
ar
X

iv
:1

50
9.

00
17

2v
2

 [
st

at
.C

O
]

 1
 J

un
 2

01
6

Adaptive, delayed-acceptance MCMC for

targets with expensive likelihoods

Chris Sherlock1∗, Andrew Golightly2 and Daniel A. Henderson2

1Department of Mathematics and Statistics, Lancaster University, UK
2School of Mathematics & Statistics, Newcastle University, UK

Abstract

When conducting Bayesian inference, delayed acceptance (DA) Metropolis-Hastings
(MH) algorithms and DA pseudo-marginal MH algorithms can be applied when it
is computationally expensive to calculate the true posterior or an unbiased estimate
thereof, but a computationally cheap approximation is available. A first accept-reject
stage is applied, with the cheap approximation substituted for the true posterior in
the MH acceptance ratio. Only for those proposals which pass through the first stage
is the computationally expensive true posterior (or unbiased estimate thereof) evalu-
ated, with a second accept-reject stage ensuring that detailed balance is satisfied with
respect to the intended true posterior. In some scenarios there is no obvious com-
putationally cheap approximation. A weighted average of previous evaluations of the
computationally expensive posterior provides a generic approximation to the poste-
rior. If only the k-nearest neighbours have non-zero weights then evaluation of the
approximate posterior can be made computationally cheap provided that the points at
which the posterior has been evaluated are stored in a multi-dimensional binary tree,
known as a KD-tree. The contents of the KD-tree are potentially updated after ev-
ery computationally intensive evaluation. The resulting adaptive, delayed-acceptance
[pseudo-marginal] Metropolis-Hastings algorithm is justified both theoretically and em-
pirically. Guidance on tuning parameters is provided and the methodology is applied
to a discretely observed Markov jump process characterising predator-prey interactions
and an ODE system describing the dynamics of an autoregulatory gene network.

Keywords: Delayed-acceptance; surrogate; adaptive MCMC; pseudo-marginal MCMC; KD-
tree.

1 Introduction

A major challenge for Bayesian inference in complex statistical models is that evaluation

of the likelihood or, for pseudo-marginal MCMC (Andrieu and Roberts, 2009), obtaining a

∗c.sherlock@lancaster.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76960409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1509.00172v2

realisation from an unbiased estimator of the likelihood, can be computationally expensive.

The use of a surrogate model with a computationally inexpensive likelihood in such cir-

cumstances has a long history; see, for example, Sacks et al. (1989), Kennedy and O’Hagan

(2001), Rasmussen (2003), Bliznyuk et al. (2008), Fielding et al. (2011), Joseph (2012, 2013),

Overstall and Woods (2013) and Conrad et al. (2014). The use of inexpensive surrogates has

also been explored in the related context of likelihood free inference or approximate Bayesian

computation (ABC) (Wilkinson, 2014; Meeds and Welling, 2014).

In this paper we propose to use a relatively generic surrogate for models with expen-

sive likelihoods and we justify its use in adaptive, delayed-acceptance (pseudo-marginal)

MCMC schemes. The delayed acceptance MCMC algorithm of Christen and Fox (2005) is

a two-stage Metropolis-Hastings algorithm in which, typically, proposed parameter values

are accepted or rejected at the first stage based on a computationally cheap surrogate for

the likelihood. Detailed balance with respect to the true posterior is ensured by a second

accept-reject step, based on the computationally expensive likelihood, for those parameter

values which are accepted in the first stage. Delayed acceptance algorithms thus provide

draws from the posterior distribution of interest whilst potentially limiting the number of

evaluations of the expensive likelihood. Recent examples of the use of surrogates in delayed

acceptance algorithms can be found in Cui et al. (2011), Higdon et al. (2011), Golightly et al.

(2015) and Sherlock et al. (2015a), amongst others. Delayed acceptance algorithms which

use data subsampling and partitioning for tackling large datasets have also been proposed;

see Payne and Mallick (2014), Quiroz (2015) and Banterle et al. (2015).

For some models there may be an obvious cheap surrogate. For example, Golightly et al.

(2015) use both the diffusion approximation and the linear noise approximation as surrogates

for a Markov jump process in the context of analysing stochastic kinetic models. For many

models, however, there are no obvious model-based candidates for the surrogate. It is natural

in such scenarios to use regression-based methods which utilise previous evaluations of the

computationally expensive likelihood to approximate the likelihood or the unnormalised

posterior density at new parameter values. For example, Bliznyuk et al. (2008) use radial

basis functions whereas Rasmussen (2003) and Fielding et al. (2011) use Gaussian processes

(GPs). In this paper, we focus on a generic surrogate based upon likelihood values at the

k-nearest neighbours (e.g. Hastie et al., 2009). It is easy to implement, computationally

2

cheap, and it adapts as new evaluations of the computationally-expensive likelihood become

available. In Section 5.1 we consider the merits and disadvantages of an alternative, GP-

based solution.

We approximate the likelihood at proposed parameter values by an inverse-distance-

weighted average of the likelihoods of its k-nearest neighbours in the training data; the

training data here consist of pairs of parameter vectors and their corresponding likelihoods.

This k-NN approach has the advantage of being simple, local, flexible to the shape of the

likelihood, and trivially adaptive as new training data become available. Our focus on

adapting a local approximation is thus similar to that in Conrad et al. (2014) and we compare

and contrast the two approaches in Section 5.1.

Although it is trivial to update our simple k-NN approximation as new training data

become available, a naive implementation of adaptive MCMC algorithms may not converge to

the intended target (e.g. Roberts and Rosenthal, 2007; Andrieu and Thoms, 2008). Careful

control of the adaptation is therefore essential and we prove that, subject to conditions, the

strategy we propose is theoretically valid. As with a number of previous adaptive MCMC

algorithms (e.g. Roberts and Rosenthal, 2009; Sherlock et al., 2010), our MCMC kernel is a

mixture of a fixed kernel and an adaptive kernel. Unlike previous such algorithms, however,

the adaptive kernel can be most efficient when the fraction of applications that involve a

computationally expensive evaluation is very low; this impacts on the rate of adaptation

and on the rate of convergence. We therefore also provide theoretically-justified guidance on

choosing both the mixture probability and the total number of iterations of the algorithm.

The main computational expense of the k-NN approximation is searching for the near-

est neighbours. In a naive implementation this search takes O(n) operations, where n is

the number of training datapoints, so the computational expense of an adaptive, nearest-

neighbour-based approach would grow linearly with the length of the MCMC run. Fortu-

nately, there are more efficient algorithms. We use an approach based on storing the training

data in a multi-dimensional binary tree, known as a KD-tree (Bentley, 1975; Friedman et al.,

1977). The ‘K’ in ‘KD-tree’ indicates the dimension of the space, but to avoid confusion with

the number of nearest neighbours k, we denote the dimension of the space by d. Because

our tree grows on-line as new training data become available we make two major changes

to the standard KD-tree algorithm, described at the start of the next section. Our adapted

3

KD-tree algorithm allows us to efficiently search for the nearest neighbours in approximately

O(d logn) operations and add an additional value to the training set also in O(d logn) op-

erations. This yields a highly efficient, adaptive surrogate.

The remainder of the paper is structured as follows. Our KD-tree k-NN algorithm is

described in Section 2 and its use in adaptive, delayed-acceptance (pseudo-marginal) MCMC

is discussed in Section 3. This section also provides the theoretically-justified guidance on

the choice of kernel mixture probability and number of iterations. Section 4 applies the

methodology to a discretely observed Markov jump process characterising predator-prey

interactions and an ODE system describing the dynamics of an autoregulatory gene network.

The paper concludes in Section 5 with a discussion.

2 The KD-tree k-nearest neighbour algorithm

Suppose the true parameter is θ ∈ R
d. We wish to find a cheap approximation π̂c(θ) to

π(θ) using a weighted average of the expensive values that have already been calculated.

These expensive values might be of the true posterior π(θ1), . . . , π(θm) (involving, for exam-

ple, the numerical solution of a number of differential equations as in Section 4.2) or the

expensive values might be π̂s(θ1), . . . , π̂s(θm), unbiased stochastic estimates obtained as part

of a pseudo-marginal MCMC algorithm (Section 4.1).

We will average the k-nearest neighbours. Naive use of a vector of n θ values and

associated log-likelihoods, v, is expensive. While adding to the list takes O(1) operations,

searching the list for the k nearest neighbours to a particular point, θ∗, takes O(n) operations.

For our applications, typically the dimension, d, of the problem is moderate: between 3

and 12. For very low dimensional problems an analogue of the quadtree (Finkel and Bentley,

1974) would be the most efficient approach, but the number of pointers from each node grows

exponentially with dimension.

We therefore use a variation on the KD-tree (Bentley, 1975; Friedman et al., 1977). Cre-

ation of the tree from n values takes O(dn logn) operations and requires storage of O(n).

For a balanced (see Section 2.7) tree the computation required to add an additional value is

O(d logn), and to search for a nearest neighbour is also O(d logn).

The standard KD-tree has a single item of data (θ value and associated information) at

4

each node; all items further down the tree from this node have been split at this node as

described in detail in Section 2.4. The standard structure assumes that all of the θ values to

be used are available before the tree is constructed, whereas our tree potentially grows with

each new position at which the log-likelihood (or an unbiased estimate thereof) is evaluated.

The most efficient ‘splitting point’ of any node of a tree is the median of all relevant values.

Use of the median leads to a balanced tree where all end nodes would be at approximately

the same depth. However we do not know the true median. We therefore separate our tree

in to leaf nodes and branch nodes. Branch nodes provide the splitting information and leaf

nodes, which occur at the base of the tree, store multiple data values. When a leaf node

becomes full, it splits according to the median of the relevant data values it contains, rather

than a true median, and becomes a branch node, creating two leaf nodes beneath it. The

maximum size of a leaf node is defined so that the leaf median is unlikely to be ‘too far’

from the true median; the choice of this tuning parameter is investigated in Section 2.7 and

in the simulation study in Section 4.1.

2.1 Preliminary run

To estimate the likelihood at some new point, we will take a weighted average of likelihoods,

or estimated likelihoods at the k nearest points. If the likelihood varies more quickly with

distance along some axes than along others then ‘nearest’ should be according to some

alternative metric such as a Mahalanobis distance. However we also divide the KD-tree

along hyperplanes which are perpendicular to one of the Cartesian axes. This leads to gross

inefficiencies when there is a strong correlation between components of θ. For example if

θ has a bivariate Gaussian distribution with marginal variances of 1 and correlation 0.999

then the hyperplane splits in a tree of depth 5, say, effectively partition the first principal

component but fail to partition the second, so that two θ values which are reasonably close

according to the Mahalanobis distance can be in different portions of the tree. This problem

is exacerbated in higher dimensions.

The algorithm should, therefore, be more efficient if the the parameters are relatively

uncorrelated and if the length scales in the direction of each axis are similar. A preliminary

run of the MCMC algorithm allows us to find an approximate center µ̂, and variance matrix

Σ̂. For all θ we then define ψ :=
√

Σ̂
−1

(θ− µ̂) to normalise. Since this transformation gives

5

a one-to-one mapping from θ to ψ, in what follows, for notational simplicity, we refer to the

parameter values to be stored in the KD-tree as θ and implicitly assume that, in practice, the

transformation has already been applied. The preliminary run should be of sufficient length

that the sample approximately represents the gross relationships in the main posterior and

hence that Euclidean distance is a reasonable metric for the transformed parameters; the

preliminary chain does not need to have mixed thoroughly.

2.2 Tree preliminaries

The KD-tree stores a large number of vector parameter values, θ ∈ Θ, each with an associated

vector of interest, vθ ∈ V, in such a way that the time taken to either update the tree or

to retrieve the information we require is logarithmic in the number of (θ, vθ) pairs that are

stored in the tree. In our case vθ = (lθ, nθ) ∈ R × N is the logarithm of the average of all

estimates of the posterior at parameter values close to θ and the number of such estimates.

Associated with the vector of interest is a merge function M : Θ × V × Θ × V → V,

which combines the current vector of interest with the vector at a new value, θ∗.

2.3 Tree structure

The tree consists of branch nodes and leaf nodes. Each branch node has two children,

each of which may either be a branch node or a leaf node.

Leaf nodes. Each leaf node stores up to 2b− 1 (θ, vθ) pairs, and the dimension, dsplit ∈

{1, . . . , d}, on which the node will split.

Branch nodes. Each branch node stores a component, dsplit ∈ {1, . . . , d} on which it

was split, and a corresponding scalar value θsplit, the split point. The left-hand child of the

node contains (if it is a leaf node) or points to (if it is a branch) all (θ, v) pairs that have

passed through this branch node and that have θdsplit < θsplit. The right-hand child contains

or points to all (θ, v) pairs with θdsplit > θsplit. If θdsplit = θsplit it may be contained by the

right hand node or the left hand node.

