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Energy and Spectral Efficiency Tradeoff with User Associato
Power Coordination in Massive MIMO Enabled HetNets

Yuanyuan Hao, Qiang Ni, Hai Li, and Shujuan Hou

Abstract—In this paper, we investigate the tradeoff between (MOQ) problem, and then transform it into a single-objestiv
energy efficiency (EE) and spectral efficiency (SE) while ensing  optimization (SOO) problem. To solve this mixed-integenno
prc:pot”'onaél r?jteh ffurness n maﬁ;"’i mU';'P'e-'”put-mU'“Pg convex problem, we employ the primal decomposition ap-
output enable eterogenous networks, where user assoa .. o . .
and power coordination are jointly considered. It is first formu- proach to divide it |ntd(_)W_er level power Coprdlnatlon problem
lated as a multi-objective optimization problem, and then tans- andmaster user association problem, which are further solved
formed into a single-objective optimization problem. To stve by sequential convex programming algorithm and Lagrangian
this mixed-integer non-convex problem, an effective algsthm is  dual decomposition (LDD) method, respectively. Simulatio
developed, where the original problem is separated intdower g its provide insights on the EE-SE tradeoff and rateéais

level power coordination problem and master user association dd trate that d alqorith
problem. Simulation results verify that our proposed algoithm among users, and demonstrate that our proposed aigoriinm ca

can significantly improve the performance of EE-SE tradeoffand ~ achieve better EE and SE performance while ensuring higher
obtain higher rate fairness compared to other algorithms. rate fairness compared to other algorithms.

Index Terms—Energy efficiency, spectral efficiency, massive
MIMO, HetNets, user association, power coordination. Il. SYSTEM MODEL
Consider a two-tier HetNet composed of a macro BS (MBS)
. INTRODUCTION equipped with a large-scale array f antennas/ —1 single-

ASSIVE multiple-input-multiple-output (MIMO) and antenna pico BSs (PBS), ar single-antenna users. Lgte
M dense heterogenous networks (HetNets) can signifl:2, -+, J} be the index of BSs, wherg = 1 denotes the
icantly improve energy efficiency (EE), Spectra| efﬁciencMBS, and the others are PBSs. Besides, all BSs share the same
(SE), which are recognized as promising technologies in tHéquency band, and each user can be only associated with
future fifth-generation (5G) cellular networks. Meanwhileone BS at any time. Equal resource sharing is also assumed
green communication has caught substantial attentions d@g users associated with the same BS= [z;;] is then
to steadily rising energy costs and environmental concerfigiroduced to describe the user association, where= 1 if
Therefore, increasing EE has become an essential issue inUs@r'k is associated with BG, andz;, = 0, otherwise. We
networks [1]. also definep = [p1,p2,---py] as the transmit power vector

Energy-efficient resource allocation in HetNets has be&h all BSs. _ _
considered extensively in the literature [2]. However, the We assume that the massive MIMO MBS can transmit at
research on energy-efficient massive MIMO enabled HetNég9stN (N < M) downlink data streams simultaneously over

is still limited. The authors in [3] analyze the effect of mas the same frequency band, and zero-forcing beamforming is
MIMO on the SE and EE of K-tier HetNets. In [4], theused for the massive MIMO downlink transmission. Thus, the

network EE is maximized, but only the user association @phievabl_e downlink data rate of uselassociated with MBS
optimized and the transmit power of each base station (BiS)approximated as [8]
is fixed. Although EE is the major design metric for green

communications, optimal EE and SE are not always achievable ~ N M—-N+1 pihjk

simultaneously and often conflict with each other [5], [6heT Tk = k; logy | 1+ N > pihi + 02 |’ i=1
EE-SE tradeoff in HetNets is studied in [7], while the power i#1
coordination is optimized with predefined user association @)

In this letter, we comprehensively consider the joint us&¥ere

association and power coordination optimization problem iyith BS j, h;, represents the channel gain, anfl is the
massive MIMO enabled HetNets to investigate the EE-Sfpise power. Note that there is no small-scale fading in (1),
tradeoff with proportional rate fairness. To the best of oughich is proven to be accurate [8].

knowledge, this issue has not been studied in the existing li For users associated with the same PBS, the achievable
erature. We first formulate it as a multi-objective optinti@a  downlink rate of usek associated with PB$ is

