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Abstract

This thesis reviews building blocks of the supersymmetric particle

physics models and how the Standard Model (SM) drawbacks can be

addressed within this framework. In particular, the emphasis is put

on exploring the regions, where the neutralino (χ̃0
1) dark matter (DM),

gauge invariant inflation and electroweak baryogenesis could coexist.

We chose a few benchmark points within the minimal supersymmetric

SM (MSSM) with non–universal Higgs masses to illustrate how the

allowed regions for the DM relic abundance and the particle physics

constraints could possibly pin down the masses of supersymmetric

inflaton candidates, mφ, and the vacuum expectation value (VEV)

of the inflaton field at the beginning of inflation φ0. Similarly, we

probed the MSSM augmented with singlino component, NMSSM, to

find how the requirement to achieve first order electroweak phase tran-

sition constraint NMSSM free parameters and what the subsequent

implications on the DM phenomenology and supersymmetric inflation

are.

Since certain direct detection (DD) searches hint at the light χ̃0
1 DM,

complementary studies were carried out to explore the lower bounds

on DM mass, which yielded mχ̃0
1
& 10 GeV within phenomenological

MSSM (pMSSM) and mχ̃0
1
& 1 GeV within NMSSM setup.
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Chapter 1

Introduction

One of the most successful theories in physics, the Standard Model of Particle

Physics, has recently been further bolstered by the discovery of the fundamental

Higgs scalar in the ATLAS [1] and CMS [2] detectors at the Large Hadron Collider

(LHC). However, the SM is also known to have a number of drawbacks. The origin

of neutrino masses [3, 4, 5], inflation [6, 7, 8], existence of DM [9, 10] and the

necessity of a strong first order electroweak (EW) phase transition in order to

generate matter antimatter asymmetry [11, 12] are examples where the SM fails.

Moreover, metastable EW vacuum [13], fine–tuning of the Higgs scalar mass,

strong CP problem and the smallness of the Θ parameter [14, 15] in the kinetic

gauge term of the SM Lagrangian, which is constrained by the neutron dipole

moment, render the theory even less appealing.

Probably the most compelling theory, that has a potential to resolve the

aforementioned issues, is Supersymmetry (SUSY). SUSY is a spacetime symme-

try between bosons and fermions. With the help of a fermionic SUSY generator,

every fermion (boson) of the SM is turned into boson (fermion). The emergence
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of additional degrees of freedom (d.o.f.), collectively dubbed as sparticles, have

many profound implications. They alter equations that govern the energy depen-

dence of the gauge couplings in a way that allows their unification at the GUT

scale 1. The quadratic divergences, appearing in the Higgs mass corrections due

to coupling to fermions, are cancelled by the Higgs scalar coupling to their respec-

tive supersymmetric counterparts, leaving only logarithmic corrections and thus

stabilizing its mass. The necessity to stabilize the proton against decay, leads

to the introduction of a discrete symmetry that also makes the lightest super-

symmetric particle (LSP) stable. In the regions of the parameter space of SUSY

models, where the LSP is colour and electrically neutral, it becomes a natural DM

candidate. Moreover, certain condensates made up of sparticles can be identified

as inflaton candidates.

In this thesis we concentrate on trying to explain DM, inflation and baryoge-

nesis in a coherent fashion within the SUSY framework.

• Dark Matter: The evidence for DM comes from various astrophysical observa-

tions such as the galaxy rotation curves [10], gravitational lensing [16, 17, 18],

velocity dispersion of galaxies in galaxy clusters and superclusters [19, 20, 21].

Another well known example used as a proof for DM existence is the bullet clus-

ter. It consists of two colliding galaxy clusters passing through each other. After

the collision, hot X-ray emitting gas that dominates baryonic matter in clusters

slows and separates from their respective clusters. However, the lensing maps

show that the dominant mass component remains concentrated around the galax-

ies rather than intergalactic gas [22, 23, 24]. It is important to mention though,

1The GUT scale, often denoted as ΛGUT, is the scale where the strong and EW forces are of
the same strength. In SUSY models ΛGUT ' 1016 GeV. To compare, the LHC is now probing
physics at 104 GeV.
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that lensing maps of the bullet cluster can also be explained in modified gravity

theories by scaling the gravitational constant with an interpolation function and

adding ordinary SM neutrinos of 2 eV mass as a hot DM [25]. From studies of

the cosmic structure formation on large scales it is known that the DM has to

be non–relativistic otherwise those structures either would have been washed out

during their formation or would be of a different size as compared to what we

observe [26, 27]. Here we will concentrate on the most popular DM candidate

within SUSY – the lightest neutralino χ̃0
1. There are three main methods of how

the neutralino could be detected: collider searches, direct and indirect detection

(DD/ID) experiments. Since the neutralino interacts very weakly, the sign of it

in the collider detectors would be a large missing energy. DD experiments rely

on registering very rare interactions between the DM particles and the nucle-

ons in the detector. In fact, the SI nucleon–χ̃0
1 scattering cross section can be

schematically written as σSI ∝ [fpZ + fn(A−Z)]2, where Z is atomic number of

the active material in detector, A is number of nucleons and fp(n) is the relative

coupling strength of DM to the protons (neutrons). From here follows, that in

order to have a bigger chance of interaction, large amount of active material in

the detectors is needed. Finally, the ID experiments, that are either orbit or

ground based, try to register the excesses and anomalies in the cosmic rays, such

like an increase of positrons or antiprotons, or look for the γ–rays that could be

identified as the decay or annihilation products of the DM.

• Inflation: Inflation is conceived to explain such observationally well established

facts like why our Universe is so close to flat, why the CMB is smooth to about 1

part in 100,000 even though today the size of the Hubble horizon at the time of

decoupling corresponds to ∼ 1◦ and therefore any two patches separated by larger
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angle were causally disconnected, or why we do not see the magnetic monopoles,

that are predicted by the GUT theories [6, 7, 8]. The inflaton is a scalar field

and, as such, Higgs stands out as the only viable candidate from the SM perspec-

tive. In SUSY, the inflaton scalar candidate can be identified as a condensate

of squarks or sleptons along the certain D–flat directions of the scalar potential1

[28, 29]. Lifting these flat directions by the soft breaking and non–renormalizable

terms allows one to construct an inflationary potential with an inflection point

that governs the dynamics of the inflaton in the Early Universe and yields the

right values for the cosmological observables such as: the Hubble expansion rate

of the Universe H, the amplitude of density perturbations in the CMB δH , the

spectral tilt of the CMB power spectrum ns and tensor–to–scalar ratio r.

• Baryogenesis: The necessity for BSM physics in order to explain the matter

antimatter asymmetry comes from the fact that within the SM, it requires the

Higgs to be lighter than 46 GeV [30], which is in disagreement with the experi-

mental bounds [31, 32]. Moreover, the only source of the CP–violation in SM is

the CKM (Cabibbo–Kobayashi–Maskawa) matrix [33, 34], which is not enough

to yield the total matter antimatter asymmetry. Finally, in SM framework, the

EW phase transition is not strongly first order. In this thesis we will show that

strongly first order phase transition can be achieved within NMSSM, as the new

SM gauge singlet provides more flexibility and the order parameter is then de-

termined by the singlet sector and becomes independent of the SM–like Higgs

mass.

In the collider searches, SM particles are accelerated to the high energies,

and if this would turn out to be enough to excite SUSY d.o.f. then they would

1F and D–flat directions are explained in Section 4.4.1.
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cascade decay into the lighter particles, that could be traced directly, or by the

excess of missing energy, see [35, 36, 37, 38, 39, 40, 41] and references therein.

Unfortunately, there have been no positive detection signals in the experimental

searches and, as it stands now, SUSY hasn’t been found [31, 32]. The fact that

SUSY particles haven’t been observed implies that they must be much heavier

than their SM partners. Actually, LEP (Large ElectronPositron Collider) already

ruled out sleptons lighter than ∼100 GeV, and LHC pushed the scale of squarks

up to 2 TeV 1 [42]. This in turn pushes the SUSY scale higher and makes it

a more fine–tuned theory 2. Currently, SUSY models that respect universality

conditions at the GUT scale, such as for example mSUGRA or CMSSM3, attract

less attention and those with the input at the low scale, like pMSSM (also called

SUSY without prejudice), NMSSM and others are more actively investigated.

Here we will try to build a unified picture within a SUSY framework that

would encompass DM, inflation and baryogenesis, meanwhile satisfying all known

constraints imposed by cosmology, particle physics, DD and ID experiments.

The thesis is organised in the following manner. In Chapter 2, the building

blocks of the Standard Model and the mechanism of EW phase transition are

reviewed. Besides the stunning success and predictive power of the SM, we will

also elaborate on some of the phenomena, which are already briefly mentioned

in the beginning of the introduction, as they clearly point out limitations of the

1It should be noted that the exclusion limits are often model and/or analysis dependent and
in many cases can be avoided to a certain extent. Generic bounds on the scale of SUSY are often
given within CMSSM framework. In order to simplify analysis the universality conditions and
hierarchies, especially between LSP and next–to–LSP (NLSP) are assumed. Great simplification
also can be achieved by tuning the spectrum of sparticles (like for e.g. in natural or split SUSY
cases), thus excluding many decay/annihilation channels. See for example [31, 32, 42, 43, 44, 45]
and references therein.

2A way to parametrize fine–tuning will be discussed in Section 4.4.4.
3More discussion on mSUGRA and CMSSM can be found in Section 4.5.1.
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theory. In Chapter 3, we review the standard model of cosmology, problems with

the Big Bang theory and how inflation could resolve them. In the next, Chapter

4, the theory of supersymmetry is analysed. Starting with SUSY algebra and its

implications we later move on to understand the key principles in building the

supersymmetric toy model. Afterwards, the MSSM and its various extensions and

modifications are discussed. In Chapter 5, the latest theoretical and experimental

advances in the DM searches are covered. At the end of this chapter the possibility

of light neutralino DM is explored trying to explain the positive signal claims of

some DD experiments. In Chapter 7, the gauge invariant supersymmetric inflaton

candidates are introduced. The idea of how the Higgs mass can directly pin down

the mass of the inflaton and the scale of inflation is presented and developed in

great detail. Finally, in Chapter 8, baryogenesis is discussed. The model that is

explored puts tight constraints on some of the parameters that directly control the

mass of the neutralino and the top quark mass. This immediately has many of the

phenomenological consequences, most importantly via DM relic abundance and

Higgs physics. Finally, we explore the parameter space of the next–to–minimal

MSSM, where all three phenomena: strongly first order phase transition, DM and

inflation coexist.
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Chapter 2

Standard Model of Particle

Physics

Thus far the Standard Model is one of the most successful theories in physics.

It accurately describes elementary particles and the three fundamental forces

– strong, weak and electromagnetic, that govern the interactions amongst the

matter particles. The SM model is constructed by collecting all the renormalizable

terms in the Lagrangian, which respect invariance under the Lorentz symmetry

and the postulated SU(3)c × SU(2)L × U(1)Y gauge group transformations [46,

47, 48]. In principle, non–renormalizable terms could also be added, but they

would not bear any phenomenological contribution at the low scale due to their

suppression by 1/Λn prefactor, where Λ is the scale of new physics and n can

be determined by power counting. Some of the biggest successes of the SM are

the prediction of the muon anomalous magnetic moment, the existence of the

top quark, τ neutrino, and the recently discovered Higgs scalar. Nevertheless, by

now there is plenty of evidence that this is just an effective theory and that a
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2.1 Constructing the Standard Model

more fundamental one should be realised in nature [49, 50]. In this chapter, we

will review the building blocks of the SM, the mechanism of the EW symmetry

breaking, how radiative corrections can break the symmetry and observations

that are difficult or even impossible to explain within SM framework.

2.1 Constructing the Standard Model

The gauge group of a SM model is SU(3)c × SU(2)L × U(1)Y . The SU(3)c sym-

metry controls interactions of the coloured particles and thus describes quantum

chromodynamics and the SU(2)L×U(1)Y refers to the EW part that gets broken

during EW symmetry phase transition in the following manner:

SU(2)L × U(1)Y → U(1)em. (2.1)

Index L means that the nature differentiates between left and right handed parti-

cles. In other words, the LH fermions are assigned the so called weak isospin quan-

tum number and transform non–trivially under the weak interactions whereas the

RH fermions are treated as singlets. To accommodate this experimentally well

established fact the particle content of the standard model is chosen to be:

Qi,L =

(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)
,

ui,R = uR, cR, tR,

di,R = dR, sR, bR,

Li,L =

(
νe,L
eL

)
,

(
νµ,L
µL

)
,

(
ντ,L
τL

)
,

ei,R = eR, µR, τR,

(2.2)
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2.1 Constructing the Standard Model

where subscripts L and R show the handedness of a particle and i = 1, 2, 3 denotes

generation indices. The SU(N) group has N2− 1 generators, and thus the gauge

fields corresponding to each generator of SU(3)c × SU(2)L × U(1)Y are:

SU(3)L → G1
µ, G

2
µ, ...G

8
µ,

SU(2)L → W 1
µ ,W

2
µ ,W

3
µ ,

U(1)Y → Bµ.

(2.3)

The field strength tensors take the following form:

Gi
µν ≡ ∂µG

i
ν − ∂νGi

µ + g3f
abcGb

µG
c
ν ,

W i
µν ≡ ∂µW

i
ν − ∂νW i

µ + g2f
abcW b

µW
c
ν ,

Bµν ≡ ∂µBν − ∂νBµ.

(2.4)

The last terms in Gi
µν and W i

µν arise from the fact that unlike Bµν those fields

are non–Abelian. Complete SM Lagrangian can be split into the following parts:

LSM = Lgauge + Ldynamical + LYukawa + LHiggs, (2.5)

where Lgauge is the gauge kinetic term, Ldynamical describes matter particles’ inter-

actions with gauge bosons, LYukawa generates masses of the fermions and LHiggs

is responsible for generating masses for gauge bosons and the Higgs scalar itself.

The gauge kinetic term then has the form:

Lgauge = −1

4
BµνB

µν − 1

4
W l
µνW

l,µν − 1

4
Gk
µνG

k,µν , (2.6)

where l = 1, 2, 3 and k = 1, 2, ...8. The field strength tensors can be constructed

using covariant derivatives in the following relation:

Fµν = − i
g

[Dµ, Dν ]. (2.7)
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2.2 The Higgs mechanism

The coupling of matter fields to gauge bosons occurs through the kinetic terms

of the form Ldynamical ⊃ iΨ̄ /DΨ, where Ψ̄ = Ψ†γ0 is the Dirac adjoint, Ψ denotes

the particles listed in 2.2 and /D ≡ γµDµ. In the Weyl or chiral basis γµ is written

as:

γµ =

(
0 σµ

σ̄µ 0

)
. (2.8)

Dµ is called the covariant derivative whose form depends on the handedness of Ψ

and the quantum numbers under which it is charged, for eg:

Dµ

(
νe,L
eL

)
=

[
∂µ − ig2

σa

2
Wa

µ − ig1YLBµ

](
νe,L
eL

)
,

DµeR = [∂µ − ig1YeBµ]eR,

with YL = −1/2 and Ye = 1. Another important part of the SM Lagrangian is

the portion that contains Yukawa terms. Once the Higgs field develops a VEV,

fermions acquire mass proportional to Yukawa coupling of the form LYukawa ⊃

yΨ̄HΨ, where H is the SU(2)L Higgs doublet, H = 1√
2

(
H+

H0

)
.

2.2 The Higgs mechanism

The Higgs field H is a complex SU(2) doublet with 4 degrees of freedom. After

EW symmetry breaking, three of them are absorbed to give the masses for the

W± and Z bosons, while the remaining d.o.f. is just an ordinary Higgs [51, 52, 53].

The Lagrangian of the Higgs field H is made of a kinetic and potential terms and

can be written as:

LHiggs = (DµH)†(DµH)− V (H), (2.9)
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2.2 The Higgs mechanism

Figure 2.1: EW symmetry is unbroken if µ > 0 in the Higgs potential (red) and
it is broken if µ < 0 (blue) [51].

where:

V (H) =
1

2
µ|H|2 +

λ

4
|H|4, (2.10)

and Dµ is the covariant derivative for the Higgs doublet:

Dµ → ∂µ − ig2
σa

2
Wa

µ − i
g1

2
Bµ, (2.11)

where σa are the Pauli matrices – generators of a SU(2) group. Vector boson

masses arise from the kinetic part of Eq. (2.9) which can be expanded as:

|DµH|2 = |(∂µ − ig2
σa

2
Wa

µ − i
gY
2
Bµ)|2

=
1

2

∣∣∣∣(∂µ − i
2
(g1W

3
µ + g2Bµ) − ig1

2
(W 1

µ − iW 2
µ)

− ig1

2
(W 1

µ + iW 2
µ) ∂µ + i

2
(g1W

3
µ − g2Bµ)

)(
0

v +H

)∣∣∣∣2
=

1

2
(∂µH)2 +

1

8
g2(v +H)2|W 1

µ + iW 2
µ |2 +

1

8
(v +H)2|g2W

3
µ − g1Bµ|2.

(2.12)

Expressing vector bosons W± as:

W±
µ =

1√
2

(W 1
µ ∓W 2

µ), (2.13)
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2.3 Effective potential

their masses become mW± = g2v
2

. The fields W 3
µ and Bµ mix amongst themselves

to produce a neutral Zµ boson and a photon Aµ:

(
Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ

W 3
µ

)
, (2.14)

or:

Aµ = cos θWBµ + sin θWW
3
µ ,

Zµ = − sin θWBµ + cos θWW
3
µ ,

(2.15)

where θW is the Weinberg or weak mixing angle which at the scale of MZ in

modified minimal subtraction scheme (MS) is given as sin2 θW = 0.23126±0.00005

at 1σ confidence level [54]. Writing

cos θW =
g2√
g2

2 + g2
1

and sin θW =
g1√
g2

2 + g2
1

, (2.16)

from Eq. (2.12) one can see that the field Zµ can be written as Zµ = 1√
g2
2+g2

1

(g2W
µ
3 −

g1Bµ) and acquires mass mZ =
√
g2

2 + g2
1
v
2
, while the Aµ remains massless.

2.3 Effective potential

In the next four sections, we will explore how quantum corrections can be re-

sponsible for symmetry breaking. In order to do this, we introduce the concept

of an effective potential, along with techniques, which will prove useful at the

evaluation stage. Afterwards, a one–loop correction to the tree level potential of

the massless φ4 scalar theory will be calculated. Finally, the necessity of renor-

malization group equations (RGE) in computing the potential will be explained.
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2.4 Functional methods in QFT

In these sections, discussions from refs. [55, 56, 57, 58] are closely followed.

2.4 Functional methods in QFT

This part of discussion gives a short overview of the functional methods that

are used in quantum field theory while discussing transition amplitudes and the

effective potential.

The vacuum to vacuum amplitude in presence of external sources, J(x), can

be calculated using generating functional of correlation functions, Z[J ]:

〈φ(x1)...φ(xn)〉 =
(−i)n

Z[J ]

δnZ[J ]

δJ(x)1...δJ(xn)

∣∣∣∣
J=0

, (2.17)

where the current J ≡ J(x) is a source for the field φ(x) and Z[J ] has a standard

path integral representation. Generating functional for connected correlation

functions, W [J ], is related to Z[J ] via:

W [J ] = −i lnZ[J ]. (2.18)

The effective action is then defined as a Legendre transformation:

Γ[φc] = W [J(x)]−
∫
J(x)φc(x)d4x, (2.19)

where a classical expectation value of φ(x) in the presence of the source J(x) is

defined as:

φc(x) ≡ δW [J(x)]

δJ(x)
. (2.20)

13



2.4 Functional methods in QFT

Variation of Γ[φ] with respect to the field can then be calculated to be:

δΓ[φc(x)]

δφc(x)
=
δW [J(x)]

δJ(x)

δJ(x)

δφc(x)
− J(x)

δφc(x)

δφc(x)
− φc(x)

δJ(x)

δφc(x)
= −J(x). (2.21)

From here we see that in the absence of external sources, i.e. when J(x) = 0, we

have that:

δΓ[φc(x)]

δφc(x)
= 0. (2.22)

The functional Γ[φc(x)] can be expanded in a following way [55, 56, 57]:

Γ[φc(x)] =

∫
d4x[−Veff(φc(x)) +X(φc(x))(∂φc(x))2 + Y (φc(x))(∂φc(x))4 + ...].

In the translational invariant theory (i.e. φc(x) is constant) the terms containing

derivatives vanish and we are left with:

Γ[φc(x)] = −
∫
d4x[Veff(φc(x))]. (2.23)

Using condition in Eq. (2.22) leads to:

δΓ[φc(x)]

δφc(x)

∣∣∣∣
J(x)=0

= 0 = −V ′eff(φc(x)). (2.24)

Therefore, we see that a VEV of a field φc(x) can be found by minimizing Veff

which is then nothing else but the effective potential. Another way to expand

effective action is to write [55, 56, 57]:

Γ[φc(x)] =
∞∑
n=0

1

n!

∫
d4x1...d

4xnφc(x1)...φc(xn)Γ(n)(x1...xn), (2.25)

where Γ(n) is the sum of all one particle irreducible graphs i.e. Feynman diagrams
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2.5 One–loop effective potential

that cannot be split in two by cutting a single propagator line. Fourier trans-

forming Γ(n)(x1...xn) and using the definition of Dirac delta function one arrives

at [55]:

Γ[φc(x)] =
∞∑
n=0

1

n!
φnc (x)Γ(n)(pi = 0)

∫
d4x. (2.26)

Comparing this to the expression in Eq. (2.23) it is easy to see that effective

potential can be calculated using:

Veff(φc(x)) = −
∞∑
n=0

1

n!
φnc (x)Γ(n)(pi = 0). (2.27)

2.5 One–loop effective potential

In this section, we will calculate the one–loop contribution to the effective poten-

tial for the φ4 theory, whose Lagrangian density is given by:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

4!
φ4, (2.28)

where the non–derivative part is the negative tree level potential of the φ4 theory,

−V0(φc). One particle irreducible diagrams at one–loop level are depicted in Fig.

2.2. In order to summate diagrams, we need to recall the Feynman rules for the

scalar theory. The n–th diagram has n propagators and vertices. Propagators

contribute: ∫
d4p

(2π)4

(
i

p2 −m2 + iε

)n
. (2.29)

For n vertices we have a factor (−iλ/2)n where the 2 in the denominator is a

combinatorial factor, due to the fact that the diagram remains the same when two

external legs are interchanged. Then there is then a symmetry factor of 1/(2n),
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2.5 One–loop effective potential

Figure 2.2: Diagrams contributing to the one–loop effective potential in the φ4

theory [57].

as external legs can start anywhere on a circle. The factor (2n)! arises because

there are precisely that many ways to reshuffle 2n legs on a circle. Therefore,

Γ(2n)(p = 0) can be expressed as:

Γ(2n)(p = 0) =
(2n)!

(2n)

∫
d4p

(2π)4

(
λ/2

p2 −m2 + iε

)n
. (2.30)

Inserting this into the expression for the effective potential and using Taylor series

expansion for ln(1− x):

−
∞∑
n=1

xn

n
= ln(1− x) with x ≡ λφ2

c/2

p2 −m2 + iε
, (2.31)

we have:

V1(φc) = −
∞∑
n=1

1

(2n)!
Γ(2n)(p = 0)φ2n

c

= i
∞∑
n=1

1

(2n)!

(2n)!

(2n)

∫
d4p

(2π)4

(
λφ2

c/2

p2 −m2 + iε

)n
= i

∞∑
n=1

1

2n

∫
d4p

(2π)4

(
λφ2

c/2

p2 −m2 + iε

)n
= − i

2

∫
d4p

(2π)4
ln

(
1− λφ2

c/2

p2 −m2 + iε

)
.

(2.32)
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2.5 One–loop effective potential

With the help of a Wick rotation, the four momentum in Euclidean space can be

expressed as pE = (−ip0,p) which implies that pµp
µ = p2 = (p0)2 − p2 = −p2

E

(where (-,+,+,+) metric signature in Minkowski space is assumed). Inserting this

into expression for the one–loop contribution to the effective potential one arrives

at:

V1(φc) =
1

2

∫
d4pE
(2π)4

ln

(
1 +

λφ2
c/2

p2
E +m2

)
. (2.33)

A φc–dependent effective mass can be calculated from Eq. (2.28):

m2(φc) =
d2V0(φc)

dφ2
c

= m2 +
λ

2
φ2
c . (2.34)

Substituting it back to Eq. (2.33) and dropping the subscript ”E”, the one–loop

correction to the effective potential looks like:

V1(φc) =
1

2

∫
d4p

(2π)4
ln(p2 +m2(φc)), (2.35)

where the fact that p2 +m2(φc)− λφ2
c/2 = 0 with p2 = −m2 has to be used.

2.5.1 Renormalization of the effective potential

In this section, we will analyse a renormalization of the one-loop effective po-

tential for a massless φ4 theory, in order to see how radiative corrections can be

responsible for symmetry breaking. We start by writing a Lagrangian for a quar-

tically interacting massless scalar particle, which includes the renormalization

counterterms:

L =
1

2
(∂µφ)(∂µφ)− λ

4!
φ4 +

A

2
(∂µφ)(∂µφ)− B

2
φ2 − C

4!
φ4, (2.36)
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2.5 One–loop effective potential

where A, B, C are the counterterms for the field, mass and coupling renormal-

ization respectively.

The first step in the calculation is to integrate the expression (2.35) from zero

to infinity. The problem though is that this integral is ultraviolet divergent. The

standard approach is to first regularize the theory by integrating the integrand

up to a cut–off scale p2 = Λ2. We then take the limit Λ → ∞, resulting in the

Λ–dependent terms being absorbed into counterterms.

By using several integral identities and neglecting the vanishing terms when

Λ→∞, the effective potential in Eq. (2.35) becomes [57]:

V1(φc) =
m2(φc)

32π2
Λ2 +

m4(φc)

64π2

(
ln
m2(φc)

Λ2
− 1

2

)
. (2.37)

Using Eq. (2.34) to replace m2(φc) in the above expression the total one–loop

effective potential including counterterms becomes:

V (φc) =
B

2
φ2
c +

λ+ C

4!
φ4
c +

λΛ2

64π2
φ2
c +

λ2φ2
c

256π2

(
ln
λφ2

c

2Λ2
− 1

2

)
. (2.38)

As mentioned in the beginning of this section, we are analysing the φ4 theory

for a massless scalar particle. As such, a renormalization condition for a mass,

evaluated at renormalization scale φc = 0, should be zero, i.e.

m2(φc) =
d2V (φc)

dφ2
c

∣∣∣∣
φc=0

= 0. (2.39)

It is easy to see from Eq. (2.38), only the first and third terms contribute, giving

B = − λΛ2

32π2
. (2.40)
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2.5 One–loop effective potential

Because of the logarithm behaviour, we can not choose the renormalization scale

for λ at φc = 0, however, we can choose an arbitrary scale µ̂ such that

d4V (φc)

dφ4
c

∣∣∣∣
φc=µ̂

= λ. (2.41)

The choice of µ̂ only changes how the coupling of λ is defined at a particular

renormalization scale. However, it does not affect physics. The above condition

implies that

C = − 3λ2

32π2

(
ln

λµ̂

2Λ2
+

11

3

)
. (2.42)

Substituting Eqs. (2.40) and (2.42) into the (2.38), gives the expression for the

renormalised effective potential up to one–loop level:

V (φc) =
λ

4!
φ4
c +

λ2φ2
c

256π2

(
ln
φ2
c

µ̂2
− 25

6

)
. (2.43)

For very small values of φc, ln φ2
c

µ̂2 becomes large and negative, φc acquires non–

zero VEV and thus the symmetry gets broken by radiative corrections. Clearly,

the minimum of this potential is no longer at φc = 0 as it was in the classical

case, however, we can not use this equation to find a VEV of a field. The reasons

will be discussed in the next section.

To see that the renormalization scale is an arbitrary parameter that does not

affect physics, we can choose to define the coupling λ at a different scale µ̂′:

λ′ =
d4V (φc)

dφ4
c

∣∣∣∣
φc=µ̂′

= λ+
3λ2

16π2
ln
µ̂′

µ̂
. (2.44)

Repeating the same steps as above, it is easy to confirm that the potential main-
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2.5 One–loop effective potential

tains the same functional form:

V (φc) =
λ′

4!
φ4
c +

λ′2φ2
c

256π2

(
ln
φ2
c

µ̂′2
− 25

6

)
, (2.45)

up to O(λ3), which must be small for the perturbative expansion to be valid.

2.5.2 Renormalization group equations

In this section, we will further explore the validity of the one–loop effective po-

tential expression given by Eqs. (2.43, 2.45). A loop expansion is an expansion

in powers of α ≡ g2

4π
, where in our case g2 = λ. In general, n–loop diagrams will

have a prefactor of αn+1. However, loop expansions also bring in a factor of ln φ2
c

µ̂2

for each loop. Therefore, an n–loop expansion will have a prefactor of

αn+1

(
ln
φ2
c

µ̂2

)n
. (2.46)

In order for the perturbative expansion to be valid, the product in the above

equation (and not just αn+1 alone) has to be less than unity. The renormaliza-

tion scale can always be chosen in such a way that αn+1

(
ln φ2

c

µ̂2

)n
� 1, or even

zero, but then the expression for the potential will only be valid around a par-

ticular scale φc = µ̂. The potential can be improved using renormalization group

equations in such a way that it would be valid over a wide range of renormaliza-

tion scales. In mathematical language, this simply means satisfying the condition

dV/d ln µ̂ = 0. Using the chain rule this condition can be expanded as [56]:

(
µ̂
∂

∂µ̂
+ β

∂

∂g
+ γφc

∂

∂φc

)
V (φc) = 0, (2.47)
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2.5 One–loop effective potential

where β = µ̂∂gi
∂µ̂

, gi is a coupling, and γ is an anomalous dimension, parametris-

ing how field normalization changes with µ̂. Further calculations are usually

performed by firstly making the following redefinitions [55, 56]:

β̄ ≡ β

(1 + γ)
, γ̄ ≡ γ

(1 + γ)
,

t ≡ ln

(
φc
µ̂

)
⇒ ∂

∂t
= −µ̂ ∂

∂µ̂
.

(2.48)

Noting that the improved potential after renormalization must still be propor-

tional to φ4, we can make the following factorization

V (φc) = f(λ, t)
φ4
c

4!
. (2.49)

Plugging this into Eq. (2.47) and using the redefinitions we have [55, 56]:

(
− ∂

∂t
+ β̄

∂

∂λ
+ 4γ̄

)
f(λ, t) = 0. (2.50)

Similarly, as we have a condition for the potential from Eq. (2.47), there is an

analogous condition for the wave function renormalization, which reads as [55]:

(
− ∂

∂t
+ β̄

∂

∂λ
+ 2γ̄

)
Z(λ, t) = 0. (2.51)

Combining the condition f(λ, 0) = λ in Eq. (2.50) with the standard condition for

wave function renormalization Z(λ, 0) = 1 in Eq. (2.51), we arrive at expressions

for the beta function and the anomalous dimension:

β̄ =
∂

∂t
f(λ, t)− 4γ̄λ, and γ̄ =

∂Z(λ, 0)

2∂t
. (2.52)
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The solution of Eq. (2.50) has a form of:

f(λ, t) = g(λ′(λ, t))exp

(
− 4

∫
γ̄(λ′(λ, t))dt′

)
. (2.53)

Again, using the fact that f(λ, 0) = λ and recalling that f(λ, t) is the fourth

derivative of an effective potential, we find g(λ′(λ, t)) = λ′(λ, t). As the solution

of Eq. (2.51) takes the form:

Z(λ, t) = exp

(
− 2

∫
γ̄(λ′(λ, t))dt′

)
, (2.54)

Eq. (2.53) can now be rewritten in a much more compact form:

f(λ, t) = λ′(λ, t)Z2(λ, t). (2.55)

This then can be used in Eq. (2.49) to write down the RGE–improved one–loop

effective potential.

It can be shown that one–loop corrections to the wave function normalization

yields Z = 1 [55]. Therefore, since anomalous dimension is proportional to the

∂Z/∂t, we get γ̄ = 0. To find λ′(λ, t) one first has to calculate the beta function.

One way to do this is to use Eqs. (2.52) with γ̄ = 0, f(λ, t) = dV
dφ4
c

and the potential

from Eq. (2.45). The other way is to note that β(λ) was already calculated in

the previous section and is given by Eq. (2.44). With a definition of t in mind,

the beta function can be rewritten as:

β̄ =
dλ′

dt
=

3λ′2

16π2
. (2.56)
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This equation has the solution:

λ′(λ, t) =
λ

1− 3λt
16π2

. (2.57)

Therefore, the improved effective potential is:

V (φc) = λ′(λ, t)Z2(λ, t)
φ4
c

4
=

(
λ

1− 3λt
16π2

)
φ4
c

4
. (2.58)

This potential is now valid for all t as long as t 6= 16π2

3λ
, and can be used to

determine VEV of φc.

2.6 Problems of the Standard Model

2.6.1 Vacuum stability

One of the potential problems in the SM is the vacuum stability. If at some

energies, because of it is running, parameter λ develops negative value anywhere

below the Planck scale, then this means that the Higgs potential is unbounded

from below and that the vacuum of the SM is not stable. The reason for the λ

to become negative are the Yukawa couplings of the fermions (and in particular

that of the top quark) to the Higgs which give the negative contribution. Within

SM, λ’s value at any energy scale µ is [13]:

λ(µ) ≈ λ(ΛEW ) +

(
1

16π2
β

(1)
λ +

1

(16π2)2
β

(2)
λ

)
log

(
µ

ΛEW

)
. (2.59)

One and two loop beta functions of the Higgs self–coupling are functions of
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2.6 Problems of the Standard Model

Figure 2.3: Left panel: Evolution of Higgs quartic coupling with varying mt, mh

and αs ≡
g2
3

4π [13]. Right: Stability regions of the Standard Model. The box shows
latest measurements of mt, mh and αs values.

various (gauge and Yukawa) couplings and most importantly, the top Yukawas 1.

The running of the λ is depicted in Fig. 2.3 left panel. Given the experimental

mass of the Higgs, we see, that up to a 3σ level, λ turns negative at around 108

GeV. However, it remains very small all the way up to the Planck scale. This in

turn implies a large lifetime for tunnelling from false to global vacuum since the

probability scales as [59]:

P ∼ e
1
λ .

It is also interesting to note, that as it can be seen from Fig. 2.3 right panel, we

live very close to the stable vacuum of SM, however given all experimental and

theoretical errors, the possibility of actually living there is excluded at 98% C.L.

1βg is the function that describes how the strength of the coupling g varies at different

energy scales µ and is defined to be βg ≡ µ ∂g∂µ = ∂g
∂(log µ) . In this case, the equations for β

(1)
λ

and β
(2)
λ delineate the running of the Higgs quartic coupling λ at one and two loop level. The

functional form of them within the SM framework can be found in [61].
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2.6 Problems of the Standard Model

[13]. It can be shown, that the Higgs mass bound for the absolute stability up to

the Planck scale can be written as [60]:

mh(GeV) > 129.4 + 1.4

(
mt(GeV)− 173.1

0.7

)
− 0.5

(
αs(Mz)− 0.1184

0.0007

)
. (2.60)

All this assumes no extra physical ingredients, other than just the SM itself, all

the way to the Planck scale.

2.6.2 Hierarchy problem

In the SM the masses of the fermions are protected by the chiral symmetry and

the masses of the bosons by the gauge symmetry. However, one of the main

motivations for extensions beyond the standard model (BSM) is that the scalars

get large radiative corrections that are quadratically divergent and there is no

symmetry within SM to stabilize it. For example the correction to the Higgs

mass in the SM can be expressed like [62, 63, 64]:

δm2
h = −|yt|

2

8π2
(Λ2

UV + ...) (2.61)

where yt is top Yukawa coupling. Taking ΛUV up to the scale where the new

physics is expected to kick in, i.e. ΛUV ∼ M2
Pl, where MPl is the reduced Planck

mass and MPl ≡ 1√
8πG

= 2.44 × 1018 GeV, the renormalised Higgs mass m2
h can

be written as:

m2
h = m2

h tree + δm2
h 1-loop + ... = 1036 GeV2 − 1036 GeV2 ≈ (125 GeV)2. (2.62)
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This is an extremely fine tuned scenario, requiring the precision roughly of the

order of O(102 GeV)
O(1018 GeV)

∼ O(10−16 GeV). Ideally, a stabilizing mechanism should

be realised in nature in order to explain the Higgs scalar’s mass avoiding large

cancellations and, as we will show in Chapter 4, SUSY offers an excellent solution

by introducing the new d.o.f., which cancel the quadratic corrections, leaving only

logarithmic ones.

2.6.3 Dark Matter

Dark Matter is one of the biggest puzzles of modern physics. The presence of

large amounts of non–luminous matter initially has been traced by studying the

Coma cluster [9], and observing the galaxy rotation curves [10].

If luminous matter would be all what galaxies are made of, then from the

Newtonian dynamics the orbital velocity of the stars around the galactic centre

should scale down with increasing distance r as:

v =

√
GM(r)

r
, (2.63)

where M(r) is the mass enclosed within radius r. However, it was found, that

up to a leading order, v is independent of r, which could only be explained by

the presence of DM [10]. In the case of galaxy (super)clusters, relevant quantity

relating amount of the DM in (super)cluster and kinematics of separate galaxies

within it is galaxies’ velocity dispersion. That is because usually (super)clusters

are not relaxed systems and thus can be decomposed into smaller individual sub-

clusters each having its own peculiar rotational velocities [19, 20, 21]. Yet another

hint of large amounts of DM comes from the gravitational lensing experiments
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[16, 17, 18]. In these experiments the lensing of the light coming from the back-

ground source is found to be much larger than one would expect if the massive

object, that acts as a lens, would be made up of the luminous matter only.

