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Abstract

We consider matrix-valued stochastic processes known as isotropic Brownian motions, and show
that these can be solved exactly over complex fields. While these processes appear in a variety
of questions in mathematical physics, our main motivation is their relation to a May–Wigner-like
stability analysis, for which we obtain a stability phase diagram. The exact results establish the full
joint probability distribution of the finite-time Lyapunov exponents, and may be used as a starting
point for a more detailed analysis of the stability-instability phase transition. Our derivations rest on
an explicit formulation of a Fokker–Planck equation for the Lyapunov exponents. This formulation
happens to coincide with an exactly solvable class of models of the Calgero–Sutherland type, originally
encountered for a model of phase-coherent transport. The exact solution over complex fields describes
a determinantal point process of biorthogonal type similar to recent results for products of random
matrices, and is also closely related to Hermitian matrix models with an external source.

1 Introduction

A close link between stochastic calculus and random matrix theory exists since the seminal work of
Dyson [1], who introduced a stochastic process on matrices which greatly simplifies the task to implement
various canonical ensembles. Since its introduction, this method, now known as Dyson Brownian motion,
has found a wide variety of applications in both physics and mathematics, see e.g. [2]. Two important
examples of matrix-valued stochastic models in physics concern the passive advection in fully developed
turbulence [3, 4, 5, 6, 7, 8, 9], where one is interested in the stability of the flow, and the phase-coherent
transport through disordered wires [10, 11, 12, 13, 14, 15, 16, 17], where one encounters Anderson
localization. While Dyson’s model has additive noise, these models have multiplicative noise, which gives
rise to scaling regimes with statistics that differ from the usual Wigner–Dyson type. Not surprisingly,
there are numerous close connections between these two classes of models with multiplicative noise
[18, 19].

In this work, we identify a similarly close relation starting from a paradigmatic model, sometimes
referred to as isotropic Brownian motions [5], isotropic stochastic flows [6], or matrix-valued multiplicative
diffusions [20]. For motivation, we consider this model in the context of a May–Wigner-like stability
analysis of large complex systems, as they occur in a wide variety of settings in physics, biology and
beyond. We show that the finite-time Lyapunov exponents share the same statistics as those appearing
in the transport through a quantum wire with chiral symmetry. This connection is surprising inasmuch
as the exponents for the quantum wire are constrained by a condition related to flux conservation, which
does not have a counterpart for the isotropic Brownian motion. The relation between the models allows
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us to find an exact solution for motions over complex fields, owing to the fact that the statistics in
the corresponding transport problem is determined by a Hamiltonian of the Calgero-Sutherland type.
Furthermore, we identify connections to products of random matrices, including Newman’s square law [21]
and biorthogonal ensembles [22, 23], as well as Hermitian matrix models with an external source [24,
25, 26]. These findings help us to establish a simple stability phase diagram, expressed in terms of an
effective parameter that incorporates the rotational and gradient components of the flow, and defines a
convenient starting point for more detailed investigations of the phase transition.

First, let us recall some basics about May–Wigner-like stability analysis. We consider a generic
autonomous dynamical system given by

dyi(t)

dt
= fi(y1(t), . . . , yN (t)), i = 1, . . . , N, (1)

where {fi} is some family of smooth functions and the dimension N is assumed to be large. Introducing
a small perturbation y(t) 7→ y(t) + εỹ(t) leads to the linearised problem

dỹi(t)

dt
=

N∑
j=1

ỹj(t)
∂fi
∂yj

+O(ε). (2)

If the expansion is about a fixed point the gradient matrix [∂fi/∂yj ] is independent of time. It is then
canonical to write ∂fi/∂yj = −µ δij +σJij , where Jij incorporates the coupling between ỹi and ỹj , while
σ sets an overall coupling strength and µ sets a drift which for positive values may be interpreted as the
relaxation rate at σ = 0.

For sufficiently complex systems it is reasonable to assume (at least as a toy model) that J = [Jij ] is
a “maximally random” matrix, up to symmetries stemming from physical considerations. Such models
were introduced in a seminal paper by May [27]. The original paper was mainly focussing on the stability
of large ecosystems, where it challenged the (at the time) common folklore that the stability of complex
systems increases with the size of the system. Similar ideas as those introduced in [27] have since been
applied to many other systems, including e.g. machine learning [28], finance [29], and neural networks [30].
There is also a close connection to what is known as random landscapes [31, 32, 33].

Rather than an expansion around a fixed point, we imagine to evaluate the gradient matrix along a
trajectory, see e.g. [19]. In this case, the gradient matrix depends on the position on the trajectory and
therefore indirectly on time. With May’s model in mind, we write

dỹi(t)

dt
=

N∑
j=1

(−µ δij + σ Jij(t))ỹj(t) (3)

with some time-dependent coupling matrix Jij(t), to be further specified below. This is such that we have
an attractive trajectory with relaxation rate µ when the coupling strength vanishes, i.e. when σ = 0.
Our main assumption is that the time-dependent coupling Jij(t) can be treated as noise, which we let
be white in time. Such an approximation is valid in the limit of strong chaoticity, where the correlation
time is short.