= >z, denotes the number of users associated
k
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power per antenna, arg represents the static circuit power The SOO problem is then obtained from (5) via weighted
term independent of the antenna number. In contrast, thepowum method [10] as the following

consumption of single-antenna PBSs given by P; = £ + S S 2 In(ry0) = Unmin
&j,7 > 1. Thus, the network total power consumption can be max w-* —(1—w) Prot
ok Umnax—Unin Proax’ @)
calculated as P
s.t. (4c) — (4g),
Proy = Z Pj = Mp+ Z (pj/€j +&5)- ) Wwherew e [0,1] is the weighting parameter. As stated in [11],
! ’ the EE-SE tradeoff is achieved when:;z < w < 1, where
I1l. PROBLEM FORMULATION wgg corresponds to the point of the maximum EE.

To study the EE-SE tradeoff while ensuring proportional
rate fairness, we formulate the joint user association amep
coordination problem as a MOO problem

IV. PROPOSEDALGORITHM

To solve (7), we need to do the following: select one BS
for each user and ascertain the transmit power of each BS. We

max SO wipIn(ri), (4a) first employ the primal decomposition method to separate (7)
P into the following two levels of optimization. By fixing user
max — P, (4b) association matrix, the original problem can be transformed
Pk 4 into the equivalenkower level power coordination problem as
s.t. 2P < Pimax, V7,
SO = Pimass ¥, (c) WE S apuinien) (- Sri/e
C2 “Tjk € {07 1}) VJ, k7 (4d) mlz)xx f(p) = U —Umin — Do s (8)
C3: ijk =1, Vk, (4e) s.t. (4c),
7 ' wherec;, = rj; - k;j. At the higher level when the transmit
C4: Y wjy = ky, Vi, (4)  power vectorp is fixed, we can obtain thenaster user
k association problem as
o XJ: S 0 max & (x, k) =325 aji In (ej) — 2o kj In (ky), ©)
J x ik j
where p; max IS the maximum transmit power of BS. s.t. (4d)—(4g).

Note that here we keep; as an optimization variable for Note that constant terms are omitted here for simplicity.
convenience in subsequent analysis.
It can be observed that problem (4) is a mixed-integer ard |ower Level Problem: Power Coordination

non-convex problem, and finding its global optimum is quite Ag mentioned before, the power coordination problem (8)
difficult. We first employ weighted sum method [10] to transfe,g 5 non-convex problem, and therefore finding its global

problem (4) into a SOO problem. Although this method dogg i m with affordable complexity is rather difficult. &kt

not guarantee to find the whole Pareto front due to the ”%tively, we employ sequential convex programming [12}, i

concavity of rate function [11], we aim at finding a practicafining'jocal optimum of (8) by solving a sequence of easier
algorithm to obta_ln t.he local optimum o_f user assoc'a,t'oﬁroblems, which helps to develop a low-complexity algarith
and power coordination, and it still provides many options,aranteed to converge to a first-order optimal solutior8hf (

to achieve various levels of EE-SE tradeoff. To ensure the\ye aqopt the lower bound of the logarithmic function [13],
consistent comparison, the objectives are first normalazed ie., log, (1+7) > alog,y + f, wherea — 117“ and 8 =

> Zk:%‘k In (rj) — Unin log, (14+/) — %:/,bgg’yl. Note that wheny = /, the above
max - i U , (5a) equality holds. Thus, by adopting the transformatign=
Pk max — Hmin log,p;, Vj, f (p) in (8) can be lower-bounded by
mmﬁ *Ptot/Pmax; (5b) o
_ B W NI (F (@) (1—w) 222
where Un,ax and Uiy are the maximum and minimum sum f(p) > —2 k _ J ~f(q),
utility, and P,,., denotes the maximum total power consump- - Umax — Umin Prax
tion. Specifically, _ (10)
whereé;i, (q) = ajilog, (SINR; (q)) + Bk, and o, and
Poax = Mp + Z (Pjmax/€j + &), (6a) pji are calculated according to a given approximate SINR

