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Abstract

Stochastic programming concerns mathematical programming in the pres-

ence of uncertainty. In a stochastic program uncertain parameters are mod-

eled as random vectors and one aims to minimize the expectation, or some

risk measure, of a loss function. However, stochastic programs are computa-

tionally intractable when the underlying uncertain parameters are modeled

by continuous random vectors.

Scenario generation is the construction of a finite discrete random vector

to use within a stochastic program. Scenario generation can consist of the

discretization of a parametric probabilistic model, or the direct construction

of a discrete distribution. There is typically a trade-off here in the number

of scenarios that are used: one must use enough to represent the uncertainty

faithfully but not so many that the resultant problem is computationally in-

tractable. Standard scenario generation methods are distribution-based, that is

they do not take into account the underlying problem when constructing the

discrete distribution.

In this thesis we promote the idea of problem-based scenario generation.

By taking into account the structure of the underlying problem one may be

able to represent uncertainty in a more parsimonious way. The first two

papers of this thesis focus on scenario generation for problems which use a

tail-risk measure, such as the conditional value-at-risk, focusing in particular

on portfolio selection problems. In the final paper we present a constraint
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driven approach to scenario generation for simple recourse problems, a class

of stochastic programs for minimizing the expected shortfall and surplus of

some resources with respect to uncertain demands.
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Preface

Uncertainty is a key feature of many real-world decision making problems.

In portfolio selection problems one has to choose how to invest capital in fi-

nancial instruments with uncertain returns; in inventory problems one must

choose quantities of stock without knowing the future demand. Scenario

generation is concerned with the representation of uncertainty in a form ap-

propriate for mathematical optimization. In particular, uncertain quantities

must be represented by a finite number of possible future realizations, or

scenarios, and one must specify a probability for each of these.

Typically the greater the number of scenarios one uses, the more reliable

the solution that the optimization problem yields, but the more difficult the

problem is to solve. It is therefore desirable to represent the uncertainty as

concisely as possible. Standard scenario generation methods are distribution-

based. That is, they construct scenario sets which faithfully reflect the set of

future possibilities. The aim of this thesis is the design of problem-based sce-

nario generation methods. These are methods which take advantage of the

underlying structure of an optimization problem to provide a more parsi-

monious description of uncertainty. This may mean generating scenario sets

which, in a probabilistic sense, do not accurately represent the distribution of

future possibilities, but which yield near-optimal decisions to our problem.

The motivation for this thesis came from my supervisor Stein Wallace and

research with his former PhD students Kjetil Høyland and Michal Kaut on
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Preface

property-matching scenario generation. These methods consist of construct-

ing scenario sets which have prescribed statistical properties. Crucially, these

methods work on the premise that a given decision-problem will only re-

act to certain statistical properties, and in this sense, can be considered to

be problem-based. However, with these methods it is not usually clear a

priori which properties are important to a particular decision problem and

one has to resort to an empirical investigation to determine this. The aim of

this project was therefore to develop methods which could be proven math-

ematically to be adapted to a particular problem. For this purpose my other

supervisor, Amanda Turner, was enlisted to the project for her expertise in

probability theory.

The first two papers of this thesis concern decision problems which in-

volve tail risk measures. These are problems in which one attempts to miti-

gate or reduce the chance of extreme losses. The first paper is more general

and theoretical in content, and was primarily written in collaboration with

Amanda. The second paper, written primarily with Stein, is focused on port-

folio selection, and how the methodology proposed in the first paper could be

applied to realistic problems. The third and final paper of this thesis relates

to a class of inventory problems, and although it was more of an indepen-

dent piece of work, has benefited much from discussions with both of my

supervisors.

And so a big thank to both of my supervisors. Stein, for his enthusiasm

and insight, and whose flair for analogies would often be employed to make

me see the bigger picture. Amanda, for her optimism and mathematical

expertise, whose keen eye would often catch the flaws, subtle and unsubtle,

in my own mathematical logic.

It has been a privilege to have undertaken this research at the STOR-i

centre for doctoral training at Lancaster University. STOR-i has an engaged

and collegial community of students who have enthusiastically developed

and contributed to the activities, academic and social, of the centre. The
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regular forums, training events, and masterclasses organized by them and

staff have broadened my knowledge and skills well beyond the contents of

this thesis. There are too many people to thank here individually for their

work, collaboration and companionship, but I would like to mention my

colleagues Chris Nemeth, Tim Park and Shreena Patel, with whom I joined

STOR-i, for their friendship over these short few years.

Jamie Fairbrother

Lancaster University, April 21, 2016
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Background

1 Introduction

In this chapter we cover the preliminary material required for the reading of

this thesis. This introduction is by no means exhaustive; its aim is to simply

describe the general context of the research and provide some details on the

results we will implictly rely upon. In Section 2 we give a brief overview of

stochastic programming, in Sections 3 and 4 we present specific problems in

stochastic programming: the newsvendor problem and conditional value-at-

risk, two problems which feature prominently in our research papers. Finally,

we end this chapter with a broad review of scenario generation methods in

Section 5.

2 Stochastic Programming

2.1 General Stochastic Programs

Stochastic programming concerns optimization in the presence of uncertainty.

In the most general form a stochastic program consists of a real-valued ran-

dom vector ξ̃(ω) ∈ Ξ ⊂ Rd defined on a probability space (Ω,A, P), a deter-

ministic set of feasible decisions X ⊂ Rk, and a loss function f0 : Rk ×Rd → R∪ {+∞}

and possibly a set of vector-valued functions fi : Rk ×Rd → Rmi for i =

0, . . . , m used to further constrain the problem. The aim of a stochastic pro-
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gram is to minimize the expectation of the loss function subject to determin-

istic constraints and constraints in expectation:

minimize
x

EP

[
f0
(

x, ξ̃(ω)
)]

(1)

subject to EP

[
fi
(

x, ξ̃(ω)
)]
≤ 0, i = 1, . . . , m

x ∈ X . (2)

Through the use of indicator functions, the constraints in expectation become

probability constraints. These are useful in mitigating against extreme events

which cannot reasonably be completely precluded (see [1] for instance).

This relatively simple form belies the modeling flexibility of stochastic

programs and the difficulty of their solution. For instance, the two-stage

stochastic linear program (SLP) has the following form:

minimize
x

cTx + EP

[
Q(x, ξ̃(ω))

]
(3)

subject to Ax ≤ b

x ≥ 0

where

Q(x, ξ) = min {qTy : Wy = h− Tx, y ≥ 0}, (4)

and y, q ∈ Rt, h ∈ Rs, W ∈ Rs×t, T ∈ Rs×k and finally ξ = (q, W, h, T).

This type of problem models the situation where one has to make a strate-

gic decision in the presence of uncertainty, followed by a corrective or recourse

action once the values of uncertain parameters are fixed, and which incurs

its own costs. The minimization in (4) is referred to as the recourse problem.

The interpretation of the elements of the recourse problem is difficult as these

themselves are constructed from underlying blocks of variables or parame-

ters within the recourse problem. In addition, some of the components of the

random vector ξ̃(ω) = (q(ω), W(ω), h(ω), T(ω)) may be fixed.

For clarification we present a concrete example of a simple two-stage

stochastic linear program. In this problem we have a group of facilities I
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2. Stochastic Programming

which must produce and delivery some commodity to a group of customers

J. The aim of this problem is to decide on commodity capacities for each

facility in such a way which minimizes the combined costs setting up the

facilities, and the future costs of transporting the commodity and of rejected

demand. The mathematical formulation follows:

Parameters:

ci = unit cost of capacity for facility i

fij = unit cost of transporting commodity from facility i to customer j

rj = unit rejection penalty for unsatisfied demand for customer j

dj(ω) = stochastic demand of customer j

Decisions:

xi = capacity of facility i

yij(ω) = amount of commodity to transport from facility i to customer j

zj(ω) = rejected demand of customer j

minimize
x≥0

∑
i∈I

cixi + EP [Q(x, d(ω))]

where Q(x, d) is the optimal value to the following linear program:

minimize
y,z≥0

∑
i∈I, j∈J

fijyij + ∑
j∈J

rjzj

subject to ∑
i∈I

yij + rj = dj for all j ∈ J, (demand satisfied)

∑
j∈J

yij ≤ xi for all i ∈ I. (capacity not exceeded)

The recourse problem of this stochastic program is the problem of minimiz-

ing the flow of the commodity from the facilities to the customers. Compar-

ing this formulation to the general one in (4), we note that the only stochastic

element of ξ̃ in this case is h.

For completeness, we mention also that the problem (1) also encompasses

multistage stochastic programs in which the uncertainty takes the form of a
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stochastic process (ξ̃1(ω), . . . , ξ̃T(ω)), and one must make recourse decisions

as each set of values ξ̃t(ω) in the process is revealed. An example of this

problem type is the multistage stochastic unit commitment problem [2]. The

most general form of multistage stochastic program is the following:

minimize
x1∈X1

f10(x1) + E
[
φ1(x1, ξ̃1)

]

where for t = 2, . . . , T the function φt−1
(
x1, . . . , xt−1, ξ̃1, . . . , ξ̃t

)
is defined

implicitly as the optimal value to the following stochastic program:

minimize
xt

ft0 (xt) + Eξ̃t |ξ̃t−1

[
φt
(

x1, . . . , xt, ξ̃1, . . . , ξ̃t
)]

subject to fti
(

x1, . . . , xt−1, ξ̃1, . . . , ξ̃t−1
)
≤ 0, i = 1, . . . , mt

xt ∈ Xt.

where ξ̃ = (ξ̃1, . . . , ξ̃t−1) and Xt are deterministic sets of feasible decisions.

2.2 Two-stage stochastic linear programs

The research in this thesis mostly relates to two-stage SLPs. Here we present

some terminology related to and properties of this type of problem. For a

detailed overview of this type of problem see [3, Chapter 3].

The function Q(x, ξ) as defined in (4) is referred to as the recourse function,

while Q(x) := E [Q(x, ξ)] is the expected recourse function. By convention,

when the mathematical program which defines the recourse function in (4) is

infeasible, we set its value to +∞. We denote the set of solutions x for which

the Q(x, ξ) is feasible for all ξ ∈ Ξ by K, that is K = {x ∈ Rk : Q(x, ξ) <

+∞ for all ξ ∈ Ξ}.

Similarly, if problem (4) is unbounded below then we set the value to be

−∞. Note that if Q(x′, ξ) = −∞ for some x′ ∈ Rk then Q(x, ξ) = −∞ for all

x ∈ Rk. To see this, note that dual to the linear program defined in (4) is as

6



2. Stochastic Programming

follows:

maximize
π∈Rs

(h− Tx)Tπ

subject to WTπ ≥ q.

If we have Q(x′, ξ) = −∞ for some x′ ∈ Rk then this dual program is infea-

sible for x′, but given that the constraints of this problem do not involve x,

it must then be infeasible for all x ∈ Rk, in which case Q(x, ξ) = −∞ for all

x ∈ Rk.

A decision x is considered to be feasible for the problem (3) if Q(x, ξ̃) < +∞

with probability 1, or equivalently, if Q(x) < +∞. Note that this condition is

slightly weaker than the constraint x ∈ K.

The following result concerns the convexity of the recourse function:

Theorem 2.1. Assuming the recourse function Q(x, ξ) defined in (4) is not identi-

cally −∞, it is:

1. a piecewise linear convex function in (h, T);

2. a piecewise linear concave function in q;

3. a piecewise linear convex function in x for all x ∈ K.

Proof. We just prove that Q is convex in x. The proofs that Q is convex in

(h, T) and concave in q are similar. For the proofs of piecewise linearity,

see [3].

Fix ξ ∈ Ξ. If Q(x, ξ) = −∞ for some x then the result is immediate as the

function is identically −∞, so we assume that this is not the case. Now, let

x1, x2 ∈ K and y1, y2 be corresponding solutions to the problem (4). We first

show that the problem (4) is feasible for x = λx1 + (1− λ)x2:

W(λy1 + (1− λ)y2) = λWy1 + (1− λ)Wy2

= λ(h− Tx1) + (1− λ)(h− Tx2)

= h− T(λx1 + (1− λ)x2).
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Finally,

Q(λx1 + (1− λ)x2, ξ) ≤ qT(λy1 + (1− λ)y2)

= λqTy1 + (1− λ)qTy2

= λQ(x1, ξ) + (1− λ)Q(x2, ξ),

where the first inequality follows from the fact that λy1 + (1− λ)y2 is a fea-

sible solution to the recourse problem.

The recourse function is not convex or concave as a function of the matrix

W. Thus, if the matrix W is non-stochastic, that is W(ω) ≡ W, the stochas-

tic program is more tractable. The problem in this case is said to have fixed

recourse. In particular, if a problem has fixed recourse, it follows from Theo-

rem 2.1, that the expected recourse function is convex.

The evaluation of the expected recourse function, and thus solving the

problem (3), is typically analytically and numerically intractable when the

random vector ξ̃ has a continuous distribution. However, when the distri-

bution is discrete with mass points ξs = (qs, hs, Ts) for s = 1, . . . , n and

corresponding probabilities (ps)n
s=1, this evaluation reduces to a summation,

and the optimization problem to a linear program:

minimize
x

cTx +
n

∑
i=1

psqT
s ys

subject to Ax ≤ b

Wys = hs − Ts for s = 1, . . . , n

x, y ≥ 0

Although this can be solved using standard linear programming, specialized

algorithms exist which exploit the structure of this program, for example the

L-shaped decomposition [4].

In paper C of this thesis we study a particular type of fixed recourse called

simple recourse, which has the following form:

Q(x, ξ) = min{qT
+y+ + qT

−y− : Tx− ξ = Iy+ − Iy−, y+, y− ≥ 0}.

8



3. The Basic Newsvendor Problem

This function can be trivially rewritten as follows:

Q(x, ξ) = qT
+ (Tx− ξ)+ + qT

− (ξ − Tx)+

where x+ = max(x, 0) and the operator is applied element-wise. A sim-

ple recourse problem can thus be interpreted as follows: the vector Tx can

be thought of as the availability of a set of resources, ξ the corresponding

random demands for those resources, and y+, y− the surplus and shortfalls,

respectively of the resources with respect to this demand. The vectors q+ and

q− are then considered to be unit holding costs, and rejection costs, respec-

tively.

An important property of simple recourse is their separability. That is, the

recourse function can be decomposed as follows:

Q(x, ξ) =
d

∑
i=1

Qi(x, ξ)

where

Qi(x, ξ) = q+i (Tix− ξi)
+ + q−i (ξi − Tix)

+ ,

and Ti denotes the i-th row of the matrix T. This feature is exploited in more

specialized solution algorithms, see [5] for instance. We also make use of this

property in Paper C.

3 The Basic Newsvendor Problem

The newsvendor problem is a univariate decision problem which concerns

the inventory level of some product subject to an uncertain demand. The

name newsvendor problem has been given to this as it aptly models the sit-

uation of a newsvendor who must decide upon a stock of newspapers to

order to satisfy a daily uncertain demand. This problem is an example of

a two-stage stochastic linear program with simple recourse, and it is used

to illustrate our scenario generation methodology in Paper C of this thesis.
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However, as will be seen in Section 4 the newsvendor problem is also in-

timately related to conditional-value-at-risk. In this section we define this

problem, state its optimal solution, and give a detailed proof of this. A more

in-depth study of this model, including its applications and extensions can

be found in the classic textbook [6].

In the newsvendor problem, shortfall of stock relative to the demand in-

curs a unit rejection cost of R > 0. Similarly, a surplus of stock incurs a

holding cost h > 0. The aim of the problem is to choose an inventory level

which will minimize the total expected cost. If ξ̃ is a random variable repre-

senting demand, and x ∈ R is the inventory of the product, then this problem

can be written as follows1:

minimize
x∈R

E
[
Q(x, ξ̃)

]
where Q(x, ξ̃) = min{hz+ + Rz− : x− ξ̃ = z+ − z−, z+, z− ≥ 0}.

For convenience, we rewrite the recourse function Q(x, ξ̃) in the following

form:

minimize
x∈R

h E
[(

x− ξ̃
)+]

+ R E
[(

ξ̃ − x
)+] (5)

Note that the objective function E
[
Q(x, ξ̃)

]
is convex by the results in

Section 2.2. The set of minimizers of E
[
Q(x, ξ̃)

]
can be written in terms

lower and upper quantiles of the random variable ξ̃ . The lower quantile, or

simply the quantile 2of a random variable ξ̃ for 0 < β < 1 is defined to be:

ξβ = inf{x ∈ R : P
(
ξ̃ ≤ x

)
≥ β},

similarly upper quantile is defined as follows:

ξ̄β = inf{x ∈ R : P
(
ξ̃ ≤ x

)
> β}.

1The above interpretation of this problem requires that the solution satisfies x ≥ 0. However,

as will be seen, if the random variable ξ̃ is almost surely non-negative then the solution is

guaranteed to be non-negative so we do not need to explicitly enforce this constraint.
2The lower quantile of a random variable when considered as a function of β is also referred

to as the generalized inverse distribution function.
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3. The Basic Newsvendor Problem

Proposition 3.1. The set of minimizers of E
[
Q(x, ξ̃)

]
is the following compact

interval:

I = [ξ R
R+h

, ξ̄ R
R+h

].

Proof. Note first that for x′ < x we have

E
[(

x− ξ̃
)+]

=
∫
(−∞,x]

(x− ξ) P (dξ) =
∫
(−∞,x]

(
(x− x′)− (ξ − x′)

)
P (dξ)

= (x− x′) P
(
ξ̃ ≤ x

)
+
∫
(−∞,x′ ]

(x′ − ξ) P (dξ)−
∫
(x′ ,x]

(ξ − x′) P (dξ)

= (x− x′) P
(
ξ̃ ≤ x

)
+ E

[(
x′ − ξ̃

)+]− ∫
(x′ ,x]

(ξ − x′) P (dξ) .

Similarly,

E
[(

ξ̃ − x
)+]

=
∫
(x,+∞)

(ξ − x) P (dξ) =
∫
(x,+∞)

(
(ξ − x′)− (x− x′)

)
P (dξ)

=
∫
(x′ ,+∞)

(
ξ − x′

)
P (dξ)−

∫
(x′ ,x]

(ξ − x′) P (dξ)− (x− x′)P
(
ξ̃ > x

)
= E

[
(ξ̃ − x′)+

]
−
∫
(x′ ,x]

(ξ − x′) P (dξ)− (x− x′)P
(
ξ̃ > x

)
.

Now,

E
[
Q(x, ξ̃)

]
= E

[
Q(x′, ξ̃)

]
+ (x− x′)

(
hP
(
ξ̃ ≤ x

)
− RP

(
ξ̃ > x

))
− (h + R)

∫
(x′ ,x]

(ξ − x′) P (dξ)

= E
[
Q(x′, ξ̃)

]
+ (h + R)(x− x′)

(
P
(
ξ̃ ≤ x

)
− R

h + R

)
− (h + R)

∫
(x′ ,x]

(ξ − x′) P (dξ) . (6)

To show that the values in the above interval minimize E
[
Q(x, ξ̃)

]
we com-

pare the value of this function for different values of x and x′ using (6). First,

let x′ ∈ I and x > ξ̄ R
R+h

. By the definition of the upper quantile function, the

second term in (6) is strictly positive, also∫
(x′ ,x]

(y− x′) P (dy) < (x− x′) P
(

x′ < ξ̃ ≤ x
)

= (x− x′)
(

P
(
ξ̃ ≤ x

)
− R

R + h

)
,

11



hence E
[
Q(x′, ξ̃)

]
< E

[
Q(x, ξ̃)

]
. Similarly, if x′ < ξ R

R+h
and x ∈ I, it can

be shown that E
[
Q(x, ξ̃)

]
≤ E

[
Q(x′, ξ̃)

]
. Since E

[
Q(x, ξ̃)

]
is convex, it just

remains to be shown that it is constant on I. Suppose I is not a single point,

that x′ = ξ R
R+h

and x ∈ I with x > x′. Note that if I is not a single point then

we must have P
(

ξ̃ ≤ ξ R
R+h

)
= R

R+h . If x < ξ̄ R
R+h

then P
(
x′ < ξ̃ ≤ x

)
= 0 and

by (6) we see that we must have E
[
Q(x, ξ̃)

]
= E

[
Q(x′, ξ̃)

]
. If x = ξ R

R+h
, then∫

(x′ ,x](ξ − x′) P (dξ) = (x − x′)
(

P
(
ξ̃ ≤ x

)
− R

R+h

)
and again using (6) we

have that E
[
Q(x, ξ̃)

]
= E

[
Q(x′, ξ̃)

]
as required.

4 Risk Measures and Conditional Value-at-Risk

4.1 General Risk Measures

Throughout this section will denote by Z a random variable in R which

represents some loss. For our purposes, a risk measure is simply a functional

on a space of random variables.

Definition 4.1 (Risk Measure). Let (Ω,F , P) be a probability space, and V be a

non-empty set of F -measurable real-valued random variables. Then, a risk measure

is some function ρ : V → R∪ {∞}.

However, for a risk measure to be useful it should in some way quantify

the danger of large losses3. The quintessential example of a risk measure

is the variance of a random variable and was first used in [8] for portfolio

selection problems. A small variance implies a small probability of extreme

losses by Chebyshev’s inequality:

P (|Z− E|Z|| ≥ α) ≤ Var(Z)
α2 .

3The recent paper [7] which proposes a more general framework for measures of risk and

deviation, gives the following more specific characterization: a risk measure ρ should “model

X is “adequately” ≤ C by the inequality ρ(Z) ≤ C”, where C is some loss one wishes not to

exceed.

12



4. Risk Measures and Conditional Value-at-Risk

The use of variance as a measure of risk is problematic for a few reasons. The

foremost of these is perhaps that variance penalizes large profits as well as

large losses. As a consequence, in the case where the returns of financial as-

sets are not symmetrically distributed, using the variance can lead to patently

bad decisions; for instance, a portfolio can be chosen in favor of one which al-

ways has higher returns (see [9] for an example of this). This particular issue

can be overcome by using a “downside” risk measure, that is one which only

depends on losses greater than the mean, or some other specified threshold.

For example the semi-variance [10, Chapter 9], or mean regret [11]:

SemiVar(Z) = E
[
|Z−E [Z] |2+

]
MeanRegretτ(Z) = E [|Z− τ|+]

The semi-variance measures the deviation of losses greater than the mean,

whereas the mean-regret calculates the average loss exceeding some level τ.

The paper [12] introduced the idea of a coherent risk measure which is a

risk measure which satisfies the following properties:

• (Positive homogeneity) ρ(λZ) = λρ(Z) for λ ≥ 0

• (Translation invariant) ρ(Z + a) = ρ(Z) + a for any a ∈ R

• (Subadditivity) ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2)

• (Monotonicity) If Z ≥ 0 then ρ(Z) ≥ 04

Each of these has interpretations in finance, for instance if Z represents

the loss associated with the return of a portfolio, the subadditivity property

ensures that a risk measure favors diversification of portfolios. See [12] for

more details. These properties also ensure that a risk measure has desirable

mathematical properties. In particular subadditivity and positive homogene-

ity directly imply that a risk measure is convex.

4This differs from the corresponding axiom in [12] where Z is interpreted as utility rather

than loss
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4.2 Conditional Value-at-Risk

We now concentrate on a risk measure known as the conditional value-at-risk,

as this is the risk measure we use for our numerical experiments.

Denote by 0 < β < 1 a risk level. By GZ we denote the distribution

function of Z, that is

GZ(z) = P (Z ≤ z) .

By G−1
Z we denote the generalized inverse distribution function, or quantile func-

tion, of Z, that is

G−1
Z (β) = inf {z ∈ R : GZ(z) ≤ β}.

We will assume that the random variable Z has finite mean.

The β Value-at-Risk , or β -VaR, is a risk measure simply defined to be

the β-quantile of a random variable, that is β -VaR (Z) = G−1
Z (β). The β -VaR

has been widely used in finance [13], and it has the convenient interpretation

of representing the amount of capital required to cover up to β × 100% of

potential losses. However, the β -VaR has some undesirable properties: it is

not coherent and is generally intractable in an optimization context.

The β Conditional Value-at-Risk, or β -CVaR, is a risk measure which

dominates the β -VaR and overcomes its major deficiencies. It can be thought

of as the conditional expectation of a random variable above the β -VaR,

which is indeed the case for continuous random variables, but the general

definition is more technical. The β -VaR and β -CVaR for a continuous ran-

dom variable are illustrated in Figure 1.

The β -CVaR was first proposed in [14], and can be defined in several

ways. We use the following definition which is the most relevant in the

context of optimization.

Definition 4.2 (β -CVaR).

β -CVaR(Z) = min
α∈R
{α +

1
1− β

E
[
(Z− α)+

]
} (7)
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4. Risk Measures and Conditional Value-at-Risk

Density

Loss

Fig. 1: The β -VaR and β -CVaR of a continuous random variable

The definition of β -CVaR given in (7) is intimately related to the newsven-

dor problem presented in Section 3. Setting h = (1− β) and R = β in (5) and

using α in place of x, the objective function of the newsboy problem can be

rewritten as follows:

(1− β) E
[
(α− Z)+

]
+ β E

[
(Z− α)+

]
= (1− β) E

[
(Z− α)+ − (Z− α)

]
+ β E

[
(Z− α)+

]
= − (1− β) E [Z] + (1− β) α + E

[
(Z− α)+

]
= − (1− β) E [Z] + (1− β)

(
α +

1
1− β

E
[
(Z− α)+

])
.

Thus, calculating the β -CVaR is equivalent to solving a newsvendor problem.

Sometimes the conditional value-at-risk is referred to as the expected short-

fall. As the name suggests, this quantity is usually defined with respect to

lower tail of a random variable representing profit, rather than the upper tail

of a random variable representing loss as we have done. The following alter-

native characterizations of β -CVaR were originally given in [15] in relatation

to the expected shortfall. We restate and prove these results with respect to

the upper tail of the distributions rather than lower tails.

Proposition 4.3. The following are alternative characterizations of the conditional

value-at-risk:
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i 1
1−β

(
E
[

Z1{Z≥G−1
Z (β)}

]
− G−1

Z (β)
(

β−P
(

Z < G−1
Z (β)

)))
ii 1

1−β

∫ 1
β G−1

Z (u) du

From the first of these characterizations it is clear that when Z is contin-

uous, we have β -CVaR (Z) = E [Z|Z ≥ β -VaR (Z)]. The second characteri-

zation is written purely in terms of the quantile function of the distribution

and allows us to easily place β -CVaR in a wider collection of risk measures

we call β-tail risk measures as will be seen in Paper A of this thesis.

Proof. We first show that the first characterization is equivalent to (7). Noting

the equivalence of calculating the β -CVaR with the newsvendor problem,

and using Proposition 3.1, we see that the minimization in (7) is achieved for

α = G−1
Z (β). Hence,

β -CVaR = G−1
Z (β) +

1
1− β

E

[(
Z− G−1

Z (β)
)+]

= G−1
Z (β) +

1
1− β

∫
[G−1

Z (β),+∞)

(
z− G−1

Z (β)
)

P (dz)

= G−1
Z (β) +

1
1− β

(
E
[

Z1{Z≥G−1
Z (β)}

]
− G−1

Z (β)P
(

Z ≥ G−1
Z (β)

))
=

1
1− β

(
E
[

Z1{Z≥G−1
Z (β)}

]
+ G−1

Z (β)
(

1− β−P
(

Z ≥ G−1
Z (β)

)))
=

1
1− β

(
E
[

Z1{Z≥G−1
Z (β)}

]
− G−1

Z (β)
(

β−P
(

Z < G−1
Z (β)

)))
.

Thus, the first alternative characterization is proved.

To verify the second alternative formulation, we show that it is equivalent

to the first. Let U ∼ Uniform (0, 1) and define Z′ = G−1
Z (U) ∼ Z. Note that,

{U ≥ β} = {Z′ ≥ G−1
Z (β)} \

(
{U < β} ∩ {Z′ = G−1

Z (β)}
)

(8)

and so

1{U≥β} = 1{Z′≥G−1
Z (β)} − 1{U<β}∩{Z′=G−1

Z (β)}. (9)

16



4. Risk Measures and Conditional Value-at-Risk

Now,∫ 1

β
G−1

Z (u) du = E
[

Z′1{U≥β}

]
= E

[
Z′1{Z′≥G−1

Z (β)}

]
−E

[
Z′1{Z′=G−1

Z (β)}∩{U<β}

]
= E

[
Z′1{Z′≥G−1

Z (β)}

]
− G−1

Z (β)
(

β−P
(

Z′ < G−1
Z (β)

))
= E

[
Z1{Z≥G−1

Z (β)}

]
− G−1

Z (β)
(

β−P
(

Z < G−1
Z (β)

))
as required.

Another definition of β -CVaR is given in [16] where it is defined to be

the expectation with respect to an appropriately modified tail distribution

function. The β -CVaR was shown to be a coherent risk measure in [16],

and [17].

The main reason for the popularity of β -CVaR is that it is tractable in an

optimization setting. Like in Section 2 denote by X ⊂ Rk a set of feasible

decisions, by ξ̃ a random vector with support Ξ ⊂ Rd, and our loss function

by f : Rk ×Rd → R∪ {+∞}. We make the technical assumptions that for all

x ∈ X we have that ξ 7→ f (x, ξ) is measurable and E
[
f
(
x, ξ̃
)+]

< +∞.

Define the following auxiliary function,

Fβ(x, α) = α +
1

1− β
E
[(

f
(
x, ξ̃
)
− α
)+] ,

so that β -CVaR(f
(

x, ξ̃
)
) = minα∈R{Fβ (x, α)}. Now, the basic theory of op-

timization ensures that minimizing Fβ(x, α) with respect to α ∈ R and then

minimizing the residual function with respect to x ∈ X is equivalent to min-

imizing Fβ(x, α) with respect to (x, α) ∈ X × R. That is, minimizing the

β -CVaR
(
f
(

x, ξ̃
))

is equivalent to minimizing the much more tractable func-

tion Fβ(x, α). Moreover, since Fβ(x, ·) achieves its minimum for each x ∈ X

the solution sets coincide. This is summarized in the following theorem.

Theorem 4.4. The minimization of β -CVaR(f
(
x, ξ̃
)
) with respect to x ∈ X is

equivalent to minimizing Fβ(x, α) over X ×R:

min
x∈X

β -CVaR(f
(

x, ξ̃
)
) = min

(x,α)∈X×R
Fβ (x, α) . (10)
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and moreover the sets of solutions coincide:

(x∗, α∗) ∈ argmin
(x,α)∈X×R

Fβ (x, α)⇐⇒

x∗ ∈ argmin
x∈X

β -CVaR
(
f
(
x, ξ̃
))

, α∗ ∈ argmin
α∈R

Fβ(x∗, α).

The minimization of the auxiliary function Fβ(x, α) with respect to (x, α) ∈ X ×R

is particularly tractable when the underlying cost function is convex.

Corollary 4.5. Suppose that the loss function x 7→ f (x, ξ) is convex for all ξ ∈ Ξ.

Then, the function Fβ(x, α) is jointly convex in (x, α) ∈ X × R, and moreover,

β -CVaR
(
f
(

x, ξ̃
))

is convex as a function of x ∈ X .

Proof. If f (x, ξ) is a convex function, then the function (f (x, ξ)− α)+ is also

convex as a function of (x, α), and since the expectation of a convex function

is convex, the function Fβ (x, α) is a convex function of (x, α).

The function β -CVaR
(
f
(

x, ξ̃
))

is the residual of Fβ (x, α) when we have

minimized over α. A standard result from convex analysis [18, Proposition

2.22] tells us that when convex function is minimized with respect to some of

its variables, the residual function is convex. Thus, β -CVaR(f
(
x, ξ̃
)
) is also

convex function of x ∈ X .

When the loss function is convex in x ∈ X we can thus use standard algo-

rithms from convex optimization to minimize the β -CVaR. In the case where

the random vector ξ̃ is discrete, and f
(

x, ξ̃
)

is the recourse function of the

stochastic linear program in (4), we can write the problem in (10) as a linear

program. Suppose the random vector ξ̃ has mass points ξs = (qs, hs, Ts) with

associated probabilities ps, for s = 1, . . . , n. We introduce non-negative aux-

iliary decision variables zs ≥ 0, along with the constraints zs ≥ qT
s ys − α for

s = 1, . . . , n, so that zs models the exceedance of the loss over the variable

α in scenario s. The problem of minimizing the β -CVaR of loss function of
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4. Risk Measures and Conditional Value-at-Risk

two-stage SLP can now be written as follows:

minimize
x, α

cTx + α +
1

1− β

n

∑
s=1

pszs

subject to zs ≥ qT
s ys − α ∀ s = 1, . . . , n

Wy = hs − Tsx ∀ s = 1, . . . , n

Ax ≤ b

x, y, z ≥ 0.
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5 Scenario Generation

5.1 Introduction

In Section 2 we stated that stochastic programming problems were generally

intractable when the underlying random vector was continuous. Scenario

generation is the construction of a discrete random vector to use within a

stochastic program. This discrete random vector is usually referred to as a

scenario set and the individual atoms of the distribution as the scenarios. Gen-

erally, the more scenarios in a scenario set, the better the representation of the

uncertainty, and so the more reliable the solutions they yield. However, the

more scenarios one uses, the more computationally expensive the problem is

to solve. Scenario generation is therefore a trade-off between accuracy and

tractability.

Scenario generation methods can be categorized as distribution-driven or

problem-driven. The first three subsection present the main three families

of standard distribution-driven methods. In Section 5.2, we present sampling

approaches where one simply uses a sample from an underlying probabilistic

model of the uncertainty as a scenario set. In Section 5.3, we present the

optimal discretization approach to scenario generation where one attempts

to explicitly minimize the distance between a probabilistic model and the

constructed scenario set. In Section 5.4, we cover constructive approaches to

scenario generation where one directly models uncertain parameters with a

discrete distribution.

