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[1] Ablation of micrometeoroids between 70 and 130 km altitude in the atmosphere creates
plasma columns with densities exceeding the ambient ionospheric electron density by many
orders of magnitude. Density gradients at the edges of these trails can create ambipolar
electric fields with amplitudes in excess of 100 mV/m. These fields combine with
diamagnetic drifts to drive electrons at speeds exceeding 2 km/s. The fields and gradients
also initiate Farley-Buneman and gradient-drift instabilities. These create field-aligned
plasma density irregularities which evolve into turbulent structures detectable by radars with
a large power-aperture product, such as those found at Jicamarca, Arecibo, and Kwajalein.
This paper presents a theory of meteor trail instabilities using both fluid and kinetic methods.
In particular, it discusses the origin of the driving electric field, the resulting electron
drifts, and the linear plasma instabilities of meteor trails. It shows that though the ambipolar
electric field changes amplitude and even direction as a function of altitude, the electrons
always drift in the positivern� B direction, where n is the density and B the geomagnetic
field. The linear stability analysis predicts that instabilities develop within a limited range of
altitudes with the following observational consequences: (1) nonspecular meteor trail
echoes will be field-aligned; (2) nonspecular echoes will return from a limited range of
altitudes compared with the range over which the head echo reflection indicates the presence
of plasma columns; and (3) anomalous cross-field diffusion will occur only within this
limited altitude range with consequences for calculating diffusion rates and temperatures
with both specular and nonspecular radars. INDEX TERMS: 6245 Planetology: Solar System

Objects: Meteors; 2439 Ionosphere: Ionospheric irregularities; 2435 Ionosphere: Ionospheric disturbances; 2471
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1. Introduction

[2] Radars probing the atmosphere between 70 km and
130 km frequently receive echoes from plasma trails left by
ablating meteoroids. These echoes have proven useful in
determining the speeds, directions of origin, and, to a lesser
extent, the masses of small meteoroids. Meteor trail echoes
are also used extensively to estimate mesospheric and
thermospheric temperatures and wind velocities. However,
meteor plasmas contain large amounts of free energy which
can drive rapid plasma drifts and instabilities. This paper
develops the plasma physics of meteor trails and applies this
theory to explain the origin and characteristics of radar
measurements. A companion paper in this same issue,
entitled ‘‘Plasma instabilities in meteor trails: 2-D simula-
tion studies’’ by Oppenheim et al. [2003] describes kinetic
particle-in-cell simulations of meteor trails with character-
istics analogous to those analyzed in this paper.
[3] Chapin and Kudeki [1994a] suggested that long-

duration, nonspecular radar echoes of meteor trails observed

at the geomagnetic equator result from a Farley-Buneman
instability mechanism [see also, Chang et al.,1999]. Oppen-
heim et al. [2000] used kinetic plasma simulations to show
that meteor trails can easily develop a Farley-Buneman/
Gradient Drift (FBGD) type instability driven by a combi-
nation of the meteor trail’s self-generated ambipolar electric
field and the polarization electric field common in the E-
region ionosphere. This instability creates field-aligned
irregularities which rapidly develop into plasma turbulence
easily detected by large radars. Dyrud et al. [2001] sub-
sequently showed that FBGD waves develop without an
external electric field and also demonstrated that the waves
and turbulence cause an anomalous diffusion much larger
than the expected cross-field ambipolar diffusion. In this
paper, we develop the linear plasma theory of meteor trails.
Further, we predict the altitude range at which one expects
to find field-aligned irregularities (FAI) and therefore non-
specular meteor trails.
[4] This paper is organized as follows. First, we review

the motivating observations for this work and the previous
theoretical studies of meteor trails and related topics.
Second, we describe the two-fluid, steady-state solution
for meteor trail diffusion and point out a number of new
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and important features of this solution. Third, using this
solution as a starting point, we evaluate the stability of a
two-fluid meteor trail and show conditions for instability.
Fourth, we extend this analysis by evaluating stability while
assuming that kinetic effects modify ion dynamics. This is
applied to the stability of meteor trails as a function of
altitude. Finally, our conclusion summarizes our findings.

