Pr(Y > z | X > z) to 0. A useful tail
dependence measure can be obtained from the Ledford and Tawn [12] joint tail dependence model, which
states that

Pr(X > z, Y > z) = L{1/Pr(X > z)}{Pr(X > z)}2/(χ̄+1), (2)

where L is a slowly varying function at infinity and χ̄ ∈ (−1, 1]. The exponent 2/(χ̄ + 1) determines the
decay rate of the joint probability, with smaller χ̄ giving more rapid convergence of χ to 0. The pair (χ > 0;
χ̄ = 1) signifies AD, for which the value of χ gives a measure of strength of dependence; and (χ = 0; χ̄ < 1)
signifies AI, for which the value of χ̄ gives the strength of dependence.

Both the dependence measures χ and χ̄, in expressions (1) and (2), are invariant to the marginal distri-
bution. Of course, using the concept of copulas, all dependence measures can be expressed independently
of the marginal distributions. However, for some choices of marginal distributions extremal dependence
structure properties are more simply expressed than for other marginal choices. For example, much of
the traditional multivariate extreme value theory results are expressed for Fréchet marginals, as they lead
to the cleanest expressions of results for component-wise maxima and multivariate regular variation [17].
This marginal choice is fine when the variables are AD, however for AI variables this selection leads to an
identical limit form whatever the nature of the AI, i.e., whatever χ̄ < 1. For AI variables, [7], [9] and [20]
all identify that non-degenerate limit distributions, under affine transformations, can be obtained using
exponential margins/tails, whereas under their formulations the limits are degenerate for Fréchet margins.
Furthermore, in exponential margins results for AD are also non-degenerate. The reason for this extra
flexibility in exponential margins is that an affine transformation in that space is a complex non-linear
transformation in Fréchet margins; see Section 2.2 of [15]. Therefore, we work in exponential margins to
illustrate our novel extremal dependence characterizations and show that if Fréchet margins had been used,
the structure we find would not have been apparent using affine transformations.
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In the analysis of multivariate data, it is often difficult to make a choice between AD and AI; see, e.g.,
[3], [11] and [18]. By having a model that has both AD and AI components, we can avoid having to make
this key decision. Wadsworth and Tawn [19] combine a max-stable process with an inverted max-stable
process to construct a hybrid spatial dependence model. This model can capture both the AD and AI
dependence structure but it is restricted in its forms of AD and AI that can be modeled. Here we use
the core structure of the Wadsworth and Tawn [19] model as a basis for exploring bivariate extreme value
modeling in a new light. Specifically, we develop a distribution that contains both AD and AI components
and has the flexibility to capture all dependence forms within very broad classes in each case.

We construct our model using the multivariate max-linear model [2] as the building block. This class of
distributions is both mathematically elegant and was the starting point for understanding the formulation
of multivariate extremes [16]. In the bivariate case with Fréchet marginal variables XF and YF , the
max-linear model takes the following form:

XF = max
i=1,...,m

(αiZi), YF = max
i=1,...,m

(βiZi), (3)

where αi, βi ∈ [0, 1] for all i, m can be finite or infinite, Σm
i=1αi = 1, Σm

i=1βi = 1, and Zi ∼ i.i.d. Fréchet, i =
1, . . . ,m, with distribution function FZ(z) = exp(−1/z) for z > 0 and density denoted fZ(z). This model
has joint distribution function

Pr(XF < x, YF < y) = exp

{
−

m∑

i=1

max
(
αi
x
,
βi
y

)}
, for x > 0, y > 0,

and it is straightforward to show that this satisfies max-stability, since for any n > 0, x > 0 and y > 0,

Pr(XF < nx, YF < ny)n = Pr(XF < x, YF < y).

Fundamental to our approach is that Deheuvels [5] shows that every multivariate extreme value distribution
for minima, with exponential marginals (i.e., with variables (X−1

F , Y −1
F )), can be arbitrarily well approx-

imated by a multivariate max-linear model. Fougères et al. [6] showed this property holds for (XF , YF ),
as well as presenting a broader discussion on alternative representations of multivariate extreme value
distributions.

Our paper introduces two bivariate distributions, with exponential margins, that are derived from the
max-linear model (3) with Fréchet margins: these are the transformed max-linear model and the inverted
max-linear model, denoted by (XE , YE) and (X(I)

E , Y
(I)
E ) respectively. Specifically,

(XE , YE) = (− ln{1− exp(−1/XF )},− ln{1− exp(−1/YF )}) (4)

and
(X(I)

E , Y
(I)
E ) = (1/XF , 1/YF ). (5)

Here XE (YE) transforms XF (YF ) to the exponential margins through a monotone increasing mapping,
with repeated use of the probability integral transform, whereas X(I)

E (Y (I)
E ) transforms XF (YF ) to the ex-

ponential margins through a monotone decreasing mapping. So marginally both (XE , YE) and (X(I)
E , Y

(I)
E )

are identical, but they differ significantly in their dependence structure and, in particular, their extremal
dependence properties. The models (XF , YF ) and (XE , YE) have the same copula, while (X(I)

E , Y
(I)
E ) has

the same copula as the joint lower tail of (XF , YF ). Hence, we refer to (XE , YE) and (X(I)
E , Y

(I)
E ) as having

the upper tail and the lower tail copula of (XF , YF ), respectively. For both models we explore their joint
upper tail, and so focus on different features of the (XF , YF ) copula.
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The copula of the joint distribution (X(I)
E , Y

(I)
E ) is an example of the class of inverted max-stable models

first introduced in Ledford and Tawn [12, 13]. The inverted max-stable distributions are a broad class of AI
distributions, covering all values of χ̄ with 0 ≤ χ̄ < 1. Heffernan and Tawn [7] found interesting conditional
extremal behavior for a sub-family of this class, with much broader structures explored by Papastathopoulos
and Tawn [15]. Furthermore, Wadsworth and Tawn [19] explored extensions of the representations of
Ledford and Tawn [13] through a series of multivariate regular variation conditions, and found the inverted
max-stable distributions to have particular importance in modeling AI. It follows from results in [5] that
inverted max-linear models give an arbitrarily good approximation to inverted multivariate extreme value
distributions, and so for a study of AI distributions models of the form (X(I)

E , Y
(I)
E ) are of core importance.

Next we derive χ and χ̄ for the transformed max-linear and inverted max-linear models.

The joint distribution function of the transformed max-linear model (XE , YE) is

Pr(XE < x, YE < y) =
m∏

i=1

min
[
{1− exp(−x)}αi , {1− exp(−y)}βi

]
, for x > 0, y > 0. (6)

Unlike (XF , YF ), this is not max-stable, but this is due to the margin choice not the copula, which remains
unchanged. The limiting distribution of normalized component-wise maxima of (6) can be shown to be
max-stable, so (XE , YE) is in the domain of attraction of a bivariate extreme value distribution with
limiting dependence. For this model it can be shown that χ̄ = 1 and χ = 2 −∑m

i=1 max(αi, βi), so the
variables are AD. On exponential margins, simulations from the max-linear model in (3) give lines of mass,
parallel with XE = YE , and points scattered around these lines, as shown on Figure 1a, where XE and YE
were determined by XF = max(0.7Z1, 0.2Z2, 0.1Z3) and YF = max(0.4Z1, 0.5Z2, 0.1Z4). The number of
Zi variables in common between XF and YF determines the number of lines with mass on. In the case of
Figure 1a there are two Zi variables, Z1 and Z2, in common between XF and YF , hence there is mass on
two lines. The independent scatter of points around the lines is due to the presence of Z3 in XF and Z4

in YF .

The joint distribution function of the inverted max-linear model (X(I)
E , Y

(I)
E ) is

Pr(X(I)
E < x, Y

(I)
E < y) = 1− exp(−x)− exp(−y) + exp

{
−

m∑

i=1

max(αix, βiy)

}
, (7)

for x > 0, y > 0. For this model, it can be shown that χ = 0 and χ̄ = {2/∑m
i=1 max(αi, βi)} − 1, so the

variables are AI. Figure 1b shows a random sample from (X(I)
E , Y

(I)
E ) derived from the same max-linear

model (XF , YF ) as used to illustrate (XE , YE) above. This model gives points on rays and points scattered
around these rays. Similarly to (XE , YE), the number of rays is determined by the number of Zi variables
that are common between XF and YF , which in our example is two. Note, that in the inverted max-linear
model the point masses are no longer on parallel lines, but on rays (y = hx for 0 < h < ∞) that meet at
the origin. If there exists at least one i = 1, . . . ,m such that αi = βi, then there is a ray with gradient
h = 1, but despite this the variables are AI.

Combining these two models provides a flexible approach to modeling extremal dependence that can
capture both AI and AD. Figure 1c shows an example of a model (XM , YM ) that has both AI and AD
components. Note, that there is a mass both on parallel lines and on rays in exponential margins, and
hence, both AD and AI behaviors are represented. We are interested in the tail behavior of these models,
where this feature is most apparent.