The focus of this thesis is the developement of problem-driven scenario

generation methods which have not received much study. In Section 5.5 we

we present two heuristic examples problem-driven approaches to scenario

generation from the literature.
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5. Scenario Generation

5.2 Sampling Approaches

The simplest way to construct a scenario set is to sample from a probabilistic

model for the uncertain quantities in the stochastic program.

In this section we suppose our stochastic optimization problem is of the

following form:

minimize
x∈X

{Fξ̃ (x) := Eξ̃

[
f(x, ξ̃)

]
} (11)

where x is a vector of decision variables with deterministic feasible region

X ⊂ Rk, ξ̃ is a random vector with support Ξ ⊂ Rm, and f : Rk ×Rd → R

is the loss function. Unlike the general model given in (1) we assume here

that there are no expectation constraints, that is the feasible region does not

depend on the distribution of ξ̃ . Not only does this simplify the theory of

sampling in stochastic problems, as will be seen in Section 5.2, it also allows

one to easily assess the quality of solutions. For a more detailed treatment of

this subject, including the general case, see [19, Chapter 5].

We denote the set of optimal solutions and the optimal solution value to

problem (11) respectively as follows:

S := argmin
x∈X

Fξ̃ (x) , z∗ = min
x∈X

Fξ̃ (x) .

we also denote an optimal solution as follows:

x∗ ∈ argmin
x∈X

Fξ̃ (x) .

Suppose now that ξ̃1, ξ̃2, . . . are a sequence of independently, identically

distributed copies of ξ̃ , on a probability space (Ω,F , P). The sample average

approximation (SAA) of the problem is defined as follows:

minimize
x∈X

{Fn (x) :=
1
n

n

∑
i=1

f(x, ξ̃i)} (12)

Similarly to the above, we denote the set of optimal solutions and the

optimal solution value for the SAA as follows:

Sn := argmin
x∈X

Fn (x) , z∗n := min
x∈X

Fn (x)

21



and an optimal solution is denoted as follows:

x∗n ∈ argmin
x∈X

Fn (x) .

The quality of a solution x∗n with respect to the original problem (11) is not

guaranteed. Indeed, z∗n and x∗n are random5since they depend on the real-

izations of the random vectors ξ̃1, ξ̃2, . . . , ξ̃n. All we can hope to do is make

probabilistic statements about the distributions of z∗n and x∗n. In this section

we present some theorems concerning the asymptotic behavior of solutions

from SAAs, and also how sampling can be used to assess the quality of a

feasible solution.

Before moving on to the asymptotic theory, we present now two basic

results, taken from [20], which provide some intuition about the behavior of

solutions obtained from the SAA.

In a stochastic program, the objective is to find a decision which mini-

mizes some expected future loss. In effect, this means that we must find a

decision which leads to relatively low losses for all likely future scenarios. In

a SAA, we are minimizing our costs with respect to only a subset of possi-

ble future scenarios. Hedging over a smaller set of scenarios, we are liable

to ’over-optimize’, and so we may expect the optimal costs with respect to

the approximated problem to be lower. This observation is formalized in the

following proposition.

Proposition 5.1. Let ξ̃1, . . . , ξ̃n be independently, identically distributed, with the

distribution of ξ̃ ; then,

E [z∗n] ≤ z∗ (13)

5Given that f (x, ξ) is continuous in x and measurable in ξ, it can be shown that z∗n(ω) and

the set of optimal solutions Sn(ω) = argmin
x∈X

Fn(ω, x) are measurable functions. Viewing x∗n

as a measurable selection of Sn, it can be considered alongside z∗n to be a random variable on

(Ω,F , P). See [19] for more details.
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5. Scenario Generation

Proof.

z∗ = min
x∈X

Eξ̃

[
f(x, ξ̃)

]
= min

x∈X
E

[
1
n

n

∑
i=1

f(x, ξ̃i)

]

≥ E

[
min
x∈X

1
n

n

∑
i=1

f(x, ξ̃i)

]
= E [z∗n]

The greater the sample size, the more scenarios against which we have to

hedge against in our SAA. Thus, we may expect the optimal costs of the SAA

increase as we increase our sample size.

Proposition 5.2. Let ξ̃1, . . . , ξ̃n+1 independently, identically distributed with the

distribution of ξ̃ ; then,

E [z∗n] ≤ E
[
z∗n+1

]
Proof.

E
[
z∗n+1

]
= E

[
min
x∈X

1
n + 1

n

∑
i=1

f(x, ξ̃i)

]

= E

[
min
x∈X

1
n + 1

n+1

∑
i=1

1
n

n+1

∑
j=1,j 6=i

f(x, ξ̃i)

]

≥ 1
n + 1

n+1

∑
i=1

E

[
min
x∈X

1
n

n+1

∑
j=1,j 6=i

f(x, ξ̃i)

]

= E [z∗n]

The preceding propositions are instructive: they tell us that our expected

solution value is optimistic and improves as we increase our sample size. In

addition, they hold in full generality, unlike the main theorems in this section.
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Consistency

A sequence of estimators (random variables) ζ̃1, ζ̃2, . . . is said to be consistent

with the parameter (value) ζ if ζ̃n converges to ζ with probability 1, that is,

if P
(
limn→∞ ζ̃n = ζ

)
= 1. For the SAA to be a useful approximation to (11)

the estimators z∗n and x∗n must be consistent with z∗ and x∗ respectively.

For the sake of generality, in the following results, taken from [19], we

take F : X → R to be an arbitrary function, and Fn : X → R a sequence of

random functions defined on the common probability space (Ω,F , P). We

will assume that Fn converges uniformly to F with probability 1 as n → ∞.

Although this is not strictly required for consistency, this assumption allows

for more elementary proofs of the following two theorems.

Theorem 5.3. Suppose that Fn converges to F with probability 1 as n → ∞ uni-

formly on X . Then z∗n converges to z∗ with probability 1 as n→ ∞.

Proof. For ω ∈ Ω, we modify our notation for the sample average function

to be Fn(ω, x) := 1
n ∑n

i=1 f(x, ξi(ω)) to make explicit the dependence of its

value on the underlying probability space. The uniform convergence with

probability 1 means that for all ε > 0, and almost every ω ∈ Ω there exists

N(ε, ω) ∈N such that for all n > N(ε, ω) we have

sup
x∈X
|Fn(ω, x)− F (x)| < ε. (14)

Fix ω ∈ Ω such that (14) holds and n > N(ε, ω). Also, let x∗n ∈ argmin
x∈X

Fn(ω, x)

and x∗ ∈ argmin
x∈X

F (x), and without loss of generality suppose that z∗n ≤ z∗.

Now,

z∗ − z∗n(ω) = F (x∗)− Fn (ω, x∗n)

≤ F (x∗n)− Fn (ω, x∗n)

< ε by (14).

Hence

|z∗n(ω)− z∗| < ε
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5. Scenario Generation

for almost all ω ∈ Ω as required.

The above Theorem guarantees the convergence of solution values. For

the convergence of solutions, we need some notion of convergence of solution

sets. For this we use a measure of distance between sets, the deviation. For

A, B ⊂ Rk this is defined as follows:

D(A, B) = sup
x∈A

dist(x, B)

where dist(x, B) = inf
x′∈B

∥∥x− x′
∥∥

The following theorem, which has slightly stronger conditions than The-

orem 5.3, guarantees the convergence of the set of optimal solutions.

Theorem 5.4. Suppose that there exists a compact set C ⊂ Rk such that:

i the set S of optimal solutions to the true problem is contained in C

ii the function F (x) is finite-valued and continuous on C

iii Fn(x) converges to F (x) with probability 1 uniformly on C

iv With probability 1 for n large enough the set Sn is non-empty and Sn ⊂ C.

Then z∗n → z∗ and D(Sn, S)→ 0 with probability 1 as n→ ∞.

Proof. Given that S ⊂ C we can assume without loss of generality that X

is compact. From assumptions (i) and (iii), we have by Theorem 5.3 that

z∗n → z∗ with probability 1. To show that D(Sn, S) → 0 with probability 1 as

n→ ∞ it thus suffices to show that D(Sn(ω), S)→ 0 for all ω ∈ Ω such that

z∗n(ω)→ z∗. We prove this by contradiction.

Suppose z∗n(ω) → z∗ but D(Sn(ω), S) 9 0. Then, there exists ε > 0 such

that for each n ∈ N there is x∗n(ω) ∈ Sn(ω) such that ‖z∗n(ω)− z∗‖ ≥ ε. By

the compactness of X we may assume (taking a subsequence if necessary)

that x∗n → x∗ for some x∗ ∈ X . Note that x∗ /∈ S hence F (x∗) > z∗. Now,

Fn(x∗n)− F (x∗) = [Fn(x∗n)− F (x∗n)] + [F (x∗n)− F (x∗)].
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The first term on the RHS of this expression tends to zero by assumption (iii).

The second term on the RHS of this expression tends to zero by assumption

(ii). Hence, z∗n = Fn(x∗)→ F (x∗) > z∗ which is a contradiction.

Despite the strength of the assumption, uniform convergence of the SAA

holds for an important class of stochastic programs. Given a two-stage stochas-

tic linear program with fixed recourse, we have uniform convergence of the

sample average function if the set of feasible decisions X is compact [19,

Theorem 7.48]. If the the loss function is convex, then there exist similar

consistency results which only require point-wise convergence, for example

see [21].

Asymptotic Distributions

The previous results did not tell us anything about the rate of convergence of

the optimal solution values of the SAA. The following result due to Shapiro

in [22] gives a central limit theorem for the optimal solution values when the

stochastic program has a unique minimizer.

Theorem 5.5. Suppose that X is compact and the following conditions hold:

i For all x ∈ X , ξ̃ 7→ f(x, ξ̃) is measurable.

ii There exists a point x̃ ∈ X such that E
[
f(x̃, ξ̃)2] < ∞.

iii There exists b : Ξ→ R such that E
[
b(ξ̃)2] < ∞ and |f(x, ξ̃)− f(y, ξ̃)| ≤ b(ξ̃) ‖x− y‖.

If the stochastic program (11) has a unique minimizer S = {x∗}, then

n
1
2 (z∗n − z∗) d−→ N(0, σ2) as n→ ∞

where σ2 = Var
(
f(x∗, ξ̃)

)
.

Notice that most of these assumptions will generally hold for a two-stage

linear stochastic program: the deterministic feasible region is defined by lin-

ear equalities (or inequalities) and so is closed, and can also be made bounded
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5. Scenario Generation

and thus compact by introducing artificial bounds on the decision variables,

something which is not unrealistic in most real-world problems; ξ 7→ f (x, ξ)

is piecewise linear (by Theorem 2.1) and thus measurable. Assumptions (ii)

will hold for instance if the random vector ξ̃ has bounded support. Under

stronger assumptions, it was shown that a similar central limit theorem also

holds for the optimal solutions x∗n. See [22] for details.

Shapiro has also derived bounds on the probabilities of a solution to an

SAA having a value close to the optimal solution. Under stronger conditions,

it has been shown that these probabilities converge at an exponential rate to

one (see [23] for instance).

Assessing Solution Quality

Given a candidate solution x0 ∈ X to the stochastic program (11) we show

how one can construct approximate confidence intervals for the true objective

function value E
[
f(x0, ξ̃)

]
(also known as the out-of-sample value) and the

optimality gap.

We will assume that for all x ∈ X that E
[
f(x, ξ̃)2] < ∞. This allows us to

appeal to the central limit theorem (CLT).

Suppose we have a feasible solution x0 to the problem (11). Let X =

f(x0, ξ̃) and Xi = f(x0, ξ̃i) for i = 1, . . . , n. Now, the random variables Xi

are i.i.d. with the distribution of X, and by our assumptions the mean and

variance of X exist and are finite. For large n we can therefore apply the CLT.

Fix a confidence level 0 < β < 1, and let X̄n = 1
n ∑n

i=1 Xi be the sample

mean and σ2
n = 1

n−1 ∑n
i=1(Xi − X̄n)2 the sample variance. Using standard

results from statistics,
(
X̄n − εβ, X̄n + εβ

)
is a (1− β) approximate confidence

interval for E [X] where εβ = σn√
n Φ−1

(
1− β

2

)
and Φ is the distribution

function of the standard Normal distribution. That is, for large n,(
1
n

n

∑
i=1

f(x0, ξ̃i)− εβ,
1
n

n

∑
i=1

f(x0, ξ̃i) + εβ

)

is a (1− β) approximate confidence interval for E
[
f(x0, ξ̃)

]
.
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A confidence interval can be similarly constructed for the optimality gap

of a given feasible solution. The method presented originates from [20]. The

optimality gap of a feasible solution x0 ∈ X is defined as follows:

G = E
[
f(x0, ξ̃)

]
− z∗.

Now, define

Gn =
1
n

n

∑
i=1

f(x0, ξ̃i)− z∗n.

Note that,

E [Gn] = E

[
1
n

n

∑
i=1

f(x0, ξ̃i)− z∗n

]
≥ E

[
f(x0, ξ̃)

]
− z∗ by Proposition 5.1

= G.

Since 0 ≤ G ≤ E [Gn], a conservative confidence interval on G can be made by

constructing a confidence interval for E [Gn]. We make the assumption that

the central limit theorem holds for the random variable Gn and construct an

approximate confidence interval for E [Gn] in a similar fashion to that above.

Let ξ̃ ij for 1 ≤ i ≤ ng, and 1 ≤ j ≤ n be i.i.d. random variables with the

distribution of ξ̃ , and define

Gi
n = z∗n,i −

1
n

n

∑
j=1

f(x0, ξ̃ij)

where z∗n,i = minx∈X
1
n ∑n

j=1 f(x, ξ̃ij). The random variables Gi
n are inde-

pendently identically distributed with the distribution of Gn. Let Ḡn =

1
ng

∑
ng
i=1 Gi

n and σ2
G,ng

= 1
ng−1 ∑

ng
i=1

(
Gi

n − Ḡn
)
. Since each evaluation of Gi

n

may be expensive, the number of batches ng used may be relatively small

and so the random variable
√ng (Ḡn −E [Gn])

σG,ng

is best approximated by a t-distribution with ng − 1 degrees of freedom. For

0 < α < 1, let tng−1,α be the (1− α)-quantile of the t-distribution with ng − 1
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5. Scenario Generation

degrees of freedom. That is,

P
(

Tn ≤ tng−1,α

)
= 1− α.

Now, setting εng ,α = tng−1,α
σG,ng√ng

, we have:

P
(

E [Gn] ≤ Ḡn + εng ,α

)
= P

 Ḡn −E [Gn]
σG,ng√ng

≥ −tng−1,α


≈ P

 Ḡn −E [Gn]
σG,ng√ng

≤ tng−1,α

 (by symmetry of t-distribution)

≈ 1− α.

Hence, (0, Ḡn + εng ,α) is a (1− α)-approximate confidence interval for E [Gn]

and thus a (1− α)-approximate confidence interval for G. Note that the size

of this interval decreases if we increase either the number of batches ng since

εng ,α decreases as ng increases, or the batch size n, since E [Gn], an upper

bound on G, will decrease as we increase n by Proposition 5.2.

The main drawback of the above method for estimating a confidence in-

terval for the optimality gap is that it involves solving multiple problems.

Other procedures have been proposed which require require only one or two

replications [24], [25].

The estimation technique presented here does not require i.i.d. samples.

Any sampling technique which produces unbiased estimates of the expected

loss function is also valid, we only require independence between the batches

of samples. This opens up the possibility of using variance reduction tech-

niques, such as Latin hypercube sampling, or antithetic sampling, to reduce

the size of the error in our estimates of the optimality gap. See [26] and [27]

for instance.
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5.3 Optimal Discretization

One might expect for a stochastic program, whose loss function satisfies cer-

tain continuity properties, that if the underlying random vector is slightly

perturbed then the expected loss function would only experience a small

change. The distance between two random vectors can be measured using

a probability metric, and it has been shown that under certain conditions

the effect of using a different random vector in a stochastic program can be

bounded by the distance between the original and new random vector.

By optimal discretization we mean the discretization of a random vector so

as to explicitly minimize the distance between the original and discretized

random vectors, with respect to some probability metric. The probability

metric which should be used depends upon the type of problem. For in-

stance, it has been shown that discrepancy distances are a natural metric to

use for probabilistically constrained problems and mixed integer recourse

problems [28]; Fortet-Mourier metrics are a natural choose for two-stage re-

course problems [29].

In this section we introduce a probability metric called the Wasserstein

distance and show that this is a natural metric to use for discretization with

linear fixed recourse problems. This metric is used in Paper C to analyze the

behavior of the proposed scenario generation methodology.

Approximation Error and Wasserstein Distance

The discretization of a continuous random vector to solve a stochastic pro-

gram leads to another stochastic program which is an approximation of the

original. The error is most meaningfully quantified by the optimality gap of

the solution that the approximate problem yields.

Definition 5.6 (Approximation error). The approximation error induced by

using the random vector ξ̆ in the place of ξ̃ with respect to the problem (11) is as
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5. Scenario Generation

follows:

e(ξ̃ , ξ̆) = sup
x0∈argmin

x∈X
Fξ̆ (x)
{min

x∈X
Fξ̃ (x)− Fξ̃ (x0)}

A convenient way to bound the approximation error is to use the sup-

distance between the true and approximate expected cost functions. The

following elementary lemma is taken from [29].

Lemma 5.7.

e(ξ̃ , ξ̆) ≤ 2 ||Fξ̃ − Fξ̆ ||∞

Proof. Set ε = ||Fξ̃ − Fξ̆ ||∞, let x∗ ∈ argmin Fξ̃ and x̃∗ ∈ argmin Fξ̆ . We

assume that Fξ̃ (x∗) ≤ Fξ̆ (x̃∗) and derive a contradiction by supposing that

Fξ̃ (x∗) + 2ε < Fξ̃ (x̃∗). A similar argument holds for the reverse case.

Fξ̃ (x∗) + 2ε < Fξ̃ (x̃∗)

≤ Fξ̆ (x̃∗) + ε by definition of ε

≤ Fξ̆ (x∗) + ε

≤ Fξ̃ (x∗) + 2ε by definition of ε

A contradiction is established and so the result holds.

Minimizing the sup-distance is thus a good proxy to minimize the ap-

proximation error. For a stochastic linear program with fixed recourse, this

sup-distance can be bounded in turn by the Wasserstein distance between ξ̃

and ξ̆ which we now define.

Definition 5.8. Suppose ξ̃ and ξ̆ are random vectors in Rd. Then, the Wasserstein

distance between ξ̃ and ξ̆ (with respect to the 1-norm) is as follows:

dW(ξ̃ , ξ̆) = inf
Y1,Y2
{E [‖Y1 −Y2‖]} (15)

where the infimum is taken over all pairs of random vectors Y1, Y2 defined on the

same probability space such that Y1 ∼ ξ̃ and Y2 ∼ ξ̆ .
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The Wasserstein distance is strongly related to the optimal transportation

problem. To see this, we restate the definition in terms of probability mea-

sures:

dW(ξ̃ , ξ̆) = inf
π

∫
Rn×Rn

‖y1 − y2‖ dπ(y1, y2)

where the infimum is taken over all probability measures π on the product

space Rd ×Rd whose marginals are such that for all measurable A, B ⊂ Rd:

π(A×Rn) = µ1(A)

π(Rn × B) = µ2(B)

where µ1 and µ2 are the probability measures for the random vectors ξ̃

and ξ̆ respectively. Now, for a fixed measure π the quantity π(A × B) can

be viewed as the amount of mass one is transporting from A to B, and∫
A×B ‖y1 − y2‖ dπ(y1, y2) the cost of this transportation. The calculation

of the Wasserstein distance thus amounts to finding a transportation plan of

minimal cost. See [30] for more details.

The key property of fixed recourse problems that allows us to use the

Wasserstein distance to bound the sup-distance between the true expected

loss function and an approximation is that the loss function in such a problem

has the Lipschitz property6, whose definition we now recall.

Definition 5.9 (Lipschitz). For a function g : Ξ ⊂ Rm → R, its Lipschitz constant

is defined as follows:

L(g) = inf{L : |g (u)− g (v)| ≤ L ‖u− v‖ for all u, v ∈ Rm} (16)

The function g is said to be Lipschitz if L(g) < ∞.

The Wasserstein distance is related to Lipschitz functions via the Kantorovich-

Rubinstein Theorem.
6This follows from Theorem 2.1 which says that the loss function for a stochastic program

with fixed recourse is piecewise-linear
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5. Scenario Generation

Theorem 5.10 (Kantorovich-Rubinstein).

dW(ξ̃ , ξ̆) = sup{Eξ̃

[
g
(
ξ̃
)]
−Eξ̆

[
g
(
ξ̆
)]

: g : Rn → R is Lipschitz }

For a proof of this see [30, Chapter 1]. Suppose now that L̄ > 0 is a

Lipschitz constant for our loss function, uniform across all decisions x ∈ X ,

that is

|f(x, ξ1)− f(x, ξ2)| ≤ L̄ ‖ξ1 − ξ2‖ for all x ∈ X, and ξ1, ξ2 ∈ Ξ.

Hence, ξ 7→ 1
L̄ f(x, ξ) is Lipschitz with constant 1 for all x ∈ X and so applying

the Kantorovich-Rubinstein Theorem we have

||Fξ̃ − Fξ̆ ||∞ = sup
x∈X
{Eξ̃

[
f(x, ξ̃)

]
−E

[
f(x, ξ̆)

]
}

≤ L̄dW(ξ̃ , ξ̆).

In particular, we have

e(ξ̃ , ξ̆) ≤ 2L̄dW(ξ̃ , ξ̆).

Scenario Reduction and Generation

In the section above we showed that the error of approximating a random

vector in a stochastic program can be bounded by the Wasserstein distance

between the true and approximate random vectors. Hence, when approxi-

mating a random vector with a discrete one, we should try to minimize this

distance.

Suppose we are trying to approximate the random vector ξ̃ with the dis-

crete random vector ξ̆ which has mass points {ξ1, . . . , ξN} and probabilities

{p1, . . . , pN}. These mass points induce a (Voronoi) partition7on the space

Rd:

Ai = {ξ ∈ Rd : ‖ξ − ξi‖ = min
1≤i≤N

‖ξ − ξi‖}

7These partitions can be made disjoint using the following convention: if ξ belongs to more

than one set assign it to the one with minimal i
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Now, the probabilities which minimizes the Wasserstein distance between ξ̃

and this discrete random vector are pi = P
(
ξ̃ ∈ Ai

)
for i = 1, . . . , N. In this

case the Wasserstein distance is as follows:

dW(ξ̃ , ξ̆) =
N

∑
i=1

∫
Ai

∥∥ ξ̃ − ξi
∥∥P

(
dξ̃
)

This fact can be seen by viewing the definition of the Wasserstein distance

as a mass transportation problem. The most efficient way of transporting

the mass in the partition set Ai is to transport it to the closest mass point ξi.

See [29] for more details.

To minimize the Wasserstein distance of a discrete approximation, sce-

nario generation methods thus seek to solve the following problem:

minimize
ξ1,...,ξN

N

∑
i=1

∫
Ai

∥∥ ξ̃ − ξi
∥∥P

(
dξ̃
)

(17)

This problem is highly non-convex and one typically must resort to heuristics.

The paper [29] suggests a variant of the k-means clustering algorithm [31]

to converge to a local optimum. The paper [32] suggests two heuristics, for-

wards and backwards reduction, for the case of scenario reduction where one

is attempting delete a given proportion of scenarios from a large scenario set

in a way that minimizes the distance between the Wasserstein distance be-

tween the original and reduced sets.

More recently, a nested distance has been proposed in [33], which is spe-

cially adapted for multistage stochastic programs where one must discretize

a stochastic process.

5.4 Constructive Approaches

When formulating a stochastic program, uncertain parameters must be de-

scribed by a full multivariate probability distribution. Expertise and analysis

of historical data may lead us to compile a list of properties we would like

our distribution to have. For instance, if we wanted to model the distribu-

tion of stock returns, we may want to specify the first four moments along
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5. Scenario Generation

with the correlation structure to adequately describe the body and tails. If

our uncertain parameters are described by a stochastic process we may wish

to prescribe auto-correlations. However, finding a parametric distribution

which has all our given properties may be difficult or impossible. For exam-

ple, with the Normal distribution one has direct control over the mean and

covariance structure, and no control over skewness or kurtosis.

In constructive methods, one aims to directly construct a discrete distribu-

tion which has certain statistical properties equal or approximately equal to

some given target values. The approach was first advocated in [34] where it is

postulated that a given stochastic program will only be sensitive to particular

statistical properties of the distribution. A concrete example of this idea is

the Markowitz model [8]. This is an optimization problem used in portfolio

selection where one must choose a portfolio that balances its expected return

against its variance. One formulation of this problem is the following:

minimize
x∈Rd

α Var
(

xT ξ̃
)
− (1− α)E

[
xT ξ̃

]
subject to

d

∑
i=1

xi = 1,

x ≥ 0,

where the decision vector x represents the portfolio allocation, ξ̃ is a ran-

dom vector which represents the returns of the assets, and 0 < α < 1 is a

parameter controlling risk aversion. This model can be rewritten as follows:

minimize
x∈Rd

α xT Cov(ξ̃)x− (1− α) xTE
[
ξ̃
]

subject to
d

∑
i=1

xi = 1,

x ≥ 0.

From this restatement, it is clear that any random vectors with the same

mean and covariance matrix will yield an equivalent problem. However,

in general, it is not clear which are the important properties to match for
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a given stochastic program, and this must be investigated through stability

analysis [35].

We now review some existing constructive scenario generation methods.

Special emphasis is given to the moment matching method which is used for

numerical tests in Paper B.

Property Optimization

In this approach we take our scenarios and their associated probabilities as

decision variables and try to minimize the squared error of specified statisti-

cal properties from target values. This approach was first proposed in [34].

For clarity, we just describe it for two-stage problems. The construction of a

scenario set is done by solving the following optimization problem:

minimize
ξ,p

l

∑
i=1

wi (gi(ξ, p)− ti)
2

subject to
n

∑
s=1

ps = 1

p ≥ 0,

where wi is the weighting of property i, for i = 1, . . . , l; ti is the target value

of property i; ps is the probability of scenario s; ξs
i is the realization of the

i−th random variable in scenario s; and gi(ξ, p) is a function which gives

the value of the i−th specified statistical property. For example, if the i−th

statistical property is the mean of the j-th random variable then gi(ξ, p) =

∑n
s=1 ξs

j ps. Depending on the properties specified, the above problem may be

non-convex, in which case it must be solved using heuristic methods. The

problem may be simplified by fixing ps as parameters rather than decision

variables.

The paper identifies three main issues with this method:

• Inconsistent specifications Many statistical properties are related, and

target values of some statistical properties may be inconsistent with
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others. In this case, the property optimization will lead to a scenario

set which satisfies neither of the inconsistent properties exactly. The

degree of the match will depend on the relative weight assigned to that

property.

• Over-specifications If the number of scenarios chosen for the optimiza-

tion is too small, then there will be no scenario set which satisfies the

specified properties. In this case, one must increase the number of sce-

narios used to yield a good match.

• Under-specifications If the number of scenarios is large with respect to

the number of specified properties then the scenario set may be a good

match but there could also be undesired side effects. In [34] it was

noted that under-specification leads to many probabilities being set to

zero.

As a rough guide one should choose the number of scenarios to be approxi-

mately the number of specifications. See [34] for a deeper discussion.

Moment-matching

The first four moments of a probability distribution (mean, variance, skew-

ness and kurtosis) give one vital information about a distribution. Visually,

they tell one about the location, spread, symmetry, and the thickness of the

tails of the tails of a distribution. For a multivariate distribution, in addition

to the moments, the correlation matrix gives a visual description of the shape

and orientation of the distribution. The descriptive power of these statistics

relies on the distribution being uni-modal and near-elliptical, a realistic as-

sumption when modeling many real-world phenomena. In [36] the authors

present an heuristic to construct a discrete distribution whose margins have

specified values for their first four moments with specified values, and whose

correlation structure is also specified. This has grown in popularity because
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of its simplicity of application and has been used in different domains in-

cluding finance [37] and inventory management [38]. The algorithm is based

around two transformations: a cubic transformation which corrects the first

four moments, and a linear transformation to correct the correlations.

Cubic Transformation Suppose we have a random variable, X, which we

would like to transform to have first four non-central moments µ1, µ2, µ3, µ4.

Let Y = a + bX + cX2 + dX3. Now Y has the specified moments if the coeffi-

cients in this transformation a, b, c, d satisfy the following system of non-linear

equations:

µi =
(

a + b E [X] + c E
[

X2
]
+ d E

[
X3
])i

for i = 1, . . . , 4. (18)

In [36] this system is solved by reformulating this problem as an uncon-

strained optimization problem where the coefficients a, b, c, d are decision

variables, and the objective is to minimize the total distance of the moments

of Y from their target values µ1, . . . , µ4. This approach ensures that if the

system of equations (18) does not have a solution, the solution algorithm to

the optimization problem will return the best available one rather than just

fail.

Linear Transformation Let R be a correlation matrix. Now, R has a Cholesky

decomposition R = LLT where L is an lower-triangular matrix. A basic result

from statistics states that if Z ∼ N(0, I), then LZ ∼ N(0, R). More generally,

we have the following theorem, adapted from [36]:

Theorem 5.11. Let R be a correlation matrix, R = LLT the Cholesky decomposition.

Suppose X = (X1, . . . , Xn) is a random vector with the following properties:

1. E [Xi] = 0 and E
[
X2

i
]
= 1 for i = 1 . . . n.

2. The marginals of X are pairwise independent.

Then, for Y = LX, we have
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5. Scenario Generation

1. E [Y] = 0 and E
[
Y2] = 1.

2. Y has correlation matrix R = LLT .

Suppose we have a discrete random vector X = (X1, . . . , Xn). We can as-

sume without loss of generality that E [X] = 0 and E [X]2 = 1 as this can

be corrected by a simple translation and scaling Xi 7→ αiXi + βi. However,

for X to have independent margins it would need an exponential number of

scenarios. Such a large number of scenarios would be computationally in-

tractable. The scenario generation method presented in [36] is initialized by

sampling the marginals from a standard normal distribution and combining

these appropriately to construct a discrete distribution. The marginals are

unlikely to be independent and so the two transformations presented above

cannot be used alone to construct a discrete distribution with exact target

moments and correlations. The heuristic is instead an iterative procedure in

which the above two transformations are repeatedly applied until the mo-

ments and correlations of our constructed distribution are within a certain

distance of their target values. The basic structure of the heuristic is given

below.

Although it lacks the flexibility of the property optimization method dis-

cussed above, this method is faster and doesn’t suffer from the same under-

specification problems discussed above. A simpler but less flexible moment

matching method was more recently proposed in [40].

Other methods

Matching moments in a discrete distribution is just one way of controlling

the marginals. In [39] a heuristic is presented which constructs a distribution

which has marginal distributions which are close, in a probabilistic sense,

to some target distributions as well as having specified correlations. This

moves away from the idea of choosing properties which are important to the

underlying stochastic program towards a convenient way of modeling the

39



input : Target moments and correlations

output: Scenario set with target moments and correlations

Generate initial sample;

while errorOfCorrelations > MaxErrCorr or errorOfMoments >

MaxErrorMoms do

if errorOfCorrelations > MaxErrorCorr then

Correct correlations with linear transformation;

end

for i = 1, · · · , d do

if errorOfMomentsi > MaxErrorMom then

Correct moments of margin i with cubic transformation;

end

end

end

Algorithm 1: The moment matching algorithm, taken from [39].
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distribution of uncertain parameters.

Like the moment matching heuristic, this marginal matching method de-

pends on two transformations, one to fix the marginals and one to fix the

correlations of the distribution. The marginals are transformed using cumu-

lative distribution functions, and the correlations are fixed using the same

linear transformation presented in Section 5.4.

In [41], the authors provide an alternative approach to generating scenario

sets with specified marginals, which attempts to minimize directly the dis-

tance between specified marginal distributions and the constructed scenario

set. The paper [42] advocates the use of copulas to allow the user to specify

a more arbitrary dependency structure between the random variables.

5.5 Problem-Driven Scenario Generation

The approaches to scenario generation in the previous sections were distribution-

driven, that is, they were primarily concerned with the accurate representa-

tion of future uncertainty without taking into account the underlying stochas-

tic program. The aim of this thesis is to promote the idea of problem-driven

scenario generation. By taking into account the structure of the problem it

may be possible to construct a more parsimonious representation of the un-

certainty. Crucially, a scenario set constructed in such a way may not be close

to the true distribution of uncertainty as measured by a probability metric

such as the Wasserstein distance (see Section 5.3), but will yield a solution

which is near optimal with respect to the “true” distribution.

There are only a few cases of problem-driven scenario generation in the

literature and these are somewhat heuristic in nature. The property-matching

scenario generation methods of Section 5.4 can be considered problem-driven

in the sense that a given stochastic program may only react to certain statis-

tical properties. However, as we explained, an empirical investigation must

be carried out to to identify which properties are important, and in reality

these methods are often used as a convenient way of modeling the uncertain
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quantities.

In this section we present two very different examples of problem-driven

scenario generation from the literature: the first based on sampling, the sec-

ond derived from the optimal discretization approaches discussed in Section

5.3.

Importance Sampling At the end of Section 5.2 we briefly discussed the

use of variance reduction techniques to improve performance of sampling

as a scenario generation method. One such technique is importance sampling.

In importance sampling, one draws samples from a proxy distribution, and

appropriately adjusts the weights of each sample to approximate the required

expectation. This technique was first used in stochastic programming as an

internal sampling method within a Bender’s decomposition algorithm in [43],

and was further developed in [44]. It can be considered a problem-driven

scenario generation approach as the construction of the proxy distribution

depends on the underlying loss function of the stochastic program.