There is observational evidence, which comes from the bullet cluster, that the

DM has a particle–like nature [18]. The bullet cluster consists of the two galaxy

clusters colliding at the speed of 4500 km/s [22, 23, 24]. The analysis based on

the gravitational lensing techniques enabled to find the spatial offset between

the baryonic and remaining matter which, as argued in Ref. [18], could not

be explained by modifying the gravity. The X-ray data of the merger revealed a

bullet like structures of the interstellar gas exiting the site of the collision, whereas

the DM clump lies well ahead of the visible matter and remained largely intact

[22, 23, 24]. As it was already mentioned in the introduction, from the analysis

of the primordial density fluctuations of the CMB we know that the majority of

the DM has to be non–relativistic i.e. mDM & T [26, 27, 65]. In fact, at the

time when the DM species stopped annihilating in the Early Universe, according

to the WIMP (Weakly Interacting Massive Particle) miracle scenario, which is

discussed in Section 5.1, the ratio mDM
T

was around 20-25 [66]. It should be noted

though, that there are three memorable cases: annihilations, coannihilations and

thresholds when this calculation is not valid [67]. We will discuss these cases in

more detail at the end of Section 5.3.

However, there are no good candidates in the SM: we know that DM particle

has to be electrically and colour neutral, it also should be either stable, or has to

have lifetime longer than the age of the Universe. The neutrinos, otherwise an

excellent candidate, are simply not abundant enough, and all this conclusively

rules out all SM particle content.
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2.6.4 Baryogenesis in the Standard Model

The fact that our Universe is mainly made of matter and not antimatter is puz-

zling since one would expect that during the Big Bang equal amounts of both were

be produced. In order to generate this asymmetry, three conditions, conceived

by Sakharov, have to be met [11]: baryon number (B) violation, charge (C) and

charge-parity (CP ) violation, and the out-of-equilibrium condition. Even though

in the SM these conditions in principle are present, there are still a number of

obstacles remaining that point towards the BSM physics. Firstly, the require-

ment for successful baryogenesis within SM puts an upper bound on the Higgs

mass mh ≤ 40 GeV [30], which is inconsistent with experimental results [1, 2].

The second problem is related to sphalerons and how they erase baryon asymme-

try. Electroweak sphaleron is an unstable static solution of equations of motion

for the SU(2)L gauge and Higgs fields 1 [68, 69, 70]. Sphalerons mediate transi-

tions between topologically different vacuum states characterised by the winding

number with an energy barrier height (also called sphaleron barrier) being ∼ 10

TeV [70]. At low temperatures these transitions are exponentially suppressed and

proceed via instanton quantum tunnelling whereas at finite temperatures classi-

cal thermal fluctuations rather than quantum tunnelling are responsible for the

transitions over sphaleron barrier. Because of the chiral anomaly and vacuum

structure of SU(2)L gauge fields, baryons and leptons are transformed into each

other via sphaleron transitions and if they are frequent enough any baryon asym-

metry would be wiped out. As a thermal fluctuation triggers a transition of the

Higgs VEV to a non–zero value, bubbles of the broken phase grow in the other-

wise symmetric Universe. The C and CP violating processes near the bubble

1Sphalerons and B +L violation in the SM will be discussed in greater detail in Chapter 8
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wall create the asymmetry between LH (and RH) fermions and their respective

antiparticles. LH fermions then affect the B+L creation through sphaleron tran-

sitions in the symmetric phase, just outside the wall. For the anomalous B + L

violating processes to deviate from the equilibrium near the bubble walls, the

EW phase transition has to be of first order. Once the asymmetry enters the

expanding bubble, B + L violation is suppressed by the sphaleron mass and the

asymmetry is preserved. Looking from the SM model perspective, as the Higgs

field rolls to its minimum from 0 GeV to 246 GeV, the typical timescale τ for the

transition is [71]:

τ ∼ 1

H
∼ MPl

T 2
∼ 1017

T
, (2.64)

where H is the Hubble expansion rate, defined in Section 3.1, and T is the tem-

perature of the Universe in [GeV] units at the time when the phase transition hap-

pened. Taking T w 100 GeV, one gets τ ∼ 1015 GeV−1, while typical relaxation

timescales in plasma at this temperature is many orders faster – τrelax. ∼ O(102)

GeV−1 [72, 73, 74]. Finally, the only source of the CP violation in SM are the

phases in CKM matrix [33, 34], however, these are not enough and additional

contributions are needed.

2.6.5 Strong CP problem

The CP violation can be experimentally studied in a variety of processes including

hadron decays, electric dipole moments of neutron, electron and atomic nuclei.

CP violating effects in weak interactions were first observed in kaon’s hadronic

decays to pions. There are two neutral kaon states – CP–even and CP–odd. In

order to conserve CP, the CP–odd kaon has to decay into three pions whereas
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CP–even kaon has to decay into two pions. However, it was observed that around

1 in 500 CP–odd kaons decay in the CP–even state of two pions, thus violating the

CP invariance [75]. The CP symmetry is also violated in the kaon’s semileptonic

decays – decay rate of the long lived kaon, K0
long (K0

long ≡ ds̄+sd̄√
2

), to π−e+νe

is larger than the decay rate to π+e−ν̄e [76]. In addition, the CP violation is

observed in neutral kaon oscillations, by which K0 turns into it’s antiparticle K
0

via weak interactions and where the CP violation implies that Γ(K0 → K
0
) 6=

Γ(K
0 → K0). Similar violations are observed in B mesons, see [77, 78, 79, 80, 81]

and references therein.

However, even though there is the term in the SM QCD sector which is allowed

by the Lorentz and gauge invariance and which does violate the CP transforma-

tion:

LQCD ⊃ Θ̄
g2

32π2
Ga,µνG̃a

µν , (2.65)

where G̃µν = 1
2
εµνρσG

ρσ and the parameter Θ̄ in the range [0 : 2π], the CP

symmetry in strong interactions is not violated as badly as in the weak sector.

If CP would be violated in QCD, neutron would have many orders of magnitude

larger electric dipole moment in comparison with experimental observations. In

order to comply with experimental bounds on the neutron dipole moment, the

parameter Θ̄ is required to be |Θ̄| ≤ 3 × 10−10 [82]. The fact that it is so small

is known as the strong CP problem. As we will discuss later in Section 5.2, the

attempt to dynamically generate small value of Θ̄ gives rise to a new scalar axion

field, which becomes a plausible DM candidate [14].
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2.6.6 Origin of neutrino masses

In the SM, neutrinos are treated as massless particles. However, in 1998 Super–

Kamiokande collaboration observed the deficit of the muon neutrinos in the at-

mospheric neutrino flux as compared to the theoretical expectations [3]. The

shortage of νµ in the experimental data could be explained if one would allow

for the flavour mixing, but this could only happen if the neutrinos would be

massive. In fact, the data could be explained if the mass splitting between the

νµ and ντ would be 5 × 10−4 < ∆m2 < 4 × 10−3 eV2 [3]. Another experiment,

called Homestake, was designed to look for solar neutrinos. According to the

theoretical models, a large flux of νe is produced in the proton–proton chain re-

actions. However, the Homestake detected only a third of what was expected

[4, 5]. The lack of the νe can be explained if the electron neutrino changes its

flavour and is therefore massive. Actually, the upper bound on the sum over all

generations of the neutrino masses is derived from the analysis of photometric

redshift catalogue of over 700 000 galaxies combined with the data from WMAP

5 year CMB fluctuations, baryon acoustic oscillations, type Ia supernovae and

Hubble space telescope’s prior on the Hubble parameter [83]. At 95% confidence

level this bound is set to be:

∑
i

mνi ≤ 0.28 eV, (2.66)

where i = e, µ, τ . In order to make neutrinos massive one has to go beyond the

SM. The most popular models explaining origin of neutrino masses are type I

[84, 85], II [86, 87, 88, 89] and III see–saw [90] mechanisms.
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Chapter 3

Standard Model of Cosmology

According to the latest Planck data, assuming the Standard Model of Cosmology,

our Universe started from a singularity around 13.813±0.058 (at 68% C.L.) billion

years ago [91]. After the Big Bang, the main epochs that the Universe is thought

to have undergone are: 1) Inflation – the short period of time when the total

energy density of the Universe, ρ, was dominated by the VEV of the inflaton

field. 2) Radiation epoch – the period when the radiation energy density was the

biggest. 3) Matter domination epoch, which started when the radiation energy

density, which as the Universe expands decreases faster than that of the matter,

dropped below ρmatter. 4) Λ dominated epoch – the period when the radiation

and matter got diluted and the main contribution then comes from the negative

pressure of the vacuum which makes the Universe expand at an accelerating rate.

The ΛCDM model is the one that best explains the Universe as we see it, i.e.

the primordial perturbations of the CMB formation [26, 65], BBN [92, 93, 94],

accelerating expansion that has been detected by observing type Ia supernovae

[95, 96, 97]. The model is defined by 6 input parameters: the amplitude of
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3.1 Dynamics of the Universe

the primordial perturbations, δH , the spectral tilt, ns, which we will define later

in Eqs. (3.46) in (3.48) respectively, baryon density, DM density, dark energy

density, and Thomson scattering optical depth due to reionization. According

to the Planck data based Monte Carlo simulations, which is run to fit these six

parameters as best as it is possible, dark energy constitutes 68.3%, DM 26.8%

and baryonic matter 4.9% of the total energy density budget of our Universe [91].

In this chapter we will briefly review the dynamical equations which govern the

evolution of the Universe and how they arise from the theory of general relativity

(GR) [98]. Later we will review some problems of the Big Bang model and how

inflation in the Early Universe could resolve them.

3.1 Dynamics of the Universe

Observational evidence show that our Universe is isotropic and homogeneous on

cosmological scales. The FRW metric for the homogeneous and isotropic Universe

reads [99, 100, 101]:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (3.1)

where k is the curvature parameter taking values +1, 0 or -1 depending on whether

our Universe is open, flat or closed respectively. Obviously, the entries of the

metric tensor are:

gµν = diag

(
1,− a2(t)

1− kr2
,−a2(t)r2, a2(t)r2 sin2 θ

)
. (3.2)
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Here µ, ν = 0, 1, 2, 3 are the four vector components. The space–like part of it

is usually denoted by Latin letters i and j, and take one of the following values

i, j = 1, 2, 3. With the help of gµν , one can find that the only non–zero Ricci

tensors for the FRW metric are [102]:

R00 = −3
ä

a
,

Rij = −
(
ä

a
+ 2

k

a2
+ 2H2

)
,

(3.3)

and the Ricci scalar:

R = −6

(
ä

a
+
k

a
+ H2

)
. (3.4)

H denotes the Hubble expansion rate and is defined to be H ≡ ȧ
a
, where the dot

indicates differentiation with respect to time. Plugging these into the Einstein

field equation:

Rµν −
1

2
gµνR = 8πGTµν + Λgµν , (3.5)

with Tµν = diag(ρ,−p,−p,−p), and taking µ = ν = 0 components one arrives at

Friedman equation:

H2 =
8πGρ

3
− k

a2
+

Λ

3
. (3.6)

The spatial i, j components yields:

ä

a
=

4πG

3
(ρ+ 3p) +

Λ

3
. (3.7)

Finally, after some manipulations, the continuity equation ∇µT
µ
ν = 0 yields:

ρ̇+ 3H(ρ+ p) = 0. (3.8)
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The pressure is related to the energy density via p = ωρ where ω is the equation

of state parameter that is independent of time. ω = 1
3
, 0 and -1, for radiation,

matter and vacuum energy dominated Universe respectively. Inserting equation

of state into Eq. (3.8) one finds how the energy density scales with a(t):

radiation dominated era: ρ =
ρ0

a4
,

matter dominated era: ρ =
ρ0

a3
,

vacuum energy dominated era: ρ = ρ0.

(3.9)

The subscript ”0” denotes the present value. Inserting above in Eq. 3.6, assuming

flat Universe (i.e. k = 0) and Λ = 0 it is straightforward to evaluate how the

scale parameter and Hubble constant depends on time:

radiation dominated era: a(t) ∝ t
1
2 , H =

1

2t
,

matter dominated era: a(t) ∝ t
2
3 , H =

2

3t
,

vacuum energy dominated era: a(t) ∝ etH, H = H0.

(3.10)

Another important quantity in cosmology is the density parameter:

Ωi =
ρi
ρc
, (3.11)

where ρc is called the critical density and is defined by setting the curvature

parameter, k, and the cosmological constant, Λ, in Eq. (3.6) to zero:

ρc ≡
3H2

8πG
. (3.12)

Therefore, if an actual total energy density of the Universe is equal to the critical,

then geometry of the Universe is flat. Given that most recent measurements of
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3.2 Problems with a Big Bang model

the Hubble constant by Planck satellite combined with the WMAP data yields

H = (67.3±1.2) (km/s)/Mpc (68% C.L.) [91], the critical density of the Universe

is then ρc = (8.51± 0.30)× 10−27 kg/m3.

It is worthwhile mentioning that WMAP–9 satellite observations yielded H =

(70±2.2) (km/s)/Mpc (68% C.L.) [103] and the Hubble rate derived by observing

type Ia supernovas was found to be H = (73.8 ± 2.4) (km/s)/Mpc (68% C.L.)

[97] – both results above the Planck measured H. While the offset between

WMAP–9 and Planck are within the margins of error and could arise due to

much higher precision of the latter, the divergence of the Riess’s group results is

more worrisome and already inspired models on an interaction between DM and

dark energy [104, 105].

3.2 Problems with a Big Bang model

The most widely discussed problems with the Big Bang model, which supports

the theory of inflation, are following:

•Horizon problem: as it was already mentioned, observations suggest, that on

large scales, in accordance with the cosmological principle, today our Universe

is isotropic and homogeneous [106]. But if two different causally disconnected

Hubble patches had never been into contact, how come the CMB looks so ho-

mogeneous in all directions? Introducing inflation helps to solve this problem in

the following way: the patches that now seem to have been causally disconnected

may have been in thermal contact with each other during the very Early Universe

stages if the Universe indeed had undergone the phase of inflation.

•Flatness problem: is a fine tuning problem that deals with the question why
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3.2 Problems with a Big Bang model

the observed energy density of the Universe is so close to the critical density.

Rearranging Eq. 3.6 with Λ = 0, it can be shown that:

|Ω− 1| = |k|
a2H2

. (3.13)

From Eq. 3.10 one can see, that throughout the history of the Universe the 1
a2H2

on the rhs of Eq. 3.13 always increased, thus any deviation of Ω from the unity

in the early times would result in highly curved Universe at a present epoch. The

inflation resolves this puzzle in the following way. During inflation the product

1
a2H2 decreased by many orders of magnitude thus highly suppressing |Ω− 1| and

making the later deviation from 0 completely negligible, no matter what value of

Ω the Universe initially started with.

•Magnetic monopole problem [107, 108]: grand unified theories (GUT) predict

the existence of stable magnetic monopoles, which would be copiously produced

at high temperature during the early stages of the Universe. However, none of

them have ever been experimentally observed. If inflation really happened, these

monopoles would have been diluted so severely that on average only a few of them

would have been left within a Hubble horizon and in this way would explain why

can’t we detect them.

3.2.1 Inflation

Inflation is a period of exponential expansion of the Universe, driven by the

potential energy density of the scalar inflaton field. To find the evolution of this

field, we will take the generic Lagrangian for a scalar, made of the kinetic term
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3.2 Problems with a Big Bang model

and yet unspecified inflationary potential V (φ):

L =
1

2
gµν(∂µφ)(∂νφ)− V (φ). (3.14)

The equation of motion then can be found by using Euler–Lagrange equation:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0. (3.15)

Assuming that the field is homogeneous one can eliminate gradient contributions:

φ̈+ 3Hφ̇+ V ′(φ) = 0. (3.16)

Under certain assumptions that will be mentioned later the scalar field also gives

the desired equation of state with the ω = −1. To see this one has to start with

the stress energy tensor of the scalar field that can be expressed as:

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂αφ∂αφ− V (φ)

)
. (3.17)

Taking µ = ν = 0 we get:

ρφ =
φ̇2

2
+ V (φ), (3.18)

and the spatial components gives:

pφ =
φ̇2

2
− V (φ). (3.19)
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It is useful to introduce the slow roll approximation, which neglects certain terms

and greatly simplifies calculations. If we define two slow roll parameters:

ε ≡ M2
Pl

2

(
V ′

V

)2

and η ≡M2
Pl

V
′′

V
, (3.20)

then approximation holds if ε, |η| � 1. First slow roll condition measures the slope

of the potential and implies potential energy domination over kinetic term, i.e.

V (φ)� φ̇2. Using this condition in Eqs. 3.19 and 3.18, one arrives at the desired

equation of state, i.e. p ≈ −ρ, with ω ≈ −1, for the inflaton vacuum energy

density (or cosmological constant) dominated Universe. The Hubble parameter

in this case can be calculated using:

H2 ≈ V (φ)

3M2
Pl

. (3.21)

Another slow roll condition ensures that V ′(φ) � φ̈ and it greatly ameliorates

calculation for the dynamics of scalar field. From Eq. (3.16) we then get:

φ̇ ≈ −V
′(φ)

3H
, (3.22)

or equivalently, using the second slow roll condition:

∣∣∣∣ φ̈

3Hφ̇

∣∣∣∣� 1. (3.23)

Differentiating Eq. (3.21) with respect to time and using Eq. (3.22), one gets

2HḢ =

dV
dφ

dφ
dt

3M2
Pl

=
V ′φ̇

3M2
Pl

= − V ′2

9HM2
Pl

. (3.24)
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Dividing above by H2, and reusing Eq. (3.22) we get:

− Ḣ

H2
=

V ′2

18H4M2
Pl

=
M2

Pl

2

V ′2

V 2
= ε. (3.25)

It is useful to introduce the number of e–foldings, N, by:

N =

∫
Hdt =

∫
H

φ̇
dφ. (3.26)

Using above definition of N, the slow roll parameter ε can be also expressed as:

ε = − Ḣ

H2
= − dH

HHdt
= −dlnH

dN
. (3.27)

3.2.2 Density perturbations

In order to quantitatively understand how the density perturbations grow during

the inflationary phase we write the inflaton scalar field as the sum of the time

dependent background term φ(t) and the space–time dependent field perturbation

δφ(x, t):

φ = φ(t) + δφ(x, t). (3.28)

After Fourier transformation the equation of motion for the perturbation can be

found to be [109, 110]:

δφ̈k + 3Hδφ̇k +

[(
k

a

)2

+ V ′′
]
δφk = 0, (3.29)

where δφk is:

δφk =
1√

(2π)3

∫
δφ(x)e−ik·xd3x. (3.30)
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Defining the interval in conformal time dτ as dτ ≡ dt
a

and ψ ≡ aδφ Eq. (3.29)

can be expressed as [109, 110]:

ψ
′′

k + [k2 + a2H2(2− ε− 3η)]ψk = 0. (3.31)

Choosing the conformal time to be 0 at the end of inflation and using the fact

that the Hubble expansion rate is constant during the phase of inflation, gives

∫ 0

τ

dτ = −τ =

∫ tf

ti

dt

a
' 1

H

∫ af

ai

da

a2
=

1

H

(
− 1

af
+

1

ai

)
' 1

Hai
, (3.32)

for af � ai, where the subscripts i and f denote quantities during and at the end

of inflation, respectively. Inserting τ = − 1
Ha

into Eq. (3.31) and requiring that

ε, |η| � 1 one finds [109, 110]:

ψ
′′

k +

(
k2 − 2

τ 2

)
ψk = 0. (3.33)

Expanding ψk in terms of the creation and annihilation operators a and a†:

ψk = vkak + v∗−ka
†
−k, (3.34)

and inserting into the above equation we get the following differential equation

[109, 110]:

v
′′

k +

(
k2 − 2

τ 2

)
vk = 0. (3.35)

This has the exact solution:

vk = A
e−ik·τ√

2k

(
1− i

kτ

)
+B

eik·τ√
2k

(
1 +

i

kτ

)
, (3.36)
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where k · τ = kµτ
µ, kµ is the four momentum with components kµ = {E,k}

and k = {kx, ky, kz}. At early times, when t → 0 or equivalently τ → −∞,

cosmological perturbations were in the Bunch–Davies vacuum state [111]. In this

state mode functions, vk(τ), are defined by requiring that the expectation value

of the Hamiltonian in the vacuum state, i.e. quantity 〈0|H |0〉 is minimised. This

translates into a boundary condition [112]:

lim
τ→−∞

vk =
e−ik·τ√

2k
, (3.37)

which we can use in Eq. (3.36) to find that A = 1 and B = 0. The final solution

in the asymptotic past then becomes:

vk =
e−ik·τ√

2k
. (3.38)

The power spectrum of ψk is denoted as Pψ(k) and can be evaluated by

calculating the two point correlation function [109, 110]:

〈0|ψkψ
†
p |0〉 = (2π)3Pψ(k). (3.39)

In order to find an expression for Pψ(k), let us evaluate the left hand side of

the above equation. First, we input the expression in Eq. (3.34) into the above

equation:

〈0|ψkψ
†
p |0〉 = 〈0| (vkak + v∗−ka

†
−k)(vpap + v∗−pa

†
−p) |0〉

= vkv
∗
p 〈0| aka

†
p |0〉 = vkv

∗
p 〈0| [(2π)3δ3(k− p) + a†pak] |0〉

= (2π)3|vk|2 〈0|0〉 = (2π)3|vk|2.

(3.40)
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In the above calculation many terms vanish due to ak |0〉 = 0 |0〉 and 〈0| a†k = 〈0| 0.

In the second line we used the commutation relation:

[ak, a
†
p] = (2π)3δ3(k− p). (3.41)

Comparing the derived result with the right hand side of Eq. (3.39), it is easy to

see that Pψ(k) = |vk|2. Finally, recalling the result of Eq. (3.36) with A = 1 and

B = 0 we arrive at the following expression for Pψ(k):

Pψ(k) = |vk|2 =
1

2k

(
1 +

1

τ 2k2

)
. (3.42)

Using the aforementioned definitions for τ and δφ in above equation we get:

Pδφ(k) =
H2

2k3

[
1 +

(
k

aH

)2]
. (3.43)

The length of the perturbation is of the order 1/k and the size of the Hubble patch

is 1/aH. At the time when the wavelength of perturbation exceeds the Hubble

patch, or in other words, the condition aH � k is satisfied, the perturbations

freeze out and the power spectrum becomes constant [109, 110]:

Pδφ(k) =
H2

2k3
. (3.44)

The curvature perturbation in spatially flat gauge (i.e. ψ = 0) can be expressed

as [109, 110]:

ζ =
H

φ̇
δφ, (3.45)
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and the power spectrum Pζ(k) for a mode with momentum k [109, 110]:

Pζ(k) = |δH |2 =
2π

k3

H2

εM2
Pl

. (3.46)

δH is the amplitude of the density perturbations in the CMB, which we will use

extensively in the Chapters 7 and 8 where we will try to encompass MSSM infla-

tion, DM and the baryogenesis within one framework. According to the combined

Planck and WMAP data, the best fit value for the curvature perturbation am-

plitude with an arbitrary reference scale, also known as the pivot scale, chosen at

k0 = 0.05 Mpc−1 is Pζ(k0) = 2.196+0.051
−0.060 × 10−9 (68% C.L.) [91]. Pζ(k) can also

be parametrised by:

k3Pζ(k) = k3
0Pζ(k0)

(
k

k0

)ns−1+ 1
2
dns
d ln k

ln k
k0

+higher order terms.

, (3.47)

where dns
d ln k

= −0.0065 ± 0.0076 and is called a running of the spectral tilt ns.

The above expression is often approximated as a power law with Pζ(k) ∝ kns−1,

which is equivalent to taking only the first term in a Taylor expansion in ln k

around k0. A logical definition of a spectral tilt following from Eq. (3.47) is then

[113]:

ns − 1 ≡ d

d ln k
ln[k3Pζ(k)]. (3.48)

In other words, from here we see that the spectral index governs the distribution of

density fluctuations in the power spectrum with respect to comoving wave number

k. A scale–invariant spectrum, also called the Harrison–Zel’dovich spectrum [114,

115], is obtained by setting ns = 1. Power spectrum with ns 6= 1 is called tilted

spectrum.
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We continue the calculation of the expression for ns in Eq. (3.48) by using

Eqs. (3.26) and (3.46) to write:

d

d ln k
ln[k3Pζ(k)] =

d

dN
ln

[
2πH2

εMPl

]
× dN

d ln k
. (3.49)

dN
d ln k

can be evaluated by using the horizon crossing condition k = aH and Eq.

(3.27):

dN

d ln k
=

[
d ln k

dN

]−1

=

[
d(N + lnH)

dN

]−1

=

[
1 +

d lnH

dN

]−1

≈ 1 + ε. (3.50)

The factor d
dN

ln

[
2πH2

εMPl

]
in Eq. (3.48) can be written as:

d

dN
ln

[
2πH2

εMPl

]
= 2

dlnH

dN
− dlnε

dN
. (3.51)

We know that dlnH
dN

= −ε so that all that remains is to compute dlnε
dN

. This is given

by:

dlnε

dN
=

dε

εHdt
=
M2

Pl

Hε

(
V ′

V

)
dφ

dt

d

dφ

(
V ′

V

)
=

(
V ′

V

)
φ̇M2

Pl

Hε

[
V ′′

V
−
(
V ′

V

)2]
=

φ̇

Hε

[
η − 2ε

](
V ′

V

)
= 4ε− 2η,

(3.52)

where we used the slow roll conditions in Eqs. (3.20). From this, it follows that

d
dN

ln

[
2πH2

εMPl

]
= −6ε+ 2η. Combining this with dN

d ln k
≈ 1 + ε and Eq. (3.48) gives:

ns − 1 w −6ε+ 2η, (3.53)

to the first order in slow roll parameters. The spectral tilt value, according
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3.2 Problems with a Big Bang model

to the measurements made by Planck alone, is ns = 0.9616 ± 0.0094 at 68%

C.L. [91]. ns is another parameter, along with the δH , which is crucial if one

seeks to define the parameter space of the MSSM inflation and thus enables us

to probe the overlap regions where the DM, inflation and baryogenesis coexist

within MSSM with non–Universal Higgs Masses (NUHMII) and NMSSM models.

Using a similar approach, i.e. writing the metric for the Universe consisting of

the background term and the perturbation, one can calculate the power spectrum

of the gravitational waves, which at the time when the mode leaves the Hubble

patch is expressed as [109, 110]:

Pgrav(k) =
2

M2
Pl

(
H

2π

)2

. (3.54)

Using this together with Eq. 3.46, another quantity, called tensor to scalar ratio

r, for the single field inflation models is [109, 110]:

r ≡ Pgrav(k)

Pζ(k)
= 16ε. (3.55)
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Chapter 4

Supersymmetry

SUSY is an internal spacetime symmetry between spin–half matter particles and

integer spin force carriers. The idea behind SUSY is that in supersymmetric

extensions of SM, each fermionic particle of the SM has its bosonic superpart-

ner, and every SM boson has its fermionic superpartner. Particles in SUSY are

arranged into supersymmetric multiplets each containing fermionic and bosonic

states, regarded as superpartners of each other. SM fermions are placed within

chiral or matter supermultiplet which also accommodates their spin 0 superpart-

ners. Gluinos and electroweak gauge bosons are accommodated in gauge or vector

supermultiplets with their spin 1/2 superpartners gauginos. Finally, there are up

and down type Higgs chiral multiplets with spin 0 up and down type Higgses and

their spin 1/2 superpartners Higgsinos. Two Higgs superfields are needed to give

masses for leptons, up and down type quarks and to cancel gauge anomalies [37].

There is a fermionic SUSY generator Q, that converts one supersymmetric

state into the other:

Q |Fermion〉 = |Boson〉 Q |Boson〉 = |Fermion〉 . (4.1)
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Figure 4.1: Radiative corrections to the Higgs mass due to H coupling to fermions
(left) and scalars (right). Figure taken from Ref. [37].

SUSY generators are the left handed Weyl spinors that, without suppressing the

indices, should be written as Qα, and their adjoint denotes the right handed

counterpart Q†α̇, where α, α̇ = 1, 2. Adding the new degrees of freedom to the

SM helps to resolve or ameliorate some of the before mentioned fundamental

problems. For example in SUSY, the Higgs mass is stabilised against radiative

corrections: it receives contributions not only from the coupling of the top quark

but also from its scalar partner stop, see Fig. 4.1. This eliminates the quadratic

divergences and leaves only logarithmic ones [62, 63, 64]:

δm2
h ∼

m4
t

v2

[
ln

(
Λ2

UV

m2
t

)
+ ...

]
. (4.2)

Here ΛUV ∼ 1019 GeV is the cut–off scale, where gravity becomes important and

v = 246 GeV is the VEV of the Higgs field.

SUSY also provides the possibility of gauge coupling unification at the GUT

scale. It should be mentioned though, that the simplest MSSM models with

universality conditions at high scale become more and more constrained by the

ongoing particle physics and cosmology experiments. However, there are a num-

ber of low scale phenomenological SUSY models that do not deal with physics at

the GUT scale whatsoever. Another important implication of SUSY is that in or-

48



4.1 SUSY Algebra

der to stabilize the proton against decay, a multiplicatively conserved symmetry,

called R parity, should be implemented [37]:

PR = (−1)3(B−L)+2s, (4.3)

where B, L and s respectively are the baryon, lepton and spin quantum numbers

of a particle. PR also discriminates particles in the same multiplets. Most notably,

this symmetry makes the LSP stable. Whenever it is electric and colour neutral,

LSP also becomes an excellent DM candidate. Furthermore, there are two more

implications of R parity: 1) in the colliders, where the SM particles with PR = 1

are colliding, an even number of superpartners with PR = −1 must be produced

to match PR = 1 before interaction and 2) a sparticle must decay into an odd

number of sparticles in the final state.

4.1 SUSY Algebra

The (anti)commutation relations amongst the generators of the SUSY transfor-

mations, boosts and spacetime translations form the graded super Poincaré alge-

bra [37, 116, 117]. In this section, we will review these relations and discuss their

implications.

• Denoting the rotation generators by Ji, Lorentz boost generators by Ki and

defining that M0i ≡ Ki and Mij ≡ εijkJk we get the commutation relations of
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4.1 SUSY Algebra

Poincaré algebra [118]:

[Pµ, Pν ] = 0,

[Mµν ,Mρσ] = igνρMρσ − igµρMνσ − igνσMµρ + igµσMνρ,

[Mµν , Pρ] = −igρµPν + igρνPµ.

(4.4)

These relations ensure the Lorentz invariance of the field theory.

• The commutators between Mµν and Q are the following [37, 119, 120]:

[Mµν , Qα] = i(σµν)
β
αQβ,

[Mµν , Q
†α̇] = i(σ̄µν)

α̇
β̇
Q†β̇.

(4.5)

• Denoting the R–symmetry generator as R, two commutation relations can be

constructed [37, 119, 120]:

[Qα, R] = Qα,

[Q†α̇, R] = Q†α̇.
(4.6)

Qualitatively this means that Qα, acting on the state, increases its R quantum

number by one, and turns a SM particle into a sparticle, and likewise Q†α̇ decreases

R by unity thus transforming a SUSY particle back to a SM counterpart.

Moving on to the remaining (anti)commutation relations we firstly need to

discuss what happens when the SUSY generator Q acts on a vacuum state and

what are the consequences. If the vacuum preserves SUSY, then the following

equality should hold:

|0〉 = eiQ |0〉 = (1 + iQ+ ...) |0〉 . (4.7)

Therefore, if Q |0〉 = 0, then the vacuum is invariant under SUSY and if Q |0〉 6= 0
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4.1 SUSY Algebra

Figure 4.2: Scalar potential for unbroken (blue) and broken (red) potentials.

it is not. This will be important in understanding the physical significance of the

anticommutator [37, 119, 120]:

{Qα, Q
†
β̇
} = 2(σµ)αβ̇Pµ. (4.8)

• Contracting the above expression with (σ̄ν)β̇α, using (σ̄ν)β̇α(σµ)αβ̇ = 2ηµν and

taking the ν = 0 component one arrives at [37, 119, 120]:

H =
1

4
(Q1Q

†
1 +Q†1Q1 +Q2Q

†
1 +Q†2Q2). (4.9)

After taking the expectation value of the vacuum state, i.e. 〈0|H |0〉 = 〈0|V |0〉,

we see that this quantity is always equal to or greater than zero since it is made of

the sums of squares. If the vacuum respects SUSY – the expectation value is zero,

and otherwise it is positive. Therefore, the implication of the anticommutator

is that SUSY will be broken if the expectation value of the scalar potential, or

in other words F or/and D terms, does not vanish [37]. The origin of the F

and D terms is justified in Sections 4.2.1 and 4.2.4 respectively. This is further

graphically illustrated in Fig. 4.2, where the red line depicts the scalar potential
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4.1 SUSY Algebra

for the broken SUSY because it is positive at the vacuum, i.e. |φ〉 = |0〉 and the

blue line demonstrates unbroken SUSY.

{Qα, Qβ} = {Q†α̇, Q
†
β̇
} = 0. (4.10)

• These anticommutators simply reflect the fact that acting on a state twice one

comes back to the original state.

[Qα, Pµ] = [Q†α̇, Pµ] = 0. (4.11)

• This identity reflects the fact that SUSY is an internal symmetry, i.e. it is

independent of spacetime position. Furthermore, this commutator implies that

the masses of the fermion and the boson within the same supermultiplet are

degenerate. To demonstrate this we start by showing that the square of four

momentum and SUSY generator commutes:

[P 2, Qα] = Pµ[P µ, Qα] + [Pµ, Qα]P µ = 0. (4.12)

The mass of the fermionic state is found by

P 2 |F〉 = m2 |F〉 , (4.13)

where P 2 = P µPµ. Acting with P 2 on a bosonic state and using Eq. (4.1)

gives P 2 |B〉 = P 2Qα |F〉. Remembering that [P 2, Qα] = 0 we get P 2Qα |F〉 =

QαP
2 |F〉. Now using Eq. (4.13) we find QαP

2 |F〉 = m2 |B〉, which implies that

for every fermionic state there exists bosonic counterpart with the same mass.

Obviously, since we have not observed sparticles this implies that SUSY must be
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a broken theory [121, 122, 123].

4.2 Supersymmetric Toy Model

4.2.1 Simplest non–interacting theory for chiral super-

multiplet

The simplest chiral (or matter) supermultiplet is made of the Weyl fermion, ψ,

and it’s supersymmetric counterpart scalar particle, φ. Below we will briefly re-

view the main steps of how to construct Lagrangian that would be invariant not

only under Lorentz and gauge transformations but also under SUSY transfor-

mations. The obvious start is to write down the kinetic terms for the fermions

and scalars and then try to identify SUSY transformations that would make the

variation of the action vanishing. The kinetic part of the Lagrangian is:

Lkinetic = Lfermion + Lscalar,

= ψ̄iσ̄µ(∂µψ) + (∂µφ†)(∂µφ).
(4.14)

As mentioned above, in SUSY the bosonic and fermionic states are treated on an

equal basis, i.e. we have a transformation that turns fermionic states into bosonic

states and vice versa. Here we define transformation of scalar to Weyl fermion

by [37]:

δφ = θψ, δφ† = θ̄ψ̄. (4.15)

We will assume that θ is infinitesimal, anticommuting and, in order to make

things simpler, we will consider global symmetry which implies ∂µθ = 0. θ and

its adjoint are crucial in the superfield formulation and, along with xµ, constitutes
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4.2 Supersymmetric Toy Model

the coordinates of the superspace. To find how the fermion ψ can be transformed

into a scalar, we first check how the scalar part of the Lagrangian varies with

SUSY transformations defined in Eq. (4.15):

δLscalar(∂
µφ†, ∂µφ) =

∂Lscalar

∂(∂µφ†)
∂µ(δφ†) +

∂Lscalar

∂(∂µφ)
∂µ(δφ)

= (∂µφ)θ̄(∂µψ̄) + (∂µφ†)θ(∂µψ).

(4.16)

To cancel δLscalar with the δLfermion the transformation of fermion to scalar can

be written as [37]:

δψα = −i(σµθ̄)α∂µφ, δψ̄α̇ = i(θσµ)α̇∂µφ
†. (4.17)

Using these relations one finds that:

δLfermion = −θψ(∂µ∂
µφ†) + ψ̄θ̄(∂µ∂

µφ)

= −δLscalar + ∂µ[θψ(∂µφ†) + ψ̄θ̄(∂µφ)],
(4.18)

and combining Eqs. (4.16) with (4.18) we find that variation of the total kinetic

Lagrangian in Eq. (4.14) cancels up to total derivatives:

δLkinetic = δLscalar + δLfermion = ∂µ[θψ(∂µφ†) + ψ̄θ̄(∂µφ)]. (4.19)

The last thing left to show is that SUSY algebra closes, i.e. that the commutator

of two successive transformations by a different amount of θ is a symmetry of the
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4.2 Supersymmetric Toy Model

Lagrangian. For a scalar field we have [37]:

(δθ2δθ1 − δθ1δθ2)φ = δθ2δθ1φ− δθ1δθ2φ = θ1δθ2ψ − θ2δθ1ψ

= θ1(−i)σµθ̄2∂µφ− θ2(−i)σµθ̄1∂µφ

= −i(θ1σ
µθ̄2 − θ2σ

µθ̄1)∂µφ.