2. Background

[5] Meteors create three principal types of returns detect-
able by radars. The first and most common radar detection
occurs when an ablating meteoroid creates a trail lying
perpendicular to a radar’s beam. These specular meteor
trails were originally detected in the 1930s and 1940s when
radars were first pointed at the ionosphere. Today, many
hundreds of radars have been built to explicitly detect
specular echoes and use the information to study atmos-
pheric winds and temperatures and to characterize the solar
system’s micrometeoroids [Ceplecha et al., 1998].
[6] The second type of echoes detected by radars are

short duration returns (typically a few pulse periods) which
are extended in range. These ‘‘head echoes’’ appear to
follow the meteoroid as it travels through the atmosphere.
This type of echo was first observed in the late 1940s
because they can only be detected by radars with a large
aperture-power product [McKinley and Millman, 1949]. The
ALTAIR, Arecibo, Jicamarca, EISCAT and MU radars all
frequently observe head echoes [Close et al., 2000; Janches
et al., 2000; Chapin and Kudeki, 1994b; Pellinen-Wannberg
et al., 1998; Mathews et al., 1997]. A full understanding of
the radar and plasma physics of head echoes remains an area
of ongoing research [Zhou et al., 1998; Wannberg et al.,
1996; Close et al., 2002].
[7] Radars occasionally observe a third type of meteor

echo, returns from meteor trails not aligned perpendicular to
the radar beam. These ‘‘nonspecular’’ meteor trails have
been observed since the early 1960s and were initially
thought to result from roughness in the trail ionization
distribution or wind shears [McKinley, 1961]. Over 30 years
later, Chapin and Kudeki [1994a] presented observations of
nonspecular trails and interpreted their origin as plasma
instabilities, in particular the Farley-Buneman instability
driven by the presence of the electrojet E-field. In the last
few years, many papers have reported observations of
nonspecular meteor trails from a range of locations. Hal-
doupis and Schlegel [1993] and Zhou et al. [2001] have
reported meteor trail measurements at midlatitudes. Reddi
and Nair [1998] presented measurements at low latitudes
but outside the electrojet. These echoes typically last for less
than 1 second but can persist for as long as a few minutes.
Chapin and Kudeki [1994a] speculated that the long-lived
trails remain unstable for so long because they trigger
instabilities in a nearly unstable electrojet.
[8] The fundamental behavior of meteor trails and colli-

sionally dominated plasmas has been discussed in many
books and review articles [Öpik, 1958; Ceplecha et al.,
1998; Rishbeth and Garriott, 1969]. More specifically, a
number of authors have evaluated the ambipolar diffusion
of meteor trails in collisional plasmas [Pickering and
Windle, 1970; Jones, 1991; Robson, 2001]. Most of our
understanding of weakly ionized meteor trails derives from

radar observations and relies on detailed analyses of the
precise interaction between meteor trails and radar signals
[Jones and Jones, 1991]. Other researchers have investi-
gated similar electrodynamics generated by barium cloud
releases [Blaunstein et al., 1993].
[9] The linear theory describing meteor trail instabilities

resembles the linear theory of the two principle E region
instabilities, the Farley-Buneman and the gradient-drift
instabilities [Farley, 1963; Buneman, 1963; Maeda et al.,
1963]. Numerous papers and a few books discuss the fluid
theory of these instabilities [Farley, 1985; Fejer et al., 1984;
Kelley, 1989]. Several papers address the kinetic plasma
physics necessary to describe short wavelength modes
[Schmidt and Gary, 1973; Lee et al., 1971]. Recently,
theoretical studies of thermal corrections of the Farley-
Buneman instability have shown the complexity of this
instability [Dimant and Sudan, 1995; Kissack et al., 1997;
Dimant and Sudan, 1997; Kagan and Kelley, 2000]. While
our current research neglects this aspect of the instability,
thermal effects may prove relevant in meteor instabilities as
well.

