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Abstract 

There is considerable evidence showing that age of 
acquisition (AoA) is an important factor influencing lexical 
processing. Early-learned words tend to be processed more 
quickly compared to later-learned words. The effect could be 
due to the gradual reduction in plasticity as more words are 
learned. Alternatively, it could originate from differences 
within semantic representations. We implemented the triangle 
model of reading including orthographic, phonological and 
semantic processing layers, and trained it according to 
experience of a language learner to explore the AoA effects in 
both naming and lexical decision. Regression analyses on the 
model’s performance showed that AoA was a reliable 
predictor of naming and lexical decision performance, and the 
effect size was larger for lexical decision than for naming. 
The modelling results demonstrate that AoA operates 
differentially on concrete and abstract words, indicating that 
both the mapping and the representation accounts of AoA 
were contributing to the model’s performance. 

Keywords: age of acquisition; language development; 
reading; computational modelling; visual word recognition. 

Introduction 
Age of acquisition (AoA) effects refer to observations that 

stimuli learned early in life are processed more quickly and 
accurately than stimuli learned later in life. These AoA 
effects have been observed in a variety of language tasks 
including word naming, lexical decision, picture naming and 
semantic related tasks (Brysbaert, Van Wijnendaele, De 
Deyne, 2000; Cortese & Khanna, 2007; Ghyselinck, Lewis, 
& Brysbaert, 2004; Monaghan & Ellis, 2002). When the 
magnitude of AoA across tasks was compared in a review 
by Juhasz (2005), the results showed that the effect size is 
largest in picture naming (125 ms), followed by lexical 
decision (56 ms) and naming (31 ms). These findings 
indicate that AoA is a strong factor influencing lexical 
processing across several domains.  

However, there has been scepticism about AoA effects 
because AoA is naturally confounded with other lexical 
semantic variables such as frequency and concreteness (or 
imageability) (Strain, Patterson, & Seidenberg, 2002; Zevin 
& Seidenberg, 2004). Nevertheless, when all these variables 
were considered in predicting large naming and lexical 
decision datasets, Cortese and Khanna (2007) showed 
unique AoA effects for both naming and lexical decision, 
indicating the AoA effects are not spurious findings. 

Theories of AoA Effects 
Several hypotheses have been proposed to explain the 

origin of AoA effects (Brysbaert et al., 2000; Ellis & 

Lambon Ralph, 2000; Lewis, Gerhand, & Ellis, 2001; 
Steyvers & Tenenbaum, 2005). One interpretation of the 
AoA effect is that early learned words have been 
encountered more times at the age that participants are 
tested than later learned words. This has been termed the 
cumulative frequency hypothesis (Lewis, 2001). On this 
view, cumulative frequency can be considered as a 
combined index by multiplying frequency and number of 
years that a stimulus is known to participants (i.e., age -
AoA). However, most studies report additive effects of 
frequency and AoA (Ghyselinck, Lewis, & Brysbaert, 
2004), suggesting the effects are distinct. In addition, the 
findings of the differential effect sizes of frequency and 
AoA in multi-task comparison studies (Ghyselinck, Lewis, 
& Brysbaert, 2004; Brysbaert & Ghyselinck, 2006) have 
been taken as evidence against the cumulative frequency 
hypothesis, because this theory would predict co-variance of 
frequency and AoA effects.    

Another theory accounting for the AoA effect is the 
representation mapping theory (Ellis & Lambon Ralph, 
2000). According to this computationally motivated 
account, the AoA effect is due to the gradual reduction in 
plasticity as more words are learned. Early learned words 
are privileged to easily adjust weight connections in the 
system; while later learned words can only cause small 
weight changes because of the reduced plasticity. Thus, an 
AoA effect is expected particularly when the mappings 
between inputs and outputs are arbitrary, because they 
require greater computational resources to resolve the 
mapping (Zevin & Seidenberg, 2002). This is also supported 
by behavioural data reported by Monaghan and Ellis (2002) 
where the AoA effect was stronger for low consistency 
words (e.g. break) than for high consistency words (e.g. 
block) in a word naming task. 