(4.20)

Since the four momentum operator, Pµ = i∂µ, is a generator of spacetime trans-

lations:

e−ia
νPνxµ w (1 + aν∂ν)x

µ = xµ + aν∂νx
µ = xµ + aνδµν = xµ + aµ, (4.21)

we get that the commutator in Eq. (4.20) gives the same field just shifted in a

spacetime. Analogous commutator evaluation for the fermions yields:

(δθ2δθ1 − δθ1δθ2)ψα = −i(θ1σ
µθ̄2 − θ2σ

µθ̄1)∂µψα − θ2αθ̄1iσ̄
µ∂µψ

+ θ1αθ̄2iσ̄
µ∂µψ,

(4.22)

where we used a Fierz identity [37]:

(σµθ̄1)αθ2∂µψ = −θ2α(∂µψ)σµθ̄1 − (∂µψ)ασ
µθ̄1θ2. (4.23)

In Eq. (4.22) the first term reflects the fact that a commutator on a fermion field

results in a same field but shifted in spacetime, and other two terms vanish for

the massless particles, i.e. in the cases where iσ̄µ∂µψ = 0 is valid. Therefore, we

showed that the SUSY algebra closes but only for massless on–shell fermions. To

make it viable for off–shell cases, the new term LF = FF ∗ needs to be added to

Eq. (4.14) where F is the auxiliary field. Auxiliary field has a mass dimension

of 2, and doesn’t have a kinetic term. The appearance of the new term in Eq.
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(4.14) requires the introduction of the transformation rules for the auxiliary field

and slight refinement of the ones for the fermionic field [37]:

δψα = −i(σµθ̄)α∂µφ+ θαF, δψ̄α̇ = i(θσµ)α̇∂µφ
† + θ̄α̇F

∗, (4.24)

δF = −iθ̄σ̄µ(∂µψ), δF ∗ = −iθσµ(∂µψ̄). (4.25)

The transformation for scalar remains unaltered. Repeating the procedure with

the new transformation rules we will now show that the theory closes under SUSY

transformations:

(δθ2δθ1 − δθ1δθ2)ψα =

δθ2 [−i(σµθ̄1)α∂µφ] + θ1αδθ2F − δθ1 [−i(σµθ̄2)α∂µφ]− θ2αδθ1F =

− i(σµθ̄1)αθ2∂µψ − iθ1αθ̄2σ̄
µ∂µψ + i(σµθ̄2)αθ1∂µψ + iθ2αθ̄1σ̄

µ∂µψ =

− i(θ1σ
µθ̄2 − θ2σ

µθ̄1)∂µψα,

(4.26)

where in a third line we again expanded first and third terms using Fierz identity

and cancelled equal terms.

Before starting a new section it is worth remembering that putting all the

terms in Eq. (4.14) we get a Lagrangian for a free theory per degree of freedom

that has the form [37]:

Lkinetic = (∂µφ†)(∂µφ) + ψ̄iσ̄µ(∂µψ) + F ∗,iFi. (4.27)

4.2.2 Interacting supersymmetric field theory

In the non–interacting model the fermionic and bosonic particles were massless.

In this section, we will introduce a quantity called the superpotential W (φ) with

56



4.2 Supersymmetric Toy Model

a mass dimension [3], that will be responsible for generating masses. Keeping

only renormalizable terms in the Lagrangian one can write it in the form [37]:

Linteraction = −1

2
W ijψiψj +W iFi −

1

2
W ∗,ijψ̄iψ̄j + F ∗,iW ∗

i , (4.28)

where the superpotential takes the following form [37]:

W = mijφiφj +
1

3!
yijkφiφjφk, (4.29)

and the derivative with respect to the field reduces the mass dimension by one:

W i =
δW

δφi
, W ij =

δW

δφiδφj
. (4.30)

Before proceeding, we could also integrate out the auxiliary field. Taking all

the terms containing F from the Eqs. (4.27) and (4.28) it is easy to compute

equations of motion for the F :

Fi = −W ∗
i , F ∗,i = −W i. (4.31)

Defining the the scalar potential as V = W ∗,iWi = F ∗,iFi = |Fi|2 the final

Lagrangian for the interacting theory becomes [37]:

Lchiral = (∂µφ†)(∂µφ) + ψ̄iσ̄µ(∂µψ)− 1

2
W ijψiψj −

1

2
W ∗,ijψ̄iψ̄j − V (φ). (4.32)

4.2.3 Lagrangian for a gauge multiplet

A gauge multiplet is made of the gauge bosons, Aaµ, and their respective fermionic

superpartners gauginos, λa. The construction of the Lagrangian is based on
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4.2 Supersymmetric Toy Model

writing down the kinetic terms for the gauge boson field and gauginos, and then

defining the SUSY transformations in a similar manner as in the previous section.

The kinetic terms for the gauge supermultiplet are [37]:

Lgauge = −1

4
F a
µνF

µν,a + iλ̄aσ̄µ∂µλ
a +

1

2
DaDa, (4.33)

where Da is the gauge auxiliary field of mass dimension [2]. Like a chiral auxiliary

field F , Da is introduced to allow for off-shell interactions. This field can also be

integrated out using its equation of motion. The Yang-Mills term, just like in the

SM, is made of the field strength tensors, F a
µν :

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (4.34)

where g is a gauge coupling and fabc is the structure constant for non–Abelian

groups. It can be shown that the supersymmetric transformations that leave Eq.

(4.33) invariant are [37]:

δAaµ = − 1√
2

(θ†σ̄µλ
a + λ†aσ̄µθ),

δλaα =
i

2
√

2
(σµσ̄νθ)αF

a
µν +

1√
2
θαD

a,

δDa =
i√
2

(−θ†σ̄µ∇µλ
a +∇µλ

†aσ̄µθ).

(4.35)

4.2.4 Supersymmetric gauge interactions

Obviously, the total Lagrangian of the supersymmetric theory not only has to be

invariant under SUSY transformations, but also has to respect gauge invariance.

To render the Lagrangian gauge invariant, we apply the same technique as in the

SM, i.e. promote the ordinary derivatives in Eq. (4.32) to covariant ones, which
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4.2 Supersymmetric Toy Model

then allows for gauge interactions in the matter and vector supermultiplets. The

ordinary derivatives for the fermions, sfermions and gauginos then become [37]:

∇µφ = ∂µφ− igAaµT aφ,

∇µψ = ∂µψ − igAaµT aψ,

∇µλ
a = ∂µλ

a + gfabcAbµλ
c,

(4.36)

and corresponding gauge transformations for the vector supermultiplet described

in the Lagrangian in Eq. (4.33), are:

Aaµ → Aaµ + ∂µΛ + gfabcAbµΛc,

λa → λa + gfabcλbΛc.
(4.37)

In fact, besides the terms in Lchiral and Lgauge, there are three more renormalizable

terms that respect supersymmetric and gauge interactions [37]:

g(φ∗T aψ)λa, gλ†a(ψ†T aφ), g(φ∗T aφ)Da. (4.38)

The physical significance of the first two terms is that they appear in the neu-

tralino mass matrix off–diagonal entries and leads to the mixing between gauginos

and neutral higgsinos. The last term is used to integrate out the gauge auxil-

iary field Da. Actually all these terms arise naturally if the supersymmetric

Lagrangian would be build using the superfield formalism. So all in all the full

Lagrangian can be expressed as follows [37]:

LSUSY = Lchiral+Lgauge−
√

2g(φ∗T aψ)λa−
√

2gλ†a(ψ†T aφ)+g(φ∗T aφ)Da. (4.39)
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Using the last term in the gauge Lagrangian Eq. (4.33) and g(φ∗T aφ)Da term,

one finds the equations of motions for Da to be:

Da = −g(φ∗T aφ). (4.40)

Using this the potential can then be written as [37]:

V (φ, φ∗) = F ∗iFi +
DaDa

2
. (4.41)

Reiterating the point made in the last section, if SUSY is broken, then Fi 6= 0

and/or Da 6= 0 must be satisfied. However, even in the case of broken SUSY,

there are certain directions in the field space along which, one or both, of these

terms are vanishing. These are called the flat directions and, as we will discuss

later, some of them could be a good inflaton candidate.

4.2.5 Soft SUSY breaking

As we discussed in Section 4.1, one of the SUSY graded algebra’s implications

is that the masses of the particles in chiral and vector supermultiplets are equal.

However, since none of the sparticles have ever been observed experimentally it

implies that SUSY, if nature respects it at all, must be broken. In this section,

we introduce the terms that can be added to LSUSY and in the later chapters

we will discuss their possible origin in the greater detail. Broadly speaking, soft

SUSY breaking means introducing renormalizable terms in a manner that would

not lead to UV infinities. General terms allowed in the soft SUSY breaking
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Lagrangian, Lsoft, are [37]:

Lsoft = −(m2)ijφ
j∗φi−

(
1

2
Maλ

aλa+
1

3!
aijkφiφjφk+

1

2
bijφiφj+ciφi+c.c.

)
. (4.42)

So the total Lagrangian for the broken theory becomes:

L���SUSY = LSUSY + Lsoft. (4.43)

4.3 Superspace and Superfields

The superfield is a function of the superspace. As mentioned above, the super-

space is constructed by combining spacetime coordinates xµ along with a two

component spinor (with anticommuting components) and its adjoint:

Φ = Φ(xµ, θα, θ̄α̇), (4.44)

where:

θαθβ = −θβθα and θαθα = θβθβ = 0. (4.45)

Thus, terms involving more than two components of θ or θ̄ are equal to zero.

Therefore, any general function expanded in terms of θ and θ̄ behaves like:

g(θθ̄) = g0 + g1θ + g2θ̄ + g3θθ̄ + ...︸︷︷︸
=0

= g0 + g1θ + g2θ̄ + g3θθ̄. (4.46)

Note, that in this expansion we assumed that θ has only one component. An

integration over the θ is then defined as:

∫
dθ = 0,

∫
dθθ = 1. (4.47)
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Using this to integrate Eq. (4.46) one gets:

∫
g(θθ̄)dθ = g1 + g3θ̄. (4.48)

In other words, integration simply picks out the terms that contain θ. Similarly,

integrating g(θθ̄) over θθ̄ would give g3. Coming back to the actual two component

θ and θ̄ in terms of which superfields are expanded let us define:

d2θ ≡ −1

4
dθαdθβεαβ, d2θ̄ ≡ −1

4
dθ̄α̇dθ̄β̇ε

α̇β̇, (4.49)

where spinor indices are included for clarity. Any term in a superfield (or a

combination of superfields) that is accompanied by a combination of θθθ̄θ̄ is

called a D term and terms followed by θθ are called F terms. To express them,

one simply needs to integrate:

Φ1...Φn|D=

∫
d2θd2θ̄(Φ1...Φn) and Φ1...Φn|F=

∫
d2θ(Φ1...Φn). (4.50)

4.3.1 Chiral superfields

A chiral superfield and its conjugate arise from imposing the following constraints

on a general superfield expansion in terms of θ and θ̄:

D̄α̇Φ = 0 and DαΦ∗ = 0, (4.51)

where:

D̄α̇ = − ∂

∂θ̄α̇
− i(θσµ)α̇

∂

∂xµ
and Dα =

∂

∂θα
+ i(σµθ)α

∂

∂xµ
, (4.52)
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are called chiral covariant derivatives. To find chiral superfields it is convenient

to define [37]:
yµ ≡ xµ + iθ̄σ̄µθ,

yµ∗ ≡ xµ − iθ̄σ̄µθ,
(4.53)

which implies that for a field Φ(yµ, θ, θ̄), the first constraint in Eq. (4.51) trans-

lates into condition:

D†α̇Φ = − ∂Φ

∂θ̄α̇
− ∂Φ

∂yµ
∂yµ

∂θ̄α̇
− i(θσµ)α̇

∂Φ

∂yµ

= − ∂Φ

∂θ̄α̇
− ∂Φ

∂yµ
i(−θσµ)α̇ − i(θσµ)α̇

∂Φ

∂yµ

= − ∂Φ

∂θ̄α̇
= 0,

(4.54)

where in the second line the fact that ∂θ̄α̇

∂θ̄β̇
= −δα̇

β̇
is used. This means that a chiral

superfield does not contain any terms involving θ̄, and thus can be expressed as

[37]:

Φ(y, θ) = φ(y) +
√

2θψ(y)− θθF (y),

Φ̄(y∗, θ̄) = φ∗(y∗) +
√

2θ̄ψ̄(y∗)− θ̄θ̄F ∗(y∗).
(4.55)

To find the chiral superfield expression in terms of xµ, one has to perform a Taylor

expansion:

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x) + iθσµθ̄∂µφ(x)

− i√
2

(θθ)∂µψ(x)σµθ̄ − 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ(x).
(4.56)

Similarly, its conjugate is:

Φ̄(x, θ, θ̄) = φ∗(x) +
√

2θ̄ψ̄(x) + θ̄θ̄F̄ (x)− iθσµθ̄∂µφ∗(x)

+
i√
2

(θ̄θ̄)θσµ∂µψ̄(x)− 1

4
(θθ)(θ̄θ̄)∂µ∂

µφ∗(x).
(4.57)
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4.3 Superspace and Superfields

Supersymmetric transformations between the components of the superfield that

were explained in Eqs. (4.15), (4.24) and (4.25) can be recovered using:

δθΦ = −i(θQ + θ̄Q̄)Φ, (4.58)

where Q is an operator responsible for supersymmetry translations:

Q ≡ ∂

∂θ
− iσµθ̄ ∂

∂xµ
,

Q̄ ≡ ∂

∂θ̄
− iσ̄µθ ∂

∂xµ
.

(4.59)

Using superfield expressions in Eqs. (4.56) and (4.57), a basic Wess–Zumino

model (discussed in previous sections), can be derived from the following La-

grangian:

LWZ = K(Φ, Φ̄)|D+(W (Φ)|F+h.c.), (4.60)

where the first term is called Kähler potential and the second is known as the

superpotential, defined as [37]:

K(Φ, Φ̄) = ΦΦ̄ and W (Φ) =
m

2
Φ2 +

y

3
Φ3. (4.61)

Inserting Eqs. (4.56) and (4.57) into Kähler potential one gets [37]:

K(Φ, Φ̄)|D =

∫
d2θd2θ̄ΦΦ̄

= (∂µφ†)(∂µφ) + ψ̄iσ̄µ(∂µψ) + |F |2 + (total derivatives).

(4.62)
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Plugging the superpotential from Eq. (4.61) into LWZ one arrives at [37]:

W (Φ)|F+h.c. =

∫
d2θ

(
m

2
Φ2 +

y

3
Φ3

)
+ h.c. =(

m

2
+ φy

)
ψψ + (mφ+ yφ2)F + h.c. =

∂2W

∂φ2
ψψ +

∂W

∂φ
F + h.c.,

(4.63)

where ∂W
∂Φ
|Φ=φ≡ ∂W

∂φ
. Finally, after inserting Eqs. (4.62) and (4.63) into LWZ

and integrating auxiliary field out, we get exactly the same expression for the

Wess–Zumino Lagrangian as we did in Eq. (4.32) of Section 4.2.2.

4.3.2 Vector superfields

Vector superfields must be real, i.e. they must conform to the constraint V = V̄ .

To derive an action for the gauge fields and gauginos, one must make use of a

vector superfield, which is defined as [37]:

V = θ̄σ̄µθAµ + θ̄θ̄θλ+ θθθ̄λ̄+
θθθ̄θ̄D

2
. (4.64)

Also, by defining:

Wα ≡ −
1

4
D̄D̄DαV, (4.65)

where derivatives D are defined in Eq. (4.52), a Lagrangian for kinetic terms of

gauge vector supermultiplet can be calculated by collecting F terms of WαWα

[37], i.e.:

Lgauge = WαWα|F+h.c. = −1

4
FµνF

µν + iλ̄σ̄µ∂µλ+
1

2
DD, (4.66)
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just as we had in Eq. (4.33). Finally, to couple fields in gauge supermultiplet to

the fields in chiral supermultiplet in a gauge invariant way, the Kähler potential

is redefined to [37]:

K(Φ, Φ̄, V ) = Φ̄e2gV Φ, (4.67)

where g is a gauge coupling. Calculating D terms now gives:

K(Φ, Φ̄, V )|D = (∂µφ†)(∂µφ) + ψ̄iσ̄µ(∂µψ) + |F |2 + g(φ∗T aψ)λa

+ gλ†a(ψ†T aφ) + g(φ∗T aφ)Da,
(4.68)

where T a are the generators of the gauge group. Therefore, superfield formalism

grasps the three terms which were included by hand in the previous Section 4.2.4.

In a complete SUSY Lagrangian we will then have two terms that include an

auxiliary field D. One comes from Lgauge in Eq. (4.66) and another, as was just

shown, from a modified Kähler potential. From here, as mentioned in Section

4.2.4, equation of motion for the D term is Da = −g(φ∗T aφ). Substituting this

into the total SUSY Lagrangian, we get a D term contribution in the supersym-

metric potential.

4.4 Minimal Supersymmetric Standard Model

The particle content of the MSSM and the respective gauge charges are listed

in the Table 4.1. The key ingredients to extract the physical content in SUSY

models are the superpotential and soft breaking Lagrangian density. Having these

the phenomenological consequences can be analysed.

Usually the superpotential is expressed in terms of the chiral superfields, how-

ever analysing it in terms of the scalar components allows one to grasp the physics
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Superfield SU(3)c × SU(2)L × U(1)Y

Q̂i =

(
ûL
d̂L

)
i

(3,2, 1
6
)

û∗R,i (3∗,1,−2
3
)

d̂∗R,i (3∗,1, 1
3
)

L̂i =

(
ν̂
êL

)
i

(1,2,−1
2
)

ê∗R,i (1,1, 1)

Ĥu =

(
Ĥ+
u

Ĥ0
u

)
(1,2, 1

2
)

Ĥd =

(
Ĥ0
d

Ĥ−d

)
(1,2∗,−1

2
)

V̂1 (1,1, 0)

V̂2 (1,3, 0)

V̂ a
3 (8,1, 0)

Table 4.1: The charges of the MSSM particle content. Index i represents the
family index and a = 1, 2...8. V̂1, V̂2 and V̂ a

3 are the vector superfields.

at the same depth. The superpotential of the MSSM is expressed as[37]:

WMSSM = (yu)ijūiQjHu − (yd)ijūiQjHd − (ye)ij ēiLjHd + µHdHu, (4.69)

where i, j are the family indices and the gauge indices are omitted for simplicity.

Unlike in the SM, in the MSSM there are two Higgs doublets Hu = (H+
u , H

0
u) and

Hd = (H0
d , H

−
d ) and they are needed for gauge anomaly cancellation and also to

give the masses for the up and down type matter fields. The µ is called Higgs

mixing parameter and y are the 3×3 Yukawa matrices. Since Yukawa couplings

are relatively large only for top, bottom quarks and the tauon, these matrices can
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be greatly simplified in the following manner:

yu ≈

0 0 0
0 0 0
0 0 yt

 , yd ≈

0 0 0
0 0 0
0 0 yb

 , ye ≈

0 0 0
0 0 0
0 0 yτ

 . (4.70)

As we will discuss later in great detail, choosing Yukawa couplings in this way

has further significant phenomenological consequences, i.e. that left/right handed

states of the first and second generation squarks and sleptons do not mix and

their gauge eigenstates coincide with the mass eigenstates where in the case for

stau, sbottom and stop the LH and RH gauge eigenstates mix with each other to

produce two, lighter and heavier, mass eigenstates.

4.4.1 F and D–flat directions

Configurations of the fields, satisfying:

F ∗i =
∂W

∂X i
= 0 and Da = X†T aX = 0, (4.71)

are respectively called F and D–flat [124, 125, 126, 127]. Here the X can be a

condensate of many fields, i.e. Xm = Φ1Φ2...Φm. Gauge invariant monomials

from MSSM fields are constructed by contracting colour indices to form SU(3)c

singlets and then contracting SU(2)L isospin indices to form SU(3)c×SU(2)L sin-

glets. Finally, the fields are combined to form SU(3)c×SU(2)L×UY zero hyper-

charge combinations [127]. For example, LHu monomial, including gauge indices,

would take the form LaHb
uεab, where εab is totally antisymmetric tensor. Using
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the superpotential of the MSSM given in Eq. (4.69), one finds:

F ∗Hu = yuūQ+ µHd,

F ∗L = ydHdē.
(4.72)

The requirement to satisfy gauge invariance implies that F ∗Hu = F ∗L = 0 for any

φ because RH fields, unlike the LH, are the singlets under SU(2). Therefore,

the combination X2 = LHu is a F–flat. Choosing the isospin components in the

following manner:

Hu =
1√
2

(
0
φ

)
and L =

1√
2

(
φ
0

)
, (4.73)

we can check that LHu is also D–flat [124]:

3∑
a=1

Da =
3∑

a=1

(H†uσ
aHu + L†σaL) =

1

2
(|φ|2 − |φ|2) = 0, (4.74)

where σa are the three Pauli matrices – the generators of the SU(2) gauge group.

By using hypercharge values for L and Hu listed in Table 4.1, we can show the

UY (1) flatness of the LHu direction:

DY = −1

2
|L|2 +

1

2
|Hu|2 = −1

2
|φ|2 +

1

2
|φ|2 = 0, (4.75)

for any generation of L. In Chapter 7, we will review the inflationary model,

where two flat directions – ũd̃d̃ and L̃L̃ẽ play the role of the inflaton. Here, tilde

emphasises that it is the superpartner of the SM sfermions. Often this is clear

in context and, as such, will be omitted in order to reduce clutter. Including

gauge indices, these monomials would be expressed as ũαd̃βd̃γε
αβγ and L̃aL̃bεabẽ,

69



4.4 Minimal Supersymmetric Standard Model

where indices are written up (down) for the RH (LH) fields. Their SU(3)c×

SU(2)L×U(1)Y flatness is demonstrated in the Appendix A.

4.4.2 Soft SUSY breaking in the MSSM

The soft SUSY breaking Lagrangian for the MSSM case is given by [37]:

−LMSSM
soft =

1

2
(M1B̃B̃ +M2W̃W̃ +M3G̃G̃+ c.c.)

+ (˜̄uauQ̃Hu + ˜̄dadQ̃Hd + ˜̄eaeL̃Hd + c.c.)

+ Q̃†m2
QQ̃+ L̃†m2

LL̃+ ˜̄um2
ū

˜̄u† + ˜̄dm2
d̄

˜̄d† + ˜̄em2
ē
˜̄e†

+m2
HuH

∗
uHu +m2

Hd
H∗dHd + (BµHuHd + c.c.).

(4.76)

The first line introduces the masses for gauginos. Massive A-terms appear in the

second line. au, ad and ae are the 3×3 matrices in the family space (indices

are suppressed). They play a significant role in the flavour violating decays and

the LH/RH mixing of third generation sfermions. The value of (au)3
3 = At is of

particular importance for generating sizeable corrections for the Higgs mass. In

the third line the soft breaking masses are added. These are also 3×3 matrices

in the family space. The presence of the non–zero off–diagonal elements would

also contribute to flavour changing interactions. Finally, in the forth line, soft

breaking parameters for the up and down type Higgs fields appear which play an

essential role in EW symmetry breaking. Fig. 4.3 depicts the Feynman diagrams

where the soft breaking terms contribute to the µ → eγ decay. In the first

diagram the off–diagonal elements (m2
ē)12 + c.c. are non–zero. Similarly, in the b

diagram the left handed slepton matrix has non–vanishing off–diagonal elements.

In the c diagram the trilinear term ae contributes after the Hd acquires a VEV
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Figure 4.3: Lepton number violating diagrams for µ→ eγ process. The figure is
from Ref. [37].

[37].

The origin of the soft breaking terms are subject to intense research, but in

general they emerge via similar mechanisms: hidden sector, that does not couple

directly to the MSSM particle content, and the messenger field, that interacts

with visible and hidden sectors, are introduced. SUSY is broken in the hidden

sector and this is mediated by the messenger field to the MSSM. The most widely

discussed mechanisms for explaining the origin of the terms in Eq. (4.76) are the

following:

•Gravity mediated breaking [120, 128, 129, 130]. In this scenario, SUSY is bro-

ken in the hidden sector by very heavy scalars. However, particles in the hidden

sector do not interact directly with ordinary SM particles and their superpart-

ners. A graviton and its superpartner, the gravitino, then act as messenger fields

between observable and hidden sectors. Therefore the supergravity coupling is

responsible for the SUSY breaking. To show how SUSY breaking in the hidden

sector can induce soft breaking terms in an observable sector, let us consider a

superpotential, Kähler potential and gauge kinetic function expanded in terms of
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MPl [37]:

W = WMSSM −
1

MPl

(
1

3!
yXΦ3 +

1

2
µXΦ2

)
+ ...,

K = Φ̄Φ +
1

MPl

(nX + n̄X̄)Φ̄Φ− 1

M2
Pl

k2X̄XΦ̄Φ + ...,

fab =
δab
g2
a

(
1− 2

MPl

faX + ...

)
,

(4.77)

where y, k, n, µ and fa are couplings between fields that they precede. X is the

chiral superfield residing in the hidden sector. SUSY is broken once the field X

develops 〈VF (X)〉 = |FX |2 =
∣∣∂W
∂X

∣∣2 6= 0 and the effective soft SUSY breaking

Lagrangian then reads [37]:

−Lsoft =
F

2MPl

faλ
aλa +

F

6MPl

yφ3 +
F

2MPl

µφ2+

|F |2

MPl

(k + |n|2)φ2 +
F

MPl

nφWMSSM + c.c..

(4.78)

From this equation it is obvious that induced soft breaking terms are of the order:

msoft ∼ m0 ∼ m1/2 ∼ A0 ∼ B0 ∼
〈FX〉
MPl

, (4.79)

where m0, m1/2, A0 and B0 are expressed as a functions of couplings defined in

Eq. (4.77), and masses of scalars, gauginos, trilinear couplings and B parameter

all converge to m0, m1/2, A0 and B0 at the GUT scale.

•Gauge mediated SUSY breaking (GMSB) [131, 132, 133]. In this model, the

soft breaking terms arise due to gauge interactions between the hidden and visible

sectors. As a result, the gaugino masses arise at one–loop and scalar masses at

two loops. The LSP in the GMSB is always the gravitino and the NLSP is usually

the lightest neutralino χ̃0
1. The gauginos have the same mass hierarchy as in Eq.

(4.80).
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•Anomaly mediated breaking (AMSB) [134, 135]. This scenario is similar to

gravity mediated SUSY breaking but here there are no tree level interactions

between observable and the hidden sectors. The relation for gaugino masses at

any energy scale holds as [136]:

M1 : M2 : M3 ≈ 2.8 : 1 : 8.3. (4.80)

One deficiency of this type of SUSY breaking is that it induces negative squared

masses for the fermions and therefore some universal scalar parameter has to be

added or another contribution of SUSY breaking must be present to make the

masses positive. The crucial thing though is that in this type of SUSY breaking,

the upper bound on the Higgs mass is 121 GeV [137], and this is very likely to

be ruled out in the nearest future as more data comes from the LHC.

These scenarios are the top–bottom approach where the theories, due to im-

posed universality conditions are defined by a relatively few input parameters and

the running of RGE relates GUT physics with the low energy scale. Since SUSY

is yet to be found the reverse method of the bottom-up approach is attracting

more attention because it provides more freedom as the theories generally have

more free parameters at the EW scale.

4.4.3 Electroweak symmetry breaking

Though the idea behind the EW symmetry breaking in the MSSM is the same

as in SM, i.e. calculating the VEV of the Higgs field at which its potential

is minimum, but the presence of the Higgs doublets renders the theory of EW

symmetry breaking within MSSM more complicated. In order to write down the
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Higgs scalar potential we have to collect the relevant terms. First, we have the soft

breaking terms for the up and down Higgs doublets, see the last line in Lagrangian

in Eq. (4.76). The b = Bµ term adds Lsoft ⊃ (b(H+
u H

−
d −H0

uH
0
d)+c.c.). Another

contribution arises from the F–term in the scalar potential applied on the µHuHd

in the superpotential Eq. (4.69). The last contribution is from the D–term in

Eq. (4.40). Collecting all these the have [37]:

V = (|µ|2 +m2
Hu)(|H0

u|2 + |H+
u |2) + (|µ|2 +m2

Hd
)(|H0

d |2 + |H−d |
2)

+ (b(H+
u H

−
d −H

0
uH

0
d) + c.c.) +

1

8
(g2

1 + g2
2)(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |
2)2

+
1

2
g2

2|H+
u H

0∗
d +H0

uH
−∗
d |

2.

(4.81)

In order to have electromagnetic theory unbroken, the charged Higgs components

can not develop a VEV and thus have to be equal to zero. This reduces the above

potential to [37]:

V = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2 − (bH0

uH
0
d + c.c.)

+
1

8
(g2

1 + g2
2)(|H0

u|2 − |H0
d |2)2.

(4.82)

Choosing

〈H0
u〉 = vu = v sin β and 〈H0

d〉 = vd = v cos β, (4.83)

the minimization conditions

∂V

∂H0
u

=
∂V

∂H0
d

= 0, (4.84)

are satisfied if

1

2
m2
Z =

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− µ2, (4.85)
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along with

sin 2β =
2b

m2
Hd

+m2
Hu

+ 2µ2
, (4.86)

are satisfied as well [37]. Note that from Eq. (4.85) it can be seen that for

moderate to large tan β, the mass of mZ is insensitive to mHd :

1

2
m2
Z ' −m2

Hu − µ
2. (4.87)

4.4.4 Parametrizing the fine tuning

The SUSY naturalness issue is closely related to Eq. (4.85). If the soft breaking

masses mHu and mHd get pushed high, then a delicate cancellation between the

first term on the right hand side in Eq. (4.85) and µ2 is required to yield m2
Z .

Therefore, this equation is used to parametrize the fine tuning. The fine tuning

measure is quantified to show the input parameters’ sensitivity to the Z mass

[138, 139]:

∆pi =

∣∣∣∣∂ lnM2
Z(pi)

∂ ln pi

∣∣∣∣ =

∣∣∣∣ piM2
Z

∂M2
Z

∂pi

∣∣∣∣ (4.88)

with pi = {µ2, b,mHu ,mHd}. Using Eqs. (4.85) and (4.86) in the above equation

for each pi one can find:

∆µ2 = 4
µ2

m2
Z

(
1 +

m2
A +m2

Z

m2
A

tan2 2β

)
, (4.89)

∆b =

(
1 +

m2
A

m2
Z

)
tan2 2β, (4.90)

∆m2
Hu =

∣∣∣∣12 cos 2β+
m2
A

m2
Z

cos2 β− µ2

m2
Z

∣∣∣∣(1− 1

cos 2β
+
m2
A +m2

Z

m2
A

tan2 2β

)
, (4.91)

∆m2
Hd

=

∣∣∣∣− 1

2
cos 2β+

m2
A

m2
Z

sin2 β− µ2

m2
Z

∣∣∣∣(1+
1

cos 2β
+
m2
A +m2

Z

m2
A

tan2 2β

)
. (4.92)
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The total fine tuning is then defined as:

∆tot =
√

(∆µ2)2 + (∆b)2 + (∆m2
Hu

)2 + (∆m2
Hd

)2. (4.93)

Large ∆tot indicates that a theory is highly fine tuned.

4.4.5 Focus point: natural multi-TeV scalars in CMSSM

In a top–down class of supersymmetric models that respect universality condi-

tions, like for example mSUGRA or CMSSM 1, scalar particles have equal masses,

usually denoted m0 at the GUT scale. Naively one would expect that the larger

universal scalar mass parameter m0 is the larger mHu would be at Qweak. That

would require large cancellations between µ and mHu as can be seen from Eqs.

(4.85) and (4.87), and the theory would be unnatural. Analysis of the RGEs for

the scalar m0, trilinear A and gaugino breaking terms m1/2, revealed that some

RG trajectories of up type Higgs breaking mass mHu have a focus point at the

weak scale irrespective of the m0 value at the UV [140, 141]. More precisely the

Eqs. (4.85) and (4.87) can be written as:

1

2
m2
Z ≈ −0.04m2

0 + 1.4m2
1/2 − µ2, (4.94)

therefore even very heavy scalars, at the focus point, are natural!

4.4.6 Higgs sector

As already mentioned, there are two complex Higgs doublets in the MSSM which

amounts to eight degrees of freedom. After the EW symmetry breaking, three

1More discussion on mSUGRA and CMSSM can be found in Section 4.5.1.
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of them become longitudinal modes for the massive Z and W± bosons and the

remaining five Higgses are the CP–even light h0 and heavy H0 states, electrically

neutral pseudoscalar, thus CP–odd A0 and finally the charged states H± [37].

The neutral components can be expanded as [37]:

(
H0
u

H0
d

)
=

(
vu
vd

)
+
Rα√

2

(
h0

H0

)
+
iRβ0√

2

(
G0

A0

)
, (4.95)

where:

Rα =

(
cosα sinα
− sinα cosα

)
, Rβ0 =

(
sin β0 cos β0

− cos β0 sin β0

)
, (4.96)

are the rotation matrices that are introduced to make transformations from the

gauge to mass eigenstates. Similarly, the charged components are [37]:

(
H+
u

H−∗d

)
= Rβ±

(
G+

H+

)
with Rβ± =

(
sin β± cos β±
− cos β± sin β±

)
. (4.97)

In the case where vu and vd minimize the Higgs potential at the tree level the

equality β = β0 = β± holds and using Eq. (4.83) β = arctan(vu/vd). The β can

be slightly different if one chooses to minimize the Higgs potential including the

contributions from the loops [37]. After diagonalization the quadratic part of the

Higgs potential looks like:

V =
1

2
m2
h0(h0)2 +

1

2
m2
H0(H0)2 +

1

2
m2
G0(G0)2 +

1

2
m2
A0(A0)2+

1

2
m2
G±|G+|2 +

1

2
m2
H±|H+|2 + ...

(4.98)
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with the mass eigenstates [37]:

m2
A0 =

2b

sin 2β
= 2|µ|2 +m2

Hu +m2
Hd
, (4.99)

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
A0m2

Z sin2 2β

)
, (4.100)

m2
H± = m2

A0 +m2
W . (4.101)

The mixing angle α in the Rα matrix can be calculated using [37]:

sin 2α

sin 2β
= −

(
m2
H0 +m2

h0

m2
H0 −m2

h0

)
,

tan 2α

tan 2β
=

(
m2
A0 +m2

Z

m2
A0 −m2

Z

)
. (4.102)

Note that only mA and tan β are needed to describe the Higgs sector spectrum

at the tree level. Since the mass of mA0 increases as the ratio b
sin 2β

increases, this

also increases the masses of H0 and H±, which virtually are bounded from below.

However, as we will show now, the h0 mass is bounded from above. Ignoring the

O
( m4

Z

m4
A0

)
terms and taking the experimentally justified limit mA0 � mZ , Eq.

(4.100) can be expanded as:

m2
h0 ≤

1

2

(
m2
A0 +m2

Z −m2
A0

√
1− 2m2

Z

m2
A0

[
1− 2 sin2 2β

])
≈

1

2

(
m2
A0 +m2

Z −m2
A0

{
1− m2

Z

m2
A0

[
1− 2 sin2 2β

]})
=

1

2
(m2

Z +m2
Z [1− 2 sin2 2β]) = m2

Z cos2 2β,

(4.103)

which, taking the positive values for the cosine function, implies the upper bound

on mh0 :

mh0 ≤ mZ |cos 2β|, (4.104)
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Figure 4.4: MA–tanβ plane depicting decoupling (blue), intermediate (yellow),
antidecoupling (pink) and intense (red) regimes of the Higgs sector [143]. The low
tanβ −mA0 region is ruled out by the LHC in the context of the CMSSM.

at tree level. This implies that large quantum corrections, due to coupling mainly

to (s)tops, have to be present in order for h0 to be a viable SM Higgs candidate.

Specific values of mA0 − tan β forces particular behaviour of the MSSM Higgses

that can be split into various regimes [142, 143]:

•Decoupling regime [144]: In this limit, a hierarchy mA � mZ is assumed and

Eqs. (4.99), (4.100) and (4.101) become:

mh0 ' m2
Z |cos2 2β|, mH0 ' m2

A0 +m2
Z sin2 2β, m2

H± = m2
A0 +m2

W . (4.105)

In the decoupling regime the light CP–even h0 plays the role of the SM model

Higgs and the pseudoscalar A0 becomes mass degenerate with the heavy CP–even

H and charged H± Higgses. The decoupling regime is shown in blue in Fig. 4.4.

•Antidecoupling regime [145]: as the name suggests, this regime is opposite to

the decoupling regime and occurs at mA0 ≤ mhSM
. The values of tan β have to be

in the range such that the last term in Eq. (4.100) would contribute enough for
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the mass of 125 GeV. In this case, the heavy Higgs H0 appears indistinguishable

from the SM Higgs, and the light h, in particular for the low tan β, is degenerate

with the pseudoscalar A0. The antidecoupling regime is coloured in black in Fig.

4.4.

•Intense coupling regime is where the pseudoscalar mass is comparable to 125

GeV. In this case, all of the Higgses have masses comparable to that of the SM

within 10–20 GeV, where the precise value depends on the tan β [143]. In Fig.

4.4 the parameter space for this regime is shown in red.

•Intermediate coupling regime occurs for low tan β and a pseudoscalar lighter

than 500 GeV [142]. This differs from the decoupling regime by the manner in

which the CP–even Higgses couple to the gauge bosons and fermions. This regime

is shown in yellow in Fig. 4.4.