We therefore consider the system (3) driven by Gaussian white noise, with the only constraint that
the system must be isotropic. Originally, this type of process arose in models for passive advection in
fully developed turbulence (here isotropy appears as an axiom stemming from K41 theory), see e.g. [4, 9].
The insight that temporal correlations may be neglected for turbulent velocity fields in the limit of high
Reynolds numbers dates back to Kraichnan [34]. This type of isotropic models has also been considered
by the mathematical community, see e.g. [5, 21, 6, 35]. Later methods originating from random matrix
theory and quantum field theory have been applied as well [20, 8].

We recall that the white-noise limit of processes like (3) depends on the regularisation (the one-
dimensional case, which is a geometric Brownian motion, provides a well-known example). Thus one
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needs to choose an interpretation, or alternatively impose additional constraints (see e.g. the appendix
in [9]). For consistency with the existing literature [5, 21] we choose the Stratonovich interpretation as
our starting point,

dỹi(t) = −µ ỹi(t)dt+ σ

N∑
j=1

ỹj(t) ◦ dBij(t), i = 1, . . . , N, (4)

where B(t) = [Bij(t)] is a matrix-valued Brownian motion assumed to be statistically invariant under
unitary similarity transformations. This is the type of process that we refer to as isotropic Brownian
motion.

For the practical implementation, on the other hand, it will be convenient to work in Itô convention,
in which the process (4) becomes

dỹi(t) = −µ ỹi(t)dt+ σ

N∑
j=1

ỹj(t)dBij(t) +
1

2
σ2

N∑
j,k=1

ỹj(t)E[dBik(t)dBkj(t)]. (5)

We recall that formally E[dBik(t)dBkj(t)] ∝ dt. We note that the difference between Stratonovich and
another interpretation (such as Itô) is merely an additional spurious drift term which, in principle, could
be absorbed into the constant µ.

Before we go on to the main results of this paper, let us recall a few basic properties of isotropic
Brownian motions. Given an initial condition y(0), the solution to the system (5) may in matrix notation
be written as

y(t) = Πµ(t)y(0), (6)

where Πµ(t) is a random evolution matrix, which itself satisfies an Itô equation similar to (5),

dΠµ(t) =
(
− µdt+ σdB(t) + 1

2σ
2E[dB(t)dB(t)]

)
Πµ(t), (7)

with initial condition Πµ(0) = 1. Moreover, with Π(t, s) denoting the evolution from time s to time t, we
have the almost-sure property Πµ(t, s)Πµ(s, 0) = Πµ(t, 0) for all t ≥ s ≥ 0. Per definition, the solution is
given as an ordered product,

Πµ(t) = lim
n→∞

:
n∏
k=1

(
1 + (µ+ 1

2σ
2E[(X(k))2])δt+ σX(k)δt1/2

)
:, (8)

where δt := t/n is the time regularisation and {X(k)} is a family of independent random matrices
given as the Brownian increments, X(k)δt1/2 = B(kδt) − B((k − 1)δt). We could, of course, also write
the random evolution matrix as a time-ordered exponential, but we will not need that formulation
here. It follows that finding the random evolution matrix (5) boils down to evaluating a product of
independent random matrices; a topic which in the discrete setting has received considerable recent
attention [36, 37, 38, 39, 40, 41, 42].

In this paper, we consider evolutions over real as well as complex vector fields; thus, the random
matrix X(= X(k)) may be either real or complex. Adopting notation from random matrix theory, the
real and complex case will be denoted by an index β = 1 or β = 2, respectively, whenever the distinction
is important.

Isotropy implies that U−1XU
d
= X for all rotations U , i.e. U ∈ O(N) for β = 1 and U ∈ U(N)

for β = 2. Up to a shift proportional to the identity, the most general matrix X consistent with the
isotropy constraint and Gaussianity is a matrix from the Gaussian elliptic ensemble (see appendix A),
i.e. a random matrix distributed with respect to the density [43]

P βτ (X) =
1

Z
exp

[
− β

2(1− τ2)
Tr
(
XX† − τ

2
(X2 +X† 2)

)]
, (9)
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with Z denoting the normalisation constant and τ ∈ (−1, 1) denoting an interpolation parameter between
Hermitian and skew-Hermitian matrices. In general, the matrix X is non-Hermitian (Ginibre for τ = 0)
and the random evolution matrix Πµ=0(t) is therefore a diffusion on the general linear group, GLN . The
special case is τ = −1, where X is skew-Hermitian and thus Πµ=0(t) belongs to the unitary subgroup.
Physically τ measures the rotational versus gradient nature of the flow, with τ = 1 representing a pure
gradient flow.