3. Theory of Meteor Trail Plasmas

[10] A micrometeoroid (]10�5 kg) ablating in the upper
atmosphere creates a narrow column of energetic neutrals
and plasma. This column expands rapidly until slowed and
cooled by collisions. The radius of the column at the point
when it transitions from a rapid kinetic expansion to a
slower diffusive expansion, called the initial radius of the
trail, is somewhat smaller than the mean free path length
[Baggaley, 1981; Bronshten, 1983]. After the column rea-
ches this initial radius, the dynamics of the expanding co-
lumn of charged particles may be approximately described
as a plasma fluid.
[11] Above 75 km in altitude and perpendicular to the

geomagnetic field, B, electrons are highly magnetized while
ions are de-magnetized by collisions. As the trail plasma
expands beyond its initial radius, a strong ambipolar electric
field develops as a result of the differing ion and electron
mobilities. The electrons respond to this cross-field ambi-
polar field by E � B-drifting perpendicular to both B and
the density gradient of the meteor trail. This drift, combined
with the plasma density gradients, can generate an unstable
plasma [Fejer et al., 1975]. This instability leads to the
formation of waves which rapidly develop into turbulence.
This field-aligned instability also creates plasma density
perturbations visible to radars, allowing for nonspecular
radar reflections [Oppenheim et al., 2000]. Further, it causes
anomalous diffusion, affecting the meteor trail’s expansion
rate [Dyrud et al., 2001]. The following sections describe
how the electric fields, electron drifts, and instabilities
depend upon the altitude and trail density.

3.1. Equilibrium Condition

[12] In order to evaluate the stability of a meteor trail, we
must first define an equilibrium state. We will use the cross-
field ambipolar expansion of a diffusing plasma column
perpendicular to the magnetic field, B. We conduct this
analysis only in the plane perpendicular to B, and assume
that in the plane parallel to B the trail expands through
unmagnetized ambipolar diffusion and is not unstable to
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plasma instabilities [Kudeki and Farley, 1989]. For this
equilibrium state, we will assume the ions are an isothermal,
collisional, and unmagnetized fluid plasma such that

vi ¼ �mirf� Dirs;

ð1Þ
mi;e �

e

mi;eni;e
and Di;e �

KBTi;e

mi;eni;e

where mi,e defines the ion and electron mobilities, Di,e

defines the ion and electron diffusion rates, ni,e is the
collision rate for the ions or electrons with the background
neutral gas (mostly N2), f is the electric potential, and
rs � rn/n = r ln (n/nb) defines the gradient of the log of
the plasma density normalized to the background plasma
density, nb. The electrons are an inertialess and magnetized
fluid whose velocity perpendicular to B can be expressed
as

ve? ¼ me?rf� De?rsþ vE�B þ vD

1þ n2e=�2
e

ð2Þ

where

me? � me
1þ �2

e=n2e
; De? � De

1þ �2
e=n2e

;

vE�B � E�B
B2

; vD � � kBTe

e

rs�B

B2
;

where vD is the diamagnetic drift, and �e = e~B/me is the
electron cyclotron frequency (see Chen [1984, p. 171], for

an explanation of these terms). For altitudes above 85 km,
�e
2/ne

2 
 1 and electrons predominantly engage in E � B
and diamagnetic drifts, as described by the third term of
equation (2).
[13] The assumption of quasi-neutrality, r � J = 0, where

J is the current, allows us to combine (1) and (2) to generate
an expression for the electric potential (? to B) in terms of
density,

mTr� nrfð Þ � DTr2n� rn�rf�B0

B2
0 1þ �2

e=n2e
� � ¼ 0

DT � De? � DiT � me? þ mi:

ð3Þ

This equation allows us to solve for the cross-field
ambipolar electric potential, f, for a prescribed density
distribution, n, and visa-versa.
[14] For many simple trail geometries one can easily

solve equation (3) analytically. For example, in Cartesian
coordinates we can align the magnetic field, B, along the ŷ
direction and assume homogeneity along both ŷ and ẑ. This
allows the density gradient to vary only along x̂. Figure 1
shows a trail with this geometry. While homogeneity along
B is unrealistic, at high altitudes one expects trails stretched
in the direction parallel to B, so this assumption is not
entirely implausible. An alternate geometry which may be
evaluated in cylindrical coordinates aligns the trail parallel
to B, leaving a circular cross-section perpendicular to B. As
long as rn is perpendicular to E � B, equation (3) becomes
simply,

r� nrfð Þ ¼ DT=mTr2n ð4Þ

and may be easily solved for either slab or cylindrical
geometries.
[15] In the case of a slab trail as shown in Figure 1,

