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Highlights

• We provide microfoundations for stochastic frontier analysis.

• We revise previous work showing that a simple Bayesian learning model supports gamma distri-

butions.

• The conclusion depends on problem formulation and assumptions about the sampling process

and the prior.

• After a new formulation of the problem the distribution of one-sided error component does not

belong to known family.

• More doubt is cast using expected utility of profit maximization.
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Microfoundations for stochastic frontiers

Mike G. Tsionas∗

September 26, 2016

Abstract

The purpose of the paper is to propose microfoundations for stochastic frontier models. Previ-

ous work shows that a simple Bayesian learning model supports gamma distributions for technical

inefficiency in stochastic frontier models. The conclusion depends on how the problem is formu-

lated and what assumptions are made about the sampling process and the prior. After the new

formulation of the problem it turns out that the distribution of the one-sided error component

does not belong to a known family. Moreover, we find that without specifying a utility function or

even the cost inefficiency function, the relative effectiveness of managerial input can be determined

using only cost data and estimates of the returns to scale. The point of this construction is that

features of the inefficiency function u(z) can be recovered from the data, based on the solid micro-

foundation of expected utility of profit maximization but the model does not make a prediction

about the distribution.

Keywords: Economics; Stochastic frontier analysis; microfoundations; Bayesian learning; Learning-

by-Doing.
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1 Introduction

Technical efficiency derived from stochastic frontier or envelopment methods has a long history in

operations research and econometrics. See, for example Sun, Kumbhakar and Tveterås (2015), Keshvari

and Kuosmanen (2013), Olesen and Petersen (2016), Lee (2006, 2010), Ondrich and Ruggiero (2001)

etc. The application of stochastic frontier models in operations research has been growing steadily

over the years and it has reached a stage of maturity. Among the many applications we can single

out Berger and Humphrey (1997) on the efficiency of financial institutions, Lovell (1995) for a general

overview on policy analysis perspectives, Bos, Koetter, Kolari and Kool (2009) on bank heterogeneity

and efficiency scores, Lozano (1997) and Dong et al (2016) on banking profit efficiency, Resti (2000)

on a comparison of parametric and DEA techniques using simulated data. Moreover, see Kumbhakar

(2011) on estimating production technologies under the assumption of maximizing returns to outlay,

Assaf and Gillen (2012) on airport efficiency under different forms of governance, Drake and Simper

(2003) on law enforcement efficiency in England and Wales, Behr (2010) on robust quantile-based

measurement of efficiency.

Other areas of interest include but are not limited to incorporation of MIMIC models in stochastic

frontier models (Chaudhuri, Kumbhakar and Sundaram, 2016), Sudit (1995) on productivity measure-

ment in industrial operations, environmental efficiency (Reinhard et al, 2000), Bolt and Humphrey

(2015) on measuring banking competition, Annaert et al (2003) on evaluating mutual funds etc.

Badunenko and Kumbhakar (2016) examine the circumstances under which one should measure per-

sistent and transient or “short-run” inefficiency which is a quite flexible state-of-the art model proposed

by Tsionas and Kumbhakar (2014). Some innovative applications of SFM are in general dental prac-

tices in the U.S (Chen and Ray, 2013), evaluation of technical efficiency and managerial correlates of

solid waste management by Welsh SMEs (Cordeiro et al, 2012) etc.

The purpose of this paper is to examine the microfoundations upon which such analyses rest and

can be meaningful. As there ex ante and ex post views of production, it becomes clear that statistical

uncertainty at the firm level plays a critical role in the formulation of a model for and estimation of

technical efficiency. For example, Oikawa (2016) shows that a simple Bayesian learning model supports

gamma distributions for technical inefficiency. We find that his conclusion is not robust to ex ante

views of production and is not even the unique or “correct” view of formulating models of technical

inefficiency.

We derive some new results and we examine key aspects of the model paying particular attention
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to the ex ante nature of production and the reasonable assumptions that can be made to derive

implications for technical inefficiency in stochastic frontier models.