Perhaps the simplest question we may ask about isotropic Brownian motions regards the large-time
asymptotic of the strain matrix, S(t) := Π†µ(t)Πµ(t). It is a well-known consequence of Oseledec’s
multiplicative ergodic theorem [44] that the matrix (logS(t))/2t stabilises for almost all realisations as t
tends to infinity. The eigenvalues of this limiting matrix are the so-called Lyapunov exponents and are
used as a measure of stability. A system (4) is said to describe an attractive trajectory if

‖ỹ(t)‖ → 0 for t→∞, (10)

which holds true as long as the largest Lyapunov exponent is less than zero. Thus, the value of the largest
Lyapunov exponent determines stability, while its fluctuations are essential for the stability-instability
transition. We note that there exist a few general theorems claiming Gaussian fluctuations of the largest
Lyapunov exponent, see e.g. [45]. However, none of these are directly applicable in the limit of high
dimensionality, N →∞. The heuristic understanding of this breakdown is that the theorems implicitly
require a gap between the largest and second largest Lyapunov exponent, while the Lyapunov spectrum
often becomes continuous when N →∞.

For isotropic Brownian motions over real vector fields, explicit formulae for the Lyapunov spectrum
were obtained 30 years ago [5, 6, 21]. However, these exponents do not capture the fluctuations in the
dynamics at finite times. A more challenging problem is to study the statistical properties of the spectrum
of the strain matrix as a function of time, and thereby gain information about the finite-time Lyapunov
exponents. Such results can be used to further study the double scaling limit where both the time t and
the dimension N tend to infinity. This adds interest since non-trivial scaling regimes are expected.

The remainder of this paper is organised as follows. In section 2 we show how to pass from the
matrix-valued Itô equation (5) to the Fokker–Planck equation for the finite-time Lyapunov exponents,
including the case of complex fields. In section 3 we show that the Fokker–Planck equation coincides with
the one encountered in the phase-coherent transport problem, which is exactly solvable in the complex
case, and provide an explicit, compact expression for the joint probability density function. Based on this
expression, we also explain the connection to biorthogonal ensembles and Hamiltonian models with an
external source. The final section is devoted to the discussion in terms of May–Wigner stability analysis,
and a description of further open problems and possible applications. In the appendix we recall the
relation between isotropy and the Gaussian elliptic ensemble.

2 Fokker–Planck equation for finite-time Lyapunov exponents

Our goal in this section is to find the Fokker–Planck equation for the finite-time Lyapunov exponents.
To do this, we need to look at the time evolution of the eigenvalues of the strain matrix S(t). The easiest
way to proceed is to use the product formulation (8).

Let us denote the eigenvalues of the strain matrix by s1(t), . . . , sN (t). Since the strain matrix is
Hermitian, it follows from ordinary perturbation theory that

δsi(t) := si(t+ δt)− s(t) = δSii +
∑
j 6=i

δSijδSji
si(t)− sj(t)

+ higher orders (11)

where, according to (8), we have

δSij = σ δt1/2(sjX
∗
ji + siXij) + σ2δt

(
2µ siδij +

∑
k

(
skX

∗
kiXkj − siE[XikXkj ]

))
+O(δt3/2). (12)
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If we consider evolutions over real vector fields we have X∗ = X, but we keep the notation general to
also account for evolutions over complex fields.

In order to find the Fokker–Planck equation for the eigenvalues of the strain matrix, we use the
product formulation (8) and write down a recursive formula for the matrix density of the random evolution
matrix Πµ(nδt). Upon expansion in δt and taking the limit δt → 0 (n → ∞), this recursion produces a
differential equation for the matrix density. Finally, the Fokker–Planck equation is obtained by taking
the expectation value of the empirical density with respect to the matrix density. This gives

∂

∂t
ρt(s1, . . . , sN ) = lim

δt→0

N∑
i=1

∂

∂si

(
− E

[δsi
δt

]
+

1

2

N∑
j=1

∂

∂sj
E
[δsiδsj

δt

])
ρt(s1, . . . , sN ), (13)

where ρt(s1, . . . , sN ) is the joint probability density function for the eigenvalues at time t. The next step
is to note that (11) and (12) imply

lim
δt→0

E
[δsi
δt

]
=
∑
j

sjE[X∗jiXji] +
∑
j 6=i

s2iE[X∗ijXij ] + s2jE[X∗jiXji] + 2sisj ReE[XijXji]

si − sj
(14)

and

lim
δt→0

E
[δsiδsj

δt

]
= 2sisj(ReE[X∗iiXjj ] + Re[XiiXjj ]), (15)

which by insertion in (13), at least in principle, provides an explicit expression for the Fokker–Planck
equation for the eigenvalues of our strain matrix.

