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Energy and Spectral Efficiency Tradeoff with User Associationand
Power Coordination in Massive MIMO Enabled HetNets

Yuanyuan Hao, Qiang Ni, Hai Li, and Shujuan Hou

Abstract—In this paper, we investigate the tradeoff between
energy efficiency (EE) and spectral efficiency (SE) while ensuring
proportional rate fairness in massive multiple-input-multiple-
output enabled heterogenous networks, where user association
and power coordination are jointly considered. It is first formu-
lated as a multi-objective optimization problem, and then trans-
formed into a single-objective optimization problem. To solve
this mixed-integer non-convex problem, an effective algorithm is
developed, where the original problem is separated intolower
level power coordination problem and master user association
problem. Simulation results verify that our proposed algorithm
can significantly improve the performance of EE-SE tradeoffand
obtain higher rate fairness compared to other algorithms.

Index Terms—Energy efficiency, spectral efficiency, massive
MIMO, HetNets, user association, power coordination.

I. I NTRODUCTION

M ASSIVE multiple-input-multiple-output (MIMO) and
dense heterogenous networks (HetNets) can signif-

icantly improve energy efficiency (EE), spectral efficiency
(SE), which are recognized as promising technologies in the
future fifth-generation (5G) cellular networks. Meanwhile,
green communication has caught substantial attentions due
to steadily rising energy costs and environmental concerns.
Therefore, increasing EE has become an essential issue in 5G
networks [1].

Energy-efficient resource allocation in HetNets has been
considered extensively in the literature [2]. However, the
research on energy-efficient massive MIMO enabled HetNets
is still limited. The authors in [3] analyze the effect of massive
MIMO on the SE and EE of K-tier HetNets. In [4], the
network EE is maximized, but only the user association is
optimized and the transmit power of each base station (BS)
is fixed. Although EE is the major design metric for green
communications, optimal EE and SE are not always achievable
simultaneously and often conflict with each other [5], [6]. The
EE-SE tradeoff in HetNets is studied in [7], while the power
coordination is optimized with predefined user association.

In this letter, we comprehensively consider the joint user
association and power coordination optimization problem in
massive MIMO enabled HetNets to investigate the EE-SE
tradeoff with proportional rate fairness. To the best of our
knowledge, this issue has not been studied in the existing lit-
erature. We first formulate it as a multi-objective optimization
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(MOO) problem, and then transform it into a single-objective
optimization (SOO) problem. To solve this mixed-integer non-
convex problem, we employ the primal decomposition ap-
proach to divide it intolower level power coordination problem
andmaster user association problem, which are further solved
by sequential convex programming algorithm and Lagrangian
dual decomposition (LDD) method, respectively. Simulation
results provide insights on the EE-SE tradeoff and rate fairness
among users, and demonstrate that our proposed algorithm can
achieve better EE and SE performance while ensuring higher
rate fairness compared to other algorithms.

II. SYSTEM MODEL

Consider a two-tier HetNet composed of a macro BS (MBS)
equipped with a large-scale array ofM antennas,J−1 single-
antenna pico BSs (PBS), andK single-antenna users. Letj ∈
{1, 2, · · · , J} be the index of BSs, wherej = 1 denotes the
MBS, and the others are PBSs. Besides, all BSs share the same
frequency band, and each user can be only associated with
one BS at any time. Equal resource sharing is also assumed
for users associated with the same BS.x = [xjk] is then
introduced to describe the user association, wherexjk = 1 if
userk is associated with BSj, andxjk = 0, otherwise. We
also definep = [p1, p2, · · · pJ ] as the transmit power vector
of all BSs.

We assume that the massive MIMO MBS can transmit at
mostN (N ≪ M ) downlink data streams simultaneously over
the same frequency band, and zero-forcing beamforming is
used for the massive MIMO downlink transmission. Thus, the
achievable downlink data rate of userk associated with MBS
is approximated as [8]

rjk =
N

kj
log2






1+

M −N + 1

N
·

pjhjk
∑

i6=1

pihik + σ2
k






, j = 1,

(1)
wherekj =

∑

k

xjk denotes the number of users associated

with BS j, hjk represents the channel gain, andσ2
k is the

noise power. Note that there is no small-scale fading in (1),
which is proven to be accurate [8].