Wadsworth and Tawn [19] present a statistical analysis which shows the benefit of this mixture type
of model, incorporating AD and AI, over established dependence models. As illustrated in Figure 1, our
models put mass on rays and lines, which is inconsistent with most data applications where an assumption of
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Figure 1: Bivariate simulations derived from the max-linear model in (3) with XF =
max(0.7Z1, 0.2Z2, 0.1Z3) and YF = max(0.4Z1, 0.5Z2, 0.1Z4); (a) transformed max-linear model (XE , YE),
(b) inverted max-linear model (X(I)

E , Y (I)
E ), and (c) mixture model (XM , YM ) with δ = 0.5 in (15).

a joint density everywhere is reasonable. Consequently, if these models are fitted using likelihood/Bayesian-
based inference they would need almost as many parameters as data points to get a reasonable fit as each line
of mass can only explain one data point. Therefore, as currently set up, these are not parsimonious models
for likelihood inference but can be used as building blocks for future parsimonious model development.
Alternatively, such models can be fitted using other inference criteria which do not depend on the mass on
rays/lines. That though is not the focus of this paper. The aim of this paper is to study mathematically
the extremal structure of this class of models, the novel tools we use for this are introduced next.

To explore the tail behavior of bivariate distributions with identical marginals the established approach is
to adopt a so-called radial-angular representation. We want the radial component, R, to represent how
far we are from the origin, and the angular component, W , to represent some form of measure of angle
relative to the coordinate axes. This is common practice in multivariate extremes (see, e.g., [4] and [17]).
For Fréchet marginals, (XF , YF ), these correspond to RF = XF +YF and WF = XF /(XF +YF ) , although
other norms can be used to define these. Then in the limit as r → ∞ the distribution WF | (RF > r) is
non-degenerate if (XF , YF ) are AD, but not perfectly dependent, but collapses to mass on {0} and {1} if
the variables are AI. Here the extreme events being considered are those with RF > r.

The key departures to this standard radial-angular approach in our work is that we focus on exponential
margins, different combinations of the variables are considered to be extreme, and we use a different
dependence variable than WF . We consider the following radial-angular variables for general bivariate
variables (X, Y ) on exponential margins:

R = X + Y, WD = Y −X, WI = X/(X + Y ).

Here two different angular variables WD and WI are considered. Also the radial variable R differs from RF
as X and Y are on exponential scale. We will explore these radial-angular variables for the transformed
max-linear model (XE , YE) in (4) and the inverted max-linear model (X(I)

E , Y
(I)
E ) in (5).

To help understand the difference in our new radial-angular variables first consider the connection between
WD and WF . For large XE we have that XE ≈ ln(XF ), similarly for YE , and so

WF ≈ exp(XE)/{exp(XE) + exp(YE)} = 1/{1 + exp(YE −XE)}.
Hence, for large XE and YE , WD is simply a function of WF , and at first sight it would appear that this
choice of radial and angular variable should not reveal any new structure. But conditioning on R > r leads
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to the selection of different extreme events than RF > s, for any choice of r and s, so different results can
arise. Specifically, we will show that the radial and angular representation (R, WD) gives a non-trivial
limit for the distribution of WD | (R > r) as r → ∞ for the transformed max-linear model, but for the
inverted max-linear model it gives only mass at {−∞}, {0} or {∞} depending on the (αi, βi), i = 1, . . . ,m,
values. The latter limit is at odds with results for WF , as there the associated mass at {0}, corresponding
to WF = 1/2, does not arise. For the radial and angular formulation (R, WI) the limit distribution of
WI | (RI > r), as r → ∞, for the transformed max-linear model is degenerate, with limit WI = 1/2, and
is a non-trivial limit for the inverted max-linear model.

The layout of the article is as follows. In Section 2 we introduce a simple case of the max-linear model
given in (3), called the Marshall-Olkin model, and we will use this to derive some of the key tail dependence
properties of the model. The mathematical techniques used throughout are based on the techniques shown
in this section. Then in Section 3 we derive properties for the general case for both the transformed
max-linear and inverted max-linear models. In Section 4 we examine the asymptotic behavior of the upper
tail for both of these models. In Section 5 we combine the two models together and study the extremal
properties of this formulation. Proofs of the results are given in Section 6. We close with a discussion in
Section 7 that discusses multivariate and spatial models extending our bivariate models.

2 Marshall–Olkin model

Let us consider a simple case of model (3). This corresponds to the Marshall and Olkin [14] model, and
has the following form:

XF = max{αZ1, (1− α)Z2},
YF = max{βZ1, (1− β)Z3},

where Zi, i = 1, 2, 3, are defined as in (3), and 0 ≤ α, β ≤ 1 are known constants. As there is only Z1 in
common between XF and YF , a similar simulation to that shown on Figure 1a would give point mass on
a single line, with the rest of the points scattered above and below the line. The variables XF and YF are
independent only in the cases when α = 1 and β = 0 or α = 0 and β = 1, otherwise they are dependent.

In order to characterize this model it is useful to define the following three cases: (i) on the line YF =
(β/α)XF , (ii) below the line with YF < (β/α)XF , and (iii) above the line with YF > (β/α)XF . In each of
these cases there are certain combinations of Zi’s that can lead to them. To have points on the line we need
(XF , YF ) = (αZ1, βZ1), which requires Z2 ≤ αZ1/(1− α) and Z3 ≤ βZ1/(1− β). Below the line we need
(XF , YF ) = ((1−α)Z2, βZ1) or (XF , YF ) = ((1−α)Z2, (1−β)Z3) with (1−α)Z2/α > (1−β)Z3/β, and above
the line (XF , YF ) = (αZ1, (1−β)Z3) or (XF , YF ) = ((1−α)Z2, (1−β)Z3) with (1−α)Z2/α < (1−β)Z3/β.

In each case we can derive the probability of being in that case and the density conditional on being in each
region. Here we will illustrate the calculations for case (i) when YF = (β/α)XF ; i.e., we want to work out
the probability that XF < x for some x > 0 given that YF = (β/α)XF . We use conditional probability:

Pr
(
XF < x

∣∣∣∣YF =
β

α
XF

)
=

Pr(XF < x, YF = β
αXF )

Pr(YF = β
αXF )

. (8)

The joint probability in the numerator is

Pr
(
XF < x, YF =

β

α
XF

)
= Pr {αZ1 < x,αZ1 > (1− α)Z2, βZ1 > (1− β)Z3}

= Pr
(
Z1 <

x

α
,Z2 <

αZ1

1− α,Z3 <
βZ1

1− β

)
.
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To calculate this, we can condition on one of the Z’s, in this case Z1, and integrate over the range Z1 < x/α,
which gives

Pr
(
XF < x, YF =

β

α
XF

)
=
∫ x/α

0
Pr
(
Z2 <

αz

1− α,Z3 <
βz

1− β

∣∣∣∣Z1 = z

)
fZ(z)dz,

=
∫ x/α

0
e−(1−α)/(αz)e−(1−β)/(βz) 1

z2
e−1/zdz,

=
αβ

α+ β − αβ exp
(
−α+ β − αβ

βx

)
,

where the second equality holds as Z2 and Z3 are independent Fréchet random variables. It follows that

Pr
(
YF =

β

α
XF

)
=

αβ

α+ β − αβ ,

and hence we have obtained the conditional distribution in (8) as exp{−(α+ β −αβ)/(βx)} for x > 0. To
obtain the one-dimensional density of the points on the line we can differentiate this distribution function,
which gives

fXF

(
x

∣∣∣∣YF =
β

α
XF

)
=
α+ β − αβ

βx2
exp

(
−α+ β − αβ

βx

)
, for x > 0,

or, equivalently,

fYF

(
y

∣∣∣∣YF =
β

α
XF

)
=
α+ β − αβ

αy2
exp

(
−α+ β − αβ

αy

)
, for y > 0.

See Appendix A for similar calculations for the other two cases using this first principles approach. De-
riving the densities as described above is laborious, involving many complex integrals, which makes the
calculations hard to extend to the more general case. As the densities seem to have much simpler forms
than the distribution functions it seems sensible to work with densities directly. For example, above the
line YF > (β/α)XF the probability element is

Pr
(
XF ∈ dx, YF ∈ dy

∣∣∣∣YF >
β

α
XF

)
=

Pr(XF ∈ dx, YF ∈ dy, YF > β
αXF )

Pr(YF > β
αXF )

, (9)

where X ∈ dx denotes X ∈ (x, x + δx). Then, there are two possible combinations that lead to this
case, (XF , YF ) = (αZ1, (1 − β)Z3) and (XF , YF ) = ((1 − α)Z2, (1 − β)Z3), so the joint probability in the
numerator of expression (9) can be broken down into the sum of two probabilities, P1 and P2, where

P1 = Pr
{
XF = αZ1 ∈ dx, YF = (1− β)Z3 ∈ dy, YF >

β

α
XF

}
,

P2 = Pr
{
XF = (1− α)Z2 ∈ dx, YF = (1− β)Z3 ∈ dy, YF >

β

α
XF

}
.

Then, it follows that the probability P1 is equivalent to the joint probability Pr{αZ1 ∈ dx, (1 − β)Z3 ∈
dy, Z2 < x/(1 − α)} given that y > (β/α)x. Hence, using that the Zi’s are independent Fréchet random
variables,

P1 = Pr
(
Z1 ∈

dx

α

)
Pr
(
Z3 ∈

dy

1− β

)
Pr
(
Z2 <

x

1− α

)
1
(
y >

β

α
x

)

∼
( α
x2
e−α/x

){1− β
y2

e−(1−β)/y

}{
e−(1−α)/x

}
1
(
y >

β

α
x

)
δxδy

=
α(1− β)
x2y2

e−1/xe−(1−β)/y 1
(
y >

β

α
x

)
δxδy,

7



as δx→ 0 and δy → 0. Similarly, as δx→ 0 and δy → 0,

P2 ∼
(1− α)(1− β)

x2y2
e−1/xe−(1−β)/y 1

(
y >

β

α
x

)
δxδy.