P value ;. Sincef (q) is a concave function ovey due to the
R convexity of the log-sum-exp function [14], problem (8) can
Umax = maXZ Zxﬂ'k I (75), Umin = KIn(8), (6b)  pe solved via the standard convex optimization problem
ik

x,p,.k
wheref;;, is obtained by omitting the interference from other max f(a), (11a)
BSs, andd > 0 is a predefined, sufficiently small value. Note s.6. 29 < pjmass Vi, (11b)

thatU,.x must be maximized at the maximum transmit power,
and thus we can employ the LDD method presented in Sectiwhich can be solved by the interior-point method [14]. To
IV to find its user association solution. tighten the lower bound in (10), it is natural to update
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Algorithm 1 Sequential convex programming algorithm  Algorithm 2 Joint User Association and Power Coordination

1. Initializen =0, flag_p =1, andpg = Pjmax; VJ. 1. For any given weighting parametet
2. Calculate the SINRY,. 2. Initialize [ = 0, flag = 1, andpj = pj max-
3. while flag_p > 0.01, do 3. while flag > 0.01, do
4. n=n-+1; 4 l=1+1;
5. Calculatex”, ' andss}, " according tOy” L Vi k; 5.  Calculatex' via (16) withp'~';
6. Solve problem (11) withy"!~ ! and 5n , and 6.  Calculatep! by adopting Algorithm 1 withx!.
7. obtain the global optlmurq 7 Calculatefliag = mz}xcx‘ T — xikl‘
75

8 Updatep’ = 295, and SINwa with p1 , Vi, k; 8. end while
9. CalculateAys, = ‘(ij Vi /’yj”k ‘ Vi, k;
10. Calculatefi = AFL L. . .

_ flag_p I?%CX{ Vi Finally, problem (9) can be solved via the dual problem
11. end while A>rf)nn>0h( w) by adopting subgradient method [15]. Since

the user association variablg,, is discrete in nature, there
may be a non-zero duality gap. Nevertheless, the optimum
of dual problem often results in good solutions [4] and the
efollowmg proposition proves that the duality gap is boudde

Proposition 2: For problem (9), the duality gap between
the objectiveg (x,k) obtained via subgradient method and
the global optimum is bounded bEk In (k; /edtr=1).

aj, and [, in iterative manner with the updated SINR

ik = SINR ;i (q*) and solving (11) until convergence. Th

procedure is summarized ilgorithm 1, and the following

proposition further illustrates its convergence and optity
Proposition 1: Algorithm 1 monotonically increases the

value of f (p) at every iteration, and finally converges to a

point which satisfies the KKT conditions of problem (8). Proof: Suppose that\, 1) are the optimized dual variables
Note that the proof of Proposition 1 can be found in [12]at convergence of subgradient method, &) is the corre-

sponding solution obtained according to (16) &nd= > ;.

B. Master Problem; User Association Thus, we have i
Defining dual variables\ = [\, A2, --- , ;] for the con- _ ) oy ) Nj+p—1Y) _

straint (4f), andu for (4g), the [Lagrange fun(]:tion of (9) is B (x k) ZJ: Zk:mjk o (c4) %:kj " (e ) ©

L(Xakvkmu):szjkln(cjk)*z:kjln(kj) (i)zk:mjax(ln(cjk>7>\])+(17M>K7®
Jk ' (12) Oy -6,
T2 <k‘j2k:$ij)+ﬂ<2kjf<>- (18)

where ® = Y k;In(k;/e*#~1). Note that the equality

Thus, the dual functiom (A) can be represented as (@) is derived from (16), and (b) is due to the optimality

max L (x,k, A, p1) condition foryp: sinceh (A, 1) is a convex function oves, the
h(A,p) = Sxék (4d) — (de) (13)  optimaly satisfiesth (A, p) /0p = 3. eX+r—1—K = 0. Now,

J
which can be divided into assume thatx*, k*) is the global optimal solution for problem

(9). Because of the weak dualityy (\,p) > g(x* k*)

always holds. Thus, we prove th k) > k¥) —
hi (A) = max3 | 32wk (In(cn) — )\j))a (14) Zk-yln (k; JeXitr1) P atx, k) > g(x", k") .
R J :
st (4d) — (4e), ! The iterative joint user association and power coordimatio
and algorithm is summarized iAlgorithm 2, which only requires

ho (A, p) = maxz ki (N 4+ —1n(k;)). (15) polynomial complexity: the power coordination solutiomnca
k= be found by solving a series of standard convex optimization

problems with polynomial complexity; the complexity of the

user association problem 8 (JK) at each inner iteration,

. { 1, j=argmaxln(cp) — A, and the complexity of outer Lagrangian dual variable update