4.4.7 Masses of squarks and sleptons

In this section, we will describe how the squark and slepton spectrum changes

after EW symmetry breaking. Here we consider the terms of the stop mass matrix,

but the discussion can be generalised for any MSSM matter content degree of

freedom. The complication arises because, after the EW symmetry breaking,

the two neutral components of the Higgs doublets develop vacuum expectation

value and terms, that constituted to the trilinear or quartic couplings of Higgses

to the sleptons, now contribute to the sparticles masses. To uncover the precise

pattern we have to collect the relevant terms. The first contribution is the LH and

RH masses which, in models without universality conditions (like the NMSSM

or pMSSM), are just free input parameters. Another important contribution

is mt̃ = y2
t̃
v2, which comes from the F–terms y2

t̃
H0∗
u H

0
u t̃
∗
Lt̃L and y2

t̃
H0∗
d H

0
d t̃
∗
Rt̃R
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in superpotential (see Eq. (4.69)), after Hu and Hd develops the VEV. These

terms constitute the diagonal part of the stop mass matrix. The off–diagonal

contribution has the same origin as the m2
t̃

term but it is due to the last term in

the MSSM superpotential and has the form −µyt̃v cos βt̃∗Rt̃L, where vd is the VEV

of H0
d and, as previously defined, vd = v cos β. Finally the last contribution comes

from the trilinear terms and has the form at̃v sin βt̃Lt̃
∗
R + c.c. after H0

u acquires a

VEV. After collecting all the terms, the mass matrix for the top squark can be

written as [37]:

Lmt̃
= −(t̃∗L t̃∗R)m2

t̃

(
t̃L
t̃R

)
, (4.106)

where

mt̃ =

(
m2
Q3

+m2
t̃

+ ∆ũL v(a∗
t̃

cos β − µyt̃ sin β)
v(at̃ cos β − µ∗yt̃ sin β) m2

ū3
+m2

t̃
+ ∆ũR

)
, (4.107)

and ∆s are the quantum corrections. The off–diagonal terms are often simplified

using the so called left/right mixing parameter, which is defined to be Xt̃ =

at̃ − µyt̃ cot β. It often appears in the radiative corrections to the Higgs mass

squared due to the coupling of the Higgs to the (s)top. This matrix can be

diagonalised by the unitary matrix to give the two mass eigenstates [37]:

(
t̃1
t̃2

)
=

(
ct̃ −s∗t̃
st̃ ct̃

)(
t̃L
t̃R

)
, (4.108)

where mt̃1
< mt̃2

by definition. In exactly the same manner the terms that con-

stitutes the mass matrices m2
b̃

and m2
τ̃ can be collected and after diagonalization

one finds the two mass eigenstates for the sbottom and stau that are mixtures of

the left and right handed gauge eigenstates. The off diagonal elements in mass
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matrices determine the mass splitting between the light and the heavy state.

Note that the major effect comes through the Yukawa couplings as the trilinear

terms are multiplied by cos β, which is modest or even negligible in most of the

parameter space. Therefore, only the particles with large Yukawas have signif-

icant mixing. This has direct implications for the first and second generation

sparticles because all the terms containing Yukawa couplings can be ignored and

since the off-diagonal entries in their respective mass matrices vanish, their gauge

eigenstates are the same as the mass eigenstates.

4.4.8 Dark Matter in MSSM

The most widely studied DM candidate within SUSY is the neutralino χ̃0
1. Nev-

ertheless we will review other possible candidates later in the Section 5.2. The

neutralino mass matrix in the MSSM in gauge eigenstate (B̃, W̃ 0, H̃0
d , H̃

0
u) is given

by [37]:

Mχ̃0 =


M1 0 −g1vd√

2

g1vu√
2

0 M2
g2vd√

2
−g2vu√

2

−g1vd√
2

g2vd√
2

0 −µ
g1vu√

2
−g2vu√

2
−µ 0

 .

M1 and M2 in the diagonal entries arise due to the soft breaking terms in Eq.

(4.76). The contribution to the off–diagonal entries comes from the following: 1)

−µ is the Higgsino mass term, 2) the rest are the terms due to Higgs-Higgsino-

gaugino interactions, where after the EW symmetry breaking the Higgs field

acquired a VEV v. One can find the mass eigenstates by diagonalizing Mχ̃0 with

the help of unitary matrix N. After diagonalization one finds the mass eigenstates
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being [37, 146]:

mχ̃0
1

= M1 −
m2
Zs

2
W (M1 + µ sin 2β)

µ2 −M2
1

+ ...,

mχ̃0
2

= M2 −
m2
W (M1 + µ sin 2β)

µ2 −M2
2

+ ...,

mχ̃0
3

= |µ|+ m2
Z(I − sin 2β)(µ+M1c

2
W +M2s

2
W )

2(µ+M1)(µ+M2)
+ ...,

mχ̃0
4

= |µ|+ m2
Z(I + sin 2β)(µ−M1c

2
W −M2s

2
W )

2(µ−M1)(µ−M2)
+ ... .

(4.109)

The convention is that mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
. If, for example, it happens

to be that M2 < M1 then the lightest neutralino is wino. In the limits where

mZ � |M1±µ| and |M2±µ|, the neutralino eigenstates are almost pure gaugino

and higgsino eigenstates. It is worthwhile mentioning, that in the same limit, the

chargino χ̃±1 , which is the mixture of electrically charged winos and higgsinos, up

to corrections, has degenerate mass eigenstates with the neutralino:

mχ̃±1
= M2 + ..., mχ̃±2

= |µ|+ ... . (4.110)

Since the generic experimental bound on the mass of the chargino is mχ̃±1
> 103.5

GeV [147] it implies that a lighter than 103.5 GeV neutralino would have to have

a sizeable fraction of bino. In fact, as we will demonstrate later, the very lightest

neutralino in the MSSM has to be dominantly bino. In a spirit of being complete,

it should be added that the chargino mass limit is not the only reason for the

lightest neutralino to be bino. Another issue is the invisible Z decay, which we

discuss in greater detail in Section 6.1. The major difficulty in having a bino

neutralino is that it produces too large relic abundance ΩB̃h
2. One of the modes

that the bino annihilates in the Early Universe is through the t–channel exchange
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of light squark or slepton, which are the subject of intense investigation at LHC

and LEP.

4.5 Extensions of the MSSM

4.5.1 mSUGRA and CMSSM

mSUGRA [128, 129, 130] and CMSSM [148, 149, 150, 151] are terms often used

interchangeably for a class of gravity mediated SUSY breaking models. However,

there is a difference between the two: mSUGRA has an additional constraint

between the parameters, which CMSSM leaves unrelated. Therefore, in a sense,

mSUGRA is an even more constrained version of CMSSM.

Free input parameters of CMSSM are those that enter into soft SUSY breaking

Lagrangian given by Eq. (4.76). These include gaugino masses with M1 = M2 =

M3 = m1/2 at the GUT scale; likewise, all trilinear breaking parameters converge

to A0; and finally, all scalar masses converge to m0 at the GUT scale. Besides this,

we also require tan β, which is the ratio of the up and down Higgses’ expectation

values, and the sign of µ, since it is the magnitude, and not the sign, which is

fixed by EWSB. Therefore, to explore a parameter space of CMSSM, one has to

come up with values of:

m0,m1/2, A0, tan β, sign(µ). (4.111)

mSUGRA has an additional constraint [152]:

B0 = A0 −m0, (4.112)
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where B0 dependent terms are the last two in Eq. (4.76). This constraint implies

that tan β parameter is now also determined by EWSB conditions [152] and the

input parameters for mSUGRA is then:

m0,m1/2, A0, sign(µ). (4.113)

For more discussion on supergravity please see Section 4.4.2.

4.5.2 MSSM with non–universal Higgs masses

The NUHMII is a variant of the MSSM with non–universal soft breaking masses

for the up and down type Higgs doublets which we denote m1 and m2 respectively.

[153, 154, 155]. The universality of scalar masses m0 at the unification scale, i.e.

the GUT scale, is still assumed, but in the NUHMII model, they are different

from m1 and m2. It is well known that the Higgs masses can be written as,

see [154, 155]:

m2
1(1 + tan2 β) = m2

A0 tan2 β − µ2(tan2 β + 1−∆(2)
µ )

− (c+ 2cµ) tan2 β −∆A tan2 β − 1

2
m2
Z(1− tan2 β)−∆(1)

µ ,
(4.114)

and

m2
2(1 + tan2β) = m2

A0 − µ2(tan2 β + 1 + ∆(2)
µ )

− (c+ 2cµ)−∆A0 +
1

2
m2
Z(1− tan2 β) + ∆(1)

µ ,
(4.115)

where c, cµ, ∆
(1,2)
µ , ∆A0 are radiative corrections and mA0 is the mass of the

CP–odd pseudoscalar Higgs. In fact these equations are just the EW symmetry

breaking conditions which are now solved for m1 and m2. So from the above, we
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Figure 4.5: Evolution of masses in the NUHMII model [37].

see that m1 and m2 can now be expressed in terms of µ and mA0 , which tells us

that NUHMII has the following free parameters:

m0, m1/2, A0, tan β, µ, mA0 , (4.116)

where the trilinear soft breaking term is A0. The DM sector of NUHMII is the

same as that of MSSM. In Section 7.3 it will be shown how inflation and DM can

be encompassed within NUHMII.

4.5.3 Next–to–the–minimal MSSM

In the NMSSM model, the µ term is generated dynamically and this enables the

EW fine tuning of the MSSM to be ameliorated. This is done by introducing an

additional scalar singlet S and replacing the Higgs mass parameter in the MSSM
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superpotential in Eq. (4.69), by a product λS [156]:

WNMSSM = W µ=0
MSSM + λSHuHd +

1

3
κS3 (4.117)

In this setup, S acquires an expectation value and the size of the µ = λS term

depends on the VEV of the S field and the size of the coupling λ. In order to

treat the theory in a perturbative manner, the ranges for λ and κ are typically

assumed to be within 0 ≤ λ ≤ 0.75 and 0 ≤ κ ≤ 0.65. As λ, κ → 0, there is the

decoupling limit in which the NMSSM becomes the MSSM.

At the point where κ = 0, the NMSSM superpotential has a global U(1)

Peccei–Quinn (PQ) symmetry [37, 156]:

H
′

u → Hue
iφPQ , H

′

d → Hde
iφPQ , S

′ → Se−2iφPQ ,

Q
′ → Qe−iφPQ , L

′ → Le−iφPQ ,
(4.118)

where ū, d̄, ē have zero PQ charge. This symmetry is broken when Hu, Hd

and S acquire a non–zero VEV, and as a result, a pseudo–Goldstone boson – a

light pseudoscalar PQ axion – appears. Within NMSSM, it plays the role of the

lightest CP–odd Higgs, helps to resolve the strong CP problem and is a good DM

candidate. Breaking PQ symmetry by including the singlet self–coupling term

with non–zero κ helps to avoid phenomenological, cosmological and astrophysical

constraints, see for eg. [157, 158, 159, 160, 161].

Further note that NMSSM, at the renormalizable level, possesses a discrete

Z3 symmetry, under which all terms in the superpotential remain invariant if the

fields are rotated by ei
2π
3 . This discrete symmetry is broken during the phase

transition associated with the EW symmetry breaking in the Early Universe and
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cosmologically dangerous domain walls can then be produced [156, 162, 163].

However, it has been shown that this cosmological problem is eliminated after

imposing a Z2 R–symmetry on the non–renormalizable sector of the NMSSM

[164].

The appearance of these new terms has great implications for the DM sector.

In the NMSSM the DM has 5×5 matrix and the additional ingredient in the

neutralino is that it can get an admixture of singlino. In particular, the large

singlino component is needed for the case of light DM candidate with a large

χ̃0 − p interaction cross section – as is claimed in a number of DD experiments.

The neutralino mass matrix in NMSSM is then given by [37, 156]:

Mχ̃0 =


M1 0 − 1√

2
g1vd

1√
2
g1vu 0

0 M2
1√
2
g2vd − 1√

2
g2vu 0

− 1√
2
g1vd

1√
2
g2vd 0 −vsλ −vuλ

1√
2
g1vu − 1√

2
g2vu −vsλ 0 −vdλ

0 0 −vuλ −vdλ 2vsκ

 .

The mass of the lightest neutralino can then be written as:

χ̃0
1 = N11B̃ +N12W̃

0 +N13H̃
0
d +N14H̃

0
u +N15S̃. (4.119)

A phenomenologically interesting limit is where the neutralino is dominated by

the singlino component. Its mass can then be expressed via the following equation

[165]:

mχ̃0
1

= λ2v
2

µ
sin 2β + 2

κ

λ
µ. (4.120)

As we will show latter, the singlino neutralino has a large χ̃0
1–nucleon spin inde-

pendent cross section and therefore is a plausible candidate to explain potential
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signals from direct DM detection experiments.
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Chapter 5

Frontier of the Dark Matter

Cosmological observations made by the Planck satellite suggest, that DM ac-

counts for as much as 26.8% of the total energy budget of the Universe [91]. The

existence of DM was first inferred from its gravitational interactions by observing

the velocity dispersion of galaxies in the Coma cluster [9]. Evidence of DM also

comes from the study of galaxy rotation curves [10]. The left panel of Fig. 5.1

shows expected (lower curve) and actual (upper curve) rotational velocities of the

stars in the galactic disk, as a function of the distance from the galaxy centre. If

the matter that emits light would be all what the galaxies are made of, from the

Newtonian mechanics one would expect, that the orbital velocity of for eg. star

would decrease as the distance from the centre increases, just like it is shown by

the lower curve in the same figure. However, the observations suggest, that to

a leading order, the rotational velocity does not depend on the distance as it is

depicted by the upper curve. In the case of the Sun in the Milky Way (MW), one

would expect the Sun to rotate at ∼ 160 km/s around the MW centre while it

actually has an orbital velocity of about 220 km/s. This can only be explained by
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Figure 5.1: Left panel: rotational velocity around Galactic centre vs. the distance
from Galactic centre for the cases with and without a presence of DM halo. Right
panel schematically depicts the setup for gravitational lensing effect. Figures taken
from Ref. [166] (left) and NASA/ESA (right).

the existence of some form of matter that we can not see directly. DM presence

can also be inferred by measuring velocity dispersions of the galaxies in galaxy

clusters and superclusters [19, 20]. Another classical example that proves the

presence of the DM is the gravitational lensing [16, 17, 18]. It is common array in

nature when a massive object, which acts as a gravitational lens, lies in between

observer (the Earth) and the source of light (the galaxy). This setup is graphi-

cally depicted in the right panel of Fig. 5.1. As the light from the source travels

towards the observer, it gets bent by the massive object that curves the space

around it. The amount of the effect largely depends on the mass of the object

that acts as a gravitational lens and is easily calculable. It also turns out to be

the case, that the bending is much larger compared to what one could expect if

the lens would be made of the visible matter only.

In Ref. [18] authors argue that compelling piece of the evidence that DM

is of a particle like nature, comes from the bullet cluster, which consists of two

colliding galaxy clusters [22, 23, 24]. In the Picture 5.2, one can see the blue
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Figure 5.2: The bullet cluster – an evidence for a particle–like origin of the DM.
The figure is taken from Ref. [167].

and the red regions: blue is the gravitational potential due to the presence of the

DM, and was located by the gravitational lensing effects, and the red is a visible

baryonic matter that emits X-rays due to the shock waves of the collision. Note

that the blue regions, unlike the red ones that represent hot X–ray emitting gas,

seem to be unaffected by the collision.

There were a number of attempts to explain the DM phenomena by trying to

modify gravity. And indeed, the lensing maps of the bullet cluster can also be

explained in modified gravity theories by scaling the gravitational constant with

an interpolation function and adding ordinary SM neutrinos of 2 eV mass as a

hot DM [25].
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5.1 Relic density

Figure 5.3: Evolution of comoving DM number density as the function of m/T
or time equivalently. Arrow denote increase in DM annihilation cross section [169].

5.1 Relic density

The most popular mechanism explaining how the relic density of the DM abun-

dance could have settled to the level that we observe today is called the freeze

out mechanism [168]. It is depicted in the Fig. 5.3. In the freeze out scenario,

the heavier DM species initially are assumed to be in thermal equilibrium with

the lighter ones of the thermal bath. During this phase, that is labelled by 1 in

the figure, the Universe is hot enough, so that the processes of the DM particles

annihilating into SM degrees of freedom and backwards, i.e. DM+DM ↔ X+X

is ongoing at the same rate, and the relic density remains unaltered. However,

as the Universe cools down and its temperature drops below the mDM , the DM

particles still annihilates into lighter species that the thermal bath is made of,

but these lighter particles are not energetic enough anymore to produce DM, i.e.
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DM +DM → X +X – and, as shown in phase 2 in the figure, the relic density

starts dropping, simply because the number density of DM, nDM , decreases. Once

the Hubble expansion rate exceeds the rate of the annihilation of DM particles

into SM ones, the relic abundance freezes out, as shown in the phase 3. This

is also called chemical decoupling. The downwards pointing arrow demonstrates,

how the change in the annihilation cross section of DM affects their final number

density – the larger the rate the more effective the annihilation of DM, which

in turn implies fewer particles left and therefore a smaller abundance ΩDMh
2.

However, since the DM particles are not relativistic at this stage anymore, their

number density nDM scales roughly as n ∼ T 3. For the case of relativistic SM

species, their number density is exponentially suppressed and can be written as

nSM ∼ (mT )3/2 exp(−m
T

) [170]. Therefore nSM � nDM which means that the

DM still scatters of the SM particles in the thermal bath and remains in thermal

equilibrium with it. Once the Hubble rate H exceeds the scattering rate Γ, the

DM completely decouples and this is called kinetic decoupling. The temperature

at which the kinetic decoupling occurs, can be calculated by equating the elastic

scattering rate with the Hubble expansion rate [171, 172]:

Tkin. dec. ∼ 1 MeV

(
mDM

GeV

) 2
3

. (5.1)

The value of the Tkin. dec. is very important in determining the sizes of the proto-

halos. See for eg. [173, 174] and references therein.
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5.2 Dark Matter candidates

As it was already mentioned, one of the motivations to go beyond the SM is that

it does not have any viable DM candidate. To some extent, in Chapter 4, we

have already discussed the most popular DM candidate in SUSY – the lightest

neutralino χ̃0
1. We will start this section by elaborating on further properties of

the neutralino and then continue by reviewing some other DM candidates, in and

out of the scope of SUSY.

• Lightest neutralino – χ̃0
1. Despite being the most widely studied candidate,

the neutralino has some drawbacks. In the standard WIMP miracle calcu-

lation, the thermal relic abundance for a bino like neutralino is given by

[175]:

ΩB̃h
2 = 1.3× 10−2

( ml̃R

100GeV

)2 (1 + r)4

r(1 + r2)

(
1 + 0.07 log

√
r100GeV

ml̃R

)
,

(5.2)

where r ≡ M2
1

m2
l̃R

. From here it is easy to see that in order to satisfy the

upper Planck bound on DM relic density [176] by the presence of the very

light neutralino species, just as recent DD experiments suggest [177, 178,

179, 180, 181], light right handed sleptons are required. However, the scale

of the sparticles is constantly being pushed up by the collider experiments

and thus leads to the overproduction of light, bino dominated neutralino.

Yet, for the wino and higgsino like neutralinos the relic density respectively

can be expressed as [175]:

ΩW̃h
2 ' 0.1

(
M2

2.2 TeV

)2

, ΩH̃h
2 ' 0.1

(
µ

1 TeV

)2

, (5.3)
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which leads to the underproduction for the wino (higgsino) like neutralino

that is lighter than 2.2 TeV (1 TeV), and overproduction for the neutralinos

that are heavier than the quoted values. In order for the neutralino to

account for the full DM content of the Universe, for a given mass, χ̃0
1 has to

have a very specific admixture of gauginos and higgsinos, or get depleted via

special (co)annihilation channels and/or resonances, which in either case is

a somewhat fine tuned scenario.

• SM neutrino. Ever since in Super–Kamiokande it was found that the neu-

trinos have masses [3], it became clear, that in principle, they contribute

to the relic density of the Universe. However, the first problem is that

the N-body simulations of the structure formation show that DM is non–

relativistic, i.e. cold [26, 27], and neutrino could only account for the hot

DM. The classification of DM candidates into hot or cold depends on their

thermal velocity in the Early Universe. When galaxy–sized masses are first

encompassed within the horizon, hot DM particles, like the SM neutrino,

are still relativistic. As a result, fluctuations on galaxy scales are wiped out

by the free streaming of such particles. Yet another reason is that the relic

density of neutrinos can be expressed as:

Ωνh
2 '

∑
imν,i

93.14 eV
. (5.4)

The upper bound on the sum over all generations of neutrino masses is

found to be [83]: ∑
i

mν,i ≤ 0.28 eV (5.5)
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Figure 5.4: γ production by the decay of the sterile neutrino Ni → γνα, where
α = e, µ, τ [187].

at 95% C.L., with a very clear implication that neutrino contribution to-

wards the total relic abundance is minute.

• Sterile neutrinos (N). The disappearance of SM neutrinos as they propagate

from their source is an experimentally well established fact [182, 183, 184].

One way to explain this anomaly is to introduce the sterile neutrino [185,

186]. Sterile neutrinos are the neutrinos which mainly interact via gravita-

tional interaction. The interaction rate between the sterile neutrino itself

and its SM counterparts is parametrised by some mixing angle θα,i. By

changing this mixing angle and the mass, one can make its lifetime longer

than the age of the Universe, as required for a DM candidate. The mixing

angle is responsible for both the production of N in the early Universe as

well as its decay. A possible decay channel is shown in Fig. 5.4. So the

photons would be a smoking gun signature of the decay of N. Sterile neutri-

nos that are heavier than 50 keV are excluded, since the γ flux they would

produce would be too large [188]. The lower bound is of the order of few

keV, which comes from the large scale structure formation. Interestingly,

as we will discuss in Section 5.4.3, an unidentified monochromatic line of
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Eγ ≈ 3.5 keV was recently observed by two groups in galaxies and galaxy

clusters [189, 190], that could possibly be due to the decay of N.

• Sneutrinos. In supersymmetric extensions of SM, sneutrinos are the scalar

partners of neutrinos. One of the problems with the LH sneutrinos being

the DM candidate is its large scattering cross section from the nuclei in

the DD experiments exceeding the experimental bounds by several orders

of magnitude [191]. Furthermore, the LH sneutrino’s annihilation rate is

usually too rapid to provide enough DM and multicomponent scenarios

have to be invoked [191]. The observation of neutrino oscillations gives a

natural motivation for adding the RH neutrino to the SM, whose supersym-

metric partner – RH sneutrino becomes a viable DM candidate. However,

the RH sneutrino, being sterile under SM gauge interactions, cannot be

brought into thermal equilibrium, yet extending gauge symmetries, allows

to accommodate RH sneutrinos that avoid all current constraints [192, 193].

• Gravitino is the spin 3/2 supersymmetric partner of the graviton. In the

Early Universe, it can be produced either thermally or in the late decays of

an NLSP. In gravity mediated SUSY breaking models, its mass is related

to the SUSY breaking scale via [37]:

m3/2 ∼
〈F 〉
MPl

. (5.6)

Since the scale of 〈F 〉 is not known, there is a large parameter space where

the gravitino indeed could be the LSP. In an unbroken SUSY (i.e. 〈F 〉 =

0) the gravitino is massless. One of the problems is that since gravitino
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interactions are Planck scale suppressed, there is no hope of finding it in

the direct detection experiments or producing at colliders. Gravitinos is

also subject to the astrophysical constraints. When it is not the LSP, its

decay width can be written as [194, 195]:

Γ3/2 =
c

2π

m3
3/2

M2
pl

, (5.7)

where c ∼ O(1). The decay temperature can be calculated by equating the

decay rate to the Hubble expansion rate and is found to be [194, 195]:

Tdecay ' (5 MeV)
√
c

(
m3/2

100 TeV

)
(5.8)

In order for the gravitino to decay before BBN, it has to have a lifetime

shorter than 0.1 s, which corresponds to Tdecay ≥ 3 MeV or equally to a

lower bound of m3/2 ≥ O(40) TeV. In Ref. [194] it is argued, that if the

soft SUSY breaking terms arise due to the combination of modulus and

anomaly mediation, respecting the lower bound on the mass of gravitino

O(40) GeV leads to the lightest neutralino, in the range of < 1 TeV, being

dominantly higgsino. As mentioned before, due to the efficient annihilation

of higgsinos through Z boson and SM-like Higgs, pseudoscalar and/or heavy

Higgses (when kinematically allowed) leads to the underabundance of < 1

TeV neutralino DM in the Universe, see Eq. (5.3). In this case, additional

DM production mechanisms have to be invoked, if χ̃0
1 is to account for a

total DM budget.

• Axion is the scalar particle that is invoked in the PQ mechanism to dynam-
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ically resolve the strong CP problem in the QCD [14]. It is known, that

CP in strong sector is not violated as easily as in the weak interactions,

however in the SM there is the term that violates CP symmetry:

LQCD ⊃ Θ̄
g2

32π2
Ga,µνG̃a

µν . (5.9)

Here, Ga,µν is a SU(3)c field strength tensor, its dual is defined as G̃µν ≡
1
2
εµνρσG

ρσ and the parameter Θ can be in the range [0 : 2π]. To comply

with the experimental limits on neutron dipole model requires Θ ≤ 10−10.

To explain the smallness of this term, the axion scalar field is added [14]:

L ⊃ g2

32π2

(
Θ̄ +

a

fPQ

)
Ga,µνG̃a

µν , (5.10)

whose breaking allows to generate dynamically the term in the brackets of

the desirable smallness. Taking the PQ breaking scale fPQ anywhere in the

range of 100–1019 GeV, gives a mass of the axion in between 1 MeV and

10−12 eV [102].

• Axino. If nature realizes SUSY, then the axion should have its supersym-

metric spin 1/2, R parity odd superpartner axino. Axino masses typically

are in the mass range of keV–MeV [196]. It is possible, that in the Early

Universe the neutralino could be the NLSP and would decay to the LSP –

axino. In such case, the relic density of axinos could be extracted via:

Ωãh
2 =

(
mã

mχ̃0
1

)
Ωχ̃0

1
h2. (5.11)

• Kaluza–Klein lightest state (LKP) arises in a generic class of models in
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Figure 5.5: Favoured mass and interaction ranges of various DM candidates [216].

which all the fields (including the fermions) propagate in compact extra

dimensions. The compactification scale in these models comes from EW

precision measurements and is limited to be 1/R & 300 GeV [197]. LKP

is coupled to the SM degrees of freedom and the symmetry, called Kaluza–

Klein parity, prevents its decay to the lighter SM particles. In Ref. [198] it is

shown, that for the LKP to account for the total observed relic abundance,

its mass should lie in the range 400–1200 GeV, though any lighter mass in a

range below 400 GeV would be subject to subdominant component of DM.

• Other candidates include fuzzy CDM [199], scalar particles [200], mirror

DM [201, 202], massive graviton [203, 204], very heavy WIMPS – wimpzillas

[205, 206], Q–balls [207, 208, 209], self interacting DM [210], cryptons [211,

212], primordial black holes [213, 214, 215].

The preferred regions of mass and interaction ranges for various DM candidates
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are summarised graphically in Fig. 5.5.

5.3 Boltzmann equation

The analytical expression for the relic density calculation was firstly derived in

Ref. [66]. Let f = f(~p, ~x, t) be the phase space distribution function which obeys

Fermi–Dirac or Bose–Einstein statistics, depending on whether the particles are

fermionic or bosonic. Its evolution is governed by the Boltzmann transportation

equation, which schematically can be written as:

L̂[f ] = Ĉ[f ], (5.12)

where L̂ is Liouville operator that takes into account the external force ~F acting

upon the particles in the thermal bath and the diffusion processes. On the right

hand side is the collision term Ĉ, which accounts for forces between particles as

they interact amongst themselves. In the non–relativistic regime the Liouville

operator takes the form [102, 170]:

L̂ =
d

dt
+
d~x

dt
· ~∇x +

d~v

dt
· ~∇v =

d

dt
+ ~v · ~∇x +

~F

m
· ~∇v (5.13)

and the relativistic generalization is:

L̂ = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
. (5.14)

102



5.3 Boltzmann equation

For the Friedman–Robertson–Walker Universe, the phase space distribution func-

tion can be approximated to:

f(~x, ~p, t)→ f(|~p|, t) or f(E, t). (5.15)

In this case, the operator L̂ is:

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|~p|2 ∂f

∂E
(5.16)

where H = ȧ
a

being the expansion rate of the Universe and E2 = |~p|2 +m2. The

number density can be expressed as:

n(t) =
g

(2π)3

∫
f(E, t)d3p, (5.17)

where g is the number of spin states. To calculate the evolution of the number

density, we will firstly evaluate the operator L̂/E, where L̂ is defined in Eq.

(5.16):

L̂[n(t)]

E
=

g

(2π)3

∫
L̂[f(E, t)]

E
d3~p

=
g

(2π)3

∫
∂f(E, t)

∂t
d3~p− gH

(2π)3

∫
|~p|2

E

∂f

∂E
d3~p

= ṅ+ 3Hn =
1

a3

d(na3)

dt
.

(5.18)

This is equal to the change in number density because of the collisional interac-

tions between the particles:

ṅ+ 3Hn =
g

(2π)3

∫
Ĉ[f(E, t)]

E
d3~p. (5.19)
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Denoting dΠi ≡ gi
(2π)32E1

d3 ~p1 the collisional term for the i + j ←→ k + l process

can be expressed as:

g

(2π)3

∫
Ĉ[f(E, t)]

E
d3~p = −

∫
dΠldΠkdΠjdΠi(2π)4δ4(pi + pj − pk − pl)

× [|M|2i+j→k+lfifj(fk ± 1)(fl ± 1)− |M|2k+l→i+jfkfl(fi ± 1)(fj ± 1)]

(5.20)

This expression can be significantly simplified under the following assumptions

[102, 217]:

• assume CP (or T) invariance, which implies that |M|2i+j→k+l = |M|2k+l→i+j =

|M|2.

• since we are dealing with CDM, we have that E � T , in fact more pre-

cisely E/T ≈ 20, and this implies that we can neglect quantum mechanical

effects in the phase space distribution function and approximate it by the

classical Maxwell–Boltzmann distribution, also, in the above equation, we

can substitute fi ± 1 ' 1.

Under these assumptions Eq. (5.20) becomes:

ṅ+3Hn = −
∫
dΠldΠkdΠjdΠi(2π)4δ4(pi+pj−pk−pl)×|M|2[fifj−fkfl]. (5.21)

From now on we will assume that i and j are the annihilating DM particles and

k and l are the products X, i.e. we have the process DM +DM ↔ X̄ +X which

is extensively discussed in Section 5.1. We will not make assumptions for now on

whether the DM and X particles are Majorana or not. The next step is to deal

with the fDMfDM − fX̄fX term of Eq. (5.21). The delta function takes care of

energy conservation and imposes the condition that EDM + EDM = EX̄ + EX .
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Using the Maxwell–Boltzmann distribution with the zero chemical potential we

have that:

fXfX̄ = e−(EX+EX̄)/T = e−(EDM+EDM )/T = f eqDMf
eq

DM
. (5.22)

This assumes that DM particles are in kinetic equilibrium before the freeze out,

which is the case as elaborated in Section 5.1. So we have that:

[fDMfDM − fX̄fX ] = [fDMfDM − f
eq
DMf

eq

DM
]. (5.23)

Assuming that nDM = nDM = n, which does not necessarily have to be the

case like, for example, in scenarios with asymmetric DM, the Boltzmann transfer

equation becomes [102, 217]:

ṅ+ 3Hn = −〈σv〉 (n2 − n2
eq) (5.24)

with the thermally averaged annihilation cross section times the velocity ex-

pressed as:

〈σv〉 ≡ −(2π)4

n2
eq

∫
dΠDMdΠDMdΠXdΠXδ

4(pDM + pDM − pX − pX)×

|M|2e−(EDM+EDM )/T .

(5.25)

Introducing another variable Y such that:

Y ≡ n

s
, (5.26)
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where n and s are the particle number and entropy densities respectably, the Eq.

(5.24) can be rewritten as:

dY

dx
= −xs 〈σv〉

H
(Y 2 − Y 2

eq). (5.27)

where at the time of freeze–out x ≡ m/T ∼ 25 [66]. When the annihilation rate

of the DM particles drops below the expansion rate of the Universe, the number

density of DM freezes out. Then the parameter Y at the present epoch for the

DM yields:

Y0 ≈ 0.145
g

g∗S
x

3
2 e−x. (5.28)

Using Eqs. (3.11), (3.12) and (5.26) the relic density can be related to the pa-

rameter Y in the simple way:

ΩDMh
2 =

ρDM
ρc

h2 =
mDMnDM

ρc
h2 =

mDMs0Y0

ρc
h2, (5.29)

which finally can be written as [66]:

ΩDMh
2 =

3× 10−27cm3s−1

〈σv〉
. (5.30)

To get ΩDMh
2 ∼ 0.1 one has to have 〈σv〉 ∼ 10−26cm3s−1, which is common for

the weak interactions. This coincidence is called the WIMP miracle.

However, this calculation is not applicable in certain fine–tuned scenarios like

resonances, coannihilations and thresholds [67].

• Resonances: an example of resonance is the funnel region in the CMSSM,

where in the particular cases where mDM = 2mA0 the annihilation rate of the

DM is very high, which results in the underabundance of the DM in the Universe,
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as can be seen from Eq. (5.30).

• Coannihilations: the same effect on 〈σv〉 happens in the case of coannihila-

tions, where the certain level of degeneracy is required between the mass of LSP

and NLSP. In the common case, where the NLSP is τ̃1 the mass splitting has to

be very small, however, less fine–tuning of masses is required if the NLSP is a

strongly interacting particle, like t̃1. We will meet both cases in Chapter 7, in

the context of NUHMII model.

• Thresholds: Eq. (5.30) is also not applicable in certain threshold regions where

the mass of DM in annihilation process is slightly smaller than it is in the res-

onance regions. That is the condition 2mDM < mX + mX̄ is satisfied and the

process DM +DM → X + X̄ is kinematically suppressed.

Analytical expressions for the relic abundance calculations in these cases can

be found in Ref. [67].

5.4 Dark Matter detection

There are three main methods of how DM particles could be detected. The

Feynman diagrams of all them are shown schematically in the Fig. 5.6. Labelled

arrows denote the direction of time for each method and the blue circle represents

unspecified physics, which will vary within different extensions of SM. Below we

will review each method in more detail.

5.4.1 Collider production

One of the possibilities is that the DM can be created in colliders. In this case, if

the colliding SM particles are energetic enough, they could possibly excite super-
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Figure 5.6: Schematic representation of the Feynman rules for the collider search,
direct and indirect detection (DD/ID) of DM.

symmetric particles (for eg. q̃g̃, q̃q̃, g̃g̃ in LHC) that would cascade decay through

the heavier neutralinos and charginos with the final states containing χ̃0
1 [218].

The sign of the presence of neutralinos would be an excess of missing transverse

energy. In most cases the collider searches are complementary to the direct and

indirect detection experiments. Collider search results also come in a model de-

pendent fashion, where the CMSSM is the most widely studied possibility.

Fig. 5.7 summarizes the exclusion limits in the mχ̃0
1
− mt̃1

plane, from the

search for stop quark production. Final states containing one or two leptons,

large missing transverse momentum and b-jets are used to reconstruct the top

squark mass [219, 221]. As can be seen from the figure, no excess over SM

expectations was found. In this analysis, besides the constraints on the χ̃0
1–stop

masses, it is also assumed that the stop decays exclusively into sbottom and

chargino (t̃1 → χ̃±1 b), and the chargino decays to the DM candidate neutralino

(χ̃±1 → Wχ̃0
1). All other masses are assumed to be above TeV scale.

Fig. 5.8 shows the 95% C.L. exclusion regions in the mχ̃±1
−mχ̃0

1
plane, under
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Figure 5.7: Exclusion limit in the mχ̃0
1
−mt̃1

plane assuming various stop quark

production possibilities [219].
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Figure 5.8: 95% C.L. exclusion regions in the mχ̃±1
−mχ̃0

1
plane for the simplified

model with m
l̃

= mν̃ = (mχ̃±1
+mχ̃0

1
)/2. Figure from Ref. [220].
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these special assumptions about the sparticle spectrum, with the significance of

the lines’ explained in the plot itself. Despite all the efforts even using 20.3 fb−1 of

data at
√
s = 8 TeV no significant excess beyond SM expectations were observed

[220].

5.4.2 Direct detection

There are many experiments already built trying to directly detect suspersym-

metric DM particle, i.e. register a recoil between the nucleons of the detector and

the DM particles passing us all the time. Since the Milky Way’s halo is made

of DM particles, there should be a good chance that, even though interacting

weakly, sensitive detectors could register the recoil. The Feynman diagram on

which DD experiments rely on, can be seen in Fig. 5.6 with the time arrow point-

ing upwards. The typical expected recoil energies in such experiments are very

low – of the order of 10 keV. It is desirable to have large volumes of target mate-

rial in the detector, to increase the probability of the interaction because only a

few tens of scatterings are expected per kilogram per year. One of the challenges

in DD is how to take into account the background, as the neutrons from the

cosmogenic or radioactive processes can produce nuclear recoils that are indis-

tinguishable from those of an incident WIMP [222]. The results obtained so far

are quite contradictory since there are four: DAMA/LIBRA [177, 178], CoGeNT

[179], CRESST–II (1st phase run) [180], and CDMS [181, 222] experiments that

announced hints for the DM – all in the region of low mass region, while some

other experiments, most notably XENON100 [223] and LUX [224] are ruling out

all the parameter space favoured by former ones. Recent 2nd phase aggregation of

CRESST–II results also disfavours light DM – collaboration announced no excess
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Figure 5.9: The parameter space of spin independent DM–nucleon scattering
versus WIMP mass from various DM DD experiments. The figure is taken from
Ref. [225].

signal over the expected background [226]. Therefore, as it stands, there is no

conclusive evidence that rule in or out light DM.