The AoA effect also has been suggested to result from 
differences in semantic representations where early learned 
words have richer semantic representations than later 
learned words, termed the semantic locus theory (Brysbaert 
et al., 2000). Steyvers and Tenenbaum (2005) developed a 
semantic growth network to simulate the AoA effects in 
terms of the connections of words with others. In their 
network, early learned words have more connections with 
others and thus they have a more central role in the system, 
resulting in a faster access. The most direct evidence for the 
semantic locus theory comes from the observations of larger 
AoA effects in tasks that directly involve semantics, such as 
word-associate generation, picture naming, picture matching, 
and semantic categorisation (Brysbaert & Ghyselinck, 2006; 
Brysbaert et al. 2000; Catling & Johnston, 2009). In 
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addition, the magnitude of AoA effects can be related to the 
extent of involvement of semantics in the tasks (Ghyselinck, 
Lewis, & Brysbaert, 2004; Brysbaert & Ghyselinck, 2006). 

These arguments have contributed to an emerging view 
that both the representation and semantic locus theories 
might contribute to the AoA effects (Catling & Johnston, 
2009). For instance, the stronger AoA effects observed for 
low consistent words in naming might be explained by the 
semantic locus theory if one considers that semantics is 
differentially involved in naming according to the regularity 
of the orthography to phonology mapping (Strain & 
Seidenberg, 1995). On the other hand, the magnitude of 
AoA effects in different tasks is also compatible with the 
arbitrariness of the mappings between different 
representations, such that more arbitrary mappings elicit 
greater AoA effects. However, it remains unclear the extent 
to which AoA effects in a model of reading are required to 
be explained in terms of semantic locus or mapping effects. 

AoA Models of Reading 
Several computational models of reading have been 

developed to explore AoA effects (Ellis & Lambon Ralph, 
2000; Monaghan & Ellis, 2010; Zevin & Seidenberg, 2002). 
Monaghan and Ellis (2010) developed a connectionist 
model that demonstrated clear AoA effects in naming in 
addition to cumulative frequency effects. The key for the 
model to capturing the AoA effects was that it was trained 
with a cumulative learning process. The model started to 
learn to read a small set of words, akin to a child beginning 
to learn to read, and gradually learned to build up an entire 
adult vocabulary. The process mimics the natural reading 
development that allows the model to capture the 
characteristics of AoA. Their findings provided evidence for 
the representation mapping theory. However, these models 
did not include semantic representations so they were 
limited in their ability to test the effect of the role of 
semantics in the size of AoA effects. 

The primary aim of this study was to develop a large-
scale developmental model of reading, trained cumulatively 
to simulate chronological language experience. The model 
comprised three key processing layers including 
orthography, phonology and semantics, and it was trained 
with a cumulative learning process to simulate different 
stages of reading development. We used the model to 
explore the AoA effects in both naming and lexical decision. 
In particular we attempted to examine the competing 
theories of AoA and investigate how semantic 
representations might implicate the emergence of AoA 
effects within the model. 

Method 
 

Network Architecture 
The architecture of the model is shown in Figure 1. The 

model was based on the triangle model of reading 
previously implemented by Harm and Seidenberg (2004). 

The current model consisted of three processing layers 
including orthographic, phonological and semantic layers, 
one context layer, two attractor layers and five hidden layers 
for intermediation between the layers.  