Root node. The node at the very top of the tree is called the root node. By default the

root node has dsplit = 1. If there are fewer than 2b leaves in the tree then the root node is a

leaf node, otherwise it is a branch node.

6

2.4 Adding data to a tree

When a leaf has 2b entries it immediately spawns two leaf node children by splitting all 2b

entries along the component, dsplit. The splitting point, θsplit, is the median of the 2b values

for θdsplit. The parent node then becomes a branch, and the leaf nodes inherit dsplit = d
(p)
split⊕1,

where d
(p)
split is the component on which the parent has just been split, and⊕ represents regular

addition except that d⊕ 1 = 1.

Some initial number, n0 of data points are used to create a balanced tree using the

standard recursive procedure given in the supplementary material (Appendix A.1). After

this, a single new entry (θ, lθ) is added to the tree by descending from the root node and, at

each branch, comparing component θdsplit with θsplit to choose the relevant child (if θdsplit =

θsplit then the left child is chosen with probability 0.5). The new entry is added to the

leaf node that is reached. If this leaf node still has fewer than 2b entries then the algorithm

stops, otherwise the leaf-node becomes a branch and spawns two child leaf-nodes as described

above.

2.5 Searching the tree

We apply a standard two-stage recursive algorithm to find the r nearest neighbours of a given

point, θ∗, together with their distances from θ∗. We provide an overview of the algorithm

below; the procedure is detailed in full in the supplementary material (Appendix A.2).

The algorithm first descends the tree to find the leaf node to which θ∗ would belong, as

described in Section 2.4. It then gradually ascends the tree from this node to the root node;

after each ascent from a node to its parent a test is conducted to see whether the other child,

that is the child of the current node from which the algorithm has not just ascended, or any

of its offspring might hold a closer neighbour than the current k nearest. If this is the case

then, before any further ascent can take place, the search descends down the tree via this

other child.

2.6 Restricting the growth of the tree

The tree will be used to obtain computationally cheap estimates of the posterior density.

We would like to ensure that the accuracy of the approximations increases with the amount

7

of information stored in the tree, whether the information arises from exact evaluations of

the posterior or from stochastic estimates. We would also prefer the cost of obtaining this

information to increase slowly, if at all, with the amount of information.

To reduce the total number of leaves we set a minimum distance between leaves, ǫ. For

any new information, (θ∗, vθ∗), to be added to the tree we first ascertain whether or not any

pairs (θ, vθ) exist with ||θ
∗ − θ|| < ǫ. If one or more such pair exists then the merge function,

M , described in Section 2.2 is used to combine (θ∗, vθ∗) with the nearest pair, providing a

replacement value for vθ; otherwise (θ∗, vθ∗) is added to the tree as described in Section 2.4.

When each vθ∗ contains an exact evaluation of the posterior then the merge simply ignores

the new information. However, when vθ∗ contains a stochastic estimate of the posterior some

weighted average of the new estimate and of the current average will be more appropriate

since, by the continuity of the posterior, for sufficiently small ǫ, π(θ∗) ≈ π(θ) for all θ∗ such

that ||θ∗ − θ|| < ǫ. In particular therefore, for pseudo-marginal algorithms, we define

MPM(θ, [lθ, nθ], θ
∗, [lθ∗ , 1]) :=

[

log
[

nθe
lθ + elθ∗

]

− log(nθ + 1), nθ + 1
]

.

This vector replaces the previous [lθ, nθ] vector and so is associated with the position θ.

Choice of merge distance

Consider a tree with n existing points, θ1, . . . θn and to which it is proposed that a new point

θ∗, chosen at random, will be added. We relate the merge distance, ǫ, to the probability,

pkeep, that none of the existing points is within the ǫ ball of θ∗, so that θ∗ will be added to

the tree. This then provides a guide to setting ǫ itself.

Let B∗
ǫ be the ǫ ball around θ∗, define Nn,ǫ to be the number of the n existing points that

are inside B∗
ǫ and consider En,ǫ = E [Nn,ǫ]. The following is proved in the supplementary

material (Appendix B).

Proposition 1. If 0 < En,ǫ < 1 then 1− En,ǫ < pkeep < e−En,ǫ.

To use Proposition 1 we require an expression for En,ǫ, and this depends on the distri-

bution of (θ1, . . . , θn, θ
∗). For tractability, and because it will often hold approximately with

reasonably sized data sets, we suppose that the target is Gaussian, so that θi ∼ N(µ,Σ),

marginally. This is then normalised (see Section 2.1) so that the following result (see again

Appendix B for a proof) can be applied.

8

Proposition 2. Let jointly distributed θ1 ∼ N(0, Id), . . . , θn ∼ N(0, Id), be independent of

θ∗ ∼ N(0, Id). Then En,ǫ = nFχ2
d
(ǫ2/2), where Fχ2

d
is the cumulative distribution function of

a χ2
d random variable.

In the simulation studies of Section 4 we choose ǫ such that En,ǫ = 0.5, giving 0.5 <

pkeep < 0.61 and ǫ ≈
√

2qχ2
d
(1/2n), where qχ2

d
is the quantile function of a χ2

d random

variable.

2.7 Ensuring that the tree remains balanced

We consider two mechanisms through which a KD-tree that is constructed on-line using an

MCMC algorithm may become unbalanced, and for each problem we provide a solution.

When d = 1, there are two binary tree structures that allow for online rebalancing:

the red-black tree and the AVL tree (e.g. Storer, 2002). Unfortunately there are no known

algorithms for rebalancing a KD-tree online and so we consider an alternative which ensures

that the KD-tree remains approximately balanced as at grows.

The splitting hyper-planes define a partition of Θ. Let the node box corresponding to

a particular node be the (possibly unbounded) subset of Θ defined through the constraint

at each splitting hyper-plane on the journey from the root node to the node in question, as

described in Section 2.4.

Consider, informally, for any node box, an ‘effective width’ along a particular co-ordinate

axis to be some representative width such as the standard deviation of the posterior restricted

to the node box. Suppose that the MCMC chain is currently in a node box where an effective

width along its splitting co-ordinate is δ. Now, imagine that at each iteration the chain barely

moves compared to δ, and each jump proposal - which can give a new evaluation of the log-

likelihood even if the chain does not move - is also small compared to δ. In this case all

of the new samples for a large number of iterations will descend to this one particular leaf

node, which will fill up and then split. This split will not, however, be representative of

the marginal median (in terms of the posterior) for the node box along the splitting axis.

Hence, over the rest of the MCMC run, once the chain has moved on, there will be one side

of the split which takes most of the future sample points and one side which takes very few

of them, leading to an unbalanced tree.

9

2b [0.4,0.6] [0.3,0.7] [0.2,0.8] d = 3 d = 10

10 0.49 0.15 0.02 18.3, 14-23 (11-25) 18.4, 14-23 (11-28)

20 0.35 0.05 0.002 17.7, 15-21 (13-23) 17.7, 15-21 (12-23)

30 0.26 0.02 0.0002 17.5, 15-20 (14-22) 17.5, 15-20 (14-21)

40 0.19 0.007 0.00001 17.4, 15-19 (14-21) 17.4, 15-19 (13-20)

Table 1: Left: the probability that an estimated median from a sample of size 2b ∈

{10, 20, 30, 40} will be at a quantile outside of the range [0.4, 0.6], [0.3, 0.7] or [0.2, 0.8].

Right: tree depths when 2b×105 independent entries are added sequentially to a tree: mean

over all leaf nodes, range of the central 99% of leaf nodes and the maximum and minimum.

Now suppose that a preliminary run of n0 iterations has been carried out and that

over this run the chain has been seen to mix reasonably across the posterior. Let us now

construct a balanced tree from this run. Each leaf node will have b∗ (or b∗ + 1) entries, for

some b∗ ∈ {b, b+ 1, . . . , 2b− 2}. Consider the node box of any specific leaf node in this tree.

Since the chain has mixed reasonably, it should represent the posterior within this node box,

and in particular (1) in the component over which the leaf node will split, the median should

be reasonably approximated, and (2) in the main MCMC run, the chain should also cover

this box in approximately b∗ iterations or fewer; hence it will also cover any sub-divisions of

the box in approximately b∗ (or fewer) iterations.

The second reason a tree can become unbalanced is Monte Carlo error. A leaf splits after

it has 2b entries by finding the median of θdsplit over the 2b entries, but this sample median

will not be the true median over the node-box. Table 1 provides, for 4 different values of

2b, the probability that the estimated median will be at a true quantile which is outside the

range shown. A tree with 2b × 105 iid entries was simulated for each value of 2b and each

of two dimensions. The table also shows the mean depth of the leaf nodes and the range of

depths of 99% of the leaf nodes and, in brackets, of all leaf nodes. Both aspects of Table

1 suggest that 2b = 20 or 2b = 30 should lead to a reasonably balanced tree with few leaf

nodes requiring much more effort to reach than the majority of the leaf nodes and with little

effect on the overall mean amount of effort required to reach a leaf node.

10

3 Adaptive MCMC algorithm

We briefly review the delayed-acceptance algorithm before describing our adaptive version.

This is further extended to an adaptive pseudo-marginal version in Section 3.4.

3.1 Delayed-acceptance algorithms

Given a current parameter value, θ ∈ Θ, the Metropolis-Hastings (MH) algorithm proposes

a new value, θ∗ from some density q(θ∗|θ) and then accepts or rejects according to

αMH(θ, θ
∗) := 1 ∧

π(θ∗)q(θ|θ∗)

π(θ)q(θ∗|θ)
. (1)

The delayed acceptance Metropolis-Hastings (daMH) algorithm utilises a cheap (deter-

ministic or stochastic) approximation π̂c in two stages. At Stage One, π̂c is substituted for

π in the standard MH acceptance formula:

α̃1(θ, θ
∗) := 1 ∧

π̂c(θ
∗) q (θ|θ∗)

π̂c(θ) q (θ∗|θ)
, (2)

A second accept/reject stage is applied to any proposals that pass Stage One and a proposal

is only accepted if it passes both stages. The Stage Two acceptance probability is:

α̃2(θ, θ
∗) := 1 ∧

π(θ∗)π̂c(θ)

π(θ)π̂c(θ∗)
. (3)

The overall acceptance probability, α̃1(θ, θ
∗)α̃2(θ, θ

∗) ensures that detailed balance is satisfied

with respect to π; however if a rejection occurs at Stage One then the expensive evaluation

of π(θ) at Stage Two is unnecessary.

3.2 Adaptive, delayed-acceptance algorithm

As in Roberts and Rosenthal (2007, 2009) our adaptive kernel consists of a mixture of a fixed

kernel and an evolving kernel. At each iteration, with a user-defined probability β ∈ (0, 1),

the fixed kernel is selected, otherwise the adaptive kernel is used. Our fixed kernel is a

standard Metropolis-Hasting kernel and our evolving kernel uses delayed-acceptance with

an acceptance rate derived from a cheap approximation π̂c(θ
∗) which is an inverse-distance-

weighted average of the expensive evaluations of the true posterior at the k nearest neighbours

to θ∗ in the KD-tree at iteration n. After iteration n−1 let there have been in−1 evaluations

11

of the true posterior, π. Let these evaluations be at values θ∗i1 , . . . , θ
∗
in−1

. Our adaptive

algorithm requires a sequence of probabilities, {pi}i∈N, with

lim
i→∞

pi = 0. (4)

In practice, the algorithm proceeds until some ntot iterations have been performed.

Algorithm 1: adaptive-KD-tree, delayed-acceptance Metropolis-Hastings.

1. With probability β go to Step 2 (MH) else go to Step 3 (da-MH).

2. MH: Propose θ∗ from q(θ∗|θ). Evaluate the expensive posterior, π(θ∗), and accept the

proposal (θ← θ∗) with probability given by (1); otherwise reject the proposal (θ← θ).

Go to Step 4.

3. da-MH: Propose θ∗ from q′(θ∗|θ).

(a) Stage 1: Evaluate π̂a(θ
∗) using the current KD-tree; with probability α̃1(θ, θ

∗) as

defined in (2) proceed to Step 3b (Stage 2); otherwise reject the proposal (θ← θ),

set in = in−1, go to next iteration.

(b) Stage 2: Evaluate π(θ∗); accept the proposal (θ ← θ∗) with probability α̃2,s(θ, θ
∗)

as defined in (3); otherwise reject the proposal (θ ← θ). Go to Step 4.

4. Set in = in−1 + 1; add (θ∗, π(θ∗)) to a list of recently-evaluated parameter/posterior

pairs; with probability pin transfer all pairs from this list to the KD-tree; go to next

iteration.