Hence, by summing P1 and P2, as δx→ 0 and δy → 0,

Pr
(
XF ∈ dx, YF ∈ dy, YF >

β

α
XF

)
∼ (1− β)

x2y2
e−1/xe−(1−β)/y 1

(
y >

β

α
x

)
δxδy.

This can be integrated in the region y > (β/α)x to obtain the probability

Pr
(
YF >

β

α
XF

)
=

α(1− β)
α+ β − αβ .

Hence, we obtain the density, conditionally on being above the line YF > (β/α)XF , as

f(XF ,YF )

(
x, y

∣∣∣∣YF >
β

α
XF

)
=
α+ β − αβ
αx2y2

e−1/xe−(1−β)/y 1
(
y >

β

α
x

)
.

Similar calculations can be performed to obtain densities for cases (i) and (ii).

3 General max-linear models

3.1 Set up and densities on Fréchet margins

Our work in this section has considerable parallels with the hitting scenarios and the conditional probability
results for max-linear models developed by Wang and Stoev [21]. Here, we go beyond the scope of this
paper by calculating conditional densities.

Let us consider the general max-linear model given in expression (3). Without loss of generality, let us
assume that the αiZi and βiZi terms are ordered such that

α = (α1, . . . , αk, αk+1, . . . , αk+`, 0, . . . , 0),
β = (β1, . . . , βk, 0, . . . , 0, βk+`+1, . . . , βm),

i.e., for i = 1, . . . , k, αi 6= 0 and βi 6= 0, for i = k+1, . . . , k+`, αi 6= 0 and βi = 0, and for i = k+`+1, . . . ,m,
αi = 0 and βi 6= 0, with

∑k+`
i=1 αi = 1 and

∑k
i=1 βi +

∑m
h=k+`+1 βh = 1. We also assume that ωi := βi/αi

are unique for i = 1, . . . , k. In this general case there are k common Zi variables between XF and YF ,
hence there is mass on k lines, each with equation YF = (βi/αi)XF , i = 1, . . . , k. If k = 0 then XF and YF
are independent. Furthermore, without loss of generality, let us assume the following ordering for the first
k terms,

β1

α1
< · · · < βk

αk
⇔ 0 < ω1 < · · · < ωk <∞.

This notation ensures that the line with mass that has the least steep gradient is YF = ω1XF , followed by
YF = ω2XF , and so on until YF = ωkXF . Let us also define the following sums,

αsum = αk+1 + · · ·+ αk+`,

βsum = βk+`+1 + · · ·+ βm,

α(j)
sum = αsum + Σj

i=1αi, for 0 ≤ j ≤ k,
β(h)

sum = βsum + Σk
i=hβi, for 1 ≤ h ≤ k + 1,

where we define
∑0

i=1 xi = 0 and
∑k

i=k+1 xi = 0, which leads to α(0)
sum = αsum and β

(k+1)
sum = βsum.
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In this more general set up it is useful to define four types of ‘regions’: (i) above the line YF = ωkXF ,
(ii) on the line YF = ωjXF , j = 1, . . . , k, (iii) between the two lines YF = ωjXF and YF = ωj+1XF ,
j = 1, . . . , k − 1, and (iv) below the line YF = ω1XF . There is one region of type (i) and (iv) each,
k regions of type (ii) since there are k lines, and k − 1 regions of type (iii), since k lines define k − 1
between-line regions.

The strategy for the derivation of the densities for each of these regions is as in Section 2, with full
derivations given in Appendix B. Here we will give the conditional density forms for each of the four region
types. The density conditional on being in the region above the line YF = ωkXF is

f(XF ,YF )

(
x, y

∣∣∣∣
YF
XF

> ωk

)
=
αkβsum + βk
αkx2y2

exp
(
−1
x
− βsum

y

)
,

for y > ωkx. On the line YF = ωjXF , j = 1, . . . , k, the density for x > 0 is

f(XF ,YF )

(
x, ωjx

∣∣∣∣
YF
XF

= ωj

)
=
αjβ

(j+1)
sum + βjα

(j)
sum

βjx2
exp

(
−αjβ

(j+1)
sum + βjα

(j)
sum

βjx

)
.

Between two lines YF = ωjXF and YF = ωj+1XF , j = 1, . . . , k − 1, the conditional density is

f(XF ,YF )

(
x, y

∣∣∣∣ωj <
YF
XF

< ωj+1

)
=

cj
(αjβj+1 − βjαj+1)x2y2

exp

(
−α

(j)
sum

x
− β

(j+1)
sum

y

)
,

for ωjx < y < ωj+1x where cj = (αjβ
(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum). Finally, in the region below

the line YF = ω1XF , the conditional density is

f(XF ,YF )

(
x, y

∣∣∣∣
YF
XF

< ω1

)
=
α1 + β1αsum

β1x2y2
exp

(
−αsum

x
− 1
y

)
,

for y < ω1x.

3.2 Densities on exponential margins

3.2.1 Transformed max-linear model

In Section 3.1 we gave densities conditional on being on each line and in the regions defined by the lines
on Fréchet margins. Since it is more straightforward to expose the difference between AI and AD on
exponential margins, we want to obtain the densities for exponential margins. Hence for each case (i)-(iv)
defined in Section 3.1 we will identify the corresponding case on exponential margins and then transform
to obtain the densities on the new margins.

On exponential margins for the transformed max-linear model (XE , YE), the line YF = ωjXF becomes
the curve YE = − ln{1 − (1 − e−XE )1/ωj} for all j ∈ {1, . . . , k}. For ease of notation, let us define
gj(XE) = − ln{1 − (1 − e−XE )1/ωj} for j = 1, . . . , k. Note that gj(XE) ≈ XE + ln(ωj) for large XE ; this
asymptotic linearity is useful when we explore the limiting behavior of the model. The cases defined in
Section 3.1 become (i) above the curve YE = gk(XE), (ii) on the curve YE = gj(XE), j = 1, . . . , k, (iii)
between the two curves YE = gj(XE) and YE = gj+1(XE), j = 1, . . . , k − 1, and (iv) below the curve
YE = g1(XE). Note that the transformation to exponential margins means that the lines with mass on are
now curves. Furthermore, even asymptotically they are no longer rays that meet at the origin, but parallel
lines each with gradient equal to one with intercepts ln(ωj), j = 1, . . . , k. For each region we transform
the conditional densities given in Section 3.1 to exponential margins.
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Hence, the conditional density in the region above the curve YE = gk(XE) is:

f(XE ,YE) {x, y|YE > gk(XE)} =
(
αkβsum + βk

αk

)
e−xe−y(1− e−y)βsum−1, (10)

for x > 0 and y > gk(x). On the curve YE = gj(XE), j = 1, . . . , k, the conditional density for x > 0 is:

f(XE ,YE) {x, gj(x)|YE = gj(XE)} =

(
αjβ

(j+1)
sum + βjα

(j)
sum

βj

)
e−x(1− e−x)(αjβ

(j+1)
sum +βjα

(j)
sum)/βj−1.

The conditional density between the curves YE = gj(XE) and YE = gj+1(XE), for j = 1, . . . , k − 1, is:

f(XE ,YE) {x, y|gj(XE) < YE < gj+1(XE)} =

{
(αjβ

(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

(αjβj+1 − βjαj+1)

}

×e−xe−y(1− e−x)α
(j)
sum−1(1− e−y)β

(j+1)
sum −1,

for x > 0 and gj(x) < y < gj+1(x), j = 1, . . . , k− 1. The conditional density below the curve YE = g1(XE)
is

f(XE ,YE) {x, y|YE < g1(XE)} =
(
α1 + β1αsum

β1

)
e−x(1− e−x)αsum−1e−y,

for x > 0 and y < g1(x).

3.2.2 Inverted max-linear model

Now we turn our attention to the lower tail of the max-linear model (3), i.e., the upper tail of the inverted
max-linear model. Similarly to Section 3.2.1, the densities given in Section 3.1 can be transformed to
inverted exponential margins (X(I)

E , Y (I)
E ).

To invert the lower tail of XE , set U = 1− e−XE . Then the inversion of U is U (I) = 1− U = e−XE . Also,
U (I) = 1 − e−X(I)

E , which leads to e−XE = 1 − e−X(I)
E . Hence, X(I)

E = − ln(1 − e−XE ) and by substituting
in XE from expression (4) we get X(I)

E = 1/XF . Similarly, Y (I)
E = 1/YF .

On the new inverted exponential margins, the line YF = ωjXF becomes Y (I)
E = X

(I)
E /ωj for j = 1, . . . , k.

Hence the cases defined in Section 3.1 become (i) below the line Y (I)
E = X

(I)
E /ωk, (ii) on the line Y (I)

E =
X

(I)
E /ωj , j = 1, . . . , k, (iii) between the two lines Y (I)

E = X
(I)
E /ωj+1 and Y

(I)
E = X

(I)
E /ωj , j = 1, . . . , k − 1,

and (iv) above the line Y (I)
E = X

(I)
E /ωj . Note that the transformation flips the order of the lines, with the

line Y (I)
E = X

(I)
E /ω1 having the steepest gradient and Y

(I)
E = X

(I)
E /ωk the least steep.

The conditional density below the line Y (I)
E = X

(I)
E /ωk has the following form:

f
(X

(I)
E ,Y

(I)
E )

(
x, y | Y (I)

E < X
(I)
E /ωk

)
=
αkβsum + βk

αk
e−xe−βsumy, x > 0, y < x/ωk.