2 Some new results

Oikawa (2016) shows that a simple Bayesian learning model supports gamma distributions for technical

inefficiency. This conclusion depends very much on the prior of the critical variable θ. The essence of

his analysis is that prior to observing output in a stochastic frontier model1

y = α0

K∏

k=1

xαkt eve−(θ−z)2 , (1)

where v ∼ N (0, σ2
v), θ is a “target”, z is a managerial variable, and u = (θ − z)2 is technical inefficiency.

Building on Jovanovic and Nyarko (1996), Oikawa (2016) assumes that each firm draws θ at random

from N (θ̄, σ2
θ) where θ̄, σ2

θ are “known and common to all firms. Hence, this is the common prior

distribution for each θ.” To reduce technical inefficiency as much as possible, the manager infers the

true θ by using information on the past realization of outputs and sets z to minimize the expected

loss. So the problem of the manager is to choose z so that E (e−u) = E
(
e−(θ−z)2

)
is maximized by

choice of z. The argument in Oikawa (2016) is quite simple and rests on the well known result that

if θ is normal then θ−E(θ)√
V ar(θ)

∼ N (0, 1) and therefore the square follows a χ2(1), where the first and

second moments are appropriately defined in the posterior sense.

The following generalizes Lemma 1 in Oikawa (2016).

LEMMA 1. Suppose f(θ) is a prior for θ. Then the optimal value of z satisfies: z̃ =
´

θe−(z̃−θ)2f(θ)dθ
´

e−(z̃−θ)2f(θ)dθ
,

if the integrals exist.

PROOF. To maximize V (z) ≡ E (e−u) = E
(
e−(θ−z)2

)
we have

V (z) =

ˆ

e−(θ−z)2f(θ)dθ. (2)

The first order condition of the problem is
´

(θ− z̃)e−(θ−z̃)2f(θ)dθ = 0. The result follows immediately

by solving with respect to z̃.
e

In Oikawa (2016) the fundamental result is that if θ ∼ N (µ, σ2) then z̃ = µ. In general, the result
1Clearly, the Cobb-Douglas specification is not essential to the problem as Oikawa (2016) sets it out.
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cannot hold for non-elliptical distributions. Moreover, it does not appear correct that the support of

θ should be < instead of the positive half-line or even a finite interval. Even if we abstract from such

considerations, we formulate what we believe is a correct version of the problem in section 3.

3 Some more results

Continuing on some results of interest, using simple change of variables it is easy to show that if

Z ∼ N (0, 1) then the expression
´

e−(z̃−θ)2f(θ)dθ =
√
πEf

(
z + Z/

√
2
)
. The relation between θ and

Z is the following:

θ = z̃ +
Z√

2
.

Therefore, we can simplify the result in Lemma 1 as follows:

LEMMA 2. The optimal value of z satisfies: Ef ′
(
z̃ + Z/

√
2
)

= 0 provided Ef ′′(z̃ + Z/
√

2) < 0.

PROOF. The proof is immediate.
e

In fact the optimal solution, if it exists, satisfies:

z̃ =
E
{(
z̃ + Z/

√
2
)
f
(
z̃ + Z/

√
2
)}

Ef
(
z̃ + Z/

√
2
) (3)

We now consider the crux of the matter in Oikawa (2016) who considers exclusively the case of a

normal prior for θ: θ ∼ N(µ, σ2). Under this assumption he shows that z̃ = µ but we are not informed

how µ and σ are related to θ̄ and σθ; presumably they are the same.2 Prior to observing output y the

firm observes a sequence {θ1, . . . , θT } of random variables. It is not entirely clear how the manager

observes the target θ without actual production operations but we bypass this point.

Suppose now the prior f(θ) is not necessarily normal. We have the following:

LEMMA 3. Suppose f(θ) is flat over < or <+ or f(θ) ∝ θ−1, θ ∈ <+. In the first case V (z)

does not depend on z. In the second case, V (z) = 2
√
πΦ(
√

2z) where Φ(z) is the standard normal

distribution function. In the third case, V (z) = E
(

Z√
2

+ z
)−1

where Z ∼ N(0, 1) truncated below

at −
√

2z. Additionally, suppose θ is uniformly distributed over a finite interval [a, b]. Then V (z) =
√
π

b−a
{

Φ
(√

2(b− z)
)
− Φ

(√
2(a− z)

)}
.