3.3 Delayed acceptance random walk Metropolis

It remains to choose the proposal mechanisms, q and q′. The Random Walk Metropolis

(RWM) is a MH algorithm where q(θ∗|θ) = q(||θ∗ − θ||) for some suitable norm, and hence

q(θ∗|θ) and q(θ|θ∗) cancel in the acceptance ratios (1) and (2). We consider the standard

choice of

q(θ∗|θ) = N(θ∗; θ, V) and q′(θ∗|θ) = qξ(θ∗|θ) := N(θ∗; θ, ξ2V), (5)

where N(·; θ, V) denotes a multivariate Gaussian density with mean θ and variance V and

where V has been chosen so as to approximately optimise the efficiency of the standard

RWM algorithm.

12

As we shall discover, the cheap approximation, π̂c is reasonably accurate. As ξ increases

from 1 the overall acceptance rate and, in particular, the Stage One acceptance rate, α1,

can decrease quite substantially. If all computational expense is negligible except for the

evaluation of the true posterior then for a given amount of computational effort, the number

of evaluations of the expensive posterior remains approximately constant, although the total

number of iterations of the algorithm increases in proportion to the reciprocal of α1. However,

as each proposed jump is larger, moves which are accepted at Stage Two are typically larger.

Thus, provided the Stage Two acceptance rate does not decrease too drastically, the mixing of

the algorithm (in terms of movement per CPU second) can, and often does, actually increase

for intermediate values of ξ. This heuristic has been noted before (e.g. Christen and Fox,

2005; Banterle et al., 2015) and also applies for the delayed-acceptance pseudo-marginal

RWM. A rigorous analysis of the behaviour of these algorithms as a function of the scaling

is provided in Sherlock et al. (2015a).

3.4 Adaptive, delayed-acceptance, pseudo-marginal algorithm

We first overview pseudo-marginal Metropolis-Hastings algorithms and then describe the

adjustments to the set-up required for the pseudo-marginal version of our algorithm. The

algorithm itself is provided in the supplementary material (Appendix C).

The pseudo-marginal algorithm uses a non-negative stochastic estimator π̂s(θ;Z) of the

posterior π(θ), where Z is a collection of random variables whose distribution may, and

usually does, depend on θ. Crucially, we require E [π̂s(θ;Z)] = cπ(θ), where c is fixed and

non-negative. We may therefore rewrite π̂s(θ) as π(θ)W with W ∈ W ⊆ [0,∞) sampled

from some density qθ(w), and

E [W] =

∫ ∞

0

wqθ(w) dw = c. (6)

The pseudo-marginal MH (PsMMH) algorithm is simply a Metropolis-Hastings Markov chain

acting on the extended statespace Θ×W with a target of

π̃(θ, w) =
1

c
π(θ)qθ(w)w. (7)

This has the required marginal for θ by (6). Detailed balance is ensured with respect to this

13

target by setting the probability for (θ∗, w∗) being accepted to:

αPM([θ,W], [θ∗,W ∗]) := 1 ∧
π̂s(θ

∗)q(θ|θ∗)

π̂s(θ)q(θ∗|θ)
= 1 ∧

π(θ∗)q(θ|θ∗)W ∗

π(θ)q(θ∗|θ)W
. (8)

When delayed acceptance is implemented with a pseudo-marginal framework, the Stage

One acceptance probability is exactly as in (2). In Stage Two the true posterior in (3) is

replaced with the realisation from the unbiased estimator:

α̃2,PM(θ, θ∗) := 1 ∧
π̂s(θ

∗)π̂c(θ)

π̂s(θ)π̂c(θ∗)
. (9)

The kernel P̃ is now a fixed PsMMH kernel on Θ × W and {P̃γ}γ∈G is now a set of

pseudo-marginal kernels on Θ × W. The common stationary density of all kernels is now

given in (7), so, very importantly, all kernels use the same mechanism for generating the

estimate π̂s(θ
∗) of the posterior at the proposed value for θ.

The algorithm proceeds as for the non-pseudo-marginal version except that π̂s is substi-

tuted for π in (1) (fixed kernel), and (3) is replaced with (9) (evolving, DA kernel). Naturally,

instead of storing evaluations of π the KD-tree now stores realisations of the unbiased ap-

proximation, π̂s.

3.5 Theory and guidance

We show that, subject to conditions, our algorithms (with general proposals, q) are ergodic.

We also provide guidance on choosing the probability of using the fixed kernel, β, and on

the number of iterations for which the algorithm should be run.

Define αMH(θ, θ
∗) as follows. For the adaptive KD-tree daMH algorithm of Section

3.2 αMH(θ, θ
∗) is the acceptance probability for the fixed kernel as given in (1). For the

pseudo-marginal version of the algorithm in Section 3.4 it is the acceptance probability for

an hypothetical, idealised version of the fixed, pseudo-marginal kernel where the posterior

is known exactly, up to a fixed multiplicative constant: αMH(θ, θ
∗) = αPM([θ, 1], [θ∗, 1]),

where αPM is defined in (8). We require a minorisation condition and, for the daPsMMH

algorithm, and additional assumption of uniformly bounded weights. These assumptions are

discussed in in the supplementary material (Appendix D), where their main consequence,

Theorem 1 is proved.

14

Assumption 1. There is a density ν(θ) and δ > 0 such that q(θ∗|θ)αMH(θ, θ
∗) ≥ δν(θ∗) for

all θ ∈ Θ.

Assumption 2. The support for W is uniformly (in θ) bounded above by some w <∞.

Theorem 1. Subject to Assumption 1 the adaptive KD-tree daMH algorithm of Section 3.2

is ergodic. The adaptive KD-tree daPsMMH algorithm of Section 3.4 is ergodic subject to

Assumptions 1 and 2.

Now consider the specific, scaled, proposal qξ defined in (5), where increasing ξ decreases

the Stage One acceptance rate, α1. The algorithm may only accept a proposal after a

computationally-expensive evaluation (of π for daMH, or π̂s for daPsMMH). Thus, if the

probability, β, that the non-DA kernel will be chosen is unaltered, then as α1 → 0 nearly all

of the expensive evaluations will be by the fixed, non-DA kernel, and the relative contribution

from the DA kernels will unintentionally dwindle to zero.

Decreasing β in proportion to α1 would fix the fraction of all expensive evaluations that

are by the DA kernel; however with a smaller β the chain can no longer be guaranteed to

be as close to π after the same, fixed number of iterations. Theorem 2, which is stated

and proved in the supplementary material (Appendix D), shows that, with β ∝ α1, as α1

decreases the total number of iterations, n, of the algorithm should be increased so as to

maintain the expected total number of expensive evaluations of the posterior, E
[

Iξn
]

, and

that E
[

Iξn
]

can be set so as to maintain any given upper bound on the total variation distance

between the chain and π whatever the value of α1.

Fixing E
[

Iξn
]

approximately fixes the expected overall CPU cost. Furthermore, adapta-

tion can only occur when the expensive posterior is evaluated, and it occurs with a fixed

set of probabilities that depend on i and not on the iteration number. So, fixing E
[

Iξn
]

also

approximately fixes the expected number of adaptation occurrences.

4 Simulation Studies

In this section we evaluate the empirical performance of the proposed da-PsMMH and da-

MH algorithms by considering two examples based upon Markov jump processes (MJPs).

15

The first example (Section 4.1) arises from the Lotka-Volterra system of predator-prey in-

teractions (e.g. Boys et al., 2008). Since the marginal likelihood is intractable, we apply the

adaptive da-PsMMH scheme and compare its performance over a range of tuning parame-

ter choices with that of an optimised PsMMH scheme. The second example (Section 4.2)

arises from the autoregulatory network proposed by Golightly and Wilkinson (2005). Given

the size and complexity of this system, a linear noise approximation (LNA) (van Kampen,

2001) (see also Appendix F of the supplementary material), of the corresponding Markov

jump process is taken to be the inferential model of interest. Following the algorithm of

Fearnhead et al. (2014) (see Appendix F.1), the marginal likelihood under this model is

tractable, but involves the solution of a system of 14 coupled ordinary differential equa-

tions (ODEs), which can be time consuming. We therefore apply the da-MH algorithm and

compare its performance to a simple MH scheme without delayed acceptance.

Both MJPs are described through a set of r reactions between p different species, X1, . . . ,Xp.

The hazard rate of each reaction depends on the current species numbers, X1, . . . , Xp via

an assumption of mass-action kinetics with unknown reaction rate constants ν1, . . . , νr; for

further details regarding the construction of MJP representations of reaction networks we

refer the reader to Wilkinson (2012). Tables E.1 and E.2 in Appendix E.1 list the reactions

and associated hazards for each example.

For the Lotka-Volterra model, the Gillespie algorithm (Gillespie (1977)) was applied,

using parameter values taken from Wilkinson (2012), to generate a skeleton path comprising

51 values of Xt at integer times in the interval [0, 50]. For the autoregulatory system, the

LNA itself was used, with parameter values taken from Golightly and Wilkinson (2011), to

generate two skeleton paths containing, respectively, 101 and 201 values of Xt at evenly-

spaced times covering the intervals [0, 100] and [0, 1000]. All skeletons were then corrupted

with Gaussian noise to form the data sets on which inference was performed:

Yt|Xt = xt ∼ N(xt, D), (10)

where D is a diagonal matrix with diagonal entries σ2
1, . . . , σ

2
p. In the autoregulatory ex-

ample we refer to the data sets with 101 and 201 observations as D1 and D2 respectively.

Appendix E.1 provides details of the initial conditions and parameter values for each simu-

lation as well as for the variances of the corrupting Gaussian noises.

16

For inference, in both cases, for simplicity, the initial state of the system is fixed at its

(known) true value. As all of the parameters are strictly positive we therefore consider a log-

arithmic transformation so that the parameter vector of interest is θ = (log(ν1), . . . , log(νr) ,

log(σ1), . . . , log(σp)). In both examples, individual components of θ for which inference is

performed are given independent Uniform U(−8, 8) priors. For the Lotka-Volterra model,

r = 2 and p = 2 so that dim(θ) = 4. For the autoregulatory system, p = 4 and, as discussed

in Appendix E.1, we perform inference on r = 6 rate constants, giving dim(θ) = 10.

Random-walk proposals of the form (5) are used for the fixed and the adaptive kernels

in both examples. The fixed kernels used a proposal variance of Vfixed = λΣ̂, where Σ̂ is the

sample variance from an initial, pilot run using a fixed, non-delayed-acceptance kernel, and

λ is chosen to optimise the efficiency of the fixed kernel. The corresponding adaptive kernels

use a proposal variance of ξ2Vfixed, with ξ > 0 a tuning parameter.

In each example we take the probability of adding to the tree at iteration n to be

pin = (1 + cin)
−1. (11)

For each example, the computational cost of an evaluation of the expensive stochastic ap-

proximation was estimated from the initial training run, and this provided an estimate of the

number of expensive evaluations, î, that would fit within the computational budget. Using

the guidelines in Section 2.6, the parameter ǫ was chosen with a desire that points still be as

likely as not to be added to the tree after î/2 evaluations had already been added. For both

systems this had the effect of limiting the overall tree size to around four times the size of

the initial training set.

4.1 Discretely observed Markov jump process

To implement the adaptive da-PsMMH scheme described in Algorithm 1, we used a boot-

strap particle filter with m particles (Andrieu et al., 2010) to obtain each value of π̂s(·).

Both m and Vfixed were chosen so as to optimise the efficiency of the fixed kernel; see the

supplementary material (Appendix E.2). We initialised the KD-tree using the first 104 eval-

uations of the expensive posterior in the pilot run. For all experiments, we assumed a fixed

computational budget of 104 seconds, which equated to approximately î = 40000 evaluations

of the expensive posterior and, thus, a maximum tree size of five times the initial size.

17

To assess the effect of scaling ξ on the overall and relative (to PsMMH) efficiency of

da-PSMMH we fixed the number of leaf nodes in the KD-tree upon splitting to be 2b = 20,

the number of nearest neighbours to be k = b = 10 and took the parameter controlling

the rate of adaptation to be c = 0.001 to give around a 5% chance of adaptation after half

the computational budget. We then ran the algorithm for values of ξ ∈ [1, 4], following

the practical advice of Section 3.5 by choosing β ∝ α̂1 with β = 0.05 for ξ = 1. Firstly,

the sampled posterior values are consistent with the ground truth parameter values that

produced the data (see Figure G.1 in the supplementary material for the marginal posterior

distributions for a typical run). Figure 1 shows the effect of scaling on minimum effective

sample size (mESS) over each parameter chain relative to that obtained under an optimally

tuned PsMMH scheme (with an acceptance rate of 9.9% and an mESS of 528) and the effect

of scaling on the Stage 1 acceptance probability. The (scaled) values of β used for each run

are also shown. Figure 1 suggests that for the values of ξ considered, ξ = 3 is optimal in

terms of mESS and gives an improvement on overall efficiency over PsMMH of a factor of

6.8. Even simply taking the same scaling as PsMMH still gives a 3-fold increase in efficiency

of da-PsMMH over PsMMH.