On the line Y (I)
E = X

(I)
E /ωj , j = 1, . . . , k, the conditional density for x > 0 takes the form:

f
(X

(I)
E ,Y

(I)
E )

(
x, x/ωj | Y (I)

E = X
(I)
E /ωj

)
=
αjβ

(j+1)
sum + βjα

(j)
sum

βj
exp

(
−αjβ

(j+1)
sum + βjα

(j)
sum

βj
x

)
.
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Between the two lines Y (I)
E = X

(I)
E /ωj+1 and Y

(I)
E = X

(I)
E /ωj , j = 1, . . . , k − 1, the conditional density is:

f
(X

(I)
E ,Y

(I)
E )

(
x, y | X(I)

E /ωj+1 < Y
(I)
E < X

(I)
E /ωj

)
=

cj
(αjβj+1 − βjαj+1)

e−α
(j)
sumxe−β

(j+1)
sum y.

where cj = (αjβ
(j+1)
sum +βjα

(j)
sum)(αj+1β

(j+1)
sum +βj+1α

(j)
sum), x > 0 and x/ωj < y < x/ωj+1. Finally, above the

line Y (I)
E = X

(I)
E /ω1 the conditional density is:

f
(X

(I)
E ,Y

(I)
E )

(
x, y | Y (I)

E > X
(I)
E /ω1

)
=
α1 + β1αsum

β1
e−αsumxe−y, x > 0, y > x/ω1.

4 Angular representation and limiting behavior

In this section we explore the asymptotic behavior of the upper tails of the transformed max-linear model
(6) and the inverted max-linear model (7). As discussed in Section 1, we use a radial-angular representation
(R,W ) to explore the limiting properties of the models. For general exponential marginal variables (X,Y )
we define the radial component to be of the form R = X + Y . For the angular component we use two
different forms: WD = Y − X and WI = X/(X + Y ) for the reasons given in Section 1. Our aim is to
determine the tail behavior of the models in the region (R > r) as r → ∞. So for each type of region J
(identified in the previous sections), and for both forms of W , we will also calculate the joint density of R
and W given that R > r to give the conditional probability

Pr(W > w,R > r + t | R > r,W ∈ J ) =
Pr(W > w,R > r + t |W ∈ J )

Pr(R > r |W ∈ J )
, t > 0. (11)

Then we can use these results to obtain the conditional probability of being in each region J , given R > r
as r →∞, as

Pr(W ∈ J | R > r) =
Pr(R > r |W ∈ J ) Pr(W ∈ J )

Pr(R > r)
, for all J . (12)

4.1 Transformed max-linear model

First, we explore the asymptotic behavior of the upper tail of the transformed max-linear model (6). We
use the densities in Section 3.2.1, to obtain the densities in each region on (R,WD) margins.

For (R,WD) the curve YE = gj(XE), j = 1, . . . , k, is WD = gj(XE) − XE , which is approximately
WD = ln(ωj) := wj , with −∞ < wj < ∞, for large R and hence for large XE . So the case (i) becomes
approximately the region WD > wk for large R. For finite samples the region is WD > gk(XE)−XE . The
joint density conditional on being in this region is obtained from the density in (10) as:

f(R,WD) {r, w|WD > gk(XE)−XE} =
(
αkβsum + βk

2αk

)
e−r{1−e−(r+w)/2}βsum−1, r > 0, w > gk(XE)−XE .

(13)

We can then calculate the conditional probability in (11) as

Pr{WD > w,R > r+t | R > r,WD > gk(XE)−XE} ≈
(

1 +
t

r + 1

)
e−t → e−t, as r →∞, t > 0, w > wk.

This shows that Pr(WD > w | R > r)→ 1 for all w > wk. Hence Lemma 1 follows.
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Lemma 1. In the limit as r → ∞, WD | (R > r,WD > wk) →p wk, and asymptotically WD ⊥⊥ R | (R >
r,WD > wk).

On the curve WD = gj(XE)−XE , j = 1, . . . , k, the density is

fR {r|WD = gj(XE)−XE} = cje
−(r−wj)/2{1− e−(r−wj)/2}2cj−1, r > 0,

where cj = (αjβ
(j+1)
sum + βjα

(j)
sum)/(2βj). Then, the distribution of the points, conditional on being on this

curve is

Pr{R > r |WD = gj(XE)−XE} = 1− (1− ewj/2e−r/2)cj ,

∼ cjewj/2e−r/2, as r →∞,

for j = 1, . . . , k.

Lemma 2. The distribution of the radial points on the line WD = wj, j = 1, . . . , k, has an exponential
tail.

In the region between the curves WD = gj(XE) − XE and WD = gj+1(XE) − XE , j = 1, . . . , k − 1, the
joint density is:

f(R,WD) {r, w|gj(XE)−XE < WD < gj+1(XE)−XE} =
cj
2
e−r{1−e−(r−w)/2}αsum−1{1−e−(r+w)/2}βsum−1,

for r > 0 and gj(XE)−XE < w < gj+1(XE)−XE . Then the conditional probability,

Pr{WD > w,R > r + t | R > r, gj(XE)−XE < WD < gj+1(XE)−XE} →
(wj+1 − w)e−t

wj+1 − wj
, as r →∞,

for t > 0 and wj < w < wj+1. Hence Lemma 3 follows.

Lemma 3. The limiting angular distribution is uniform in regions between the rays WD = wj and WD =
wj+1, j = 1, . . . , k−1, and independent of the radial variable, which follows a unit exponential distribution.

Lastly, in the region WD < g1(XE)−XE the joint density is

f(R,WD) {r, w|WD < g1(XE)−XE} =
(
αj + βjαsum

2βj

)
e−r{1−e−(r−w)/2}αsum−1, r > 0, w < g1(XE)−XE .

Then the conditional probability,

Pr(WD > w,R > r + t | R > r,WD < w1) ∼ (w1 − w)e−t

w1 + r + 1
, as r →∞, t > 0, w < w1.

This suggests that Pr(WD > w | R > r,WD < w1)→ 0 as r →∞ for all w < w1 and the following lemma
follows.

Lemma 4. In the limit as r → ∞, WD | (R > r,WD < w1) →p w1, and asymptotically WD ⊥⊥ R | (R >
r,WD < w1).

Now we use the results above to calculate the probability of being in each region J , given R > r as
r →∞. Theorems 1 and 2 describe the asymptotic behavior of the conditional probability (12) for angular
measures W = WD and W = WI , respectively. Proofs are deferred to Section 6.
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Figure 2: Asymptotic behavior of the (a) transformed max-linear and (b) inverted max-linear model on
exponential margins, for XF and YF defined as in Figure 1.

Theorem 1. Let R = XE + YE, WD = YE −XE and wj = ln(βj/αj). Then, as r →∞,

Pr(WD ∈ J | R > r)→





αj exp(wj/2)
∑k

i=1 αi exp(wi/2)
, for J = {wj}, j = 1, . . . , k

0, otherwise.

Theorem 2. Let R = XE + YE and WI = XE/(XE + YE). Then, as r →∞,

Pr(WI < w | R > r)→
{

0, w < 1/2,
1, w ≥ 1/2,

i.e., WI | R > r →p 1/2.

Thus, Theorem 1 shows that in the limit r → ∞, there is only mass on the lines WD = wj , j = 1, . . . , k,
and not in any of the other regions for this model. Figure 2a illustrates this for the max-linear model with
the same α and β parameters as in Figure 1. For the other angular form WI , the mass collapses onto the
diagonal, as shown by Theorem 2, and hence WI is a poor angular measure for exploring the extremal
dependence structure for AD variables.

4.2 Inverted max-linear model

Now we explore the asymptotic upper tail behavior of the inverted max-linear model (7). We transform
the densities given in Section 3.2.2 to obtain the densities in each region on (R,WI) margins. On these
new margins, the line Y (I)

E = X
(I)
E /ωj becomes the line WI = ωj/(1 + ωj), j = 1, . . . , k. Let us denote

wj = ωj/(1 +ωj) for j = 1, . . . , k. Note wj here is different than in Section 4.1. The lines are then ordered
such that 0 < w1 < · · · < wk < 1. Then, the region below the line Y (I)

E = X
(I)
E /ωk becomes the region

wk < WI < 1. The conditional density in this region is:

f(R,WI)(r, w | wk < WI < 1) =
(
αjβsum + βj

αj

)
re−βsumre−wr(1−βsum), r > 0, wk < w < 1.
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To determine the limiting behavior for r → ∞ we calculate the conditional probability Pr(WI > w,R >
r + t | wk < WI < 1, R > r). We obtain the joint survival function of WI and R as

Pr(WI > w,R > r | wk < WI < 1) =
αkβsum + βk
αk(1− βsum)

{
e−rc(w)

c(w)
− e−r

}
, r > 0, wk < w < 1, (14)

where c(w) = βsum + w(1− βsum). Setting w = wk in (14) we get the conditional distribution for R given
ωk < WI < 1. Hence, for t > 0 and wk < w < 1,

Pr(WI > w,R > r + t | R > r,wk < WI < 1) =
{c(w)}−1e−(r+t)c(w) − e−(r+t)

{c(wk)}−1e−rc(wk) − e−r .

Now note that c(w) is an increasing function for wk < w < 1 and c(1) = 1. Hence, as r →∞,

Pr(WI > w,R > r + t | R > r,wk < WI < 1) ∼ c(wk)
c(w)

e−tc(w)e−r{c(w)−c(wk)}, wk < w < 1

which as r →∞ tends to 0 for all w ∈ (wk, 1), and equals e−tc(wk) for w = wk, leading to Lemma 5.