Ex ¼ �DT

mT

@s

@x
þ C

n
ð5Þ

where C is a constant of integration set by boundary
conditions. If we further assume that the density of the trail
is the sum of a Maxwellian plus a background density, n =
n0 exp(�x2/x0

2) + nb, then equation 5 gives the ambipolar
field

Ex ¼ �DT

mT

n0 exp �x2=x20
� �

�2x=x20
� �

n0 exp �x2=x20
� �

þ nb

" #
: ð6Þ

[16] Figure 1 shows the ambipolar electric field for a
trail at 102 km at 8 am local time with a Maxwellian
density profile and other parameters specified in Table 1.
Due to the limitation of grey-scale figures we have chosen
to plot the electric potential, f. A trail, perfectly aligned
along B, develops the same electric field except x ! r. A
trail making a 45� angle with respect to B will have an
oval cross-section and will develop similar fields and
potentials.
[17] For the system shown in Figure 1, the ion cross-

field mobility, mi  mi? exceeds the electron one, me?. In

Figure 1. Electric potential, f, in volts (top) and plasma
density enhancements, ne/n0, (bottom) for a slab trail
perpendicular B. The magnitude of each quantity is
represented by the grey-scale bar to the right.
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this case, the electric field points toward the center of the
trail and prevents the ions from escaping from the magne-
tized and less mobile electrons. At different altitudes, the
changing collision rates alter the relationship between these
mobilities. Below 100 km (near the magnetic equator),
the collision rates become high enough that the electron
diffusion rate exceeds the ion rate causing the ambipolar
electric field to reverse directions.
[18] The transition altitude where E shifts from pointing

inward toward the trail center to outwards depends on
latitude because of the changing geomagnetic field.

3.2. Equilibrium Electron Drifts

[19] Electron drift motion results from the combination of
E � B and diamagnetic drifts where, in the absence of
external electric fields or, equivalently, neutral winds, E
arises from the self-generated ambipolar electric fields.
Combining equations (2) and (4) makes the electron drift
velocity

ve? ¼ DT

mT
þ De

me

� �
rs�B̂

Bj j � De? � me?
DT

mT

� �
rs ð7Þ

where B̂ � B/jBj. In the case where electron motion lies
purely perpendicular to rn, this simplifies to

ve? ¼ C2
s

�i 1þC0ð Þrs�B̂;

C2
s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kB Te þ Tið Þ

mi

s
and C0 �

neni
�e�i

ð8Þ

where Cs is the ion acoustic velocity and C0 is a ratio that
shows up repeatedly in E region dynamics. This equation
tells us that, regardless of the direction of E, the electrons
always drift in the positive rn � B̂ direction. At high
altitudes E � B drifting dominates, but at lower altitudes, as
E changes sign, the electrons continue to drift in the same
direction. This occurs because the diamagnetic drift rate, vD,
becomes larger, preventing the electrons from reversing
direction. Figure 2 compares drift velocities as a function of
altitude for a trail with rs = 1 m�1. Electron velocity scales
linearly with rs and Figure 1 shows a trail with rs = 4 m�1

at 102 km altitude which results in drifts of 5.2 km/s.
These drifts combined with the density gradients drive the
instabilities discussed in Dyrud et al. [2001] and Oppen-
heim et al. [2000].

[20] A single fluid (MHD-like) approach gives us a better
understanding of why the electrons always rotate in the
positive rn � B direction. Simply,

J�Bþ Rn ¼ rp;

where p is the pressure, J is the current, and

Rn � �mininivi � meneneve

is the collision with neutrals (friction) term, necessary
within the ionosphere. Since the pressure drives all meteor
trail evolution, the combination of J � B and Rn must
combine to equal rp and the radial component must always
have the same sign as at rp. At high altitudes, collisions
with neutrals are rare and, hence, Rn is small. This means
that the radial component of J, can be calculated by J � B =
rp. As one descends to lower altitudes, R increases and J �
B decreases until eventually R � rp. At no point can R
ever exceed rP and cause J to reverse directions.
[21] We can generate an equation for cross-field ambipo-

lar diffusion using equation (8) and the continuity equation
for the case where the symmetry eliminates the cross-field
terms in equations (8) and (3):

@n

@t
¼ Da?r2n; Da? � De? � me?