To assess the effect of adaptation on the performance of the algorithm we fixed ξ = 3, k =

b = 10 and performed runs with c ∈:= {0.0001, 0.001, 0.01,∞} with c = ∞ representing no

adaptation. Table 2 summarises our findings. At î/2 iterations, these values of c correspond

to an expected number of expensive evaluations before adaptation occurs of approximately

{3, 20, 200,∞}, respectively. The larger the pause between adaptations, the less accurate

the tree is between adaptations, and while 200 new evaluations is small compared with 10000

or more existing evaluations, it must be remembered that the most recent evaluations will

be from a similar part of the state space to the current position and so will be among the

most relevant. The reduction in accuracy especially in new, low-density regions, increases

the Stage 1 acceptance rate and decreases the Stage 2 acceptance rate giving an overall

reduction in statistical efficiency. Moreover, the increase in the Stage 1 rate results in a

larger number of expensive posterior evaluations.

With c =∞ the algorithm runs with no adaptation and just uses the initial training set

of 10, 000 posterior evaluations. In this case (last row of Table 2) performance is better than

for the simple RWM algorithm but worse than for all of the cases that allow adaptation,

18

providing clear evidence of the importance of adaptation for our algorithm. Further, the

more slowly pi ↓ ∞, the more efficient the algorithm.

We also explore the sensitivity of our method to the choice of the number of leaf nodes in

the KD-tree upon splitting (2b) and the number of nearest neighbours (k). We fixed ξ = 3,

c = 0.001 and took 2b ∈ {4, 10, 20, 30} and k ∈ {2, 5, 10, 15}. Table G.3 in Appendix G

shows empirical performance for each (k, b) combination considered. Consistent with our

findings in Section 2.7, increasing b increases the efficiency until 2b = 20, but there is little

difference when moving from 2b = 20 to 2b = 30. Fixing 2b and varying k suggests that

k = 5 is optimal in terms of mESS. Further discussion can be found in the supplementary

material (Appendix G). Finally we examine the gain in overall efficiency by using a KD-tree

as a storage and look-up method over simply storing posterior evaluations in a list. Running

the da-PsMMH scheme with the optimal values (ξ = 3, c = 0.001 and k = 5) gave an mESS

of 2009. Thus, in this example, using a KD-tree increases overall efficiency over a naive

approach by a factor of 1.9. Naturally, increasing the computational budget (and therefore

the number of posterior evaluations to be stored) will increase the advantage of the KD-tree.

c Tree Size Mean depth depth range α̂1 α̂2 mESS Rel. mESS

0.0001 41078 11.82 10-14 0.00772 0.339 3845 7.28

0.001 40256 11.79 10-14 0.00915 0.276 3591 6.80

0.01 43248 12.04 10-15 0.0121 0.204 2464 4.67

∞ 10000 9.69 9-10 0.0175 0.136 1829 3.46

Table 2: Effect of rate of adaptation c. Final tree size, mean leaf node depth, depth range,

empirical stage 1 and 2 acceptance rate, minimum effective sample size (mESS) and relative

mESS.

4.2 Discretely observed ODE system

The LNA gives a Gaussian model for Xt which when coupled with the Gaussian observa-

tion model above, permits a tractable form for the marginal likelihood which we denote

by π(y1:n|θ). An algorithm for evaluating the marginal likelihood, and therefore the pos-

terior (up to proportionality) under the LNA, can be found in the supplementary material

19

1.0 1.5 2.0 2.5 3.0 3.5 4.0

3
4

5
6

7

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
00

0.
05

0.
10

0.
15

0.
20

ξξ

α̂
1

R
el
at
iv
e
m
E
S
S

Figure 1: Left panel. Minimum effective sample size (mESS) relative to optimised PsMMH,

against scaling. Right panel. Empirical stage 1 acceptance probability α̂1 against scaling.

The points represent α̂1(ξ = 1)β(ξ)/β(ξ = 1) and show that β(ξ) was scaled in proportion

to α1(ξ).

(Appendix F.1). Executing one iteration of the algorithm requires calculation of a full nu-

merical solution of the ODE system (F.1) over [0, 100] or [0, 1000]. Our implementation

uses standard routines from the GNU scientific library, specifically the explicit embedded

Runge-Kutta-Fehlberg (4, 5) method. We limit the computational cost of these calculations

by applying the da-MH scheme.

The pilot run for each dataset was of 3× 104 iterations. We initialised the KD-tree with

all 3× 104 evaluations of the expensive posterior obtained from the initial pilot run. For all

experiments, we assumed a fixed computational budget of 5 × 103 seconds, which equated

to approximately î = 120000 evaluations of the expensive posterior and, thus, a maximum

tree size of five times the initial size. Following the findings of Section 4.1 we initially set

the adaptation rate to c = 0.001, and set 2b = 20 and k = 5.

Firstly, Figure G.3 in Appendix G shows that the sampled parameter values are consis-

20

Algorithm ξ c α̂1 α̂2 mESS Rel. mESS

D1 (101 obs. on [0, 100])

MMH 1.0 – 0.225 1.000 2383 1.00

da-MMH 1.5 0.0001 0.141 0.482 7699 3.23

1.5 0.001 0.131 0.480 7638 3.21

1.5 ∞ 0.171 0.366 4530 1.90

D2 (201 obs. on [0, 1000])

MMH 1.0 – 0.2291 1.000 632 1.00

da-MMH 2.0 0.0001 0.0455 0.394 2996 4.74

2.0 0.001 0.0390 0.338 2779 4.40

2.0 ∞ 0.0978 0.165 1485 2.35

Table 3: Algorithm, optimal scaling (ξ), adaptation rate parameter (c), empirical stage 1

(α̂1) and 2 (α̂2) acceptance rate, minimum effective sample size (mESS) and relative mESS.

tent with the ground truth, with a decrease in uncertainty when using more observations.

With dataset D2 the LNA equations must be solved over a longer time period than for D1,

and the steps of the algorithm for calculating the marginal likelihood (in Appendix F.1)

must be executed twice as many times. Consequently Figure 2 (left panel) shows that the

minimum effective sample size (mESS) obtained under da-MH is smaller when using dataset

D2. However, mESS relative to the same quantity under MH is increased when using D2,

since the cost of evaluating the KD-tree is unchanged (for a fixed tree size). The optimal

scaling ξ (for the values considered) for each scheme is reported in Table 3. We also report

output of additional runs with c ∈:= {0.0001, 0.001,∞}. An optimally tuned da-MH scheme

(with c = 0.001) gives an increase in overall efficiency of a factor of 3.2 when using D1 and

4.4 when using D2. When c =∞ (representing no adaptation), we see an increase in Stage 1

acceptance rate and a decrease at Stage 2. The resulting decrease in empirical performance

provides further evidence of the importance of adaptation. Finally, we again note that the

algorithm performs best with a very low value of c whilst still providing posterior output

consistent with c = 0.001 (results not shown).

21

0.5 1.0 1.5 2.0 2.5 3.0

0
20

00
40

00
60

00
80

00

0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

ξξ

m
E
S
S

R
el
at
iv
e
m
E
S
S

Figure 2: Left panel. Minimum effective sample size (mESS) from da-MH against scaling.

Right panel. Minimum effective sample size from da-MH relative to the same quantity from

optimised MH, against scaling. For each panel, the solid and dashed lines indicate output

using datasets D1 and D2 respectively.

5 Discussion

We have presented standard and pseudo-marginal versions of an adaptive, delayed-acceptance

random walk Metropolis algorithm. The delayed-acceptance (DA) step is generic, estimating

the posterior using an inverse-distance-weighted average of the k-nearest previous evaluations

of the posterior, and the search for these neighbours is made fast by storing a subset of pre-

vious evaluations in a customised version of a KD-tree. The kernel is a mixture of a fixed

(non-adaptive, non-DA) kernel and an adaptive DA kernel. Easy-to-use C code for creating

a KD-tree and storing and retrieving values from it is provided alongside this article.

We have shown that our algorithm is ergodic, subject to conditions. Furthermore, as the

scaling of the RWM proposal in the DA kernel is increased, the probability of choosing the

fixed kernel should be decreased in proportion to the Stage One acceptance rate of the DA

kernel and the total number of iterations should be scaled so that the expected number of

22

evaluations of the expensive posterior remains constant or, equivalently, so that the total

computational budget remains fixed.

Pseudo-marginal and non-pseudo-marginal versions of the methodology were applied,

respectively, to synthetic data generated from a discretely observed Lotka-Volterra system

and an ODE model of species dynamics in an autoregulatory gene network. In these two

examples, our proposed scheme outperforms the standard scheme by factors of approximately

7 and 4 for, respectively.

In both of our examples the algorithm was more efficient the more slowly the adaptation

probability approached zero, suggesting that it might be best to simply add each new eval-

uation of the expensive posterior directly to the KD-tree directly rather than storing them

in a queue. Forcing the limit of the adaptation probability to be 0 ensures the diminishing

adaptation condition (see, e.g., Theorem 5) is satisfied; diminishing adaptation is itself one

of the key conditions required for ergodicity and the concern would be that by removing

this direct constraint the algorithm would no longer be ergodic. Whilst this seems likely to

be the case in general, Theorem 3 in the supplementary material (Appendix D.5.1) shows

that for a variation of Algorithm 1 on a compact state space it is possible to adapt after (at

worst) every other expensive iteration and still remain ergodic.

We have focussed on making the cheap approximation to the posterior adaptive by inter-

mittently updating the KD-tree. The covariance matrix of our random walk proposal could

have been made adaptive by intermittently updating the covariance matrix of the random

walk proposal so that it uses all entries in the chain to date (e.g. Roberts and Rosenthal, 2009;

Sherlock et al., 2010). This could even be made ‘local’, using only the k-nearest neighbours

in the KD-tree. It might also be possible to adaptively update the scaling of the proposal;

however the mechanism to use is less obvious since, unlike in (e.g. Andrieu and Thoms, 2008;

Sherlock et al., 2010; Vihola, 2012), there is no single optimal acceptance rate for our algo-

rithm. Such adaptations would be a distraction to our main innovation and have not been

implemented.

As we were revising this article, Kostov and Whiteley (2016) proposed an algorithm for

estimating the variance of the estimator of the likelihood that comes from the particle filter.

Although we do not pursue it here, this opens up the possibility of weighting each estimate

of the likelihood according to the reciprocal of its variance as well as its distance from the

23

proposed θ∗.

5.1 Alternatives to k-nearest neighbours

As mentioned in Section 1, there are similarities between the non-pseudo-marginal version of

our algorithm and that of Conrad et al. (2014) (henceforth denoted CMPS). Here we discuss

the approach of CMPS, highlighting both similarities to and differences from our algorithm.

We also consider a general GP alternative to our k-NN implementation.

CMPS fit local linear-, quadratic- and Gaussian-process (GP)-based models in neigh-

bourhoods of candidate values, and at any given point in time their algorithm targets the

approximate posterior rather than the true posterior. However, the accuracy of the approxi-

mation is continually assessed and improved by carefully choosing further local points as the

algorithm proceeds so that, asymptotically, the algorithm targets the true posterior distri-

bution. Between adaptations our algorithm targets the true posterior distribution, but it is

perturbed every time an adaptation occurs. Thus our algorithm also asymptotically targets

the true posterior distribution. Both algorithms also use an increasing set of evaluations

of the true posterior. CMPS chooses the next evaluation of the true posterior by design

whereas our algorithm is “opportunistic” and potentially adds the value at each new point

evaluated; however it is an intelligent opportunist in the detail of how it deals with new

points which are very close to existing points.

Our algorithm could be extended to fitting local planes, quadratics or GPs to the k-

nearest neighbours in a similar manner to CMPS, however the weighted average is simpler,

quicker, and for it to be a sensible approach to take it only requires the posterior to be

bounded and continuous, rather than needing additional constraints. When it is the exact

log-likelihood that we are approximating these more complex local models might lead to an

improvement in the accuracy of the surrogate, at the small expense of possibly having to

use more nearest neighbours to fit. In the pseudo-marginal case, however, the efficiency will

depend on the variance in the log-likelihood estimates and the true changes in log-likelihood.

If the former outweighs the latter then there is little to be gained as the extra computation

may not lead to additional accuracy. The cost of re-estimating the GP hyper-parameters

as new training data become available is discussed in the final paragraph of this section.

One final difference between the two approaches is that CMPS focusses on the non-pseudo-

24

marginal case whereas our algorithm is applied in both pseudo-marginal and non-pseudo

marginal settings.

Our likelihood estimate at a proposed point, θ′, is a weighted average of the likelihoods at

the k-nearest neighbours. An alternative approach would be to use a Gaussian process (GP)

fitted to the set of (θ, log p(y|θ)) pairs currently in the kd-tree. GPs have been used to ap-

proximate the log-likelihood previously. For example in Rasmussen (2003) and Fielding et al.