Lemma 5. WI | (R > r,wk < WI < 1) →p wk, as r → ∞, and asymptotically WI is independent of R,
which has an exponential tail with rate c(wk).

The conditional density of R on the line WI = wj , j = 1, . . . , k, is

fR(r |WI = wj) =

(
αjβ

(j+1)
sum + βjα

(j)
sum

βj

)
exp

(
−αjβ

(j+1)
sum + βjα

(j)
sum

βj
r

)
, for r > 0.

Lemma 6. The distribution of R | (WI = wj), is exponential with rate (αjβ
(j+1)
sum +βjα

(j)
sum)/βj, j = 1, . . . , k.

For the region between the lines WI = wj and WI = wj+1 the conditional density is

f(R,WI)(r, w | wj < WI < wj+1) =

{
(αjβ

(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

(αjβj+1 − βjαj+1)

}

× re−β
(j+1)
sum re−(α

(j)
sum+β

(j)
sum)wr,

for r > 0 and wj < w < wj+1. Similarly to above we calculate the conditional probability as

Pr(WI > w,R > r + t | wj < WI < wj+1, R > r) =
{c(wj+1)}−1e−(r+t)c(wj+1) − {c(w)}−1e−(r+t)c(w)

{c(wj+1)}−1e−rc(wj+1) − {c(wj)}−1e−rc(wj)
,

where t > 0, wj < w < wj+1 and c(w) = w(α(j)
sum + β

(j+1)
sum ) + β

(j+1)
sum . Here c(w) is an increasing function

for wj < w < wj+1, so c(wj) < c(w) < c(wj+1). Hence, as r →∞,

Pr(WI > w,R > r + t | wj < WI < wj+1, R > r) ∼ c(wj)
c(w)

e−tc(w)e−r{c(w)−c(wj)}, wj < w < wj+1,

which tends to 0 for r → ∞ for all w ∈ (wj , wj+1), and tends to e−tc(wj) for w = wj . Hence, Lemma 7
follows.

Lemma 7. In the limit as r → ∞, WI | (R > r,wj < WI < wj+1) →p wj, j = 1, . . . , k − 1, and
asymptotically WI ⊥⊥ R | (R > r,wj < WI < wj+1).
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On (R,WI) margins the region above the line Y
(I)
E = X

(I)
E /ω1 translates to the area represented by

WI < w1. The conditional density in this region is

f(R,WI)(r, w |WI < w1) =
(
α1 + β1αsum

β1

)
e−rw(αsum−1)e−r, for r > 0, w < w1.

Again, we can work out the conditional probability,

Pr(WI > w,R > r + t |WI < w1, R > r) =
{c(w1)}−1e−(r+t)c(w1) − {c(w)}−1e−(r+t)c(w)

{c(w1)}−1e−rc(w1) − e−r , t > 0, w < w1,

where c(w) = 1− (1−αsum)w. The function c(w) is in this case a decreasing function for w ∈ (0, w1), and
c(0) = 1, so 0 < c(w1) < c(w) < 1. This means that as r →∞,

Pr(WI > w,R > r + t |WI < w1, R > r)→ e−tc(w),

for all w ∈ (0, w1), suggesting that all points in this region will tend to WI = 0 asymptotically as r →∞.

Lemma 8. As r → ∞, WI | (R > r,WI < w1) →p 0, and asymptotically WI is independent of R, which
is unit exponential.

Now we use the above results to calculate the conditional probability (12). Theorems 3 and 4 describe the
behavior of the conditional probability of points being in each region given that R > r as r → ∞, i.e.,
expression (12) with W = WI and W = WD, respectively, where J denotes the different regions. Proofs
are given in Section 6.

Theorem 3. Let R = X
(I)
E + Y

(I)
E and WI = X

(I)
E /(X(I)

E + Y
(I)
E ). Let γj = (αjβ

(j+1)
sum + βjα

(j)
sum)/(αj + βj),

0 < γj ≤ 1, for j = 1, . . . , k, and γmin = min
j=1,...,k

(γj). If there is a unique γj value, j = 1, . . . , k, equal to

γmin, i.e., γmin = γj, then, for t > 0, as r →∞,

a) Pr(WI = wj , R > r + t | R > r)→ (aj/dj)e−γjt,

b) Pr(wj < WI < wj+1, R > r + t | R > r)→ (bj/dj)e−γjt,

c) Pr(wj−1 < WI < wj , R > r + t | R > r)→ (−bj−1/dj)e−γjt,

d) Pr({0 < WI < wj−1} ∪ {wj < WI < 1}, R > r + t | R > r)→ 0,

where w0 = 0, wk+1 = 1, aj = αjβj/(αj + βj), bj = α
(j)
sumβ

(j+1)
sum /(α(j)

sum − β(j+1)
sum ) and dj = aj + bj − bj−1,

j = 1, . . . , k.

Theorem 4. Let R = X
(I)
E + Y

(I)
E and WD = Y

(I)
E − X(I)

E . Let aj, bj, dj, γj and γmin be defined as in
Theorem 3. If there is a unique γj value, j = 1, . . . , k, equal to γmin, i.e., γmin = γj, then as r →∞,

WD | R > r →





+∞, with probability 1(αj > βj) + 1(αj = βj)(−bj−1/dj),
0, with probability 1(αj = βj)(aj/dj),
−∞, with probability 1(αj < βj) + 1(αj = βj)(bj/dj).

Hence, Theorem 3 shows that asymptotically for R > r and r → ∞, if γmin = γj , there is an exponential
density on the jth ray, and a uniform density in the regions between the (j − 1)th and jth and the jth
and (j + 1)th rays. This is illustrated on Figure 2b for the inverted max-linear model given in Figure 1b.
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Note that γj is not necessarily unique, so it is possible that γmin = γj = γi, for i and j distinct integers
in {1, . . . , k}. If this is the case then mass falls on both the ith and jth rays, and also in the regions on
either side of these. For the alternative form WD for the angular component, the mass collapses to {−∞},
{0} and {∞}, as shown by Theorem 4. This is still the case, even when γj is not unique. Note, that
even though the inverted max-linear model is AI, we find that there is mass on the diagonal WD = 0 in
the case when there exists i ∈ {1, . . . , k} such that αi = βi. This is due to the fact that we defined the
radial and angular components on exponential margins, which gives a different region R > r than the more
commonly used Fréchet margins. This illustrates one of the benefits of identifying extremal dependence
structure using exponential marginal variables.

5 Mixture distribution

The transformed max-linear model (6) and the inverted max-linear model (7) can be combined into a
mixture distribution

(
XM

YM

)
=





(
XE

YE

)
with probability δ

(
X

(I)
E

Y
(I)
E

)
with probability 1− δ

(15)

where δ ∈ [0, 1], and (XE , YE) and (X(I)
E , Y

(I)
E ) represent a transformed max-linear model and an inver-

ted max-linear model, respectively, on exponential margins. The statistical importance of the mixture
model (15) is most easily seen by studying the sub-asymptotic behavior of χ defined by expression (1).
Specifically let

χ(z) = Pr(Y > z | X > z),

so χ(z)→ χ as z →∞. For the transformed max-linear model (6) it follows that χ = 2−∑m
i=1 max(αi, βi)

and that for large z

χE(z) ≈ χ+
(2− χ)(1− χ)

2
exp(−z).

So here χE(z) converges to χ > 0 at a fixed rate of decay. In contrast, for the inverted max-linear model (7)
χ = 0, but

χE(I)(z) = {exp(−z)}
∑m

i=1 max(αi,βi)−1.

Here χE(I)(z) converges to χ = 0 at a rate of decay depending on the parameters of the underlying max-
linear model, but there is no flexibility in the constant multiplier of this rate term. However for the mixture
model (15) we have

χM (z) ≈ δχ+ (1− δ){exp(−z)}1−χ + δ
(2− χ)(1− χ)

2
exp(−z),

where χ = 2 − ∑m
i=1 max(αi, βi). Thus, here there is AD, but also a penultimate behavior that has

flexibility in both its rate and coefficient features. Hence, although this mixture model is slightly artificial
in its construction it has a sufficiently flexible form to be able to capture all natures of the leading and
penultimate forms of extremal dependence.

We use results from Section 4 to deduce asymptotic properties of this mixture distribution. Here too,
we will use the two different angular form representations WD and WI . Let XM and YM be random
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variables, on exponential margins, from the mixture distribution (15), and let us define the radial and
angular variables R = XM + YM , WD = YM −XM , and WI = XM/(XM + YM ). Then, using the angular
form WD, it follows from Theorems 1 and 4 that, asymptotically for R > r as r →∞, if there are no pairs
(αj , βj) such that αj = βj , j = 1, . . . , k, then there is mass totalling δ on the lines WD = wh, h = 1, . . . , k,
and (1 − δ) mass either at {−∞} or at {+∞}. If there is a pair (αj , βj) such that αj = βj , then there is
(1− δ)(−bj−1/dj) mass at {+∞}, (1− δ)(−bj/dj) mass at {−∞}, δ{αh exp(wh/2)}/{∑k

i=1 αi exp(wi/2)}
mass on each line WD = wh, h 6= j, and δ{αh exp(wh/2)}/{∑k

i=1 αi exp(wi/2)} + (1 − δ)(aj/dj) mass on
the diagonal WD = wj = 0. This is summarised in Theorem 5.