DT

mT

� �
: ð9Þ

The resulting diffusion coefficient, Da?, typically predicts
slow trail expansion perpendicular to B. However, this
diffusion rate neglects dynamics parallel to B and perturba-
tions along the trail, both of which will often play a
dominant role. One of the purposes in describing the
instabilities and waves in this paper and in the companion
paper is to show how an E region plasma column will
spontaneously develop density perturbations which will

Table 1. Physical Parameters for 102 km Equatorial Ionosphere

Parameter Value

External magnetic field, B0 2.9 � 10�5 T
Neutral gas density, nn 7.1 � 1018 m�3

Temperature, Ti,n 250 K
e�-neutral collision frequency, nen 3.0 � 104 s�1

Ion mass, mi 5.0 � 10�26 kg
Peak/background ratio, ne/n0 30
Trail line density, Nline 2.7 � 1013 m�1

Background e� density, n0 1.1 � 1011 m�3

Trail radius, rt 1.5 m
Ion-neutral collision frequency, nin 2.8 � 103 s�1

Figure 2. Electron velocity vs. altitude assuming para-
meters from the international reference ionosphere (IRI) for
the geomagnetic equator at 8 am L.T. and rn/n = 1 m�1.
VE�B shows the E � B drift velocity; Vrn�B shows the
diamagnetic drift velocity; and Ve? shows the sum of the
two velocities.
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dramatically increase the diffusion rate beyond that
described by equation (9).

3.3. Stability

[22] Linear plasma theory allows us to evaluate the
stability of these meteor trails. Further, it gives us insight
into the phase and group velocities and growth or damping
of any wave which might develop within the trail. Since
radars are extremely sensitive to plasma waves, understand-
ing the characteristics of these waves should allow us to
better understand nonspecular radar echoes.
3.3.1. Fluid Stability
[23] Assuming both the electrons and ions behave as

plasma fluids, we can recreate the FBGD dispersion relation
described in Fejer et al. [1984]. To obtain the dispersion
relation, we assume inertialess electrons as in equation (2)
and quasi-neutrality as before, but keep ion inertia. The
linear, Fourier transformed, ion momentum equation
remains the same as equation (1) except ni ! ni � iw
where w is the complex wave frequency. With these
assumptions the following relation may be derived:

w� k � ve0 ¼ �A w� k � vi0ð Þ ni � iwð Þ þ iky2C2
s

	 

A � C0

ni
� i

�i

k � rs0�B̂

ky2

� � ð10Þ

where vi0 and ve0 are the equilibrium (drift) velocities of
each species; rs0 � rn0/n0 is the initial density gradient
scale length; ky2 � (k � irs0) � k.

[24] When applying this equation to E-region gradient
drift and Farley-Buneman instabilities, one typically
assumes that ni 
 wr 
 wi where w � wr +iwi. These
assumptions allow one to simplify equation (10) to

wr ¼ k � ve0= 1þ�0ð Þ incorrectð Þ

wi ¼
�0=ni
1þ�0

w2
r � k2C2

s þ
wrk � rs0�ẑ

�0�ik2

� � ð11Þ

which do not apply to meteor trails. In the case of meteor
trails, wr often has a similar magnitude as wi and vi and,
therefore, one must solve equation (10) as a quadratic
equation.
[25] Two assumptions do apply, allowing some simplifi-

cation of equation (10). If B = B0ẑ, then A simplifies to

A � �0=ni � i=�ið Þk � rs0�ẑ=ky2; ð12Þ

and if vi0 is negligible compared to ve0, which it always is
for E region plasmas, the quadratic equation simplifies to

w� k � ve0 ¼ �A niw� iw2
� �

þ iky2C2
s

	 