However, in principle, it is possible to reconcile these results if one assumes

isospin violating DM [227]. As already mentioned, spin independent nucleon–χ̃0
1

scattering cross section can be schematically written as σSI ∝ [fpZ+fn(A−Z)]2,

where Z is atomic number of the active material in detector, A is number of nu-

cleons and fp(n) is the relative coupling strength of DM to the protons (neutrons).

Therefore, with some fine–tuning of the χ̃0
1 coupling to the proton and neutron

in the detector, consistent results across variety of seemingly contradictory ex-
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Figure 5.10: Favoured regions and exclusion bounds assuming isospin violating
DM in the case of fn = −0.7fp. Favoured regions of DAMA at 3σ C.L., assuming
scattering from Na only [177] and CoGeNT at 90% C.L. [179]; exclusion limits of
XENON100 [223] and XENON10 at 90% C.L. [228], and 90% CDMS Ge and Si
bounds [229, 230] are shown. The figure is taken from Ref. [227].

periments can be obtained. In the Ref. [227] authors show that in the range

−0.72 . fn/fp . −0.66 DAMA and CoGeNT regions overlap and sensitivity of

XENON10 and XENON100 is reduced enough to keep the data from all of these

in agreement. Fig. 5.10 graphically demonstrates the case where fn = −0.7fp,

with colour coding explained in the caption.

In the rest of the section, an overview of results from a few leading collabo-

rations is given. All bounds are evaluated using standard assumptions, i.e. DM

density in the Galactic halo ρχ̃0
1

= 0.3 GeV/cm3, the circular velocity v = 220

km/s and the Galactic escape velocity vesc = 544 km/s [231].

• DAMA/LIBRA experiment tries to verify the presence of the DM particles

in the halo by utilizing the annual modulation signal [232]. The expectation is

that as the Earth goes through the halo on June, Earth’s orbital velocity around

the Sun and the Sun’s rotational velocity around the Galaxy centre add construc-
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Figure 5.11: Annual modulation signal observed by DAMA/LIBRA in 2–4 keV
energy intervals as the function of time. The figure is taken from Ref. [178]

tively, but after precisely half year the two add destructively. The resulting effect

is the different flux of DM particles crossing the Earth and therefore yearly vary-

ing interaction rate between DM and the nuclei of the detector throughout the

year. Fig. 5.11 shows the residual interaction counts observed by DAMA/LIBRA.

The highest rate was registered on 2nd of June and lowest on 2nd of December –

a half year later. More precisely, the period in the plot is equal to (0.999± 0.002)

years, well in agreement with the expectation. The modulation is observed only

in a single hit events (where only one detector of many register scattering) and

that is also in line with the expectations because DM, which interacts weakly,

is unlikely to scatter off more than once. The statistical significance claimed by

DAMA for such modulation is measured to be 8.9 σ [177, 178].

• CoGeNT is the Germanium detector operated in Minnesota, US. The best fit

is for mχ̃0
1
∼ 7−11 GeV and the spin independent cross section σSI ≈ 6.7×10−41

cm2. CoGeNT also observed an annual modulation effect.

• CRESST–II is a cryogenic DM search facility operating at temperatures

as low as 15 mK. In this experiment, DM is expected to scatter off CaWO4
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crystal nuclei. At such low temperatures all excitations in the crystal stands still

and even least energetic scatterings can be registered. In Ref. [180] collaboration

Figure 5.12: Parameter space of the DM–nucleon scattering from the phase 2
data taking campaign. Grey area denotes irreducible background of supernovae
and solar neutrino scatterings from detector’s target material. The figure is taken
from [226].

announced results of the phase I data taking campaign where maximum likelihood

analysis of WIMP related interactions yielded two best fits for the mass of DM:

mχ̃0
1

= 25.3 GeV and mχ̃0
1

= 11.6 GeV with spin independent cross sections

σSI = 1.6× 10−6 pb and σSI = 3.7× 10−5 pb respectively. The possibility of two

different solutions arises because of the different nuclei present in detector’s target

material and for a given WIMP mass scatterings of different nuclei in CaWO4

crystal are dominant.
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In the phase II aggregation of two years data, collaboration did not observe

any excess over the expected background and instead announced an exclusion

limit for the WIMP–nucleon scattering. This is denoted by the solid red line of

the Fig. 5.12 together with 1σ C.L. by the light red [226].

• CDMS II collaboration seeks to register interactions using detectors oper-

ating at ∼ 40 mK. It is made of 30 detectors: 19 Ge and 11 Si, for a total of

∼ 4.6 kg of Ge and ∼ 1.2 kg of Si. In the data collected between July 2007 and

September 2008, there have been observed 3 event candidates for a recoil energy

range 7–100 keV. Likelihood analysis yielded best fit for a WIMP mass mχ̃0
1

= 8.6

GeV and WIMP–nucleon cross section σSI ≈ 1.9× 10−41 cm2.

Positive results obtained are summarised in Fig. 5.9 with a different colour

coding for different experiments. However, these results are challenged by the

competitive results released most notably by XENON100 and LUX. As it can be

seen from the plot, the bounds put on a parameter space by them are ruling out

all the before mentioned potential positive signals.

5.4.3 Indirect detection

Indirect detection relies on the processes where the DM particles annihilate or

decays into other lighter SM species like leptons or photons. Therefore, observing

an excess of these particles in the cosmic rays potentially could be a clear signal for

the existence of dark matter. The analysis of the indirect detection experiments

is subject to astrophysical backgrounds and therefore inherits a lot of uncertainty

and is hard to deal with.

If the DM annihilation or decay products are charged particles, astrophysics

gets a lot more complicated. One reason is that the internal properties and
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behaviour of some of the cosmic bodies are not conclusively understood, and this

makes it hard to quantify fluxes of particles emitted into the outer space. It is also

very hard to track down the region of the source of the excess particles, since they

are under Lorentz force influence due to the Galactic and Solar magnetic fields

before they reach the Earth. In general, propagation of the charged products in

the Galaxy is modelled by [233, 234, 235]:

K∇2ψ +
∂(bψ)

∂E
+ q =

∂ψ

∂t
, (5.31)

where ψ ≡ ψ(~x,E, t) is the particle number density per unit energy (dn/dE), at

location ~x and time t. b(~x,E) is the total energy loss of the particle by synchrotron

radiation and inverse Compton scattering and q ≡ q(~x,E, t) is the source term.

K is the diffusion coefficient. The loss term can be written as [170]:

be(~x,E) ' b0
IC

(
uph

1 eV/cm3

)
E2 + b0

sync

(
B

1 µG

)
E2, (5.32)

where uph together with constants b0
IC ' 0.76× 10−16 GeV/s and b0

sync ' 0.025×

10−16 GeV/s correspond to the background radiation energy density and B to

the ambient magnetic field.

• PAMELA (Payload for Antimatter Matter Exploration and Light–Nuclei

Astrophysics) and ATIC (Advanced Thin Ionization Calorimeter). One of the

experiments, PAMELA, announced that they have observed an excess of the

positrons in the cosmic ray radiation in the range of 10 GeV . Ee± . 100 GeV

[236]. The positrons are created by a cosmic ray nuclei (mainly protons and

helium nuclei) interaction with the interstellar matter (mainly hydrogen and he-

117



5.4 Dark Matter detection

lium) for eg [237]:

p+H → p+ n+ π+

π+ → e+ + νe

and so the positron fraction should decrease with the increasing energy as it

becomes energetically harder to produce them. Moreover, energetic positrons

effectively loose energy due to the inverse Compton scattering and synchrotron

radiation. However, contrary to theoretical prediction, PAMELA’s observation

shows an increase of the positron flux, see Fig. 5.13. To justify observed positron

excess by DM species, the annihilation cross section should be of the order

O(10−23) cm3/s i.e., thousand times larger than that expected for the thermal

DM. This could be achieved either by having DM overdensities in the Galactic

halo [238, 239, 240], producing DM non–thermally [241] or via resonant annihi-

lation [242], when the resonance mass differs by less than 1% from twice of DM

mass [243]. Furthermore, DM has to be leptophilic and annihilate mostly into

leptons because otherwise quarks would hadronize and antiproton measurements

would be exceeded [243]. This, for example, can be achieved by assuming that

DM shares a quantum number with leptons [244, 245]. However, as already men-

tioned above, an astrophysical treatment might play a key role in the analysis.

One source of electrons are pulsars – fast rotating neutron stars with a very strong

magnetic field that extracts e± from the star into the outer space [246]. In Ref.

[247, 248] authors claim, that the excess of the positrons measured by PAMELA

and also by ATIC [249] can be naturally explained by the presence of a few nearby

pulsars. From the PAMELA data, it is also possible to make a naive first order

estimation about the lifetime of the pulsar. Assuming a burst–like injection of
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Figure 5.13: The excesses of positrons in the cosmic rays as measured by AMS–02
[251], PAMELA [236] and Fermi–LAT [252]. Grey shaded area denotes theoretically
predicted secondary positron fraction [253, 254, 255].

positrons and inverse Compton scattering and synchrotron losses only, the time

required to cool them from an injection energy Ee± to the rest energy Ee± = me

can be expressed as

t ∼ 5× 105

(
TeV

Ee±

)
yr, (5.33)

therefore, if the injected positrons have energies of about 1 TeV [248], then in

order to still have these particles around us energetic enough, injection should

have happened in the last 5× 105 years.

• Fermi–LAT (Fermi Large Area Telescope) and AMS–02 (Alpha Magnetic Spec-

trometer). More recently two collaborations – Fermi–LAT [250, 252] performed

a refined analysis in between 20 and 200 GeV and AMS–02 [251] released the

data in the range of 0.5 – 350 GeV, with an observed excess in the 10 to 250

GeV window – both in agreement with the PAMELA data. The results from
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5.4 Dark Matter detection

AMS–02, PAMELA and Fermi–LAT are summarised in Fig. 5.13. Grey shaded

area denotes theoretically predicted secondary positron fraction [253, 254, 255].

In the latest improved update from the AMS–02 collaboration [256] the positron

excess in the range of 0.5–500 GeV is presented showing monotonically increasing

positron fraction as a function of their energy above ∼ 10 GeV. This behaviour

can still be explained by the presence of the nearby pulsars [257].

However, if decay products are the photons or neutrinos, these could be used

to pin down the original source of them. If there would be observed the sharp

spectral features in the γ ray spectrum, it would allow to discriminate this signal

from astrophysical backgrounds and would be a smoking gun evidence for the

DM annihilation or decay. The above–mentioned Fermi–LAT telescope also has

an instrument enabling to register γ rays. The search based on an excess of 50

photon signal of monochromatic rays in the Fermi–LAT data revealed, that in

the regions close to the Galactic centre, there is an indication for the Eγ = 130

GeV line at σ = 4.6 confidence level [258, 259]. Assuming DM annihilation to two

photons, the best fit for the mass was found to be mχ̃0
1

= 129.8 GeV. Independent

analysis yielding the same line with the similar statistical significance can be

found at [260, 261, 262, 263]. It’s worthwhile mentioning that there are number

of alternative ongoing attempts to explain the origin of this line: one possibility

is that this could be due to Fermi bubbles – a very powerful sources of γ rays

originating from the centre of our Galaxy [264]; depending on the angle at which

photons from the Earth limb fall into detector, they can also produce a ∼ 130

GeV feature with more than 3σ significance [265, 266, 267]; another possibility is

that these photons are actually coming from the Sun [267]. Besides, a speculation

about 130 GeV line, another emission line at 111 GeV is also found in [268].
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5.4 Dark Matter detection

Recently two groups independently announced that they observed Eγ ∼ 3.5

KeV X–ray line in the Andromeda galaxy and 73 galaxy clusters [189, 190]. This

line is found to be stronger towards the centre of these objects and completely

absent in the ”blank sky” dataset. Moreover, authors argue that this line is

absent in any kind of the atomic transitions that could take place in interstellar

gas. However, in ref. [269], different group carried out an independent study

and found no evidence of ∼ 3.5 KeV X–ray line. In any case, there already

have been a number of attempts to explain the observation by the axions [270],

axinos [271], string moduli [272], augmenting neutrino sector [190], or trying to

explain it minimally by adding SM with the non–renormalizable operators with

pseudo(scalar) or fermion coupling to the photons, through the operators of the

kind [273]:

φ

f
FµνF

µν , (5.34)

where f is a massive coupling constant.
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Chapter 6

Light neutralino Dark Matter in

p19MSSM and NMSSM

In this chapter, we explore the possibility of light neutralino DM in two popular

SUSY models:

• Phenomenological MSSM (p19MSSM): an unconstrained MSSM has 105

free parameters in addition to 19 that come from the SM [37]. The majority

of them appear in the complex matrices of sfermions and trilinear couplings in

the soft breaking Lagrangian, LMSSM
soft , given in Eq. (4.76). However, there exist

well–motivated assumptions, which allow us to reduce the number of free inputs

[274, 275, 276]:

1) CP violating phases in the SUSY sector vanish, based on the electron and

neutron electric dipole moments and from results on K-meson experiments.

2) As already discussed in Section 4.4.2, in order to suppress flavour chang-

ing neutral currents, all off–diagonal elements in the matrices of sfermions and

trilinear couplings can be set to zero.
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6.1 Method and constraints

3) The mixing rate of K0 − K̄0 and other kaon physics experiments suggest

the universality of the first and second generation sfermions [277].

4) Since trilinear couplings are proportional to the corresponding Yukawa cou-

pling matrix, only third generation couplings, Aτ , Ab and At, can have significant

phenomenological consequences.

Taking the above assumptions into account, the number of free parameters in

the theory boils down to 19, making phenomenological studies far more practical.

• NMSSM: a motivation and DM sector of the NMSSM has already been

discussed in Section 4.5.3.

Since SUSY is yet to be found, we also addressed the issue of naturalness

within the p19MSSM. However, within NMSSM, the EW fine tuning is highly

ameliorated since the Higgs mass parameter, µ, is generated by the VEV of a

singlet.

We start this chapter by discussing methods that we used to probe a parameter

space of SUSY models and the constraints that we applied on various observables.

The same techniques are used later in Chapter 7 to investigate the link between

DM and inflation within MSSM with non–universal Higgs masses (NUHMII).

6.1 Method and constraints

To explore the parameter space that is consistent with the experiments we used

micrOMEGAs2.4 software package [278]. micrOMEGAs is widely used in evaluating

DM relic abundance, fluxes of photons, antiprotons, and positrons; cross sections

of DM interactions with nuclei and energy distribution of recoil nuclei; neutrino

and the corresponding muon flux from DM particles captured by the Sun; collider
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cross sections and particles’ decay widths within a BSM models that provide

a viable WIMP DM candidate. It also calculates muon anomalous magnetic

moment (g−2)µ, branching ratios of various decay channels, including those that

are particularly sensitive to the BSM physics, like b→ sγ and Bs → µ+µ− [279].

The micrOMEGAs can provide these estimates for a desired particle physics

model once the key files, called model or CalcHEP files, are generated, see Fig. 6.1.

Model files contain model specific information about the properties of all particles,

parameters and interactions’ vertices. Most popular packages used to generate

these files are LanHEP [280], FEYNRULES [281] and SARAH [282, 283]. The user has

to solely define either the Lagrangian or the superpotential and desired files are

produced. Subsequently, they are used by CalcHEP for identifying the DM particle

and for the automatic calculation of elementary particle (co)annihilation and

decay rates. Finally, the micrOMEGAs uses CalcHEP output to calculate previously

mentioned quantities. To extract observables of the NMSSM model, micrOMEGAs

is coupled to NMSSMTools [284].

In order to thoroughly probe a very complex region of the light neutralino

DM, we performed MCMC likelihood analysis. We also used MCMC to analyse

NUHMII model. The main advantage of the MCMC over MC is that it is more

efficient and less time consuming. The first step in the MCMC is to randomly

generate a point, say M ∈ [x1, x2, ...xi], where xi is the input parameter of a

specific model. For example, in the constrained MSSM (CMSSM) i = 5, in NUH-

MII i = 6, in p19MSSM i = 19. Once the points are generated micrOMEGAs2.4

can calculate the values of the observable z. Once every observable of interest is

calculated we evaluate the likelihood function for each of them and calculate the
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6.1 Method and constraints

Figure 6.1: micrOMEGAs flow chart [279].

total product:

L M
total =

∏
i

e−
(zj−µ)2

2σ2 , (6.1)

where j runs over the observables that are itemised below. If, for a particular set

of input values L M
total is smaller than some certain numerical estimate, then the

new set of input parameters M ∈ [x1, x2, ...xi] are generated, which are completely

independent of the previous ones. However, if L M
total is large, then the values of the

input parameters are varied infinitesimally, i.e. x′ = x ± δx with an expectation

that the new set will also have high L M′

total and thus the values of the observables

within desired ranges. The whole process is graphically shown in Fig. 6.2 and an

example code of the MCMC routine used to scan p19MSSM parameter space is

given in the Appendix B.
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6.1 Method and constraints

Figure 6.2: Markov Chain Monte Carlo scan strategy [285].

The limits from the various experiments, that we imposed in scans, are as

follows:

• Relic abundance: We require that all model points satisfy the upper limit

on DM relic abundance found by the Planck satellite, i.e. Ωχ̃0
1
h2 < 0.128

[91]. In a large part of the parameter space of SUSY models the abundance
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6.1 Method and constraints

of neutralinos is not enough to account for the total Planck measured value,

and additional DM candidates should be considered.

• Higgs mass: We impose the LHC bound on the Higgs boson mass by taking

the combined theoretical and experimental uncertainties within the follow-

ing range, i.e. 121.5 < mh < 129.5 GeV.

• Direct DM detection: We take into account various bounds on the neutralino–

nucleon interaction cross–section. We often consider the projected bound of

the XENON1T [286] as well. As already mentioned in Section 5.4.2, these

bounds are derived using standard assumptions, i.e. DM relic density in

the Galactic halo ρχ̃0
1

= 0.3 GeV/cm3, the circular velocity v = 220 km/s

and the Galactic escape velocity vesc = 544 km/s [231].

• Flavour physics: We enforce the limits on the branching ratios of the flavour

violating decays, B(Bs → µ+µ−) =
(
3.2+1.5
−1.2

)
× 10−9 [287] and B(b→ sγ) =

(3.43 ± 0.22) × 10−4 at 3σ confidence level [288]. We found that most of

the scenarios in the study of light neutralino and baryogenesis within the

NMSSM are not affected by these constraints, because the light neutralinos

and the requirement for the first order phase transition in the NMSSM have

a preference for a moderate to low tan β values, whereas both branching

ratios are enhanced for large tan β. The parameter space of the p19MSSM

and NUHMII is also largely unconstrained by these processes.

• Chargino mass: We take the lower LEP bound on the mass of the chargino

to be mχ̃+
1
> 103.5 GeV [147] 1. A null result in LEP searches on a process

1We used a general limit on the chargino mass, however for possible caveats, see Ref. [290].
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6.1 Method and constraints

e+e− → χ̃1χ̃j with j > 1, sets an upper bound on the neutralino production

cross–section σ(e+e− → χ̃1χ̃j) . 10−2pb [156], which can be translated into

(mχ̃0
1

+mχ̃0
2
) > 209 GeV [289] which we apply only in the Chapter 8.

• Invisible Z boson decay width: In the light neutralino regions where mχ̃0
1
<

MZ/2, one has to take into account the invisible decay width of Z boson

into neutralinos. An analytical expression for the rate of this process is

given by [156]:

ΓZ→χ̃0
1χ̃

0
1

=
M3

ZGF

12
√

2π
(|N13|2 + |N14|2)2

(
1−

4m2
χ̃0

1

M2
Z

)3/2

In the mass basis, the total composition of the lightest neutralino in p19MSSM

and NUHMII can be expressed as:

χ̃0
1 = N11B̃ +N12W̃

0 +N13H̃
0
d +N14H̃

0
u,

and in the case of NMSSM:

χ̃0
1 = N11B̃ +N12W̃

0 +N13H̃
0
d +N14H̃

0
u +N15S̃

where |N11|2 gives the bino, |N12|2 the wino, |N13|2 + |N14|2 the higgsino

and |N15|2 the singlino fraction of the LSP. Alternatively, a small M1 entry

can render the lightest neutralino to acquire mostly bino admixture. This

relationship is derived assuming three massless neutrinos. In order to satisfy

this constraint the lightest neutralino must mostly be bino in the case of

p19MSSM (a fact which we will confirm at the end of this chapter) and

either bino or a singlino, with minimal or no admixture from higgsinos,
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6.2 Light neutralino in p19MSSM

within NMSSM.

Our constraints are summarised in Table. 6.1.

Quantity Value Source

mh 125.5± 4 GeV [1, 2]
Ωχ̃0

1
h2 < 0.128 [91]

mχ̃+
1

> 103.5 GeV [147]

B(Bs → µ+µ−)
(
3.2+1.5
−1.2

)
× 10−9 [287]

B(b→ sγ) [2.77 : 4.09]× 10−4 [288]
(mχ̃0

1
+mχ̃0

2
) > 209 GeV [156] [289]

ΓZ→χ̃0
1χ̃

0
1

< 3MeV [291]

Table 6.1: The list of the experimental constraints which we imposed in the
p19MSSM, NUHMII and NMSSM scans. The (mχ̃0

1
+mχ̃0

2
) > 209 GeV constraint

is only used in the Chapter 8, and not elsewhere.

6.2 Light neutralino in p19MSSM

The recent hints of positive signals in three DM direct detection experiments,

namely, DAMA [177, 178], CoGeNT [179], CRESST-II [180] and more recently

by CDMS [222], have generated a lot of interest in light WIMP candidates. This

interpretation is however challenged by the null results from various other direct

detection experiments, most notably XENON100 [223] and LUX [224], which

provide the most stringent upper limits on the spin independent WIMP-nucleon

scattering cross section for mχ̃0
1
> 7 GeV. Nonetheless, due to the relatively poor

sensitivity of the XENON100 experiment in the very low WIMP mass regime, it

is believed that an agreement between the positive and null sets of experimental

results could be possible, if at all, only in this low mass region. Hence, it might be

worthwhile examining the allowed MSSM parameter space to see if there exists
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6.2 Light neutralino in p19MSSM

a lower bound on the lightest neutralino mass irrespective of the direct detection

results.

As already mentioned in Section 4.4.8, the neutralino mass eigenstates in the

MSSM result from the mixing of the neutral bino (B̃), wino (W̃ 0) and higgsinos

(H̃0
d , H̃

0
u). This mixing is determined by the tan β parameter and the bino, wino

and higgsino mass parameters M1,M2 and µ, respectively. In the SUSY models

with gaugino mass unification at the GUT scale, a relation between the bino and

wino mass follows at the EW scale: M1 = 5
3

tan2 θWM2 ≈ 0.5M2 (see Section

4.4.2) which, after mixing, translates into a chargino–neutralino mass relation.

Therefore, a lower limit on the lightest neutralino χ̃0
1 mass of about 46 GeV, can

be derived for these models from the LEP chargino mass limit [290], whereas in

the constrained CMSSM with both gaugino and sfermion mass unification, this

limit increases to well above 100 GeV from the strong constraints set by the recent

LHC data [292].

On the other hand, in a generic MSSM scenario without the assumption of

gaugino mass unification, there is no general lower limit on the lightest neutralino

mass [293]. The LEP limit on the invisible decay width of the SM Z boson

applies to light neutralinos with a mass below mZ/2 = 45.6 GeV, but it depends

on the Zχ̃0
1χ̃

0
1 coupling which could be small or even zero, depending on the

higgsino component of the neutralino. In such a case, light neutralinos are mainly

constrained by the DM relic density measurement as well as by the collider and

flavour constraints on the SUSY parameter space. Assuming that the lightest

neutralino is non-relativistic and provides the entire CDM content of the Universe,

while satisfying the LEP bounds on chargino and τ̃ masses, Ref. [294] obtained

a lower bound of mχ̃0
1
& 18 GeV. This was relaxed to about 6 GeV without
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6.2 Light neutralino in p19MSSM

violating the LEP bounds and flavour sector constraints in SUSY models with a

pseudo-scalar Higgs boson (A) mass mA < 200 GeV and a large tan β [295, 296].

This was even further lowered to about 3 GeV by allowing explicit CP violation in

the MSSM Higgs sector [297]. Ever since these estimates the new scalar Higgs–

like particle has been discovered at the LHC with a mass of mh = 125 GeV

[298, 299], also the updates on the B–physics and cosmological observables have

been released.

Another important issue to be addressed in the light of the recent LHC results

is the apparent “little supersymmetric hierarchy problem”, i.e., how does a multi-

TeV SUSY particle spectrum conspire to give a weak-scale Z-boson mass and

also the measured value of the Higgs boson? One way of analysing this issue

quantitatively is already described in detail in Section 4.4.4. It is well-known

that radiative corrections play a crucial role in determining the allowed SUSY

parameter space necessary to generate a 125 GeV Higgs boson mass, depending

on tan β, comparable or even much larger than its tree-level prediction of mh ≤

mZ . This, in general, can lead to a large fine-tuning. In addition to this, the

requirement of a light neutralino DM will pose a challenge for any MSSM scenario,

the severity of which is however strongly model dependent. The naturalness of

various SUSY models with a neutralino LSP has been analysed in the literature

(for an incomplete list, see [300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310,

311, 312, 313], and references therein).

In this section, we perform a dedicated study focusing on the naturalness of

a light neutralino also examining how light the neutralino could be, after taking

into account all the existing theoretical and experimental constraints listed in

6.1. Most of the earlier studies on SUSY focused on the CMSSM having only
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5 parameters, assuming universality conditions at the GUT scale. However, in

view of the latest null results from SUSY searches at the
√
s = 8 TeV LHC, the

CMSSM seems too restrictive for low–scale SUSY phenomenology as the allowed

CMSSM parameter space accessible to the
√
s = 14 TeV LHC is rapidly shrinking.

Therefore, here we do not make any assumptions at the high scale and focus only

on the low–scale MSSM parameter space from a phenomenological point of view

with 19 free parameters at the EW scale. We also study the level of fine-tuning

for the light neutralino scenario in this context.

In order to efficiently explore the p19MSSM parameter space, we perform a

MCMC likelihood analysis discussed in Section 6.1, with the priors chosen to

focus on a light neutralino scenario with mass below the conservative LEP lower

limit of 46 GeV. An actual code used to get results in this section can be found

in the Appendix B. All the latest experimental bounds on particle physics and

cosmology are included. We show that the neutralino as light as 10 GeV is still

allowed. However, as it can be seen from Eq. (5.2) such neutralinos, which are

required to be mostly bino-like, are severely fine-tuned and require the existence

of light right handed sleptons below 100 GeV in order to provide an efficient

annihilation channel to reduce the bino relic density to be consistent with the

observed limit.

To explore the 19D parameter space we adopt the scan ranges as shown in

Table 6.2. Note that besides imposing the constraints listed in Section 6.1 we

also apply the cuts listed in Table 6.3

We emphasize here that for light neutralino DM with mχ̃0
1
< mZ/2 as con-

sidered in our case, the dominant annihilation channels will be the t-channel
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Parameter Description Prior Range
tan β Ratio of the scalar doublet VEVs [1, 60]
µ Higgs-Higgsino mass parameter [−3, 3] TeV
MA Pseudo-scalar Higgs mass [0.3, 3] TeV
M1 Bino mass [−0.5, 0.5] TeV
M2 Wino mass [−1, 1] TeV
M3 Gluino mass [0.8, 3] TeV
mq̃L First/second generation QL squark [0, 3] TeV
mũR First/second generation UR squark [0, 3] TeV
md̃R

First/second generation DR squark [0, 3] TeV

m˜̀
L

First/second generation LL slepton [0, 3] TeV

mẽR First/second generation ER slepton [0, 3] TeV
mQ̃3L

Third generation QL squark [0, 3] TeV

mt̃R
Third generation UR squark [0, 3] TeV

mb̃R
Third generation DR squark [0, 3] TeV

mL̃3L
Third generation LL slepton [0, 3] TeV

mτ̃R Third generation ER slepton [0, 3] TeV
At Trilinear coupling for top quark [−10, 10] TeV
Ab Trilinear coupling for bottom quark [−10, 10] TeV
Aτ Trilinear coupling for τ -lepton [−10, 10] TeV

Table 6.2: The p19MSSM parameters and their range of values used in our MCMC
numerical analysis.

processes mediated by light sfermions unless the s-channel Z-resonance or coan-

nihilation are effective. Hence, the lower limits on the chargino and sfermion

masses as given in Table 6.3 are crucial ingredients in our numerical analysis.

6.2.1 The parameter space for a light neutralino

Since the parameter space of the light neutralino region is highly constrained, we

implement Markov Chain Monte Carlo likelihood scan into micrOMEGAs2.4.

First we discuss our MCMC scan results for the relic density of a light neu-

tralino DM candidate as shown in Fig. 6.3. We require the allowed points to
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Particle Mass limit (GeV) Validity Condition
χ̃±1 103.5 mχ̃+

1
−mχ̃0

1
> 3 GeV, mf̃ > mχ̃±

70 mν̃ > 300 GeV, |µ| ≥ |M2|
45 generic LEP bound

µ̃R 88 mµ̃R −mχ̃0
1
> 15 GeV, BR(µ̃→ µχ̃0

1) = 1

τ̃1 76 mτ̃1 −mχ̃0
1
> 15 GeV, BR(τ̃1 → τ χ̃0

1) = 1

ẽR 95 mẽR −mχ̃0
1
> 15 GeV, BR(ẽ→ eχ̃0

1) = 1,

µ = −200 GeV, tan β = 2˜̀
R (L) 40 (41) generic LEP bound
ν̃ 43.7 generic LEP bound
g̃ 800
q̃ 500

t̃1 400

b̃1 300

Table 6.3: The lower limits on the sparticle masses used in our numerical analysis.
The chargino and slepton mass limits are derived from the LEP data [290] while
the squark and gluino mass limits are derived from the LHC data [31, 32] which
now supersede the LEP as well as the Tevatron [43, 44] limits.

satisfy the experimental constraints given in Section 6.1, along with the LEP

limits on sparticle masses given in Table 6.3. The latest LHC results put much

tighter bounds on the strongly interacting squarks and gluinos and further elimi-

nate some of otherwise allowed parameter space, as shown by the starred points in

Fig. 6.3. The WMAP-9 2σ band is shown in grey, whereas the latest Planck result

is shown as dark shaded region. We find that light neutralinos with mass as low

as 10 GeV are still allowed, though severely fine-tuned with the EW fine-tuning

measure defined by Eq. 4.93: ∆tot � 1.

The bino, wino and higgsino fractions of the lightest neutralino for all the

allowed points in our p19MSSM parameter space are shown in Fig. 6.4. We

reproduce the well-known result that the lightest neutralino is mostly bino-like

for the masses below mZ/2, primarily due to the 103.5 GeV bound on the mass
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6.2 Light neutralino in p19MSSM

Figure 6.3: The relic density of light neutralino DM in p19MSSM satisfying all
the experimental constraints discussed in Section 6.1. The colour-coding denotes
the fine-tuning measure defined by Eq. 4.93. The points denoted by circles satisfy
all the experimental constraints, except that the squark masses are only required
to satisfy the LEP lower limits. For the starred points (a subset of the circled
points), the corresponding squark masses satisfy the latest LHC constraints. The
top (bottom) grey horizontal line shows the 2σ upper (lower) limit of the CDM
relic density from WMAP-9 data, whereas the black (shaded) region shows the 1σ
allowed range from the recent Planck data.

of lightest chargino and secondarily due to the invisible Z-decay width constraint

in Eq. 6.1. Unless purely bino neutralino has an efficient enough annihilation

channel that has the thermal WIMP annihilation rate of at least 3× 10−26 cm3 ·

s−1, relic bino DM abundance, ΩB̃h
2, would normally exceed the bound set by

Planck. One possibility is to consider a “well-tempered” neutralino [175], which

corresponds to the boundary between a pure bino and a pure higgsino or wino.

Another possibility to reduce the bino relic abundance is by annihilation via the

t-channel slepton exchange (the so-called “bulk region”) which is efficient for

light sleptons, or by using coannihilation with a light slepton, squark, chargino

or second-lightest neutralino in configurations, where such light sparticles are
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6.2 Light neutralino in p19MSSM

Figure 6.4: The gaugino (B̃, W̃ 0) and higgsino (H̃0
d , H̃

0
u) components of the

lightest neutralino in our p19MSSM parameter scan.

not yet excluded by the experimental searches. We find that most of the points

with mχ̃0
1

close to 45 GeV can have either slepton coannihilation or a resonant

Z-annihilation due to a non–negligible higgsino component, and hence, can easily

satisfy the WMAP and Planck upper limit on the relic density. These points are

also less fine-tuned. On the other hand, the light neutralino DM points in the

10 - 30 GeV range, as shown in Fig. 6.4, have to be mostly bino-like and lie in

the bulk region, thus leading to significant fine-tuning. Note that in the latter

case, the NLSP masses are much higher than the LSP mass, thus eliminating the

possibility of a coannihilation.

The dominant annihilation channels are shown in Fig. 6.5. For bino dom-

inated neutralinos that are lighter than 35 GeV the relic density is reduced by

the χ̃0
1 annihilation via sfermion exchange. Since the sleptons are usually lighter

than the squarks the former is responsible for the annihilation. It also requires a
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6.2 Light neutralino in p19MSSM

Figure 6.5: The dominant annihilation channels for reducing the relic density
shown in Fig. 6.3. The first diagram is via right handed selectron exchange into
two SM particles that are kinematically allowed and takes place for neutralinos
with masses lower than 35 GeV. The second diagram is the resonance via Z boson.

right handed particle since the modulus of the hypercharge is larger than those

of the left handed counterparts [175]. The second diagram is for the heavier and

less fine tuned DM particles (see also Fig. 6.3) which annihilate by s-channel

resonance via Z boson.

Figure 6.6: The various NLSP masses as a function of the LSP mass for the
allowed points. The LEP exclusion regions strictly applicable for µ̃R (red shaded)
and τ̃1 (green shaded) and the LHC exclusion region for ˜̀ (l = e, µ) (blue shaded)
are also shown.

Fig. 6.6 shows the various NLSPs and their masses as a function of the light-

est neutralino mass. It can be seen that all the allowed points with mχ̃0
1
< 35
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GeV have a charged slepton NLSP with a mass below 100 GeV. Especially the

points with a light stau are severely fine-tuned since they usually require a mass

suppression by the off-diagonal elements in the slepton mass matrix, or a large

µ-term. We also show in Fig. 6.6 the LEP exclusion regions in the charged

slepton-neutralino mass plane, derived under the assumption of gaugino mass

unification [290]. The limits for light smuons and staus are still applicable to the

p19MSSM case as long as ∆m` > 15 GeV, but not directly to light selectrons if

we assume non–universal gaugino masses, and hence, can still allow the low neu-

tralino mass regime. The latest 95% C.L. ATLAS exclusion limits [314] are also

shown in Fig. 6.6 which were derived from searches for direct slepton (selectron

and smuon) pair production and interpreted in the pMSSM. A similar dedicated

analysis of the LEP data is required in order to completely rule out the light

selectrons, and hence, the lightest neutralino DM mass below 30–35 GeV for the

p19MSSM scenario.

Fig. 6.7 shows the spin independent nucleon–χ̃0
1 cross section as a function of

LSP mass. Bino dominated neutralinos that are lighter than 35 GeV are yet to

be probed by the XENON1T and LUX experiments, whereas the heavier and less

fine tuned scenarios mostly fall in the exclusion regions of LUX. These have higher

cross section mainly due to the higher fraction of higgsino in the neutralino, as

can be seen from Fig. 6.4. No points fall within the 2σ region of CRESST–II, but

as we will see in the next section, a neutralino with a large fraction of singlino

within NMSSM framework, have some points in the regions of DAMA, CoGeNT,

CRESST and CDMS.

138



6.3 Light neutralino in NMSSM

Figure 6.7: The spin independent direct detection cross section values for the
allowed points in our p19MSSM scan. The colour-coding and labelling of the
points are the same as in Fig. 6.3. The circled points correspond to those within the
WMAP allowed band in Fig. 6.3. The current upper limits from the XENON100
and LUX and the projected XENON1T limit are shown as solid lines. The 2σ-
preferred range of CRESST-II is shown as the shaded region.

6.3 Light neutralino in NMSSM

Since the most simple and popular SUSY model, CMSSM, is getting more con-

strained and posses severe shortages in trying to explain potential positive signals

of a very light neutralino claimed to have been observed by DAMA, CoGeNT,

CRESST–II and CDMS, we try to analyse this issue in NMSSM, which gives

somewhat more freedom by manipulating various parameters, to satisfy current

bounds, most importantly for the light neutralino case – the cosmological bound

on the DM relic density set by WMAP and more recently by Planck.

As already mentioned in Section 4.5.3, the NMSSM is conceived to give a

natural explanation for the dynamic origin of µ term via the symmetry breaking

during which the singlino field acquires a VEV. This method also ameliorates

139



6.3 Light neutralino in NMSSM

the little supersymmetric hierarchy problem. In the spirit of being complete, we

remind that the mass eigenstates of the neutralino in NMSSM are the mixtures

of bino, singlino and neutral wino and higgsino components. The mass matrix for

χ̃0
1 in NMSSM is given by the matrix in Eq. (4.5.3). The very lightest neutralino,

that can evade all of the existing constraints, has to have a significant singlino

admixture. As it can be seen from Eq. (4.120), the lightest singlino dominated

neutralino favours small κ and tan β.