For users associated with the same PBS, the achievable
downlink rate of userk associated with PBSj is

rjk =
1

kj
log2






1+

pjhjk
∑

i6=j

pihik + σ2
k






, j > 1. (2)

On the other hand, the total power consumption of the MBS
can be expressed as [9]Pj =

pj

εj
+Mρ+ ξj , j = 1, whereεj

denotes the power amplifier efficiency,ρ describes the circuit
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power per antenna, andξj represents the static circuit power
term independent of the antenna number. In contrast, the power
consumption of single-antenna PBSj is given byPj =

pj

εj
+

ξj , j > 1. Thus, the network total power consumption can be
calculated as

Ptot =
∑

j

Pj = Mρ+
∑

j

(pj/εj + ξj). (3)

III. PROBLEM FORMULATION

To study the EE-SE tradeoff while ensuring proportional
rate fairness, we formulate the joint user association and power
coordination problem as a MOO problem

max
x,p,k

∑

j

∑

k

xjk ln (rjk), (4a)

max
x,p,k

−Ptot, (4b)

s.t. C1 : pj ≤ pj,max, ∀j, (4c)

C2 :xjk ∈ {0, 1} , ∀j, k, (4d)

C3 :
∑

j

xjk = 1, ∀k, (4e)

C4 :
∑

k

xjk = kj , ∀j, (4f)

C5 :
∑

j

kj = K, (4g)

where pj,max is the maximum transmit power of BSj.
Note that here we keepkj as an optimization variable for
convenience in subsequent analysis.

It can be observed that problem (4) is a mixed-integer and
non-convex problem, and finding its global optimum is quite
difficult. We first employ weighted sum method [10] to transfer
problem (4) into a SOO problem. Although this method does
not guarantee to find the whole Pareto front due to the non-
concavity of rate function [11], we aim at finding a practical
algorithm to obtain the local optimum of user association
and power coordination, and it still provides many options
to achieve various levels of EE-SE tradeoff. To ensure the
consistent comparison, the objectives are first normalizedas

max
x,p,k

∑

j

∑

k

xjk ln (rjk)− Umin

Umax − Umin
, (5a)

max
x,p,k

−Ptot/Pmax, (5b)

whereUmax andUmin are the maximum and minimum sum
utility, andPmax denotes the maximum total power consump-
tion. Specifically,

Pmax = Mρ+
∑

j

(pj,max/εj + ξj), (6a)

Umax = max
x,p,k

∑

j

∑

k

xjk ln (r̃jk), Umin = K ln (δ) , (6b)

wherer̃jk is obtained by omitting the interference from other
BSs, andδ > 0 is a predefined, sufficiently small value. Note
thatUmax must be maximized at the maximum transmit power,
and thus we can employ the LDD method presented in Section
IV to find its user association solution.

The SOO problem is then obtained from (5) via weighted
sum method [10] as the following

max
x,p,k

w

∑

j

∑

k

xjk ln(rjk)−Umin

Umax−Umin

− (1− w) Ptot

Pmax

,

s.t. (4c)− (4g),

(7)

wherew ∈ [0, 1] is the weighting parameter. As stated in [11],
the EE-SE tradeoff is achieved whenwEE ≤ w ≤ 1, where
wEE corresponds to the point of the maximum EE.

IV. PROPOSEDALGORITHM

To solve (7), we need to do the following: select one BS
for each user and ascertain the transmit power of each BS. We
first employ the primal decomposition method to separate (7)
into the following two levels of optimization. By fixing user
association matrixx, the original problem can be transformed
into the equivalentlower level power coordination problem as

max
p

f (p) =
w

∑

j

∑

k

xjk ln(cjk)

Umax−Umin

−
(1−w)

∑

j

pj/εj

Pmax

,

s.t. (4c),
(8)

wherecjk = rjk · kj . At the higher level when the transmit
power vectorp is fixed, we can obtain themaster user
association problem as

max
x,k

g (x,k) =
∑

j

∑

k

xjk ln (cjk)−
∑

j

kj ln (kj),

s.t. (4d)−(4g).
(9)

Note that constant terms are omitted here for simplicity.

A. Lower Level Problem: Power Coordination

As mentioned before, the power coordination problem (8)
is a non-convex problem, and therefore finding its global
optimum with affordable complexity is rather difficult. Alter-
natively, we employ sequential convex programming [12], i.e.,
finding local optimum of (8) by solving a sequence of easier
problems, which helps to develop a low-complexity algorithm
guaranteed to converge to a first-order optimal solution of (8).