An attractor layer, which contained 50 units, was 
connected to and from the phonological layers. Similarly, 
there was a set of 50 attractor units for the semantic layer. 
The use of attractors was to help the model to reduce noise 
and develop stable phonological and semantic 
representations of words. There were also four context units 
connecting to the semantic layer via a set of ten hidden 
units. The context units provided additional information 
when presenting the model with homophones. One context 
unit was active for each homophone. But for words within 
the same homophone family, different context units were 
randomly assigned. In this way, each context unit was 
almost equally active across the training corpus. For non 
homophones, none of the context units were active. The 
semantic layer was connected to the phonological layer via a 
set of 300 hidden units, and the phonological layer was 
connected back to the semantic layer via another set of 300 
hidden units. The orthographic layer was connected to both 
the phonological and semantic layers via different sets of 
500 hidden units 

Representations 
The orthographic, phonological and semantic 
representations were similar to those used in Harm and 
Seidenberg’s (2004) model. The training corpus contained 
6229 monosyllabic words, which covered most 
monosyllabic words, including their inflected forms, in 
English. Frequency of each word was derived from the Wall 
Street Journal corpus (Marcus, Santorini, & Marcinkiewicz, 
1993), and the score was log-transformed. For orthography, 
each word was represented by 14 letter slots and each slot 
comprised 26 units with one for each 26 alphabetic letters. 
Words were positioned with their first vowel aligned on the 
fifth slot. For words having two vowels, the second vowel 
was placed on the sixth slot; otherwise all the units in that 
slot were not active. Consonants preceding or following the 
vowel(s) were positioned in adjacent slots to the vowel(s) 
(so yes was represented as _ _ _ y e _ s _ _ _ _ _ _ _, and 
great as _ _ _ g r e a t _ _ _ _ _ _). For phonology, each 
word was represented by eight phoneme slots, with each slot 
consisting of a set of 25 phonological features. Each word 
was positioned with its vowel at the fourth phoneme slot. 
The first three slots were for onset consonants and the last 
four slots were for coda consonants (so yes was _ _ y E s _ _ 
_ and great was _ g r eI t _ _ _). The method of representing 
semantic knowledge for each word was adopted from that 
used in Harm and Seidenberg (2004). The semantic 
representation for each word consisted of 2446 semantic 
features, derived from WordNet (Miller, 1990). The 
presence of semantic features was encoded as 1 and 
the absence of semantic features was encoded as 0.    



 
Figure 1. The architecture of the developmental model of reading. 

 

Training Procedures 
The training process had two phases. In pretraining, the 

model was trained with the mappings between phonology 
and semantics. This phase of training was an attempt to 
simulate the fact that children generally have developed 
some language skills (e.g. speaking and comprehension) 
before learning to read. In the reading development phase, 
the full reading model was trained. 

In pretraining, the model was trained on both a speaking 
task (mapping from semantic to phonological 
representations) and a hearing task (mapping from 
phonological to semantic representations). The model also 
learned to develop a stable phonological attractor (mapping 
from phonological to phonological representations), and a 
stable semantic attractor (mapping from semantic to 
semantic representations). For both the speaking and hearing 
tasks, the input pattern of each word was clamped and 
presented for eight time steps, and in the last two time steps, 
the model was required to reproduce the target pattern of the 
word. Similarly, for both the phonological and semantic 
attractor training trials, the input pattern of each word was 
clamped for the first time step and in the last two time steps, 
the model had to reproduce the target pattern of the word. 
The input of context units was supplied only for the hearing 
task. During training, the four tasks were interleaved with 
40% of trials for the speaking task, 40% of trails for the 
hearing task, 10% of trials for the phonological attractor and 
the remaining 10% for the semantic attractor. 

During this stage of training, the model was trained on 
2973 monosyllabic words, which were the most common 
words occurring in reading materials before age 18. Note 
that though several words in this set were unlikely to occur 
often in young children’s language exposure, yet due to the 
training by frequency these words were rare during 

pretraining. The probability of a word being selected for 
training was determined by its logarithmic frequency. The 
model was trained with a learning rate of 0.05 using back-
propagation through time algorithm. Error score was based 
on the cross-entropy error computed between the target and 
the actual activation of the output units. No error was 
recorded if the output unit’s activation was within 0.1 of the 
target. 