(2011) a GP provides a cheap surrogate for Hamiltonian Monte Carlo calculations. Altern-

tively, in the context of ABC-MCMC, Wilkinson (2014) uses a Gaussian process to model the

logarithm of the ABC approximate likelihood function, while Meeds and Welling (2014) ap-

proximate the joint synthetic likelihood at the current and proposed point using independent

GPs for each summary statistic.

As with our approach, the final point estimate from a GP is a weighted average of

existing values. However, by estimating the parameters of the GP one may represent the

scales of variability more accurately and so obtain more accurate point estimates than with

our inverse-distance weighting approach. The GP model also supplies an estimate of the

uncertainty in the point estimate of the log-likelihood.

As in Conrad et al. (2014), the estimate of uncertainty allows for a choice of new training

points to minimise the variance in some region of interest, with the potential of a large re-

duction in overhead. Algorithms such as those in Wilkinson (2014) and Meeds and Welling

(2014) which use this approach target an approximation to the true posterior and an accu-

rate GP approximation is essential for the algorithm to be useful. By design, our algorithm

overlays a standard MH or PMMH algorithm and it automatically targets the true poste-

rior; an inaccurate approximation reduces the mixing efficiency but does not invalidate the

algorithm. Again, since our algorithm overlays a standard MH algorithm the true likelihood

(or an unbiased estimate) must be evaluated at every accepted point and it is not imme-

diately obvious how estimates of uncertainty might be used to circuvent this requirement

while maintaining the true posterior as the target.

Finally, estimating the hyper-parameters of a GP is computationally very costly, and this

estimation should be repeated as the training data set grows. For this reason and because

of the difficulty in identifying d(d+ 1)/2 kernel range parameters, GP methods often use a

diagonal covariance structure for the kernel, limiting the flexibility. Our approach of using

25

the covariance matrix of the sample from an initial training run to provide a map to a

new parameter space where Euclidean distance is appropriate has a similar flavour to the

pragmatic approach of using an initial training sample to fit the GP hyper-parameters and

then keeping them fixed; alternatively, see Shen et al. (2006) for a partial solution.

Acknowledgements

The authors thank Krysztof Latuszynski for a very helpful discussion with regard to Theorem

3, and the Associate Editor and referee for useful suggestions that have improved the clarity

of the paper.

References

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo

methods (with discussion). J. R. Statist. Soc. B., 72(3):1–269.

Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte

Carlo computations. The Annals of Statistics, 37:697–725.

Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Stat. Comput., 18(4):343–

373.

Banterle, M., Grazian, C., Lee, A., and Robert, C. P. (2015). Accelerating Metropolis-

Hastings algorithms by delayed acceptance. http://arxiv.org/abs/1406.2660.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517.

Bliznyuk, N., Ruppert, D., Shoemaker, C., Regis, R., Wild, S., and Mugunthan, P. (2008).

Bayesian calibration and uncertainty analysis for computationally expensive models using

optimization and radial basis function approximation. Journal of Computational and

Graphical Statistics, 17:270–294.

Boys, R. J., Wilkinson, D. J., and Kirkwood, T. B. L. (2008). Bayesian inference for a

discretely observed stochastic-kinetic model. Stat. Comput., 18:125–135.

26

Christen, J. A. and Fox, C. (2005). Markov chain Monte Carlo using an approximation.

Journal of Computational and Graphical Statistics, 14:795–810.

Conrad, P. R., Marzouk, Y. M., Pillai, N. S., and Smith, A. (2014). Accelerating asymp-

totically exact MCMC for computationally intensive models via local approximations.

http://arxiv.org/abs/1402.1694.

Craiu, R. V., Gray, L., Latuszy’nski, K., Madras, N., Roberts, G. O., and Rosenthal, J. S.

(2015). Stability of adversarial Markov chains, with an application to adaptive MCMC

algorithms. Ann. Appl. Probab., 25(6):3592–3623.

Cui, T., Fox, C., and O’Sullivan, M. J. (2011). Bayesian calibration of a large-scale geother-

mal reservoir model by a new adaptive delayed acceptance Metropolis Hastings algorithm.

Water Resources Research, 47:W10521.

Fearnhead, P., Giagos, V., and Sherlock, C. (2014). Inference for reaction networks using

the Linear Noise Approximation. Biometrics, 70:457–466.

Fielding, M., Nott, D. J., and Liong, S.-Y. (2011). Efficient MCMC schemes for computa-

tionally expensive posterior distributions. Technometrics, 53:16–28.

Finkel, R. A. and Bentley, J. L. (1974). Quad trees - a data structure for retrieval on

composite keys. Acta Informatica, 4:1–9.

Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for finding best

matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem., 81:2340–2361.

Golightly, A., Henderson, D. A., and Sherlock, C. (2015). Delayed acceptance particle MCMC

for exact inference in stochastic kinetic models. Statistics and Computing, 25:1039–1055.

Golightly, A. and Wilkinson, D. J. (2005). Bayesian inference for stochastic kinetic models

using a diffusion approximation. Biometrics, 61(3):781–788.

27

Golightly, A. and Wilkinson, D. J. (2011). Bayesian parameter inference for stochastic

biochemical network models using particle Markov chain Monte Carlo. Interface Focus,

1(6):807–820.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, New York, second edition.

Higdon, D., Reese, C. S., Moulton, J. D., Vrught, J. A., and Fox, C. (2011). Posterior ex-

ploration for computationally intensive forward models. In Brooks, S., Gelman, A., Jones,

G. L., and Meng, X.-L., editors, Handbook of Markov Chain Monte Carlo, chapter 16,

pages 401–418. Chapman & Hall/CRC, Boca Raton, FL.

Joseph, V. R. (2012). Bayesian computation using Design of experiments-based Interpolation

technique. Technometrics, 54:209–225.

Joseph, V. R. (2013). A note on nonnegative DoIt approximation. Technometrics, 55:103–

107.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian calibration of computer models (with

discussion). JRSSB, 63:425–464.

Koblents, E. and Miguez, J. (2015). A population Monte Carlo scheme with transformed

weights and its application to stochastic kinetic models. Statistics and Computing,

25(2):407–425.

Kostov, S. and Whiteley, N. (2016). An algorithm for approximating the

second moment of the normalizing constant estimate from a particle filter.

http://arxiv.org/abs/1602.02279.

Meeds, E. and Welling, M. (2014). GPS-ABC: Gaussian process surrogate approximate

Bayesian computation. In Thirtieth Conference on Uncertainty in Artificial Intelligence

(UAI).

Overstall, A. M. and Woods, D. C. (2013). A strategy for Bayesian inference for compu-

tationally expensive models with application to the estimation of stem cell properties.

Biometrics, 69:458–468.

28

Owen, J., Wilkinson, D. J., and Gillespie, C. S. (2015). Scalable inference for Markov

processes with intractable likelihoods. Statistics and Computing, 25(1):145–156.

Payne, R. D. and Mallick, B. K. (2014). Bayesian big data classification: a review with

complements. http://arxiv.org/abs/1411.5653.

Picchini, U. (2014). Inference for SDE models via Approximate Bayesian Computation.

Journal of Computational and Graphical Statistics, 23(4):1080–1100.

Quiroz, M. (2015). Speeding up MCMC by delayed acceptance and data subsampling.

http://arxiv.org/abs/1507.06110.

Rasmussen, C. E. (2003). Gaussian processes to speed up hybrid Monte Carlo for expensive

Bayesian integrals. In Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P.,

Heckerman, D., Smith, A. F. M., and West, M., editors, Bayesian Statistics 7, pages

651–659, Oxford. Oxford University Press.

Roberts, G. O. and Rosenthal, J. (2001). Optimal scaling for various Metropolis-Hastings

algo- rithms. Statistical Science, 16:351–367.

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC

algorithms. Probab. Surv., 1:20–71.

Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov

chain Monte Carlo algorithms. J. Appl. Probab., 44(2):458–475.

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. J. Comput.

Graph. Statist., 18(2):349–367.

Roberts, G. O. and Tweedie, R. L. (1996). Geometric convergence and central limit theorems

for multidimensional Hastings and Metropolis algorithms. Biometrika, 83(1):95–110.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of

computer experiments. Statistical Science, 4:409–435.

Shen, Y., Ng, A. Y., and Seeger, M. (2006). Fast Gaussian process regression using kd-trees.

In In Advances in Neural Information Processing Systems 18. MIT Press.

29

Sherlock, C., Fearnhead, P., and Roberts, G. O. (2010). The random walk Metropolis:

linking theory and practice through a case study. Statist. Sci., 25(2):172–190.

Sherlock, C., Thiery, A., and Golightly, A. (2015a). Efficiency of delayed acceptance random

walk Metropolis algorithms. In prepartion. http://arxiv.org/abs/1506.08155.

Sherlock, C., Thiery, A., Roberts, G. O., and Rosenthal, J. S. (2015b). On the efficiency of

pseudo-marginal random walk Metropolis algorithms. The Annals of Statistics, 43(1):238–

275.

Storer, J. (2002). An introduction to data structures and algorithms. Springer-Verlag, New

York.

van Kampen, N. G. (2001). Stochastic Processes in Physics and Chemistry. North-Holland.

Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced acceptance rate.

Stat. Comput., 22(5):997–1008.

Wilkinson, D. J. (2012). Stochastic Modelling for Systems Biology. Chapman and Hall/CRC

Press, London, 2nd edition.

Wilkinson, R. D. (2014). Accelerating ABC methods using Gaussian processes. In JMLR

Workshop and Conference Proceedings Volume 33: Proceedings of the Seventeenth Inter-

national Conference on Artificial Intelligence and Statistics.

30

Supplementary material for Adaptive,
delayed-acceptance MCMC for targets with

expensive likelihoods

A Operations on the KD-tree

In this appendix we describe the standard operations of creating a balanced KD-tree from a

dataset and of searching through the KD-tree for the K-nearest neighbours.

A.1 Creating a balanced KD-tree from an initial dataset

Here we suppose the availability of n0 pairs of a co-ordinate vector θ, and a vector of interest,

v. The algorithm for creating the tree proceeds recursively until the number of leaves in the

node is less than 2b.

The recursive function commences at the root node with dsplit = 1, and a data set D,

which is all of the data, so that n = |D| = n0.

1. If n < 2b then finish this recursion; this node is a leaf node and contains data D and

splitting component dsplit.

2. Otherwise n ≥ 2b, so find the median µdsplit of the |D| scalar values for θdsplit .

3. Place all points for which θdsplit < µdsplit into a set L.

4. Place all points for which θdsplit > µdsplit into a set R.

5. If any points have θdsplit = µdsplit then use independent Bernoulli trials with probability

0.5 to place each in L or R.

6. Create a left and a right child for this node.

7. Recursively call this function for the left child using D = L and dsplit = dsplit ⊕ 1.

8. Recursively call this function for the right child using D = R and dsplit = dsplit ⊕ 1.

31

A.2 Finding the k nearest neighbours of a point

The algorithm below finds the k nearest neighbours to a point θ∗. For simplicity it, assumes

that k ≤ b; it is straightforward (but messy) to alter it to allow any k.

Stage One

1. Descend from the root node to find the leaf node to which θ∗ would be added if we

wished to add a new entry (θ∗, lθ∗).

2. Find and store an ordered list of the k points on this leaf that are nearest to θ∗. Keep

track of rmax, the distance of the kth furthest point from θ∗.

Stage Two is only applied if the leaf note reached by Stage One has a parent; this is the case

in all but the trivial tree.

Stage Two: This part of the algorithm is initialised with a list of k nearest neighbours

and a value rmax, both obtained from Stage One. It uses an [ascending/descending] flag

and commences at the parent of the leaf node reached by Stage One with the flag set to

ascending. To aid the linguistic flow we use the verbs ascend and descend as shorthand

for calling Stage Two with the flag set to ascending and descending respectively. If the

current node is a branch, let θsplit and dsplit refer to the current node.

1. If ascending:

(i) If
∣

∣

∣
θsplit − θ

∗
dsplit

∣

∣

∣
< rmax then set u = θsplitedsplit , where ei is the k-vector with all

elements set to zero except for the ith, which is set to one, then descend to the

child (of this node) from which the algorithm has not just ascended.

(ii) If
∣

∣

∣
θsplit − θ

∗
dsplit

∣

∣

∣
≥ rmax and if this node has a parent then ascend to this parent.

2. If descending and the current node is a leaf then calculate the distance from every

point on the leaf to θ
∗ and sort the leaves according to this distance. If any are within

rmax then update the list of the k nearest neighbours and update rmax.

3. If descending and the current node is a branch then if θ∗dsplit ≤ θsplit define the near

child to be the left child, otherwise define it to be the right child. Similarly, define the

far child to be whichever child is not the near child.