We suppose the random vector ξ̃ is discrete and has probability mass

function p, and for fixed x ∈ X we would like to estimate the expected loss

function E
[
f(x, ξ̃)

]
. Suppose q : Ω 7→ R is another probability mass function

with the same support, then:

E
[
f(x, ξ̃)

]
= ∑

ω∈Ω
f(x, ξ̃(ω)) p(ξ̃(ω))

= ∑
ω∈Ω

f(x, ξ̃(ω))p(ξ̃(ω))

q(ξ̃(ω))
q(ξ̃(ω))

= E

[
f(x, ξ̆)p(ξ̆)

q(ξ̆)

]

where the final expectation is taken with respect to the random vector ξ̆

which has probability mass function q. Therefore the following estimator can

be used for estimating the expected loss function:

z̄n =
1
n

n

∑
i=1

f(x, ξi)p(ξi)

q(ξi)
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where ξ1, . . . , ξn are independent samples from the distribution with mass

function q. The mean and variance of this estimator are as follows:

E [z̄n] = E
[
f(x, ξ̃)

]
Var(z̄n) =

1
n ∑

ω∈Ω

(
f(x, ξ̃(ω))p(ω)

q(ω)
−E

[
f(x, ξ̃)

])2

q(ω)).

Note that unlike the other variance reduction techniques mentioned at the

end of Section 5.2, the variance is not guaranteed to be reduced, and so

one much choose the proxy distribution q wit care. Assuming that the loss

function at x is non-negative, then the ideal choice for q would be

q∗(ξ) =
f(x, ξ)p(ξ)
E
[
f(x, ξ̃)

] (19)

for which we would have Var(z̄n) = 0 for any n. However, this density

requires knowledge of E
[
f(x, ξ̃)

]
which is what we are trying to estimate in

the first place. The important observation here is that to reduce the variance

we should construct q to be close to to q∗, which we can do by approximating

f(x, ξ) in the expression (19).

The following “additive” approximation for f(x, ξ) was employed in [43]:

f(x, ξ) ≈ f(x, τ) +
d

∑
k=1

∆fk(x, ξi) (20)

where

∆fi(x, ξi) = f(x, τi, . . . , ξi, . . . , τd)− f(x, τ), (21)

and τ is some fixed point τ ∈ Ξ. If τ is chosen such that f(x, τ) ≤ f(x, ξ̃(ω))

for all ω ∈ Ω then each ∆fi(x, ξi) is non-negative. If f(x, τ) ≥ 0 then the

approximation in (20) is also non-negative and so can be used to construct a

probability mass function. Now, the calculation of the coefficient of propor-

tionality using the above approximation only involves the marginal expecta-

tions E
[
∆fk(x, ξ̃)

]
.

As compared to other variance reduction techniques, this method of im-

portance sampling is computationally expensive, as the definition of the
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proxy distribution requires the evaluation of ∆fi(x, ξ(ω)i) for all ω ∈ Ω and

i = 1, . . . , d. In addition if f(x, τ) + ∑d
k=1 ∆fk(x, ξ(ω)i) = 0 for some ω ∈ Ω

then the proxy distribution will have zero mass at this point, and so one will

be unable to use it for importance sampling.

Forward Selection in Recourse Clusters The paper [45] proposes a modifi-

cation to the fast forward selection algorithm (FFS) of [32] which is a method

of scenario reduction. This method, called forward selection in recourse clus-

ters (FSRC), attempts to avoid redundancy in scenarios by first clustering the

scenarios according to their behavior with respect to the problem, and then

using a standard reduction technique, called forward selection, to select one

scenario per cluster in the reduced set.

Suppose Q(x, ξ) is the recourse function from (4) and we would like to re-

duce the set of (equiprobable) scenarios {ξs}s∈S. For each s ∈ S, let y∗s denote

the corresponding solution to the recourse problem. Now, for our problem

we define sensitivity indices Fi(x, y) for i = 1, . . . , v. Note that these depend

on a feasible first stage decision x ∈ X and a second-stage decision y. These

sensitivity indices are problem-dependent and are used to characterize sce-

narios. For example, in the paper [45], this method is applied to a stochastic

unit commitment problem and the three sensitivity indices are used: the total

cumulative generation cost, the costs associated to a shortfall and excess of

power supply.

The following outline of the FSRC algorithm was taken directly from [45]

with minor adaptations.

Algorithm: Forward Selection in Recourse Clusters
1. Evaluate: For each s ∈ S, identify an optimal y∗s , given a feasible x̂, by

solving the recourse problem:

Q(x̂, ξs) = min
ys
{qTys|Wys = hs − Ts x̂}

2. Summarize: Compute solution sensitivity indices:

Ns := [F1(x̂, y∗s ), . . . ,Fv(x̂, y∗s )]
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3. Cluster: Scale Fi, i = 1, . . . , v, into similar magnitudes, denoted as F̂i,

i = 1, . . . , v. Assign weight wi to each F̂i, and then set

Vs = [w1F̂1(x̂, y∗s ), . . . , wvF̂v(x̂, y∗s )].

Form n clusters on {Vs}s∈S by the k-means method using an appropri-

ate norm, and create the corresponding n clusters in S.

4. Select: Use FFS to select one scenario from each cluster of the original

scenarios.

Like the importance sampling method, this method is somewhat expen-

sive as one has to evaluate the recourse function for every scenario. How-

ever, this step can be easily parallelized. The biggest obstacle in applying this

method is the selection of sensitivity indices, and the relative weights of each

of these; these have to be customized to the problem one is solving.

The paper [46] presents a similar method of scenario reduction where

again the measure of similarity between scenarios has again been modified

to take into account the behavior of the loss function.
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Thesis Summary

This thesis concerns the development of new methods of problem-driven

scenario generation. Unlike the problem-driven methods discussed in Sec-

tion 5.5 which are somewhat heuristic, our methods are mathematically adapted

to specific classes of problem. They are also largely constraint-driven, that is,

the more the problem is constrained, the more effective our methods. The

performance of the methods can therefore be improved by the addition of

“ghost” constraints to a problem, that is, artificial constraints which reduce

the set of feasible solutions but which do not affect the set of optimal solu-

tions.

The first two papers of this thesis concern stochastic programs with tail-

risk measures: the first paper provides the general mathematical foundations

for our methodology, and the second paper concerns the practical application

of the theory to portfolio selection problems. The third and final paper of this

thesis describes an approach to scenario generation which exploits a special

type of decomposition of the loss function, and is in particular demonstrated

on simple recourse problems. The contents of each paper are summarized

below.

Paper A: Scenario generation for stochastic programs with tail risk mea-

sures Tail risk measures such as Value-at-Risk and Conditional Value-at-

Risk are used in stochastic programming to mitigate or reduce the probabil-

ity of large losses. However, these are problematic in stochastic programs.
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Because the value of a tail risk measure only depends on a small subset of

the support of the distribution of asset returns, traditional scenario genera-

tion methods, which spread scenarios evenly across the whole support of the

distribution, yield very unstable solutions unless we use a very large number

scenarios.

In this paper we propose a scenario generation methodology for stochas-

tic programs which uses tail risk measure. In this methodology we identify

a region in the support of the distribution, which we call the risk region, in

which all outcomes lead to a loss in tail for some feasible decision. We demon-

strate that under mild conditions, the distribution outside the risk region can

be represented with a single point while preserving the value of any tail-risk

measure. This approach can thus reduce considerably the size of the result-

ing scenario-based problem. We propose a simple sampling algorithm which

takes advantage of this idea and prove that it is asymptotically consistent

with sampling.

The characterization of the risk region is difficult in general as it depends

on the loss function, problem constraints, and probability distribution of the

stochastic parameters. In this paper, we demonstrate this approach for port-

folio selection problems where the returns of the assets have elliptical dis-

tributions where we are able to give convenient characterization of the risk

region.

Paper B: Scenario generation for portfolio selection with tail risk measure

In this paper we develop further the application of our risk region methodol-

ogy to the portfolio selection problem. Several issues are addressed: we pro-

vide additional details on the computations required to test whether or not

a point lies is the the risk region; we investigate empirically under what cir-

cumstances the methodology performs well; we investigate the possibility of

approximating the risk regions of non-elliptical distributions; and finally we

investigate the use of “ghost constraints”. Ghost constraints are constraints

48



5. Scenario Generation

added to the problem which do not affect the set of optimal solutions to a

problem, but which improve the performance of our methodology by reduc-

ing the size of the risk region. The conclusions of this paper are founded on

a variety of numerical tests, the distributions of which are constructed from

real-financial data.

Paper C: Scenario generation for simple recourse problems In this paper,

we present a general constraint-driven approach to scenario generation which

exploits a special type of decomposition of the loss function to partition the

support of the distribution into active and inactive components. The inactive

components can typically be represented by a single scenario, which reduces

the computational burden of solving the problem. Like with risk regions for

stochastic programs with tail risk measure, the partition of the support into

active and non-active depends on the form of the loss function and problem

constraints. However, unlike the former approach it does not depend of the

underlying probability distribution which simplifies the application of this

approach. We demonstrate this method for simple recourse problems, a class

of stochastic programs which aims to minimize the deviation between the

availability of a set of resources and their corresponding stochastic demands.
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[32] J. Dupačová, N. Gröwe-Kuska, and W. Römisch, “Scenario reduction

in stochastic programming: An approach using probability metrics,”

Mathematical Programming, vol. 95, no. 3, pp. 493–511, 2003.

[33] G. C. Pflug and A. Pichler, “A distance for multistage stochastic opti-

mization models,” SIAM Journal on Optimization, vol. 22, no. 1, pp. 1–23,

2012.

[34] K. Høyland and S. W. Wallace, “Generating scenario trees for multistage

decision problems,” Management Science, vol. 47, no. 2, pp. 295–307, 2001.

[35] M. Kaut and S. W. Wallace, “Evaluation of scenario-generation methods

for stochastic programming,” Pacific Journal of Optimization, vol. 3, no. 2,

pp. 257–271, 2007.

[36] K. Høyland, M. Kaut, and S. W. Wallace, “A heuristic for moment-

matching scenario generation,” Computational Optimization and Applica-

tions, vol. 24, no. 2–3, pp. 169–185, 2003.

[37] M. Kaut and S. W. Wallace, “Multi-period scenario tree generation using

moment-matching: Example from option pricing,” Apr 2003, available

from http://michalkaut.net.

53

https://books.google.be/books?id=GqRXYFxe0l0C
http://michalkaut.net


References

[38] H. Vaagen and S. W. Wallace, “Product variety arising from hedging in

the fashion supply chains,” International Journal of Production Economics,

vol. 114, no. 2, pp. 431–455, 2008.

[39] M. Kaut and A.-G. Lium, “Scenario generation with distribution func-

tions and correlations,” Kybernetika, vol. 50, no. 6, pp. 1049–1064, 2014.

[40] K. Ponomareva, D. Roman, and P. Date, “An algorithm for moment-

matching scenario generation with application to financial portfolio op-

timization,” European Journal of Operational Research, vol. In press, 2014.

[41] B. Calfa, A. Agarwal, I. Grossmann, and J. Wassick, “Data-driven multi-

stage scenario tree generation via statistical property and distribution

matching,” Computers & Chemical Engineering, vol. 68, pp. 7–23, 2014.

[42] M. Kaut and S. W. Wallace, “Shape-based scenario generation using cop-

ulas,” Computational Management Science, vol. 8, no. 1–2, pp. 181–199,

2011.

[43] G. B. Dantzig and P. W. Glynn, “Parallel processors for planning under

uncertainty,” Annals of Operations Research, vol. 22, no. 1, pp. 1–21, 1990.

[44] G. Infanger, “Monte carlo (importance) sampling within a benders de-

composition algorithm for stochastic linear programs,” Annals of Opera-

tions Research, vol. 39, no. 1, pp. 69–95, 1992.

[45] Y. Feng and S. M. Ryan, “Solution sensitivity-based scenario reduction

for stochastic unit commitment,” Computational Management Science,

pp. 1–34, 2014. [Online]. Available: http://dx.doi.org/10.1007/

s10287-014-0220-z

[46] Z. Li and C. A. Floudas, “Optimal scenario reduction framework based

on distance of uncertainty distribution and output performance: I. Sin-

gle reduction via mixed integer linear optimization,” Computers & Chem-

ical Engineering, vol. in press, 2014.

54

http://dx.doi.org/10.1007/s10287-014-0220-z
http://dx.doi.org/10.1007/s10287-014-0220-z


Part II

Papers

55





Paper A

Scenario Generation for Stochastic Programs with

Tail Risk Measures

Jamie Fairbrother, Amanda Turner, Stein W. Wallace



Paper A.

58



1. Introduction

1 Introduction

Stochastic programming is a tool for making decisions under uncertainty.

Stochastic programs are used to model situations where an initial decision

must be taken with some information unknown until after the decision has

been made. For example, one may want to know how much to invest in

a new production technology without knowing exactly the future demand

for the product. In stochastic programming, uncertain parameters are mod-

eled as random variables, and one attempts to minimize the expectation or

risk measure of some loss function which depends on the initial decision.

However, what distinguishes stochastic programming from other stochastic

modeling approaches is the ability to explicitly model future decisions based

on outcomes of stochastic parameters and initial decisions, and the associ-

ated costs of these future decisions. In our example, given an investment

decision and a demand, we could model how to distribute this product and

the costs of this distribution. The power and flexibility of the stochastic pro-

gramming approach comes at a price: stochastic programs are usually ana-

lytically intractable, and not susceptible to deterministic optimization tech-

niques. See [1] for a guide to how stochastic programs are used to model real

problems, and [2], [3] for more general overviews of the subject.

Typically, a stochastic program can only be solved when it is scenario-based,

that is when the random variables of the problem have finite discrete distribu-

tions. For example, stochastic linear programs just become linear programs

when the underlying random variables are discrete. In the stochastic pro-

gramming literature, the mass points of these random variables are referred

to as scenarios, the discrete distribution as the scenario set and the construction

of this as scenario generation. Scenario generation can consist of discretizing a

continuous probability distribution, or directly modeling the uncertain quan-

tities as discrete random variables. The more scenarios in a set, the more

computational power that is required to solve the problem. The key issue
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of scenario generation is how to represent the uncertainty to ensure that the

solution to the problem is reliable, while keeping the number of scenarios

low so that the problem is computational tractable. See [4] for methods of

evaluating scenario generation methods and a discussion of what constitutes

a reliable solution.

Minimizing the expectation of a loss function can be thought of as mini-

mizing the long-term costs of a system. This is appropriate when the initial

decision is going to be used again and again, and large losses do not mat-

ter in the short term. For example, a news vendor may have to decide on a

daily order of items to which they are committed for some period of time. In

other cases, the decision may be only used a few times, and the occurrence

of large losses may be lead to bankruptcy. In this latter case, minimizing

the expectation alone is not appropriate as this does not necessarily mitigate

against large losses. The usual action of recourse in this case is to use some

sort of risk measure which quantifies in some way the likelihood and severity

of potential large losses. In these problems we try to find a decision which

appropriately balances in the expectation against risk.

In this paper we are interested in problems which use tail risk measures. A

precise definition of a tail-risk measure will be given in Section 2 but for now,

one can think of a tail risk measure as a function of a random variable which

only depends on the upper tail of its distribution function. Examples of

tail risk measure include the Value-at-Risk [5] and the Conditional Value-at-

Risk [6], both of which are commonly used in financial contexts. The problem

of scenario generation is particularly acute when the scenarios are being used

to calculate the value of a tail risk measure. This is because standard scenario

generation methods will not produce many scenarios in the tail of the loss

function and so it is inadequately represented.

The most basic approach to discretization is to simply use a random

sample from the true distribution. This has desirable asymptotic proper-

ties [7], [8], but may require large sample sizes to ensure the reliability of

60



1. Introduction

the solutions it yields. This can be mitigated somewhat by using variance re-

duction techniques such as stratified sampling and importance sampling [9].

Sampling also has the advantage that it can be used to construct confidence

intervals on the true solution value [10]. Another approach to discretization

is to construct a distribution whose distance from the true distribution, with

respect to some probability metric, is small [11], [12]. These approaches tend

to yield better and much more stable solutions to stochastic programs than

does sampling.

A characteristic of both of these approaches to scenario generation is that

they are distribution-based; that is, they only aim to approximate a distribution

and are divorced from the stochastic program for which they are producing

scenarios. By exploiting the structure of a problem, it may be possible to

find a more parsimonious representation of the uncertainty. Note that such a

problem-based approach may not yield a discrete distribution which is close to

the true distribution in a probabilistic sense; the aim is only to find a discrete

distribution which yields a high quality solution to our problem.

A set of approaches which move away from the purely distribution-based

paradigm of scenario generation are constructive methods. In these approaches,

the modeler does not use a full probability distribution for the uncertain

problem parameters but specifies a set of target statistical properties they

believe the distribution satisfies, and generates a scenario set with these tar-

get properties. This approach was first proposed in [13], where it is postu-

lated that the solution to a stochastic program will depend largely on a small

set of statistical properties of the random variables, specific to that problem.

That is, if we can generate a scenario set with the required properties, this

should yield good solutions in our stochastic program even if the true distri-

bution is significantly different. For example, it is known that for the classi-

cal Markowitz problem [14] the first two moments of the return distributions

determine exactly the solution. Constructive approaches have gained much

popularity because they simplify the stochastic modeling of the uncertain
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parameters. In particular they eliminate the need to fit parametric stochas-

tic models. Other constructive approaches can be found in [15], and [16].

However, the major draw-back with constructive approaches is that it is not

always clear which properties are important for a given problem. Finding out

which properties are important is therefore an important part of the analysis.

In this paper, we present a general problem-based approach to scenario

generation for stochastic programs which use tail risk measures. We observe

that the value of any tail risk measure depends only on scenarios confined to

an area that we call the risk region. This means that all scenarios not in the

risk region can be aggregated into a single point. By concentrating almost

all scenarios in the risk region, we can calculate the value a tail risk measure

more accurately. One feature of the risk region is that the more constrained

our problem, the smaller it becomes, and so the more useful our methodol-

ogy. However, finding the risk region is difficult as it is determined by both

the problem and the distribution of the uncertain parameters.

We demonstrate our methodology for portfolio selection problems where

the assets are assumed to have returns which are elliptically distributed. For

this type of problem we are able to characterize the risk region in a convenient

way. We will show that the risk region depends only on the conic hull of our

feasible region. Another useful property of the portfolio selection problem is

the linearity (affinity) of the loss function. This means that all scenarios not

in the risk region can be aggregated while preserving the overall expected

return.

Some ideas in this paper are similar to those in [17]. In that paper, the

authors, like us, observe that only scenarios which have a loss in the tail of

the distribution are used in the calculation of the tail risk measure. However,

while we use this observation to construct a scenario set, they exploit this

property to solve a problem which uses the β -CVaR risk measure for a given

scenario set. Their approach is to iteratively solve the problem with a subset

of scenarios, identify the scenarios which have loss in the tail, update their
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scenario set appropriately and resolve, until the true solution has been found.

This paper is organized as follows: in Section 2 we define tail risk mea-

sures and their associated risk regions; in Section 3 we discuss how these

risk regions can be exploited for the purposes of scenario generation and sce-

nario reduction; in Section 4 we prove that our scenario generation method

is consistent with sampling, in Section 5 and Section 6 we provide a proof of

concept for our methodology: we give convenient characterizations for risk

regions for a class of portfolio selection problems and present numerical tests

which compare our methodology against basic sampling; finally in Section 7

we summarize our results make some concluding remarks.

2 Tail risk measures and risk regions

In this section we define the core concepts related to our scenario genera-

tion methodology, and prove some results relating to these. Specifically, in

Section 2.1 we formally define tail-risk measures of random variables and in

Section 2.2 we define risk regions and present some key results related to

these.

2.1 Tail risk of random variables

Suppose that we have an uncertain quantity representing some loss, and we

would like to somehow quantify the riskiness of this quantity. We model the

uncertain quantity as a random variable and take a risk measure to be any

function of a random variable. The following definition is taken from [18].

Definition 2.1 (Risk Measure). Let (Ω,F , P) be a probability space, and V be a

non-empty set of F -measurable real-valued random variables1. Then, a risk measure

is some function ρ : V → R∪ {∞}.

1We implicitly assume throughout that V is large enough to contain all constructed random

variables
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However, for a risk measure to be useful, it should in some way penalize

potential large losses. For example, in the classical Markowitz problem [14],

the uncertain quantity is the return of a portfolio of financial assets, and

the measure of risk is the variance of that return. By choosing a portfolio

with a low variance, we reduce the probability of larges losses as a direct

consequence of Chebyshev’s inequality (see for instance [19]). Various criteria

for risk measures have been proposed; in [20] a coherent risk measure is defined

to be a risk measure which satisfies axioms such as positive homogeneity

and subadditivity; another perhaps desirable criterion for risk measures is

that the risk measure is consistent with respect to first and second order

stochastic dominance, see [21] for instance.

Besides not satisfying some of the above criteria, a major drawback with

using variance as a measure is that it penalizes all large deviations from the

mean, that is, it penalizes large profits as well as large losses. This problem

can be overcome by using downside risk measures such as the semi-variance,

which only penalize losses above the mean. However, if we are truly inter-

ested in rare or extreme losses, using a risk measure which still depends on

the main body of the distribution such as semi-variance may give us distorted

or over-optimistic results.

These considerations motivate the idea of using risk measures which de-

pend only on the upper tail of the distribution. To be more precise, the upper

tail of a distribution consists of outcomes with a loss greater than or equal to

some quantile of the underlying distribution function.

Definition 2.2 (Quantile Function). Suppose Z is a random variable with distri-

bution function FZ. Then the generalized inverse distribution function, or quantile

function is defined as follows:

F−1
Z : (0, 1]→ R∪ {∞}

β 7→ inf{x ∈ R : FZ(x) ≥ β}.

Definition 2.3 (Tail Risk Measure). Let ρβ : V → R ∪ {∞} be a risk measure
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as above, then ρβ is a β-tail risk measure if ρβ(Z) depends only on the restriction of

quantile function of Z above β, that is F−1
Z |[β,1].

To show that ρβ is a β-tail risk measure, we must show that ρβ(Z) can

be written as a function of the quantile function above or equal to β. Two

very popular tail risk measures are the value-at-risk [5] and the conditional

value-at-risk [22]:

Example 2.4 (Value at risk). Let Z be a random variable, and 0 < β < 1. Then,

the β−VaR for Z is defined to be the β-quantile of Z:

β -VaR(Z) := F−1
Z (β).

Example 2.5 (Conditional value at risk). Let Z be a random variable, and 0 <

β < 1. Then, the β -CVaR can be thought roughly as the conditional expectation of

a random variable above its β-quantile. The following alternative characterization of

β -CVaR [23] shows directly that it is a β-tail risk measure.

β -CVaR(Z) =
∫ 1

β
F−1

Z (u) du.

The observation that we exploit for this work is that very different random

variables will have the same β-tail risk measure as long as their β-tails are the

same. Such a situation is illustrated in Figure B.1 for two discrete random

variables.

Mass

Loss

Mass

Loss

Fig. A.1: Two very different random variables with identical β-tails

When showing that two distributions have the same β-tails, it is conve-

nient to use distribution functions rather than quantile functions. An equiv-
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alent condition for showing that two random variables Z1 and Z2 have the

same β-tail, that is F−1
Z1

(u) = F−1
Z2

(u) for all β ≤ u ≤ 1, is the following:

F−1
Z1

(β) = F−1
Z2

(β) and FZ1(z) = FZ2(z) for all z ≥ F−1
Z1

(β). (A.1)

2.2 Risk regions

In the optimization context we suppose that the loss depends on some de-

cision x ∈ X ⊆ Rk and the outcome of some latent random vector Y with

support Y ⊆ Rd, defined on a probability space (Ω,F , P), and which is inde-

pendent of x. That is, we suppose our loss is determined by some function,

f : X ×Rd → R, which we refer to as the loss function. For a given deci-

sion x ∈ X , the random variable associated with the loss is thus f (x, Y). We

are typically interested in optimization problems where the aim is to find

some decision x ∈ X which in some way minimizes both the expected loss

E [ f (x, Y)] and the value of some β-tail risk measure ρβ ( f (x, Y)). See Sec-

tion 5.1 for some explicit formulations of such an optimization problem.

To avoid repeated use of cumbersome notation we introduce the following

short-hand for distribution and quantile functions:

Fx(z) := Ff (x,Y)(z) = P ( f (x, Y) ≤ z) ,

F−1
x (β) := F−1

f (x,Y)(β) = inf{z ∈ R : Fx(z) ≥ β}.

Since tail risk measures depend only on those outcomes which are in the

β-tail, we aim to identify the region of the support which lead to a loss in the

β-tails for some decision.

Definition 2.6 (Risk region). For 0 < β < 1 the β-risk region with respect to the

decision x ∈ X is defined as follows:

Rx(β) = {y ∈ Rd : Fx ( f (x, y)) ≥ β},

or equivalently

Rx(β) = {y ∈ Rd : f (x, y) ≥ F−1
x (β)}. (A.2)
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The risk region with respect to the feasible region X ⊂ Rk is defined to be:

RX (β) =
⋃

x∈X
Rx(β).

The complement of this region is called the non-risk region. This can also be written

RX (β)c =
⋂

x∈X
Rx(β)c. (A.3)

The definition above says that the risk region Rx consists of all points

y ∈ Rd which lead to a loss in the β-tail for the decision x ∈ X . The risk

region RX is the set of all points y ∈ Rd which can lead to a loss in the β-tail

for any decision x ∈ X .

The following basic properties of the risk region follow directly from the

definition.

(i) 0 < β′ < β < 1 ⇒ RX (β) ⊆ RX (β′); (A.4)

(ii) X ′ ⊂ X ⇒ RX ′(β) ⊆ RX (β); (A.5)

(iii) If y 7→ f (x, y) is continuous then Rx(β) is closed and Rx(β)c is open.

(A.6)

We now state a technical property and prove that this ensures the dis-

tribution of the random vector in a given region completely determines the

value of a tail risk measure. In essence, this condition ensures that there is

enough mass in the set to ensure that the β-quantile does not depend on the

probability distribution outside of it.

Definition 2.7 (Aggregation condition). Suppose that RX (β) ⊆ R ⊂ Rd and

that for all x ∈ X , R satisfies the following condition:

P
(

Y ∈ {y : z′ < f (x, y) ≤ F−1
x (β)} ∩R

)
> 0 ∀ z′ < F−1

x (β) . (A.7)

Then R is said to satisfy the β-aggregation condition.
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The motivation for the term aggregation condition comes from Theorem 2.8

which follows. This result ensures that if a set satisfies the aggregation con-

dition then we can transform the probability distribution of Y so that all the

mass in the complement of this set is aggregated into a single point without

affecting the value of the tail risk measure. This property is particularly rele-

vant to scenario generation as if we have such a set, then all scenarios which

it does not contain can be aggregated, reducing the size of the stochastic

program.

Theorem 2.8. Suppose that RX (β) ⊆ R ⊂ Rd satisfies the β-aggregation condi-

tion and that Ỹ is a random vector for which

P (Y ∈ A) = P
(
Ỹ ∈ A

)
for any measurable A ⊆ R. (A.8)

Then for any tail risk measure ρβ we have ρβ ( f (x, Y)) = ρβ

(
f (x, Ỹ)

)
for all x ∈

X .

Proof. Fix x ∈ X . To show that ρβ ( f (x, Y)) = ρβ

(
f (x, Ỹ)

)
we must show that

the β-quantile and the β-tail distributions of f (x, Y) and f (x, Ỹ) are the same.

The following two conditions are necessary and sufficient for this to occur:

Fx(z) = Ff (x,Ỹ)(z) ∀ z ≥ F−1
x (β) ,

Ff (x,Ỹ)(z) < β ∀z < F−1
x (β) .

Suppose z′ ≥ F−1
x (β). First note as a direct consequence of (A.8) we have

P (Y ∈ B) = P
(
Ỹ ∈ B

)
for any B ⊇ Rc. (A.9)
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Now,

Ff (x,Ỹ)(z
′) = P

(
Ỹ ∈ {y : f (x, y) ≤ z′}

)
= P

Ỹ ∈ Rc ∩ {y : f (x, y) ≤ z′}︸ ︷︷ ︸
=Rc

+ P

Ỹ ∈ R∩ {y : f (x, Y) ≤ z′}︸ ︷︷ ︸
⊂R


= P (Y ∈ Rc) + P

(
Y ∈ R∩ {y : f (x, y) ≤ z′}

)
by (A.8) and (A.9)

= P
(
Y ∈ {y : f (x, y) ≤ z′}

)
= Fx(z′)

as required.

Now suppose z′ < F−1
x (β). There are two cases; in the first instance

suppose P
(

f (x, Y) = F−1
x (β)

)
> 0, then we have:

Ff (x,Ỹ)(z
′) ≤ P

(
f (x, Ỹ) < F−1

x (β)
)

= P
(

f (x, Y) < F−1
x (β)

)
< β,

as required. In the case where P
(

f (x, Y) = F−1
x (β)

)
= 0 we have:

Ff (x,Ỹ)(z
′) = P

(
Ỹ ∈ {y : f (x, y) ≤ z′}

)
≤ P

(
Ỹ ∈ Rc ∪ {y : f (x, y) ≤ z′}

)
= P

Ỹ ∈ {y : f (x, y) ≤ F−1
x (β)}︸ ︷︷ ︸

⊇Rc

−P

Ỹ ∈ R∩ {y : z′ < f (x, y) ≤ F−1
x (β)}︸ ︷︷ ︸

⊆R


= P

(
Y ∈ {y : f (x, y) ≤ F−1

x (β)}
)
−P

(
Y ∈ R∩ {y : z′ < f (x, y) ≤ F−1

x (β)}
)

by (A.8) and (A.9)

< P
(

Y ∈ {y : f (x, y) ≤ F−1
x (β)}

)
by (A.7)

= β since P
(

f (x, Y) = F−1
x (β)

)
> 0

as required.

The β-aggregation condition is difficult to verify directly. The following

shows that it immediately holds for RX (β′) when β′ < β.

69



Paper A.

Proposition 2.9. Suppose β′ < β. Then, RX (β′) satisfies the β-aggregation con-

dition. That is for all x ∈ X

P
(

Y ∈ {y : z′ ≤ f (x, y) ≤ F−1
x (β)} ∩RX

(
β′
))

> 0 ∀ z′ < F−1
x (β) .

Proof. Fix x ∈ X .

Case 1: F−1
x (β′) = F−1

x (β).

In this case, the distribution function Fx has a discontinuity at z = F−1
x (β),

that is P ( f (x, Y) = z) > 0. Therefore, for z′ < z we have

P
(

Y ∈ {y : z′ ≤ f (x, y) ≤ F−1
x (β)} ∩RX

(
β′
))
≥ P ( f (x, Y) = z)

> 0

as required.

Case 2: F−1
x (β′) < F−1

x (β).

In this case for all F−1
x (β′) < z′ < F−1

x (β), we have {y : z′ < f (x, y) ≤

F−1
x (β)} ⊂ RX (β′) and so

P
(

Y ∈ {y : z′ ≤ f (x, y) ≤ F−1
x (β)} ∩RX

(
β′
))

= P
(

z′ ≤ f (x, Y) ≤ F−1
x (β)

)
> 0.

For convenience, we now drop β from our notation and terminology.

Thus, we refer to the β-risk region and β-aggregation condition as simply

the risk region and aggregation condition respectively, and write RX (β) as

RX .

All sets satisfying the aggregation condition must contain the risk region,

however, the aggregation condition does not necessarily hold for the risk

region itself. It is guaranteed to hold if Y has a discrete distribution, since in

this case for all x ∈ X and z′ < F−1
x (β) we have:

P
(

Y ∈ {y : z′ < f (x, y) ≤ F−1
x (β)} ∩RX

)
≥ P

(
f (x, Y) = F−1

x (β)
)

> 0.
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In the non-discrete case we must impose extra conditions on the problem

to avoid some degenerate cases. Recall that Y denotes the support of the

random vector Y.

Proposition 2.10. Suppose the following conditions hold:

(i) int (Y) ∩ int (RX ) is connected

(ii) y 7→ f (x, y) is continuous for all x ∈ X

(iii) For each x ∈ X there exists x′ ∈ X such that

int (Y) ∩ int (Rx ∩Rx′) 6= ∅ and int (Y) ∩ int (Rx′ \ Rx) 6= ∅ (A.10)

Then the risk region RX satisfies the aggregation condition.

Proof. Fix x ∈ X and z′ < F−1
x (β). Pick x′ ∈ X such that (A.10) holds.

Also, let y0 ∈ int (Y) ∩ int (Rx′ \ Rx) and y1 ∈ int (Y) ∩ int (Rx ∩Rx′). Since

int (Y) ∩ int (RX ) is connected there exists continuous path from y0 to y1.

That is, there exists

γ : [0, 1]→ int (Y) ∩ int (RX )

such that γ(0) = y0 and γ(1) = y1. Now, f (x, y0) < F−1
x (β) and f (x, y1) ≥ F−1

x (β)

and so given that t 7→ f (x, γ(t)) is continuous there must exist 0 < t < 1 such

that z′ < f (x, γ(t)) < F−1
x (β). That is,

int (Y) ∩ int (RX ) ∩ {y : z′ < f (x, y) < F−1
x (β)}

is non-empty. This is a non-empty open set contained in the support of Y

and so has positive probability, hence the aggregation condition holds.

The following Proposition gives a condition under which the non-risk

region is convex. This is useful as if we can find some points in the non-risk

region, then the the convex hull of these points will be contained in the non-

risk region, and the complement of this convex hull will thus contain the risk

region.
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Proposition 2.11. Suppose that for each x ∈ X the function y 7→ f (x, y) is convex.

Then the non-risk region Rc
X is convex.

Proof. For x ∈ X , if y 7→ f (x, y) is convex then the setRc
x = {y ∈ Rd : f (x, y) < F−1

x (β)}

must be convex. The arbitrary intersection of convex sets is convex, hence

Rc
X =

⋂
x∈X Rc

x is convex.

This convexity condition is held by a large class of stochastic programs,

for instance, all two-stage linear recourse problems with fixed recourse will

have this property (see, for instance, [3]).

The random vector in the following definition plays a special role in our

theory.

Definition 2.12 (Aggregated random vector). For some set R ⊂ Rd satisfying

the aggregation condition, the aggregated random vector is defined as follows:

ψR(Y) :=

Y if Y ∈ R,

E [ Y|Y ∈ Rc ] otherwise.