We adopt the lower bound of the logarithmic function [13],
i.e., log2 (1 + γ) ≥ αlog2γ + β, whereα = γ′

1+γ′
, andβ =

log2 (1 + γ′)− γ′

1+γ′
log2γ

′. Note that whenγ = γ′, the above
equality holds. Thus, by adopting the transformationqj =
log2pj , ∀j, f (p) in (8) can be lower-bounded by

f (p) ≥

w
∑

j

∑

k

xjk ln (c̃jk (q))

Umax − Umin
−

(1− w)
∑

j

2qj

εj

Pmax
= f̃ (q) ,

(10)
where c̃jk (q) = αjklog2 (SINRjk (q)) + βjk, andαjk and
βjk are calculated according to a given approximate SINR
value γ̃jk. Sincef̃ (q) is a concave function overq due to the
convexity of the log-sum-exp function [14], problem (8) can
be solved via the standard convex optimization problem

max
q

f̃ (q) , (11a)

s.t. 2qj ≤ pj,max, ∀j, (11b)

which can be solved by the interior-point method [14]. To
tighten the lower bound in (10), it is natural to update
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Algorithm 1 Sequential convex programming algorithm

1. Initialize n = 0, flag p = 1, andp0j = pj,max, ∀j.
2. Calculate the SINR̃γ0

jk.
3. while flag p > 0.01, do
4. n = n+ 1;
5. Calculateαn−1

jk andβn−1
jk according tõγn−1

jk , ∀j, k;
6. Solve problem (11) withαn−1

jk andβn−1
jk , and

7. obtain the global optimumqn;
8. Updatepnj = 2q

n
j , and SINRγ̃n

jk with pn, ∀j, k;

9. Calculate∆γ̃n
jk =

∣

∣

∣

(

γ̃n
jk − γ̃n−1

jk

)/

γ̃n−1
jk

∣

∣

∣, ∀j, k;

10. Calculateflag p = max
j,k

{

∆γ̃n
jk

}

.

11. end while

αjk and βjk in iterative manner with the updated SINR
γ̃jk = SINRjk (q

∗) and solving (11) until convergence. The
procedure is summarized inAlgorithm 1 , and the following
proposition further illustrates its convergence and optimality.

Proposition 1: Algorithm 1 monotonically increases the
value of f (p) at every iteration, and finally converges to a
point which satisfies the KKT conditions of problem (8).

Note that the proof of Proposition 1 can be found in [12].

B. Master Problem: User Association

Defining dual variablesλ = [λ1, λ2, · · · , λJ ] for the con-
straint (4f), andµ for (4g), the Lagrange function of (9) is

L (x,k,λ, µ) =
∑

j

∑

k

xjk ln (cjk)−
∑

j

kj ln (kj)

+
∑

j

λj

(

kj −
∑

k

xij

)

+ µ

(

∑

j

kj −K

)

.
(12)

Thus, the dual functionh (λ) can be represented as

h (λ, µ) =

{

max
x,k

L (x,k,λ, µ) ,

s.t. (4d)− (4e),
(13)

which can be divided into

h1 (λ) = max
x

∑

k

(

∑

j

xjk (ln (cjk)− λj)

)

,

s.t. (4d)− (4e),

(14)

and
h2 (λ, µ) = max

k

∑

j

kj (λj + µ− ln (kj)). (15)

Observing (14), the optimal user association is

x∗
jk =

{

1, j = argmax
i

ln (cik)− λi,

0, otherwise.
(16)

On the other hand, the optimalk∗j can be obtained by

setting
∂
∑

j

kj(λj+µ−ln(kj))

∂kj
= 0, which is calculated ask∗j =

eλj+µ−1. Thus, the dual function can be expressed as

h (λ, µ) =
∑

k

max
j

(ln (cjk)− λj) +
∑

j

eλj+µ−1 − µK.

(17)

Algorithm 2 Joint User Association and Power Coordination

1. For any given weighting parameterw,
2. Initialize l = 0, flag = 1, andp0j = pj,max.
3. while flag > 0.01, do
4. l = l + 1;
5. Calculatexl via (16) withpl−1;
6. Calculatepl by adopting Algorithm 1 withxl.

7. Calculateflag = max
j,k

∣

∣

∣xl
jk − xl−1

jk

∣

∣

∣.

8. end while

Finally, problem (9) can be solved via the dual problem
min

λ≥0,µ≥0
h (λ, µ) by adopting subgradient method [15]. Since

the user association variablexjk is discrete in nature, there
may be a non-zero duality gap. Nevertheless, the optimum
of dual problem often results in good solutions [4] and the
following proposition proves that the duality gap is bounded.

Proposition 2: For problem (9), the duality gap between
the objectiveg (x,k) obtained via subgradient method and
the global optimum is bounded by

∑

j

kj ln
(

kj
/

eλj+µ−1
)

.

Proof : Suppose that(λ, µ) are the optimized dual variables
at convergence of subgradient method, and(x,k) is the corre-
sponding solution obtained according to (16) andkj =

∑

k

xjk.