32

(i) Descend to the near child with u unchanged.

(ii) Update udsplit to θsplit, keeping the other elements of u unchanged. If ||u|| < rmax

then descend to the far child.

B Proofs of Propositions 1 and 2

Proof of Proposition 1

Let B∗
ǫ and Bi

ǫ be the ǫ balls around θ∗ and θi respectively and denote the empty set by φ.

Firstly, since θi (i = 1, . . . , n) are identically distributed,

1− P (θ1 /∈ B
∗
ǫ , . . . , θn /∈ B

∗
ǫ) = P (θ1 ∈ B

∗
ǫ or . . . or θn ∈ Bǫ) ≤ nP (θ1 ∈ Bǫ) = En,ǫ.

Hence pkeep ≥ 1− En,ǫ.

Secondly, requiring that one point be outside of the ǫ ball of another point is equivalent

to requiring that the ǫ/2 balls of both points do not intersect. So, whatever the relationship

between θ1, . . . , θi−1,

P (θi /∈ B
∗
ǫ |θ1 /∈ B

∗
ǫ , . . . , θi−1 /∈ B

∗
ǫ) = P

(

Bi
ǫ/2 ∩B

∗
ǫ/2 = φ|B1

ǫ/2 ∩B
∗
ǫ/2 = φ, . . . , Bi−1

ǫ/2 ∩B
∗
ǫ/2 = φ

)

≤ P
(

Bi
ǫ/2 ∩ B

∗
ǫ/2 = φ

)

= P (θi /∈ B
∗
ǫ)

since the conditioned event only rules out portions of Rd\B∗
ǫ/2 for Bi

ǫ. Hence

pkeep = P (θ1 /∈ B
∗
ǫ)

n
∏

i=2

P (θi /∈ B
∗
ǫ |θ1 /∈ B

∗
ǫ , . . . , θi−1 /∈ B

∗
ǫ)

≤ P (θ1 /∈ B
∗
ǫ)

n = (1− En,ǫ/n)
n ≤ e−En,ǫ.

Proof of Proposition 2

In this case the distance, D between any two points chosen independently satisfiesD2/2 ∼ χ2
d.

The θi, (i = 1, . . . , d) are not mutually independent since none can be within ǫ of any other,

but this is irrelevant to the calculation that follows. Let Nn,ǫ :=
∑n

i=1 11{θi∈B(θ∗,ǫ)}, then

En,ǫ =
n

∑

i=1

P (θi ∈ B(θ∗, ǫ)) = nFχ2
d
(ǫ2/2),

as required.

33

C Adaptive-KD-tree, delayed-acceptance pseudo-marginal

algorithm

Algorithm 2: adaptive-KD-tree, delayed-acceptance, pseudo-marginal Metropolis-Hastings.

At the start of iteration n, let the current parameter value be θ and let the cheap ap-

proximation to the posterior be π̂a(θ) with the expensive unbiased estimate of the posterior

denoted by π̂s(θ).

1. With probability β go to Step 2 (PsMMH) else go to Step 3 (da-PsMMH).

2. PsMMH Propose θ∗ from q(θ∗|θ). Evaluate π̂s(θ
∗) by effectively proposing W ∗ from

q̃(W ∗|θ∗). Accept the proposal (θ← θ∗) with probability given by (9); otherwise reject

the proposal (θ ← θ). Go to Step 4.

3. da-PsMMH Propose θ∗ from q′(θ∗|θ).

(a) Stage 1: Evaluate π̂a(θ
∗) using the current KD-tree; with probability α̃1(θ, θ

∗) as

defined in (2) (but with q′ instead of q) proceed to Step 3b (Stage 2); otherwise

reject the proposal (θ ← θ), set in = in−1 and go to next iteration.

(b) Stage 2: Evaluate π̂s(θ
∗) by, effectively, proposing W ∗ from q̃(W ∗|θ∗). Accept

the proposal (θ ← θ∗) with probability α̃2,s(θ, θ
∗) as defined in (10); otherwise

reject the proposal (θ ← θ). Go to Step 4.

4. Set in = in−1 + 1; add (θ∗, π̂s(θ
∗)) to a list of recently evaluated parameter/posterior

pairs; with probability pin add all pairs from this list to the KD-tree and then remove

all pairs from the list; go to next iteration.

D Theorems 1, 2 and 3: discussion, statement and

proofs

We discuss Assumptions 1 and 2, then place our algorithms in the more general framework

in terms of which our proof of ergodicity is phrased. Next, we state and discuss Theorem

2 and then show, as Theorem 3, that it is not always necessary to force the adaptation

34

probabilities, pi to tend to zero. Finally we prove Theorems 1, 2 and 3. For simplicity, for

Theorems 1 and 2, we consider only the daPsMMH algorithm since the daMH is a special

case of daPsMMH with W = W ∗ = 1.

D.1 Discussion of Assumptions 1 and 2

Roberts and Rosenthal (2004) show that any Metropolis-Hastings kernel on a compact state-

space satisfies Assumption 1 provided π(θ) is continuous and q(θ∗|θ) is continuous and posi-

tive. In the applications of interest to us all of the parameters are positive and it is common

practice (e.g. Golightly and Wilkinson, 2005; Picchini, 2014; Koblents and Miguez, 2015;

Owen et al., 2015) to place a vague but proper uniform prior on the logarithm of each pa-

rameter; furthermore, π is continuous. We may therefore choose q so that Assumption 1 is

satisfied. If Θ is not compact then Assumption 1 still holds, for example, if the proposal

density q(θ∗|θ) = q(θ∗) is an independence proposal which satisfies q(θ∗) > δπ(θ∗) since then

q(θ∗|θ)α(θ, θ∗) > q(θ∗) ∧ δπ(θ∗) = δπ(θ∗).

Whether or not Assumption 2 is satisfied depends upon the exact pseudo-marginal

method used. Suppose, as in our examples, that an unbiased estimate of the likelihood,

P̂ (y|θ), (and hence, up to a constant, of the posterior) is obtained using a bootstrap particle

filter. This provides P̂ (y|θ) as a finite product of Monte Carlo averages of likelihood terms,

where each of these terms arises from an assumed distribution for the error in the observation

of some stochastic process Zt. Suppose, for example, that Yt|zt ∼ N(zt, θ
2
1) and that the state

space for Zt is bounded, so that 0 ≤ at ≤ (yt− zt)
2 ≤ bt <∞. Then logW ≤ (bt− at)/(2θ

2
1)

and Assumption 2 will therefore hold provided the support for θ1 is bounded away from zero.

D.2 More general set up

We set up the algorithm in more general terms since, in addition to the specific algorithms we

have described, our ergodicity result, Theorem 1, is applicable to a general class of adaptive

pseudo-marginal algorithms and, to our knowledge, is the first such result.

Let P̃ be a non-adaptive MH kernel on Θ with proposal q(θ∗|θ), and let {P̃γ}γ∈G be a

(usually infinite) set of kernels on Θ, where Pγ has proposal qγ(θ
∗|θ). All kernels are assumed

to have the same stationary density, π(θ). At iteration n the adaptive kernel that will be used

35

with probability 1− β is P̃γn and, since the Markov chain is adaptive, let γn be a realisation

of the random variable Γn, which depends on the history of the chain. At iteration n, our

kernel is

P̃ ∗
γn = βP̃ + (1− β)P̃γn for some β ∈ (0, 1). (D.1)

In our case, each P̃γ, (γ ∈ G) uses the same initial proposal q′(θ∗|θ), and this proposal will

typically differ from the proposal, q(θ∗|θ) used in the fixed kernel. However, our proof of

ergodicity applies in the more general set up of (D.1).

D.3 Theorem 2: choice of n and β as functions of α1

Consider a collection of kernels, indexed by ξ ∈ Ξ, each a mixture of an adaptive kernel,

indexed by ξ, and a common fixed kernel:

P̃ ∗ξ
γn = βP̃ + (1− β)P̃ ξ

γn for some β ∈ (0, 1) and γn ∈ G
ξ. (D.2)

Let P̃ use a proposal q, such as that in (6). For a given value of ξ, all P̃ ξ
γ , γ ∈ G

ξ use the

same proposal, qξ; this could be the RWM proposal defined in (6), for instance.

Theorem 2. Consider a set of adaptive daPsMRWM Algorithms indexed by ξ, as described

in and around (D.2). Let the common fixed kernel, P̃ satisfy Assumption 1 and let all of the

adaptive kernels have the same stationary density as P̃ , given in (8); in particular, all use

the same mechanism for generating W which satisfies Assumption 2. In addition to (5), let

{pi}i∈N be a strictly decreasing sequence. For each ξ, after n iterations let Iξn be the number

of evaluations of the expensive posterior and let αξ
1,n be the average Stage One acceptance

rate. Assume that given ǫ > 0 ∃ icrude such that for all n with E
[

Iξn
]

> icrude and all ξ,

P

(

αξ
1,n < 2αξ

)

> 1− ǫ.

For some fixed κ > 0, we then set

βξ = καξ (D.3)

Subject to the above E
[

Iξn
]

→ ∞ as n → ∞. Further, for any ǫ > 0 and all ξ ∈ Ξ it is

possible to choose a single E > 0 so that if E
[

Iξn
]

> E, for some n, then the TVD between

the Markov chain and π after n iterations is bounded by ǫ.

36

Thus, provided that after a certain number of expensive iterations the acceptance rate is

typically no more than a constant multiple of the long term average, αξ, it is safe to set the

probability of choosing the fixed kernel proportional to αξ.

As the chain progresses and the number of expensive evaluations of the posterior increases,

the representation of the posterior by the KD-tree improves and α1,n initially increases (with

a typical relative change of around 5-10%) before settling down. In practice, we find the

condition on the convergence of the Stage 1 acceptance probabilities to be a reasonable

assumption.

D.4 Diminishing probabilities of adaptation

After every expensive iteration, Algorithms 1 and 2 store the newly-evaluated expensive

posterior; they ensure that the diminishing-adaptation condition (see Theorem 5) is satisfied

by, after the ith expensive iteration, adding all stored expensive posteriors to the KD-tree

with probability pi → 0. Tables 2 and 3 suggest that the algorithm is more efficient the

more slowly pi ↓ 0. The intuition behind this, and the possible consequences for higher-

dimensional systems if pi were to remain bounded away from 0 are discussed in Section 5;

the concern is that such an algorithm might not be ergodic. In Appendix D.5.3 we prove

the following.

Theorem 3. Let π(θ) be a continuous density with respect to Lebesgue measure on a hyper-

rectangular state space, Θ, and consider an adaptive, delayed-acceptance MH algorithm the

same as Algorithm 1 but with the following alterations: ∀i ∈ N, p2i = 1 and p2i+1 = 0,

and we remove the restriction on the growth of the tree described in Section 2.6. If the

kernel satisfies the minorisation condition, Assumption 1, then the diminishing adaptation

condition is automatically satisfied.

D.5 Proofs of Theorems 1, 2, and 3

Throughout this section the total variation distance (TVD) between any two probability

measures, ν(·) and π(·), is denoted ||ν − π||. We require the following definition and two

results.

37

Definition 1. Consider a Markov kernel P on a statespace X . A subset C ⊆ X is small if

there exists a positive integer n0, ǫ > 0, and a probability measure ν(·) on X such that the

following minorisation condition is satisfied

P n0(x, ·) ≥ ǫν(·). (D.4)

Theorem 4. (Roberts and Rosenthal, 2004) Consider a Markov chain with invariant proba-

bility distribution π(·). Suppose that the entire statespace is small (i.e. (D.4) is satisfied with

C = X). Then the chain is uniformly ergodic, and in fact ||P n(x, ·)− π(·)|| ≤ (1− δ)[n/n0]

Theorem 5. (Roberts and Rosenthal, 2007) Consider an adaptive MCMC algorithm on a

statespace X with adaptive kernels Pγ, γ ∈ G, and with π(·) stationary for each Pγ; γ ∈ G.

Under the following conditions the adaptive algorithm is ergodic.

1. (Simultaneous uniform ergodicity) For all ǫ > 0, there is N = N(ǫ) ∈ N such that
∣

∣

∣

∣PN
γ (x, ·)− π(·)

∣

∣

∣

∣

TV
≤ ǫ for all x ∈ X and γ ∈ G.

2. (Diminishing adaptation) For any X0 = x0, Γ0 = γ0,

sup
x∈X

∣

∣

∣

∣PΓn+1
(x, ·)− PΓn

(x, ·)
∣

∣

∣

∣

TV

p
−→ 0,

where the convergence in probability is with respect to the distribution of Γn and Γn+1

given x0 and γ0.