With the random matrix X distributed according to the density (9), we have covariances

β = 1 : E[XijXk`] = δikδj` + τδi`δjk (with X∗ij = Xij), (16)

β = 2 : E[X∗ijXk`] = δikδj`, E[XijXk`] = E[X∗ijX
∗
k`] = τδi`δjk. (17)

Introducing these covariances into the above-given formulae, we obtain the Fokker–Planck equation

∂

∂t
ρβt (s1, . . . , sN ) =

4κ

β

N∑
i=1

∂

∂si

(
(2− β +N)β

2
si − βs2i

∑
j 6=i

1

si − sj
+ s2i

∂

∂si

)
ρβt (s1, . . . , sN )

+ 2µ

N∑
i=1

∂

∂si
siρ

β
t (s1, . . . , sN ). (18)

Here, the first line on the right-hand side represents a diffusive term with diffusion constant given as
κ = (1 + τ)σ2/2, while the second line represents a drift term.

The final step is a change of variables from the eigenvalues of the strain matrix to the exponents {λk :=
1
2 log sk}. After some standard manipulations, we find the Fokker–Planck equation for the exponents,

∂

∂t
ρ̃βt (λ1, . . . , λN ) =

κ

β

N∑
i=1

∂

∂λi

(
∂

∂λi
+ β

∂Ω(λ)

∂λi

)
ρ̃βt (λ1, . . . , λN ) + µ

N∑
i=1

∂

∂λi
ρ̃βt (λ1, . . . , λN ) (19)

with repulsion term and initial condition given by

exp[−Ω(λ)] =
∏

1≤i<j≤N

sinh(λj − λi) and lim
t→0

ρ̃βt (λ1, . . . , λN ) =

n∏
i=1

δ(λi), (20)

respectively. Here, the latter condition originates from the fact that the random evolution matrix is
required to be equal to unity at t = 0.
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We could alternatively write (19) as

∂ρ̃βt (λ1, . . . , λN )

∂t
=

N∑
i=1

(κ
β

∂2ρ̃βt (λ1, . . . , λN )

∂λ2i
+µ

∂ρ̃βt (λ1, . . . , λN )

∂λi

)
−κ

N∑
i,j=1
i 6=j

∂

∂λi

(
ρ̃βt (λ1, . . . , λN )

tanh(λi − λj)

)
, (21)

which more closely resembles the notation chosen by Dyson [1].
The Fokker–Planck equation (19) is our main result in this section. In the next section, we will show

that this equation is exactly solvable for β = 2. However, before this a few remarks are in order.
We first note that the diffusive term in (19) vanishes as τ → −1; recall that κ = (1 + τ)σ2/2. This

absence of diffusion occurs since the random evolution matrix Πµ=0(t) is unitary when τ = −1. It follows
that the eigenvalues of the strain matrix S(t) = Π†µ(t)Πµ(t) are all identical and equal to −µt.

As a second remark, we recall that the Lyapunov exponents µ̃k = limt→∞ λk(t)/t. In the real case
(β = 1) and µ = 0 these limiting values were originally found by Le Jan [5] using methods from Itô
calculus (see also [6]). An alternative approach was introduced by Newman [21] shortly thereafter.
Newman’s method builds on [46] and uses isotropy to rewrite the determinant of a product of random
matrices as a sum, which can then be evaluated using the law of large numbers. These papers focus solely
on real evolutions, but the approach is easily extended to include complex matrices (see [38, 40, 42, 23]
for a short discussion of such an extension in a slightly different context). In our case, the Lyapunov
exponents µ̃k are found to be

µ̃k = κ(2k − 1−N)− µ, k = 1, . . . , N. (22)

They are independent of β and equidistantly spaced over the interval (−κN − µ, κN − µ). Evidently,
if we take σ2 = 1/N and thus κ = (1 + τ)/2N , we have convergence of the global spectral density to
a “square law” on an interval of length 1 + τ , centred at −µ. This applies to the iterated limit where
t→∞ followed by N →∞, for which the square law was originally pointed out by Newman [21]. More
recent results for products of random matrices lead us to believe that this law is independent of the order
of the limits [47, 40, 23].

The convergence of the global spectrum allows us to establish a stability phase diagram in the large
N and t limit. With the aforementioned scaling, the system is stable if (1 + τ)/2 < µ and unstable
if (1 + τ)/2 > µ. The Lyapunov exponents themselves can however not be used to describe the finer
structure of the phase transition; this requires information about their fluctuations. The Fokker–Planck
equation (19) is a good starting point for a study of such fluctuations.