Parameter Description Range

λ λ coupling [0 : 0.7]
Aλ Trilinear λ term [-3000:5000] GeV
κ κ coupling [0 : 0.5] GeV
Aκ Trilinear κ term [−3000 : 3000] GeV

tan β tan β parameter [0.1:40]
µ Higgs mixing term [−500 : 500] GeV
M1 Bino Mass [1:300] GeV
M2 Wino Mass [1:1000] GeV
M3 Gluino Mass [800:3000] GeV

mẽL = mµ̃L = mτ̃L LH sleptons [100:3000] GeV
mẽR = mµ̃R = mτ̃R RH sleptons [100:3000] GeV
mQ̃1L

= mQ̃2L
1st and 2nd generation LH squarks [1000:4000] GeV

mQ̃3L
LH stop quark [1000:4000] GeV

mũR = mc̃R 1st and 2nd generation RH squarks [1000:4000] GeV
mt̃R

RH stop quarks [1000:4000] GeV
md̃R

= ms̃R = mb̃R
RH down type quark [1000:4000] GeV

At Trilinear top coupling [-10000:10000] GeV
Aτ Trilinear τ coupling -2500 GeV
Ab Trilinear bottom coupling -2500 GeV

Table 6.4: Scan ranges of the NMSSM parameters. We adopted narrowed κ and
tanβ intervals in order to better grasp the light dark matter regions.

In order to explore the parameter space of the light neutralino, just like in the

previous case, we adopted the MCMC algorithm explained in Section 6.1. The
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6.3 Light neutralino in NMSSM

Figure 6.8: Lightest neutralino composition dependence on the mass of DM. Pink
points represents singlino, red– bino, green– wino and blue–higgsino admixture in
LSP. All points satisfy the constraints listed in Table 6.1 apart from the (mχ̃0

1
+

mχ̃0
2
) > 209 GeV bound.

MCMC scan ranges of NMSSM model are shown in the Table 8.1. To target the

light neutralino we narrowed κ and tan β intervals. All points with mχ̃0
1
> 40

GeV were dismissed.

Fig. 6.8 shows the composition of the LSP within NMSSM. The lightest

neutralino has to have a sizeable amount of singlino and bino components because

of the bound on the invisible Z–decay and the mass of the lightest chargino. The

singlino fraction in neutralino increases as the combination of κµ
λ

decreases.

Fig. 6.9 shows the relic density constraint, with the most recent value mea-

sured by the Planck satellite. The blue lines mark the 3σ range, however most of

the points fall well below the upper bound and therefore other DM components

have to be introduced to account for the total relic abundance in the Universe,

required by the Standard model of Cosmology. The relic density constraint is one
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6.3 Light neutralino in NMSSM

Figure 6.9: The relic density constraint. All points satisfy constraints listed in
Table 6.1 apart from the (mχ̃0

1
+mχ̃0

2
) > 209 GeV bound.

of the most important, that rules out all LSPs with a masses lower than 10 GeV

within p19MSSM [315]. As elaborated in the previous section, this is due to the

fact that for the bino dominated neutralino, Ωh2 is brought down by the exchange

of light slepton, and the lower bound on these is set by LEP to be around ∼ 100

GeV, with some extra assumptions for selectrons. However, it is very easy to

satisfy the relic density bound for the light χ̃0
1 within NMSSM. This is achieved

by having light CP–even (h1) and/or CP–odd (a1) pseudoscalar Higgses. The

role of the SM mh = 125 GeV Higgs usually goes to the h2.

Fig. 6.10 shows the spin independent DM–nucleon interaction versus the

mass of the LSP. The blue region is a favoured region of CRESST–II (1st phase

run results), brown is of DAMA, green depicts the latest LUX results and the

upper and lower grey lines are XENON100 and projected XENON1T bounds
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6.3 Light neutralino in NMSSM

Figure 6.10: Spin independent cross sections vs mass of the DM. The blue re-
gion is a bound of CRESST–II, brown regions denote DAMA, green shows the
latest LUX results and upper and lower grey lines are XENON100 and projected
XENON1T bounds respectively. All points satisfy constraints listed in Table 6.1
apart from the (mχ̃0

1
+mχ̃0

2
) > 209 GeV bound.

respectively. DAMA, CoGeNT, CRESST–II and CDMS collaborations found

that the light DM particle has high σSI . NMSSM has been the leading and

most thoroughly studied theory candidate to explain the positive signals by these

experiments. It is the presence of a large singlino fraction in the neutralino

that increases χ̃0
1 − p spin independent cross section. However, even though the

XENON100 and more recently LUX experiments rule out all the positive results,

there is still a possibility for the light LSP, that would satisfy LUX and even

projected XENONT1T results. There is a well–motivated case of the isospin

violating DM, where, with some fine–tuning of the χ̃0
1 coupling to the proton and

neutron in the detector, all results can be made compatible [227].
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6.4 Summary

6.4 Summary

A possibility of a light neutralino DM candidate in the p19MSSM and NMSSM

models was motivated by the discovery of the Higgs–like particle and a number

of direct detection experiments. Also, within the context of p19MSSM, the issue

of naturalness is addressed. In order to efficiently scan over the multidimensional

parameter space of both models, a MCMC likelihood analysis, optimised for a

light neutralino, is performed, which is particularly important in the case of

p19MSSM, as it is far more constrained than NMSSM.

Studies showed that a light neutralino DM with mass as low as 10 GeV is

still allowed in the p19MSSM, while satisfying all the existing experimental con-

straints. However, neutralinos of this, which are required to be mostly bino-like,

are severely fine-tuned. In order to have an efficient annihilation channel to reduce

the light neutralino relic density below the observed upper limit, the existence of

light sleptons is required. Such light sleptons are excluded from LEP searches if

one assumes gaugino mass unification. A dedicated analysis of the LEP data in

the context of a p19MSSM scenario could completely eliminate the possibility of

a light neutralino in the mass range of 10 – 30 GeV. In [316, 317] authors found

that a light sbottom (∼10 GeV) would be sufficient to validate light neutralino

solutions in p19MSSM, however, we set mb̃1
> 300 GeV which is valid when

mb̃1
−mχ̃0

1
> mb is satisfied, which turns out to be always the case for the light

neutralino solutions. Low fine–tuning regions can be obtained around mχ̃0
1

= 45

GeV where the resonant annihilation via the s-channel Z-exchange is possible for

a bino–higgsino mixture of neutralino LSP. However, such regions also predict

much lower spin–independent DM–nucleon scattering cross section, compared
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6.4 Summary

to the favoured regions announced by DAMA/LIBRA, CoGeNT, CDMS–II and

CRESST–II (1st phase run). Besides that, most of the scenarios with mχ̃0
1
< 46

GeV are excluded by the XENON100 limits and the remaining such points are

within the reach of the XENON1T projected limits.

Latest experimental results from collider, flavour, dark matter and astrophys-

ical/cosmological sectors can be far more easily satisfied within NMSSM. In this

case, spin independent neutralino–nucleon scattering cross section tends to be

significantly larger than in p19MSSM – often falling within preferred regions,

compared to the DD experiments that claim an existence of light DM. Also,

within p19MSSM, the key obstacle in satisfying relic abundance limits set by

WMAP–9 and Planck, can be easily overcome in NMSSM. This is achieved by

χ0
1 with a sizeable singlino fraction, which doesn’t necessarily need a light slepton

but annihilates via lightest CP–even or CP–odd Higgses instead.
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Chapter 7

Unifying Inflation and Dark

Matter within MSSM with

non–universal Higgs masses

7.1 Gauge invariant inflation

Inflation is consistent with the current temperature anisotropy in the CMB radi-

ation measured by the Planck satellite. Since inflation dilutes matter, the end of

inflation must excite all the relevant SM degrees of freedom without any excess

of dark matter and dark radiation, along with the seed initial perturbations for

structure formation. This can be achieved by embedding inflation within a visible

sector of BSM, such as the MSSM [28, 29, 318].

Inflation is driven by the vacuum energy density of the inflaton field φ which

implies that it has to have non–vanishing F , D or both components which in

turn implies that SUSY is broken during inflation for the field φ was explained

in Section 4.1.
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7.1 Gauge invariant inflation

There are two D–flat directions, ũd̃d̃ and L̃L̃ẽ, that can be inflaton candi-

dates [28, 29, 319, 320]. To have canonically normalised inflaton field φ, the

representation for the flat directions, up to a phase factor, are given by:

ũαi =
φ√
3
, d̃βj =

φ√
3
, d̃γk =

φ√
3
,

L̃ai =
1√
3

(
φ
0

)
, L̃bj =

1√
3

(
0
φ

)
, ẽk =

φ√
3
,

(7.1)

which implies that inflaton field then can be expressed as:

φ =
ũαi + d̃βj + d̃γk√

3
, φ =

L̃ai + L̃bj + ẽk√
3

, (7.2)

for the ũd̃d̃ and L̃L̃ẽ flat directions respectively, where ũ, d̃ and ẽ represent RH

squarks and sleptons, and L̃ stands for the LH isospin slepton doublets. Flatness

requires generation indices to satisfy i 6= j 6= k for L̃L̃ẽ and j 6= k for ũd̃d̃ inflaton

candidates. The constraint on colour indices for ũd̃d̃ is α 6= β 6= γ and a 6= b on

isospin components for LH doublets.

An inflationary potential with an inflection point can be constructed in the

following way: firstly we have a contribution from the soft breaking mass of the

inflaton
mφ
2
φ2, that already has been motivated in Chapter 4. Then, there can be

self couplings of the flat direction, that would give rise to the non–renormalizable

Ay term [125]. Finally, there could be other Planck scale suppressed terms, which

can be expanded in inverse powers of MPl in the following fashion [127]:

W =
∑
n>3

λ

nMn−3
Pl

Φn, (7.3)
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7.1 Gauge invariant inflation

which gives a contribution to the inflationary potential of the form:

V =

∣∣∣∣∂W∂φ
∣∣∣∣2 =

λ2

M2n−6
Pl

φ2n−2. (7.4)

ũd̃d̃ and L̃L̃ẽ flat directions are lifted by the n = 6 term [127], therefore the

inflationary potential can be written as [28, 29]:

V (φ) =
1

2
m2
φ φ

2 + Ay cos(nθ + θAy)
λφ6

6M3
Pl

+ λ2 φ
10

M6
Pl

. (7.5)

As already mentioned, here mφ and Ay are the soft breaking mass and the A term

respectively. φ and θ denote the radial and angular parts of the scalar superfield

Φ = φeiθ√
2

, while θAy is the phase of the Ay term. Note that Ay is not related to

MSSM A term couplings. Since the first and last terms are positive, an inflection

point in the potential can be achieved by adjusting the phases of the φ and Ay

terms in such way that cos(nθ + θAy) < 0 . Thus we can rewrite Eq. (7.5) as:

V (φ) =
1

2
m2
φ φ

2 − Ay
λφ6

6M3
Pl

+ λ2 φ
10

M6
Pl

, (7.6)

where the precise numerical value of the cosine function can be restored from the

fine tuning parameter that will be introduced shortly in Eq. (7.8).

The masses for L̃L̃ẽ and ũd̃d̃ inflaton condensates are given by [28, 29]:

m2
φ =

m2
L̃

+m2
L̃

+m2
ẽ

3
, m2

φ =
m2
ũ +m2

d̃
+m2

d̃

3
. (7.7)

The inflationary perturbations will be able to constrain the inflaton mass only at

the scale of inflation, i.e. φ0, while LHC will constrain the masses at the LHC

scale. However, both the physical quantities are related to each other via RGEs,
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7.1 Gauge invariant inflation

as we will discuss below in Section 7.2. We will use these equations to show that

MSSM inflation is consistent with the particle physics models which we analysed.

For further convenience it is useful to make the following definition [321]:

A2
y

40m2
φ

≡ 1− 4α2 , (7.8)

where α is a fine tuning parameter. If α2 � 1, there exists a point of inflection

(V
′′
(φ) = 0) at φ0, where [28, 29]:

φ4
0 =

mφM
3
Pl

λ
√

10
+ O(α2) , (7.9)

at which:

V (φ0) =
4

15
m2
φφ

2
0 + O(α2) , (7.10)

V ′(φ0) = 4α2m2
φφ0 + O(α4) , (7.11)

V ′′′(φ0) = 32
m2
φ

φ0

+ O(α2) . (7.12)

Relation in Eq. 7.8 is realistic in theories where supersymmetry breaking is me-

diated by gravity i.e. where Ay ∼ mφ. The renormalization scale µ̂, introduced

in Section 2.5.1, can be chosen in a such way, that loop corrections to the renor-

malised parameters are very small. Therefore, it can be achieved, that at some

scale µ̂, quantum corrections to the inflaton mass have negligible effect on this

relation and model in general. Including the essentially would imply multiplying

mφ by (1+u) where |u| � 1 [322, 323]. In ref. [322] authors studied the degree of

fine tuning for the ratio m2
φ/A

2
y. By exploring parameter space where the spectral

tilt and curvature perturbation values satisfy experimental bounds, and varying
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7.1 Gauge invariant inflation

λ, mφ and α they found that MSSM inflation requires high degree of fine tuning

i.e. |α| < 10−10 [322].

Note that inflation occurs within an interval:

|φ− φ0| ∼
φ3

0

60M2
Pl

, (7.13)

in the vicinity of the point of inflection φ0, within which the slow roll parameters

ε and η, defined in Eq. (3.20) of the Chapter 3, are smaller than 1. The Hubble

expansion rate during inflation is given by:

Hinf '
1√
45

mφφ0

MPl

. (7.14)

The amplitude of the density perturbations δH , defined in Eq. (3.46), and the

scalar spectral index ns are given by [322]:

δH =
8√
5π

mφMPl

φ2
0

1

∆2
sin2[N

√
∆2] , (7.15)

and

ns = 1− 4
√

∆2 cot[N
√

∆2], (7.16)

respectively, where

∆2 ≡ 900α2N−2
(MPl

φ0

)4

. (7.17)

In the above, N is the number of e-foldings between the time when the observa-

tionally relevant perturbations are generated till the end of inflation and follows:

N ' 66.9 + (1/4)ln(V (φ0)/M4
P) ∼ 50 [29]. The parameter space for gauge invari-

ant inflation is shown in Fig. 7.1. The blue region denotes a parameter space
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7.1 Gauge invariant inflation

Figure 7.1: (φ0,mφ) plane in which inflation is in agreement with the cosmological
observations of the anisotropies in the CMB. The blue region shows inflation energy
scale and inflaton mass which are compatible with the central value of the amplitude
of the primordial perturbations, δH = 4.68 × 10−5, and the 2σ allowed range of
the spectral tilt 0.9457 ≤ ns ≤ 0.9749 [91]. Note that we restricted ourselves to
inflaton VEVs φ0 below the GUT scale.

of MSSM inflation, where the amplitude of the density perturbations and the 2σ

range for the spectral index ns take values as measured by Planck and the y and

x axes label the scale of inflation and the mass of the inflaton respectively. A

study of how the matter d.o.f. can be produced after MSSM inflation can be

found in Ref. [324].

As mentioned above, to relate the high scale physics at the scale of inflation

with the observables at the low scale, which is accessible with modern colliders,

we need to use the renormalization group equations. In this particular case, we

take φ0 up to the GUT scale since the new physics may appear at higher energies

and significantly modify the behaviour of RGEs for the mass of the inflaton and

Ay term. In the next section, we review the RGEs for the soft breaking terms of
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7.2 Renormalization group equations

the inflationary potential and their solutions.

7.2 Renormalization group equations

For the ũd̃d̃ flat direction the renormalization group flow can be written as [29,

319]:

µ̂
dm2

φ

dµ̂
= − 1

6π2

(
4M2

3 g
2
3 +

2

5
M2

1 g
2
1

)
,

µ̂
dAy
dµ̂

= − 1

4π2

(
16

3
M3g

2
3 +

8

5
M1g

2
1

)
,

(7.18)

where µ̂ = µ̂0 = φ0 is the VEV at which inflation occurs and should not be con-

fused with the Higgs mass parameter. For the L̃L̃ẽ condensate inflaton candidate:

µ̂
dm2

φ

dµ̂
= − 1

6π2

(
3

2
M2

2 g
2
2 +

9

10
M2

1 g
2
1

)
,

µ̂
dAy
dµ̂

= − 1

4π2

(
3

2
M2g

2
2 +

9

5
M1g

2
1

)
,

(7.19)

where M1, M2, M3 are U(1), SU(2) and SU(3) gaugino masses, which all equate

to m1/2 at the unification scale, and g1, g2 and g3 are the associated couplings. To

solve these equations, one needs to take into account the running of the gaugino

masses and coupling constants, which are given by, see Ref. [120]:

β(gi) = αig
3
i β

(
Mi

g2
i

)
= 0, (7.20)

with α1 = 11
16π2 , α2 = 1

16π2 and α3 = − 3
16π2 . Since:

(
gi(µ̂)

gi(Λ)

)2

=
1

1 + 2αig2
i (Λ) ln

(
µ̂
Λ

) . (7.21)
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The solutions for the ũd̃d̃ flat direction can be written as:

m2
φ(µ̂) = m2

φ(Λ)− 8

9
M2

3 (Λ)

(
1−
[
g3(µ̂)

g3(Λ)

]4)
+

4

165
M2

1 (Λ)

(
1−
[
g1(µ̂)

g1(Λ)

]4)
, (7.22)

Ay(µ̂) = Ay(Λ)− 32

9
M3(Λ)

(
1−

[
g3(µ̂)

g3(Λ)

]2)
+

16

55
M1(Λ)

(
1−

[
g1(µ̂)

g1(Λ)

]2)
. (7.23)

While the solutions for the L̃L̃ẽ flat direction can be written as:

m2
φ(µ̂) = m2

φ(Λ) +M2
2 (Λ)

(
1−

[
g2(µ̂)

g2(Λ)

]4)
+

3

55
M2

1 (Λ)

(
1−

[
g1(µ̂)

g1(Λ)

]4)
, (7.24)

Ay(µ̂) = Ay(Λ) + 3M2(Λ)

(
1−

[
g2(µ̂)

g2(Λ)

]2)
+

18

55
M1(Λ)

(
1−

[
g1(µ̂)

g1(Λ)

]2)
. (7.25)

We will use these analytical expressions in the next section where we will demon-

strate a correlation between masses of the two inflaton candidates, lightest stop

and stau quarks. We also use these equations to show that MSSM inflation is

compatible with NUHMII and NMSSM models.

7.3 Unifying inflation and dark matter

7.3.1 Identifying benchmark points for the dark matter

and Higgs

In this section, we will try to find a parameter space within NUHMII model, where

the right DM abundance and MSSM inflation coexist. NUHMII is a variant of

the MSSM with universality conditions imposed at the GUT scale. The main

difference between NUHMII and the CMSSM is that the soft breaking masses of

the Higgs doublets differ from the masses of sleptons and squarks at the GUT. A
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more detailed description of NUHMII is in Section 4.5.2.

We start the study by performing a 2D scan of the 6D space of NUHMII,

varying the scalar and gaugino masses at the GUT scale and keeping the rest of

the input parameters fixed. The first task is to find the allowed points in the

(m0 : m1/2) plane, where all the constraints listed in Section 6.1 are satisfied

1. These would enable us then to solve the RGEs for the ũd̃d̃ and L̃L̃ẽ inflaton

candidates given in Eqs. (7.22) and (7.24) and relate the high energy physics of

inflation with low energy physics that is currently being tested at LHC.

Our first results are summarised in Fig. 7.2a. In this figure, the regions of

the parameter space, where the neutralino relic density is in agreement with the

Planck observations are represented by a red strips. The regions where the LSP

is not a neutralino but an electrically charged stau, are coloured in green and the

region excluded by the LEP2 limits on the chargino mass is represented in blue.

The grey region corresponds either to where the stop is the LSP or unphysical

configurations with tachyonic particle(s) are present.

Since we are looking for points which satisfy both the Higgs and the DM

constraints, we define benchmark scenarios as the points which lie at the inter-

section between the red line representing the χ̃0
1 relic density and the three black

lines corresponding respectively to a Higgs mass of mh = 124.5, mh = 125 and

mh = 125.5 GeV. Even though theoretical plus experimental bound on the Higgs

mass is in the range of [121.5:129.5] we chose the central region for simplicity, but

this can be easily generalised for any mh. There are two mechanisms that explain

how the relic density is reduced in this figure. In the parallel red lines, extending

1We ignore the bound on (mχ̃0
1

+ mχ̃0
2
) > 209 GeV which is not applicable in the case of

the NUHMII model.

154



7.3 Unifying inflation and dark matter

(a) (b)

Figure 7.2: 2D scan of (m0 : m1/2) for NUHMII model. Left panel has the
following input parameters: tanβ = 10, A0 = −2m0, µ = 1000 GeV, mA0 = 1000
GeV and the right panel: tanβ = 10, A0 = −2m0, µ = 500 GeV, mA0 = 2000
GeV. The red region denotes the relic density within 2σ range given by Planck [91],
black curves shows the respective values of the Higgs mass, grey and green regions
are the exclusion limits where the LSP is not a neutralino and the blue denotes the
exclusion bound on chargino.

over a large range of m0, the correct LSP abundance is achieved through CP-odd

Higgs A0 s-channel self-annihilations. To explain the observed abundance, the

neutralino mass must be close to (but not exactly on) the resonance region. This

leads to the relation mχ0
1
≈ mA0/2 and thus implies that the neutralino mass is

about mχ0
1
≈ 500 GeV for the chosen value of MA0 = 1000 GeV. This region is

referred to as the funnel region. Between the two red strips, the relic density falls

below the observed DM abundance, because the annihilation process becomes

resonant and reduces the relic density too much. This region is of interest in the
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case of multi–component DM scenarios. It is worth noting that since we have

µ = 1000 GeV we have a bino dominated neutralino. Another two strips with

the correct relic abundance are bordering the green and grey regions where the

stau and stop are the LSP respectively and it is the coannihilation between χ̃0
1

and τ̃ (in the green area) or t̃ (in the grey area) that depletes Ωχ̃0
1
h2 in the early

Universe. The (m0 : m1/2) points where the 125 GeV Higgs intersects the right

relic density strips we denote as the benchmark points ’a’, ’b’, ’c’ and ’d’. The

relatively large value of µ has also an effect on neutralino and forces it to be more

gaugino like. Note that, as discussed at the end of Section 5.3, the right relic

density, in this case, is achieved by coannihilation and annihilation processes i.e.

the ones for which the WIMP miracle approximation is not valid.

The situation is a bit different in Fig. 7.2b. Here we have a larger mass of

the pseudoscalar A0 and smaller µ. The mass of the bino at any RG scale can be

found using the relation M1 ≈ 0.42m1/2. Since from the plots m1/2 ≈ 1150 GeV,

we find M1 = 483 GeV which is a bit lower than the value of the µ parameter

and this forces a fraction of bino in the neutralino to be a bit larger than that

of higgsino. This also has an impact on χ̃0
1 (co)annihilation Feynman diagrams.

Such composition favours annihilation channels such as χ0
1χ

0
1 → W+W−, ZZ, Zh

as well as neutralino-chargino co-annihilation and thus explains the vertical red

strip in the Fig. 7.2b. Since M1 . µ our neutralino should also have a similar

mass. More precisely we find mχ̃0
1

= 460 GeV. We label two benchmark points

’e’ and ’f’ where the right Ωχ̃0
1
h2 and mh = 125 GeV coexists.
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Fig./ (m0 : m1/2) Ωχ̃0
1
h2 Dominant mχ̃0

1
Channel mφ

ũd̃d̃
mφ

L̃L̃ẽ

Label (GeV) component(s) (GeV) (GeV) (GeV)

7.2a ’a’ (1897:1093) 0.112 B̃ 473 A0 2249 1955

7.2a ’b’ (2668:1085) 0.111 B̃ 473 A0 2925 2709

7.2a ’c’ (1847:1161) 0.113 B̃ 503 A0 2249 1914

7.2a ’d’ (2897:1152) 0.112 B̃ 503 A0 3165 2939

7.2b ’e’ (1715:1158) 0.111 0.69B̃+0.31H̃ 465 χ̃+,0 2140 1787

7.2b ’f’ (2556:1140) 0.110 0.71B̃+0.29H̃ 462 χ̃+,0 2850 2603

Table 7.1: Benchmark points considered in this study and associated predictions
for important observables. The figures which they are associated to and the dom-
inant mechanism (τ̃ , t̃ coannihilations, χ+,0 exchange, A-pole) for the relic density
calculations are specified in the last two columns of the table. The mass of the
inflaton is at low scale. All points have mh = 125 GeV.

7.3.2 Inflaton mass for the benchmark points

Using the RGEs for the inflaton mass and normalization that at the GUT scale

it is equal m0, one can map each point in the (m0 : m1/2) plane of Fig. 7.2 onto

the (φ0 : mφ) plane. This is shown in Fig. 7.3, where grey region shows inflation

energy scale and inflaton mass which are compatible with the central value of the

amplitude of the primordial perturbations, δH = 4.68× 10−5, and the 2σ allowed

range of the spectral tilt 0.9457 ≤ ns ≤ 0.9749 [91]. In the left panel we map

according to L̃L̃ẽ and in the right according to ũd̃d̃ inflaton candidate behaviour.

Black, red and pink lines depict the running of the points where mh = 124.5,

125 and 125.5 GeV strip intersects red lines depicting right DM relic abundance

in Fig. 7.2a. From here one immediately can read off the mass of the inflaton,

which implicitly is constrained by the mass of the Higgs scalar and other particle

physics observables. This figure also shows the allowed range of the VEV of

inflation φ0 on y axis. In table 7.1 we show the characteristics of the benchmark
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(a) (b)

Figure 7.3: Projections of the (m0 : m1/2) plane in the Fig. 7.2a to (φ0 : mφ)

plane for L̃L̃ẽ inflaton candidate (a panel) and ũd̃d̃ (b panel) for tanβ = 10,
A0 = −2m0, µ = 1000 GeV, and mA0 = 1000 GeV. Yellow, blue and green regions
represent parameter space for mh = 124.5, 125 and 125.5 GeV respectively. Black,
red and pink lines depict where the mh = 124.5, 125 and 125.5 GeV strip intersects
the red lines of the right relic density in Fig. 7.2a. Grey region shows inflation
energy scale and inflaton mass which are compatible with the central value of the
amplitude of the primordial perturbations, δH = 4.68 × 10−5, and the 2σ allowed
range of the spectral tilt 0.9457 ≤ ns ≤ 0.9749 [91].

points denoted by letters in Figs. 7.2a and 7.2b. For simplicity, we collected

only the points with the mh = 125 GeV Higgs. The information in the second

column is essential in solving the RGE equations for the inflaton and we use it

to calculate the mass of the inflaton condensates at the low scale – shown in last

two columns.

7.3.3 6D scan of the NUHMII parameter space

In this section, we present the results of the full scan where we varied all the input

parameters of the NUHMII model. To make the scan more efficient we employed
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7.3 Unifying inflation and dark matter

Figure 7.4: Mass of the LSP vs the mass of the NLSP, depending on the nature
of the NLSP: blue and red denote scenarios where NLSP is lightest chargino and
stau respectively.

MCMC strategy discussed in Section 6.1. Our scan parameter ranges are shown

in Table 7.2. We start our analysis with a Fig. 7.4, by showing that there is

Parameter Range

m0 ]0, 4] TeV
m1/2 ]0, 4] TeV
A0 [-6, 6] TeV

tan β [2, 60]
µ ]0, 3] TeV
mA0 ]0, 4] TeV

Table 7.2: Range chosen for the free parameters in the NUHMII model.

a very strong correlation between the mass of the LSP and that of the NLSP,

suggesting that the neutralino relic density either relies on the co-annihilation

mechanism or a t-channel exchange of the NLSP (or both). The NLSP is found

to be mostly chargino and stau, along with very few scenarios were NLSP is the

second lightest neutralino χ̃0
2 as it was found for the benchmark points ’e’ and ’f’
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(a) (b)

Figure 7.5: Neutralino composition dependence on its mass. Left panel shows
the bino content vs the neutralino mass while the bottom panel shows the Higgsino
fraction.

(see Table 7.1). The A0-pole resonance corresponding to the benchmark points

’a’,’b’,’c’,’d’ however requires a certain amount of fine tuning i.e. mχ0
1
' mA0/2

has to be satisfied.

The exchange of a pseudoscalar Higgs is actually significant when mχ̃0
1
∼

mA0/2 but neutralino-chargino coannihilation or chargino t-channel exchange are

dominant when the Higgsino fraction is very large. In fact, among the configu-

rations with a non–negligible Higgsino fraction, the larger the bino fraction, the

more favoured the A0-pole since small neutralino couplings to the Higgs can be

compensated by having mχ̃0
1

closer to mA0 . Finally, we see from Fig. 7.5, that

heavy neutralinos with a mass mχ̃0
1
≥ 0.6 TeV have a large Higgsino fraction,

thus suggesting even more dominant coannihilations with charginos (or annihila-

tions through chargino exchange) and resonant annihilations via the pseudoscalar

Higgs A0, when the neutralino becomes fairly heavy.

To have a chance of identifying the inflaton condensate candidate at the LHC,
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(a)

(b)

Figure 7.6: The correlation between stau mass, mτ̃1 [TeV], and the lightest stop
mass, mt̃1

[TeV]. The colour coding corresponds to the inflaton masses for L̃L̃ẽ and

ũd̃d̃ flat directions. The mass of the inflaton is evaluated at the low scale.

if it exists at all, its mass measurements should be supported with other observ-

ables, such as the τ̃1 and the t̃1 mass as it is shown in Figs. 7.6. Obviously, the

prediction differs depending on whether the inflaton corresponds to the ũd̃d̃ or

L̃L̃ẽ flat direction. For the L̃L̃ẽ case, one finds that scenarios with the inflaton

with a mass lower than 2 TeV, correspond to staus lighter than 2 TeV and stops

lighter than 2-3 TeV. More generally there is a one–to–one correspondence be-

tween the values of inflaton, stau and the stop masses. This correlation between
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7.3 Unifying inflation and dark matter

the stau and the L̃L̃ẽ inflaton mass can be understood because the inflaton is of

leptonic origin. Similarly, for the ũd̃d̃ case, the inflaton mass is related to the stop

mass but the constraint on the stau is somewhat more obscure. Although such

a feature can be easily understood given the nature of the inflaton, using LHC

observables and searches for sparticles could provide a way to distinguish between

the ũd̃d̃ and L̃L̃ẽ scenarios. In addition, we find that the staus in both scenarios

can be lighter than 1 TeV, thus offering another possible window for probing this

model at LHC. Discovering a relatively light stau at LHC together with a specific

stop mass would provide a determination of the inflaton condensate mass and

VEV of inflation.

7.3.4 Summary

In this section, we investigated regions of the NUHMII parameter space which

are compatible with the particle physics constraints discussed in Section 6.1 and

the constraints set on the inflationary potential via the amplitude of primordial

perturbations of the CMB and the spectral index of its power spectrum. Two

inflaton candidates were considered, ũd̃d̃ and L̃L̃ẽ, for which a high scale of

inflation, φ0, is tied up via RGEs to the low scale physics that is currently being

tested at the LHC.

Several methods have been used to explore the NUHMII. One was a simple

2–dimensional MC routine in (m0 : m1/2) space which helped to find benchmark

points, satisfying known particle physics constraints and explore what a particular

realisation of NUHMII input parameters would imply to MSSM inflation. The

other method was a complete 6–dimensional scan, by using an efficient MCMC

algorithm explained, in Section 6.1.
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7.3 Unifying inflation and dark matter

The key finding is that, for most configurations, the ũd̃d̃ inflaton appears to

be heavier than 1.5 TeV, while the L̃L̃ẽ inflaton can be as light as 500 GeV. In

both cases, however, it is possible to find configurations in which both staus and

stops are within the reach of the LHC, thus indicating that sparticle searches

at LHC could actually provide a means of constraining the inflaton mass for

some subset of the NUHMII parameter space. Such constraints would have to be

cross correlated with the measurements of B(Bs → µ+µ−) and B(b → sγ) since

all scenarios found in this section have predicted values for these two branching

ratios close to the present experimental limits.

We also showed that MSSM inflation can be easily accommodated within

the NUHMII model. By identifying benchmark points, we demonstrated how

particle physics and cosmological constraints, in particular the mass of the Higgs

and DM relic abundance, can be used to find a mass and field strength of the

inflaton condensate candidates. It should be noted though, that the requirement

of successful MSSM inflation does not lead to any predictions about particle

physics that can be tested at the LHC.

Analogous analysis can be performed where the inflaton is the SUSY Higgs, i.e.

HuHd [325], and when the inflaton is NHuL in the case of MSSM × U(1)B−L

(in which case, the inflaton is gauged under both MSSM and U(1)B−L [326]).

Moreover, if claims of light DM species made by DAMA, CoGeNT, CRESST–

II (1st phase run) and CDMS collaborations turn out to be correct, it will be

necessary to perform a complementary study with MCMC likelihood function

priors chosen in such a way that the light neutralino state would be targeted.

This would be a challenging task since most of the light neutralinos appear to

have a dominant bino component.
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Chapter 8

Baryogenesis

Baryogenesis seeks to explain the observed matter antimatter disparity in the

Universe. In fact, there is negligible a amount of antimatter in the Solar system

and Milky Way. For example, antiprotons are observed. However, this abun-

dance is consistent with their production in the cosmic rays via p + p → 3p + p̄

interactions [57, 327]. Furthermore, antimatter seems to be very scarce in the

whole Universe, as the matter antimatter collisions would produce a γ ray back-

ground which has not been detected. An important parameter parametrising this

asymmetry is defined as:

η ≡ nb − nb̄
nγ

, (8.1)

and has never changed since the BBN. η serves as the only input parameter in the

very successful theory of BBN, and in order to match the theoretical predictions

to the observations, η has to be of the order O(10−10). This asymmetry can be

achieved if the three Sakharov conditions are satisfied [11, 327]:

• Baryon number (B) violation: This is the most intuitive condition as the B

violating process is a prerequisite in order to generate non–zero η from a baryon
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symmetric universe.

• Charge (C) and charge–parity (CP) violation: Let us assume that we have a

heavy particle X decaying into a lighter particle Y which has B=0 and another

particle q which carries non–zero baryon number. Branching ratios, r, of the

particle X and its antiparticle X̄ can then be expressed as:

r1 =
Γ(X → Y + q)

ΓX
and r2 =

Γ(X̄ → Ȳ + q̄)

ΓX̄
. (8.2)

The rate of the net baryon number production is then proportional to the dif-

ference between r1 and r2. In addition, from the CPT theorem [328, 329], we

have that lifetimes of any particle and its antiparticle are the same, thus we set

ΓX = ΓX̄ to get [330]:

δB

δt
∝ r2 − r1 =

Γ(X̄ → Ȳ + q̄)− Γ(X → Y + q)

ΓX
. (8.3)

The conservation of charge implies:

Γ(X → Y + q) = Γ(X̄ → Ȳ + q̄), (8.4)

thus we have that r1 = r2 which implies δB
δt

= 0 and therefore the C violation

is a necessary condition to create the baryon asymmetry. However, this is not

enough. Let us assume X decays to two LH or two RH particles with a baryon

number. Thus, we would have [330]:

Γ(X → q + q) = Γ(X → qL + qL) + Γ(X → qR + qR),

Γ(X̄ → q̄ + q̄) = Γ(X̄ → q̄L + q̄L) + Γ(X̄ → q̄R + q̄R),
(8.5)
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for a particle and antiparticle. The net baryon asymmetry would then be pro-

portional to:

δB

δt
∝ Γ(X → qL + qL) + Γ(X → qR + qR)− Γ(X̄ → q̄L + q̄L)− Γ(X̄ → q̄R + q̄R)

ΓX
,

and having the C violation would not imply that δB>0, because even though:

Γ(X → qL + qL) 6= Γ(X̄ → q̄L + q̄L),

Γ(X → qR + qR) 6= Γ(X̄ → q̄R + q̄R),
(8.6)

as a result of the CP symmetry, we would still have:

Γ(X → qL + qL) + Γ(X → qR + qR) = Γ(X̄ → q̄L + q̄L) + Γ(X̄ → q̄R + q̄R),

and there would be no net baryon asymmetry generated in the Universe. There-

fore CP symmetry should also be violated.

• Out of the equilibrium condition: Considering again the process X → Y + q,

the equilibrium condition guarantees that:

Γ(X → Y + q) = Γ(Y + q → X), (8.7)

and η remains zero. An example of the departure from thermal equilibrium

is the expansion of the Universe. Initially, when the Universe was so hot that

TUniverse > MX , because of the decay of the X, the rate at which baryons were

produced was the same as the rate at which Y and q annihilated back to X. Once

the temperature of the thermal bath fell below MX , Y and q were not energetic

enough to annihilate to X and baryon asymmetry was created. Other examples
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8.1 B and L violation in the SM

of out of the equilibrium condition include the phase transition or dynamics

of topological defects [331, 332, 333]. The phase transition is of the particular

interest in the EW baryogenesis. Interactions outside the equilibrium happen

during the EW phase transition when bubbles with a broken phases expand into

an otherwise symmetrical Universe. We will discuss bubble nucleation in detail

in Section 8.2.

All these ingredients are present within the SM but, as already mentioned in

Section 2.6.4, with the 126 GeV Higgs, the model lacks sufficiently strong first

order phase transition to keep the baryon asymmetry intact and the sources of

the CP violation are not sufficient. Although MSSM provides all three ingredients

the EW baryogenesis in this model is increasingly constrained by the LHC data.

In the simplest MSSM EW baryogenesis scenario it is hard, if not impossible, to

generate enough asymmetry with a 126 GeV Higgs boson in a natural manner

[334]. So we turn our attention to the EW baryogenesis in the NMSSM model.

The NMSSM has more flexibility as it introduces a new SM gauge singlet, which

helps to achieve the strongly first order EW phase transition, since an order

parameter is now determined by the singlet sector and becomes independent of

the Standard Model–like Higgs mass.