D.5.1 Proof of Theorem 1

We now show that a class of adaptive Metropolis-Hastings algorithms, which includes our

algorithms, is ergodic subject to Assumptions 1 and 2. In line with our KD-tree approxima-

tion, we assume that the target, π, and the proposals, q, q′ and qθ (θ ∈ Θ), are all densities

with respect to Lebesgue measure.

Any delayed-acceptance algorithm is simply an accept/reject Markov chain with a non-

standard acceptance probability. The key point is that detailed balance is preserved since

(for the pseudo-marginal version)

π(θ)qθ(w)w q(θ∗|θ)qθ∗(w
∗) α̃1(θ, θ

∗)α̃2,PM([θ, w], [θ∗, w∗])

= π̂c(θ)q(θ
∗|θ)α̃1(θ, θ

∗)× qθ(w)qθ∗(w
∗)×

π(θ)w

π̂c(θ)
α̃2,PM([θ, w], [θ∗, w∗]),

38

and each of the three terms in the product is invariant to (θ, w) ↔ (θ∗, w∗). We therefore

prove ergodicity (subject to conditions) for any adaptive pseudo-marginal algorithm of the

form given in and above (D.1).

We require the following components. Here A and Ã denote any (Lebesgue) measurable

subsets of Θ and Θ×W respectively, and δ represents the Dirac delta function.

1. A fixed pseudo-marginal kernel on Θ×W with stationary density π(θ)qθ(w)w:

P̃
(

[θ, w], Ã
)

= (1− αPM ([θ, w])) δA ([θ, w])

+

∫

Ã

dθ∗ dw∗ q (θ∗|θ) qθ∗ (w
∗)αPM ([θ, w], [θ∗, w∗]) .

Here αPM([θ, w]) is the acceptance probability from the current value:

αPM([θ, w]) =

∫

Θ×W

dθ∗ dw∗ q(θ∗|θ)qθ∗(w
∗)αPM([θ, w], [θ∗, w∗]).

2. The corresponding fixed ‘ideal’ kernel on Θ with stationary density π(θ),

P (θ, A) = (1− αMH(θ))δA(θ) +

∫

A

dθ∗ q(θ∗|θ)αMH(θ, θ
∗),

from which we are unable to sample because π(θ) and π(θ∗) are needed in order to

evaluate αMH . Here αMH(θ) =
∫

Θ
dθ∗ q(θ∗|θ)αMH(θ, θ

∗).

3. A set of additional (pseudo-marginal) kernels on Θ×W: {P̃γ([θ, w], ·)}γ∈G, as described

in and above (D.1), and with the same stationary density as P̃ .

4. A sequence of probabilities pn satisfying (5).

The generic algorithm is then:

Algorithm 2b: generic, adaptive, pseudo-marginal, propose and accept/reject algorithm.

Iteration n commences with current value [θ(n), w(n)] and kernel index γn and involves

the following two steps.

1. Sample [θ(n+1), w(n+1)] from P̃ ∗
γn as defined in (D.1).

2. With probability pn update γn (i.e. update the adaptive kernel) by including all relevant

information obtained since the kernel was last updated to create a new kernel.

39

Theorem 6. Subject to Assumptions 1 and 2, Algorithm 2b is ergodic.

Proof The condition (5) ensures that the diminishing adaptation condition of Theorem

5 is satisfied.

We next show that subject to Assumption 1 , P̃ satisfies a similar condition to As-

sumption 1 and hence so does each of the kernels in (D.1). This is then shown to ensure

simultaneous uniform ergodicity.

We first define

ν̃(θ, w) := ν(θ)
1

c
qθ(w)w,

which is a density by (7); we refer to the corresponding measure as ν̃(·). From (D.6),

q(θ∗|θ)qθ∗(w
∗)αPM ([θ, w], [θ∗, w∗]) > q(θ∗|θ)qθ∗(w

∗)
w∗

w
αMH(θ, θ

∗) =
cδ

w
ν̃(θ∗, w∗).

This implies that for any γ and any measurable set Ã ∈ Θ× [0, w],

P ∗
γ ([θ, w], ·) ≥

cβδ

w
ν̃(·).

Hence, the entire-statespace (Θ× [0, w]) is small with n0 = 1 and

ǫ = δ̃ := cβδ/w; (D.5)

δ̃ < 1 since c/w ≤ 1. Each kernel therefore individually satisfies the condition of Theorem

4 and hence N = [log ǫ/(1 − δ̃)] + 1 ensures that the collection of all kernels P ∗
γ satisfy

Condition 1 of Theorem 5. �

Although the kernel in Algorithm 2b is more general than that in Algorithm 2, in one

particular sense Algorithm 2 is not a special case of Algorithm 2b, since the former potentially

updates the kernel only after each expensive evaluation rather than after each iteration.

Adaptation times enter the proof of Theorem 6 through the diminishing adaptation condition

(see Theorem 5 of this article), for which it suffices that the probability of a change in the

kernel at any given iteration, n, tends to zero as n→∞. For Algorithm 2 this is guaranteed

through Condition (5); however it also holds for Algorithm 1 since limn→∞ in = ∞ almost

surely, as we now demonstrate. Subject to Assumption 2, the acceptance probability for the

fixed kernel between [θ, w] and [θ∗, w∗] is

αPM ([θ, w], [θ∗, w∗]) ≥ αMH (θ, θ∗)

(

1 ∧
w∗

w

)

≥
w∗

w
αMH(θ, θ

∗). (D.6)

40

By (7), the average acceptance rate from [θ, w] for the fixed kernel is

αPM ([θ, w]) ≥
c

w
Eθ∗ [αMH(θ, θ

∗)] =
cαMH(θ)

w
.

The idealised Metropolis-Hastings kernel P (θ, ·) is uniformly ergodic by Assumption 1 (Roberts and Rosenthal

(2004)) so αMH(θ) is bounded below by some α0 > 0 (Roberts and Tweedie (1996) Proposi-

tion 5.1). Hence the overall acceptance rate is bounded below by βα0c/w, and by the strong

law of large numbers, limn→∞ in =∞.

D.5.2 Proof of Theorem 2

The proof of ergodicity of adaptive MCMC algorithms in Theorem 5 of Roberts and Rosenthal

(2007) relies on a hypothetical Markov chain (for us, x′ := {[θ′, w′]i}i∈N), which is identical

to the real chain up until some iteration n0 and then continues in parallel with the real chain

using the kernel at n0 without any further adaptation. The kernels for this chain are P̃γ′

n
,

where

γ′n =

γn n ≤ n0

γn0
n > n0.

After iteration n0, the hypothetical chain clearly has π as its stationary distribution. Theo-

rem 4 then informs us that after a further n1 iterations

∣

∣

∣

∣

∣

∣
P̃ n1

γn0
(x, ·)− π(·)

∣

∣

∣

∣

∣

∣
≤ (1− δ̃)n1 , (D.7)

for any x, including the [θ, w] value of the chain after n0 iterations; the hypothetical chain is

close to the target. Diminishing adaptation is then used to show that if n0 is large enough

then after these further n1 iterations the real chain is close to the hypothetical chain.

We use the same approach as in Roberts and Rosenthal (2007) and show that for a given

required TVD between the true chain and π, the required run length can be specified in

terms of the expected number of expensive iterations. Since Stage Two acceptance proba-

bilities are irrelevant to our argument αξ
n and αξ

n henceforth denote, respectively, the Stage

One acceptance probability and its average after n iterations. Throughout this proof, for

simplicity of notation, we will suppress the superscript ξ from the terms αξ
n, α

ξ
n, α

ξ, nξ
0,

nξ
1, I

ξ, Jξ. The point is that the rate of the convergence in (D.10) and the bound in (D.13)

only depend on ξ through the expected number of expensive evaluations, Iξ.

41

Let In and Jn be, respectively, the number of expensive evaluations of the true algorithm

between iterations 1 and n and between iterations n0 + 1 and n0 + n. First we define the

following events:

An := {αn < 2α} and Bn0,n1
:= {1− (1− pIn0

)Jn1 < ǫ}. (D.8)

The probability that an iteration involves an evaluation of the expensive posterior is

ρn := β + (1− β)αn = α
(

κ + (1− κα)
αn

α

)

.

Thus

E [In] =

n
∑

j=1

ρj = nα

(

κ+ (1− κα)
αn

α

)

. (D.9)

So E [In] > nακ and E [In]→∞. Now, Var[In− In−1] = ρn(1− ρn) ≤ ρn and whether or not

each iteration is expensive is a sequence of independent Bernoulli trials, so Var[In] ≤ E [In].

Combined with Chebyshev’s inequality shows that as E [In] → ∞, In → ∞ in probability

and hence that the diminishing adaptation probabilities satisfy

E [pIn]→ 0. (D.10)

By assumption, for E [Jn] > icrude, P (An) > 1 − ǫ. Further, from (D.9), conditional on

An, E [Jn] < nα (κ+ 2). Thus

Conditional on An, nα >
E [Jn]

κ+ 2
. (D.11)

The TVD between the true adaptive chain and the hypothetical chain described in the

preliminaries for this proof is bounded above by the probability that they are not coupled (e.g

Roberts and Rosenthal, 2004), and since adaptation can only occur after the true posterior

(or an unbiased estimate thereof) is evaluated, the TVD between the real chain and the

hypothetical chain after n0 + n1 iterations is less than 1 − (1 − pIn0
)Jn1 . Given (D.7),

the triangle inequality and the monotonicity of pi, the following two conditions, therefore,

guarantee that the TVD between the true chain and π is less than 2ǫ: Bn0,n1
and

(1− δ̃)n1 < ǫ. (D.12)

By (D.3) and (D.5), δ̃ = αcκδ/w < 1 since c/w ≤ 1. Also log(1− δ̃) < −δ̃. Thus,

n1 log(1− δ̃) < −n1δ̃ = −
n1αcκδ

w
< −E [Jn1

]
cκδ

w(κ+ 2)
,

42

by (D.11) applied to the iterations from n0 + 1. Hence, conditional on An1
, (D.12) can be

guaranteed by fixing E[Jn1
] (i.e. choosing n1)

E [Jn1
] > −

w(κ+ 2) log ǫ

cκδ
. (D.13)

To deal with Bn0,n1
, for this fixed E [Jn1

], apply Jensen’s inequality twice and then (D.10):

E
[

(1− pIn0
)Jn1

]

≥ E

[

(1− pIn0
)E[Jn1]

]

≥ E
[

1− pIn0

]E[Jn1] → 1

as E [In0
] → ∞. Hence, by Markov’s inequality, for sufficiently large E [In0

] we can ensure

P (Bn0,n1
) > 1− ǫ.

With these choices of E [In0
] and E [Jn1

], and hence of E = E [In0
] + E [Jn1

], An1
and

Bn0,n1
each holds with probability 1 − ǫ, so the TVD between the true chain and π is less

than 4ǫ.

D.5.3 Proof of Theorem 3

We denote the k-nearest neighbour approximation to the posterior at θ∗ after n iterations

by π̂n(θ
∗) and a ball of radius r centred at θ by Br(θ). We denote the Stage One and Stage

Two acceptance probabilities at iteration n by α1,n(θ, θ
∗) and α2,n(θ, θ

∗).

For θ ∈ Θ let

An(θ, r) := {after n iterations all k nearest neighbours to θ lie within Br(θ)},

and note that An−1(θ, r) ⇒ An(θ, r). If An(θ, r) holds then then any change (adaptation)

in the cheap estimate π̂n(θ) must occur through one or more new points being added to the

tree inside Br(θ). Since log π is continuous, for any ǫ > 0 ∃ ǫ◦ such that if An−1(θ, ǫ◦) and

An−1(θ
∗, ǫ◦) hold, then

1− ǫ <
π̂n(θ)

π̂n−1(θ)
< 1 + ǫ and 1− ǫ <

π̂n+1(θ
∗)

π̂n(θ∗)
< 1 + ǫ.

Pγn and Pγn+1
differ only in their acceptance probabilities, with Pγn using the ratio of π̂n(θ

∗)

and π̂n−1(θ) in both α1,n and α2,n. Yet, subject to An−1(θ, ǫ◦) and An−1(θ
∗, ǫ◦),

(1− ǫ)4 <
α1,n+1(θ, θ

∗)α2,n+1(θ, θ
∗)

α1,n(θ, θ∗)α2,n(θ, θ∗)
< (1 + ǫ)4.

43

Since Θ is compact, log π is uniformly continuous. Hence, for small enough ǫ, and subject

to ∩θ∈ΘAn−1(θ, ǫ◦),

||Pγn+1
(θ, ·)− Pγn(θ, ·)|| < 5ǫ.

We show, given any ǫ > 0, ∃ nǫ such that P (∩θ∗∈ΘAn(θ
∗, ǫ◦)) > 1− 2ǫ, for all n ≥ nǫ. So for

n > nǫ, supθ ||Pγn+1
(θ, ·)− Pγn(θ, ·)|| < 7ǫ.