Heuristically, the emergence of the Lyapunov exponents (22) from the Fokker–Planck equation (19)
may be understood by realising that for finite N , the eigenvalues separate exponentially fast compared
with the eigenvalue repulsion. Thus, with the ordering λ1 � · · · � λN , in the long-time limit

∂Ω(λ)

∂λk
≈ 2k −N − 1. (23)

With this approximation the Fokker–Planck equation (19) turns into N uncoupled heat equations. The
exponents are seen to be independently Gaussian distributed, and in the long-time limit agree with (22).

The benefit of the Fokker–Planck equation (19) is that it provides information about the statistical
properties of the exponents at all times t. This is in contrast to Newman’s method and its extensions,
which only apply when κt� N .

3 Solving the Fokker–Planck equation over complex fields

In this section, we show that the Fokker–Planck equation (19) is exactly solvable in the complex case, i.e.
for β = 2. We exploit that a specific version of the Fokker–Planck equation appears for a matrix model
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describing the phase-coherent transport properties of quasi-one-dimensional disordered wires with chiral
symmetry [16]. In this setting, one investigates the so-called transfer matrix M , which is a 2N × 2N
dimensional matrix that obeys the symplectic constraint M†σ1M = σ1, while chirality imposes σ3Mσ3 =
M (both conditions are expressed in terms of Pauli matrices σi). Due to the symplectic structure, the
eigenvalues exp(2xn) of M†M occur in reciprocal pairs, (xn,−xn). Chirality enforces a block-diagonal
structure M = diag (A, (A†)−1), so that the exponents xn arise from AA† while the exponents −xn arise
from (AA†)−1. The multiplicative law of transfer matrices with Gaussian statistics [10, 15] then results
in the Fokker–Planck equation (19) with τ = µ = 0, and λn = xn identified with one of the two sets
of the eigenvalues (in this context, the Fokker–Planck equation is known as the DMPK equation). In
our case the parameters τ and µ are finite, but this can be accounted for by rescaling and shifting. An
important difference between the physics underlying the two models is that the transport is dominated by
the transport exponent xn nearest zero, while the stability of the flow depends on the largest Lyapunov
exponent λn.

Here, we obtain the exact solution following [16], and then bring the result into a compact form which
more directly reveals the long time asymptotics of the Lyapunov exponents.

We first note that the drift µ only introduces an overall shift of the spectrum. This allows us to
simplify notation by setting µ = 0 in the calculations, and then reintroduce the shift in the final result.
After this simplification, the key idea to solve (19) is to parametrise the joint density as [13]

ρ̃βt (λ1, . . . , λN ) = exp[−β(Ω(λ)− Ω(ν))/2]ψβt (λ1, . . . , λN |ν1, . . . , νn), (24)

where ψt is some (wave) function, and ν = (ν1, . . . , νN ) is a given initial condition. With this parametri-
sation and the notation from above, the Fokker–Planck equation turns into a Schrödinger equation in
imaginary time,

− ∂

∂t
ψβt = Hψβt , H = −

N∑
i=1

κ

β

∂2

∂λ2i
+ V (λ), (25)

with the potential

V (λ) :=

N∑
i=1

κ

2

(β
2

(∂Ω(λ)

∂λi

)2
− ∂2Ω(λ)

∂λ2i

)
, (26)

which turns out to be of Calogero–Sutherland type [48, 49, 50]. The evaluation of the potential is
straightforward. By insertion of the definition of Ω(λ) from (20), we find

V (λ)

κ
=
β − 2

4

∑
1≤i<j≤N

coth2(λj − λi) +
β

2

N∑
i,j,k=1

i 6=j,j 6=k,k 6=i

coth(λi − λj) coth(λk − λj) +
βN(N − 1)

2
. (27)

Here, the second term on the right-hand side is seen to be a constant by exploiting an identity for cyclic
sums. For distinct λi, λj , λk, we have

coth(λi − λj) coth(λk − λj) + coth(λj − λk) coth(λi − λk) + coth(λk − λi) coth(λj − λi) = +1. (28)

Thus, we may write the potential as

V (λ) =
κ(β − 2)

4

∑
1≤i<j≤N

coth2(λj − λi) +
κβ(N + 1)N(N − 1)

6
. (29)

Consequently the pair interaction vanishes for β = 2, and the Hamiltonian in (25) becomes that of N
free particles. This is the feature which ensure solvability for β = 2.