In the reading development phase, the model was trained 
on the reading task, which was to learn the mappings from 
orthography to both semantics and phonology, along with 
the four tasks in the pretraining phase. Following Monaghan 
and Ellis (2010), the model was trained to read 
cumulatively, to reflect 14 reading stages, one for each year. 
The reading stage was based on the educator’s word 
frequency guide (WFG) by Zeno et al. (1995). The words in 
WFG were graded into 13 different grade levels by using 
readability measures, corresponding to the age range from 5-
18 in the American and British schooling systems and the 
words appeared in adulthood were presented at the 14th stage. 
The model started to learn a small set of words and 
gradually more and more words were learned over time 
course of learning. The details of the staged training 
paradigm can be found in Monaghan and Ellis (2010) Table 
1. For the reading task, the orthographic representation of a 
word along with its context layer representation were 
clamped and presented for 12 time steps, and for time steps 
six to 12, the model was required to produce the 
phonological and semantic representations for that word. All 
the five tasks were interleaved during training, but the 
training ratio for each task except the attractor tasks varied 
as the training proceeded. The training ratios for both the 
hearing task and speaking task gradually decreased from 
40% to 20% in steps of 5%, while the training ratio for the 
reading task gradually increased from 10% to 50% in steps 

Hidden 
(300) 

Hidden 
(500) 

Hidden 
(500) 

Phonology  
(200) 

Hidden 
(300) 

	   	   

	   

	   

Context 
(4) 

Semantics 
(2446) 

Orthography 
(364) 

Hidden 
(10) 

	  	   	  

	  

  Attractor 
    (50) 
	  	  

	   	  

   
Attractor 
     (50) 



of 10% to simulate greater exposure to reading versus 
listening and speaking with development. All the other 
training procedures remained the same as in pretraining. 

Testing Procedures 
After pretraining, the model was tested on both the 

speaking and hearing tasks. For the speaking task, the 
semantic representation of each word in the training set was 
presented and the activation of units at the phonological 
layer at the end of the eight time steps was recorded. Error 
score was measured by the sum of the squared differences 
between the activation of each input unit and its target 
activation. The accuracy of the model’s phonological 
production was assessed by deciding whether for each 
phoneme slot the closest phoneme to the model’s actual 
production was the same as the target phoneme. For the 
hearing task, the phonological representation of each word 
was presented and the activation of units at the semantic 
layer at the end of the eight time steps was recorded. Error 
score was measured by the sum of squared differences over 
the semantic layer. The semantic accuracy was measured by 
computing the Euclidean distance between the model’s 
actual semantic representation and the semantic 
representation of each word in the training corpus. If the 
smallest distance was for the target representation then the 
model was correct. 

After the reading training, the model’s reading 
performance was tested. The orthographic representation of 
each word was presented and the activation of units at both 
the semantic layer and the phonological layer at the end of 
the 12 time steps were recorded. The measurement of error 
score and accuracy for both semantic and phonological 
output were the same as in the pretraining phase. 

Results 
Pretraining was halted after 2 million epochs where the 
model achieved an accuracy rate of 90.7% on the speaking 
task and an accuracy rate of 91.7% on the hearing task. 
After 0.8 million epochs of reading training, the model 
accurately produced 99.4% of phonological representations 
and 93.3% of semantic representations on the reading task. 

Exploring AoA effects in the model 
Behavioural naming data and lexical decision data 

(Cortese & Khanna, 2007) were simulated by mappings 
from orthographic to phonological representations (Chang, 
Furber, & Welbourne, 2012; Monaghan & Ellis, 2010), and 
by mappings from orthographic to semantic representations 
(akin to polarity measure in Plaut, 1997), respectively. 
According to the representation mapping theory, we would 
expect to obtain a larger AoA effect in lexical decision 
(semantics) than in naming (phonology) whereas the 
semantic locus theory predicts an AoA effect mainly in 
lexical decision (semantics), although if considering the role 
of semantics in naming (Strain et al. 1995), we might obtain 
a small AoA effect in naming (phonology) as well. 