2In p. 16 of Oikawa (2016) dη should be dθ.
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PROOF. (i) Since V (z) =
´

e−(θ−z)2f(θ)dθ, if f(θ) ∝ const. it is clear that V (z) = 2
√
π. (ii) If

f(θ) is flat over <+then V (z) =
´∞

0
e−(θ−z)2f(θ)dθ. Performing the integration we obtain V (z) =

2
√
πΦ(
√

2z). (iii) In the third case, which uses the “standard” Jeffreys’ prior for a positive parameter,

V (z) =
´∞

0
θ−1e−(θ−z)2f(θ)dθ. The integral is V (z) =

√
2πΦ

(√
2z
) ´∞
−
√

2z

(
t√
2

+ z
)−1

1√
2πΦ(

√
2z)

e−t
2/2dt.

This expression is the expectation E
(

Z√
2

+ z
)−1

when Z ∼ N (0, 1) truncated below at −
√

2z. (iv)

When f(θ) = 1
b−a , θ ∈ [a, b] we have V (z) =

´ b

a
e−(θ−z)2 1

b−adθ which yields

V (z) =
1

b− a

ˆ b

a

e−
1
2 [
√

2(θ−z)]2dθ.

Let t =
√

2 (θ − z), then θ = z + t√
2
. Since θ ∈ [a, b], then t ∈

[√
2(a− z),

√
2(b− z)

]
. Therefore,

V (z) =
1

b− a

ˆ

√
2(b−z)

√
2(a−z)

e−
1
2 t

2

d

(
z +

t√
2

)
=

1

b− a

ˆ

√
2(b−z)

√
2(a−z)

e−
1
2 t

2 1√
2
dt =

√
π

b− a

ˆ

√
2(b−z)

√
2(a−z)

ϕ(t)dt,

where ϕ(t) is the standard normal probability density function. Therefore,

V (z) =

√
π

b− a
{

Φ
(√

2(b− z)
)
− Φ

(√
2(a− z)

)} m
.

The function V (z) for case (iii) is presented in Figure 1 using a Monte Carlo approach with 107

standard normal draws. For certain choices of a and b the function V (z) is presented in Figure 2. In

the following lemma we consider the more realistic case of an exponential prior with parameter λ > 0,

viz. f(θ) = λe−λθ, θ ≥ 0.

LEMMA 4. Suppose θ follows an an exponential prior with parameter λ > 0. Then

V (z) = λe(z−λ/2)2−z2√2πΦ
(√

2 (z − λ/2)
)

and the optimal value of z satisfies: λ =
ϕ(
√

2(z̃−λ/2))
Φ(
√

2(z̃−λ/2))
, where ϕ() is the standard normal density

function.

PROOF. We have V (z) =
´∞

0
e−(θ−z)2f(θ)dθ = V (z) = λ

´∞
0
e−(θ−z)2−λθdθ. Performing the inte-

gration using change of variables and completion of the square we get: V (z) = eM
2−z2λ

√
π
´∞
−
√

2M
1√
2π
e−t

2/2dt,

where M = z − λ
2 . Therefore, V (z) = λeλ

2/4−λz√πΦ
(√

2 (z − λ/2)
)
. Taking logs the first order con-
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dition yields easily the stated result for z̃. The proof of the result is as follows. Since V (z) =

λ
´∞

0
e−(θ−z)2−λθdθ = eM

2−z2λ
´∞

0
e−(θ−M)2dθ = eM

2−z2λ
´∞

0
e−

1
2 [
√

2(θ−M)2]dθ. Let t =
√

2(θ −M),

then θ = M + t√
2
. Since θ ≥ 0, then t ≥ −

√
2M . Therefore, we obtain:

V (z) = eM
2−z2λ

ˆ ∞

−
√

2M

e−
1
2 t

2

d

(
M +

t√
2

)
= eM

2−z2λ
ˆ ∞

−
√

2M

e−
1
2 t

2

dt = eM
2−z2λ

√
π

ˆ ∞

−
√

2M

ϕ(t)dt,

where ϕ(t) is the standard normal probability density function. In turn, this yields V (z) = λeλ
2/4−λz√πΦ

(√
2 (z − λ/2)

)
.

e

In this case, the optimal z is determined through Λ(z) = ϕ(z)
Φ(z , a form of Mills ratio.