8.1 B and L violation in the SM

Classically baryon and lepton number currents are conserved in the SM, however

at a quantum level jµB and jµL can be violated in a non–perturbative manner by

the chiral anomaly. The Feynman diagram of a process in which violation occurs

is depicted in Fig. 8.1, where a chiral fermion running in a loop is connected to

167



8.1 B and L violation in the SM

external gauge fields. Calculating this one–loop divergent diagram yields [335]:

Figure 8.1: The Feynman diagram responsible for violating baryon and lepton
number. In a loop there is a chiral fermion with external gauge fields at vertices.
Figure from Ref. [336].

∂µj
µ
B = ∂µj

µ
L =

Ng

32π2
(g2

2W
a
µνW̃

µν,a − g2
1YµνỸ

µν), (8.8)

where Ng = 3 is the number of generations, W̃µν and Ỹµν are duals the of SU(2)L

and U(1)Y field strength tensors respectively. From here it is obvious that B+L

is anomalous and B-L is conserved:

∂µj
µ
B+L = ∂µj

µ
B + ∂µj

µ
L =

Ng

16π2
(g2

2W
a
µνW̃

µν,a − g2
1Yµν Ỹ

µν),

and likewise ∂µj
µ
B-L = ∂µj

µ
B − ∂µj

µ
L = 0.

(8.9)

This anomaly is induced by topological fluctuations between adjacent vacua states

of non–Abelian SU(2) gauge fields. In the vacuum state, the field strength tensor

Wµν vanishes and a condition Wµν = 0 is only satisfied if1:

Wµ = − i

g2

[∂µU(x)]U−1 =
i

g2

U(x)∂µU
−1(x), (8.10)

is true, with Wµ=σ(a)

2
W

(a)
µ and U(x) ∈ SU(2)L. Therefore, vacua can then be

cast as a collection of infinitely many pure gauge field configurations all separated

1This equality follows directly from the gauge field transformation for non–Abelian fields.
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by an energy barrier. The field configuration with the highest energy is called a

sphaleron. The sphaleron is a saddle point solution of the SU(2)L gauge and Higgs

fields equation of motion and, as such, it is a static but unstable. Each of the

vacuum states separated by a barrier is topologically inequivalent (homotopically

distinct) and characterised by the specific Chern–Simons number NCS defined as

[57]:

NCS =
g2

2

32π2

∫
d3xεijk

(
W a
ijW

a
k −

g2

3
εabcW

a
i W

b
jW

c
k

)
, (8.11)

which is not a gauge invariant quantity but ∆NCS is. The fact that the baryon

and lepton number violations are closely related to the Chern–Simons number

can be seen by rewriting the WW̃ term on a right hand side of Eq. (8.8) as

WW̃ = ∂µk
µ
W with1 [57]:

kµW = εµναβ
(
W a
ναW

a
β −

g2

3
εabcW

a
νW

b
αW

c
β

)
. (8.12)

The expected number of baryons and leptons produced by field fluctuations be-

tween vacuum states during ti to tf period can then be easily calculated by using

Eqs. (8.8), (8.11) and (8.12) [337]:

〈B(tf )− B(ti)〉 = 〈L(tf )− L(ti)〉

=
1

tf − ti

∫ tf

ti

∫
∀x
dtd3x 〈∂µjµB(L)〉 = Ng 〈NCS(tf )−NCS(ti)〉 .

(8.13)

In general terms, sphalerons mediate transitions between topologically different

but physically equivalent adjacent vacuum states with |∆NCS| = 1 and in each

transition ∆B=∆L=Ng∆NCS is produced i.e. 9 quarks (3 colour states for each

1Contribution of B and L violation from Y Ỹ term is not observable. For a detailed discus-
sion see [57].
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generation) and 3 leptons so that net B-L remains conserved. At zero temper-

atures, the transitions between the vacuum states are exponentially suppressed

and unobservable because they happen via quantum tunnelling of the instanton.

However, at higher temperatures, because of the classical thermal fluctuations,

the rate at which the sphaleron barrier separating different vacuum states are

crossed increases. At finite temperature T , below the EW phase transition, the

sphaleron transition rate can be expressed as [335, 338, 339]:

Γ = T 4f(T/mW ) ∼ e−Esph./T , (8.14)

where Esph. ∼ mW
g2

is the energy barrier height, and from this it follows that the

transition rate in a broken phase is large when the temperature of a thermal bath

is close to the mass of W boson and then quickly drops as the Universe cools

down. In the symmetric phase, where mW = 0 GeV, the transition rate inducing

the B and L violations is approximated by [57, 340]:

Γ = k

(
g2

2T

4π

)4

, (8.15)

where k is a numerically evaluated coefficient in the range 0.1 . k . 1 [57,

341]. This implies that in the Early Universe, when T were large, the transitions

through sphaleron configurations and anomalous violations of baryon and lepton

numbers were significant.

If initially there were baryon and lepton charge created with B-L=0, the fact

that sphaleron processes were abundant in the primordial Universe implies that

any B and L would be wiped out during sphaleron transitions because ∆(B-L)=0

directly implies ∆B=∆L. On the other hand, if one starts with a Universe with
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8.2 Bubble nucleation and the baryon asymmetry

B-L6= 0, baryon and lepton numbers will be preserved and of the order of original

B-L. Therefore, to explain the baryon asymmetry one has to have non–vanishing

net B-L in the Early Universe or the other possibility is to generate a baryon

number during EW phase transition.

8.2 Bubble nucleation and the baryon asymme-

try

At very high temperatures, EW symmetry is restored [342]. As the Universe cools,

the EW symmetry is broken during the phase transition. If the phase transition

is of the first order, the EW symmetry is broken through tunnelling processes. In

such case, the bubbles of the broken phase, where Higgs developed a VEV andW±

and Z bosons are massive, growing in the otherwise symmetric Universe until the

phase transition is complete and symmetry is broken everywhere in the Universe.

This process is known as bubble nucleation and is depicted in Fig. 8.2. The C and

CP violating processes near the bubble wall create the asymmetry between LH

(and RH) fermions and their respective antiparticles. LH fermions then affect the

B+L creation through sphaleron transitions in the symmetric phase just outside

the wall. As the bubble expands, the baryons created outside the wall are swept

into the area with a broken phase. If EW phase transition is of the first order,

anomalous B+L violating processes will deviate from the equilibrium near the

bubble walls [344]. Subsequently, baryons that were created outside the bubble

and got swept into it by an expanding wall will not be washed out because

transitions over sphaleron configurations are exponentially dampened within the

broken phase. The requirement that sphaleron transitions would cease also puts
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8.2 Bubble nucleation and the baryon asymmetry

Figure 8.2: Baryon asymmetry production during bubble nucleation. Figure from
Ref. [343].

constraint on a VEV of a Higgs field (and equivalently Higgs mass) which has to

be large since the sphaleron barrier height is proportional to Esph. ∼ mW ∼ 〈H〉

and is directly related to the transition rate between distinct vacuum states, see

Eq. (8.14).

The condition for the first order phase transition translates into requiring that

[345, 346, 347, 348]:

Tc
ϕc
≡ γ . 1, (8.16)

where Tc is the critical temperature at which the temperature dependent effective

potential obtains degenerate minima and φc is the VEV of the Higgs field at Tc.

This is known as the baryon washout condition. If it is not satisfied, the baryons

created will be washed out. In the next section we will further investigate the

effective potential and the conditions required for the phase transition to be of

the first order.
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8.3 The scalar potential at high temperature

8.3 The scalar potential at high temperature

The one–loop temperature corrections to the effective potential are given by1

[102]:

V β
1 (φ) = ± g±

2π2β4

∫ ∞
0

dxx2 log
(

1∓ e−
√
x2+m(φ)2β2

)
, (8.17)

where in this case g is the number of fermionic or bosonic degrees of freedom and

β ≡ 1/T . In this expression, − is for fermions and + for bosons. Therefore, the

full effective potential up to one–loop is:

V β
eff.(φ) = Vtree(φ) + V1(φ) + V β

1 (φ), (8.18)

where Vtree(φ), V1(φ), V β
1 (φ) are the tree level, one–loop correction at T = 0 and

one–loop correction at finite temperature respectively. Using the high tempera-

ture approximation given in Eq. (C.15) we can write above as:

V β
eff.(φ) = D(T 2 − T 2

0 )φ2 − ETφ3 +
λβφ4

4
, (8.19)

where D, T0 and E are temperature independent coefficients, and λβ = λ(T ) is

a slowly varying function of T [57]. Now we will take a closer look at two cases,

one with E = 0 and another with E 6= 0.

• E = 0: using
dV βeff.(φ)

dφ
= 0 it is easy to calculate two solutions satisfying this

extremum condition:

φ(T ) = 0 GeV and φ(T ) =

√
2D(T 2

0 − T 2)

λ(T )
. (8.20)

1The finite temperature effective potential is the free energy of the field. The minimum
of the potential gives the average value of the field in thermal equilibrium. The proof of the
one–loop effective potential at finite temperature is given in the Appendix C.
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Figure 8.3: The one–loop effective potential above (red), below (blue) and at
(green) the critical temperature when E 6= 0. Fig. from Ref. [343].

At T = T0 the two minima converge to one and, as it can be seen from Eq. (8.19),

the mass of the scalar field vanishes and the minimum of the effective potential

is at φ(T0) = 0 GeV. At temperatures above T0, the mass of the field is positive

and the minimum remains at φ(T > T0) = 0 GeV. However, as a temperature

drops below T0 the mass squared term in the finite temperature effective potential

becomes negative. In this regime, V β
eff.(φ) at φ(T < T0) = 0 GeV acquires a local

maximum and at the same moment a global minimum develops at φ(T < T0)

as given by the second expression in Eq. (8.20). This kind of transition is of

the second order because there is no barrier between the symmetric and broken

phases [57].

• E = 0: from Eq. (8.18) it is obvious that at a very large T the effective

potential has the only minimum at φ(T ) = 0 GeV. However, as the temperature

drops further to T1, because of the ETφ3 term, an inflection point in the effective

potential appears at [57]:

φ(T1) =
3ET1

2λ(T1)
. (8.21)
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8.3 The scalar potential at high temperature

As the temperature drops below T1 a local minimum at φ(T < T1) 6= 0 GeV starts

developing which is separated by a barrier of an increasing height. This situation

is shown by the red line in a Fig. 8.3. When the temperature falls to T = Tc

(green line), the effective potential has two degenerate minima separated by a

barrier, and a phase transition now proceeds by tunnelling. Such a transition is

of the first order. Tc is called a critical temperature and is given by:

Tc = T0

√
λ(Tc)D

λ(Tc)D − E2
. (8.22)

Just below Tc, a minimum at φ(T < Tc) = 0 GeV becomes metastable and,

finally, as the Universe cools further down a barrier disappears, as depicted by

the blue line in the same figure.

8.3.1 The toy model

Previous analysis of the EW phase transition within the NMSSM near the PQ

limit (i.e. κ = 0, see Section 4.5.3) found that the parameter space that satisfies

the baryon washout condition is heavily constrained [349]. In a this analysis,

Wagner et al. considered a toy model which included the tree level effective

potential of the NMSSM at the PQ limit with the largest temperature corrections.

In this chapter, we derive a semi-analytic solution to the toy model from Ref.

[349] and consider higher order temperature corrections, loop corrections and

small deviations from the so called PQ limit as perturbations to the toy model

solution.

The high temperature expansion of Eq. (8.17) is, up to an overall temperature
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8.3 The scalar potential at high temperature

dependent constant, [350]

V β
1 (φ) ∼ g+m

2(φ)T 2

24
− g+[m(φ)2]3/2(φ)T

12π
− g+m(φ)4

64π2
log

(
m(φ)2

abT 2

)
≡ g+m

2(φ)T 2

24
− g+[m(φ)2]3/2(φ)T

12π
+ ∆VT ,

(8.23)

for bosons, and

V β
1 (φ) ∼ g−m

2(φ)T 2

48
+
g−m(φ)4

64π2
log

(
m(φ)2

afT 2

)
≡ g−m

2(φ)T 2

48
+ ∆VT , (8.24)

for fermions. Here ab = (4πe−γE)2 and af = (πe−γE)2. γE ≈ 0.57721... is the

Euler–Mascheroni constant [351]. We have also identified the log term as ∆VT

to highlight that these terms will be treated as a perturbation. To keep the

notation compact, all small temperature corrections that are not included in our

toy model (i.e. the ones that we treat as a perturbation) and their sum we denote

as ∆VT . The temperature dependent effective potential is a function of the Higgs

field and the singlet field which we denote ϕS. (We also use the short hand

that ϕ ≡
√
H2
u +H2

d .) Within one–loop accuracy under the high temperature

expansion, it is given by

V (ϕ, ϕs, T ) = V T + ∆VS + ∆Vloop + ∆VT . (8.25)

Here we have defined ∆Vloop as the loop corrections, ∆VS as the terms that violate

the PQ limit (which is approximately κAκϕ
3
s/3). The term V T is the toy model
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8.3 The scalar potential at high temperature

effective potential, which is given by [165]

V T = M2ϕ2 + cT 2ϕ2 − ETϕ3 +m2
sϕ

2
s + λ2ϕ2

sϕ
2 − 2ãϕ2ϕs +

λ̃

2
ϕ4 , (8.26)

where E, as discussed in previous section, is a dimensionless constant needed to

have first order phase transition and:

M2 = m2
Hu cos2 β +m2

Hd
sin2 β,

ã = λAλ sin β cos β,

λ̃

2
=

g2
1 + g2

2

8

(
cos2 β − sin2 β

)2
+ λ2 sin2 β cos2 β +

δλ̃

2
.

(8.27)

In the last equation the parameter δλ̃ acquires large loop corrections from the

stop mass. We recall that at the critical temperature the effective potential

obtains degenerate minima with one minima at ϕ = 0. It is easy to see that

V (0, 0, T ) = V T(0, 0, T ) = 0. As mentioned before, let the critical temperature

and the non–zero VEV at this temperature for our toy model be denoted by Tc

and ϕc, respectively. It is also useful to define γ̃ = T/ϕ for T 6= Tc. Note that V

can be written as a function of ϕ, ϕS and γ̃. We will denote the fields, ϕx, away

from the respective minima as ϕ̃x. Let us assume that V is continuous in its three

arguments near the critical temperature. It is then apparent that V (ϕc+δϕc, ϕ̃s+

δϕs, γ + δγ) = 0, where the non–trivial VEV of the full temperature dependent

potential at the critical temperature is a small perturbation to the tree level

critical VEV, ϕc+δϕc. Similarly, the singlet VEV at the critical temperature and

the inverse order parameter both obtain small corrections, δϕs, δγ, respectively.
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8.3 The scalar potential at high temperature

From the small change formula in three variables, we can write:

V (ϕc + δϕc, ϕ̃s + δϕ̃s, γ + δγ)

≈ V T(ϕc, ϕ̃s, γ) + (∆VT + ∆Vloop + ∆VS)|ϕc,ϕ̃s,γ

+
∂V T

∂ϕ̃

∣∣∣∣
ϕc,ϕs,γ

δϕc +
∂V T

∂ϕ̃s

∣∣∣∣
ϕc,ϕs,γ

δϕs +
∂V T

∂γ̃

∣∣∣∣
ϕc,ϕs,γ

δγ .

(8.28)

The first term on the right hand side of the above equation is identical to zero

for the reasons discussed above. Furthermore, the derivative of our toy model

effective Lagrangian with respect to either ϕ or ϕc is also zero by definition when

the derivative is evaluated at its minimum. Setting the left hand side of the above

equation to zero and defining ∆V ≡ ∆VT + ∆VS + ∆Vloop, we can then write:

δγ = −∆V

/
∂V T

∂γ̃

∣∣∣∣
ϕc,ϕs,γ

. (8.29)

Noting that ∂ϕ/∂γ̃ = −ϕ/γ̃, we can write

∂V

∂γ̃
=

2Gϕ2

γ̃
− 2cγ̃ϕ4 − 2λ̃ϕ4

γ̃
+ 3Eϕ4 +

ã2ϕ4(4m2
s + 2λ2ϕ2)

γ̃(m2
s + λ2ϕ2)2

. (8.30)

Finally, we solve our toy model. We begin this calculation by insisting that the

zero temperature VEV is v = 174 GeV. This gives us the relation:

−M2 = v2

(
λ̃− ã2(2m2

s + λ2v2)

(m2
s + λ2v2)2

)
≡ G . (8.31)

Using the condition of degenerate minima occurring at a critical temperature, it
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8.4 NMSSM parameter space for DM and the first order phase transition

is easy to derive the following equation

0 = − λ̃
2

+ γE − cγ2 +

√
ã2(λ̃− γE)
√

2ms

+
λ2G

−m2
s +

√
2ã2m2

s

λ̃−γE

≡ F (γ) . (8.32)

Note that, apart from γ, this equation is a function of only four parameters:

{ms, λ, Aλ, tan β}. We therefore calculate δγ for values of {ms, λ, Aλ, tan β} such

that F (γ+δγ) is significantly smaller than any of its five components. We ensure

that all components of ∆V are small compared to the derivative of V T with

respect to gamma evaluated at the VEV at the critical temperature. Finally, we

insist that perturbation δγ . 0.4 and the baryon washout condition are satisfied

for γ + δγ . 1.

8.4 NMSSM parameter space for DM and the

first order phase transition

In Table 8.1 the parameter ranges of NMSSM scan are shown. We fixed the

first and second generation sfermionic masses to high values in order to avoid

large potential suspersymmetric contributions to electron and nuclear electric

dipole moments [352]. The masses of left and right handed stops are adjusted

to yield the measured value of the Higgs boson mass. In order to probe the

DM phenomenology, it is essential to vary the EW gaugino masses in a wide

range. Varying the gluino mass is important to determine the running of the ũd̃d̃

inflaton candidate. High selected ranges also guarantee that our spectrum does

not conflict with the LEP [42], ATLAS [31] and CMS [32] bounds on squarks and

sleptons.
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8.4 NMSSM parameter space for DM and the first order phase transition

Parameter Description Range

λ λ coupling [0 : 0.7]
Aλ Trilinear λ term [0:10000] GeV

tan β tan β parameter [1:65]
Aκ · κ Aκ · κ [0:0.01] GeV
µ Higgs mixing term [0 : Aλ cos β sin β] GeV
M1 Bino Mass [10:3000] GeV
M2 Wino Mass [10:4000] GeV
M3 Gluino Mass [800:6000] GeV

mẽL,R = mµ̃L,R = mτ̃L,R LH/RH sleptons 6000 GeV
mQ̃1L

= mQ̃2L
1st and 2nd generation LH squarks 6000 GeV

mQ̃3L
3rd generation LH squarks 3300 GeV

mũR = mc̃R 1st and 2nd generation RH squarks 6000 GeV
mt̃R

3rd generation RH squark 4000 GeV
md̃R

= ms̃R = mb̃R
RH squarks 6000 GeV

At Trilinear top coupling −5000 GeV
Aτ = Ab Trilinear τ and bottom coupling −2500 GeV

Table 8.1: Scan ranges of the NMSSM parameters in the MC scan. The upper
bound on the parameter µ comes from the requirement of the 1st order phase
transition and controls the Higgsino fraction in the neutralino.

Fig. 8.4 shows the bino (green dots), wino (red stars), higgsino (blue squares),

and singlino (pink diamonds) fractions of the lightest neutralino. We restrict the

relic density of the lightest neutralino below Ωχ̃0
1
h2 < 0.128 which is the upper

value on the DM abundance set by Planck at 3σ confidence level. As mentioned

above, neutralinos with masses mχ̃0
1
< mZ/2 have to have small higgsino fraction

due to strict limits on the invisible Z boson decay (from Eq. (6.1)). The mass

bound on the lightest chargino imposes further restrictions on the wino and hig-

gsino fractions of light neutralinos. Also, as it has been thoroughly discussed in

Sections 6.2 and 6.3 the light DM regions are very fine tuned and require sep-

arate detailed analysis and more sophisticated scanning techniques such as the

MCMC scan. The heavier neutralinos can have the larger higgsino fraction. This
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8.4 NMSSM parameter space for DM and the first order phase transition

Figure 8.4: Bino (green dots), wino (red stars), higgsino (blue squares), and
singlino (pink diamonds) components of the lightest neutralino for the scanned
model points. All points shown satisfy the condition of the strongly first order EW
phase transition and pass all constraints listed in Section 6.1. On the right hand
panel we only show the points that fall within 3σ of the Planck central value for
the relic abundance of DM: 0.1118 < Ωχ̃0

1
h2 < 0.128 [91].

is also connected to the fact that the positivity of m2
s sets an upper bound on

the parameter µ < Aλ cos β sin β, which allows larger higgsino fraction in the

lightest neutralino. As we shall argue in the next paragraph, this opens up more

annihilation channels to satisfy the relic density constraint.

In Fig. 8.5, we show the DM relic density dependence on mχ̃0
1
. We only show

points for which the DM relic density falls below the upper limit from Planck,

that is to satisfy Ωχ̃0
1
h2 < 0.128 at 3σ confidence level [91]. The points clustering

at around mχ̃0
1
≈ 63 GeV is due to neutralino annihilation through the 126 GeV

Higgs. This resonant annihilation depletes the neutralino abundance making it

possible to satisfy the Planck bound. The second, a larger group of points origi-

nate from the lightest neutralino with an enhanced higgsino component coupling

to the Z boson. As this, and the previous, figure shows our model points also have

the potential to explain the origin of the 130 GeV γ-ray line observed from the

Galactic Centre in terms of the annihilation of a 130 GeV neutralino [258, 259].
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8.4 NMSSM parameter space for DM and the first order phase transition

Figure 8.5: Relic abundance versus the mass of the DM particle for our scan.
The blue lines indicate the bounds on DM density implied by the Planck satellite:
0.1118 < Ωχ̃0

1
h2 < 0.128. All the points satisfy the condition for a first order EW

phase transition, as indicated by Eq. (8.32). They also pass all the cosmological
and particle physics constraints listed in Section 6.1.

In Fig. 8.6, we show how spin independent DM–nucleon scattering experi-

ments probe the scenarios with the constraints listed in Section 6.1 and F (γ) = 0,

see Eq. (8.32). The points that are circled in black fall within the range

0.1118 < Ωχ̃0
1
h2 < 0.128 set by Planck. It is interesting to note that quite a

few points lie in the regions where the LSP is relatively light within the ranges

where DAMA/LIBRA [178], CRESST–II (1st phase run) [180], CoGeNT [179]

and CDMS [222] detected excess interactions over expected background. All the

points with the smallest mχ̃0
1

have a large singlino fraction, and are ruled out

by the XENON100 experiment. We also show the current LUX and projected

bound from the XENON1T. These bounds are based on the assumptions already

mentioned in the 6.1 Section.
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8.4 NMSSM parameter space for DM and the first order phase transition

Figure 8.6: Spin independent direct detection cross section vs. mass of the
neutralino in our scan. The current bounds from XENON100, LUX and the 2σ
signal region from CRESST–II (1st phase run) are shown. We also show projected
bound for XENON1T. The points where neutralino relic abundance accounts for
the full dark matter content of the Universe measured by Planck within 3σ, i.e.
0.1118 < Ωχ̃0

1
h2 < 0.128, are highlighted in black circles.

Exclusion limits from DD experiments are drawn under assumption that neu-

tralino accounts for a total DM content of the Universe whereas in most cases

that we have found a relic abundance is significantly lower than the Planck mea-

sured value. Therefore, before considering which points avoid DD constraints and

which do not, we need to lower the cross section σSI by a factor (Ωχ̃0
1
/Ωobserved) in

cases where neutralino constitute only a fraction of the whole DM. Here we take

the Planck central value Ωobserved = 0.1199. As we see, most of the points that fall

below XENON100 will be tested very soon by LUX and XENON1T experiments.

In Fig. 8.7, we show how the relevant parameters that enter Eq. (8.32) are

distributed in the scans. In the top left panel we can see that tan β tends to
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8.4 NMSSM parameter space for DM and the first order phase transition

(a) (b)

(c) (d)

Figure 8.7: Distribution of the parameters which are relevant for baryogenesis in
our scan.

cluster around lower values. This is not because a higher tan β is inconsistent

with the baryon washout condition, just that our approximations break down for

the large tan β so we avoided scanning those. The breakdown is due to terms in

∆V that are tan β dependent and for large tan β can make ∆V too large so that

our assumption of ∆V being small is violated. Similarly the upper bound on Aλ

and λ is a relic of our approximations rather than any real difficulty in satisfying

the baryon washout condition in that parameter range. The lower bound on λ,

however, originates from baryogenesis since the low κ and low λ region is the
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8.4 NMSSM parameter space for DM and the first order phase transition

Parameter a b c d Constrained by

λ 0.06405 0.06520 0.10418 0.02906 1st order phase transition
Aλ(GeV) 1127 524 772 796 1st order phase transition

tan β 2.659 2.042 2.276 2.123 1st order phase transition
µeff(GeV) 165.214 142.985 176.515 137.963 1st order phase transition

Ωχ̃0
1
h2 0.119 0.112 0.124 0.112 DM abundance

mχ̃0
1
(GeV) 61.17 119.2 59.8 126.3 DM abundance

M1(GeV) 2151 2006 1375 1084 Inflaton RGE
M3(GeV) 5269 4986 4281 861 Inflaton RGE

φ0[×1014](GeV) 3.5− 3.8 4.2− 4.6 5.3− 5.7 6.6− 7.3 CMB temperature anisotropy
mφ(GeV) 1425 2120 3279 5349 CMB temperature anisotropy

Table 8.2: We show the benchmark points that are depicted in Fig. 8.8. The
gaugino masses which enter in the RG equations are mainly sensitive to M1 and M3.
The parameters λ,Aλ, tanβ, µeff are constrained from baryogenesis point of view,
and this in turn uniquely determine the mass of the lightest stop which sets the
mass for ũ3d̃id̃j inflaton candidate (i 6= j). Once again we reiterate that without
our approximation scheme, constraints on baryogenesis would be significantly less
strict. The mass of the inflaton is given at the inflationary scale φ0.

MSSM limit and it is difficult to satisfy the baryon washout condition in the

MSSM for a Higgs mass of 125 GeV [334]. We kept At = −5000 GeV fixed to be

able to satisfy the Higgs mass bound more easily. Values of µ are mainly within

a 100–200 GeV range because, as mentioned above, large values are constrained

by the requirement of m2
s being positive. This translates into an upper bound,

lower than Aλ cos β sin β, for a particular tan β. Lower µ values are constrained

because of the invisible Z decay and the chargino mass, which set bounds on the

higgsino component of the neutralino which is directly related to low µ. Since Aλ

enters Eq. (8.32) through ã, in order to satisfy condition F (γ) = 0 there needs

to be some tuning between the fourth and fifth terms. This fine tuning increases

with increasing Aλ, and so condition 8.32 is much easier met at low values.
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8.5 Parameter space for inflation, dark matter and baryogenesis

8.5 Parameter space for inflation, dark matter

and baryogenesis

Since the requirement for a successful baryogenesis implicitly constraints the right

handed squark, i.e. ũ3, we can assign the flat direction combination to be: ũid̃j d̃k,

where i = 3 and j 6= k.

In order to relate the low energy physics that we can probe at the LHC with

the high energy inflation, which is constrained by the Planck data, we use the

RGEs for the ũd̃d̃ flat direction, already stated in Eq. (7.18). As mentioned

before, the mass of the inflaton made of ũid̃j d̃k condensate can be written as:

m2
φ =

m2
ũ +m2

d̃
+m2

d̃

3
. (8.33)

This then allows us to evaluate the mass of the inflaton at the EW scale and

by using the RGEs we are able to evolve it to the high scale φ0, where inflation can

happen, and check if there is an overlap within NMSSM where DM, baryogenesis

and inflation coexist. This can be seen in Fig. 8.8. The blue region shows the

parameter of ũ3d̃j d̃k as an inflaton for j 6= k. It shows the central value of density

perturbations together with ±1σ variation in spectral tilt ns. The brown lines

show the mass of the inflaton at a particular scale and its running from high scale

to low scale is determined by the RGEs, which is mostly sensitive to bino and

gluino masses and the energy scale.

In Fig. 8.8, we show the four benchmark points, a, b, c, d, which satisfy the

condition for a successful baryogenesis, Eq. (8.32), and also accommodate neu-

tralino as a DM which satisfies the relic abundance constraint 0.1118 < Ωχ̃0
1
h2 <

186



8.6 Summary

Figure 8.8: Blue region depicts the parameter space for inflation where it yields
the right amplitude of density perturbations in the CMB, i.e. Pζ = 2.196×10−9 and
the ±1σ variance of the spectral tilt, ns = 0.9603± 0.0073, where both quantities
based on combined Planck and WMAP data [91]. Brown lines show the running of
the inflaton mass, where they intersect with the blue region depict the correct relic
abundance, 0.1118 < Ωχ̃0

1
h2 < 0.128 [91], and strongly first order phase transition.

From these intersections, a, b, c, d we can determine the masses of the inflaton at
the inflationary scale φ0. The running of the inflaton mass is mainly determined
by the bino and gluino masses, see Table 8.2.

0.128. In Table 8.2, we summarize the relevant parameters for NMSSM required

to explain the Universe beyond the Standard Model.

8.6 Summary

In this chapter, we examined inflation, baryogenesis and DM in the context of

NMSSM. We have found that all of them can be simultaneously accommodated

by the theory. In particular, we derived a semi-analytic solution to the toy model

analysed in Ref. [349] and considered higher order temperature corrections, loop
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corrections to the effective potential and small deviations from the PQ limit as

perturbations to the toy model solution. We have shown that a strongly first

order phase transition can be easily achieved even with recent LHC constrains

applied. We investigated this by utilizing a simple MC routine to explore the

parameter space of NMSSM. Even using much less efficient scanning strategy

than MCMC, we were able to find a number of points that satisfy constraints

imposed by a requirement to have a strongly first order phase transition, particle

physics constraints – most notably a mass of ∼ 125 GeV Higgs, bounds from the

ID/DD experiments and the relic abundance measurements by Planck.

We also demonstrated that an abundance of the lightest neutralinos can be

generated thermally, which satisfies the present DM density limits set by the

Planck satellite. Part of these model points also pass the most stringent dark

matter direct detection constraints and potentially could explain ∼130 GeV γ–

ray line from the Fermi–LAT, if it is confirmed. Finally, we have shown that the

presented scenario is fully consistent with inflation, where the inflaton is a D–flat

direction made up of right handed squarks.

A key step in validating the presented picture is subject to positive experimen-

tal data: the discovery of SUSY at the LHC and unambiguous claims from DD

experiments, especially with a high neutralino–nucleon spin independent cross

section, would provide the means to consider more critically the proposed BSM

framework.
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Chapter 9

Conclusion

We have performed a detailed study of how various supersymmetric extensions

of the SM can explain inflation, DM and the first order phase transition during

EW symmetry breaking. Since SUSY is yet to be found in the present or future

colliders, we have also addressed the naturalness issue in one of the most general

particle physics models – p19MSSM. In the light of the potential positive results

announced by the direct DM detection experiments and the discovery of the∼ 125

GeV Higgs–like scalar particle we also have looked at how light χ̃0
1 can be in the

p19MSSM and NMSSM.

By utilizing the efficient MCMC scanning technique, we found that a neu-

tralino as light as 10 GeV is still in principle viable in p19MSSM, though sce-

narios in a range of 10 GeV < mχ̃0
1
< 30 GeV have a large EW fine tuning,

∆tot ∼ O(103). Most of these points have quite a low spin independent nucleon–

χ̃0
1 cross section, σSI

χ̃0
1−p

, and escape bounds set by XENON100 and more recently

by LUX. However, σSI
χ̃0

1−p
is not large enough to explain the potential positive

signals released by DAMA, CoGeNT, CRESST–II (1st phase run) and CDMS. In
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order to deplete the relic density in the Early Universe, these points also require

light sleptons, which are excluded from LEP searches if one assumes gaugino

mass unification at the GUT scale. A dedicated analysis of the LEP data in the

context of a p19MSSM scenario could completely eliminate the possibility of a

light neutralino in the mass range of 10− 30 GeV. In [316, 317] authors claimed

that a light sbottom (∼10 GeV) would be sufficient to validate very light neu-

tralino (∼1 GeV) solutions in p19MSSM. However, we set mb̃1
> 300 GeV which

is valid when mb̃1
−mχ̃0

1
> mb is satisfied and that turns out always to be the case

for light neutralino solutions. The second group of points with mχ̃0
1
> 30 GeV

are where the annihilation via the s-channel Z-exchange is possible for a bino–

higgsino mixture of neutralino LSP. These scenarios are much less fine–tunned,

but many of them are ruled out by XENON100 and LUX, and the remaining

scenarios will soon be tested by XENON1T. It should be noted though, that

these DD exclusion limits can be avoided by making a realistic assumption that

neutralino DM does not interact equally with protons and neutrons. However,

if it does, then these results strongly hint that, if claims of light DM are correct

and the nature indeed realizes SUSY, then one should endeavour to probe the

particle physics models with additional ingredients.

One such possibility is the NMSSM. Here the DM can be as light as 1 GeV,

and because of the large fraction of singlino, it has a high spin independent cross–

section for a χ̃0
1 − p scattering, which is claimed to be observed by the formerly

mentioned experiments. In case of further experimental evidence for a light neu-

tralino with large spin independent nucleon–χ̃0
1 cross section from DD searches,

NMSSM potentially would become a leading BSM theory. It is also appealing

that the fine–tuning issue is of little importance because of the additional singlet
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field. When a singlet develops a VEV, it dynamically generates the µ term and

large cancellations between the Higgs soft breaking masses and the µ term can

easily be avoided to yield the right mass for the Z boson.

After demonstrating that there is ample parameter space where the DM relic

abundance together with particle physics constraints are satisfied, we tried to

explore the regions of the NUHMII model, where DM and inflation can coexist.

We studied how the particle physics constraints, most notably the relic abundance

and the latest bound on a mass of the Higgs scalar, could pinpoint the mass of

the inflaton and the scale of inflation within the gauge invariant MSSM inflation

model. In the study, two inflaton candidates were considered, ũd̃d̃ and L̃L̃ẽ,

for which the high scale of inflation, φ0, is tied up via the RGE to the low scale

physics that is currently being tested at the LHC. Two methods have been used to

explore the NUHMII. One was a simple 2 dimensional MC routine in (m0 : m1/2)

space, which helped to find benchmark points satisfying known particle physics

constraints and explore what a particular realisation of NUHMII input parameters

would mean to MSSM inflation. The other method was a complete 6 dimensional

scan by using an efficient MCMC algorithm explained in Section 6.1.

The key finding is that for most configurations, the ũd̃d̃ inflaton appears to

be heavier than 1.5 TeV, while the L̃L̃ẽ inflaton can be as light as 500 GeV. In

both cases, however, it is possible to find configurations in which both staus and

stops are within the reach of the LHC, thus indicating that sparticle searches at

LHC could actually provide a means of constraining the inflaton mass for some

subset of the NUHMII parameter space. Such constraints would have to be cross

correlated with the measurements of B(Bs → µ+µ−) and B(b → sγ), since all

the scenarios found in this section have predicted values for these two branching
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ratios close to the present experimental limits.

Analogous analysis can be performed where the inflaton is the SUSY Higgs,

and when the inflaton is NHuL, in the case of MSSM ×U(1)B−L, in which case,

the inflaton is gauged under both MSSM and U(1)B−L. Moreover, if claims of

light DM species made by DAMA, CoGeNT, CRESST–II (1st phase run) and

CDMS collaborations turn out to be correct, it will be necessary to perform a

complementary study with MCMC likelihood function priors chosen in a way that

would target light neutralino solutions. This would be a challenging task since

most of the light neutralinos appear to have a dominant bino component. This

requires light sleptons to satisfy DM abundance constraints.

While we demonstrated how particle physics and cosmological constraints, in

particular the mass of the Higgs and DM relic abundance, can be used to find

a mass and field strength of the inflaton condensate candidates, it is important

to note that the requirement of successful MSSM inflation does not lead to any

predictions about particle physics that can be tested at the LHC.

In the last part of the thesis we discussed the highly efficient mechanism for

determining the parameter space of the NMSSM, where the first order phase

transition can happen, together satisfying constraints on the relic abundance

and particle physics. Previous analysis of the EW phase transition within the

NMSSM near the PQ limit found that the parameter space that satisfies the

baryon washout condition is heavily constrained. In a prior analysis [349], the

authors considered a toy model which included the tree level effective potential

of the NMSSM at the PQ limit with the largest temperature corrections. In the

last chapter we derived a semi-analytic solution to the toy model analysed in ref.

[349] and considered higher order temperature corrections, loop corrections to the
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effective potential and small deviations from the PQ limit as perturbations to the

toy model solution. In particular, we have shown that a strongly first order phase

transition can be easily achieved in the PQ limit even with recent LHC constrains

applied. We scanned over the variety of input parameters of NMSSM and the

algorithm for the 1st order phase transition constrained the set of (µ, tan β, λ,Aλ),

with the preference for low tan β and λ, 200 GeV. µ . 300 GeV and 0 GeV<

Aλ . 3000 GeV. This then has phenomenological implications, most notably on

the composition of the DM and mass of the Higgs scalar. We demonstrated that

an abundance of lightest neutralinos can be generated thermally, which satisfies

the present DM density limits set up by Planck satellite. A fraction of these

model points also pass the most stringent DM DD constraints and fall within

parameter space regions were potential positive signals for the light DM were

announced. Moreover, many of them could potentially explain ∼130 GeV γ–ray

line from the Fermi–LAT, if it is confirmed. Finally, by choosing a few validated

benchmark points we calculated the mass of the inflaton and the VEV of inflation,

thus covering a large part of a complete picture of the BSM physics.