Now, we can return to the Schrödinger equation (25). For the rest of this section we will restrict our
attention to the case β = 2 only, and leave out the index for notational simplicity.
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It follows from the parametrisation (24) that the wave function ψt must be anti-symmetric in both
λ1, . . . , λN and ν1, . . . , νN , since the joint density ρ̃t is symmetric while Ω(λ) is anti-symmetric. Com-
bining this with the absence of pair interactions in (25) allows us to write the wave function as a Slater
determinant,

ψt(λ1, . . . , λn|ν1, . . . , νN ) =
e−Ut

N !
det

1≤i,j≤N
[gtj(λi)], (30)

where U = κ(N + 1)N(N − 1)/3 is the constant contribution to the potential energy (29), while each
gtj(λ) satisfies a heat equation

∂gtj(λ)

∂t
=
κ

2

∂2gtj(λ)

∂λ2
, gt=0

j (λ) = δ(λ− νj). (31)

This can be verified by inserting the wave function (30) into the Schrödinger equation (25). The solution
to the heat equation (31) is a Gaussian,

gtj(λ) =
1√

2πκt
exp

[
− (λ− νj)2

2κt

]
. (32)

Now, as a consequence of (24), we know that the joint density is

ρ̃t(λ1, . . . , λN ) =
e−Ut

N !
det

1≤i,j≤N
[gtj(λi)]

∏
1≤i<j≤N

sinh(λj − λi)
sinh(νj − νi)

, (33)

assuming a non-singular initial condition ν1 < · · · < νN . We note that (33) reduces to a product of Dirac
delta functions in the t→ 0 limit, as required.

We are interested in the singular initial condition ν1 = · · · = νN = 0, which may be obtained from (33)
by successive use of l’Hôpital’s rule. Upon reordering of rows or columns, we find

ρ̃t(λ1, . . . , λN ) = e−Ut
N∏
k=1

e−λ
2
k/2κt

k!
√

2πκt

∏
1≤i<j≤N

(λj − λi
κt

)
sinh(λj − λi). (34)

To further simplify the expression for the joint density, we first need to make an observation about the
Lyapunov exponents from the previous section. At zero drift (µ = 0), we have

N∑
j=1

µ̃2
j = κU, (35)

where µ̃j are the Lyapunov exponents and U is the constant contribution to the potential energy as
above. Now, combining this with the standard relations∏

1≤i<j≤N

(λj − λi) = det
1≤i,j≤N

[λj−1i ] and
∏

1≤i<j≤N

sinh(λj − λi) = det
1≤i,j≤N

[ 12e
(N−2j+1)λi ], (36)

we arrive at a surprisingly simple expression for the joint density,

ρ̃t(λ1, . . . , λN ) =

( N∏
k=1

1

k!

)
det

1≤i,j≤N

[( λi
2κt

)j−1]
det

1≤i,j≤N

[
e−(λi−µ̃jt)

2/2κt

√
2πκt

]
. (37)

We recall that κ = (1 + τ)σ2/2, while the µ̃j are given by (22). The joint density (37) takes the form
of a Vandermonde determinant times a determinant of Gaussians with means related to the Lyapunov
exponents. The long-time asymptotics mentioned in the previous section thus follow straightforwardly.
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Moreover, we note that even though the derivation above was performed with zero drift (µ = 0), the
drift can at this point be reintroduced without any change to the joint density (37). The normalisation
may be checked using Andreief’s integration formula [51, 52].

The joint density (37) describes a special type of biorthogonal ensembles [53] which have been coined
polynomial ensembles [54, 55]. This type of ensembles has recently gained renewed attention partly due
their prominent rôle in the study of the singular values of random matrix products, see e.g. [22]. In the
case of product ensembles, the Gaussian weights within the second determinant in (37) are replaced with
weights given in terms of Meijer G-functions. In this way, isotropic Brownian motions fit neatly into the
picture of recent developments regarding products of random matrices.

There is also a direct relation between our joint density (37) and another well-known matrix ensemble,
the Gaussian Unitary Ensemble (GUE) with an external source (see [24, 25, 26] with references and
also [56, 57]). This ensemble is based on an N × N random Hermitian matrix, H, distributed with
respect to the measure

PA[dH] =
1

Z
exp

[
− 1

2κt
TrH2 +

1

κ
TrHA

]
dH, (38)

where Z is a normalisation constant, 2κt is the variance, and A is an N ×N Hermitian external source
matrix which without loss of generality may be taken to be diagonal, A := diag(a1, . . . , aN ). The joint
density for the eigenvalues of H is obtained by integrating out irrelevant degrees of freedom using the
Harish-Chandra–Itzykson–Zuber integral [58, 59]. One then finds

ρ̂t(λ1, . . . , λN ) =
1

Z̃
det

1≤i,j≤N

[( λi
2κt

)j−1]
det

1≤i,j≤N

[
e−(λi−ajt)2/2κt
√

2πκt

]
(39)

with λ1, . . . , λN denoting the eigenvalues of H and Z̃ representing the corresponding normalisation con-
stant. Here, it is assumed that ai 6= aj for i 6= j.

The similarity between (39) and (37) is immediately recognised. Thus the Lyapunov exponents in (37)
may be reinterpreted as equidistantly spaced eigenvalues of an external source matrix, as considered e.g.
in [60]. While relations between ensembles with an external source and non-intersecting Brownian motions
are not new (see [26] and references within), the isotropic Brownian motions studied in this paper provide
an example where the external source arises naturally; rather than from an imposed boundary condition.