If we have E [Y|Y ∈ Rc] ∈ Rc then Theorem 2.8 guarantees that ρβ ( f (x, ψR(Y))) = ρβ ( f (x, Y))

for all x ∈ X . For example, the conditions of Proposition 2.11 will guarantee

this. As well as preserving the value of the tail risk measure, the function ψR

will preserve the expectation for affine cost functions.

Corollary 2.13. Suppose for each x ∈ X the function y 7→ f (x, y) is affine and for

a set R ⊂ Rd satisfying the aggregation condition we have that

E [Y|Y ∈ Rc] ∈ Rc

Then,

ρβ ( f (x, ψR(Y))) = ρβ ( f (x, Y)) , (A.11)

E [ f (x, ψRc (Y))] = E [ f (x, Y)] , (A.12)

for all x ∈ X .
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Proof. The equality (A.11) follows immediately from Theorem 2.8. For the

expectation function we have

E [ψR(Y)] = P (Y ∈ R)E [ψR(Y)|Y ∈ R] + P (Y ∈ Rc)E [ψR(Y)|Y ∈ Rc]

= P (Y ∈ R)E [Y|Y ∈ R] + P (Y ∈ Rc)E [Y|Y ∈ Rc]

= E [Y] .

Since y 7→ f (x, y) is affine this means that

E [ f (x, ψR(Y))] = f (x, E [ψR(Y)]

= f (x, E [Y])

= E [ f (x, Y)] .

3 Scenario generation

In the previous section, we showed that under mild conditions the value of

a tail risk measure only depends on the distribution of outcomes in the risk

region. In this section we demonstrate how this feature may be exploited for

the purposes of scenario generation and scenario reduction.

We assume throughout this section that our scenario sets are constructed

from some underlying probabilistic model from which we can draw indepen-

dent identically distributed samples. We also assume we have a set R ⊂ Rd

which satisfies the aggregation condition and for which we can easily test

membership. In Section 5 we show such a convenient characterization is

available for the risk region of the portfolio selection problem. However, in

general finding such a set is difficult as the risk region depends both on the

loss function and the distribution of the random vector Y.

Our general approach is as follows: for scenario generation we prioritize

the construction of scenarios in the risk region to allow one to better approx-

imate the value of the β-tail risk measure; for scenario reduction we reduce
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the number of scenarios in the non-risk region which are in some sense re-

dundant for computing the value of the β-tail risk measure.

In Section 3.1 we present and analyse two concrete approaches: aggrega-

tion sampling and aggregation reduction. In Section 3.2 we briefly discuss

alternative ways of exploiting risk regions for scenario generation.

3.1 Aggregation sampling and reduction

In aggregation sampling, the user specifies a number of scenarios to be in the

risk region. The algorithm then draws samples from the distribution, stor-

ing those samples which lie in the risk region and aggregating those in the

non-risk region into a single point. In particular, the samples in the non-risk

region are aggregated into their mean. The algorithm terminates when the

specified number of risk scenarios has been reached. This is detailed in Algo-

rithm 1. In aggregation reduction one draws a fixed number of samples from

the distribution and then aggregates all those in the non-risk region.

Aggregation sampling and aggregation reduction can be thought of as

equivalent to sampling from the aggregated random vector for large sam-

ple sizes. Therefore, aggregation sampling and aggregation reduction are

consistent with sampling only if R satisfies the aggregation condition and

E [Y|Y ∈ Rc] ∈ Rc. For the precise conditions required for consistency and

proofs of these see Theorem 4.4.

We now study the performance of our methodology. Let q the probability

of the non-risk region, and n the desired number of risk scenarios. Let N(n)

denote the effective sample size for aggregation sampling, that is, the number of

samples drawn until the algorithm terminates2. The aggregation sampling

algorithm can be viewed as a sequence of Bernoulli trials where a trial is a

success if the corresponding sample lies in the non-risk region, and which

terminates once we have reached n failures, that is, once we have sampled n

2For simplicity of exposition we discount the event that the while loop of the algorithm

terminates with nRc = 0 which occurs with probability qn
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input : R ⊂ Rd set satisfying aggregation condition, NR number of

required risk scenarios

output: {(ys, ps)}NR+1
s=1 scenario set

nRc ← 0, nR ← 0, yRc = 0;

while nR < NR do

Sample new point y;

if y ∈ R then

nR ← nR + 1;

ynR ← y;

end

else

nRc ← nRc + 1;

yRc ← 1
nRc+1 (nRc yRc + y)

end

end

foreach i in 1, . . . , NR do pi ← 1
(nRc+NR)

;

if nRc > 0 then

pnRc+1 ← nRc
nRc+NR ;

end

else

Sample new point y;

nRc ← 1;

yNR+1 ← y;

end

pNR+1 ← nRc
nRc+NR

Algorithm 1: Aggregation sampling
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scenarios from the risk region. We can therefore write down the distribution

of N(n):

N(n) ∼ n +NB(n, q),

where NB(N, q) denotes a negative binomial random variable whose proba-

bility mass function is as follows:(
k + n− 1

k

)
(1− q)nqk, k ≥ 0.

The expected effective sample size of aggregation sampling is thus:

E [N(n)] = n + n
q

1− q
(A.13)

Let R(n) denote the number of scenarios which are aggregated in the ag-

gregation reduction method. Aggregation reduction can similarly be viewed

as a sequence of n Bernoulli trials, where success and failure are defined in

the same way as described above. The number of aggregated scenarios in

aggregation reduction is therefore distributed as follows:

R(n) ∼ B(n, q)

where B(n, q) denotes a binomial random variable and so we have

E [R(n)] = nq. (A.14)

From (A.13) and (A.14) we can see that for both aggregation sampling

and aggregation reduction the effectiveness of the method improves as the

probability of the non-risk region q increases. In particular, given the proper-

ties of risk regions in (A.4) and (A.5), we can expect the performance of our

methods to improve as β, the level of tail risk measure increases, and as X ,

our feasible region of decisions becomes more constrained.

3.2 Alternative approaches

The above algorithms and analyses assume that the samples of Y were identi-

cally, indepenedently distribution. However, in principle the algorithms will
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work for any unbiased sequence of samples. This opens up the possibility of

enhancing the scenario aggregation and reduction algorithms by using them

in conjuction with variance reduction techniques such as importance sam-

pling, latin hypercube sampling or antithetic sampling [24]3. The formulae

(A.13) and (A.14) will still hold, but q will the probability of a sample occuring

in the risk region rather than the actual probability of the risk region itself.

The above algorithms can also be generalized in how they represent the

non-risk region. Because aggregation sampling and aggregating reduction

only represent the non-risk region with a single scenario, they do not in

general preserve the overall expectation of the cost function, or any other

statistics of the loss function except for the value of a β-tail risk measure.

These algorithms should therefore generally only be used for problems which

only involve β-tail risk measures. However, if the cost function is affine (in

the sense of Corollary 2.13), then collapsing all points in the non-risk region

to the conditional expectation preserves the overall expectation.

If expectation or any other statistic of the cost function is used in the

optimization problem then one could represent the non-risk region region

with many scenarios. For example, instead of aggregating all scenarios in the

non-risk region into a single point we could apply a clustering algorithm to

them such as k-means. Such a clustered scenario set for the portfolio selection

problem is illustrated for the arbitrarily chosen value k = 10 in Figure A.2; see

Section 5 for details of this problem. The ideal allocation of points between

the risk and non-risk regions will be problem dependent and is beyond the

scope of this paper.

3Batch sampling methods such as stratified sampling will not work with aggregation sam-

pling which requires samples to be drawn sequentially.
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Fig. A.2: Scenario reduction via k-means clustering on a non-risk region for a portfolio selection

problem.

4 Consistency of aggregation sampling

The reason that aggregation sampling and aggregation reduction work is that

for large sample sizes, they are equivalent to sampling from the aggregated

random vector, and if the aggregation condition holds then the aggregated

random vector yields the same optimization problem as the original random

vector. We only prove consistency for aggregation sampling and not aggrega-

tion reduction as the proofs are very similar. Essentially, the only difference

is that aggregation sampling has the additional complication of terminating

after a random number of samples.

We suppose in this section that we have a sequence of independently iden-

tically distributed (i.i.d.) random vectors Y1, Y2, . . . with the same distribution

as Y, and which are defined on the product probability space Ω∞.

4.1 Uniform convergence of empirical β-quantiles

The i.i.d. sequence of random vectors Y1, Y2, . . . can be used to estimate the

distribution and quantile functions of Y. We introduce the additional short-
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4. Consistency of aggregation sampling

hand for the empirical distribution and quantile functions:

Fn,x(z) :=
1
n

n

∑
i=1

1{ f (x,Yi)≤z},

F−1
n,x (β) := inf{z ∈ R : Fn,x(z) ≥ β}.

Note that these are random-valued functions on the probability space Ω∞. It

is immediate from the strong law of large numbers that for all x̄ ∈ R and

z ∈ R, we have Fn,x(z)
w.p.1→ Fx̄(z) as n → ∞. In addition, if Fx̄ is strictly

increasing at z = F−1
x̄ then we also have F−1

n,x̄ (β)
w.p.1→ F−1

x̄ (β) as n → ∞;

see for instance [25][Chapter 2]. The following result extends this pointwise

convergence to a convergence result which is uniform with respect to x ∈ X .

Theorem 4.1. Suppose the following hold:

(i) For each x ∈ X , Fx is strictly increasing and continuous in some neighborhood

of F−1
x (β)

(ii) For all x̄ ∈ X the mapping x 7→ f (x, Y) is continuous at x̄ with probability 1.

(iii) X ⊂ Rk is compact

then F−1
n,x (β)→ F−1

x (β) uniformly on X with probability 1.

The proof of this result relies on various continuity properties of the dis-

tribution and quantile functions which are provided in Appendix A. Some

elements of the proof below have been adapted from [26, Theorem 7.48], a

result which concerns the uniform convergence of expectation functions.

Proof. Fix ε0 > 0 and x̄ ∈ X . Since Fx̄ is continuous in a neighborhood of

F−1
x̄ (β), there exists 0 < ε < ε0 such Fx̄ is continuous at F−1

x̄ (β)± ε. Since Fx̄

is strictly increasing at F−1
x̄ (β),

δ := min{β− Fx̄

(
F−1

x̄ (β)− ε
)

, Fx̄

(
F−1

x̄ (β) + ε
)
− β} > 0.

By Corollary A.2 the mapping x 7→ Fx

(
F−1

x̄ (β)− ε
)

is continuous at x̄ with

probability 1. Applying Lemma A.4, there exists a neighborhood W of x̄ such
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that with probability 1, for n large enough

sup
x∈W∩X

∣∣∣Fn,x(F−1
x̄ (β)− ε)− Fn,x̄(F−1

x̄ (β)− ε)
∣∣∣ < δ

2
.

In addition, by the strong law of large numbers, with probability 1, for n

large enough ∣∣∣Fn,x̄

(
F−1

x̄ (β)− ε
)
− Fx̄

(
F−1

x̄ (β)− ε
)∣∣∣ < δ

2
(A.15)

Thus, for all x ∈W ∩ X we have that∣∣∣Fn,x

(
F−1

x̄ (β)− ε
)
− Fx̄

(
F−1

x̄ (β)− ε
)∣∣∣ < δ.

Similarly, we we can choose W so that we also have∣∣∣Fn,x

(
F−1

x̄ (β) + ε
)
− Fx̄

(
F−1

x̄ (β) + ε
)∣∣∣ < δ.

and so

Fn,x

(
F−1

x̄ (β)− ε
)
< β < Fn,x

(
F−1

x̄ (β) + ε
)

.

Hence, we have that with probability 1, for n large enough

sup
x∈W∩X

∣∣∣F−1
n,x (β)− F−1

x̄ (β)
∣∣∣ ≤ ε < ε0. (A.16)

Also, by Proposition A.3 the function x 7→ F−1
x (β) is continuous and so the

neighborhood can also be chosen so that

sup
x∈W∩X

∣∣∣F−1
x̄ (β)− F−1

x (β)
∣∣∣ < ε0, (A.17)

and so combining (A.16) and (A.17) we have

sup
x∈W∩X

∣∣∣F−1
n,x (β)− F−1

x (β)
∣∣∣ < 2ε0.

Finally, since X is compact, there exists a finite number of points x1, . . . , xm ∈

X with corresponding neighborhoods W1, . . . , Wm covering X , such that with

probability 1, for n large enough the following holds:

sup
x∈Wj∩X

∣∣∣F−1
n,x (β)− F−1

x (β)
∣∣∣ < 2ε0 for i = 1, . . . , m
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4. Consistency of aggregation sampling

that is, with probability 1, for n large enough

sup
x∈X

∣∣∣F−1
n,x (β)− F−1

x (β)
∣∣∣ < 2ε0.

In the next subsection this result will be used to show that any point in

the interior of the non-risk region will, with probability 1, be in the non-risk

region of the sampled scenario set for a large enough sample size.

4.2 Equivalence of aggregation sampling with sampling from

aggregated random vector

The main obstacle in showing that aggregation sampling is equivalent to

sampling from the aggregated random vector is to show that the aggregated

scenario in the non-risk region converges almost surely to the conditional

expectation of the non-risk region as the number of specified risk scenarios

tends to infinity. Recall from Section 3 that N(n) denotes the effective sample

size in aggregation sampling when we require n risk scenarios and is dis-

tributed as n +NB(n, q) where q is the probability of the non-risk region.

The purpose of the next Lemma is to show that as n → ∞ the number of

samples drawn from the non-risk region almost surely tends to infinity.

Lemma 4.2. Suppose M(n) ∼ NB(n, p) where 0 < p < 1. Then with probability

1 we have that limn→∞ M(n) = ∞.

Proof. First note that,

{ lim
n→∞

M(n) = ∞}c =
⋃

k∈N

( ⋂
n∈N

⋃
t>n
{M(t) > k}c

)

=
⋃

k∈N

lim sup
n→∞

{M(n) ≤ k}.

Hence, to show that P ({limn→∞ M(n) = ∞}) = 1 it is enough to show for

each k ∈N we have that

P

(
lim sup

n→∞
{M(n) ≤ k}

)
= 0. (A.18)
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Now, fix k ∈N. Then for all n ∈N we have that

P (M(n) = k) =
(

k + n− 1
k

)
(1− p)n pk,

and in particular,

P (M(n + 1) = k) =
(

k + n
k

)
(1− p)n+1 pk

=
k + n

n
(1− p) P (M(n) = k) .

For large enough n we have that k+n
n (1− p) < 1, hence ∑∞

n=1 P (M(n) = k) < +∞

and so

∞

∑
n=1

P (M(n) ≤ k) =
∞

∑
n=1

k

∑
j=1

P (M(n) = j)

=
k

∑
j=1

∞

∑
n=1

P (M(n) = j)

< ∞.

The result (A.18) now holds by the first Borel-Cantelli Lemma [19, Section 4].

The next Corollary shows that the strong law of large numbers still applies

for the conditional expectation of the non-risk region in aggregation sampling

despite the sample size being a random quantity.

Corollary 4.3. Suppose E [|Y|] < +∞ and P (Y ∈ Rc) > 0, then

1
N(n)− n ∑

i∈1...,N(n): Yi∈Rc
Yi → E [ Y|Y ∈ Rc ] with probability 1 as n→ ∞

This theorem could be proved by viewing the random variable ∑i∈1...,N(n): Yi∈Rc Yi →

E [ Y|Y ∈ Rc ] as part of an appropriately defined renewal-reward process,

and then using standard asymptotic results which apply to these; see [27,

Chapter 10]. To keep this paper self-contained, we provide an elementary

proof.
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4. Consistency of aggregation sampling

Proof. Define the following measurable subsets of Ω∞:

Ω1 = {ω ∈ Ω : lim
n→∞

N(n)(ω)− n = ∞},

Ω2 = {ω ∈ Ω : lim
n→∞

1
n

n

∑
i=1

1{Yi(ω)∈Rc}Yi(ω) = E
[
1{Y∈Rc}Y

]
},

Ω3 = {ω ∈ Ω : lim
n→∞

1
n

n

∑
i=1

1{Yi(ω)∈Rc} = P (Y ∈ Rc)}.

By the strong law of large numbers Ω2 and Ω3 have probability one. Since

N(n)− n ∼ NB(n, q), where q = P (Y ∈ Rc), Ω1 has probability 1 by Lemma

4.2. Therefore, Ω1 ∩Ω2 ∩Ω3 has probability 1 and so it is enough to show

that for any ω ∈ Ω1 ∩Ω2 ∩Ω3 we have that

1
N(n)(ω)− n ∑

i∈1...,N(n): Yi(ω)∈Rc
Yi(ω)→ E [ Y|Y ∈ Rc ] as n→ ∞.

Let ω ∈ Ω1 ∩Ω2 ∩Ω3. Since ω ∈ Ω2 ∩Ω3, we have that as m→ ∞:

1
1
m ∑m

i=1 1{Yi(ω)∈Rc}

1
m

m

∑
i=1

1{Yi(ω)∈Rc}Yi →
1

P (Y ∈ Rc)
E
[
1{Y∈Rc}Y

]
= E [Y|Y ∈ Rc] .

Now, fix ε > 0. Then there exists N1(ω) ∈N such

m > N1(ω) =⇒
∣∣∣∣∣ 1

1
m ∑m

i=1 1{Yi(ω)∈Rc}

1
m

m

∑
i=1

1{Yi(ω)∈Rc}Yi −E [Y|Y ∈ Rc]

∣∣∣∣∣ < ε.

Since ω ∈ Ω1 there exists N2(ω) such that

n > N2(ω) =⇒ N(n)(ω) > N1(ω).

Noting that

1
1

N(n)(ω) ∑
N(n)(ω)
i=1 1{Yi(ω)∈Rc}

1
N(n)(ω)

N(n)(ω)

∑
i=1

1{Yi(ω)∈Rc}Yi(ω)

=
1

N(n)(ω)−n
N(n)(ω)

1
N(n)(ω)

N(n)(ω)

∑
i=1

1{Yi(ω)∈Rc}Yi(ω)

=
1

N(n)(ω)− n ∑
i:Yi(ω)∈Rc

Yi,
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we have that

n > N2 =⇒

∣∣∣∣∣∣ 1
N(n)(ω)− n ∑

i:Yi(ω)∈Rc
Yi(ω)−E [Y|Y ∈ Rc]

∣∣∣∣∣∣ < ε

and so 1
N(n)(ω)−n ∑i:Yi(ω)∈Rc Yi(ω)→ E [Y|Y ∈ Rc] as n→ ∞.

To show that aggregation sampling yields solutions consistent with the

underlying random vector Y, we show that with probability 1, for n large

enough, it is equivalent to sampling from the aggregated random vector

ψR(Y), as defined in Definition 2.5. If the region R satisfies the aggregation

condition, and E [Y|Y ∈ Rc] ∈ Rc, Theorem 2.8 tells us that ρβ ( f (x, ψR(Y))) =

ρβ ( f (x, Y)) for all x ∈ X . Hence, if sampling is consistent for the risk mea-

sure ρβ, then aggregation sampling also consistent.

Denote by F̃n,x, F̃−1
n,x , the empirical distribution, and quantile functions re-

spectively and by ρ̃n,β(x) the value of the tail-risk measure for the decision

x ∈ X for the sample from the aggregated random vector: ψR(Y1), . . . , ψR(Yn).

Similarly, denote by F̂n,x, F̂−1
n,x , and ρ̂n,β the analogous functions for the sce-

nario set constructed by aggregation sampling with n risk scenarios. Note

that these latter functions will depend on the sample Y1, . . . , YN(n). Note also

that like Fn,x and F−1
n,x , all these functions are random and defined on the

same sample space Ω∞.

Theorem 4.4. Suppose the following conditions hold:

(i) (x, y) 7→ f (x, y) is continuous on X ×Rd

(ii) For each x ∈ X , Fx is strictly increasing and continuous in some neighborhood

of F−1
x (β)

(iii) E [ Y|Y ∈ Rc ] ∈ int (Rc)

(iv) X is compact.

Then, with probability 1, for n large enough ρ̃n,β ≡ ρ̂N(n),β.
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4. Consistency of aggregation sampling

Proof. Note that if

z > max

 f

x,
1

N(n)(ω)− n ∑
i∈1...,N(n)(ω): Yi(ω)∈Rc

Yi(ω)

 , f (x, E [ Y|Y ∈ Rc ])


then

F̂n,x(z)(ω) =
N(n)(ω)− n

N(n)(ω)

+
1

N(n)(ω)
|{1 ≤ i ≤ N(n)(ω) | f (x, Yi(ω)) ≤ z and Yi(ω) ∈ R}|

= F̃N(n),x(z)(ω).

So if we have

F̂−1
n,x (β)(ω) > max

 f

x,
1

N(n)(ω)− n ∑
i∈1...,N(n)(ω): Yi(ω)∈Rc

Yi(ω)

 , f (x, E [ Y|Y ∈ Rc ])


(A.19)

then this implies that F̂−1
n,x (u)(ω) = F̃−1

N(n),x(u)(ω) for all u ≥ β, which in turn

implies ρ̂β,n(x)(ω) = ρ̃β,N(n)(x)(ω). Hence, it is enough to show that with

probability 1, for sufficiently large n, the inequality (A.19) holds for all x ∈ X .

Since E [ Y|Y ∈ Rc ] ∈ int (Rc) we have that

f (x, E [Y|Y ∈ Rc]) < F−1
x (β) for all x ∈ X

and since X is compact there exists δ > 0 such that

sup
x∈X

(
F−1

x (β)− f (x, E [ Y|Y ∈ Rc ])
)
> δ. (A.20)

The continuity of f (x, y) and again the compactness of X implies that there

exists γ > 0 such that

|y−E [ Y|Y ∈ Rc ]| < γ =⇒ sup
x∈X
| f (x, y)− f (x, E [ Y|Y ∈ Rc]) | < δ

2

Thus, by Corollary 4.3, with probability 1, for n large enough

∣∣∣∣∣∣ f
x,

1
N(n)− n ∑

i∈1...,N(n): Yi∈Rc
Yi

− f (x, E [ Y|Y ∈ Rc])

∣∣∣∣∣∣ < δ

2
(A.21)
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Also, by Theorem 4.1, given N(n) > n, for n large enough

sup
x∈X

∣∣∣F−1
x (β)− F̃−1

N(n),x (β)
∣∣∣ < δ

2
, (A.22)

which implies for all x ∈ X

F̃−1
N(n),x(β)− f

x,
1

N(n)− n ∑
i∈1...,N(n): Yi∈Rc

Yi


≥
(

F−1
x (β)− δ

2

)
−
(

f (x, E [ Y|Y ∈ Rc ]) +
δ

2

)
by (A.21) and (A.22)

=
(

F−1
x (β)− f (x, E [ Y|Y ∈ Rc ])

)
︸ ︷︷ ︸

>δ by (A.20)

−δ

> 0.

Similarly with probability 1 for n large enough we have F̃−1
N(n),x(β) > f (x, E [ Y|Y ∈ Rc ])

for all x ∈ X . Therefore the inequality (A.19) holds with probability 1 for suf-

ficiently large n as required.

5 Risk regions for the portfolio selection problem

In this section we characterize exactly the risk region of the portfolio selec-

tion problem when the asset returns are elliptically distributed. In Section

5.1 we formulate the basic problem and, to provide some intuition, we find

the risk region by brute force for an arbitrary discrete distribution. In Section

5.2 we define elliptical distributions and give the non-risk region for the un-

constrained problem, and finally in Section 5.3 we characterize the non-risk

region when portfolios are constrained to a a convex set.

5.1 Problem statement and brute force aggregation

In the portfolio selection problem, one aims to choose a portfolio of financial

assets with uncertain returns. For i = 1, . . . , d, let xi denote the amount to

invest in asset i, and Yi the random return of asset i. The loss function in this
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5. Risk regions for the portfolio selection problem

problem is the negative total return, that is f (x, Y) = ∑d
i=1−xiYi = −xTY.

The optimization problem will typically try to balance the expected profit

against the risk in some way, and so our problem is usually of one of the

following forms:

(i) minimize
x∈X

ρβ(−xTY)

subject to E
[

xTY
]
≥ t

(ii) maximize
x∈X

E
[

xTY
]

subject to ρβ(−xTY) ≤ s

(iii) minimize
x∈X

ρβ(−xTY) + vE
[
−xTY

]
where v ≥ 0 and X ⊂ Rd represents the set of valid portfolios. The set X of

feasible portfolios may encompass constraints like no short-selling (x ≥ 0),

total investment (∑d
i=1 xi = 1) and quotas on certain stocks or combinations

of stocks (x ≤ c).

For a given portfolio x ∈ X , the corresponding risk region is the half-

space of points where loss is greater than or equal to the β-quantile:

Rx = {y ∈ Rd : −xTy ≥ F−1
x (β)}

For a discrete distribution of returns, finding the β-quantile of the loss asso-

ciated to a particular portfolio is a case of ordering all scenarios according to

their loss and selecting the appropriate order statistic. In Figure A.3 we have

illustrated a scenario set of returns for two hypothetical assets sampled i.i.d.

from a multivariate Normal distribution. The line in this figure separates all

those scenarios with loss below the β-quantile from those with loss above for

the portfolio x = ( 1
2 , 1

2 ).

Recall that the risk region associated to a set of feasible decisions is the

union of all risk regions for decisions in that set. Thus, we can find all sce-

narios in the risk region by calculating the β-quantile for all feasible portfo-

lios. On the left hand side of Figure A.4, for the same scenario set in Figure
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Fig. A.3: Scenarios with loss above and below β-quantile for one portfolio

A.3, we have identified the risk scenarios for the set of feasible portfolios

X = {(x1, x2) ∈ R2 : x1, x2 ≥ 0, x1 + x2 = 1}.

Corollary 2.13 states that if the aggregation condition holds, then all the

mass in the non-risk region can be aggregated into its conditional expecta-

tion without affecting the value of the expectation of the loss or any tail risk

measure. For a discrete distribution, we noted in Section 2.2 that the aggre-

gation condition always holds for the risk region. On the right-hand side of

Figure A.4 is illustrated the same scenario set where all non-risk scenarios

have been aggregated into a single point. Note that the β-quantile lines have

not changed after aggregation. By aggregating all the non-risk scenarios into

a single point we substantially reduce the computational cost of solving the

corresponding portfolio selection problem.

The following corollary gives sufficient conditions for the risk region to

satisfy the aggregation condition for continuous distributions.

Corollary 5.1. Suppose that Y = Rd and there exist x1, x2 ∈ X which are linearly

independent. Then, for any R ⊇ RX , R satisfies the aggregation condition. More-

over, if R is convex, Y is continuous and X is compact, then aggregation sampling

with respect to R is consistent in the sense of Theorem 4.4.

Proof. For the first part of this result, it is enough to show that RX satisfies
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Fig. A.4: Scenario set separated into risk and non-risk scenarios: full scenario set (left) and

aggregated scenario set (right)

the aggregation condition. We prove this by showing that all the conditions

of Proposition 2.10 hold. Note that x 7→ −xTy is continuous so condition (ii)

holds immediately.

For all x ∈ X the interior of the corresponding risk region and non-risk

region are open half-spaces:

int (Rx) = {y ∈ Rd : −xTy > F−1
x (β)}

int (Rc
x) = {y ∈ Rd : −xTy < F−1

x (β)}

Fix x̄ ∈ X . Then either x̄ is linearly independent to x1 or it is linearly in-

dependent to x2. Assume it is linearly independent to x1. Now, int (Rx̄)

and int (Rx1) are non-parallel half-spaces and so both int (Rx̄ ∩Rx1) and

int (Rx1 \ Rx̄) = int (Rx1) ∩ int (Rc
x̄) are non-empty so condition (iii) is sat-

isfied.

Since Rx1 and Rx2 are non-parallel half-spaces, their union Rx1 ∪ Rx2

is connected. Similarly, for any x ∈ X , we must have Rx being non-parallel

with eitherRx1 orRx2 and soRx ∪Rx1 ∪Rx2 must also be connected. Hence,

RX =
⋃

x∈X (Rx ∪Rx1 ∪Rx2) is connected so condition (i) is also satisfied.

It now remains to show that aggregation sampling is consistent in the

sense of Theorem 4.4. Conditions (i) and (iv) of this theorem hold trivially.
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Condition (iii) also holds immediately since R is convex, so it only remains

to verify condition (ii). Since Y is continuous and has support Y = Rd, Y

has a density f such that f (y) > 0 for all y ∈ Rd. Hence, for all x ∈ X , the

function Fx is continuous and increasing everywhere.

In the illustrative example above we used brute force to test whether or

not a point belonged to the risk region. This approach requires the calculation

of the β-quantile for all feasible decisions, which is roughly equivalent to the

computational cost required to enumerate the value of the tail-risk measure

for all feasible decisions. To benefit from risk regions, we instead need a

convenient method to test whether or not a point belongs to it.

5.2 Non-risk region for elliptically distributed returns

By exploiting the structure of a parametric distribution, it may be possible to

characterize its associated risk region in a more convenient manner. In this

section we do this for elliptically distributed returns.

Elliptical distributions are a general class of distributions which include

among others the multivariate Normal and multivariate t-distributions. See

[28] for a full overview of the subject.

Definition 5.2 (Spherical and Elliptical Distributions). Let X be a random vector

in Rd, then X is said to be spherical if its distribution is invariant under orthonor-

mal transformations; that is, if

X ∼ UX for all U ∈ Rd×d orthonormal.

Let Y be a random vector in Rd, then Y is said to be elliptical if it can be written

Y = PX + µ where P ∈ Rd×d is non-singular, µ ∈ Rd, and X is random vector

with spherical distribution. We will denote this Y ∼ Elliptical(X, P, µ).

We will assume throughout that Y is continuous and Y = Rd so that

we can apply Corollary 5.1. An important property of elliptical distributions

is that for any random vector with such a distribution, we can characterize
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exactly the distribution of any linear combination of the components of the

vector. That is, for an an elliptical distribution Y ∼ Elliptical(X, P, µ) in Rd

and x ∈ Rd we have

xTY ∼ ‖Px‖X1 + xTµ. (A.23)

where X1 is the first component of the random vector X, and ‖·‖ denotes

the standard Euclidean norm. This property allows us to solve some port-

folio selection problems for elliptical distributions where the risk measure is

positive homogeneous and translation invariant via quadratic programming

or interior point algorithms. Such risk measures include the β -VaR, β -CVaR

and all coherent risk measures [20]. For more details, and a proof of (A.23)

see [29]. By (A.23) the β-quantile of the loss of a portfolio is as follows:

F−1
x (β) = ‖Px‖ F−1

X1
(β)− xTµ.

Therefore, using (A.3) the non-risk region for Y ∼ Elliptical(X, P, µ), is the

following:

{y ∈ Rd : −xTy ≤ ‖Px‖ F−1
X1

(β)− xTµ ∀x ∈ X} (A.24)

If we take X = Rd, then it can be shown that the set (A.24) is in fact just an

ellipsoid (see Proposition (B.1)):

Rc
Rd = {y ∈ Rd : (y− µ)T Σ−1 (y− µ) ≤ F−1

X1
(β)2}. (A.25)

where Σ = PT P. Note that by (A.5) the setRX ⊂ RRd and soRRd always sat-

isfies the aggregation condition. Unlike (A.24) this characterization in (A.25)

allows us to easily test whether or not an arbitrary point is in the risk region.

As discussed in Section 3 on scenario generation, the greater the proba-

bility of the non-risk region, the greater the benefit of our methodology over

regular sampling. To gauge the utility of our methodology we calculate the

probability of the region (A.25) for the Normal distribution. If Y ∼ N (µ, Σ)
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this can be calculated exactly:

P
(
(Y− µ)TΣ−1(Y− µ) ≤ Φ−1 (β)2

)
= P

(
XTX ≤ Φ−1 (β)2

)
where Y = PX + µ

= P
(

χ2
d ≤ Φ−1 (β)2

)
,

where Φ is the distribution function of the standard Normal distribution.

That is, the probability of the non-risk region is invariant to the mean and

covariance and can be calculated from a χ2
d distribution function. In Figure

A.5 we have plotted how the probability of the non-risk region varies with

the value of β and the dimension. It shows that as the dimension increases,

the probability of the non-risk region converges to zero. This convergence is

so quick that for even relatively small dimensions and high values of β, the

probability of the ellipsoid is tiny. This means that the potential benefit of

aggregating scenarios using this region for reasonably sized problems would

be negligible. However, as we show in the next subsection, by using the

constraints of our problem we can significantly increase this probability.
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Fig. A.5: Plot of how mass of ellipse varies with dimension
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5.3 Non-risk region with convex constraints

We now treat the more general case where the portfolios are constrained to a

convex set. As well as convexity we also require the related concepts of cone

and conic hull.

Definition 5.3 (Cones and Conic Hull). A set K ⊂ Rd is a cone if for all x ∈ K

and λ ≥ 0 we have λx ∈ K. A cone is convex if for all x1, x2 ∈ K and λ1, λ2 ≥ 0

we have λ1x1 + λ2x2 ∈ K. The conic hull of a set A ⊂ Rd is the smallest convex

cone containing A, and is denoted conic (A).

The characterization of this region also makes use of the concept of a

projection onto a convex set which we recall now.

Definition 5.4 (Projection). Let C ⊂ Rd be a closed convex set. Then for any point

y ∈ Rd, we define the projection of y onto C to be the unique point pC(y) ∈ C such

that

inf
x∈C
‖x− y‖ = ‖pC(y)− y‖

By a slight abuse of notation, for a set A ⊂ Rd and a matrix T ∈ Rd×d,

we write T (A) := {Ty : y ∈ A}. Now, letting K = conic (X ), Corollary B.5

in Appendix B applied to the set (A.24) gives us the non-risk region:

PT
(
{ỹ : ‖pK′(ỹ− µ)‖ ≤ F−1

X1
(β)}

)
(A.26)

where K′ = PK. Like (A.25) the characterization (B.6) allows us easily to

check whether or not a point lies in the risk region.