Observing (14), the optimal user association is

T TN 0. otherwise (16) based on sub-gradient method is a polynomial function of the
' WISe: dual problem dimension [15], i.eJ] + 1 for h (X, ).
On the other hand, the optimad; can be obtained by

) 6§kj(Aj+ufln(kj)) o . V. SIMULATION RESULTS
SSFTEI h i’kﬁ Ifﬁ 0'_Wh|Ch 's calculated agj = We consider a cell in a two-tier HetNet with one macro
e’ Thus, the dual function can be expressed as gg three pico-BSs, and 30 users. The pathloss (dB) between
Zmax (In (c;) ) + Z Nite=1 BS and user is modelled d28.1 + 37.6log,,d (km), and the
shadow fading is log-normal distributed &&v9?), wherey =
(17) 8dB. The power spectral density of noise is -174 dBm/Hz, and
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. 1. (a) The convergence procedure of the proposed #igurib) Energy efficiencys. spectral efficiency. (c) Jain’s fairness index spectral efficiency.

TABLE |
SIMULATION PARAMETERS

—— proposed UA+PC]
—+—maxSINR UA+PQ
> LDD UA
O maxSINR UA

0.75¢

0.7r

0.65-

0.6r

Jain fairness index

0.5r

Spectral efficiency (bit/s/Hz)

(b)

Parameters | Default value | Parameters | Default value
Cell radius 500 m Bandwidth 10 MHz
M 100 N 10
P1,max 43 dBm Djmax,J > 1 23 dBm
€;,Vj 0.38 p 0.02 W
& 10w &,g>1 0.2 W

0.45
110

180 130 140 150 160 170
Spectral efficiency (bit/s/Hz)

©

120 18C

VI. CONCLUSION

In this paper, we investigated the tradeoff between EE
and SE in massive MIMO enabled HetNets, and proposed
an efficient algorithm for joint optimization of user associ
tion and power coordination, which only requires polyndmia
computational complexity. Simulation results providesighnts
on the EE-SE tradeoff and rate fairness among users, and
demonstrated the effectiveness of our proposed algorithm i
comparison with other algorithms.

the other simulation parameters are shown in Table I. We first
present the convergence procedure of our proposed algoritrh]
in Fig. 1(a), which shows that the number of changggd

(V4, k) between two iterations plummets to zero within about 8
iterations, indicating that the proposed algorithm carveoge 2!
quickly within a few iterations.

Then, we compare our algorithm ‘proposed UA+PC’ with[3]
three algorithms: ‘LDD UA is the proposed LDD method for
user association with the fixed maximum transmit power of4]
each BS; ‘maxSINR UA" means that each user chooses the
BS with the highest SINR, where the transmit power is als
fixed; ‘maxSINR UA+PC’ further includes power coordination
by adopting our proposed Algorithm 1.

By adjusting the weighting parameter the EE-SE tradeoff
for different algorithms is presented in Fig. 1(b). For our
proposed algorithm and ‘maxSINR UA+PC’, with the growing”]
of SE (w), EE first increases to the maximum point and then
decreases to a low level. Therefore, the EE-SE tradeoff cd8i
be achieved with a specific range 0655 < w < 1 for
the given the simulation parameters. Besides, for a given Skg
our proposed algorithm can achieve a higher EE compared
to ‘maxSINR UA+PC'. In contrast, since the transmit powe
of each BS is fixed for ‘LDD UA and ‘maxSINR UA, [11]
their performances are represented by single points, whose
corresponding SE and EE are much lower than those achieyﬁﬁl
by our proposed algorithm and ‘maxSINR UA+PC'.

Fig. 1(c) finally provides insights on the rate fairness

(6]

performance for different algorithms. For a given SE, our
proposed algorithm can achieve higher rate fairness than th
other algorithms. For algorithms without power coordiaafi [14]
it is reasonable to see that ‘LDD UA' achieves better rates
fairness than 'maxSINR’ because of its logarithmic objexiti
while the price to pay is the loss of SE.
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