Thus, we have

g (x,k) =
∑

j

∑

k

xjk ln (cjk)−
∑

j

kj ln
(

eλj+µ−1
)

−Θ

(a)
=
∑

k

max
j

(ln (cjk)− λj) + (1− µ)K −Θ

(b)
= h (λ, µ)−Θ,

(18)
where Θ =

∑

j

kj ln
(

kj
/

eλj+µ−1
)

. Note that the equality

(a) is derived from (16), and (b) is due to the optimality
condition forµ: sinceh (λ, µ) is a convex function overµ, the
optimalµ satisfies∂h (λ, µ)/∂µ =

∑

j

eλj+µ−1−K = 0. Now,

assume that(x∗,k∗) is the global optimal solution for problem
(9). Because of the weak duality,h (λ, µ) ≥ g (x∗,k∗)
always holds. Thus, we prove thatg (x,k) ≥ g (x∗,k∗) −
∑

j

kj ln
(

kj
/

eλj+µ−1
)

. �

The iterative joint user association and power coordination
algorithm is summarized inAlgorithm 2 , which only requires
polynomial complexity: the power coordination solution can
be found by solving a series of standard convex optimization
problems with polynomial complexity; the complexity of the
user association problem isO (JK) at each inner iteration,
and the complexity of outer Lagrangian dual variable update
based on sub-gradient method is a polynomial function of the
dual problem dimension [15], i.e.,J + 1 for h (λ, µ).

V. SIMULATION RESULTS

We consider a cell in a two-tier HetNet with one macro
BS, three pico-BSs, and 30 users. The pathloss (dB) between
BS and user is modelled as128.1 + 37.6log10d (km), and the
shadow fading is log-normal distributed as

(

0,ϑ2
)

, whereϑ =
8dB. The power spectral density of noise is -174 dBm/Hz, and
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Fig. 1. (a) The convergence procedure of the proposed algorithm. (b) Energy efficiencyvs. spectral efficiency. (c) Jain’s fairness indexvs. spectral efficiency.

TABLE I
SIMULATION PARAMETERS

Parameters Default value Parameters Default value
Cell radius 500 m Bandwidth 10 MHz

M 100 N 10
p1,max 43 dBm pj,max, j > 1 23 dBm
εj ,∀j 0.38 ρ 0.02 W
ξ1 10 W ξj , j > 1 0.2 W

the other simulation parameters are shown in Table I. We first
present the convergence procedure of our proposed algorithm
in Fig. 1(a), which shows that the number of changedxjk

(∀j, k) between two iterations plummets to zero within about 8
iterations, indicating that the proposed algorithm can converge
quickly within a few iterations.

Then, we compare our algorithm ‘proposed UA+PC’ with
three algorithms: ‘LDD UA’ is the proposed LDD method for
user association with the fixed maximum transmit power of
each BS; ‘maxSINR UA’ means that each user chooses the
BS with the highest SINR, where the transmit power is also
fixed; ‘maxSINR UA+PC’ further includes power coordination
by adopting our proposed Algorithm 1.

By adjusting the weighting parameterw, the EE-SE tradeoff
for different algorithms is presented in Fig. 1(b). For our
proposed algorithm and ‘maxSINR UA+PC’, with the growing
of SE (w), EE first increases to the maximum point and then
decreases to a low level. Therefore, the EE-SE tradeoff can
be achieved with a specific range of0.55 ≤ w ≤ 1 for
the given the simulation parameters. Besides, for a given SE,
our proposed algorithm can achieve a higher EE compared
to ‘maxSINR UA+PC’. In contrast, since the transmit power
of each BS is fixed for ‘LDD UA’ and ‘maxSINR UA’,
their performances are represented by single points, whose
corresponding SE and EE are much lower than those achieved
by our proposed algorithm and ‘maxSINR UA+PC’.

Fig. 1(c) finally provides insights on the rate fairness
performance for different algorithms. For a given SE, our
proposed algorithm can achieve higher rate fairness than the
other algorithms. For algorithms without power coordination,
it is reasonable to see that ‘LDD UA’ achieves better rate
fairness than ’maxSINR’ because of its logarithmic objective,
while the price to pay is the loss of SE.

VI. CONCLUSION

In this paper, we investigated the tradeoff between EE
and SE in massive MIMO enabled HetNets, and proposed
an efficient algorithm for joint optimization of user associa-
tion and power coordination, which only requires polynomial
computational complexity. Simulation results provided insights
on the EE-SE tradeoff and rate fairness among users, and
demonstrated the effectiveness of our proposed algorithm in
comparison with other algorithms.
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