: ð13Þ

[26] A few interesting points about applying the disper-
sion relation, equation 10, to meteor trails follow. First, in
Farley-Buneman theory, the k � ve0 term drives the insta-
bility. For meteor trails, with no driving external electric
field, the Aiky2Cs

2 term also contains a real component
which always exceeds the k � ve0 term such that adding
the real components of the two terms yields

< Aik2C2
s � k � ve0

	 

¼ C2

s k � rs0�B̂

�i

�0

1þ�0

: ð14Þ

This assumes that rs0 � k/k2 � 1, which applies when k
represents waves aligned mostly perpendicular to the gra-

Figure 3. Shows the real (top) and imaginary (bottom)
parts of w as a function of vertical and horizontal
wavenumber, k. Of the two roots, only the one with the
larger wi is shown. The bottom panel only shows values for
wi > 0.

Figure 4. The left plot shows growth rate, wi, versus
wavenumber, kx, from fluid (solid line) and kinetic (dashed
line) dispersion relations. The right figure shows the
frequencies, wr. Calculations were done for the ionosphere
at 102 km as shown in Table 1.
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dient, rs. Second, while the diamagnetic term dominates the
electron drift velocity, diamagnetic drifts are divergence free
and, therefore, do not contribute to driving the instability.
[27] Figure 3 shows an example of a solution to equation

(13) for the parameters shown in Table 1. Particle-in-cell
simulations, described and discussed in the companion
paper, demonstrate that waves grow for a system with these
parameters. Though Figure 3 shows increasing growth rates
for increasing values of jkj, the simulation shows a peak
wavelength at 20 cm. While fluid equations accurately
represent the physics at the longest unstable wavelengths
and the conditions for instabilities, one needs a kinetic
theory to predict which wavelengths grow the fastest.
3.3.2. Kinetic Theory of Stability
[28] Fluid plasma theory ignores kinetic phenomena. In

particular, at short wavelengths, we expect ion Landau
damping to reduce the growth rate [Schmidt and Gary,
1973; Lee et al., 1971]. (Note that a minor error exists in the
Schmidt and Gary [1973] paper: The first term in the
denominator of equation (3) should be multiplied by �1.)
To derive a dispersion relation which incorporates this
physics, we assume warm, inertial, magnetized and fluid
electrons, fully kinetic but unmagnetized ions and use
Poisson’s equation. The resulting dispersion relation
describing modes perpendicular to both rn and B is

0 ¼ Hi � He þ kx

Hi �
w2
pi 1:0þ bZ bð Þð Þ

�v2ithkx � inivithZ bð Þ=
ffiffiffi
2

p

He �
w2
pekx ne=�2

e � i= Ln�ekxð Þ
� �

�iwþ ikxvd þ k2x v
2
eth ne=�2

e � i= Ln�ekxð Þ
� �

b � wþ inið Þ=
ffiffiffi
2

p
vithkx

� �
ð15Þ

where Ln = (rn/n)�1 is the gradient length scale, wpi
2 = ne2/

(e0mi) is the ion plasma frequency and Z(b) is the plasma
dispersion function [Chen, 1984].
[29] Figure 4 illustrates the importance of the kinetic

effect by comparing solutions of the fluid and kinetic
dispersion relations. The fluid solution shows growth for
wavelengths even much shorter than a Debye length while
the kinetic solution shows a distinct peak at a given wave
number and limited range of unstable wavelengths. It also
shows that the frequency and, therefore, the phase velocity
changes from that predicted by the fluid dispersion relation.
Note that if we calculate growth rates by assuming quasi-
neutrality instead of using Poisson’s equation in the deriva-

Figure 5. Left panel plots initial radius of trail versus altitude for the Baggaley and Bronshten models
for a meteor traveling 60 km/s. The center panel shows the predicted growth rate as a function of altitude
and peak plasma density, n0/nb, for the radius suggested by the Bronshten model. The right panel shows
the same for the radius suggested by the Baggaley model. The dashed lines show the boundary between
growing and damped instabilities calculated using the fluid instability equation assuming the smallest
permissible wavelength is twice the Debye length.