4 Conclusions and open problems

In this paper we have studied a family of stochastic processes with isotropic matrix-valued multiplicative
noise. We have shown that it is possible to formulate a Fokker–Planck equation for the finite-time
Lyapunov exponents, and that this Fokker–Planck equation is exactly solvable for evolutions over complex
fields, where they give rise to a biorthogonal ensemble. We motivated this stochastic process by its
relation to a May–Wigner-like stability analysis for trajectories in an N -dimensional space, characterized
by a mean relaxation rate µ, a noise strength σ, and a parameter τ ∈ (−1, 1) which characterizes the
rotational nature of the flow (τ = 1 represents a pure gradient flow). For a noise variance σ2 = 1/N , the
infinite-time Lyapunov spectrum has compact support, and converges to a uniform distribution on an
interval with length 1 + τ centred at −µ. This allows us to establish a phase diagram for the system in
the large-N limit, according to which trajectories are stable if (1+τ)/2 < µ and unstable if (1+τ)/2 > µ.

The heuristic argument at the end of section 2 suggests that the fluctuations of the largest Lyapunov
exponent become Gaussian in the limit κt � N , with more rigorous formulations of this statement
following from [5, 46]. It is more challenging to investigate the fluctuations away from this limit, where
they are expected to be non-Gaussian. Here, the Fokker–Planck equation established in this paper
provides a good starting point. In particular, we note that κt � N results in a limit where adjacent
stability exponents are close compared to their correlations length. With this in mind, we may substitute
tanh(λj − λi) ≈ (λj − λi) in (21), which transforms the Fokker–Planck equation into an ordinary Dyson
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diffusion. This suggests that the largest Lyapunov exponent follows the so-called Tracy–Widom law.
Similar approximations may be made starting with the joint density function from section 3. We note
that this conjectural transition from a classical random matrix law (Tracy–Widom distribution) to a
Gaussian law is not completely unfamiliar; in [61] it was shown that the largest eigenvalue (in terms
of absolute value) for a product of complex Ginibre matrices undergoes a transition from a Gumbel
distribution to a log-normal distribution.

Future work may be directed towards establishing this transition, and extending it to a detailed
description of the stability-instability phase transition, including the critical exponents. From a more
mathematical perspective, there are many other intriguing questions worth pursuing beyond the fluc-
tuations of the largest Lyapunov exponent. This includes, but is not limited to, a study of the global
spectrum as a function of time, and the local correlations in the bulk as well as near the edge at fixed
time t.

Acknowledgement: We like to thank G. Akemann, P. J. Forrester, and M. Kieburg for useful discus-
sions. JRI acknowledge financial support by ARC Centre of Excellence for Mathematical and Statistical
Frontiers.

A Isotropic measures and elliptic ensembles

In this appendix we briefly recall the construction of isotropic Gaussian matrix measures and their
relation to Gaussian elliptic ensembles. We will consider the real (β = 1) and the complex (β = 2) case
separately.

First, let us look at real matrices; our description closely follows that of [5]. We are considering
the family of Gaussian probability measures on the space of N × N real matrices, where each entry
is (centred) Gaussian distributed. Any such measure is uniquely determined by its covariance tensor,
E[XijXk`]. Imposing isotropy implies that the measure must be invariant under all orthogonal similarity
transformations, X 7→ UTXU . On the level of the covariance tensor, this statement becomes

E[Xi′j′Xk′`′ ] =

N∑
i,j,k,`=1

Ui′iUj′jUk′kU`′`E[XijXk`] (40)

for all U ∈ O(N). Consequently, any isotropic measure has a covariance tensor given by

E[XijXk`] = a δijδk` + b δikδj` + c δi`δjk (41)

with a, b, c denoting constants unaffected by orthogonal similarity transformations. To understand the
interpretation of these constants, we note that

E[(Xii)
2] = a+ b+ c ≥ 0 and

1

2
E[(Xij ±Xji)

2] = b± c ≥ 0 (i 6= j). (42)

Thus, we may write the random matrix X as a sum

X =

√
b+ c

2
H +

√
b− c

2
A+
√
a ξ1, (43)

where H is a symmetric matrix with standard Gaussian entries (i.e. GOE), A is a skew-symmetric matrix
with standard Gaussian entries (i.e. skew-GOE), and ξ is a standard Gaussian random variable. Setting
a = 0, b = 1, and c = τ ∈ (−1, 1) result in the elliptic density (9) with β = 1.