Multiple regression analyses were conducted on the 
model’s phonological and semantic error scores to examine 
the AoA effects in the model. The predictor variables 
included: cumulative frequency (CF), orthographic 
neighbourhood size (OrthN), word length (Len), consistency 
(Cons), concreteness (Conc), and age of acquisition (AoA). 
Orthographic neighbourhood size was based on the number 
of words that can be made by changing one letter of the 
target word Coltheart (1977). The score of consistency was 
based on rime consistency, measuring the number of friends 
(sharing the same rime and pronunciation) divided by the 
total number of words sharing the same rime and weighted 
by their frequency values. The consistency score for each 
word was directly derived from the training corpus. The 
concreteness score was taken from Brysbaert, Warriner, and 
Kuperman (2014). AoA was taken as one of the 14 reading 
stages during training derived from the WFG. 

All items in the training set were tested. Error items and 
outliers (3 standard deviations farther from the mean) were 
discarded and this removed about 3.7% of the items. In 
addition, words without measures for all psycholinguistic 
variables were removed, leaving 5272 words for analysis. 
Both the phonological and semantic error scores were log 
transformed to reduce the skew of performance distribution 
and all the predictor variables were centered in order to 
more clearly explore interaction terms. 

Multiple Regression Results 
Correlation analyses were conducted between the 

predictors. As expected, CF and AoA had a strong negative 
correlation, and AoA and Cons were positively correlated, 
suggesting early learned words tend to be high in frequency 
and inconsistent. OrthN was negatively correlated with Len, 
indicating that long words tend to have few neighbours. 

To examine the unique contribution made by AoA to the 
model’s performance, hierarchical regression analyses were 
conducted. For the word naming task, in step 1 all variables 
were entered into the regression model except AoA. The 
results showed CF, OrthN, Cons, and Len all made 
significant contributions. When AoA was entered into the 
regression model in step 2, it was a significant predictor (see 
Table 1). Similar analyses were conducted for the lexical 
decision task. In step 1, CF, Conc and Len were significant 
predictors. Again, in step 2, AoA was a significant predictor. 
These results showed that the AoA effects were found in 
both naming and lexical decision. Also the standardized beta 
value (β) was larger for the lexical decision than for the 
naming task, replicating behavioural studies showing a 
stronger AoA effect in tasks involving semantics than 
phonology (Table 1). For all these regression models, 
collinearity diagnostic analyses showed all variance 
inflation factors (VIFs) smaller than 4, confirming no 
serious multicollinearity problem. 

Further regression analyses were conducted to examine 
the interaction terms. Three interaction terms were created: 
CF x Cons, to determine whether the model can replicate the 
widely observed consistency by frequency interaction 



(Taraban & McClelland, 1987); AoA x Cons, to determine 
whether the model could reproduce the consistency by AoA 
effect (Monaghan & Ellis, 2002), thereby reflecting the 
mapping theory of AoA; and AoA x Conc, to determine 
whether AoA might have different effects depending on the 
semantic richness of the representation, reflecting the 
semantic locus theory of AoA.  

In step 1, all the variables including AoA were entered 
into the regression model, and in step 2, the interaction 
terms were entered into the model separately. The results are 
summarized in Table 2. For the naming task, both CF x 
Cons and AoA x Cons were significant predictors, 
reproducing key behavioural effects on word naming. For 
lexical decision, only AoA x Conc was significant. Thus, 
consistency effects were less pronounced for lexical 
decision, consistent with the behavioural data. The AoA x 
Conc interaction term indicated that the AoA effect is 
modulated by the richness of the semantic representations, 
as measured by concreteness of the word.   
 
Table 1. Results from a two-block regression analyses for 
the exploration of AoA in predicting both naming and 
lexical decision model performance. 
 

  Naming  Lexical Decision 

Step 1 
 β β 

 CF -0.185*** -0.158*** 

 OrthN -0.255** 0.019 

 Cons -0.247*** -0.015 

 Len -0.071*** -0.126*** 

 Conc -0.001 -0.076*** 

 R2(%) 21.94 24.14 

Step 2    
 AoA 0.194*** 

ΔR2 = 0.99%  
  0.406*** 

ΔR2 = 4.33% 
***p<.001; **p<.01; *p<.05; β is a standardized beta value  
 
Table 2. Results from a two-block regression analyses for 
the exploration on three interaction terms in predicting both 
naming and lexical decision model performance. 
 