We now repeat our calculations of the probability of the non-risk region

assuming now that X = {x ∈ Rd : ∑d
i=1 xi = 1, x ≥ 0}. The probability of

the non-risk region is no longer invariant to the parameters of the Normal

distribution, so for simplicity we take µ = 0 and Σ = In. In this case we have

P = Id and so K′ = K = Rd
+. Also, pK(y) = y+ where y+ = max{0, y}, hence

Rc
X = {y ∈ Rd : ‖y+‖ ≤ Φ−1 (β)}.
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The probability of this region cannot be calculated analytically, and so we

estimate it by Monte Carlo simulation. As Figure A.6 shows, the probability

of the region decays at a much slower rate as the dimension increases. This

underlines the importance of making use of our constraints for finding sets

which satisfy the aggregation condition.
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Fig. A.6: Plot of how probability of non-risk region varies when K = Rd
+, and Y ∼ N (0, I)

6 Numerical tests

In this section, we test the performance of our aggregation sampling algo-

rithm from Section 3 on the portfolio selection problem with elliptical distri-

butions, using the non-risk region found in Section 5. The purpose of this

test is to compare the performance of our methodology against “standard”

scenario generation methods, which spread their scenarios evenly across the

support of a distribution. For simplicity, we do this by comparing the per-

formance of aggregation sampling method against that of basic sampling.

Although we could run tests comparing aggregation sampling against more

sophisticated scenario generation methods (such as sampling with variance

reduction techniques), as mentioned in Section 3.2, it is often possible to com-

bine our methods with these techniques, in which case we would have to use
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the enhanced version of our method to ensure a fair comparison.

6.1 Experimental Set-up

For our numerical tests we use the following problem:

minimize
x≥0

β -CVaR(−xTY) (P)

subject to E
[

xTY
]
≥ t.

We will in particular assume that the asset returns follow a Normal distri-

bution, that is Y ∼ N (µ, Σ). We construct our Normal distributions from

monthly return data between January 2007 and February 2015 from randomly

selected companies in the FTSE 100 index.

To ensure our non-risk has non-neglible probability we have imposed pos-

itivity constraints on our portfolios. Note that by (B.6), the aggregation sam-

pling algorithm will require the calculation of projections onto the finitely

generated cones K′ = PRd
+ where Σ = PT P. For details on how this is done

see [30].

This problem has been constructed so that we can easily calculate exactly

the optimality gap of any candidate portfolio x ≥ 0. The following formula is

easily verified by recalling that for continuous probability distributions, the

β -CVaR is just the conditional expectation of the random variable above the

β-quantile (see [6] for instance):

β -CVaR(−xTY) = (1− β)µTx +
√

xTΣx
∫ ∞

Φ−1(β)
z dΦ(z) (A.27)

where Φ denotes the distribution function of the standard Normal distribu-

tion. The problem (P) can therefore be solved exactly using an interior point

algorithm.

The application of aggregation sampling to the problem (P) is valid as all

the conditions of Corollary 5.1 hold. We are interested in the quality and
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stability of the solutions that are yielded by our method as compared to sam-

pling. To this end, in each experiment we construct 50 scenario sets using

sampling and aggregation sampling, solve the resulting problems, and calcu-

late the optimality gaps for the solutions that these yield. We then estimate

the probability of the non-risk region, and repeat the stability test for sce-

nario sets of the expected effective sample size of aggregation sampling with

respect to the first sample size.

6.2 Results

In Figure A.7 are presented the results of these stability tests for two dif-

ferent problems. In the first problem we have d = 10 and β = 0.95 and

the probability of the non-risk region is estimated to be 0.594; in the second

problem we have d = 20 and β = 0.99 for which the probability of the non-

risk region is estimated to be 0.700. Note that for both of these experiments

the probability of the non-risk region is much larger than for the case where

asset returns are independently distributed as in Figure A.6. For the first

problem the expected effective sample size of aggregation sampling with 100

risk scenarios, as given by (A.13), is 100 + 0.594
0.406 100 ≈ 246. Similarly, the ex-

pected effective sample size of aggregation sampling for the second problem

is 100 + 0.7
0.3 100 ≈ 333. In both cases, the performance of aggregation sam-

pling for 100 risk scenarios is on a par with that of sampling for the much

larger expected effective sample size, in terms of both the quality of solutions

and their stability.

7 Conclusions

In this paper we have demonstrated that in stochastic programs which use a

tail risk measure, a significant portion of the support of the random variables

in the problem do not participate in the calculation of that tail risk measure,

whatever feasible decision is used. As a consequence, for scenario-based
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Fig. A.7: Optimality gap for 50 scenarios sets constructed via sampling and aggregation sam-

pling

problems, if we concentrate our scenarios in the region of the distribution

which is important to the problem, the risk region, we can represent the

uncertainty in our problem in a more parsimonious way, thus reducing the

computational burden of solving it.

We have proposed and analyzed two specific methods of scenario gener-

ation using risk regions: aggregation sampling and aggregation reduction.

Both of these methods were shown to be more effective as the probability of

the non-risk region increases: in essence the higher this probability the more

redundancy there is in the original distribution. Therefore, our methodology

becomes more valuable as as our problem becomes more constrained, and as

the level of the tail-risk increases since these changes cause the probability of

the non-risk region to decrease.

However, the application of this work relies on the ability to characterize

the risk region in a way which makes it convenient to test whether or not

a point belongs to it. This is difficult as it depends on the cost function,

the distribution of uncertain parameters, and the set of feasible decisions.

An exact characterization of the risk region may not be possible for most

problems, but it may be possible to find conservative regions which contain

the true risk region.

97



Paper A.

For some problems the issue might be that the non-risk region has neg-

ligible probability or is even empty. Indeed we observed for the portfolio

selection problem that the probability of the non-risk region quickly tended

to zero as the dimension of our problem increases. A potential strategy for

overcoming this problem, and more generally for improving the effective-

ness of our methodology, would be the addition of artificial constraints to the

problem to enlarge the non-risk region. However, even if a non-risk region

has small mass, for large and difficult problems, for example those involv-

ing integer variables or with non-linear recourse problems, the reduction in

computation time gained from aggregation may be significant.

In the case of the portfolio selection problem we were able to characterize

the risk region in a convenient form when the distributions of asset returns

are elliptical, and demonstrated the gain from aggregation sampling for sim-

ple test problems. In the paper [31] we demonstrate that our methodology

may be applied to more difficult and realistic portfolio selection problems

such as those involving integer variables, and for which the asset returns are

no longer elliptically distributed. In the same paper we also some of the tech-

nical issues involved in applying the method, such as finding the conic hull

of the feasible region, and methods of projecting points onto this. We also in-

vestigate the use of artificial constraints as a way of making our methodology

more effective.
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A. Continuity of Distribution and Quantile Functions

A Continuity of Distribution and Quantile Func-

tions

Throughout we use the following set-up: X ⊂ Rk a decision space, Y a

random vector with support Y ⊂ Rd defined on a probability space (Ω,B, P),

and a cost function f : X × Y → R. The quantity is f (x, Y) is assumed to

be measurable for all x ∈ X . In this appendix we prove a series of technical

results related to the continuity of the distribution and quantile functions for

f (x, Y). These are required for the proofs in Section 4.

The following is an elementary result from the stochastic optimization

literature concerning the continuity of an expectation function.

Proposition A.1. Suppose for g : X × Y → R, and a given x̄ ∈ X the following

holds:

(i) x 7→ g(x, Y) is continuous at x̄ with probability 1.

(ii) There exists a neighborhood W of x̄ and integrable h : Y → R such that for all

x ∈W we have g(x, Y) ≤ h(Y) with probability 1.

Then, x 7→ E [g(x, Y)] is continuous at x̄.

Proof. Let (xk)
∞
k=1 be some sequence in X such that xk → x̄ as k → ∞. With-

out loss of generality xk ∈ W for all k ∈ N. By assumption (i), almost surely

we have g(xk, Y) → f (x̄, Y) as k → ∞. Using assumption (ii) we can apply

the Lebesgue theorem of dominated convergence so that:

lim
k→∞

E [g(xk, Y)] = E

[
lim
k→∞

g(xk, Y)
]

= E [g(x̄, Y)]

and hence x 7→ E [g(x, Y)] is continuous at x̄.
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Recall that we use the following notation for simplicity of exposition:

Fx(z) := P ( f (x, Y) ≤ z)

F−1
x (β) := inf{z ∈ R : Fx(z) ≥ β}

The continuity of the distribution function immediately follows from the

above proposition.

Corollary A.2. Suppose for a given x̄ ∈ X that x 7→ f (x, Y) is continuous with

probability 1 at x̄, and for z ∈ R the distribution function Fx̄ is continuous at z.

Then, x 7→ Fx(z) is continuous at x̄.

Proof. Let g(x, Y) = 1{ f (x,Y)≤z} so that Fx(z) = E [g(x, Y)]. The function

g(x, Y) is clearly dominated by the integrable function h(Y) = 1. It is there-

fore enough to show that x 7→ g(x, Y) is almost surely continuous at x̄ as the

result will then follow from Proposition A.1.

Since Fx̄ is continuous at z, we must have P ( f (x̄, Y) = z) = 0. Almost

surely, we have that for ω ∈ Ω that x 7→ f (x, Y(ω)) is continuous at x̄.

Let’s first assume that f (x̄, Y(ω)) > z. In this case, there exist some neigh-

borhood V of x̄ such that x ∈ V ⇒ f (x, Y(ω)) > z, which in turn implies

|g(x, Y)− g(x̄, Y)| = 0. Hence x 7→ g(x, Y(ω)) is continuous at x̄. The same

argument holds if f (x̄, Y(ω)) < z. Hence, with probability 1, x 7→ g(x, Y) is

continuous at x̄.

Continuity of the quantile function follows from the continuity of the

distribution function but requires that the distribution function is strictly in-

creasing at the required quantile.

Proposition A.3. Suppose for some x̄ ∈ X , and z = F−1
x̄ (β) that the conditions of

Corollary A.2 hold, and in addition that Fx̄ is strictly increasing at F−1
x̄ (β), that is

for all ε > 0

Fx̄

(
F−1

x̄ (β)− ε
)
< β < Fx̄

(
F−1

x̄ (β) + ε
)

.

Then x 7→ F−1
x (β) is continuous at x̄.
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Proof. Assume x 7→ F−1
x (β) is not continuous at x̄. This means there exists

ε > 0 such that for all neighborhoods W of x̄

there exists x′ ∈W such that
∣∣∣F−1

x̄ (β)− F−1
x′ (β)

∣∣∣ > ε.

Now set,

γ := min{β− Fx̄

(
F−1

x̄ (β)− ε
)

, Fx̄

(
F−1

x̄ (β) + ε
)
− β}

> 0 since Fx̄ strictly increasing at F−1
x̄ (β) .

By the continuity of x 7→ Fx

(
F−1

x̄ (β)
)

at x̄ there exists W a neighborhood of

x̄, such that:

x ∈W =⇒
∣∣∣Fx

(
F−1

x̄ (β)
)
− Fx̄

(
F−1

x̄ (β)
)∣∣∣ < γ. (A.28)

But for the x′ identified above That is,

F−1
x′ (β) < F−1

x̄ (β)− ε

or F−1
x′ (β) > F−1

x̄ (β) + ε

and so given that Fx̄ is non-decreasing, and by the definition of γ we must

have: ∣∣∣Fx̄

(
F−1

x̄ (β)
)
− Fx̄

(
F−1

x′ (β)
)∣∣∣ ≥ γ

which contradicts (A.28).

Recall, that for a sequence of i.i.d. random vectors Y1, Y2, . . . with the same

distribution as Y, we define the sampled distribution function as follows:

Fn,x(z) :=
1
n

n

∑
i=1

1{ f (x,Yi)≤z}.

The final result concerns the continuity of the sampled distribution func-

tion.
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Lemma A.4. Suppose for g : X × Y → R, and x̄ ∈ X the conditions from

Proposition A.1 hold. Then for all ε > 0 there exists a neighborhood W, of x̄, such

that with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣∣∣ 1n n

∑
i=1

g(x, Yi)−
1
n

n

∑
i=1

g(x̄, Yi)

∣∣∣∣∣ < ε

In particular, if x 7→ f (x, Y) is continuous at x̄ with probability 1 and Fx̄ is contin-

uous at z ∈ R then for all ε > 0 there exists a neighborhood W, of x̄ such that with

probability 1

lim sup
n→∞

sup
x∈W∩X

|Fn,x(z)− Fn,x̄(z) | < ε. (A.29)

Proof. Fix x̄ ∈ X , and ε > 0. Let (γk)
∞
k=1 be any sequence of positive numbers

converging to zero and define

Vk := {x ∈ X : ‖x− x̄‖ ≤ γk},

δk(Y) := sup
x∈Vk

|g(x, Y)− g(x̄, Y) | .

Note first that the quantity δk(Y) is Lebesgue measurable (see [26, Theo-

rem 7.37] for instance). By assumption (1) the mapping x 7→ g(x, Y) is con-

tinuous at x̄ with probability 1, hence δk(Y) → 0 almost surely as k → ∞.

Now, since |g(x, Y)| ≤ h(Y) we must have |δk(Y)| ≤ 2h(Y), therefore, by the

Lebesgue dominated convergence theorem, we have that

lim
k→∞

E [δk(Y)] = E

[
lim
k→∞

δk(Y)
]
= 0. (A.30)

Note also that

sup
x∈Vk

∣∣∣∣∣ 1n n

∑
i=1

g(x, Yi)−
1
n

n

∑
i=1

g(x̄, Yi)

∣∣∣∣∣ ≤ 1
n

n

∑
i=1

sup
x∈Vk

|g(x, Yi)− g(x̄, Yi)|

and so

sup
x∈Vk

∣∣∣∣∣ 1n n

∑
i=1

g(x, Yi)−
1
n

n

∑
i=1

g(x̄, Yi)

∣∣∣∣∣ ≤ 1
n

n

∑
i=1

δk(Yi).

Since the sequence of random vectors Y1, Y2, . . . is i.i.d. we have by the strong

law of large numbers that the right-hand side of (A.31) converges with prob-
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ability 1 to E [δk(Y)] as n→ ∞. Hence, with probability 1

lim sup
n→∞

sup
x∈Vk

∣∣∣∣∣ 1n n

∑
i=1

g(x, Yi)−
1
n

n

∑
i=1

g(x̄, Yi)

∣∣∣∣∣ ≤ E [δk(Y)] . (A.31)

By (A.30) we can pick k ∈ N such that E [δk(Y)] < ε and so setting W = Vk

we have by (A.31) with probability 1

lim sup
n→∞

sup
x∈W∩X

∣∣∣∣∣ 1n n

∑
i=1

g(x, Yi)−
1
n

n

∑
i=1

g(x̄, Yi)

∣∣∣∣∣ < ε.

The result (A.29) follows immediately as the special case g(x, Y) = 1{ f (x,Y)≤z}.

B Convex cone results

The results in this appendix relate to the characterization of the non-risk

region for the portfolio selection problem with elliptically distributed returns.

This first result allows for an exact characterization of this region for the

unconstrained portfolio selection problem.

Proposition B.1. Suppose α > 0, µ ∈ Rd and P ∈ Rd×d. Then, for all y ∈ Rd:(
yT − µ

)
Σ−1 (y− µ) ≤ α2 ⇐⇒ xT (y− µ) ≤ ‖Px‖ α ∀x ∈ Rd, (A.32)

where Σ = PT P.

Proof. Assume without loss of generality that µ = 0. So we have to prove:

yTΣ−1y ≤ α2 ⇐⇒ xTy ≤
√

xTΣx α ∀x ∈ Rd. (A.33)

We first prove the forward implication. We do this by proving the converse,

that is, we suppose for some y ∈ Rd that there exists x̃ ∈ Rd such that

x̃Ty > ‖Px̃‖ α. First, set y0 = Σx̃α
‖Px̃‖ =

Σx̃α√
x̃TΣx̃

. Now,

y0Σ−1y0 =
x̃TΣTΣ−1Σx̃α2

x̃TΣx̃
= α2
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and

x̃Ty0 = x̃T Σx̃α√
x̃TΣx̃

=
√

x̃TΣx̃ α

= ‖Px̃‖ α

That is, y0 satisfies the inequalities of this Proposition with equality. Note

that we also have,

(y− y0)
TΣ−1(y− y0) > 0 since Σ−1 is positive definite.

Expanding and rearranging this expression we have,

yTΣ−1y− 2yT
0 Σ−1y + y0Σ−1ỹ0 > 0

⇔ yTΣ−1y− 2
α√

x̃TΣx̃
x̃TΣΣ−1y + α2 > 0

⇔ yTΣ−1y− 2
α√

x̃TΣx̃
x̃Ty + α2 > 0

⇔ yTΣ−1y− 2
α√

x̃TΣx̃
x̃Ty + α2 > 0

⇒ yΣ−1y > α2 since x̃Ty > ‖Px‖ α,

as required.

We now prove the backwards implication. We again do this by proving

the converse, in this case, that if yTΣ−1y > α2 then there exists x̃ ∈ Rd \ {0}

such that x̃Ty >
√

xTΣxα.

Let x̃ = Σ−1y. Now,

x̃Ty = yTΣ−1y

=
√

yTΣ−1y︸ ︷︷ ︸
=
√

x̃TΣx̃

√
yTΣ−1y︸ ︷︷ ︸
>α

>
√

x̃TΣx̃ α

= ‖Px‖ α,

as required.
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The following two propositions give properties about projections onto

convex cones which are required in the proof of the main results of this

appendix.

Proposition B.2. Suppose K ⊂ Rd is a convex cone, then, for all y ∈ Rd:

pK(y)T (y− pK(y)) = 0

Proof. First note that we must have pK(y)Ty ≥ 0. If this is not the the case

then

‖y− pK(y)‖2 = ‖pK(y)‖2 − 2pK(y)Ty + ‖y‖2

> ‖y‖2 = ‖y− 0‖2

which contradicts the definition of pK(y) since 0 ∈ K. Now assume that

pK(y)T (y− pK(y)) 6= 0, and set x̃ = pK(y)Ty
‖pK(y)‖2 pK(y) ∈ K. Now,

pK(y)T(x̃− y) = pT
Ky− pT

Ky

= 0.

By assumption pT
k y 6= ‖pK(y))‖2, and so x̃ 6= pK(y), hence

‖pK(y)− y‖2 = ‖(pK(y)− x̃) + (x̃− y)‖2

= ‖(pK(y)− x̃)‖2 − 2 (pK(y)− x̃)T(x̃− y)︸ ︷︷ ︸
=0

+ ‖(x̃− y)‖2

> ‖(x̃− y)‖2

which, again, contradictions the definition of pK(y) since x̃ ∈ K.

Proposition B.3. Let K ⊂ Rd be a convex cone and x ∈ K. Then for any y ∈ Rd

xTy ≤ xT pK(y).

Proof. The result holds trivially if y ∈ K so we assume y /∈ K. Assume

there exists x̃ ∈ K such that x̃Ty > x̃T pK(y). For all 0 ≤ λ ≤ 1 we have
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λx + (1− λ)pK(y) ∈ K. Now,

‖(λx̃ + (1− λ)pK(y))− y‖2 − ‖y− pK(y)‖2

= ‖λ(x̃− pK(y)) + (pK(y)− y)‖2 − ‖y− pK(y)‖2

= λ2 ‖ x̃− pK(y)‖2 + 2λ(x̃− pK(y))T(pK(y)− y)

= λ2 ‖ x̃− pK(y)‖2 − 2λ x̃T(y− pK(y))︸ ︷︷ ︸
>0 by assumption

.

That is, for 0 < λ < x̃T(y−pK(y))
2‖pK(y)−x̃‖ we have ‖λx̃ + (1− λ)pK(y)− y‖ < ‖y− pK(y)‖

which contradicts the definition of pK(y).

The next two results generalize Proposition B.1 to the case where x ∈ Rd

is restricted to a convex cone. The first describes the region in the case where

P = I, and the second generalizes the result to any non-singular matrix.

In particular, it is Corollary B.5 that allows us to characterize the maximal

non-risk region of portfolio selection problem for a convex feasible region.

Theorem B.4. Let X ⊂ Rd be convex, and let

A := {y : xTy ≤ ‖x‖ α ∀x ∈ X}

and

B := {y : ‖pK(y)‖ ≤ α}

where K = conic (X ). Then, A = B.

Proof. (B ⊆ A)

Suppose y ∈ B and let x ∈ X , then x ∈ K and so

xTy ≤ xT pK(y) by Proposition B.3

≤ ‖x‖ ‖pK(y)‖ by the Cauchy-Schwartz inequality

≤ ‖x‖ α since y ∈ B.

Hence y ∈ A.

(A ⊆ B)
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Suppose y /∈ B and set x = pK(y) ∈ K. Now,

xTy = pK(y)Ty

= pK(y)T pK(y) + pK(y)T(y− pK(y))

= pK(y)T pK(y) by Proposition B.2

≥ ‖x‖ α since y /∈ B.

Since X is convex we have x = λx̄ for some x̄ ∈ X and so we must also have

x̄Ty > ‖ x̄‖ α, hence y /∈ A.

The projection of a point onto a cone, used in the characterization above,

is illustrated in Figure A.8.

K

y

pk(y)

Fig. A.8: Projection onto a convex cone

Corollary B.5. Suppose K is a convex cone, and P ∈ Rd×d is a non-singular matrix.

Let,

A := {y : xTy ≤ ‖Px‖ α ∀x ∈ K}

and

B := PT ({ỹ : ‖pK′(ỹ)‖ ≤ α})

where K′ = PK. Then, A = B.
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Proof.

B = PT ({ỹ : ‖pK′(ỹ)‖ ≤ α})

= PT
(
{ỹ : x̃T ỹ ≤ ‖ x̃‖ α ∀x̃ ∈ K′}

)
by Theorem B.4

= {y : x̃T(PT)−1y ≤
√

x̃T x̃α ∀x̃ ∈ K′}

= {y : xT PT(PT)−1y ≤ ‖Px‖ α ∀x ∈ K}

= {y : xTy ≤ ‖Px‖ α ∀x ∈ K}

= A
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1. Introduction

1 Introduction

In the portfolio selection problem one must decide how to invest in a col-

lection of financial instruments with uncertain returns which in some way

balances one’s expected profit of the investment against its risk. In the typ-

ical set-up the uncertain returns are modeled by random variables, the total

return of a portfolio is some linear combination of these, and riskiness is

measured by a real-valued function of the total return which should in some

way penalize potential large losses. This approach was first proposed by

Markowitz [1] who used variance as a risk measure.

The use of variance as a measure of risk is problematic for a few rea-

sons. The foremost of these is perhaps that variance penalizes large profits

as well as large losses. As a consequence, in the case where the returns of

financial assets are not normally distributed, using the variance can lead to

patently bad decisions; for instance, a portfolio can be chosen in favor of

one which always has higher returns (see [2] for an example of this). This

particular issue can be overcome by using a “downside” risk measure, that

is one which only depends on losses greater than the mean, or some other

specified threshold, for example the semi-variance [3, Chapter 9], mean re-

gret [4], or value-at-risk [5]. More recently, much research has been given to

coherent risk measures, a concept introduced in [6]. These are risk measures

which have sensible properties such as subadditivity, which in particular en-

sures that a risk measure incentivizes diversification of a portfolio. Using a

coherent risk measure in a portfolio selection problem should avoid flawed

decisions, such as the one cited in the case of variance.

In this work, we are interested in portfolio selection problems involving

tail risk measures. These can be thought of as risk measures which only de-

pend on the upper tail of a distribution above some specified quantile. A

canonical example of a tail risk measure is the value-at-risk (VaR) [5]. The

β-VaR is defined to be the β-quantile of a random variable. In portfolio selec-
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tion problems this has the appealing interpretation as the amount of capital

required to cover up to β× 100% of potential losses. Thus, tail risk measures,

in particular those which dominate the β -VaR, are useful as they can give

us some idea of the amount capital at risk in the worst (1− β) × 100% of

potential losses. Like variance, the value-at-risk is also problematic as it is

not a coherent measure of risk. Specifically, it is not subadditive (see [7] for

example). Moreover, β -VaR leads to difficult and intractable problems when

used in an optimization context. The conditional value-at-risk (CVaR), some-

times referred to as the expected shortfall, is another tail risk measure and

can be roughly thought as the conditional expectation of a random variable

above the β-VaR. It is both coherent [8], and more tractable in an optimization

setting [9].

However, the use of risk measures, even coherent ones such as β -CVaR,

is still problematic in portfolio selection problems where the asset returns

are modeled with continuous probability distributions. This is because the

evaluation of many risk measures for arbitrary continuously distributed re-

turns would involve the evaluation of multidimensional integrals, and this

becomes computationally infeasible when our problems involve many assets.

On the other hand, the evaluation of such an integral reduces to a summation

if the returns have a discrete distribution.

Scenario generation is the construction of a finite discrete distribution to

be used in a stochastic optimization problem. This may involve fitting a

parametric model to asset returns and then discretizing this distribution, or

directly modeling them with a discrete distribution, for example via moment-

matching [10]. In either case, standard scenario generation methods struggle

to adequately represent the uncertainty in problems using tail risk measures.

This is because the value of a tail risk measure, by definition, only depends

on a small subset of the support of a random variable, and typical scenario

generation methods will spread their scenarios evenly across the whole sup-

port of the distribution. This means that the region on which the value of the
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tail risk depends, is represented by relatively few scenarios. Hence, unless

there are a very large number of scenarios, the value of of tail risk measure

is very unstable (see [11] for example).

The natural remedy to this problem is to represent the regions of the

distribution on which the tail risk measure depends with more scenarios. In-

tuition would tell us that these correspond to the “tails” of the distribution.

However, for a multivariate distribution there is no canonical definition of

the tails. If by tails, we simply mean the region where at least one of the

components exceeds a large value, then the probability of this region quickly

converges to one with the problem dimension, and thus prioritizing scenar-

ios in this region will be of little benefit. Finding the relevant tails of the

distribution is a non-trivial problem.

In the paper [12] we addressed the problem of scenario generation for

general stochastic programs using tail risk measures, and for this we defined

the concept of a β-risk region. In portfolio selection, to each valid portfolio

there is a distribution of losses (or returns). The β-risk region consists of all

potential asset returns which lead to a loss in the β-tail for some portfolio.

We have shown that the value of a tail risk measure in effect only depends

on the distribution of returns in the risk region. Although characterizing this

region in a convenient way is generally not possible, we have been able to do

this for the portfolio selection problem when the asset returns are elliptically

distributed. We have also proposed a sampling approach to scenario genera-

tion using these risk regions which prioritizes the generation of scenarios in

the risk region. We demonstrated for simple examples that this methodol-

ogy can produce scenario sets which yield better and more stable solutions

than does basic sampling. In Sections 2 and 4 we review respectively the

requisite theory of risk regions, and how risk regions can be used in scenario

generation.

In this paper we address issues related to the application of this method-

ology to realistic portfolio selection problems. Firstly, we deal with how
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problem constraints are used to calculate the risk region. In [12] we showed

that for elliptically distributed returns, the risk region depends on the conic

hull of the feasible region but we only did calculations for the case where

this is the positive quadrant, that is, we only use the constraint of no short-

selling. In practice, one may wish to impose other constraints on portfolios,

such as quotas on the amount one can invest an asset or industry. In Section

3 we describe how the conic hull of the feasible region can be calculated from

linear constraints, and how this is used to test whether or not a point lies in

the risk region.

The effectiveness of the presented methodology depends directly on the

probability of the risk region. In effect, the smaller the probability of the risk

region, the more redundant scenarios we can discard. In [12] we observed

that the probability of this region tends to one as the problem dimension in-

creases. In Section 5 we make some more general observations on how this

probability varies with distribution, and in particular observe that for distri-

butions with heavy tails and positive correlations, characteristics of typical

stock return data, the probability of the risk region is low.

In practice it may not be appropriate to model asset returns with ellipti-

cal distributions as these are likely to exhibit non-elliptical features such as

skewness [13]. Moreover, when the asset returns have an elliptical distribu-

tion, the portfolio selection problem may be solvable by more efficient meth-

ods [14]. In Section 6 we test our methodology for a variety of distributions

constructed from real data. We calculate the probability of the risk region

for a range of constraints, and test the performance of our methodology for

scenario generation and scenario reduction. We demonstrate here that when

asset returns are near-elliptical in distribution, we can approximate its risk

region with the risk region of an elliptical distribution to good effect.

Finally, in Section 7 we demonstrate for a difficult case study problem

how our methodology can be applied. In particular we demonstrate how

the addition of artificial constraints to the problem can be used to find better
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solutions.

2 Portfolio selection and risk regions

In this section we recall the requisite concepts and results from our previous

paper [12]. In particular we define the risk region for the portfolio selection

problem and give a convenient characterization of this when asset returns

have elliptical distributions.

2.1 Tail risk measures and risk regions

As mentioned above, a risk measure is a function of a real-valued random

variable representing a loss. For 0 < β ≤ 1, a β-tail risk measure can be

thought of as a function of a random variable which depends only on the up-

per (1− β)-tail of the distribution. The precise definition uses the generalized

inverse distribution function or quantile function.

Definition 2.1 (Quantile function and β-tail risk measure). Suppose Z is a ran-

dom variable with distribution function FZ. Then the generalized inverse distribution

function, or quantile function is defined as follows:

F−1
Z : (0, 1]→ R∪ {∞}

β 7→ inf{z ∈ R : FZ(x) ≥ β}

Now a β-tail risk measure is any function of a random variable, ρβ(Z), which de-

pends only on the quantile function of a random variable above β.

Example 2.2 (Value at risk (VaR)). Let Z be a random variable, and 0 < β < 1.

Then, the β−VaR for Z is defined to be the β-quantile of Z:

β -VaR(Z) := F−1
Z (β)

.
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Example 2.3 (Conditional value at risk (CVaR)). Let Z be a random variable, and

0 < β < 1. Then, the β -CVaR can be thought roughly as the conditional expectation

of a random variable above its β-quantile. The following alternative characterization

of β -CVaR [8] shows directly that it is a β-tail risk measure.

β -CVaR(Z) =
∫ 1

β
F−1

Z (u) du

The observation that we exploit for this work is that very different random

variables will have the same β-tail risk measure as long as their β-tails are the

same. Such a situation is illustrated in Figure B.1 for two discrete random

variables.

Mass

Loss

Mass

Loss

Fig. B.1: Two very different random variables with identical β-tails

In this paper we are interested in portfolio selection problems which use

β-tail risk measures. We use the following basic set-up: we have a set of

financial assets indexed by i = 1, . . . , d, by xi we denote how much we invest

in asset i, and by Yi we denote the random future return of asset i. The profit

associated to a particular investment decision x = (x1, . . . , xd) and return

Y = (Y1, . . . , Yd) is xTY = ∑d
i=1 xiYi. The loss associated to an investment

decision is thus −xTY, and so for a given β-tail risk measure ρβ we would

like an investment with small risk ρβ(−xTY). The aim of a portfolio selection

problem is to choose a decision which balances choosing a portfolio with

high expected profit against choosing one with small risk. This typically

corresponds to solving a problem of one of the following forms:
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(i) minimize
x∈X

ρβ(−xTY) (P1)

subject to E
[

xTY
]
≥ t,

(ii) maximize
x∈X

E
[

xTY
]

(P2)

subject to ρβ(−xTY) ≤ s,

(iii) minimize
x∈X

λρβ(−xTY) + (1− λ)E
[
−xTY

]
, (P3)

where 0 ≤ λ ≤ 1 and X ⊂ Rd represents the set of valid portfolios. This

feasibility region will typically encompass a constraint which specifies the

amount of capital to be invested, and may include others which, for example

the exclusion of short-selling, or a limit on the amount that can be invested

in certain industries.

In [12] we introduced the concept of a risk region for a stochastic pro-

gram using a tail-risk measure. We define this now for the portfolio selection

problem.

Definition 2.4 (Risk region). The β-risk region associated associated with the ran-

dom vector Y and the feasible region X ⊆ Rd is as follows:

RY,X (β) :=
⋃

x∈X
{y ∈ Rd : −xTy ≥ F−1

−xTY (β)}. (B.1)

The risk region consists precisely of those outcomes of Y which have a

loss in the β-tail of the loss distribution for some feasible portfolio. We refer

to the complement of the risk region as the non-risk region and this consists

of outcomes which never lead to a loss in the β-tail; it can be written as

follows:

RY,X (β)c =
⋂

x∈X
{y ∈ Rd : −xTy < F−1

−xTY(β)}. (B.2)

Note that since this set is the intersection of half-spaces, it is convex.
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For a discrete distribution of returns, we can easily calculate the β-quantile

of the loss for a particular portfolio by calculating the loss for all scenarios

and ordering them based on this. In Figure B.2 we illustrate a scenario set

of returns for two hypothetical assets, along with the line separating those

scenarios with loss above and below the β-quantile for the portfolio x =

( 1
2 , 1

2 ).

3 2 1 0 1 2 3 4
Return of asset 1
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2

1

0
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 o

f 
a
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e
t 

2

β=0.95

Below β-quantile

Above β-quantile

Fig. B.2: Scenarios with loss above and below β-quantile for one portfolio

The risk region is the union over all feasible portfolios of the half spaces

of points with returns above the β-quantile. We can find this region by brute

force, and this is illustrated on the left-hand side of Figure B.3. Also illus-

trated in this figure is the set of returns where all the mass in the non-risk

region has been aggregated into a single scenario. We call the latter the ag-

gregated scenario set. As is also shown in the figure, the β-quantile lines do not

change after aggregation and so neither does the corresponding value of any

β-tail risk measure. Aggregating scenarios leads to more concise optimiza-

tion problems which are easier to solve.

The transformed random vector where all mass in a region has been con-

centrated into its conditional expectation plays a special role in this work. We

call this the aggregated random vector.

Definition 2.5 (Aggregated Random Vector). For some set R ⊇ RY,X the ag-
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Fig. B.3: Return points with loss below the β-quantile for all non-negative portfolios (left) and

aggregated scenario set (right)

gregated random vector is defined as follows:

ψR(Y) :=

Y if Y ∈ R,

E [ Y|Y ∈ Rc ] otherwise.