Figure 6. Example of a trail echo recorded by the VHF
ALTAIR radar at the Kwajalein missile range as a function
of altitude and time (Courtesy of Close et al. [2002]).
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tion of the dispersion relation, then our results incorrectly
predict a 30% longer fastest growing wavelength.
[30] This analysis oversimplifies the physics of real

meteor trails. It assumes a constant and essentially infinitely
long gradient scale length, Ln. It also neglects any electron
thermal or kinetic effects which could modify the solution
further.
3.3.3. Criteria for Instability Onset
[31] Our analysis of meteor trail instabilities allows us to

predict the range of altitudes where we expect field-aligned
irregularities to develop. Figure 5 shows positive growth
rates as a function of altitude and peak plasma density for
meteor trails having a Maxwellian density profile, n =
n0exp(�r2/r0

2) + nb. To set the crucial scale length, r0,
we used two initial radius equations: the theoretical
[Bronshten, 1983] prediction and the [Baggaley, 1981]
equations which were based on underdense radar measure-
ments. One can see that the instability growth rate depends
strongly on the initial radius and only weakly on the peak
plasma density. The minimum altitude is mostly determined
by the high collision rates and depends only weakly on
meteor parameters.
[32] A number of factors control the minimum altitude at

which instabilities occur. First, at higher latitudes than the
equatorial case shown in Figure 5, B increases causing the
electron mobility to decrease. This causes the instability
threshold to move down by as much as a few kilometers.
Second, lighter ion species, such as O+, have higher ion
mobilities than the assumed Si+ and will cause a drop in the
minimum altitude.
[33] The initial radius of the trail determines rs which

primarily controls the maximum instability altitude. The
Bronshten [1983] values allow us to predict instability over
a limited altitude range. The smaller radii predicted by
Baggaley [1981] lead us to predict essentially no ceiling
on the instability altitude. Nonspecular trail observations
showing that the maximum nonspecular trail altitude
matches that predicted using the Bronshten [1983] values
for initial radius gives a new approach to resolving the long-
standing problem of meteor trail initial radius [Dyrud et al.,
2002].
3.3.4. Observational Evidence for Onset Criteria
[34] The observational data shows nonspecular trails over

a limited range of altitudes. Figure 6 shows a strong trail at
high resolution. The line on the left hand side of the image
results from the head echo [Close et al., 2002]. The trail
echo on the right spans a smaller range of altitudes than did
the head echo. This difference occurs frequently and is
discussed in more detail in Dyrud et al. [2002].

4. Conclusions

[35] Using both fluid and kinetic descriptions of meteor
trail plasma dynamics, we have developed a local theory of
instabilities which allows us to better explain simulations and
observations of meteor trails by large power-aperture product
radars and classical meteor radars. The comparison with
simulations will be discussed further in the companion paper.
We started by solving for the equilibrium state of a diffusing
meteor trail perpendicular to B and showing that both the
electron diamagnetic drift and E � B drift contribute to the
total electron drift. We were able to demonstrate that the total

electron drift always travels in the rn � B direction, even
when theE�B drift drives electrons in the opposite direction.
We then evaluated the linearized fluid system of equations
around this equilibrium state, showing that the simplified
forms of the FBGD assumptions of equation (11) do not apply
tometeor trails and that onemust solve the complete quadratic
dispersion relation. We then described and solved the kinetic
equations which show how ion Landau damping eliminates
short wavelength modes. This will prove useful in predicting
the dominant instability wavelength seen in the simulations.
[36] The linear theory of meteor trails allows us to predict

the altitude range where instabilities will grow. Making a
number of assumptions about the state of ‘‘typical’’ meteor
trails, we demonstrated that one expects instabilities only
within a limited range of altitudes, typically between 95 and
105 km. The minimum altitude depends principally on the
meteor plasma composition and latitude of the trail. The
maximum altitude depends primarily on the gradient scale
length of the trail which results from the initial radius of the
meteor trail. We used this dependency to show that the
Bronshten [1983] description of initial radius matches
observations better than the description put forth by [Bag-
galey, 1981].
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