4 Formulation of the problem

In this section we provide what we believe is a correct formulation of the problem. We are given a

random sample D = {θ1, . . . , θT } from a distribution with density p(θt; θ) prior to observing output.

A prior f(θ) is placed on the parameter θ. Then we have to determine the distribution of u = (θ− z)2

conditional on z, which is determined by maximizing the expected value Ee−u. We distinguish two

cases, viz. when the random sample arises from an an exponential distribution or from a normal

distribution. In this context, it is clear that the optimal value of z has to be determined from the

posterior distribution θ|D and cannot be set in advance.

CASE I. We have a random sample D = {θ1, . . . , θT } from an exponential distribution with

parameter θ and the prior is gamma with parameters α and β ,viz. f(θ) ∝ θα−1e−βθ. The posterior

distribution of the parameter is

f(θ|D) ∝ θT+α−1e−(β+
∑T
t=1 θt)θ θ ≥ 0, (4)

which is clearly a gamma distribution with shape parameter T + α and scale β +
∑T
t=1 θt = β + Tθa:

θ|D ∼ Ga (T + α, β + Tθa) , (5)
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where θa = T−1
∑T
t=1 θt is the average. The distribution of u = (θ − z)2 is given by change of variables:

p(u|z,D) ∝
(
z +
√
u
)T+α−1 1√

u
e−(Tθa+β)(z+

√
u). (6)

This kernel density does not correspond to a known distribution but it also depends on the control

variable, z. A change of variables shows that the distribution of
√
u (not u itself) is “close” to a

gamma distribution, as it is proportional to (z + q)T+α−1q−3/2e−(Tθa+β)(z+q), q =
√
u. However, the

distribution depends on z so it has little to do with the arguments of Oikawa (2016).

To determine z we need to maximize V (z) = Ee−u. The distribution of h = e−u has density:

p(h|z,D) ∝
(
z +
√
− lnh

)T+α−1 1

h
√
− lnh

e−(Tθa+β)(z+
√
− lnh), 1 ≥ h > 0. (7)

Although we cannot determine z̃ analytically by maximizing the expected value of (7), given the

solution it is clear that

p(u|D) ∝
(
z̃ +
√
u
)T+α−1 1√

u
e−(Tθa+β)(z̃+

√
u), u ≥ 0. (8)

From the form of the distribution it does not appear that we have any reason to believe that u follows

a gamma distribution.

CASE II. Suppose we have a random sample D = {θ1, . . . , θT } from a normal distribution

N
(
θ, σ2

θ

)
and the prior is normal with parameters µ and σ2 . The posterior distribution of the

parameter is

f(θ|D) ∝ e−
1

2σ2
θ

∑T
t=1(θt−θ)2− 1

2σ2 (θ−µ)2

. (9)

After elementary operations we have:

θ|D ∼ N
(
θ̂, σ2

∗
)
, (10)

where θ̂ =
Tσ2θa+µσ2

θ

Tσ2+σ2
θ

and σ2
∗ =

σ2σ2
θ

Tσ2+σ2
θ
. The distribution of u = (θ − z)2 has density

f(u|z,D) = 1
2

(
2πσ2

∗
)−1/2 1√

u
e
− 1

2σ2
∗
(z+
√
u−θ̂)2

, u > 0. (11)
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The distribution of h = e−u has density

f(h|z,D) ∝ 1√
− lnh

h−1e
− 1

2σ2
∗
(z+
√
− lnh−θ̂)2

, 1 ≥ h > 0. (12)

Again, as we cannot determine z̃ analytically by maximizing E(h), we have

f(u|D) = 1
2

(
2πσ2

∗
)−1/2 1√

u
e
− 1

2σ2
∗
(z̃+
√
u−θ̂)2

, u > 0. (13)