In [12] we showed that under mild conditions the value of a tail risk mea-

sure is completely determined by the the distribution of the random vector Y

in the risk region. That is, the values of the tail risk measure of any two ran-

dom vectors with identical distributions in the risk region will be the same

for all feasible decisions.

Theorem 2.6. LetR ⊇ RY,X (β) be such that for all x ∈ X the following condition

holds:

P
(

Y ∈ {y : z′ < −xTy ≤ F−1
−xTY (β)} ∩R

)
> 0 ∀ z′ < F−1

−xTY (β) . (B.3)

If Ỹ is a random vector for which the following holds:

P (Y ∈ A) = P
(
Ỹ ∈ A

)
for any A ⊆ R, (B.4)

then ρβ (( f (x, Y)) = ρβ

(
f (x, Ỹ)

)
for all x ∈ X , for any β-tail risk measure ρβ.

The technical condition (B.3) precludes certain degenerate cases. If R is

convex, we have that E [Y|Y ∈ Rc] ∈ Rc in which case the aggregated ran-

dom vector defined above has, by definition, the same distribution as Y in
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the risk region. The aggregated random vector has the additional property

of preserving the overall expected return of the original random vector. The

following corollary taken from [12] summarizes this result and provides suf-

ficient conditions so that (B.3) holds.

Corollary 2.7. Suppose RY,X (β) ⊆ R ⊂ Rd, Y is a continuous random vector

with support Y = Rd, and X contains at least two linearly independent elements.

Then Y satisfies (B.3). In addition, if R is convex then Ỹ = ψR(Y) satisfies condi-

tion (B.4) and so for all x ∈ X we have:

ρβ

(
−xTY

)
= ρβ

(
−xTỸ

)
,

E
[

xTY
]
= E

[
xTỸ

]
.

2.2 Risk regions for elliptical distributions

In order to exploit risk regions for scenario generation one has to be able to

characterize these in a way which allows one to conveniently test whether or

not a point belongs to it. In our previous paper, we were able to do this in the

case where the asset returns have elliptical distributions. Elliptical distributions

are a general class of distributions which include, among others, multivariate

Normal and multivariate t-distributions. See [15] for a full overview of the

subject.

Definition 2.8 (Elliptical Distribution). Let X = (X1, . . . , Xd) be a random vector

in Rd, then X is said to be spherical, if

X ∼ UX for all orthonormal matrices U

where ∼ means the two operands have the same distribution function.

Let Y be a random vector in Rd, then Y is said to be elliptical if it can be

written Y = PX + µ where P ∈ Rd×d is non-singular, µ ∈ Rd, and X is random

vector with spherical distribution. Such an elliptical distribution will be denoted

Elliptical (X, µ, P).
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This definition says that a random vector with a spherical distribution is

rotation invariant, and that an elliptical distribution is an affine transforma-

tion of a spherical distribution. Elliptical distributions are convenient in the

context of portfolio selection as we can write down exactly the distribution

of loss of a portfolio:

−xTY ∼ ‖Px‖X1 − xTµ,

and so, the β-quantile of the loss −xTY is as follows:

F−1
−xTY(β) = ‖Px‖ F−1

X1
(β)− xTµ.

For elliptically distributed returns, we can thus rewrite the risk region in (B.1)

as follows:

RY,X (β) :=
⋃

x∈X
{y ∈ Rd : −xTy ≥ ‖Px‖ F−1

X1
(β)− xTµ}. (B.5)

In this form it is still difficult to check whether a given point ỹ ∈ Rd belongs

to it. In [12] we provided a more convenient characterization of the risk

region for elliptical returns. This characterization makes use of the conic hull

of the feasible region X ⊂ Rd.

Definition 2.9 (Convex cones and conic hull). A set K ⊂ Rd is a cone if for

all x ∈ K and λ ≥ 0 we have λx ∈ K. A cone is convex if for all x1, x2 ∈ K and

λ1, λ2 ≥ 0 we have λ1x1 + λ2x2 ∈ K. The conic hull of a setA ⊂ Rd is the smallest

convex cone containing A, and is denoted conic (A).

For example, suppose that our feasible region consists of portfolios with

non-negative investments (i.e. no short-selling) and whose total investment

is normalized to one, that is:

X = {x ∈ Rd :
d

∑
i=1

xi = 1, xi ≥ 0 for each i = 1, . . . , d},

then the conic hull of this is the positive quadrant, that is conic (X ) = Rd
+.

The alternative characterization also makes use of projections.
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Definition 2.10 (Projection). Let C ⊂ Rd be a closed convex set, then for any point

y ∈ Rd we define its projection onto C to be the unique point pC(y) ∈ C such that

inf
x∈C
‖x− y‖ = ‖pC(y)− y‖ .

We are now ready to give a characterization of our risk region for which

we use the following convenient abuse of notation: for a set A ⊂ Rd and a

matrix T ∈ Rd×d, we write T (A) := {Ty : y ∈ A}. The following result was

proved in [12].

Theorem 2.11. Suppose Y ∼ Elliptical (X, P, µ), X ⊆ Rd is convex and let K =

conic (X ). Then the risk region can be characterized exactly as follows:

RY,X (β) = PT
(
{ỹ ∈ Rd : ‖pK′(ỹ− µ)‖ ≥ F−1

X1
(β)}

)
, (B.6)

where K′ = PK is a linear transformation of the conic hull K.

When K = Rd the complement of the region in (B.6) has a convenient

geometric description; it is an open ellipsoid.

3 Projections and the conic hull

The characterization of the risk region for portfolio selection problems given

in (B.6) relies on one being able to calculate the conic hull of the set of feasible

portfolios, and also the ability to project points onto a transformation of this.

In Section 3.1 we show how one can find the conic hull of the feasible region

for typical constraints of a portfolio selection problem. This conic hull is a

finitely generated cone. In 3.2 we show how one can project points onto this

type of cone.

3.1 Conic hull of feasible region

In portfolio problems, the feasible region is usually defined by linear con-

straints, that is X = {x ∈ Rd : Ax ≤ b}, where A ∈ Rm×d and b ∈ Rm. That
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is, the feasible region is the intersection of a finite number of half-spaces. It is

a well-known fact that any such intersection can be written as the convex hull

of a finite number of points plus the conical combination of some more points

(see Theorem 1.2 in [16] for example). That is, there exists x1, . . . , xk ∈ Rd and

y1, . . . , yl ∈ Rd such that

X = {
k

∑
i=1

λixi +
l

∑
j=1

νjyj : λ, ν ≥ 0,
k

∑
i=1

λi = 1}. (B.7)

The conic hull of this region is the following finitely generated cone:

conic (X ) = {
k

∑
i=1

λixi +
l

∑
j=1

νjyj : λ, ν ≥ 0}.

To express the intersection of half-spaces in the form (B.7), we could use

Chernikova’s algorithm (also known as the double description method) [17],

[18]. Every finitely generated cone can also be written as a polyhedral cone,

that is, of the form {x ∈ Rd : Dx ≥ 0}, and vice versa (see [16, Chapter 1]).

Chernikova’s algorithm again provides a concrete method for going between

these two different representations. Although these two representations are

mathematically equivalent, as we shall see, they are algorithmically different.

We will suppose the constraints for our portfolio selection problem have

the following form:

X =

x ∈ Rd :

1Tx = c

aT
i x ≤ bi for i = 1, . . . , m,

x ≥ 0,

 (B.8)

where 1 is column vector of ones and c > 0. The first of these constraints

specifies the total of amount of capital to be invested, the inequalities rep-

resent other constraints such as quotas on the amount one can invest in a

specific company or industry. In this case, we can describe immediately the

conic hull as a polyhedral cone.
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Proposition 3.1. Let X be the set defined in (B.8) and let

Y =

{
x ∈ Rn :

(
bi
c

1− ai

)T
x ≥ 0 for i = 1, . . . , m, x ≥ 0

}
then conic (X ) = Y .

Proof. Given that X is convex, to show that conic (X ) = Y , it suffices to show

that

x ∈ Y \ {0} ⇐⇒ ∃ λ > 0 such that λx ∈ X .

We demonstrate first the forward implication. Suppose x ∈ Y \ {0}. Then,

given that x > 0, we must have v := 1Tx > 0. Then, setting λ = c
v , we have

1T(λx) = v
c
v
= c.

Since Y is a cone, we have λx ∈ Y , hence

(
bi
c

1− ai)
T c

v
x ≥ 0

∴
c
v

aT
i x ≤ bi

c
c
v

1Tx︸︷︷︸
=v

∴ aT
i (

c
v

x) ≤ bi

and so λx ∈ conic (X ).

We now prove the backwards implication. Suppose x ∈ conic (X ) \ {0}.

Then there exists λ > 0 such that λx ∈ X , that is

1Tλx = c

aT
i λx ≤ bi

Therefore,

aT
i λx

1Tλx
≤ bi

c

and so
(

bi
c

1− ai

)T
x ≥ 0.

Hence x ∈ Y as required.

Figure B.4 shows how simple constraints in R2 affect the conic hull of the

feasible region given the total investment and positivity constraints.
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x2

x1

Fig. B.4: Conic hull from simple quota constraints given x1 + x2 = 1 and x1, x2 ≥ 0

3.2 Projection onto a finitely generated cone

First, suppose that we can represent the conic hull of the feasible region

X ⊂ Rd as a finitely generated cone K = {Ay : y ≥ 0} where A ∈ Rk×d.

By definition, the projection of a point x0 ∈ Rd can be found by solving the

following quadratic program:

minimize
y≥0

‖Ay− x0‖2
2 (B.9)

In particular, if y∗ is the optimal solution then pK(x0) = Ay∗. By formulat-

ing the KKT conditions [19, Chapter 5] of this problem, it can be seen that

this problem is equivalent to solving the following linear complementarity

problem (LCP):

Find y, z ∈ Rd such that

z− AT Ay = −ATx0

zTy = 0

y, z > 0.

If (y, z) is a solution to the above problem, then the required projection is

pK(x0) = Ay. LCPs can be solved by more specialized algorithms than stan-

dard quadratic programs such as Lemke’s algorithm [20].

Now, suppose instead we have a polyhedral characterization of the conic
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hull, that is a cone of the form:

K = {x ∈ Rd : Bx ≥ 0}. (B.10)

The projection of a point x0 ∈ Rd onto the polyhedral cone in (B.10) is the

solution of the following quadratic program:

minimize
x

‖x− x0‖2
2

subject to Bx ≥ 0.

Although the former problem in (B.9) can be solved using specialized

algorithms, we will in practice use both approaches. For conic hulls with

a small number of extremal rays, for example K = Rd
+ we will use use the

former method. As we add more constraints to the problem, we have found

from experience that the number of extremal rays can exponentially increase,

which for the former approach leads to cumbersomely large LCP problems.

In this case we will use the polyhedral representation for projection.

4 Scenario generation

In this Section we present how risk regions can be exploited for the pur-

poses of scenario generation. In Section 4.1 we propose two specific methods

which work essentially by prioritizing the construction of scenarios in the

risk region. These methods are specifically adapted to asset returns which

have elliptical distributions, and so in Section 4.2 we discuss their usage for

non-elliptic distributions. Finally, in Section 4.3 we discuss how the effective-

ness of our methodology can be improved through the addition of artificial

constraints to our problem.

4.1 Aggregation sampling and reduction

In this section we will assume that asset returns have elliptical distributions

from which we can sample. In [12] we proposed two methods to exploit risk
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regions. The first of these allows the user to specify the final number of sce-

narios in advance. The algorithm, which we call aggregation sampling, samples

scenarios, aggregating all samples in the non-risk region and keeping all in

the risk region, until we have the required number of risk scenarios. This is

described in Algorithm 1.

Let q = P
(

Y ∈ Rc
Y,X

)
be the probability of the non-risk region, and n

be the number of risk scenarios required. Define N(n) to be the effective

sample size from aggregation sampling, that is, the number of draws until

the algorithm terminates1. The quantity N(n) is a random variable:

N(n) ∼ n +NB(n, q),

where NB(N, q) denotes a negative binomial random variable. Recall that a

negative binomial random variable NB(n, q) is the number of failures in a

sequence of Bernoulli trials with probability of success q until n successes

have occurred. The expected effective sample size of aggregation sampling is

thus as follows:

E [N(n)] = n + n
q

1− q

The expected effective sample size can be thought of as the sample size re-

quired for basic sampling to produce the same number of scenarios in the

risk region. The difference between the desired number of risk scenarios,

and expected effective sample size is proportional to the ratio q
1−q . In partic-

ular, as the probability of the non-risk region approaches one, this gain tends

to infinity.

The converse to aggregation sampling is sampling a set of a given size n

and then aggregating all scenarios in the risk region of the underlying distri-

bution. We call this aggregation reduction. This can be viewed as a sequence

of n Bernoulli trials, where success and failure are defined in the same way

as described above. The number of scenarios in the reduced sample, R(n) is

1For simplicity of exposition we discount the event that the while-loop of the algorithm ter-

minates with nRc = 0 which occurs with probability qn
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input : NR number of required risk scenarios, β level of tail risk

measure, K conic hull of feasible region, (X, P, µ) elliptical

distribution

output: {(ys, ps)}NR+1
s=1 scenario set

nRc ← 0, nR ← 0, yRc ← 0;

K′ ← PK;

while nR < NR do

Sample new point y;

ytrans ← P−T(y− µ);

if ‖pK′(ytrans)‖ ≤ F−1
X1

(β) then

yRc ← 1
nRc+1 (nRc yRc + y);

nRc ← nRc + 1;

end

else

ynR ← y;

nR ← nR + 1;

end

end

foreach i in 1, . . . , NR do pi ← 1
nRc+nR

;

;

if nc
R ≥ 1 then

yNR+1 ← yRc , pNR+1 ← nRc
nRc+nR

;

end

else

Sample new point y;

yNR+1 ← y, pNR+1 ← 1
NR+1 ;

end

Algorithm 1: Aggregation sampling algorithm for risk region of an el-

liptical distribution
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as follows:

R(n) ∼ n−B(n, q) + 1

where B(n, q) denotes a binomial random variable. The expected reduction

in scenarios in aggregation reduction is thus nq− 1.

The reason that aggregation sampling and aggregation reduction work is

that, for large samples, they are equivalent to sampling from the aggregated

random vector, and Corollary 2.7 tells us that this random vector has the

correct tail risk measure and expectation. See [12, Section 4] for a full proof

of the consistency of these algorithms.

In the above methods, for every sampled point we must be able to test

whether the magnitude of its projection onto a cone is above or below a

given threshold. As explained in Section 3.2, the projection of a point onto

a finite cone involves solving a small LCP or quadratic program and so for

large sample sizes and high dimensions this will become computationally

expensive. However, given that each sample is independent of every other,

this algorithm is naturally parallelizable. It may also be possible to make

the algorithm more efficient if for any point y ∈ Rd, a way could be found

of testing the condition ‖pK(y)‖ ≤ α directly without calculating the full

projection pK(y). For example, the quadratic program used to calculate the

projection could be solved only to an accuracy sufficient to test this condition.

4.2 Approximation of risk regions

The above algorithm is specifically adapted to risk regions of elliptically

distributed returns. However, the utility of using our scenario generation

methodology with only elliptical distributions is limited. Firstly, it may be

unrealistic to model returns with elliptical distributions. Real financial re-

turns may exhibit properties which elliptical distributions do not, such as

skewness. Secondly, using elliptical distributions may allow one to formu-

late the optimization problem in a more convenient way. For example, when
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using the β -CVaR as a tail-risk measure, we have the following relation:

β -CVaR
(
−xTY

)
= −‖Px‖ β -CVaR (X1)− xTµ

which may mean we can solve the optimization problems with interior point

or quadratic programming algorithms. See [14] for more details.

In this work, we put forward the idea that risk regions of elliptical distri-

butions can be used for aggregation sampling and reduction, for distributions

which are near-elliptical. We propose to use the risk region of an elliptical

distribution as a surrogate for the risk region of a near-elliptical distribution.

The danger of approximating the risk region is that if for a particular de-

cision, the β-quantile, is attained inside the surrogate non-risk region (that is

the surrogate risk region is too small), then the value of the tail-risk measure

may be distorted. On the other hand, if the surrogate risk region contains

the true risk region (that is, the surrogate risk region is too large) then Corol-

lary 2.7 guarantees that the associated aggregated random vector has the

correct tail risk measure. However, we should be cautious about constructing

a surrogate risk region which is excessively large. If this is the case then the

probability of the surrogate may be very large, which means there will be

little benefit in aggregation.

Through a careful probabilistic analysis of the distribution of returns for

valid portfolios, one may be able to construct a surrogate risk region which

tightly covers the true risk region. If this is not possible, one way to mitigate

against the danger of using a surrogate risk region which is too small would

be to represent the non-risk region with several points rather than a single

point. For example, instead of aggregating all sampled points in the non-risk

region, one could apply a clustering algorithm to these such as k-means. For

simplicity, we will only test the basic aggregation methods which represents

the non-risk region with a single point. For the non-elliptical distributions

used in this paper we are able to rely on heuristic rules to construct our

surrogates.
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The first class of non-elliptical distributions we use in this paper are

known as multivariate Skew-t distributions [21]. This class of distributions

generalizes the elliptical multivariate t-distributions through the inclusion

of an extra set of parameters which regulate the skewness. In this case

we approximate the risk region with the risk region of the corresponding

t-distribution.

The second class we use are discrete distributions constructed using the

moment matching algorithm of [10]. These distributions have been applied

previously to financial problems [11]. This algorithm constructs scenario sets

with a specified correlation matrix and whose marginals have specified first

four moments. This algorithm works by first taking a sample from a multi-

variate Normal distribution, and then iteratively applying transformations to

this until the difference between its marginal moments and correlation matrix

are sufficiently close to their target values. Since the algorithm is initialized

with a sample from an elliptical distribution, the final distribution is near

elliptical and we approximate the risk region for these distributions with the

risk region of a multivariate normal distribution with the same mean and

covariance structure.

4.3 Ghost constraints

We noted above that the performance of our methodology improves as the

probability of the non-risk region decreases. In particular, the expected ef-

fective sample size in aggregation sampling increases as the probability of

the non-risk risk region increases. Now, by its definition (B.2) the non-risk

regions shrinks as the problem becomes more constrained. This suggests

that it may be helpful to add constraints to our problem which shrink the set

of feasible portfolios, but which are not themselves active, in the sense that

their presence does not affect the set of optimal solutions. We will refer to a

constraint added to a problem to boost the performance of our methodology,

loosely, as a ghost constraint.
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Finding non-active constraints to add to our problem is non-trivial as

it relies on some knowledge of the optimal solution set. We will resort to

heuristic rules to choose ghost constraints. For example, one could constrain

our set of feasible portfolios to some neighborhood of a good quality solution.

Verifying whether or not a ghost constraint is active is difficult in gen-

eral for stochastic programs. For a deterministic objective function which is

convex and for which all constraints are convex (and the optimal solution is

unique) a constraint {x : g(x) ≤ 0} is active if and only if it is binding at

the optimal solution x∗, that is g(x∗) = 0. For a stochastic program, we are

typically solving a scenario-based approximation and so a constraint which

is not binding with respect to the scenario-based approximation may be bind-

ing with respect to the true problem and vice versa.

A rigorous test of whether a ghost constraint is active in the sense above is

beyond the scope of this paper. We simply promote the idea here that ghost

constraints may be a useful way of finding better solutions. We demonstrate

the usage of ghost constraints on a difficult problem in Section 7.

5 Probability of the non-risk region

The benefit of aggregation sampling and reduction depends on the proba-

bility of the non-risk region. As was observed in [12] the probability of the

non-risk region tends to decrease as the problem dimension increases, but in-

creases as we tighten our problem constraints, and as we increase β, the level

of the tail risk measure. In this section we make some empirical observations

on how this probability varies with heaviness of the tails, and the correlations

of the distribution.

The first observation is that in the presence of positivity constraints, the

probability of the risk region improves as the the correlation between random

variables increases. This can be seen in Figure B.5 which plots the probabil-

ity of the risk region as a function of correlation for some two-dimensional
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distributions. An intuitive explanation for this type of behavior is that in the

case of positive correlations there is much more overlap in the risk regions of

the individual portfolios.
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Fig. B.5: Correlation vs. Probability of non-risk region for some 2-dimensional elliptical distri-

butions, positivity constraints and β = 0.95

The extent to which probabilities vary with correlation seems to be much

greater in higher dimensions. In Figure B.6 we have plotted for Normal

returns and a range of dimensions, the probabilities of the non-risk region

for a particular type of correlation matrix: Λ (ρ) ∈ Rd×d where Λ(ρ)ij = ρ

for i 6= j and ρ > 0. In the case of ρ = 0, the probability decays very quickly

to zero as the dimension increases, whereas as when ρ is close to one, the

probability of the non-risk region approaches β for all dimensions.

Our next observation is that the probability of the non-risk region seems

to increase as the tails of the distributions become heavier. In Figure B.7 are

plotted the probabilities of risk regions for some spherical distributions and

a range of dimensions. Note that multivariate t-distributions have heavier

tails than the multivariate Normal distribution, but the tails get lighter as

137



Paper B.

0.0 0.2 0.4 0.6 0.8 1.0
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
 o

f N
on

-ri
sk

 R
eg

io
n

 = 0.99

Dim = 5
Dim = 10
Dim = 20
Dim = 30

Fig. B.6: Probability of non-risk region for a range of correlation matrices and dimensions for

Normal returns

the degrees of freedom parameter increases. This phenomenon can also be

observed in Figure B.5.

The observations made in this section suggest that that the application

of our methodology will be particularly effective when applied to real stock

data tend to be positively correlated and have heavy tails.

6 Numerical tests

In this Section we test the numerical performance of our methodology for

realistic distributions. There are three parts to these tests: the calculation of

the probability of the non-risk region for a range of distributions and con-

straints, the performance of aggregation sampling, and the performance of

aggregation reduction. In Section 6.1 we describe our experimental set-up, in

particular we justify the distributions constructed for these experiments. The

remaining three sections detail the individual experiments and their results.
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Fig. B.7: Probability of non-risk regions for different spherical distributions and dimensions

6.1 Experimental set-up

For robustness we will use several randomly constructed distributions for

each family of distribution and each dimension we are testing. We construct

these by fitting parametric distributions to real data. We use real data rather

than arbitrarily generating problem parameters for two reasons. Firstly, gen-

erating parameters which correspond to well-defined distributions can be

problematic. For example, for the moment matching algorithm, there may

not exist a distribution which has a given set of target moments (see [22]

and [23] for instance). Secondly, as was observed in Section 5, the probability

of the non-risk region can vary wildly, and so it is most meaningful to test

the performance of our methodology for distributions which are realistic for

portfolio selection problems.

We construct our distributions from monthly return data from between

January 2007 and February 2015 for 90 companies in the FTSE 100 index. For

each dimension in the test, we randomly sample five sets of companies of

that size, and for each of these sets fit Normal, t distributions and Skew-t

distributions to the associated return data. Figure B.8 shows for two stocks

the contours of the fitted density functions overlaying the historical return
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Fig. B.8: Contour plots of distributions fitted to financial return data for two assets

data. For the t distributions we fix the degrees of freedom parameter to 4.0.

This is so that we can more easily compare the effect of heavier tails on the

results of our tests. We allow the corresponding parameter for the skew-t

distributions to be fitted from the data.

These three distributions are fitted to the data through maximum likeli-

hood estimation, weighing each observation equally; our aim here is not to

construct distributions which accurately capture the uncertainty of future re-

turns, but to simply construct distributions which are realistic for this type of

problem. We also use scenario sets constructed using the moment-matching

algorithm. For each random set of companies, we calculate all the required

marginal moments and correlations from their historical returns, and use

these as input to the moment-matching algorithm. To allow us to compare

results, the same constructed distributions are used across the three sets of

numerical tests.

Throughout this section we use the β -CVaR as our tail risk measure. This

is not only because the β -CVaR leads to tractable scenario-based optimiza-

tion problems, but also for elliptically distributed returns we can evaluate the

β -CVaR exactly which provides us with a means to evaluate the true perfor-

mance of the solutions yielded by the approximate scenario-based problems.

In addition, to ensure that the non-risk region does not have negligible prob-

ability, we will assume that we always have positivity constraints on our

investments (i.e. no short selling).
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6.2 Probability of non-risk region with quota constraints

We first estimate the probability of the non-risk region for a range of distri-

butions, dimensions and constraints. We calculate these probabilities only for

the Normal and t distributions as skew-t distributions and moment match-

ing scenario sets use surrogate risk regions based on these distributions. The

main purpose of this is to provide intuition about under what circumstances

the methodology is effective: there is little to be gained from aggregating

scenarios in a non-risk region of negligible probability.

For each distribution we sample 2000 scenarios and calculate the propor-

tion of points in the non-risk region for different levels of β and constraints.

In particular, for each dimension we calculate for β = 0.95, and β = 0.99, and

for a range of quotas. The feasible region corresponding to quota 0 < q < 1

is {x ∈ Rd : 0 ≤ xi ≤ q for i = 1, . . . , d, ∑d
i=1 xi = 1}. Quotas are quite a nat-

ural constraint to use in the portfolio selection problem as they ensure that

a portfolio is not overexposed to one asset. The quotas may also be viewed

as ghost constraints to be used in cases where the probability of the non-risk

region with only positivity constraints is too small.

In Figure B.9 for each each dimension we have tested we have plotted

the results of one trial. The full results can be found in Appendix A. The

first important observation from these is that the proportion of scenarios in

the non-risk region, as compared to the uncorrelated case in Figure B.6, is

surprisingly high; even for β = 0.95 and dimension 30, this proportion is

non-negligible. As expected, the proportion of scenarios in the non-risk re-

gion increases as we tighten our quota. However, for higher dimensions

the quotas need to be a lot tighter to make a significant difference. The plots

also provide further evidence that the t distribution has non-risk regions with

higher probabilities than the lighter-tailed Normal distribution. In Figure B.9,

the non-risk region for the t-distributions has probability around 0.05 to 0.1

higher for dimensions 5 and 10, and around 0.1 to 0.2 higher for dimensions
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Fig. B.9: Proportions of non-risk scenarios

20 and 30.

6.3 Aggregation sampling

In this section we compare the quality of solutions yielded by sampling and

aggregation sampling by observing the optimality gaps of the solutions that

these scenario generation methods yield. For this, we use the following ver-

sion of the portfolio selection problem.

minimize
x≥0

β -CVaR
(
−xTY

)
such that xTµ ≥ τ,

d

∑
i=1

xi = 1,

0 ≤ x ≤ u,
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where µ is the mean of the input distribution (rather than scenario set), τ is

the target return and u is a vector of asset quotas. The primary reason for us-

ing this formulation over those in (P2) and (P3) is that given a distribution of

asset returns it is easy to select an appropriate expected target return τ. For

simplicity, in our tests we set τ = 1
n ∑n

i=1 µi which ensures that the constraint

is feasible but not trivially satisfied. Notice that in the above formulation we

use the deterministic constraint, xTµ ≥ τ rather than E
[
xTY

]
≥ τ. This is

because the latter constraint depends on the scenario set. Therefore, the solu-

tion from a scenario-based approximation might be infeasible with respect to

the original problem, which makes measuring solution quality problematic.

In this experiment, we test the performance of the aggregation sampling

algorithm for three families of distributions: the Normal distribution, the

t-distribution and the skew-t distribution.

For each distribution and problem dimension we run five trials using our

constructed distributions (as described in Section 6.1). Each trial consists of

generating 50 scenario sets via sampling and aggregation sampling, solving

the corresponding scenario-based problem for each of these sets, and calcu-

lating the optimality gap for each solution which is yielded. For each scenario

generation method we then calculate the mean and standard deviation (S.D.)

of the optimality gap. For the skew-t distributions, although we are able

to evaluate the objective function value for any candidate solution, to find

the true optimal solution value (or one close to it), we resort to solving the

problem for a very large sampled set of size 200000.

The full results for this experiment can be found in Appendix B. In Figure

B.10 we have plotted for one trial the raw results for dimensions 10 and 30.

We observe that there is a consistent improvement in solution quality in using

aggregation sampling over basic sampling. In addition the solution values

are much more stable. The improvement in solution quality and stability

is particularly big for the t-distributions. This is because the probability of

the non-risk region is greater for heavier-tailed distributions as observed in
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Section 5. Aggregation sampling even lead to consistently better solutions

for the skew-t distributions where we are approximating the risk region with

a risk region for a t-distribution.
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Fig. B.10: Stability test comparing performance of sampling and aggregation sampling
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6.4 Aggregation reduction

The aim of these tests is to quantify the error induced through the use of

aggregation reduction. In particular, we calculate the error induced in the

optimal solution value. For a given scenario set, we aggregate the non-risk

scenarios, solve the problem with respect to this reduced set, and calculate

the optimality gap of this solution with respect to the original scenario set.

For these tests we use the same problem as in Section 6.3 and run tests for

Normal, t and moment matching distributions. As explained in Section 4, we

use the risk region of a Normal distribution to approximate the risk region for

moment-matched scenario sets. For each family of distributions and problem

dimension we again run five trials for different instances of the distribution.

In each trial for different initial scenario set sizes, n = 100, 200, 500, and two

different levels of tail risk measure β = 0.95, 0.99, we calculate the reduction

error for 30 different scenario sets and report the mean error.

The full results can be found in Appendix C. These show that the re-

duction error is generally very small, in fact for almost all problems using

β = 0.95, there is no error induced. For β = 0.99, and the smallest scenario

set size n = 100, there is a small amount of error (< 0.01) for the Normal dis-

tributions, slightly larger errors for the heavier-tailed t distribution (< 0.02),

and the largest errors (0.1-0.5) occur for reduced moment-matching scenario

sets whose risk regions have been approximated with that of a Normal distri-

bution. However, as the scenario set size is increased, all errors are reduced,

and for the largest scenario set size n = 500, there is no error induced for

almost all problems.

Comparing the reduction errors with the corresponding non-risk region

probabilities in Appendix A, we see that the larger errors generally occur

for the higher dimensional distributions whose non-risk region has a larger

probability. This is to be expected as the larger the non-risk region the more

scenarios that are aggregated. In Table B.37 in Appendix C we have also in-
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cluded the proportions of reduced scenarios for moment matching scenario

sets for which we approximated the risk region with that of a Normal dis-

tribution. The proportions of reduced scenarios in this case are generally

slightly higher than that of the corresponding Normal distributions. This

might suggest that the surrogates for the risk region are slightly too small,

but this could equally be explained by the fact that moment matching sce-

nario sets generally have heavier tails than the corresponding Normal distri-

bution, which, as we observed in Section 5, also leads to non-risk regions of

higher probabilities. In either case, the larger errors which are induced by

reducing small moment-matching scenario sets could be explained by these

increased probabilities.

7 Case study

In this section we demonstrate how our methodology can be applied to diffi-

cult problems which may occur in practice. For this, we use problems which

are high-dimensional, have non-elliptical return distributions, and use inte-

ger variables. Note that the use of integer variables precludes the use of

interior point algorithms to solve this problem. For a fixed computational

budget we will compare the performance of sampling and aggregation sam-

pling through estimation of the optimality gap. We also demonstrate how

ghost constraints can be used to improve the quality of solutions while high-

lighting the possible pitfalls of this approach.
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In these tests we use the following problem:

minimize
x,z

β -CVaR
(
−xTY

)
such that xTµ ≥ τ,

xi ≤ zi for each i = 1, . . . , d,

d

∑
i=1

xi = 1,

d

∑
i=1

zi = M,

0 ≤ x ≤ u,

zi ∈ {0, 1} for each i = 1, . . . , d.

This problem is similar to that used in Section 6.3 except that we now

use integer variables to bound the number of assets in which we may invest.

The extra constraints involving integer variables may change the conic hull of

feasible solutions, however the method presented in Section 3.1 for calculat-

ing conic hulls of feasible regions cannot handle these. We therefore ignore

these constraints when constructing a risk region to use for aggregation sam-

pling. This is acceptable as the resulting conic hull will contain the true conic

hull. Again, the random vector Y used in these tests is constructed by fitting

Skew-t distributions to return data for companies from the FTSE100 stock

index.

In each experiment we find candidate solutions for the above problem

by solving large scenario-based approximations: we find one candidate so-

lution for a scenario set constructed by basic sampling, and another for a

scenario set constructed by aggregation sampling. The optimality gap for

each of these solutions is then estimated by employing the multiple replication

procedure of [24], which involves solving several ng (smaller) problems for

ng independent scenario sets constructed by sampling and aggregation sam-

pling as appropriate. Specifically, for k = 1, . . . , ng denote by Yk the empirical

random vector corresponding to the k-th scenario set, and z∗k the correspond-
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ing optimal solution value. For a candidate solution x̃ ∈ Rd, and for each

scenario set k = 1, . . . , ng (of size n) the following is a conservative estimate

of the optimality gap:

Gk
n = β -CVaR

(
−x̃TYk

)
− z∗k .

Now, for 0 < α < 1 an α confidence interval for the optimality gap is

(0, Ḡn + εng ,α), (B.11)

where

Ḡn =
1

ng

ng

∑
j=1

Gj
n,

S2
ng =

1
ng − 1

ng

∑
j=1

(
Gj

n − Ḡn

)
,

εng ,α = tng−1,α
Sng√ng

and tng−1,α is the α-quantile of the (univariate) t-distribution with ng − 1 de-

grees of freedom. Note that other procedures for estimating the optimality

gap exist which only require the solution of one or two problems [25], [26].

Given the potential dangers in approximating the risk region, and mis-

specifying ghost constraints, it is important to verify the quality of a solution

by the calculation of its corresponding out-of-sample value (out value) [27].

That is, we calculate the β-CVaR for our candidate solutions with respect

to a large independently sampled scenario set. A bias in our aggregation

sampling method may be indicated by a significantly higher out-of-sample

value compared to that of sampling. Similarly, the introduction of ghost con-

straints which are too tight will lead to no improvement in, or a potentially

worse out-of-sample value of the new candidate solution. Finally, to aid us in

interpreting the results, we include an estimate of the probability of the risk

region.