Theorem 5. Let R = XM + YM , WD = YM −XM , and wh = ln(βh/αh), h = 1, . . . , k. Then, for aj, bj,
dj and γj, j = 1, . . . , k, defined as in Theorem 3, we have the following for r →∞,

WD | R > r →





+∞, with probability (1− δ){1(αj > βj) + 1(αj = βj)(−bj−1/dj)},
wh, with probability δ

{
αh exp(wh/2)∑k
i=1 αi exp(wi/2)

}
+ (1− δ)1(αj = βj)(aj/dj), for h = 1, . . . , k,

−∞, with probability (1− δ){1(αj < βj) + 1(αj = βj)(bj/dj)}.

Using the second angular form WI , it follows from Theorems 2 and 3 that asymptotically for R > r as
r → ∞, if γmin = γj and αj 6= βj , then there is mass totalling (1− δ) on the jth ray and the two regions
adjacent to this ray, and δ mass on the diagonal ray WI = 1/2. If αj = βj , then there is (1− δ)aj/dj + δ
mass on the diagonal ray WI = 1/2, and (1 − δ)bj/dj and −(1 − δ)bj−1/dj mass in the two regions on
either side of this ray, respectively. See Theorem 6 for details.

Theorem 6. Let R = XM + YM and WI = XM/(XM + YM ), and aj, bj, dj and γj, j = 1, . . . , k, defined
as in Theorem 3. Then, if γmin = γj, we have the following as r →∞,

a) Pr(WI = wj | R > r)→ (1− δ)aj/dj + δ1(αj = βj),

b) Pr(WI = 1/2 | R > r)→ δ + (1− δ)(aj/dj)1(αj = βj),

c) Pr(wj < WI < wj+1 | R > r)→ (1− δ)bj/dj ,

d) Pr(wj−1 < WI < wj | R > r)→ −(1− δ)bj−1/dj ,

e) Pr({0 < WI < wj−1} ∪ {wj < WI < 1} | R > r)→ 0.

6 Proofs

6.1 Proof of Theorem 1

The probability Pr(R > r) can be written in the following way using total probability:

Pr(R > r) =
∑

J
Pr(R > r |WD ∈ J ) Pr(WD ∈ J )

= Pr(R > r |WD > wk) Pr(WD > wk) +
k∑

j=1

Pr(R > r |WD = wj) Pr(WD = wj)

+
k−1∑

j=1

Pr(R > r | wj < WD < wj+1) Pr(wj < WD < wj+1) + Pr(R > r |WD < w1) Pr(WD < w1),
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where each of the product terms in this sum can be derived using results from Section 4.1. We will
illustrate the derivation of the elements of the first term Pr(R > r | WD > wk) Pr(WD > wk). First, note
that Pr(WD > wk) ≈ Pr{YF > (βk/αk)XF } for large XF and YF . Hence,

Pr(WD > wk) ≈
αkβsum

αkβsum + βk
,

using results from Appendix B.1. To obtain Pr(R > r | WD > wk) we first integrate expression (13) with
respect to w:

fR(r |WD > wk) =
∫ r

wk

f(R,WD)(r, w |WD > wk)dw,

≈ αkβsum + βk
2αk

e−r(r − wk).

Then integrate this with respect to r to obtain the conditional probability:

Pr(R > r |WD > wk) =
∫ ∞

r
fR(r |WD > wk)dr,

≈ αkβsum + βk
2αk

e−r(r − wk + 1).

The other three product terms can be derived similarly, leading to

Pr(R > r) ≈ βsum

2
(r − wk + 1) exp(−r) +

k∑

j=1

αj
2

exp
(wj

2

)
exp

(
−r

2

)

+
k−1∑

j=1

α
(j)
sumβ

(j+1)
sum

2
(wj+1 − wj) exp(−r) +

αsum

2
(r + w1 + 1) exp(−r), for large r.

For r →∞ we can write

Pr(R > r) ∼ exp
(
−r

2

) k∑

j=1

αj
2

exp
(wj

2

)
,

since the other terms all contain exp(−r) and they go to zero faster as r →∞.

For the region WD > wk, substituting into (12), we get for large r

Pr(WD > wk | R > r) ≈ βsum(r − wk + 1) exp(−r)
∑k

j=1 αj exp(wj/2) exp(−r/2)
.

Since the numerator tends to zero faster than the denominator, Pr(WD > wk | R > r) → 0 as r → ∞.
This is the same for the region WD < w1 and the regions wj < WD < wj+1 for all j = 1, . . . , k − 1, i.e.,
Pr(WD < w1 | R > r)→ 0 and Pr(wj < WD < wj+1 | R > r)→ 0 for all j = 1, . . . , k − 1 as r →∞.

For the case when WD = wj , j = 1, . . . , k, both the numerator and denominator have exponent term
exp(−r/2), hence,

Pr(WD = wj | R > r)→ αj exp(wj/2)
∑k

i=1 αi exp(wi/2)
, as r →∞.

�
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6.2 Proof of Theorem 2

It follows from Theorem 1 that, asymptotically, WD is on one of the k lines, i.e., on exponential margins,
YE = − ln[−1− {1− exp(−XE)}1/ωj ] ≈ XE + ln(ωj), j = 1, . . . , k, for large XE . Hence, for large R,

WI ≈
1
2
− ln(ωj)

2R
, j = 1, . . . , k.

Hence, using Theorem 1, it follows that WI | R > r →p 1/2, j = 1, . . . , k, as r →∞. �

6.3 Proof of Theorem 3

The probability Pr(WI ∈ J | R > r) is equivalent to the expression given in (12) with W = WI . The joint
probability in the numerator can be calculated in each case using methods similar to those in previous
sections; see, e.g., equation (14) for the case when WI > wk. Then we can use total probability to calculate
Pr(R > r) as shown below:

Pr(R > r) =
∑

J
Pr(R > r |WI ∈ J ) Pr(WI ∈ J )

= Pr(R > r |WI > wk) Pr(WI > wk) +
k∑

j=1

Pr(R > r |WI = wj) Pr(WI = wj)

+
k−1∑

j=1

Pr(R > r | wj < WI < wj+1) Pr(wj < WI < wj+1) + Pr(R > r |WI < w1) Pr(WI < w1)

=
βsum

1− βsum

{
γ−1
k exp (−γkr)− exp(−r)

}
+

k∑

j=1

αjβj
αj + βj

γ−1
j exp (−γjr)

+
k−1∑

j=1

α
(j)
sumβ

(j+1)
sum

α
(j)
sum − β(j+1)

sum

{
γ−1
j exp(−γjr)− γ−1

j+1 exp(−γj+1r)
}

+
αsum

1− αsum

{
γ−1

1 exp (−γ1r)− exp(−r)
}
,

where γj = (αjβ
(j+1)
sum +βjα

(j)
sum)/(αj+βj), 0 < γj ≤ 1, for j = 1, . . . , k. For large r, Pr(R > r) approximately

becomes

Pr(R > r) ≈ βsum

1− βsum
γ−1
k exp (−γkr) +

k∑

j=1

αjβj
αj + βj

γ−1
j exp (−γjr)

+
k−1∑

j=1

α
(j)
sumβ

(j+1)
sum

α
(j)
sum − β(j+1)

sum

{
γ−1
j exp(−γjr)− γ−1

j+1 exp(−γj+1r)
}

+
αsum

1− αsum
γ−1

1 exp (−γ1r) , (16)

since the terms containing exp(−r) are smaller than the terms containing the exponential terms exp(−γjr)
for all j = 1, . . . , k − 1. Note that using the notation defined in Theorem 3, we can write (16) as

Pr(R > r) ≈
k∑

j=1

(aj + bj − bj−1)γ−1
j e−γjr. (17)
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For each region the probability in (12) will tend to zero as r → ∞, unless the exponent term in the
numerator is the same as the largest exponent term in expression (16). Hence, the result in Theorem 3
follows. �

6.4 Proof of Theorem 4

For the inverted max-linear distribution on exponential margins, Y (I)
E = X

(I)
E /ωj , j = 1, . . . , k, where

0 < ωj < ∞. On (R,WD) margins this becomes, WD = Rδj , where δj = (1 − ωj)/(1 + ωj), j = 1, . . . , k.
Hence, as r →∞,

WD | R > r →





∞, for ωj < 1,
0, for ωj = 1,
−∞, for ωj > 1.