A key step in validating the presented picture is subject to positive experimen-

tal data: the discovery of SUSY at the LHC and unambiguous claims from DD

experiments, especially with a high neutralino–nucleon spin independent cross

section, would provide the means to consider more critically the proposed BSM

framework.
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Appendix A

L̃L̃ẽ and ũd̃d̃ flatness

Here, we demonstrate the SU(3)c× SU(2)L×U(1)Y D–flatness of the L̃iL̃j ẽk and

ũid̃j d̃k flat directions using the second condition in Eq. (4.71).

• L̃iL̃j ẽk case: to show the U(1)Y D–flatness, we employ the hypercharges

provided by Table 4.1. Thus, YL = −1
2

and Ye = 1, therefore:

DY = −1

2
|L̃i|2 −

1

2
|L̃j|2 + |ẽk|2 = −|φ|2 + |φ|2 = 0. (A.1)

The SU(2)L D–flatness calculation is analogous as for L̃H̃u case, showed in Section

4.4.1. For the choice of:

L̃i =
1√
3

(
0
φ

)
and L̃j =

1√
3

(
φ
0

)
, (A.2)

we have:
3∑

a=1

D(a) = L̃†iσ
(3)L̃i + L̃†jσ

(3)L̃j =
1

3
(|φ|2 − |φ|2) = 0, (A.3)

where superscripts in brackets denote the component and not the power.
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• ũid̃j d̃k case: from Table 4.1, we have that Yu = −2
3

and Yd = 1
3

thus:

DY = −2

3
|ũi|2 +

1

3
|d̃j|2 +

1

3
|d̃k|2 = −2

3
|φ|2 +

2

3
|φ|2 = 0. (A.4)

To demonstrate the SU(3)c D–flatness, we choose the following representation of

the fields in the colour space:

ũi =
1√
3

(φ
0
0

)
, d̃j =

1√
3

(0
φ
0

)
, d̃k =

1√
3

(0
0
φ

)
. (A.5)

Using this, we get:

8∑
a=1

D(a) = ũ†iλ
(3)ũi + ũ†iλ

(8)ũi + d̃†jλ
(3)d̃j + d̃†jλ

(8)d̃j + d̃†kλ
(8)d̃k

=
1

3

(
|φ|2 +

|φ|2√
3
− |φ|2 +

|φ|2√
3
− 2|φ|2√

3

)
= 0,

(A.6)

where λ are the Gell-Mann matrices – generators of SU(3)c.
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Appendix B

MCMC routine implementation

in micrOMEGAs

Below is the MCMC code used to explore light neutralino in p19MSSM as dis-

cussed in Section 6.2. All micrOMEGAs built-in functions are defined in [278].

#include"../sources/micromegas.h"

#include"../sources/micromegas_aux.h"

#include"lib/pmodel.h"

#include <stdio.h>

#include <math.h>

#include <time.h> //seeds random number related to the time

#define SUGRAMODEL_(A) A ## SUGRA

#define SUGRAMODEL(A) SUGRAMODEL_(A)

#define AMSBMODEL_(A) A ## AMSB

#define AMSBMODEL(A) AMSBMODEL_(A)

#define EWSBMODEL_(A) A ## EwsbMSSM

#define EWSBMODEL(A) EWSBMODEL_(A)

#define PRINTRGE_(A) printf(" Spectrum calculator is %s\n", #A)

#define PRINTRGE(A) PRINTRGE_(A)
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int main(int argc,char** argv)

{ int err;

char cdmName[10];

int spin2, charge3,cdim;

delFiles=0; /* switch to save/delete RGE input/output */

ForceUG=0; /* to Force Unitary Gauge assign 1 */

// sysTimeLim=1000;

//Open a file for writing

FILE *f1 = fopen("1.dat","w");

fprintf(f1,"1h 2k 3massbino 4masswino 5massgluino 6mu 7MA 8Mh 9NLSP 10MNLSP 11tanbeta

12mchi1 13Omega 14amu 15bsgamma 16bsmumu 17SIsigmap 18SIsigman 19Zn11 20Zn12 21Zn13 22Zn14 23heavyHiggs

24mscl 25mssl 26msne 27msel 28msmr 29msur 30mser 31mcha1 32mchi2 33mchi3 34mstop1 35mchi4 36mcha2 37mstau1

38msb1 39mstop2 40msnm 41msml 42msdr 43msg 44msb2 45msul 46msdl 47mssr 48msul 49mstau2 50mscr 51Atop

52Abottom 53Atau 54Amu 55LOm 56Lmh 57Lmchi1 58LTOT 59Photonflux 60Positronflux 61Antiprotonflux 62deltatotal

63Zv11 64Zv12 65Zu11 66Zu12 67msnl\n");

#elif defined(EWSB)

{

printf("\n========= EWSB scale input =========\n");

PRINTRGE(RGE);

printf("Initial file \"%s\"\n",argv[1]);

err=readVarMSSM(argv[1]);

if(err==-1) { printf("Can not open the file\n"); exit(2);}

else if(err>0) { printf("Wrong file contents at line %d\n",err);exit(3);}

double mchi1, mchi2, LHslepton1, LHslepton2, LHslepton3, RHselectron, RHsmuon, RHstau, LHsquark1, LHsquark2,

LHsquark3, RHupsquark, RHdownsquark, RHstrangesquark, RHcharmsquark, RHbottomsquark, RHtopsquark, Atop,

Abottom, Atau, Amu, mcha1, mcha2, Mh, Omega, Xf, SMbsg, amu, bsgamma, bmumu, taunu, Zn11, Zn12, Zn13, Zn14,

mstop1, mstop2, mstau1, mstau2, SIsigmap, SIsigman, SCcoeff, MNLSP, mscr, msg, msdr, msne, msnl, msel, mser,

msb1, msb2, msnm, msur, mssr, msml, msul, msdl, heavyHiggs, LOm, Lmh, LTOT, LTOTP, LTmax, Lgmu, Lbsg, Lbmu,

Lbnu, Lmchi1, massbino, masswino, massgluino, tanbeta, muparameter, MA, mscl, mssl, mchi3, mchi4, msmr, beta,

pi, cosb, deltamiusquared, deltab, deltaHUsquared, deltaHDsquared, deltatotal, OijL, OijR, Zinv;

double massbinoP, masswinoP, massgluinoP, muparameterP, tanbetaP, MAP, LHslepton1P, LHslepton2P, LHslepton3P,

RHselectronP, RHsmuonP, RHstauP, LHsquark1P, LHsquark2P, LHsquark3P, RHupsquarkP, RHcharmsquarkP, RHtopsquarkP,

RHdownsquarkP, RHstrangesquarkP, RHbottomsquarkP, AtopP, AbottomP, AtauP, AmuP, rdvar, Lrho, Zv11, Zv12,

Zu11, Zu12;

int h, k=0, nw, warning=0, stuck=0, NLSP, p, rdsgn;
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int err,i;

double Emin=1,SMmev=320;/*Energy cut in GeV and solar potential in MV*/

double sigmaV,vcs_gz,vcs_gg,SpA[NZ],SpE[NZ],SpP[NZ],FluxA[NZ],FluxE[NZ],FluxP[NZ],SpNe[NZ],SpNm[NZ],SpNl[NZ];

char txt[100];

double Etest=Mcdm/2, fi=0.,dfi=M_PI/180, lowest=9.9*pow(10,-99);

int fast=1;

double Beps=1.E-5, cut=0.01; //needed for relic density calculation

double pA0[2],pA5[2],nA0[2],nA5[2]; //for Calculation of CDM-nucleons amplitudes

double Nmass=0.939; /*nucleon mass*/ //for Calculation of CDM-nucleons amplitudes

srand(time(NULL));

LTmax=lowest;LTOTP=lowest;

//randomly generating p19MSSM parameters

assignValW("MG1",rand()%501); assignValW("MG2",rand()%1001);assignValW("MG3",rand()%2200+800);

assignValW("mu",(rand()%600001)*pow(10,-2)-3000); assignValW("tb",((rand()%5900)*pow(10,-2))+1);

assignValW("MH3",rand()%2700+300); assignValW("Ml1",rand()%3001); assignValW("Ml3",rand()%3001);

assignValW("Mr1",rand()%3001); assignValW("Mr3",rand()%3001); assignValW("Mq1",rand()%3001);

assignValW("Mq3",rand()%3001); assignValW("Mu1",rand()%3001); assignValW("Mu3",rand()%3001);

assignValW("Md1",rand()%3001); assignValW("Md3",rand()%3001);

assignValW("At",rand()%20001-10000); assignValW("Ab",rand()%20001-10000);

assignValW("Al",rand()%20001-10000); assignValW("Am",0);

massbino=findValW("MG1"); masswino=findValW("MG2"); massgluino=findValW("MG3");

muparameter=findValW("mu");

if(muparameter<0 && massbino>=masswino)

massbino=-1*massbino;

if(muparameter<0 && masswino>=massbino)

masswino=-1*masswino; tanbeta=findValW("tb"); MA=findValW("MH3");

LHslepton1=findValW("Ml1"); LHslepton2=LHslepton1; LHslepton3=findValW("Ml3");

RHselectron=findValW("Mr1"); RHsmuon=RHselectron; RHstau=findValW("Mr3");

LHsquark1=findValW("Mq1"); LHsquark2=LHsquark1; LHsquark3=findValW("Mq3");

RHupsquark=findValW("Mu1"); RHcharmsquark=RHupsquark; RHtopsquark=findValW("Mu3");

RHdownsquark=findValW("Md1"); RHstrangesquark=RHdownsquark; RHbottomsquark=findValW("Md3");

Atop=findValW("At"); Abottom=findValW("Ab"); Atau=findValW("Al"); Amu=findValW("Am");

//Starting MCMC loop

for(h=1;h<=200000000;h++){

//Cheking if p19MSSM parameters do not fall out of chosen ranges in MCMC. If they do, then generate new

//set of input.
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if ((massbino>500 || massbino<-500) || (masswino>1000 || masswino<-1000) || (massgluino>3000 ||

massgluino<800) || (muparameter>3000 || muparameter<-3000) || (tanbeta>60 || tanbeta<1) || (MA>3000

|| MA<300) || (LHslepton1>3000 || LHslepton1<0) || (LHslepton2>3000 || LHslepton2<0) ||

(LHslepton3>3000 || LHslepton3<0) || (RHselectron>3000 || RHselectron<0) || (RHsmuon>3000 || RHsmuon<0)

|| (RHstau>3000 || RHstau<0) || (LHsquark1>3000 || LHsquark1<0) || (LHsquark2>3000 || LHsquark2<0)

|| (LHsquark3>3000 || LHsquark3<0) || (RHupsquark>3000 || RHupsquark<0) || (RHcharmsquark>3000 ||

RHcharmsquark<0) || (RHtopsquark>3000 || RHtopsquark<0) || (RHdownsquark>3000 || RHdownsquark<0) ||

(RHstrangesquark>3000 || RHstrangesquark<0) || (RHbottomsquark>3000 || RHbottomsquark<0) || (Atop>10000

|| Atop<-10000) || (Abottom>10000 || Abottom<-10000) || (Amu>1 || Amu<-1) || (Atau>10000 ||

Atau<-10000)){printf("out of the box");

assignValW("MG1",rand()%501);assignValW("MG2",rand()%1001);assignValW("MG3",rand()%2200+800);

assignValW("mu",(rand()%600001)*pow(10,-2)-3000);assignValW("tb",((rand()%5900)*pow(10,-2))+1);

assignValW("MH3",rand()%2700+300);assignValW("Ml1",rand()%3001);assignValW("Ml3",rand()%3001);

assignValW("Mr1",rand()%3001);assignValW("Mr3",rand()%3001);assignValW("Mq1",rand()%3001);

assignValW("Mq3",rand()%3001);assignValW("Mu1",rand()%3001);assignValW("Mu3",rand()%3001);

assignValW("Md1",rand()%3001);assignValW("Md3",rand()%3001);assignValW("At",rand()%20001-10000);

assignValW("Ab",rand()%20001-10000);assignValW("Al",rand()%20001-10000);assignValW("Am",0);

massbino=findValW("MG1");masswino=findValW("MG2");massgluino=findValW("MG3");muparameter=findValW("mu");

if(muparameter<0 && massbino>=masswino)

masswino=-1*masswino;

if(muparameter<0 && masswino>=massbino)

massbino=-1*massbino;

tanbeta=findValW("tb");MA=findValW("MH3");LHslepton1=findValW("Ml1");LHslepton2=LHslepton1;

LHslepton3=findValW("Ml3");RHselectron=findValW("Mr1");RHsmuon=RHselectron;RHstau=findValW("Mr3");

LHsquark1=findValW("Mq1");LHsquark2=LHsquark1;LHsquark3=findValW("Mq3");RHupsquark=findValW("Mu1");

RHcharmsquark=RHupsquark;RHtopsquark=findValW("Mu3");RHdownsquark=findValW("Md1");

RHstrangesquark=RHdownsquark;RHbottomsquark=findValW("Md3");Atop=findValW("At");

Abottom=findValW("Ab");Atau=findValW("Al");Amu=findValW("Am");}

err=EWSBMODEL(RGE)(); //calculates particle spectrum

Mh=findValW("Mh");

qNumbers(cdmName,&spin2, &charge3, &cdim);

err=sortOddParticles(cdmName);

Omega=darkOmega(&Xf,fast,Beps);

if(strcmp(cdmName,"~o1"))

{warning++;printf("=========~o1 is not CDM=======...warning=%d\n\n\n\n",warning);}
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nw=slhaWarnings(stdout);

if(nw==0) printf("==no spectrum problems===\n\n\n");

if(err) warning++;

printf("warning=%d\n",warning);

//check if observables satisfies experimental bounds.

if(warning==0){

if(Omega>0.13) LOm=exp(-pow((Omega-0.1158),2.)/(2*pow(0.0035,2.)));

else LOm=1.;

if(Mh<124.96) Lmh=exp(-pow((Mh-124.96),2.)/(2*pow(0.54,2.)));

else if(Mh>126.04) Lmh=exp(-pow((Mh-126.04),2.)/(2*pow(0.54,2.)));

else Lmh=1.;

if(gmuon()>0.) Lgmu=1/( 1+ exp( -(gmuon()-25.5*pow(10,-10))/

(-sqrt(pow(6.3*pow(10,-10),2.) + pow(4.9*pow(10,-10),2.))) ));

else Lgmu=0.;

Lbsg=exp(-pow((bsgnlo(&SMbsg)-3.55*pow(10,-4)),2.)/(2*(pow(0.24*pow(10,-4),2.) +

pow(0.09*pow(10,-4),2.) + pow(0.23*pow(10,-4),2.))));

if(bsmumu()>4.7*pow(10,-9))

Lbmu=1/( 1+ exp( -(bsmumu()-4.7*pow(10,-9))/(-4.5*pow(10,-11)) ));

else Lbmu=1;

Lbnu=1/( 1+ exp( -(btaunu()-2.219)/(-0.5) ));

mchi1=fabs(findValW("MNE1"));

if (mchi1>30)

Lmchi1=exp(-pow((mchi1-30),2.)/(1*pow(2,2.)));

else Lmchi1=1;

Etest=Mcdm/2;

if(Mcdm>2.001){

sigmaV=calcSpectrum( 1+2+4,SpA,SpE,SpP,SpNe,SpNm,SpNl ,&err);

gammaFluxTab(fi,dfi, sigmaV, SpA, FluxA);

posiFluxTab(Emin, sigmaV, SpE, FluxE);

pbarFluxTab(Emin, sigmaV, SpP, FluxP);}

amu=gmuon();
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taunu=btaunu();

//calculation of gaugino fractions in neutralino

Zn11=pow(findValW("Zn11"),2);

Zn12=pow(findValW("Zn12"),2);

Zn13=pow(findValW("Zn13"),2);

Zn14=pow(findValW("Zn14"),2);

Zv11=pow(findValW("Zv11"),2);

Zv12=pow(findValW("Zv12"),2);

Zu11=pow(findValW("Zu11"),2);

Zu12=pow(findValW("Zu12"),2);

//Calculation of invisible Z decay width

OijL=-0.5*Zn13+0.5*Zn14;

OijR=-OijL;

Zinv=2*sqrt(1-4*pow(mchi1,2)/pow(91.1876,2))*((1-pow(mchi1,2)/pow(91.1876,2))*

(OijL*OijL+OijR*OijR)+6*pow(mchi1,2)/pow(91.1876,2)*OijL*OijR)*0.50162;

printf("Zinv=%lf\n",Zinv);

//finding NLSP

mcha1=findValW("MC1");MNLSP=mcha1;NLSP=1;

mchi2=fabs(findValW("MNE2"));if(mchi2<=MNLSP){MNLSP=mchi2;NLSP=2;}

mstau1=findValW("MSl1");if(mstau1<=MNLSP){MNLSP=mstau1;NLSP=3;}

mstop1=findValW("MSt1");if(mstop1<=MNLSP){MNLSP=mstop1;NLSP=4;}

mscr=findValW("MScR");if(mscr<=MNLSP){MNLSP=mscr;NLSP=5;}

msg=findValW("MSG");if(msg<=MNLSP){MNLSP=msg;NLSP=6;}

msdr=findValW("MSdR");if(msdr<=MNLSP){MNLSP=msdr;NLSP=7;}

msne=findValW("MSne");if(msne<=MNLSP){MNLSP=msne;NLSP=8;}

msnl=findValW("MSnl");if(msnl<=MNLSP){MNLSP=msnl;NLSP=9;}

msel=findValW("MSeL");if(msel<=MNLSP){MNLSP=msel;NLSP=10;}

mser=findValW("MSeR");if(mser<=MNLSP){MNLSP=mser;NLSP=11;}

msb1=findValW("MSb1");if(msb1<=MNLSP){MNLSP=msb1;NLSP=12;}

msnm=findValW("MSnm");if(msnm<=MNLSP){MNLSP=msnm;NLSP=13;}

msur=findValW("MSuR");if(msur<=MNLSP){MNLSP=msur;NLSP=14;}

mssr=findValW("MSsR");if(mssr<=MNLSP){MNLSP=mssr;NLSP=15;}

msml=findValW("MSmL");if(msml<=MNLSP){MNLSP=msml;NLSP=16;}

msul=findValW("MSuL");if(msul<=MNLSP){MNLSP=msul;NLSP=17;}

msdl=findValW("MSdL");if(msdl<=MNLSP){MNLSP=msdl;NLSP=18;}

mscl=findValW("MScL");if(mscl<=MNLSP){MNLSP=mscl;NLSP=19;}

mssl=findValW("MSsL");if(mssl<=MNLSP){MNLSP=mssl;NLSP=20;}
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msmr=findValW("MSmR");if(msmr<=MNLSP){MNLSP=msmr;NLSP=21;}

mstau2=findValW("MSl2");

mstop2=findValW("MSt2");

msb2=findValW("MSb2");

mchi3=fabs(findValW("MNE3"));

mchi4=fabs(findValW("MNE4"));

msmr=findValW("MSmR");

mcha2=findValW("MC2");

heavyHiggs=findValW("MHH");

nucleonAmplitudes(FeScLoop, pA0,pA5,nA0,nA5);

SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*Mcdm/(Nmass+ Mcdm),2.);

SIsigmap=SCcoeff*pA0[0]*pA0[0];

SIsigman=SCcoeff*nA0[0]*nA0[0];

LTOT=Lmchi1*Lmh*Lbnu*Lrho*Lbmu*LOm;

/*************************FINE TUNNING***********************/

pi = 4.0 * atan(1.0);

beta=atan(tanbeta);

deltamiusquared=4*pow(muparameter,2)/pow(91.1876,2)*(1+(MA*MA+pow(91.1876,2))/(MA*MA)*pow(tan(2*beta),2));

deltab=(1+MA*MA/pow(91.1876,2))*pow(tan(2*beta),2);

deltaHUsquared=abs(0.5*cos(2*beta)+MA*MA/pow(91.1876,2)*pow(cos(beta),2)-pow((muparameter/91.1876),2))*

(1-1/cos(2*beta)+(MA*MA+pow(91.1876,2))/(MA*MA)*pow(tan(2*beta),2));

deltaHDsquared=abs(-0.5*cos(2*beta)+MA*MA/pow(91.1876,2)*pow(sin(beta),2)-pow((muparameter/91.1876),2))*

(1+1/cos(2*beta)+(MA*MA+pow(91.1876,2))/(MA*MA)*pow(tan(2*beta),2));

deltatotal=sqrt(pow(deltamiusquared,2)+pow(deltab,2)+pow(deltaHUsquared,2)+pow(deltaHDsquared,2));

/*************************************************************/

}

if(LTOT>=lowest && warning==0 && stuck<50){

if(LTOT>=LTOTP){massbinoP=massbino, masswinoP=masswino, massgluinoP=massgluino, muparameterP=muparameter,

tanbetaP=tanbeta, MAP=MA, LHslepton1P=LHslepton1, LHslepton2P=LHslepton2, LHslepton3P=LHslepton3,

RHselectronP=RHselectron, RHsmuonP=RHsmuon, RHstauP=RHstau, LHsquark1P=LHsquark1, LHsquark2P=LHsquark2,

LHsquark3P=LHsquark3, RHupsquarkP=RHupsquark, RHcharmsquarkP=RHcharmsquark, RHtopsquarkP=RHtopsquark,

RHdownsquarkP=RHdownsquark, RHstrangesquarkP=RHstrangesquark, RHbottomsquarkP=RHbottomsquark, AtopP=Atop,
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AbottomP=Abottom, AtauP=Atau, AmuP=Amu, LTOTP=LTOT, k++;

if (LTOTP>LTmax) {LTmax=LTOT;stuck=0;}

else stuck++;

if (h>0 && h<200000000 && nw==0 && (Mh>123) && (Mh<127) && (Omega<0.13) && (bsmumu()<4.7*pow(10,-9)) &&

(bsmumu()>2*pow(10,-9)) && (bsgnlo(&SMbsg)>3.29*pow(10,-4)) && (bsgnlo(&SMbsg)<3.81*pow(10,-4)) && (Zinv<0.003) &&

(mcha1>103.5))

fprintf(f1,"%d %d %lf %lf %lf %lf %lf %lf %d %lf %lf %lf %lf

%.5E %lf %.3lE %.3E %.3E %.5e %.5e %.5e %.5e %lf %lf %lf %lf %lf

%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf

%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %.3e

%.3e %.3e %.3e %.2E %.2E %.2E %lf %lf %lf %lf %lf %lf\n",h, k, massbino,

masswino,massgluino,muparameter,MA,Mh,NLSP,MNLSP, tanbeta,mchi1,Omega,amu,bsgnlo(&SMbsg),bsmumu(),

SCcoeff*pA0[0]*pA0[0],SCcoeff*nA0[0]*nA0[0], Zn11, Zn12, Zn13, Zn14, heavyHiggs, mscl, mssl, msne, msel, msmr,

msur, mser, mcha1, mchi2, mchi3, mstop1, mchi4, mcha2, mstau1, msb1, mstop2, msnm, msml, msdr, msg, msb2, msul,

msdl, mssr, msul, mstau2, mscr, Atop, Abottom, Atau, Amu, LOm, Lmh, Lmchi1, LTOT, SpectdNdE(Etest, FluxA),

SpectdNdE(Etest, FluxE), SpectdNdE(Etest, FluxP), deltatotal, Zv11, Zv12, Zu11, Zu12, msnl);

else if (h>200000000 && h<400000000 && nw==0 && (Mh>123) && (Mh<127) && (Omega<0.13) &&

(bsmumu()<4.7*pow(10,-9)) && (bsmumu()>2*pow(10,-9)) && (bsgnlo(&SMbsg)>3.29*pow(10,-4)) &&

(bsgnlo(&SMbsg)<3.81*pow(10,-4)) && (Zinv<0.003) && (mcha1>103.5))

else

{ p=floor(-100*log(LTOTP));

rdvar=(rand() % p)*pow(10,-2) + 1;

if(LTOTP/rdvar<LTOT){massbinoP=massbino, masswinoP=masswino, massgluinoP=massgluino, muparameterP=muparameter,

tanbetaP=tanbeta, MAP=MA, LHslepton1P=LHslepton1, LHslepton2P=LHslepton2, LHslepton3P=LHslepton3,

RHselectronP=RHselectron, RHsmuonP=RHsmuon, RHstauP=RHstau, LHsquark1P=LHsquark1, LHsquark2P=LHsquark2,

LHsquark3P=LHsquark3, RHupsquarkP=RHupsquark, RHcharmsquarkP=RHcharmsquark, RHtopsquarkP=RHtopsquark,

RHdownsquarkP=RHdownsquark, RHstrangesquarkP=RHstrangesquark, RHbottomsquarkP=RHbottomsquark, AtopP=Atop,

AbottomP=Abottom, AtauP=Atau, AmuP=Amu, LTOTP=LTOT,k++;

if (LTOTP>LTmax) {LTmax=LTOTP;stuck=0;}

else {stuck++;}

if (h>0 && h<200000000 && nw==0 && (Mh>123) && (Mh<127) && (Omega<0.13) && (bsmumu()<4.7*pow(10,-9)) &&

(bsmumu()>2*pow(10,-9)) && (bsgnlo(&SMbsg)>3.29*pow(10,-4)) && (bsgnlo(&SMbsg)<3.81*pow(10,-4)) &&

(Zinv<0.003) && (mcha1>103.5))

fprintf(f1,"%d %d %lf %lf %lf %lf %lf %lf %d %lf %lf %lf %lf

%.5E %lf %.3lE %.3E %.3E %.5e %.5e %.5e %.5e %lf %lf %lf %lf %lf

%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf

%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %.3e

%.3e %.3e %.3e %.2E %.2E %.2E %lf %lf %lf %lf %lf %lf\n",h, k, massbino,

masswino,massgluino,muparameter,MA,Mh,NLSP,MNLSP, tanbeta,mchi1,Omega,amu,bsgnlo(&SMbsg),bsmumu(),
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SCcoeff*pA0[0]*pA0[0],SCcoeff*nA0[0]*nA0[0], Zn11, Zn12, Zn13, Zn14, heavyHiggs, mscl, mssl, msne, msel, msmr,

msur, mser, mcha1, mchi2, mchi3, mstop1, mchi4, mcha2, mstau1, msb1, mstop2, msnm, msml, msdr, msg, msb2, msul,

msdl, mssr, msul, mstau2, mscr, Atop, Abottom, Atau, Amu, LOm, Lmh, Lmchi1, LTOT, SpectdNdE(Etest, FluxA),

SpectdNdE(Etest, FluxE), SpectdNdE(Etest, FluxP), deltatotal, Zv11, Zv12, Zu11, Zu12,msnl);

else if (h>200000000 && h<400000000 && nw==0 && (Mh>123) && (Mh<127) && (Omega<0.13) && (bsmumu()<4.7*pow(10,-9))

&& (bsmumu()>2*pow(10,-9)) && (bsgnlo(&SMbsg)>3.29*pow(10,-4)) && (bsgnlo(&SMbsg)<3.81*pow(10,-4)) &&

(Zinv<0.003) && (mcha1>103.5))

}

else {stuck++;}//if likelihood was falling for every new set add stuck.

}

}

else if (LTOT<=lowest || warning==11 || warning==10 || stuck>=50){

assignValW("MG1",rand()%501);assignValW("MG2",rand()%1001);assignValW("MG3",rand()%2200+800);

assignValW("mu",(rand()%600001)*pow(10,-2)-3000);assignValW("tb",((rand()%5900)*pow(10,-2))+1);

assignValW("MH3",rand()%2700+300);assignValW("Ml1",rand()%3001);assignValW("Ml3",rand()%3001);

assignValW("Mr1",rand()%3001);assignValW("Mr3",rand()%3001);assignValW("Mq1",rand()%3001);

assignValW("Mq3",rand()%3001);assignValW("Mu1",rand()%3001);assignValW("Mu3",rand()%3001);

assignValW("Md1",rand()%3001);assignValW("Md3",rand()%3001);assignValW("At",rand()%20001-10000);

assignValW("Ab",rand()%20001-10000);assignValW("Al",rand()%20001-10000);assignValW("Am",0);

massbino=findValW("MG1");masswino=findValW("MG2");massgluino=findValW("MG3");muparameter=findValW("mu");

if(muparameter<0 && massbino>=masswino)

masswino=-1*masswino;

if(muparameter<0 && masswino>=massbino)

massbino=-1*massbino;

tanbeta=findValW("tb");MA=findValW("MH3");LHslepton1=findValW("Ml1");LHslepton2=LHslepton1;

LHslepton3=findValW("Ml3");RHselectron=findValW("Mr1");RHsmuon=RHselectron;RHstau=findValW("Mr3");

LHsquark1=findValW("Mq1");LHsquark2=LHsquark1;LHsquark3=findValW("Mq3");RHupsquark=findValW("Mu1");

RHcharmsquark=RHupsquark;RHtopsquark=findValW("Mu3");RHdownsquark=findValW("Md1");

RHstrangesquark=RHdownsquark;RHbottomsquark=findValW("Md3");Atop=findValW("At");Abottom=findValW("Ab");

Atau=findValW("Al");Amu=findValW("Am");

massbinoP=massbino; masswinoP=masswino; massgluinoP=massgluino; muparameterP=muparameter; tanbetaP=tanbeta;

MAP=MA; LHslepton1P=LHslepton1; LHslepton2P=LHslepton2; LHslepton3P=LHslepton3; RHselectronP=RHselectron;

RHsmuonP=RHsmuon; RHstauP=RHstau; LHsquark1P=LHsquark1; LHsquark2P=LHsquark2; LHsquark3P=LHsquark3;

RHupsquarkP=RHupsquark; RHcharmsquarkP=RHcharmsquark; RHtopsquarkP=RHtopsquark; RHdownsquarkP=RHdownsquark;

RHstrangesquarkP=RHstrangesquark; RHbottomsquarkP=RHbottomsquark; AtopP=Atop; AbottomP=Abottom; AtauP=Atau;

AmuP=Amu;stuck=0;warning=0;LTmax=lowest;LTOTP=lowest;continue;}

204



LTOT=lowest;

printf("LTOTP=%.8e\n",LTOTP);

printf("LTOTmax=%.8e\n",LTmax);

printf("stuck=%d\n",stuck);

//if point satisfied all constraints, change p19MSSM input parameters infinitesimally.

printf("===================================PROBING====================================");

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

massbino=massbinoP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

masswino=masswinoP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

massgluino=massgluinoP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

muparameter=muparameterP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

tanbeta=tanbetaP + rdsgn*(rand() % 3);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

MA=MAP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

LHslepton1=LHslepton1P + rdsgn*(rand() % 10);rdsgn=0;

LHslepton2=LHslepton1;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

LHslepton3=LHslepton3P + rdsgn*(rand() % 10);rdsgn=0;
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while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

RHselectron=RHselectronP + rdsgn*(rand() % 10);rdsgn=0;

RHsmuon=RHselectron;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

RHstau=RHstauP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

LHsquark1=LHsquark1P + rdsgn*(rand() % 10);rdsgn=0;

LHsquark2=LHsquark1;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

LHsquark3=LHsquark3P + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

RHupsquark=RHupsquarkP + rdsgn*(rand() % 10);rdsgn=0;

RHcharmsquark=RHupsquark;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

RHtopsquark=RHtopsquarkP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

RHdownsquark=RHdownsquarkP + rdsgn*(rand() % 10);rdsgn=0;

RHstrangesquark=RHdownsquark;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

RHbottomsquark=RHbottomsquarkP + rdsgn*(rand() % 10);rdsgn=0;
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while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

Atop=AtopP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

Abottom=AbottomP + rdsgn*(rand() % 10);rdsgn=0;

while (rdsgn==0)

{rdsgn=(rand() % 3) - 1;}

Atau=AtauP + rdsgn*(rand() % 10)*pow(10,-1);rdsgn=0;

Amu=0;

assignValW("MG1",massbino);assignValW("MG2",masswino);assignValW("MG3",massgluino);assignValW("mu",muparameter);

assignValW("tb",tanbeta);assignValW("MH3",MA);assignValW("Ml1",LHsquark1);assignValW("Ml2",LHsquark2);

assignValW("Ml3",LHsquark3);assignValW("Mr1",RHselectron);assignValW("Mr2",RHsmuon);assignValW("Mr3",RHstau);

assignValW("Mq1",LHsquark1);assignValW("Mq2",LHsquark2);assignValW("Mq3",LHsquark3);assignValW("Mu1",RHupsquark);

assignValW("Mu2",RHcharmsquark);assignValW("Mu3",RHtopsquark);assignValW("Md1",RHdownsquark);

assignValW("Md2",RHstrangesquark);assignValW("Md3",RHbottomsquark);assignValW("At",Atop);

assignValW("Ab",Abottom);assignValW("Al",Atau);assignValW("Am",Amu);

}

}
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Appendix C

Derivation and interpretation of

the one–loop effective potential

at finite temperature

A derivation of the one–loop effective potential at finite temperature for bosons

is given. As we will see, the finite temperature effective potential consists of the

effective potential at T = 0 and a temperature dependent term. In this section,

we will closely follow discussions laid out [57, 342].

From statistical mechanics, it is known that a thermal average of any set of

operators A...Z can by calculated by:

〈A...Z〉β =
Tr(e−βĤA...Z)

Tre−βĤ
, (C.1)

where Ĥ is a Hamiltonian. By defining these operators in Schrödinger’s picture, it

is straightforward to show that propagators at finite temperature obey the same

equations as those at zero temperature, with the exception that they are periodic

in Euclidean time with period β [56, 57]. This implies that the expression for
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effective potential at finite temperature can be obtained from the potential at

T = 0 once the following replacements are done [56]:

∫
d4p

(2π)3
→ 1

β

∞∑
n=−∞

∫
d3p

(2π)3
and p0 →

2πn

β
, (C.2)

where the sum on the left hand side is for the Euclidean time component and

integral remains for spatial coordinates. Taking expression that we derived in Eq.

(2.43), and using p2 = p2
0 + p2 → (2πn/β)2 + p2 we finally get:

V β
1 (φc) =

1

2β

∞∑
n=−∞

∫
d3p

(2π)3
ln

(
4π2n2

β2
+ E2

)
, (C.3)

where E2 = p2 + m2(φ). For the φ4 theory m2(φc) is given in Eq. (2.34). To

evaluate the sum, let us define:

v(E) ≡
∞∑

n=−∞

ln

(
4π2n2

β2
+ E2

)
, (C.4)

which, after differentiating it with respect to energy, becomes:

∂v(E)

∂E
=

∞∑
n=−∞

2E
4π2n2

β2 + E2
. (C.5)

Using the identity:

∞∑
n=1

y

y2 + n2
= − 1

2y
+
π

2
+

πe−2πy

1− e−2πy
, (C.6)

Eq. (C.5) can be rewritten as:

∂v(E)

∂E
= 2β

(
1

2
+

1

eβE − 1

)
. (C.7)
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Integrating it one gets:

v(E) = 2β

(
E

2
+

ln(1− e−βE)

β

)
+ terms independent of E. (C.8)

Plugging this back into Eq. (C.3) we have:

V β
1 (φc) =

∫
d3p

(2π)3

(
E

2
+

ln(1− e−βE)

β

)
. (C.9)

The first integral is one–loop effective potential at T = 0. To see that we use

identity from residue theorem:

− i

2

∫ ∞
−∞

dy

2π
ln(−y2 + E2 − iε) =

E

2
+ infinite constant, (C.10)

where y ≡ −
√
E2 − iε. The first integral can therefore be written as:

∫
d3p

(2π)3

E

2
= − i

2

∫
d4p

(2π)4
ln(−p2

0 + E2 − iε). (C.11)

After using a Wick rotation it becomes:

∫
d3p

(2π)3

E

2
=

1

2

∫
d4p

(2π)4
ln(p2 +m2(φc)), (C.12)

which is the same as what we found in Eq. (2.35). To evaluate temperature

dependent integral we define x ≡ βp, which allows to write:

∫
d3p =

∫
p2 sin θdθdφ = 4π

∫
p2dp =

4π

β3

∫
dxx2. (C.13)

Finally, the temperature dependent one–loop contribution to the effective poten-
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tial in Eq. (C.9) can then be expressed as:

V β
1 (φc) =

1

2π2β4

∫ ∞
0

dxx2 ln

(
1− e−

√
x2+β2m2(φc)

)
, (C.14)

per bosonic degree of freedom. Just as it should be, the temperature dependent

contribution to the total effective potential at the one–loop level switches off as

β = 1/T →∞. This integral doesn’t have a closed form solution, but in the high

temperature limit can be expanded as [350]:

V β
1 (φc) w

π2T 4

90
+
m2(φc)T

2

24
+ ... . (C.15)

A calculation for fermions is analogous.

The generating functional of correlation functions at finite temperature, Zβ[J ],

can be obtained from a corresponding generating functional at zero temperature,

Z[J ], (which was first introduced in Section (2.4)) by taking into account that

at finite temperatures we are dealing with fields which in Euclidean space are

periodic in time i.e., φ(it = 0,x) = φ(it = β,x). As discussed in the beginning,

this translates into making replacements in the standard path integral expression

for Z[J ], as outlined in Eq. (C.2) [353]. After obtaining expression for Zβ[J ],

the free energy of the scalar field can be calculated using a well known statistical

mechanics relation:

F = − 1

β
lnZβ[J ]. (C.16)

A simple calculation of the free energy of field φ is given in refs. [353, 354], and

turns out to be the same as the expression for the one–loop effective potential at

finite temperature. Therefore, the effective potential of the scalar field at finite

temperature is interpreted as a free energy of the that field. In thermal equilib-

rium, the free energy is at minimal with respect to all macroscopic parameters,
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including the expectation value of the field φ. Hence, 〈φ〉 is the minimum of the

one–loop effective potential at finite temperature.
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