Again, the density does not correspond to a distribution in a known family -although the distribution

of q =
√
u has density proportional to q−3/2e

− 1
2σ2
∗
(z̃+q−θ̂)2

. This cannot be a gamma density. In the

form (11) or (13) the distribution cannot easily match a gamma distribution: Obviously, the shape

parameter would be 1
2 but it is difficult to match the quadratic term with a linear form in u. To do

so, we should have z ' θ̂ which can be easily violated. If this is the case, however, the density would

be a gamma with shape 1
2 and scale 1

2σ2
∗
. If we expand the square in () and drop terms not related to

u, it becomes clear that the term does not admit a Taylor series expansion around u = 0. This further

complicates the matter of approximating the quadratic exponential term in (13) by a linear term in

u around zero. A second difficulty in a linear expansion around another value is that we must have

z > θ̂ which, again, it can be easily violated.

This density is presented in Figure 3 for z̃ = −1, 0, 1 in its standard form with θ̂ = 0 and σ∗ = 1.

For θ̂ = 1 and θ̂ = −1 the density is presented in Figures 4 and 5. However, it turns out that (12) is

monotonically increasing. Therefore, we cannot determine an optimal value of z̃ based on the first order

condition, V ′(z̃) = 0; rather the optimal value of z̃ corresponds to a value such that V (z̃) = 1. This

case is clearly empirically uninteresting. Assuming there is a cost of using the managerial resource

which is ρ ∈ (0, 1] per unit, the optimal solution satisfies V (z̃) = ρ. If instead the cost of the

managerial resource is 1
2ρz

2 the first order condition gives V ′(z̃)−ρz̃ = 0. Then the objective function

is: W (z) = Ee−u− 1
2ρz

2. For various values of the parameters we present the optimal solution in Table

1. The optimal solution is determined using numerical integration and a direct search procedure.

The objective function W (z) is well behaved and the maximum is unique. The objective function

V (z)− ρz also has a unique maximum but its shape is not quadratic far from the optimum. Relative

to Oikawa (2016) we do need adjustment costs in the managerial resource z in order to be able to find

a non-trivial solution for z and optimal inefficiency V (z̃).
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Table 1: Optimal solution
θ̂ σ∗ ρ z̃ optimal efficiency
0 1 0.2 0.642 0.901

1 0.592 0.608
10 0.577 0.579

1 0.5 0.2 1.065 0.828
1 0.462 0.633
10 0.419 0.437

Notes: Optimal efficiency is V (z̃) and the objective function is W (z) = V (z)− 1
2ρz

2. The optimal solution is determined using
numerical integration and a direct search procedure.

5 Yet another formulation

Suppose we have the specification in (1) and, although the error term v is not under the control of

the firm, we ignore this problem and focus on the one-sided error component u for which we assume

it follows either i) a lognormal distribution lnu ∼ N
(
γz, σ2

u

)
or ii) an exponential specification,

u ∼ Exp(λ), viz. f(u; z, γ) = λ−1e−λ
−1u where lnλ = γz.3 Here, z plays again the role of a

managerial variable and γ < 0 is a certain parameter which measures the effectiveness of z on reducing

inefficiency. We want to minimize Ee−u for given γ and σ2
u which have been learned, presumably, during

a thought experiment before output is actually observed. Using the moment generating functions of

the lognormal4 and the exponential distributions, we have i) V (z) = Ee−u = 1 − eγz+
σ2
u

2 for the

lognormal and ii) V (z) = e−γz

1+e−γz for the exponential.

As both are strictly increasing in z we have to set z = ∞ which is clearly absurd. If we assume

that there is a cost ρ > 0 per unit of the managerial resource then the first order conditions are: i)

1 − eγz̃+
σ2
u

2 = ρ for the lognormal and ii) γe−γz̃

(1+e−γz̃)2
= −ρ. In case (i) for a solution to exist, we need

max
{

0, 1− eσ2
u/2
}
< ρ < 1. In the second case we need 0 < ρ < 1.