To work out the mass at {−∞}, {0} and {∞} we calculate the probabilities Pr(WD < 0 | R > r),
Pr(WD = 0 | R > r) and Pr(WD > 0 | R > r). By conditional probability,

Pr(WD < 0 | R > r) =
Pr(R > r |WD < 0) Pr(WD < 0)

Pr(R > r)
(18)

where Pr(R > r) is the same as in expression (17), and Pr(WD < 0) can be easily obtained as Pr(WD <

0) = Pr(XF < YF ) =
∑k

i=1 1(αi = βi)β
(j+1)
sum /(α(j)

sum+β(j+1)
sum ). Then we calculate the conditional probability

Pr(R > r |WD < 0) as the following sum,

Pr(R > r |WD < 0) = Pr(R > r |WD < 0,WD < Rδk) Pr(WD < Rδk |WD < 0)

+
k∑

j=i+1

Pr(R > r |WD < 0,WD = Rδj) Pr(WD = Rδj |WD < 0)

+
k−1∑

j=i

Pr(R > r |WD < 0, Rδj+1 < WD < Rδj) Pr(Rδj+1 < WD < Rδj |WD < 0),

where we assumed that there is an i ∈ {1, . . . , k} such that ωi = 1. Using results from Section 3.2.2, we
have

Pr(R > r,WD < 0) ≈ bkγ−1
k e−γkr +

k∑

j=i+1

ajγ
−1
j e−γjr +

k−1∑

j=i

bj

{
γ−1
j e−γjr − γ−1

j+1e
−γj+1r

}
,

= biγ
−1
i e−γir +

k∑

j=i+1

(aj + bj − bj−1)γ−1
j e−γjr,

where aj , bj and γj , j = 1, . . . , k, are defined as in Theorem 3. The probabilities Pr(WD = 0 | R > r) and
Pr(WD > 0 | R > r) can be calculated similarly. Substituting into expression (18) we obtain the results in
Theorem 4. �

7 Conclusions

In this paper we have characterized the asymptotic behavior of models built on bivariate max-linearity,
using two different angular measures defined in exponential marginal space. We found that the limiting
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behavior of our three models (transformed max-linear, inverted max-linear and mixture) can be either
asymptotically dependent or asymptotically independent. At finite levels, however, they feature points on
rays of the form y = hx, 0 < h <∞, points on lines of the form y = h+x, −∞ < h <∞, and independent
points scattered in the regions defined by these rays and lines.

Simulation from the max-linear model (3) is straightforward by sampling Zj , j = 1, . . . ,m, independently
from a Fréchet distribution and simply calculating XF and YF , subject to α and β values being known.
Then we can transform to margins (XE , YE) or (X(I)

E , Y
(I)
E ) to obtain samples on exponential margins

from the transformed max-linear or the inverted max-linear models. Assuming δ is also known, we can
easily sample from the mixture distribution (15), by sampling from the transformed max-linear model with
probability δ and the inverted max-linear model with probability 1 − δ. Simulation from the conditional
distribution YF | XF is also straightforward if α and β are known, using methods described in [21], so
conditional simulation follows easily for our three models. For a detailed description of the simulation
algorithm the reader is referred to [10].

This paper has been restricted to bivariate models, but the formulation is straightforward to extend to
multivariate cases. Specifically, consider a d-dimensional max-linear model, with Fréchet margins, where

XF,j = max
i=1,...,m

(αijZi) for j = 1, . . . , d,

where Z1, . . . , Zm are independent and identically distributed Fréchet variables and αij ≥ 0 with
∑m

i=1 αij =
1 for all j = 1, . . . , d. The multivariate transformed max-linear and inverted max-linear models follow
using multivariate analogues of transformations (4) and (5), respectively. The extreme values from these
joint distributions can be studied by multivariate extensions of our radial and angular transformations, in
particular using

R =
d∑

j=1

Xj , WD = (X2 −X1, . . . , Xd −X1), WI = (X2/R, . . . ,Xd/R),

where (X1, . . . , Xd) are on exponential margins. We expect to obtain similar findings to the bivariate case
with a range of asymptotic independence and asymptotic dependence over different subsets of the variables.
Similarly, both the joint and conditional simulation algorithms can be easily extended to the multivariate
case.

Our work has potential to be useful in spatial applications of extreme value theory since there is often
need to model bivariate dependence for both local dependence and long-range dependence in this setting.
Generally, extreme events at locations close by are expected to occur simultaneously, as they are likely
to be affected by the same underlying process. Hence, it seems natural to model these as asymptotically
dependent. On the other hand, extreme events at locations far apart are unlikely to occur together as
the chance of both locations being affected by the same event is reduced; thus asymptotically independent
models seem more appropriate in this case. In practice, it is necessary to have a model that can move
through the two types and different levels of extremal dependence; e.g., to model sites close by as asymp-
totically dependent, with dependence decreasing with distance, and asymptotic independence for locations
further apart. To achieve a smooth transition between the two types of dependence we need a model that
has both components. This paper introduced a new model that incorporates both types of dependence,
and that easily lends itself to spatial applications, since we can allow the mass on the rays and lines to
vary smoothly with distance or some measure of the strength of dependence between locations. One way
to do this could be to have both αi and βi (i = 1, . . . ,m) decay with distance at different rates. The
development of such models and their statistical inference is the topic for further work.
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Appendices

A Derivation of conditional densities for the Marshall–Olkin model

A.1 Case (ii) - Below the line with YF < β
α

XF

In this case, we want to work out the distribution of the points in the region below the line. A similar
approach to the one described in Section 2 can be taken, but here we need to consider two possible
combinations of Zi’s that can give YF < β

α XF . So, by conditional probability,

Pr
(
XF > x, YF > y

∣∣∣∣YF <
β

α
XF

)
=

Pr(XF > x, YF > y, YF <
β
α XF )

Pr(YF < β
αXF )

.

As noted before, there are two possible combinations that lead to this case: (XF , YF ) = ((1− α)Z2, βZ1),
and (XF , YF ) = ((1− α)Z2, (1− β)Z3) with (1− α)Z2/α > (1− β)Z3/β. So, the joint probability can be
broken down into the sum of the two cases, such that

Pr
(
XF > x, YF > y, YF <

β

α
XF

)
= P1 + P2,

where

P1 = Pr {XF > x, YF > y,XF = (1− α)Z2, YF = βZ1} ,
P2 = Pr {XF > x, YF > y,XF = (1− α)Z2, YF = (1− β)Z3} .

Then,

P1 = Pr{(1− α)Z2 > x, βZ1 > y, (1− α)Z2 > αZ1, βZ1 > (1− β)Z3}

= Pr
(
Z2 >

x

1− α,Z1 >
y

β
,Z2 >

αZ1

1− α,Z3 <
βZ1

1− β

)

=
∫ ∞

y/β
Pr
{
Z2 > max

(
x

1− α,
αz

1− α

)
, Z3 <

βZ1

1− β

∣∣∣∣Z1 = z

}
fZ(z)dz

= 1
(
y <

β

α
x

){
β − αβ

α+ β − αβ − βe
−1/y −

(
β − αβ

α+ β − αβ

)
e−(α+β−αβ)/(βx) + βe−(1−α)/xe−1/y

}
,

and

P2 = Pr{(1− α)Z2 > x, (1− β)Z3 > y, (1− α)Z2 > αZ1, (1− β)Z3 > βZ1, β(1− α)Z2 > α(1− β)Z3}

= 1
(
y <

β

α
x

){
β(1− α)(1− β)
α+ β − αβ − (1− β)e−1/y − β(1− α)(1− β)

α+ β − αβ e−(α+β−αβ)/(βx)

+(1− β)e−(1−α)/xe−1/y
}
,
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where the last equalities in the derivations of P1 and P2 follow after extensive calculations. Summing P1

and P2, we get

Pr
(
XF > x, YF > y, YF <

β

α
XF

)
=

1
(
y <

β

α
x

){
(1− α)β
α+ β − αβ − e

−1/y − (1− α)β
α+ β − αβ e

−(α+β−αβ)/(βx) + e−(1−α)/xe−1/y

}
.

Similarly for the denominator,

Pr
(
YF <

β

α
XF

)
= P̃1 + P̃2,

where

P̃1 = Pr {XF = (1− α)Z2, YF = βZ1} = β − αβ

α+ β − αβ ,

P̃2 = Pr {XF = (1− α)Z2, YF = (1− β)Z3} =
β(1− α)(1− β)
α+ β − αβ .

Hence,

Pr
(
YF <

β

α
XF

)
=

(1− α)β
α+ β − αβ .

Substituting into the conditional probability formula we finally obtain the joint survival function conditional
on being in the region below the line, as

Pr
(
XF > x, YF > y

∣∣∣∣YF <
β

α
XF

)
=

1
(
y <

β

α
x

){
1− α+ β − αβ

(1− α)β
e−1/y − e−(α+β−αβ)/(βx) +

α+ β − αβ
(1− α)β

e−(1−α)/xe−1/y

}
.

Differentiating, we obtain the conditional density in the region below the line as:

f(XF ,YF )

(
x, y

∣∣∣∣YF <
β

α
XF

)
=
α+ β − αβ
βx2y2

e−(1−α)/xe−1/y 1
(
y <

β

α
x

)
.

A.2 Case (iii) - Above the line with YF > β
α
XF

In this case, we want to work out the distribution of the points conditional on being in the region above
the line. The calculations in this case are very similar to those in Section A.1 so we will give less detail.
Again, by conditional probability,

Pr
(
XF > x, YF > y

∣∣∣∣YF >
β

α
XF

)
=

Pr(XF > x, YF > y, YF >
β
α XF )

Pr(YF > β
α XF )

,

and there are two possible combinations that lead to this case: (XF , YF ) = (αZ1, (1−β)Z3) and (XF , YF ) =
((1− α)Z2, (1− β)Z3) with (1− α)Z2/α < (1− β)Z3/β.

Similarly to Section A.1, we can calculate the following marginal and joint probabilities:

Pr
(
YF >

β

α
XF

)
=

α(1− β)
α+ β − αβ ,
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and

Pr
(
XF > x, YF > y, YF >

β

α
XF

)
=

1
(
y >

β

α
x

){
α(1− β)
α+ β − αβ − e

−1/x − α(1− β)
α+ β − αβ e

−(α+β−αβ)/(αy) + e−1/xe−(1−β)/y

}
.

Substituting into the conditional probability formula we obtain the conditional distribution:

Pr
(
XF > x, YF > y

∣∣∣∣YF >
β

α
XF

)
=

1
(
y >

β

α
x

){
1− α+ β − αβ

α(1− β)
e−1/x − e−(α+β−αβ)/(αy) +

α+ β − αβ
α(1− β)

e−1/xe−(1−β)/y

}
.