 Naming Lexical Decision 

Step 1: Lexical 
Variables, R2 
AoA, β 

 
       22.93 

0.194*** 

 
28.47 

    0.406*** 

Step 2: 
Interactions   

Model 1:    

CF x Cons, β 
AoA, β 

       0.05*** 

0.213*** 
-0.009 

   0.403*** 

Model 2: 
AoA x Cons, β 
AoA, β 

 
-0.067*** 

0.209*** 

 
      -0.009 
       0.408*** 

Model 3: 
AoA x Conc, β 
AoA, β 

 
       0.004 

0.192*** 

 
      -0.036** 

0.422*** 
***p<.001; **p<.01; *p<.05; β is a standardized beta value 

General Discussion 
This paper aimed to develop a large-scale computational 
model of reading including orthographic, phonological and 
semantic representations. Following Monaghan and Ellis 
(2010), the model was trained with a cumulative learning 
process. The model was able to produce correct 
phonological and semantic patterns for hearing, speaking, 
naming, and lexical decision tasks.  

Multiple regression analyses on model performance   
demonstrated that the model was able to account for a range 
of standard word naming effects including cumulative 
frequency, orthographic neighbourhood size, consistency, 
concreteness and the interaction between cumulative 
frequency and consistency. More importantly, the results 
showed that AoA accounted for an additional 0.99% of 
variance in naming and 4.33% of variance in lexical 
decision, when other potentially confounding variables such 
as cumulative frequency and concreteness had been 
considered. Collectively, the regression results are 
consistent with the findings of previous regression analyses 
for behavioural (Cortese & Khanna, 2007) and 
computational (Monaghan & Ellis, 2010) studies.  

So where in the model do the AoA effects derive? 
According to the representation mapping theory (Ellis & 
Lambon Ralph, 2000), the AoA effect could be observed 
when the mappings between input and output are more 
arbitrary. The significant interaction between AoA and 
consistency obtained in the regression analyses of naming in 
the model is consistent with the finding of Monaghan and 
Ellis (2002). In addition, the regression results also showed 
that the effect size of AoA (indexed by β) was larger for 
lexical decision than for naming (Table 1). This can be 
explained by the representation mapping theory in terms of 
different degrees of arbitrary mappings required for 
generating semantic versus phonological representations 
from orthography. 

However, the current results cannot rule out the semantic 
locus theory (Brysbaert et al., 2000). This is because the 
semantic locus theory also predicts a larger AoA effect in 
lexical decision than in naming because it involves a greater 
role of the semantic representations themselves. 
Interestingly, there was a significant interaction between 
AoA and concreteness. This suggests that although the AoA 
effect in the model is due to mapping for word naming, for 
lexical decision it is likely a composite of effects in the 



mappings between representations, and due to the semantic 
richness of the representations. So the present results 
provide evidence for the view that AoA effects arise from 
different sources according to task requirements.  

The role of AoA in the reading system is profound, and 
effectively implementing these effects requires a 
computational model that can take into account the life 
history of the learner. We have shown that an 
implementation of the triangle model, involving 
orthographic, phonological, and semantic representations is 
able to take the chronology of experience and produce 
consequent effects in a mature reading system, resulting in 
AoA effects. We have replicated key behavioural data 
showing different sized effects of AoA depending on the 
lexical task (word naming or lexical decision), and linked 
this to the involvement of semantic representations in the 
task. For tasks primarily involving phonological 
representations, AoA effects are largely derived from the 
influence of experience on mapping between representations. 
For tasks that also involve semantics, the AoA effect is 
multicomponential. Experience affects mappings between 
representations but also the richness of the consequent 
representations. Happily, our model suggests that theorists 
with different views of the origin of effects of AoA are none 
of them wrong, but rather correct to varying degrees 
according to lexical task constraints. 
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