From these two cases it is clear that deviating from the assumption of a gamma distribution (as

the exponential is a special case of the gamma) does not produce a result that comes even close to

a gamma distribution. For the reader thinking that we started from a lognormal assumption and,

therefore, we obtain lognormality again, the answer is that she is right but Oikawa (2016) started from

a normality assumption about θ to obtain a gamma or chi -square distribution for (θ − z̃)2 which is

equally obvious!
3A constant or other variables can be included without changing the results.
4The moment generating function EetX for a lognormal random variable is defined only for t ≤ 0 which is not a

problem here as t = −1.
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6 Relative comparisons of managerial inefficiency

Suppose y = F (x)ev−u(z) where x ∈ <K is a vector of inputs whose prices are w ∈ <K++and u(z) is

technical inefficiency with u′(z) < 0. We assume u(z) is a deterministic function. Under an expected

utility of real profits specification the objective of the firm is to maximize:

EU(Π), Π = F (x)ev−u(z) − w>x− ρz, (14)

for some utility function U(Π). In fact we can redefine v to be a random error in technical inefficiency.

The first order conditions are:

Fj(x) · E
{
U ′(Π)ev−u(z)

}
= wjEU

′(Π), j = 1, ...,K,

F (x)u′(z) · E
{
U ′(Π)ev−u(z)

}
= −ρEU ′(Π),

(15)

where Fj(x) = ∂F (x)
∂xj

. From these conditions, it is easy to see that Fj(x)
F1(x) =

wj
w1
, j = 2, ...,K which

implies that behavior is consistent with cost minimization. See also Kumbhakar (2002) and Kumbhakar

and Tveterås (2003). Multiplying the first set of equations by xj in (15), dividing the two equations

and summing up we have:
K∑

j=1

Fj(x)
xj
F (x)

= − 1
ρu
′(z)

K∑

j=1

wjxj . (16)

As the left-hand-side is returns to scale (RTS =
∑K
j=1

∂ logF (x)
∂ log xj

) we have the formula:

RTS

TC
= − 1

ρu
′(z), (17)

where TC is the cost of non-managerial inputs. If unit managerial compensation (ρ) is common across

firms5 then, relative to another firm “o”, we have:

u′(z)
u′o(zo)

=
RTS

RTSo

TCo
TC

. (18)

Therefore, without specifying a utility function or even the cost inefficiency function, the relative

effectiveness of managerial input (measured by u′(z)) can be determined using only cost data and

estimates of the returns to scale. The point of this construction is that features of the inefficiency

function u(z) can be recovered from the data, based on the solid microfoundation of expected utility of
5Or at least, for a common benchmark shadow value of managerial compensation.
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profit maximization but the model does not make a prediction about the distribution. To make this

point more clear we can generalize (14) as follows: Maximize EU(Π), Π = F (x)ev−u(z)ξ − w>x− ρz,

where ξ is a random error in inefficiency whose support is the positive half-line; for example ξ ∼

N+(0, 1). The first order conditions will change to RTS
TC ·

E[U ′(Π)ev−u(z)ξ]
E[U ′(Π)ev−u(z)ξξ]

= − 1
ρu
′(z). The ratio of

expectations depends on risk aversion and downside risk aversion as well as higher moments of v and

ξ along with u(z), see Kumbhakar (2002). Further analysis of this problem is beyond the scope of this

paper.

7 Concluding remarks

In this paper we provided what we believe is a correct solution to the problem of microfoundations for

stochastic frontier analysis. Contrary to Oikawa (2016) it turns out that we do not have a reason to

favor a gamma distribution for the one-sided error component of the stochastic frontier model. Another

conclusion of Oikawa (2016) is found not to hold, viz. we do need adjustment costs in the managerial

input to determine an optimal non-trivial value for the input and optimal inefficiency. Moreover,

we find that without specifying a utility function or even the cost inefficiency function, the relative

effectiveness of managerial input (measured by ∂u(z)/∂z) can be determined using only cost data and

estimates of the returns to scale. The point of this construction is that features of the inefficiency

function u(z) can be recovered from the data, based on the solid microfoundation of expected utility of

profit maximization but the model does not make a prediction about the distribution. This result is

likely to be of considerable value in the applied analysis of production and efficiency.
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Figure 1: Function V (z), case (iii) of Lemma 3

Figure 2: Function V (z), case (iv) of Lemma 3

Figure 3: Density f(u) for various values of z̃

Figure 4: Density f(u) for various values of z̃, θ̂ = 1

Figure 5: Density f(u) for various values of z̃, θ̂ = −1
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