We can now turn to complex matrices (β = 2). Here, we need to take two covariance tensors into
account when determining the most general Gaussian measure, E[X∗ijXk`] and E[XijXk`](= E[X∗ijX

∗
k`]).
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Isotropy says that the measure should be invariant under unitary similarity transformations, X 7→ U†XU ,
which means that

E[Xi′j′Xk′`′ ] =

N∑
i,j,k,`=1

U∗i′iUj′jU
∗
k′kU`′`E[XijXk`], (44)

E[X∗i′j′Xk′`′ ] =

N∑
i,j,k,`=1

Ui′iU
∗
j′jU

∗
k′kU`′`E[X∗ijXk`], (45)

for all U ∈ U(N). Thus

E[XijXk`] = a δijδk` + b δi`δjk and E[X∗ijXk`] = c δijδk` + d δikδj`, (46)

where a, b, c, d are constants. Similar to the real case, we will look at correlations to obtain an interpre-
tation of these constants. We then find

1

2
E[|Xii ±X∗ii|

2
] = c+ d± (a+ b) ≥ 0 and

1

2
E[|Xij ±X∗ji|

2
] = d± b ≥ 0 (i 6= j), (47)

and can therefore write the random matrix X as a sum

X =

√
d+ b

2
H +

√
d− b

2
A+ (

√
c ξ + i

√
a η)1, (48)

where H is a Hermitian matrix with standard complex (real on the diagonal) Gaussian entries (i.e. GUE),
A is a skew-Hermitian matrix with standard complex (imaginary on the diagonal) Gaussian entries (i.e.
skew-GUE), while ξ and η are standard real Gaussian random variables. Analogously to before we set
a = 0, b = τ ∈ (−1, 1), c = 0, and d = 1, which results in a random matrix with density (9).
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[24] E. Brézin and S. Hikami. Correlations of nearby levels induced by a random potential. Nucl. Phys.
B, 479(3):697, 1996.

[25] P. Zinn-Justin. Random hermitian matrices in an external field. Nucl. Phys. B, 497:725, 1997.

[26] A. I. Aptekarev, P. M. Bleher, and A. B. J. Kuijlaars. Large n limit of Gaussian random matrices
with external source, part ii. Comm. Math. Phys., 259:367, 2005.

[27] R. M. May. Will a large complex system be stable? Nature, 238:413, 1972.

[28] T. Galla and J. D. Farmer. Complex dynamics in learning complicated games. Proc. Nat. Acad.
Sci., 110:1232, 2013.

[29] A. G. Haldane and R. M. May. Systemic risk in banking ecosystems. Nature, 469:351, 2011.

[30] H. Sompolinsky, A. Crisanti, and H.-J. Sommers. Chaos in random neural networks. Phys. Rev.
Lett., 61:259, 1988.

[31] Y. V. Fyodorov. Complexity of random energy landscapes, glass transition, and absolute value of
the spectral determinant of random matrices. Phys. Rev. Lett., 92:240601, 2004.

12



[32] Y. V. Fyodorov. High-dimensional random fields and random matrix theory (lecture notes,
Bielefeld, 2013). Markov Processes Relat. Fields, 21:483, 2015.

[33] Y. Fyodorov and B. A. Khoruzhenko. A nonlinear analogue of May–Wigner instability transition.
arXiv:1509.05737, 2015.

[34] R. H. Kraichnan. Small-scale structure of a scalar field convected by turbulence. Phys. Fluids,
11:945, 1968.

[35] J. R. Norris, L. C. G. Rogers, and D. Williams. Brownian motions of ellipsoids. Trans. Amer.
Math. Soc., 294:757, 1986.

[36] G. Akemann, M. Kieburg, and L. Wei. Singular value correlation functions for products of Wishart
random matrices. J. Phys. A, 46:275205, 2013.

[37] G. Akemann, J. R. Ipsen, and M. Kieburg. Products of rectangular random matrices: singular
values and progressive scattering. Phys. Rev. E, 88:052118, 2013.

[38] P. J. Forrester. Lyapunov exponents for products of complex Gaussian random matrices. J. Stat.
Phys., 151:796, 2013.

[39] V. Kargin. On the largest Lyapunov exponent for products of Gaussian matrices. J. Stat. Phys.,
157:70, 2014.

[40] G. Akemann, Z. Burda, and M. Kieburg. Universal distribution of Lyapunov exponents for
products of Ginibre matrices. J. Phys. A, 47:395202, 2014.

[41] J. R. Ipsen. Lyapunov exponents for products of rectangular real, complex and quaternionic
Ginibre matrices. J. Phys. A, 48:155204, 2015.

[42] P. J. Forrester. Asymptotics of finite system Lyapunov exponents for some random matrix
ensembles. J. Phys. A., 48:215205, 2015.

[43] H.-J. Sommers, A. Crisanti, H. Sompolinsky, and Y. Stein. Spectrum of large random asymmetric
matrices. Phys. Rev. Lett., 60:1895, 1988.

[44] V. I. Oseledec. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical
systems. Trans. Moscow Math. Soc., 19:197, 1968.
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