First, partition the (hyperrectangular) state space, Θ, into n� hypercubes of size ǫ�,

such that any ball of radius ǫ◦ must contain at least one hypercube. We now place n

points uniformly at random in Θ (i.e. according to a homogeneous Poisson process, U).

Denote the number of points that fall in the ith hypercube by �i. For any fixed k ∈ N,

P (∃ i ∈ {1, . . . , n�} such that �i < k) ≤ n�P (�1 < k) → 0 as n → ∞. Hence there is an

n• such that for all n ≥ n•, P (∃ i such that �i < k|n points from U) < ǫ.

The minorisation condition holds over the whole state space, and each kernel Pγ is re-

versible; moreover adaptation only occurs on even-numbered expensive iterations so that

each kernel is used (at least) twice before adaptation. Lemma 26 of Craiu et al. (2015) then

implies that for each pair of iterations there is a probability of at least β2δ2/4 of sampling

from π. Since log π is continuous and Θ is compact,

ρ :=
minθ∈Θ π(θ)

maxθ∈Θ π(θ)
> 0

So whenever a sample from π is obtained, a sample from the homogeneous Poisson process,

U , may be obtained with a probability of at least ρ. Define the event

Cn := {∃ at least one sample from U in n iterations}.

Then P (Cc
n) ≤ (1 − ρβ2δ2/4)n/2 and, given ǫ > 0 and n• there is an nonce such that for all

n ≥ nonce, P (Cc
n) < ǫ/(n•). Hence for all n ≥ nǫ := noncen•,

P (after n iterations ∃ i ∈ {1, . . . , n�} such that �i < k) < 2ǫ.

If there are at least k entries in each hypercube then, since all balls of radius r contain at

least one hypercube, the k nearest neighbours to all θ∗ ∈ Θ must be within Br(θ
∗).

44

Label Reaction Hazard Description

R1 X1
ν1−−→ 2X1 ν1X1 Prey reproduction

R2 X1 + X2
ν2−−→ 2X2 ν2X1X2 Prey death, predator reproduction

R3 X2
ν3−−→ ∅ ν3X2 Predator death

Table E.1: Reaction list and hazards for the Lotka-Volterra system.

Label Reaction Hazard Description

R1 DNA+ P2
ν1−−→ DNA · P2 ν1X1X4 Dimer binding

R2 DNA · P2
ν2−−→ DNA+ P2 ν2(k −X1) Dimer unbinding

R3 DNA
ν3−−→ DNA + RNA ν3X1 Transcription

R4 RNA
ν4−−→ RNA+ P ν4X2 Translation

R5 2P
ν5−−→ P2 ν5X3(X3 − 1)/2 Forward dimerisation

R6 P2
ν6−−→ 2P ν6X4 Reverse dimerisation

R7 RNA
ν7−−→ ∅ ν7X2 RNA degradation

R8 P
ν8−−→ ∅ ν8X3 Protein degradation

Table E.2: Reaction list and hazards for the auto-regulatory system.

E Simulation study: model details and further results

E.1 Model and inference details and data simulation

Tables E.1 and E.2 list the reactions and associated hazards for the Lotka Volterra and

autoregulatory examples, respectively.

A single data set was simulated from the Lotka-Volterra MJP using an initial value of

X0 = (71, 79) and parameter values taken fromWilkinson (2012), that is ν = (1.0, 0.005, 0.6).

Each Xt, (t = 1, . . . , 50) was corrupted as in equation (11) with σ1 = σ2 = 8.

For the autoregulatory system we generated 2 synthetic datasets (labelled as D1 and D2)

by takingX0 = (5, 8, 8, 8),K = 10 and using parameter values taken fromGolightly and Wilkinson

(2011), that is ν = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1). Simulated values were corrupted with

noise as in (11) with σ1 = σ2 = 0.5 and σ3 = σ4 = 1. Dataset D1 consists of 101 observations

on the time interval [0, 100] and D2 consists of 201 observations on the time interval [0, 1000].

For the autoregulatory system, the total number K of DNA ·P2 and DNA is fixed through-

45

out the evolution of the system, for in our inferences it is assumed to be known, so that the

model comprises of 4 species. We denote the number of molecules of DNA, RNA, P and P2

as X1, X2, X3 and X4 respectively. As noted by Golightly and Wilkinson (2011), the rate

constants in the reversible reactions can be difficult to infer and we therefore fix ν1 and ν5 at

the ground truth. We consider inference for the remaining rate constants and the observation

error standard deviations, 10 parameters in all.

E.2 Tuning parameters for the fixed kernels

For inference on the Lotka Volterra system, we follow the practical advice of Sherlock et al.

(2015b) by choosing the number of particles, m, so that the variance (τ 2) in the log-posterior

at the median (estimated from the pilot run) and 4 additional sampled parameter values is

less than 3. We set m = 200 since this gave τ 2 ∈ [2.06, 3.07]. Under certain assumptions

regarding target and the variance in the log-posterior, in the case that the target is approx-

imately Gaussian, Sherlock et al. (2015b) found that the scaling of the proposal variance

should be approximately λ = (2.562/d) to optimise efficiency. We found further scaling this

quantity by 1.1 appeared to give optimal performance in terms of effective sample size (ESS)

per second giving Vfixed = 1.1× (2.562/5)× Σ̂.

For the autoregulatory example, following Roberts and Rosenthal (2001), we found that

scaling variance estimated from the tuning run by λ = (2.382/d) with d = 10 gave optimal

performance of the fixed kernel (ie without delayed acceptance).

The choices of ǫ = 0.3065 for the Lotka Volterra and ǫ = 0.982 for the autoregulatory

system followed from considerations described immediately after (12).

F The linear noise approximation

The linear noise approximation (LNA) of the Markov jump process defined by the reaction

hazards (e.g. Fearnhead et al., 2014) ignores discreteness (but not stochasticity) and gives

the state Xt as a Gaussian: Xt ∼ N (zt +mt , Vt), where zt, mt and Vt satisfy a coupled

46

ODE system

żt = S h(zt, ν)

ṁt = Ftmt

V̇t = VtF
T
t + Sdiag {h(zt, ν)}S

T + FtVt

(F.1)

Here, h(xt, ν) is the length-8 column vector containing the reaction hazards, Ft is a 4 × 4

matrix whose (i, j)th entry is given by the first partial derivative of the ith component of

S h(zt, ν) with respect to the jth component of zt and S is the 4 × 8 stoichiometry matrix

whose (i, j)th element gives the effect of reaction j on species i.

F.1 Marginal likelihood under the linear noise approximation

For simplicity of exposition we assume an observation regime of the form

Yt = Xt + ǫt , ǫt ∼ N (0,Σ)

where ǫt is a length-dx Gaussian random vector and t = 0, 1, . . . , n. Suppose that X1 is

fixed at some value x1. The marginal likelihood π(y1:n|θ) (and hence the posterior up to

proportionality) under the LNA can be obtained as follows.

1. Initialisation. Compute

π(y1|θ) = φ (y1 ; x1 , Σ)

where φ (y1 ; x1 , Σ) denotes the Gaussian density with mean vector x1 and variance

matrix Σ. Set a1 = x1 and C to be the dx × dx matrix of zeros.

2. For times t = 1, 2, . . . , n− 1,

(a) Prior at t + 1. Initialise the LNA with zt = at, mt = 0 and Vt = Ct. Note that

ms = 0 for all s > t. Integrate the ODE system (F.1) forward to t + 1 to obtain

zt+1 and Vt+1. Hence

Xt+1|y1:t, θ ∼ N(zt+1, Vt+1) .

(b) One step forecast. Using the observation equation, we have that

Yt+1|y1:t, θ ∼ N (zt+1, Vt+1 + Σ) .

47

Compute

π(y1:t+1|θ) = π(y1:t|θ)φ (yt+1 ; zt+1 , Vt+1 + Σ) .

(c) Posterior at t+1. Combining the distributions in (a) and (b) gives Xt+1|y1:t+1, θ ∼

N(at+1, Ct+1) where

at+1 = zt+1 + Vt+1 (Vt+1 + Σ)−1 (yt+1 − zt+1)

Ct+1 = Vt+1 − Vt+1 (Vt+1 + Σ)−1 Vt+1 .

G Additional graphics and discussion from the simu-

lation study

−0.10 0.00 0.05

0
5

10
15

−5.35 −5.25

0
5

10
15

−0.60 −0.50 −0.40

0
5

10
15

1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

1.5 2.0 2.5 3.0
0.

0
0.

5
1.

0
1.

5

θ1 θ2 θ3 θ4 θ5

Figure G.1: Marginal posterior densities of θi (i = 1, . . . , 5) based on the (thinned) output

of da-PsMMH.

With regard to Table G.3, we impose the restriction that k ≤ b, since choosing k > b

automatically implies that the k nearest neighbours to a particular parameter value will, at

some point, be split over more than one branch node. We found that using k = 2 reduces

the computational cost of searching the tree but also reduces the accuracy of the KD-tree

approximation, resulting in an overall decrease in mESS. Similarly, for k > 5 the increased

accuracy is offset by increased computational cost. Using k = 5 and 2b = 20 gave a 7-fold

improvement in overall efficiency over PsMMH.

48

−445 −440 −435

−
44

5
−

44
0

−
43

5

−445 −440 −435
−

44
5

−
44

0
−

43
5

log(π̂c(θ))log(π̂c(θ))

lo
g
(π̂

s
(θ
))

lo
g
(π̂

s
(θ
))

Figure G.2: Log-posterior estimates under the MJP (log(π̂s(θ))) against the corresponding

log-posterior estimate given by the KD-tree (log(π̂c(θ))) based on the training data only (left

panel) and the final adapted tree obtained after running da-PsMMH for 105 seconds with

ξ = 3 and k = b = 10 (right panel). Both plots are obtained using 5, 000 values of θ sampled

from the posterior π(θ).

2b

k 4 10 20 30

2 2807 (5.3) 2715 (5.1) 3435 (6.5) 3423 (6.5)

5 3017 (5.7) 3871 (7.3) 3848 (7.3)

10 3591 (6.8) 3377 (6.4)

15 3330 (6.3)

Table G.3: Minimum effective sample size (mESS) and relative mESS in parentheses for the

Lotka Volterra model.

49

−1.0 −0.6 −0.2

0
2

4
6

8

−2.0 −1.0 0.0

0.
0

0.
5

1.
0

1.
5

2.
0

−3.5 −2.5 −1.5 −0.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

−0.4 −0.2 0.0 0.2

0
2

4
6

8

−2.5 −1.5 −0.5

0.
0

0.
5

1.
0

1.
5

2.
0

θ1 θ2 θ3 θ4 θ5

−3.5 −2.5 −1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

−1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

2.
0

−2.5 −1.5 −0.5 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

−2.0 −1.0 0.0 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−0.6 −0.2 0.2 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

θ6 θ7 θ8 θ9 θ10

Figure G.3: Marginal posterior densities of θi (i = 1, . . . , 10) based on the (thinned) output

of da-MMH using dataset D1 (solid) and D2 (dashed).

50

	1 Introduction
	2 The KD-tree k-nearest neighbour algorithm
	2.1 Preliminary run
	2.2 Tree preliminaries
	2.3 Tree structure
	2.4 Adding data to a tree
	2.5 Searching the tree
	2.6 Restricting the growth of the tree
	2.7 Ensuring that the tree remains balanced

	3 Adaptive MCMC algorithm
	3.1 Delayed-acceptance algorithms
	3.2 Adaptive, delayed-acceptance algorithm
	3.3 Delayed acceptance random walk Metropolis
	3.4 Adaptive, delayed-acceptance, pseudo-marginal algorithm
	3.5 Theory and guidance

	4 Simulation Studies
	4.1 Discretely observed Markov jump process
	4.2 Discretely observed ODE system

	5 Discussion
	5.1 Alternatives to k-nearest neighbours

	A Operations on the KD-tree
	A.1 Creating a balanced KD-tree from an initial dataset
	A.2 Finding the k nearest neighbours of a point

	B Proofs of Propositions 1 and 2
	C Adaptive-KD-tree, delayed-acceptance pseudo-marginal algorithm
	D Theorems 1, 2 and 3: discussion, statement and proofs
	D.1 Discussion of Assumptions 1 and 2
	D.2 More general set up
	D.3 Theorem 2: choice of n and as functions of 1
	D.4 Diminishing probabilities of adaptation
	D.5 Proofs of Theorems 1, 2, and 3
	D.5.1 Proof of Theorem 1
	D.5.2 Proof of Theorem 2
	D.5.3 Proof of Theorem 3

	E Simulation study: model details and further results
	E.1 Model and inference details and data simulation
	E.2 Tuning parameters for the fixed kernels

	F The linear noise approximation
	F.1 Marginal likelihood under the linear noise approximation

	G Additional graphics and discussion from the simulation study