Differentiating, we obtain the conditional density of the points in the region above the line as

f(XF ,YF )

(
x, y

∣∣∣∣YF >
β

α
XF

)
=
α+ β − αβ
αx2y2

e−1/xe−(1−β)/y 1
(
y >

β

α
x

)
.

B Derivation of density formulas in the general case

B.1 Type (i) - Above the line YF = ωkXF

From the condition that YF > ωkXF , it can be established that the pairs that can lead to this case are
combinations of the following: XF = αiZi where i = 1, . . . , k+`, and YF = βhZh where h = k+`+1, . . . ,m.
Hence,

Pr (XF ∈ dx, YF ∈ dy, YF > ωkXF ) =
m∑

h=k+`+1

k+∑̀

i=1

Pr (αiZi ∈ dx, βhZh ∈ dy, YF > ωkXF ) .

The Zi’s are independent Fréchet random variables, hence

Pr (XF ∈ dx, YF ∈ dy, YF > ωkXF )

= 1 (y > ωkx)
m∑

h=k+`+1

k+∑̀

i=1


Pr

(
Zi ∈

dx

αi

)
Pr
(
Zh ∈

dy

βh

) k∏

p=1,{p6=i}
Pr
{
Zp < min

(
x

αp
,
y

βp

)}

×
k+∏̀

p=k+1,{p 6=i}
Pr
(
Zp <

x

αp

) m∏

p=k+`+1,{p 6=h}
Pr
(
Zp <

y

βp

)
 dxdy

= 1 (y > ωkx)
m∑

h=k+`+1

k+∑̀

i=1




αi
x2
e−αi/x

βh
y2
e−βh/y

k+∏̀

p=1,{p6=i}

(
e−αp/x

) m∏

p=k+`+1,{p 6=h}

(
e−βp/y

)


 dxdy

= 1 (y > ωkx)
m∑

h=k+`+1

k+∑̀

i=1




αiβh
x2y2

k+∏̀

p=1

(
e−αp/x

) m∏

p=k+`+1

(
e−βp/y

)


 dxdy

= 1 (y > ωkx)
βsum

x2y2
e−1/xe−βsum/ydxdy,

(19)
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where the third equality follows since x/αp < y/βp, ∀p = 1, . . . , k. The marginal can be obtained simply
by integrating (19) over the region

Pr (YF > ωkXF ) =
∫ ∞

0

∫ ∞

ωkx

(
βsum

x2y2
e−1/xe−βsum/y

)
dydx

=
αkβsum

βk + αkβsum
.

Hence, the conditional density is

f(XF ,YF )(x, y | YF > ωkXF ) =
Pr (XF ∈ dx, YF ∈ dy, YF > ωkXF )

Pr (YF > ωkXF )

= 1 (y > ωkx)
βk + αkβsum

αkx2y2
e−1/xe−βsum/y.

B.2 Type (ii) - On the line YF = ωjXF , j = 1, . . . , k

This case only occurs if XF = αjZj and YF = βjZj . Hence,

Pr (XF ∈ dx, YF ∈ dy, YF = ωjXF ) = Pr (αjZj ∈ dx, βjZj ∈ dy, YF = ωjXF ) .

Similarly to the approach in Section B.1, this can be written as

Pr (XF ∈ dx, YF ∈ dy, YF = ωjXF )

= 1 (y = ωjx) Pr
(
Zj ∈

dx

αj

) j−1∏

p=1

Pr
(
Zp <

x

αp

) k∏

p=j+1

Pr
(
Zp <

y

βp

)

×
k+∏̀

p=k+1

Pr
(
Zp <

x

αp

) m∏

p=k+`+1

Pr
(
Zp <

y

βp

)
dxdy

= 1 (y = ωjx)
αj
x2
e−αj/x

j−1∏

p=1

(
e−αp/x

) k∏

p=j+1

(
e−βp/y

) k+∏̀

p=k+1

(
e−αp/x

) m∏

p=k+`+1

(
e−βp/y

)
dxdy

= 1 (y = ωjx)
αj
x2

exp

(
−αjβ

(j+1)
sum + βjα

(j)
sum

βjx

)
dxdy.

By integrating this from 0 to ∞ we can obtain the marginal as

Pr (YF = ωjXF ) =
αjβj

αjβ
(j+1)
sum + βjα

(j)
sum

.

Hence, the conditional density is

f(XF ,YF )(x, y | YF = ωjXF ) = 1 (y = ωjx)
αjβ

(j+1)
sum + βjα

(j)
sum

βjx2
exp

(
−αjβ

(j+1)
sum + βjα

(j)
sum

βjx

)
.
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B.3 Type (iii) - Between the two lines YF = ωjXF and YF = ωj+1XF , j = 1, . . . , k − 1

From the condition that ωjXF < YF < ωj+1XF , it follows that the pairs that lead to this case are
combinations of XF = αiZi where i = 1, . . . , j, k + 1, . . . , k + `, and YF = βhZh where h = j + 1, . . . ,m.
Hence,

Pr (XF ∈ dx, YF ∈ dy, ωjXF < YF < ωj+1XF )

=
∑

h∈H

∑

i∈I
Pr (αiZi ∈ dx, βhZh ∈ dy, ωjXF < YF < ωj+1XF ) ,

where I = {1, . . . , j, k + 1, . . . , k + `} and H = {j + 1, . . . ,m}. Then, due to the independence of the Zi’s
this can be written as

Pr (XF ∈ dx, YF ∈ dy, ωjXF < YF < ωj+1XF )

= 1 (ωjx < y < ωj+1x)
∑

h∈H

∑

i∈I



Pr

(
Zi ∈

dx

αi

)
Pr
(
Zh ∈

dy

βh

) j∏

p=1,{p6=i}
Pr
(
Zp <

x

αp

)

×
k∏

p=j+1,{p6=h}
Pr
(
Zp <

y

βp

) k+∏̀

p=k+1,{p 6=i}
Pr
(
Zp <

x

αp

) m∏

p=k+`+1,{p 6=h}
Pr
(
Zp <

y

βp

)
 dxdy

= 1 (ωjx < y < ωj+1x)
∑

h∈H

∑

i∈I




αi
x2
e−αi/x

βh
y2
e−βh/y

j∏

p=1,{p 6=i}

(
e−αp/x

)

×
k∏

p=j+1,{p6=h}

(
e−βp/y

) k+∏̀

p=k+1,{p 6=i}

(
e−αp/x

) m∏

p=k+`+1,{p 6=h}

(
e−βp/y

)


 dxdy

= 1 (ωjx < y < ωj+1x)
α

(j)
sumβ

(j+1)
sum

x2y2
e−α

(j)
sum/xe−β

(j+1)
sum /ydxdy.

Integrating this over the range 0 < x <∞ and ωjx < y < ωj+1x, we obtain the marginal as

Pr (ωjXF < YF < ωj+1XF ) =
α

(j)
sumβ

(j+1)
sum (αjβj+1 − αj+1βj)

(αjβ
(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

.

Using conditional probability, the conditional density is,

f(XF ,YF )(x, y | ωjXF < YF < ωj+1XF )

= 1 (ωjx < y < ωj+1x)

{
(αjβ

(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

(αjβj+1 − αj+1βj)x2y2

}
e−α

(j)
sum/xe−β

(j+1)
sum /y.

B.4 Type (iv) - Below the line YF = ω1XF

From the condition that YF < ω1XF , it can be established that the pairs that can lead to this case are
combinations of XF = αiZi and YF = βhZh where i = k + 1, . . . , k + ` and h = 1, . . . , k, k + `+ 1, . . . ,m.
Hence,

Pr (XF ∈ dx, YF ∈ dy, YF < ω1XF ) =
∑

h∈H

∑

i∈I
Pr (αiZi ∈ dx, βhZh ∈ dy, YF < ω1XF ) ,
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where I = {k+1, . . . , k+`} and H = {1, . . . , k, k+`+1, . . . ,m}. The Zi’s are independent Fréchet random
variables, hence

Pr (XF ∈ dx, YF ∈ dy, YF < ω1XF )

= 1 (y < ω1x)
∑

h∈H

∑

i∈I



Pr

(
Zi ∈

dx

αi

)
Pr
(
Zh ∈

dy

βh

) k∏

p=1,{p 6=h}
Pr
(
Zp <

y

βp

)

×
k+∏̀

p=k+1,{p 6=i}
Pr
(
Zp <

x

αp

) m∏

p=k+`+1,{p 6=h}
Pr
(
Zp <

y

βp

)
 dxdy

= 1 (y < ω1x)
∑

h∈H

∑

i∈I




αi
x2
e−αi/x

βh
y2
e−βh/y

k∏

p=1,{p6=h}

(
e−βp/y

) k+∏̀

p=k+1,{p 6=i}

(
e−αp/x

)

×
m∏

p=k+`+1,{p 6=h}

(
e−βp/y

)


 dxdy

= 1 (y < ω1x)
αsum

x2y2
e−αsum/xe−1/ydxdy.

The marginal can be obtained by integrating this over the region.

Pr (YF < ω1XF ) =
αsumβ1

αsumβ1 + α1
.

Hence, the conditional density is

f(XF ,YF )(x, y | YF < ω1XF ) = 1 (y < ω1x)
αsumβ1 + α1

β1x2y2
e−αsum/xe−1/y.
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