We set our computational budget so that our problems can be solved

relatively quickly (a few seconds) on a personal computer. If our problem
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is of dimension d and we have n scenarios, the number of floating point

operations required to calculate β -CVaR for a particular solution is of order

O(d × n). We therefore limit the number of scenarios in our problems so

that d × n ≤ 10000 to ensure it can be solved quickly. For the estimation

of the optimality gap we solve five problems which use half the number of

scenarios used to calculate the candidate solution. For both problems we use

β = 0.99, τ = 0.01 and α = 0.95. Our aim is to find a solution for which the

upper limit of the 95% confidence interval Gn + εng ,α on its optimality is less

than 0.015.

Case 1: d = 30 We begin with a problem of moderate dimension. Using

our rules we use a scenario set size of n = 10000
30 ≈ 3300 to find our candidate

solutions, and for estimating the optimality gap we use a scenario set size of
n
2 = 3300

2 = 1650. The results are shown in Table B.1.

Sampling Agg. Sampling

Gap (Ḡn) Error (εng ,α) Out value Gap (Ḡn) Error (εng ,α) Out value Risk region prob.

0.018 0.005 0.140 0.004 0.002 0.140 0.157

Table B.1: Estimated optimality gaps for n = 30 with 95% confidence level

The out-of-sample values reveal that the quality of candidate solutions are

about the same, however the estimation of the optimality gap using aggre-

gation sampling gives us greater assurance that our solution is near optimal.

Using (C.4) and Table B.1, the upper limit of the confidence interval on the

optimality gap for aggregation sampling is 0.004 + 0.002 = 0.006 meets our

target of being less than 0.015.

Case 2: d = 50 We now increase the dimension of the problem substantially.

Our rules for scenario set size now prescribe the use of n = 10000
50 = 2000

for calculating our candidate solutions, and a maximum scenario set size of
n
2 = 2000

2 = 1000 for estimating the optimality gap. The results are shown in
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Table B.2.

Sampling Agg. Sampling

Gap (Ḡn) Error (εng ,α) Out value Gap (Ḡn) Error (εng ,α) Out value Risk region prob.

0.062 0.013 0.191 0.020 0.004 0.164 0.211

Table B.2: Estimated optimality gaps for n = 50 with 95% confidence level

This time both the out-of-sample value and optimality gap yielded by ag-

gregation sampling are smaller than those yielded by basic sampling. Despite

this however, the quality of the solutions appear to be much lower than those

in Case 1. Using (C.4) and Table B.2, the upper limit of the confidence inter-

val on the optimality gap for aggregation sampling is 0.02 + 0.004 = 0.024 so

does not meet our target.

In an attempt to improve our solution to the previous problem we now

add ghost constraints to our problem. As noted in Section 6.2, it is only when

constraints become very restrictive that these make a difference to the prob-

ability of the risk region and so in the first instance we will add constraints

which are tight. We use the constraints xi ≤ x̃i + 0.05 for i = 1, . . . , 50 where

x̃ denotes the candidate solution from aggregation sampling for our previous

trial. The results for this trial are shown in Table B.3.

Sampling Agg. Sampling

Gap (Ḡn) Error (εng ,α) Out value Gap (Ḡn) Error (εng ,α) Out value Risk region prob.

0.018 0.010 0.168 0.011 0.005 0.165 0.119

Table B.3: Estimated optimality gaps for n = 50 with 95% confidence level where tight quota

constraints have been added to the problem

The proportion of samples in the risk region has roughly halved and so

our scenarios are concentrated on a much smaller region of the support. We

see this time that the optimality gap of our solutions is much reduced for

aggregation sampling, so much so that the error is now within our desired
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tolerance. However, inspecting the out-of-sample value we see that it has not

improved, despite the estimated optimality gap being much lower compared

to the previous experiment. In addition, some of the ghost constraints we

have added are binding. This strongly indicates that the added constraints

may be too tight (they are active), in which case the optimality gaps are not

valid with respect to the original problem.

We now try slightly looser ghost constraints: xi ≤ x̃i + 0.1 where x̃ is

still the candidate solution from our first trial without ghost constraints. The

results are shown in Table B.4.

Sampling Agg. Sampling

Gap (Ḡn) Error (εng ,α) Out value Gap (Ḡn) Error (εng ,α) Out value Risk region prob.

0.034 0.009 0.169 0.009 0.004 0.162 0.162

Table B.4: Estimated optimality gaps for n = 50 with 95% confidence level where loose quota

constraints have been added to the problem

The out-of-sample value in this trial is significantly improved compared

to the previous one and there are fewer binding ghost constraints in our so-

lution. The upper limit of the estimate of optimality gap is now within the

desired tolerance. Again, this estimate only applies to the original problem

(the problem without ghost constraints) if the ghost constraints are guaran-

teed to be non-active.

It is generally difficult to guarantee that ghost constraints are non-active,

but nevertheless, the example above demonstrates that their inclusion, with

careful calibration can lead to significantly improved solutions. In the exam-

ple above, we only used simple quotas for our ghost constraints and it may be

possible to further improve the out-of-sample value by adding lower bounds

to investments as well as upper bounds. Additionally, when constructing our

ghost constraints we used the same amount of slack for each variable and so

one could try varying this for different assets.
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8 Conclusions

In the paper [12] we proposed a general approach to scenario generation

using risk regions for stochastic programs with tail risk measure. As proof-of-

concept we demonstrated how this applied for portfolio selection problems

for elliptically distributed returns. In this work, we have presented how this

methodology may be used for more realistic portfolio selection problems, and

studied under what conditions it is effective.

To find the risk region for our problem, we must be able to describe the

conic hull of the feasible region and be able to project points onto this. In

the presence of positivity constraints, we were able to describe exactly this

conic hull from general linear constraints on our portfolio, and identified

that the projection of a point onto a cone requires the solution of a small

quadratic program, or a linear complementarity problem. The solution of

these small programs becomes a significant bottleneck for high dimensions

in our methodology and so one possible avenue of future research would

be to investigate how this calculation could be done more efficiently. For

example, instead of calculating the whole projection, one could calculate the

projection only to an accuracy sufficient to test if a point belongs in the risk

region.

The efficacy of using risk regions for scenario generation depends upon

the probability of the risk region: the greater the probability of the non-risk

region, the more scenarios that can be aggregated. It follows directly from

the definition of risk regions that this probability decreases as the problem

becomes more constrained and as the level of the tail risk β increases. In

our case study we exploited the former property through the addition of

non-binding or ghost constraints to our problem. A more systematic way

of selecting ghost constraints, and finding some way to guarantee they are

non-active are thus important directions of research. In our numerical ex-

periments we observed that the probability of the risk region decreases for
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heavier tailed distributions, and in the presence positivity constraints, the

probability decreases as the correlations between asset returns increases. It is

desirable to develop theory which explain these phenomena.

Finally, we tested the performance of our methodology for solving real-

istic problems where the return distributions were fitted from real financial

return data. Aggregation sampling generally outperformed basic sampling

in terms of solution quality and stability. We also showed that aggregation

reduction induces almost no error in the solution for reasonably sized sce-

nario sets. These results not only held for elliptical distributions, but also

non-elliptical distributions for which we have approximated the risk regions.

However, in a small number of cases, the mis-specification of these surro-

gate risk regions lead to worse results. Thus, research needs to done to de-

termine how one can choose such more reliable surrogate risk regions for

non-elliptical regions.
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A Reduction proportion tables

The following tables list the estimated probabilities of the non-risk region for a variety of distributions constructed from

real data. See Section 6.2 for details. Each table corresponds to a family of distributions at a given dimension, and each

row gives the proportions for a given set of companies. In addition, the distributions corresponding the i-th row of each

table of dimension d have been fitted using the same set of companies.

β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2

0.743 0.752 0.767 0.782 0.814 0.865 0.950 0.934 0.936 0.941 0.946 0.959 0.971 0.995

0.738 0.744 0.760 0.777 0.809 0.855 0.949 0.922 0.925 0.928 0.934 0.949 0.965 0.992

0.767 0.775 0.793 0.807 0.832 0.872 0.948 0.930 0.932 0.937 0.943 0.953 0.969 0.990

0.763 0.771 0.784 0.801 0.830 0.880 0.951 0.931 0.934 0.944 0.949 0.957 0.973 0.987

0.755 0.763 0.777 0.798 0.829 0.883 0.955 0.927 0.929 0.935 0.940 0.951 0.966 0.991

Table B.5: Proportion of reduced scenarios for Normal distributed returns and d = 5

β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2

0.594 0.600 0.608 0.617 0.637 0.679 0.752 0.833 0.834 0.839 0.846 0.860 0.882 0.917

0.617 0.621 0.632 0.647 0.669 0.703 0.777 0.851 0.852 0.856 0.860 0.868 0.879 0.914

0.506 0.509 0.523 0.534 0.560 0.606 0.689 0.779 0.780 0.787 0.791 0.806 0.837 0.889

0.564 0.566 0.573 0.590 0.615 0.658 0.748 0.827 0.828 0.835 0.846 0.857 0.877 0.921

0.537 0.540 0.552 0.566 0.586 0.624 0.727 0.820 0.822 0.825 0.832 0.843 0.870 0.912

Table B.6: Proportion of reduced scenarios for Normal distributed returns and d = 10
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β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1

0.394 0.394 0.400 0.405 0.447 0.513 0.698 0.707 0.707 0.711 0.717 0.740 0.787 0.896

0.325 0.326 0.332 0.342 0.392 0.457 0.635 0.653 0.653 0.655 0.662 0.696 0.740 0.851

0.344 0.344 0.348 0.354 0.389 0.460 0.668 0.648 0.648 0.653 0.656 0.683 0.743 0.870

0.384 0.385 0.390 0.401 0.440 0.507 0.708 0.695 0.695 0.698 0.704 0.740 0.782 0.896

0.417 0.418 0.424 0.432 0.479 0.540 0.738 0.727 0.727 0.730 0.735 0.764 0.813 0.906

Table B.7: Proportion of reduced scenarios for Normal distributed returns and d = 20

β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1

0.259 0.259 0.263 0.267 0.297 0.350 0.498 0.571 0.571 0.572 0.578 0.603 0.644 0.770

0.264 0.266 0.269 0.272 0.299 0.347 0.511 0.587 0.587 0.589 0.591 0.616 0.661 0.790

0.282 0.282 0.286 0.291 0.321 0.378 0.533 0.599 0.599 0.602 0.607 0.631 0.681 0.785

0.247 0.247 0.251 0.257 0.281 0.333 0.502 0.555 0.555 0.556 0.558 0.586 0.630 0.769

0.293 0.293 0.296 0.301 0.324 0.374 0.548 0.583 0.583 0.584 0.587 0.613 0.665 0.802

Table B.8: Proportion of reduced scenarios for Normal distributed returns and d = 30

β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2

0.793 0.801 0.814 0.822 0.842 0.876 0.950 0.952 0.953 0.957 0.960 0.966 0.976 0.992

0.775 0.782 0.796 0.812 0.837 0.877 0.946 0.949 0.950 0.954 0.956 0.961 0.972 0.988

0.808 0.815 0.829 0.841 0.859 0.898 0.953 0.958 0.960 0.962 0.964 0.969 0.980 0.992

0.799 0.808 0.819 0.828 0.855 0.882 0.950 0.949 0.951 0.954 0.957 0.965 0.977 0.990

0.793 0.799 0.809 0.822 0.848 0.887 0.951 0.960 0.960 0.963 0.965 0.969 0.976 0.991

Table B.9: Proportion of reduced scenarios for t4.0 distributed returns and d = 5
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β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.4 x ≤ 0.3 x ≤ 0.2

0.689 0.691 0.700 0.709 0.720 0.750 0.804 0.916 0.916 0.917 0.919 0.926 0.931 0.949

0.711 0.713 0.719 0.730 0.742 0.769 0.829 0.923 0.924 0.925 0.926 0.930 0.940 0.956

0.616 0.617 0.630 0.640 0.656 0.677 0.754 0.895 0.896 0.898 0.900 0.905 0.915 0.935

0.642 0.642 0.647 0.657 0.672 0.703 0.783 0.896 0.896 0.900 0.904 0.913 0.925 0.941

0.652 0.655 0.666 0.675 0.690 0.723 0.785 0.905 0.905 0.907 0.908 0.913 0.924 0.944

Table B.10: Proportion of reduced scenarios for t4.0 distributed returns and d = 10

β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1

0.540 0.540 0.547 0.549 0.574 0.615 0.743 0.849 0.849 0.850 0.852 0.864 0.880 0.932

0.461 0.463 0.467 0.475 0.509 0.560 0.703 0.835 0.836 0.840 0.844 0.858 0.870 0.919

0.506 0.507 0.510 0.515 0.551 0.595 0.753 0.839 0.839 0.839 0.840 0.855 0.874 0.931

0.511 0.511 0.514 0.519 0.562 0.612 0.753 0.860 0.860 0.862 0.865 0.876 0.894 0.939

0.567 0.568 0.572 0.576 0.609 0.657 0.797 0.866 0.867 0.867 0.870 0.881 0.901 0.952

Table B.11: Proportion of reduced scenarios for t4.0 distributed returns and d = 20

β = 0.95 β = 0.99

x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1 x ≤ 1.0 x ≤ 0.8 x ≤ 0.6 x ≤ 0.5 x ≤ 0.3 x ≤ 0.2 x ≤ 0.1

0.434 0.434 0.436 0.439 0.459 0.491 0.612 0.806 0.806 0.807 0.808 0.823 0.840 0.891

0.466 0.466 0.468 0.469 0.495 0.532 0.649 0.821 0.821 0.823 0.824 0.838 0.853 0.897

0.443 0.443 0.445 0.448 0.474 0.512 0.637 0.821 0.822 0.822 0.824 0.834 0.854 0.898

0.444 0.445 0.448 0.454 0.470 0.513 0.635 0.812 0.813 0.814 0.814 0.823 0.841 0.889

0.417 0.417 0.419 0.421 0.444 0.487 0.617 0.808 0.808 0.810 0.811 0.823 0.844 0.891

Table B.12: Proportion of reduced scenarios for t4.0 distributed returns and d = 30
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B Aggregation sampling tables

The following tables list the relative reduction in the mean and standard deviation of

optimality gaps for aggregation sampling compared with sampling for a variety of distri-

butions. See Section 6.3 for more details.

n = 100 n = 200 n = 500

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

2.747 2.542 3.226 3.321 3.697 2.871

3.905 4.427 3.226 3.323 3.646 4.439

3.803 2.993 4.889 3.538 4.567 3.927

3.376 3.040 3.402 2.517 5.182 4.357

3.240 3.257 3.432 2.246 4.807 4.708

Table B.13: Comparison for d = 5, β = 0.95, and Normal returns

n = 100 n = 200 n = 500

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

1.989 1.876 2.670 2.422 2.460 2.495

2.018 2.494 2.711 2.227 3.126 2.864

1.559 1.652 1.736 1.230 2.727 2.678

1.869 2.089 2.275 2.181 2.551 2.731

1.996 2.085 2.285 2.061 2.466 2.828

Table B.14: Comparison for d = 10, β = 0.95, and Normal returns
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n = 500 n = 1000 n = 2000

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

2.357 2.124 2.890 3.039 3.026 2.809

2.504 3.054 2.750 2.839 2.873 2.689

2.308 1.963 2.546 2.854 2.803 2.791

2.341 2.699 2.948 3.369 2.592 2.367

2.802 2.657 3.421 2.494 3.725 3.547

Table B.15: Comparison for d = 20, β = 0.99, and Normal returns

n = 500 n = 1000 n = 2000

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

1.943 1.842 2.161 2.148 2.901 2.846

1.779 2.195 2.197 2.067 2.590 2.483

1.990 2.227 2.246 2.033 2.405 2.514

2.019 2.012 2.076 2.057 2.010 1.891

1.866 1.769 2.457 1.921 2.853 3.138

Table B.16: Comparison for d = 30, β = 0.99, and Normal returns

n = 100 n = 200 n = 500

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

2.857 2.661 2.762 1.981 3.500 3.709

3.407 3.431 3.692 3.416 5.572 6.167

4.335 3.062 3.872 4.195 3.244 3.149

4.280 3.748 4.636 6.732 4.974 6.593

2.578 1.773 3.664 3.500 4.019 4.160

Table B.17: Comparison for d = 5, β = 0.95, and t4.0 returns
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n = 100 n = 200 n = 500

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

1.899 2.091 2.169 1.805 2.939 2.599

2.078 1.910 2.358 2.229 2.982 2.340

1.996 2.923 2.639 3.126 2.088 1.727

2.658 2.958 2.436 2.222 2.357 2.312

2.080 2.171 1.980 1.232 2.957 2.114

Table B.18: Comparison for d = 10, β = 0.95, and t4.0 returns

n = 500 n = 1000 n = 2000

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

4.142 5.028 4.215 4.383 5.571 5.221

3.039 3.843 4.096 4.346 4.857 6.084

3.378 3.831 4.020 4.267 5.007 5.617

3.722 4.886 3.744 3.247 4.339 5.336

3.616 3.524 4.999 3.739 5.116 6.277

Table B.19: Comparison for d = 20, β = 0.99, and t4.0 returns

n = 500 n = 1000 n = 2000

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

3.035 3.068 2.950 2.547 3.741 4.042

2.359 1.983 3.513 5.068 3.384 3.029

3.507 4.356 2.977 3.966 3.686 4.915

2.950 3.005 3.079 1.964 3.936 4.240

2.228 2.043 3.549 3.227 3.950 4.267

Table B.20: Comparison for d = 30, β = 0.99, and t4.0 returns
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n = 100 n = 200 n = 500

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

1.917 1.601 2.766 3.020 3.352 2.644

1.887 1.857 2.748 2.416 3.414 3.290

3.171 3.489 4.433 3.427 3.949 3.774

2.620 3.170 3.038 3.518 2.872 3.178

2.391 2.408 2.027 1.891 3.466 3.434

Table B.21: Comparison for d = 5, β = 0.95, and Skew T returns

n = 100 n = 200 n = 500

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

1.839 2.189 2.215 1.925 2.977 2.650

1.631 2.021 2.203 2.087 2.150 2.554

1.962 1.671 1.872 1.187 3.172 3.513

1.627 1.868 1.661 2.136 1.775 1.439

2.502 2.417 2.152 2.577 2.647 2.580

Table B.22: Comparison for d = 10, β = 0.95, and Skew T returns

n = 500 n = 1000 n = 2000

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

4.646 5.803 4.921 4.384 5.843 6.268

4.639 4.025 6.296 5.028 6.513 7.438

3.355 3.840 3.655 3.163 3.305 3.359

3.317 2.257 3.448 3.623 4.794 4.732

3.395 3.365 3.164 3.145 4.351 4.306

Table B.23: Comparison for d = 20, β = 0.99, and Skew T returns
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n = 500 n = 1000 n = 2000

Mean Imp. S.D. Imp. Mean Imp. S.D. Imp. Mean Imp. S.D. Imp.

2.631 3.659 3.364 4.298 4.000 4.099

2.285 2.809 2.667 3.201 3.482 2.882

3.266 4.545 3.617 4.340 3.791 3.138

2.923 3.334 3.750 3.796 4.304 5.492

2.486 2.289 2.658 2.754 3.659 4.918

Table B.24: Comparison for d = 30, β = 0.99, and Skew T returns
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C Reduction error tables

The following tables list the mean error induced by aggregating scenarios in the non-risk region for a variety of distribu-

tions. See Section 6.4 for details.

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 0.000 0.008 0.002 0.000

0.000 0.000 0.000 0.009 0.001 0.000

0.000 0.000 0.000 0.005 0.002 0.000

0.000 0.000 0.000 0.007 0.001 0.000

0.000 0.000 -0.000 0.007 0.001 0.000

Table B.25: Reduction error induced for d=5 Normal returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 0.000 0.006 0.000 0.000

0.000 0.000 0.000 0.006 0.001 0.000

0.000 -0.000 0.000 0.006 0.001 0.000

0.000 0.000 -0.000 0.004 0.000 0.000

0.000 -0.000 -0.000 0.005 0.000 0.000

Table B.26: Reduction error induced for d=10 Normal returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 -0.000 0.003 0.000 0.000

0.000 -0.000 -0.000 0.002 0.000 0.000

0.000 -0.000 -0.000 0.002 0.000 0.000

0.000 0.000 0.000 0.002 0.000 -0.000

0.000 0.000 0.000 0.003 0.000 0.000

Table B.27: Reduction error induced for d=20 Normal returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 -0.000 0.000 0.001 0.000 0.000

0.000 -0.000 0.000 0.002 0.000 0.000

-0.000 0.000 -0.000 0.002 0.000 -0.000

-0.000 -0.000 0.000 0.001 0.000 -0.000

0.000 0.000 0.000 0.001 0.000 0.000

Table B.28: Reduction error induced for d=30 Normal returns
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β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.001 0.000 0.000 0.014 0.005 0.000

0.000 0.000 0.000 0.012 0.003 0.000

0.000 0.000 0.000 0.017 0.002 0.001

0.000 0.000 0.000 0.015 0.005 0.000

0.001 0.000 0.000 0.015 0.004 0.001

Table B.29: Reduction error induced for d=5 t4.0 returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 0.000 0.015 0.003 0.000

0.000 0.000 0.000 0.015 0.004 0.000

0.000 -0.000 0.000 0.012 0.002 -0.000

0.000 0.000 -0.000 0.017 0.004 0.000

0.000 -0.000 -0.000 0.020 0.003 0.000

Table B.30: Reduction error induced for d=10 t4.0 returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 -0.000 0.013 0.003 0.000

0.000 0.000 -0.000 0.017 0.000 0.000

0.000 0.000 -0.000 0.016 0.003 0.000

0.000 0.000 0.000 0.012 0.002 0.000

0.000 -0.000 0.000 0.016 0.002 0.000

Table B.31: Reduction error induced for d=20 t4.0 returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 -0.000 0.000 0.015 0.001 0.000

0.000 0.000 0.000 0.015 0.004 0.000

0.000 -0.000 0.000 0.013 0.002 0.000

0.000 -0.000 -0.000 0.015 0.004 0.000

0.000 0.000 0.000 0.016 0.004 0.000

Table B.32: Reduction error induced for d=30 t4.0 returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 -0.000 0.000 0.001 0.000 -0.000

0.000 0.000 0.000 0.002 0.000 0.000

0.000 0.000 0.000 0.000 -0.000 0.000

-0.000 0.000 0.000 0.000 0.000 -0.000

0.000 0.000 0.000 0.001 0.001 0.000

Table B.33: Reduction error induced for d=5 Moment Matching

returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

-0.000 -0.000 -0.000 0.003 0.000 0.000

-0.000 -0.000 0.000 0.001 -0.000 -0.000

0.000 0.000 0.000 0.509 0.001 0.001

-0.000 0.000 -0.000 0.003 0.000 0.000

0.000 0.000 0.000 0.002 0.000 0.000

Table B.34: Reduction error induced for d=10 Moment Match-

ing returns

163



Paper
B.

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 0.000 0.089 0.000 0.000

-0.000 0.000 0.000 0.407 0.003 0.000

0.000 -0.000 -0.000 0.003 0.001 0.000

0.000 0.000 0.000 0.231 0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000

Table B.35: Reduction error induced for d=20 Moment Match-

ing returns

β = 0.95 β = 0.99

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

0.000 0.000 0.000 0.205 0.000 0.000

0.000 0.000 0.000 0.111 0.001 0.000

0.000 0.000 0.000 0.206 0.001 0.000

0.000 0.000 0.000 0.218 0.001 0.000

0.000 0.000 0.000 0.071 0.001 0.000

Table B.36: Reduction error induced for d=30 Moment Match-

ing returns

d = 5 d = 10 d = 20 d = 30

β = 0.95 β = 0.99 β = 0.95 β = 0.99 β = 0.95 β = 0.99 β = 0.95 β = 0.99

0.786 0.919 0.638 0.840 0.481 0.734 0.380 0.646

0.743 0.900 0.623 0.827 0.477 0.741 0.365 0.647

0.761 0.905 0.660 0.869 0.445 0.729 0.381 0.650

0.770 0.907 0.625 0.847 0.455 0.716 0.366 0.655

0.747 0.917 0.640 0.860 0.446 0.712 0.333 0.616

Table B.37: Proportions of scenarios reduced for moment matching scenario sets
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1. Introduction

1 Introduction

Stochastic programming is a tool for making decisions under uncertainty.

In a stochastic program uncertain quantities are modeled by random vari-

ables. One has a loss function associating to each combination of decision and

realization of the random variables a loss, and the aim is to minimize the

expectation, or some other risk measure, of this loss function. The power of

stochastic programming is that it allows one to model explicitly the costs of

future decisions based on the outcomes of random variables.

This flexibility comes at a cost: stochastic programs are typically analyt-

ically tractable. Moreover, when the underlying random variables have con-

tinuous random variables these problems are also numerically intractable as

the calculation of the expected loss function usually involves the multidimen-

sional integration of a loss function which may be only implicitly defined.

Scenario generation is the construction of a finite discrete random vari-

able to use within a stochastic program. For this class of random variables,

the calculation of the expected cost function reduces to a summation. In the

case of stochastic linear programs, the resultant problem is a (large) linear

program. Furthermore, there are many algorithms which exploit the struc-

ture of this type of problem to allow a solution more efficient than standard

linear programming techniques, for example Bender’s decomposition [1].

Scenario generation may involve the discretization of a continuous distri-

bution or the direct construction of a discrete random vector. The simplest

way to discretize a random vector is to represent it with a large sample. The

resultant problem is known as the sample average approximation. Other

discretization approaches such as that used in [2] attempt to construct a dis-

cretization which minimizes the distance between the approximation and the

true distribution with respect to some probability metric. Property-matching

approaches attempt to construct discrete distributions with desired statistical

properties. This approach, first proposed in [3], works on the principle that
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the solution to a stochastic program only depends on certain properties of a

distribution. However, it is not usually clear a priori which properties are im-

portant for a particular problem and so when using such methods this must

be investigated.

A draw-back to the above standard approaches above is that they do not

explicitly exploit the structure of the underlying problem. A problem-driven

approach to scenario generation, may allow one to represent the uncertainty

in a more parsimonious way. In our previous papers [4, 5] we proposed a

scenario generation approach to problems involving tail risk measures. For

these problems, we identified that a (potentially large) region of the support

of the random vector did not contribute to the evaluation of the tail risk mea-

sure and so could be represented with a single scenario. We demonstrated

that by concentrating the construction of scenarios in the rest of the support

one could find better solutions with fewer scenarios. The drawback of this

method is that it relies on one being able to characterize the aforementioned

region in a convenient manner. This is difficult because this region depends

not only on the problem constraints but also the distribution of the random

variables.

In this paper we propose another problem-driven approach to scenario

generation. This approach assumes one can partition the support of the dis-

tribution into active and inactive components. The value of the expected cost

function on the inactive components depends only on their conditional ex-

pectation (or some other statistic restricted to the inactive component). The

inactive components can therefore be represented with a single scenario (re-

spectively, a very few). Unlike the approach in [4], this partition is deter-

mined only by the loss function and is independent of the distribution of the

random variables.

As proof of concept, we apply this approach to simple recourse problems.

These are a class of stochastic programs which aim to minimize the deviation

between the availability of a set of resources and the stochastic demands for
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each of them. As such, simple recourse problems are useful in modeling

inventory problems.

This paper is organized as follows: in Section 2 give the general set-up for

this work and recall some required results from the stochastic programming

literature; in Section 3 we demonstrate our approach on a basic newsvendor

problem; in Section 4 we generalize our methodology, and provide a proba-

bilistic analysis of our approach; in Section 5 we show how the approach of

the previous section can be applied to simple recourse problems; in Section 6

we demonstrate the performance of our method in a small numerical test;

finally, in Section 6 we make summarize this work and suggest some avenues

of future research.

2 Preliminaries

In this section, we give the general set-up for this work and present some

prerequisite theory from the stochastic programming literature that will be

required for the analysis and testing of our methodology in the later sections

of this paper.

Let ξ̃ be a random vector with support Ξ ⊂ Rd defined on a probability

space (Ω,A, P), X ⊂ Rk a set of feasible decisions and f : X ×Rd → R a

function for which ξ̃ 7→ f
(

x, ξ̃
)

is measurable (and integrable) for all x ∈

X . We refer to f
(

x, ξ̃
)

throughout as the loss function, and the problem we

consider is the minimization of the expectation of this function:

minimize
x∈X

E
[
f
(

x, ξ̃
)]

. (C.1)

We will assume for all x ∈ X that E
[
f(x, ξ̃)2] < ∞ which allows us to use

the central limit theorem (CLT).

In Section 2.1 we introduce the Wasserstein distance, a metric used to bound

the error induced by approximating a distribution in a stochastic program.

In Section 2.2 we show how one can estimate the optimality gap of a feasible

solution for a stochastic program via sampling.
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2.1 Wasserstein distance

The discretization of a continuous random vector to solve a stochastic pro-

gram leads to another stochastic program that is an approximation of the

original. The error induced by this approximation is most meaningfully

quantified by the optimality gap of the solution that the approximate prob-

lem yields.

Definition 2.1 (Approximation error). The approximation error induced by

using the random vector ξ̆ in the place of ξ̃ with respect to the problem (C.1) is as

follows:

e(ξ̃ , ξ̆) = sup
x0∈argmin

x∈X
Fξ̆ (x)
{min

x∈X
Fξ̃ (x)− Fξ̃ (x0)}

A convenient way to bound the approximation error is to use the sup-

distance between the true and approximate expected cost functions. The

following elementary lemma is taken from [2].

Lemma 2.2.

e(ξ̃ , ξ̆) ≤ 2 ||Fξ̃ − Fξ̆ ||∞

Therefore, to reduce the approximation error it suffices to minimize the

sup-distance between the objective functions. This sup-distance can be bounded

in turn by the Wasserstein distance between the true and approximate random

vectors.

Definition 2.3 (Wasserstein distance). The Wasserstein distance (with respect to

the 1-norm) between two random vectors ξ̃ and ξ̆ on Rm is defined as follows:

inf {E [‖Y1 −Y2‖1] : for all Y1 ∼ ξ̃ , Y2 ∼ ξ̆ defined on the same probability space}

The Wasserstein distance is related to the sup-distance by the Kantorovich-

Rubinstein Theorem. Before stating this we first recall the definition of a

Lipschitz function.
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Definition 2.4 (Lipschitz). For a function g : Ξ ⊂ Rm → R, its Lipshitz constant

is defined as follows:

L(g) = inf{L : |g (u)− g (v)| ≤ L ‖u− v‖ for all u, v ∈ Rm} (C.2)

The function g is said to be Lipschitz if L(g) < ∞.

Theorem 2.5 (Kantorovich-Rubinstein). For random vectors ξ̃ and ξ̆ on Rn, the

Wasserstein distance (with respect to the 1-norm) can be written as follows:

dW(ξ̃ , ξ̆) = sup{E
[
g
(
ξ̃
)]
−E

[
g
(
ξ̆
)]

: L1(g) ≤ 1}.

For a proof of this theorem see [6, Chapter 1].

Suppose now that L̄ > 0 is a Lipschitz constant for our loss function,

uniform across all decisions x ∈ X , that is

|f(x, ξ1)− f(x, ξ2)| ≤ L̄dW(ξ1, ξ2) for all x ∈ X, and ξ1, ξ2 ∈ Ξ.

Then, ξ 7→ 1
L̄ f(x, ξ) is Lipschitz with Lipschitz less than or equal to 1 for all

x ∈ X and so applying the Kantorovich-Rubinstein Theorem we have

||Fξ̃ − Fξ̆ ||∞ = sup
x∈X
{Eξ̃

[
f(x, ξ̃)

]
−E

[
f(x, ξ̆)

]
}

≤ L̄dW(ξ̃ , ξ̆). (C.3)

Since the Wasserstein distance bounds the approximation error, some sce-

nario generation and reduction algorithms have been designed so as to min-

imize it, see for example [2, 7]. In this work the Wasserstein distance is just

used to analyze the performance of our methodology.

2.2 Estimation of the optimality gap

The bound on the approximation error described above is typically too con-

servative to be used in practice. Instead we resort to a statistical method to

measure the quality of a solution.
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Suppose we have a feasible solution x0 ∈ X to the problem (C.1). Recall

that the optimality gap of a feasible solution x0 is defined as follows:

G = E
[
f(x0, ξ̃)

]
− z∗

where z∗ = minx∈X Eξ̃

[
f(x, ξ̃)

]
. A confidence interval for G can be con-

structed by solving the problem for multiple sampled scenario sets. The

method presented here is sometimes called the multiple replication procedure

(MRP) and originates from [8].

Let ξ̃i1, . . . , ξ̃in for 1 ≤ i ≤ ng, be independent identically distributed

(i.i.d.) batches of random vectors and define z∗ni = minx∈X
1
n ∑n

j=1 f(x, ξ̃ij).

Note that the elements ξ̃ij for j = 1, . . . , n within a batch do not need to

be i.i.d. as it is sufficient that a batch yields an unbiased estimator for the

expected cost function. Define Gi
n to be the estimated optimality gap for the

i-th batch of scenarios:

Gi
n = z∗ni −

1
n

n

∑
j=1

f(x0, ξ̃ij).

For 0 < α < 1, a conservative α confidence interval for the optimality gap G

is

(0, Ḡn + εng ,α), (C.4)

where

Ḡn =
1

ng

ng

∑
j=1

Gj
n,

S2
ng =

1
ng − 1

ng

∑
j=1

(
Gj

n − Ḡn

)
,

εng ,α = tng−1,α
Sng√ng

and tng−1,α is the α-quantile of the (univariate) t-distribution with ng − 1 de-

grees of freedom.

The main drawback of the above method for estimating a confidence in-

terval for the optimality gap is that it involves solving multiple problems.
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Other procedures have been proposed which require only one or two repli-

cations [9], [10].

3 The univariate newsvendor problem

In this section we sketch our approach to scenario generation for the uni-

variate newsvendor problem. The more general approach is presented in

Section 4.

In the newsvendor problem one must choose a quantity of stock to sat-

isfy an uncertain demand. The problem can be formulated as a stochastic

program:

minimize
l≤x≤u

Eξ̃

[
h(x− ξ̃)+ + R(ξ̃ − x)+

]
, (C.5)

where x is the decision of how much stock to order, ξ̃ is random variable

representing demand, h is the unit storage cost of unsold product, and R is

the unit rejection cost of surplus demand. Crucially, note that we have also

assumed bounds l and u on the amount of stock we can order. These bounds

may come from the context of the problem (e.g. a lower bound representing

a minimum order size, and an upper bound for a budget restriction), or they

may just define an interval inside which one is sure the optimal solution

resides.

The above problem can be solved exactly without recourse to discretiza-

tion. The optimal solution to the above problem is as follows:

x∗ =


G−1

(
R

R+h

)
if l ≤ F−1

(
R

R+h

)
≤ u

l if F−1
(

R
R+h

)
< l

u otherwise,

(C.6)

where G−1 denotes the generalized inverse distribution function of ξ̃ . For

illustrative purposes we will suppose that for the problem (C.5) we need to

to discretize ξ̃ .
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Given l 6 x 6 u, we can rewrite the objective function as follows:

hE
[(

x− ξ̃
)
+

]
+ RE

[(
ξ̃ − x

)
+

]
=hE

[
x− ξ̃ |ξ̃ 6 x

]
P
(
ξ̃ 6 x

)
+ RE

[
ξ̃ − x|ξ̃ > x

]
P
(
ξ̃ ≥ x

)
=hE

[
x− ξ̃ |ξ̃ < l

]
P
(
ξ̃ < l

)
+ hE

[
x− ξ̃ |l 6 ξ̃ 6 x

]
P
(
l 6 ξ̃ 6 x

)
+ RE

[
ξ̃ − x|ξ̃ > u

]
P
(
ξ̃ > u

)
+ RE

[
ξ̃ − x|x 6 ξ̃ 6 u

]
P
(
x 6 ξ̃ 6 u

)
=hP

(
ξ̃ < l

) (
E
[
ξ̃ |ξ̃ < l

]
− x
)
+ RP

(
ξ̃ > u

) (
x−E

[
ξ̃ |ξ̃ > u

])
+ hE

[
x− ξ̃ |l 6 ξ̃ 6 x

]
P
(
l ≤ ξ̃ 6 x

)
+ RE

[
ξ̃ − x|x 6 ξ̃ 6 u

]
P
(
x ≤ ξ̃ 6 u

)
The final lines show that in order to approximate the expected loss function

correctly for l 6 x 6 u, with respect to the distribution of ξ̃ below l, only

the probability of this event and its conditional expectation are important.

Similarly, for the part of the distribution of ξ̃ above u, only the this probability

and the conditional expectation are important.

Now, for a discrete approximation ξ̆ of the random vector ξ̃ , the condi-

tional expectation of the event {ξ̆ 6 l} and its probability can be set correctly

with just one scenario in this part of the distribution:
(
E
[
ξ̃ |ξ̃ 6 l

]
, P
(
ξ̃ 6 l

))
.

Similarly, the conditional expectation and probability of {ξ̆ > u} can be set

correctly with a single scenario:
(
E
[
ξ̃ |ξ̃ > u

]
, P
(
ξ̃ > u

))
. This suggests the

following approach to scenario generation for this problem: use the single

scenarios above for the lower and upper tails of the distribution, and dis-

cretize the body of the distribution using standard methods, normalizing

the probabilities of the these scenarios appropriately. We test this approach

where the main body of distribution is discretized via (rejection) sampling

and call this method newsvendor sampling.

We have tested newsvendor sampling for the problem (C.5) where de-

mand follows a scaled Beta distribution ξ̃ ∼ 5 Beta(0.5, 0.5), h = 0.5, R = 5.0

and we use the bounds l = 1.0 and u = 4.0. Note that this distribution was

chosen in particular because it has a lot of mass in its tails. In Figure C.1 we
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have plotted examples of approximate expected loss functions for sampling

and newsvendor sampling for this problem. Whereas the approximation for

sampling for 10 scenarios is quite bad, the approximation for newsvendor

sampling is able to match the true objective function well.

We compare the performance of newsvendor sampling against basic sam-

pling by measuring the optimality gap of solutions that each method yields.

For a range of scenario set sizes, we construct 30 scenario sets via sampling

and newsvendor sampling, solve the corresponding stochastic program and

calculate the optimality gap of the solutions with respect to the true problem.

The results are shown in box plots in Figure C.2. This clearly demonstrates

that newsvendor sampling performs much better than sampling in terms of

the quality of solution and the stability.
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Fig. C.1: Comparison of sampling and newsvendor sampling approximations for univariate

newsvendor problem

4 General case

In this section we generalize the above approach to scenario generation. In

Section 4.1 we present a decomposition of the loss function which is required

for newsvendor sampling, and in Section 4.2 we show how this is exploited,

and give a simple probabilistic analysis of our approach.
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4.1 Inactive Components

For some measurable set I ⊂ Rd denote by 1I its indicator function:

1I :Rd → {0, 1}

ξ 7→

1 if ξ ∈ I

0 otherwise.

Our approach to scenario generation in this work relies on there existing

measurable I ⊂ Rd such that our loss function can be decomposed as follows:

f (x, ξ) = 1I(ξ) 〈a (x) , b (ξ)〉+ 1Ic(ξ) g (x, ξ)

where a : X → Rm, b : Rd → Rm and g : X ×Rd → R, and 〈·, ·〉 is the

standard Euclidean inner product. Given this decomposition, the expected

loss function can now be written in following way:

E
[

f (x, ξ̃)
]
= 〈a(x), E

[
1I(ξ̃) b

(
ξ̃
)]
〉+ E

[
1Ic(ξ̃) g(x, ξ̃)

]
.

If we are trying to approximate the random vector ξ̃ with another in order to

well approximate the expected loss function, in the region I we only need to

approximate the distribution so that the expectation E
[
1I(ξ̃) b(ξ̃)

]
is correct.

The distribution of ξ̃ in I does not in any other way affect the value of the
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Fig. C.2: Comparison of performance of newsvendor sampling and sampling
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expected loss function. This motivates the term inactive component for such a

region.

Generalising the above, we now suppose our loss function has disjoint

inactive components I1, . . . Ip ⊂ Ξ, that is

f (x, ξ) = 1Ii (ξ) 〈ai (x) , bi (ξ)〉+ 1Ic
i
(ξ) gi

(
x, ξ̃
)

for i = 1, . . . , p.

Now, by fixing x and comparing the values of the above expressions for dif-

ferent ξ̃ we see that

f (x, ξ) =
p

∑
i=1

1I1(ξ) 〈ai (x) , bi (ξ)〉+ 1(
⋃p

i=1 Ii)
c(ξ) gi (x, ξ)

and so

E
[
f
(

x, ξ̃
)]

=
p

∑
i=1
〈ai (x) , E

[
1I1(ξ) bi (ξ)

]
〉+ E

[
1(
⋃p

i=1 Ii)
c(ξ) gi (x, ξ)

]
and so again, to approximate the expected loss function, in the inactive com-

ponents Ii, only the expectations E
[
1I1(ξ) bi (ξ)

]
need be correct. We refer to

the complement of the union of inactive components
(⋃p

i=1 Ii

)c
as the active

region.

As an example, for the newsvendor problem given in Section 1, the loss

function is decomposed as follows:

f (x, ξ) = 1(−∞,l)(ξ) 〈

 hx

−h

 ,

1

ξ

〉+ 1(u,∞)(ξ) 〈

 R

−Rx

 ,

ξ

1

〉
+ 1[l,u](ξ)

(
1[l,x](ξ) h(x− ξ) + 1(x,u](ξ) R(ξ − x)

)
. (C.7)

Therefore there are two inactive components for this problem, (−∞, l) and

(u, ∞), and the active region is [l, u].

Decomposition for the newsvendor problem was straight-forward because

because x and ξ̃ were scalar quantities. Decomposition is similarly easy when

the loss function can be separated into decomposable functions as follows:

f (x, ξ) = f1 (x, ξ) + f2 (x, ξ)

where fi (x, ξ) =
ni

∑
j=1

1I1j(ξ) 〈a1j(x), b1j(ξ)〉+ 1
(∪

n1
i=1 I1j)

c(ξ) g1(x, ξ). (C.8)
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Noticing that 〈a1j(x), b1j(ξ̃)〉+ 〈a2k(x), b2k(ξ̃)〉 can be rewritten as 〈

a1j(x)

a2k(x)

 ,

b1j(ξ̃)

b2k(ξ̃)

〉
we can write:

f (x, ξ) =
n2

∑
k=1

n1

∑
j=1

1I1j∩I2k (ξ) 〈

a1j(x)

a2k(x)

 ,

b1j(ξ)

b2k(ξ)

〉
+ 1(∪j,k(I1j∩I2k))

c(ξ)

( n2

∑
k=1

n1

∑
j=1

1Ic
1j∩I2k

(ξ) (g1(x, ξ) + 〈a2k(x), b2k(ξ)〉)

+
n2

∑
k=1

n1

∑
j=1

1I1j∩Ic
2k
(ξ) (〈a1k(x), b1k(ξ)〉+ g2(x, ξ))

+
n2

∑
k=1

n1

∑
j=1

1Ic
1j∩Ic

2k
(ξ) (g1(x, ξ) + g2(x, ξ))

)
Therefore, the set of inactive components for f (x, ξ) is {I1j ∩ I2k : 1 ≤ j ≤

n1, 1 ≤ k ≤ n2 }. More generally, suppose f (x, ξ) = ∑N
i=1 fi (x, ξ) where each

fi (x, ξ) is defined as in (C.8). Setting J = ∏N
k=1[1, nk], we can write:

f (x, ξ) = ∑
(j1,...,jN)∈J

1∩N
k=1 Ikjk

(ξ) 〈


a1j1(x)

...

aNjN (x)

 ,


b1j1(ξ)

...

bNjN (ξ)

〉
+ 1(⋃

(j1,...,jN )∈J
⋂N

k=1 Ikjk

)c(ξ)
(

. . .
)

where the ellipsis covers all other possible intersections of Iij and Ic
ij each

of which involves at least one instance of the function gi (x, ξ). The set of

inactive components in this case is thus

{∩N
k=1 Ikjk : (j1, . . . , jk) ∈

N

∏
k=1

[1, nk]}. (C.9)

4.2 Scenario generation

We suppose we have the following decomposition of the cost function:

f (x, ξ) =
p

∑
i=1

1Ii (ξ) 〈ai (x) , bi (ξ)〉+ 1A(ξ) g (x, ξ)
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where A =
(⋃p

i=1 Ii

)c
, and that we are trying to approximate continuous

random vector ξ̃ with some scenario set in order to approximate the expected

cost function well. Our general approach to scenario generation will be to

represent the inactive components Ii by a number of scenarios (ξik, pik)
ni
k=1

sufficient so that:
ni

∑
k=1

pikbi(ξik) = E
[
1Ii bi(ξ̃)

]
,

ni

∑
k=1

pik = P
(
ξ̃ ∈ Ii

)
.

In the case where bi (ξ) is an affine function, and Ii is convex, it is enough to

represent the region Ii with a single scenario:

ξi = E
[
ξ̃ |ξ̃ ∈ Ii

]
, pi = P

(
ξ̃ ∈ Ii

)
. (C.10)

We assume here that the expectations E
[
bi
(
ξ̃
)
|ξ̃ ∈ Ii

]
and probabilities can

be calculated accurately, for example by numerical integration or Monte Carlo

simulation. The distribution in the active region can be approximated by

some other method. The generalization of newsvendor sampling in Section 3

is to represent each inactive component by the single scenario (C.10), and

to construct scenarios in the active region through rejection sampling, again

normalizing the probabilities of the scenarios in the active region appropri-

ately. Figure C.3 shows a scenario set constructed by rejection sampling for a

simple recourse problem. See Section 5 for more details.

Probabilistic Analysis Let ξ̃ and ξ̆ be random vectors which have measure

probability measures µ̃ and µ̆ respectively. Denote by ξ̃A the random vector

ξ̃ conditioned on being in the active region A which we assume to be non-

negligible. That is, ξ̃A is the random vector with measure µ̃A which is defined

a follows:

µ̃A(B) =
1

µ̃(A)
µ̃(A ∩ B), for all measurable B ⊂ Rn.

The random vector ξ̆A is defined analogously.
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Fig. C.3: Example of scenario generation approach for a two-dimensional newsvendor problem

Now, suppose that for each i = 1, . . . , p we have

E
[
1Ii bi(ξ̃)

]
= E

[
1Ii bi(ξ̆)

]
P
(
ξ̃ ∈ Ii

)
= P

(
ξ̆ ∈ Ii

)
then P

(
ξ̃ ∈ A

)
= P

(
ξ̆ ∈ A

)
and

||Fξ̃ − Fξ̆ ||∞ =
∣∣∣Eξ̃

[
f
(

x, ξ̃
)]
−Eξ̆

[
f
(

x, ξ̆
)]∣∣∣

=
∣∣∣Eξ̃

[
1A(ξ̃) g

(
x, ξ̃
)]
−Eξ̆

[
1A(ξ̆) g

(
x, ξ̆
)]∣∣∣

=
∣∣P (ξ̃ ∈ A

)
E
[
g
(

x, ξ̃A
)]
−P

(
ξ̆ ∈ A

)
E
[
g
(

x, ξ̆A
)]∣∣

= P
(
ξ̃ ∈ A

) ∣∣ E
[
g
(

x, ξ̃A
)]
−E

[
g
(

x, ξ̆A
)]∣∣

≤ P
(
ξ̃ ∈ A

)
L̄A dW(ξ̃A, ξ̆A) (C.11)

where L̄A is a uniform Lipschitz constant for ξ 7→ g(x, ξ) for ξ ∈ A and over

x ∈ X . The final inequality follows by Theorem 2.5.

Note that the inequality in (C.11) can be expected to be significantly

tighter than that in (C.3). Firstly, for a fixed scenario set size, we can ex-

pect dW(ξ̃A, ξ̆A) to be smaller than dW(ξ̃ , ξ̆) since we will be spreading more
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scenarios over a smaller region of the distribution. Secondly, the bound has

been scaled down by P
(
ξ̃ ∈ A

)
. We can therefore expect our methodology to

be more effective the larger the combined probability of the inactive regions.

5 Simple recourse problems

We now characterize the inactive components of a class of stochastic linear

programs known as simple recourse problems. These have the following form:

minimize cTx + E
[
f
(

x, ξ̃
)]

subject to Ax ≤ b

x ≥ 0

where f (x, ξ̃) = min
y+ ,y−≥0

{qTy+ + rTy− : Tx + Iy+ − Iy− = ξ̃}

and c ∈ Rk, q, r ∈ Rd and T ∈ Rk×d. Denoting the rows of T by Ti for

i = 1, . . . , d, the loss function can be decomposed as follows:

f
(

x, ξ̃
)
=

m

∑
i=1

fi
(

x, ξ̃
)

where fi
(

x, ξ̃
)
= qi

(
ξ̃i − Tix

)
+ + ri

(
Tix− ξ̃i

)
+ .

Assuming that for each i = 1, . . . , m we have the constraints li ≤ Tix ≤ ui, the

above summands can be decomposed further, in a similar way as in the basic

newsvendor problem in (C.7):

fi (x, ξ) = qi1{ξ : ξi>ui}(ξ) (ξi − Tix) + ri1{ξ: ξi<li}(ξ) (Tix− ξi)

+ 1{ξ : li≤ξi≤ui}(ξ)
(

qi1{ξ: ξi≥Tix}(ξ) (ξi − Tix) + ri1{ξ : ξi≤Tix}(ξ) (Tix− ξi)
)

.

and so the inactive components of fi (x, ξ) with respect to the i-th component

are {ξ : ξi < li} and {ξ : ξi > ui}. By (C.9) the inactive components for
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this problem are therefore all possible intersections of these two sets over

i = 1, . . . , d.

General constraints Suppose that our feasible region is given by X = {x ∈

Rn : Ax ≤ b}. It is possible to extract simple bounds li ≤ Tix ≤ ui from this

feasible region by solving a series of simple linear programs. Specifically, the

lower bounds are given by łi = min{Tix : Ax ≤ b} and the upper bounds

are given by ui = max{Tix : Ax ≤ b}. Rather than solving each of these

problems independently, a more efficient way would be to express X as a

convex-conical combination. Classical results from polyhedral geometry [11,

Chapter 1] state that the finite intersection of half-spaces can be expressed as

follows:

{Vt + Yu : t ≥ 0, u ≥ 0, 1Tt = 1}

where V ∈ Rk×m1 , Y ∈ Rk×m2 , t ∈ Rm1 and u ∈ Rm2 . Many efficient algo-

rithms exist for calculating this representation, for example the generalized

Chernikova algorithm [12]. Using the convention that V = 0 if there are no

convex hull generators, and Y = 0 if there are no cone generators, the simple

bounds can now be calculated as follows:

li =

minj=1,...,m1 TiVj if minj=1,...,m2 TiYj ≥ 0

−∞ otherwise

ui =

maxj=1,...,m1 TiVj if maxj=1,...,m2 TiYj ≤ 0

+∞ otherwise

where Vi ∈ Rk for i = 1, . . . , m1 and Yi ∈ Rk for i = 1, . . . , m2 denote the

columns of V and Y respectively.

The extraction of simple box constraints from polyhedral constraints is

illustrated in Figure C.4.

Probabilities of inactive regions In Section 4.2 we noted that the perfor-

mance of our methodology improves as the probability of the inactive com-
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Fig. C.4: The extraction of simple constraints from general polyhedral constraints.

ponents increases. In this section we calculate the probability of inactive

components for some basic distributions.

Suppose first that ξ̃ is uniformly distributed on [0, 1]d and that 0 < l <

u < 1. If the inactive components for the problem are all possible intersec-

tions of the sets {ξ ∈ Rd : ξi < l} and {ξ ∈ Rd : ξi > u} over i = 1, . . . , d then

the total probability of the inactive components is as follows:

d

∑
j=0

(
d
j

)
P
(
ξ̃1 < l

)j
P
(
ξ̃1 > u

)d−j
=

d

∑
j=0

(
d
j

)
l j(1− u)d−j

= (l + (1− u))d.

Since we have l + (1− u) < 1 this probability will rapidly diminish to zero

as the dimension of the random vector increases.

However, in the case of strong correlations this probability decreases much

more slowly. In Figure C.5 we have plotted for the multivariate Normal dis-

tribution the probabilities of the inactive component {ξ ∈ Rd : ξ > Φ−1(β)}

where Φ−1 denotes the inverse distribution function of a standard Normal

distribution and the inequality applies element-wise. These calculations are
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done for a particular type of correlation matrix Λ (ρ) ∈ Rm×m where Λ(ρ)ij =

ρ for i 6= j and ρ > 0.
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Fig. C.5: Probability of an inactive component for the multivariate Normal distribution

The figure shows that the stronger the correlations, the higher the prob-

ability of the inactive component. The probability for moderate correlations

(ρ ≥ 0.5) is much higher than was the case for the uniform distributions. For

example for d = 5, when ξ̃ is uniformly distribution on [0, 1]d and u = 0.7 we

have P
(
ξ̃ > u

)
= (0.3)5 ≈ 0.0025, whereas when ξ̃ ∼ N (0, Λ(0.5)) and we

use the corresponding upper bound u = Φ−1(0.7) we have P
(
ξ̃ > u

)
≈ 0.05.

Note that for Normal distributions, by symmetry the inactive component

{ξ ∈ Rd : ξ < −Φ−1(β)} will have the same probability as {ξ ∈ Rd : ξ >

Φ−1(β)}. Note also that strong negative correlations, or a mixture of strong

positive and negative correlations will yield other inactive components with

high probability.

6 Numerical Test

In this section, we compare the performance of our newsvendor sampling

method against basic sampling. In particular, for a fixed computational bud-
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6. Numerical Test

get we will compare the performance of sampling and newsvendor sampling

through estimation of the optimality gap using the MRP outlined in Sec-

tion 2.2.

For this experiment we use a multi-product newsvendor problem with

budget constraint:

maximize
x

d

∑
i=1

(
hiE

[(
xi − ξ̃i

)
+

]
+ RiE

[(
ξ̃i − x

)
+

])
subject to

d

∑
i=1

xi ≤ τ

l ≤x ≤ u.

The experiment is carried out for a 5-dimensional problem. The parameters

in this test have been constructed in such a way that the problem is suffi-

ciently unstable that sampling doesn’t perform well. This is done by select-

ing rejection penalties Ri that are a lot bigger than the holding cost hi, which

ensures the solution is in the upper tail of the distribution (see the solution

of the univariate newsvendor problem in (C.6)). In this way, the solution to

the sample average approximation will be unstable as only a small number

of scenarios will fall in this region.

The distribution and constraints of the problem are chosen so that the

total probability of the inactive components is large. The covariance matrix

has been constructed to have high strong positive correlations and we have

used relatively tight simple bounds l ≤ x ≤ u. None of the simple bounds

l ≤ x ≤ u are binding, that is, their presence does not change the set of op-

timal solutions to the problem. In this way, they can be viewed as “ghost”

constraints that are only included to boost the performance of the methodol-

ogy. The use of artificial constraints to boost the performance of a scenario

generation methodology was prevalent in the paper [5]. The full set of prob-

lem data is given in Appendix A.

We compare the quality of solutions yielded by sampling and newsvendor

sampling for scenario sets consisting of 100 scenarios. For the estimation of
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the optimality gap we use five replications of scenario sets of size 50, and

estimate the error using α = 0.95. We repeat this across five trials and the

results are shown in Table C.1.

Sampling Newsvendor Sampling

Gap (Ḡn) Error (εng ,α) Gap (Ḡn) Error (εng ,α)

1.002 0.491 0.358 0.219

2.123 1.352 0.325 0.196

0.745 0.335 0.517 0.301

0.937 0.641 0.331 0.295

1.155 0.439 0.551 0.210

Table C.1: Estimated optimality gaps from sampling and newsvendor sampling. Inactive prob-

ability: 0.76

The results show that newsvendor sampling consistently produces solu-

tions whose optimality gaps are much smaller than that of basic sampling.

7 Discussion and Future Work

In this paper, we have proposed a methodology of scenario generation which

exploits the partition of the support of a random vector into active and in-

active components. The inactive components are represented by a single (or

very few) scenarios in such a way that the expectation of the loss function

restricted to these components is exact. The rest of the scenarios are spread

over the active region. This methodology was demonstrated in particular on

simple recourse problems whose separability makes the partition into active

and inactive components straight-forward. However, many methods already

exist for solving simple recourse problems which limits the utility of our ap-

proach. The most important avenue of future research is therefore to find

decompositions of loss functions for more difficult problems.

A simple probabilistic analysis of our method suggested that it would
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A. Numerical Test Problem Data

yield scenario sets whose approximation error would be much lower than

scenario generation methods which spread scenarios evenly across the sup-

port of the distribution. In particular, the effectiveness of the methodology

improves as the probability of the inactive components increases. In the case

of the simple recourse problem, the inactive components grew larger as our

problem becomes more constrained. It is reasonable to expect this property

to hold for other problems as well: the fewer feasible decisions available,

the less the loss function varies, and so the fewer scenarios required to accu-

rately calculate the expected loss. By adding artificial constraints (which do

affect the set of optimal solutions) one could improve the performance of our

methodology. Further work is required to determine how one can reliably

construct such constraints.

We suggested a concrete scenario generation method for our methodol-

ogy which we called newsvendor sampling. In this method the scenarios

in the active region are constructed via rejection sampling. Another possi-

bility would be to use this methodology as a scenario reduction technique,

aggregating all scenarios in each inactive component into a single point.

A Numerical Test Problem Data

For the numerical test in Section 6 we use a 5-dimensional multi-product

newsvendor problem. The exact parameters are detailed below.

Distribution The random vector ξ̃ is modeled by a multivariate t distribu-

tion.

ξ̃ ∼ t3.0 (µ, Σ)
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where

µ = (1.0, 1.0, 1.0, 1.0, 1.0), Σ =



0.51 1.18 0.56 0.57 0.88

1.18 2.99 1.43 1.22 2.31

0.56 1.43 1.36 0.70 1.12

0.57 1.22 0.70 0.93 0.92

0.88 2.31 1.12 0.92 1.82


.

Problem data We use constant values for the holding and rejection costs.

h = (2.5, 2.5, 2.5, 2.5, 2.5), R = (17.5, 17.5, 17.5, 17.5, 17.5).

We choose lower and upper bounds for the decision based on the quantiles

of the marginal distributions:

li = G−1
ξ̃i

(0.8), ui = G−1
ξ̃i

(0.95),

where G−1
ξ̃i

denotes the distribution function of the marginal random variable

ξ̃i, which gives

l = [2.7, 3.69, 3.14, 2.94, 3.32], u = (3.68, 6.07, 4.74, 4.27, 5.18).

Finally, the budget is set as follows:

τ =
1
2

5

∑
i
(li + ui) = 19.86.
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Thesis Conclusions

This thesis has been concerned with the development of problem-driven sce-

nario generation for stochastic programs, that is, methods of scenario gen-

eration which use the underlying structure of a problem to provide a more

parsimonious, and thus more tractable representation of uncertain problem

parameters. As was noted in the thesis summary in the introduction, such

approaches in the literature have been rare and somewhat heuristic in na-

ture. The aim of this research was therefore to develop scenario generation

methods which were mathematically adapted to a specific problem.

Two approaches to problem-driven scenario generation were proposed in

this thesis. The first of these approaches was adapted to stochastic programs

which use tail-risk measures, that is risk measures which depend only on

the upper tail of a distribution function. This was the subject of the first two

papers of this thesis. The second approach, and the subject of the third and

final paper of this thesis, exploited a special type of decomposition of the loss

function, was demonstrated in particular for simple recourse problems.

We now present a condensed summary of the achievements and limita-

tions of each of the papers, and finally discuss more broadly the contribution

of this thesis and possible extensions.

Paper A Paper A of this thesis introduced the risk region methodology for

stochastic programs with a tail risk measure. The risk region of such a prob-

lem was defined, loosely, to be the set of all possible outcomes of the un-
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derlying random vector which lead to a loss in the upper tail of the loss

distribution for some feasible decision. We showed that under mild condi-

tions this region completely determines the value of a tail risk measure. In

particular, all the mass in the complement of this region, the non-risk region,

could be aggregated into a single point without affecting the value of the tail

risk measure.

This observation motivated the proposal of two scenario generation meth-

ods: aggregation sampling and aggregation reduction. In the former algo-

rithm, one samples scenarios scenarios sequentially, keeping any which lie

in the risk region and aggregating any which lie in the non-risk region until

one has sampled a specified number of scenarios in the risk region. In the

latter algorithm, one samples a specified number of scenarios and then ag-

gregates all scenarios in the non-risk region. We demonstrated that both of

these methods were equivalent to sampling from the random vector where

all the mass in the non-risk region has been concentrated into its conditional

expectation.

The effectiveness of both of these methods were shown to improve as the

probability of the non-risk region increases. As a consequence, our method

performs better for higher levels of tail risk, and for problems which are more

constrained, as both of these changes increase the size of the non-risk region.

On the other hand, we observed that as the problem dimension increases, the

probability of non-risk region tends to zero, rendering our method useless in

high dimensions.

Finally, we gave a convenient characterization of the risk region for port-

folio selection problems when the asset returns have elliptical distributions,

and presented a simple numerical test which demonstrated the improvement

in solution quality and stability of aggregation sampling over basic sampling.

The main limitation of this methodology is the convenient of characteriza-

tion of the risk region. This is difficult as it depends on the distribution of the

random vector, the loss function and the problem constraints. For more dif-
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ficult problems we suspect that an exact represent of the risk region may not

be possible, However, we may be able to find conservative risk regions, that

is, regions which contain the true risk region. For the purposes of the above

algorithms, it is valid to use a conservative risk region rather than the true

risk region. The characterization of risk regions and conservative risk regions

for problems other than portfolio selection is the most important direction of

future research of this work.

Another limitation of this methodology is that aggregating all scenarios

in the non-risk region does not in general preserve the expectation of the loss

function. If expectation is used in the stochastic program then one might

represent the non-risk region with a few points rather than a single one. For

instance, one could adapt the above algorithms to cluster into a specified

number of points, any scenarios sampled from the non-risk region. The ideal

proportion of points used to represent the non-risk region, and how points

in the non-risk region are clustered are other important directions for future

research.

Paper B Paper B of this thesis concerns the application of the risk region

approach to more realistic portfolio selection problems. The paper first ad-

dressed some technical issues which concern testing whether or not a point

lies in the risk region. Next, we studied the empirical behavior of the prob-

ability of the non-risk region. Here, it was found that this probability in-

creases as the tails of the distributions become heavier and more positively

correlated. This is good news for the application of our methodology to real

portfolio selection problems, as historical stock return data exhibit both of

these characteristics.

The scenario generation methods were then tested for a wide range of

distributions constructed from real data. We also tested here the use of ap-

proximate risk regions for non-elliptical distributions. There is a danger in

using an approximate risk region: if the approximate risk region is too small,
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the value of the tail risk measure may be distorted. Our results indicated that

our methodology performs consistently well, even when using the approxi-

mate risk regions.

Finally, we demonstrated the use of ghost constraints for a difficult case

study problem. As noted above, the performance of our methodology im-

proves as the problem becomes more constrained as this increases the size

of the non-risk region. A ghost constraint is an artificial constraint added

to the problem simply to improve the performance of our methodology. A

ghost constraint should be as tight as possible without removing any optimal

solutions. However, this is necessarily difficult as the construction of such a

constraint requires some knowledge of the optimal solution to the problem

we want to solve. In our case study we resorted to the following heuristic: we

constrain our feasible decision to some neighborhood of an optimal solution

to a sampled problem. Out-of-sample testing was then used to verify that

judicious usage of these constraints does indeed improve the solution.

There are several major directions in which this work can be extended.

Firstly, it would be useful to prove results concerning the behavior of the

probability of the non-risk region with respect to how heavy are the tails

of the distribution, and with respect to its correlation structure. Next, to

allow us to apply this methodology to more distributions, we need a better

way of constructing an approximate risk region, and of diagnosing potential

problems with these. Finally, the development of a systematic method of

constructing ghost constraints would allow us to extract better solutions from

a problem with less trial and error.

Paper C The final paper of this thesis proposed a different approach to sce-

nario generation which exploits a special decomposition of the loss function.

This decomposition induces a partition of the support of the problem random

vector into inactive components and an active region. Each of the inactive

components of the problem can be typically represented by a single scenario.
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We then proposed the following simple approach to scenario generation: the

scenarios for the inactive components are calculated by numerical integration

or simulation, and a specified number of scenarios to represent active region

are constructed via rejection sampling. We called this approach newsvendor

sampling, as the newsvendor problem served as our primary example in the

paper.

Like the risk region approach, the performance of newsvendor sampling

improves as the probability of the inactive components increases. Since the

inactive regions grow as the problem becomes more constrained, this ap-

proach is again constraint-driven. Although not studied in the paper, this

means that one could again add ghost constraints to a problem to improve

the performance of our methodology.

Newsvendor sampling also has the same dimensionality problems as with

the risk region approach: the higher the dimension of the random vector,

the smaller the probability of the inactive components. The severity of this

effect again depends on the underlying distribution of the problem random

vector. In the presence of strong correlations in particular mitigates against

this effect.

Unlike the risk region approach, the form of the inactive components does

not depend on the distribution1, which vastly simplifies the test of whether

or not a point belongs to an inactive component. In the risk region approach,

one has to solve a small quadratic program for this test, whereas for the

newsvendor approach, one only has to verify whether some simple inequali-

ties hold.

The approach of this paper was only described in detail and tested for

simple recourse problems. The next step in this thread of research would

be to study how the loss functions of other problems can be decomposed in

order to use this approach. As with the risk region approach, this method

could be made more useful if we had a more systematic way of constructing

1The probability of the inactive components do depend on the distribution however.
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ghost constraints.

Final Remarks The methodologies developed in this thesis work in follow-

ing way: they partition the support of the random vector associated to a

stochastic program into an active region which should be represented by

many points, and inactive region which can be represented by a single or

very few points. Moreover, the inactive regions grew as the problems be-

came more constrained. In effect, the fewer decisions one can make, the

more redundancy in the distribution, and so the more effective our methods.

This observation means that if artificial constraints are added to the problem,

their performance improves. The most important thread of future research

is therefore the development of a systematic way of constructing such ghost

constraints to a stochastic program.

The explicit scenario generation methods developed were based on sam-

pling. Sampling is flexible, easy to implement and has desirable asymptotic

properties. However, the essence of the methodologies was the partitioning

of the support into active and inactive regions; the actual method of scenario

construction in these regions could be more refined. For example, as we men-

tioned in Paper A, scenarios in the non-risk region could constructed through

a clustering algorithm. However, one has to be careful in how the scenarios

are constructed: the active regions constructed in this thesis were generally

non-convex, and so scenarios constructed via, for example, the k-means clus-

tering method, would not necessarily be in the active region.

For both methodologies of this thesis, their exact detailed application (in

particular, the convenient characterizations of the active and inactive regions)

were only explicitly given for restricted simple families of problems. As men-

tioned above, the next obvious step is to extend the presented analyses to

more problem classes. However, exact analyses may not be possible for more

complicated problems.

For problems where only an approximate analysis of the active regions is
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available, an advanced sampling method such as stratified sampling or im-

portance sampling may be more appropriate. These flexible sampling tech-

niques allow one to prioritize the generation of samples in certain regions of

a distribution, and the usual asymptotic theory can still be applied to them.

This means that misspecifications of active regions would not (asymptoti-

cally) be a problem, unlike, for example, with the misspecification of a risk

region in the aggregation sampling algorithm. However, given that the some-

what arbitrary shape of the active region, the development of such schemes

is likely to be a non-trivial task.
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