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Abstract: GaInSb multiple quantum wells (MQW) grown on GaAs using an AlGaSb interface misfit 

(IMF) metamorphic buffer layer technique exhibit superior infrared photoluminescence (PL) at room 

temperature compared with MQW grown directly on GaSb. PL emission was obtained in the range 

from 1.7 µm (4 K) to 1.9 µm (300 K) from Ga1-xInxSb samples containing five compressively 

strained QW with In content x~0.3. Structural and optical characterisation confirms that the AlGaSb 

IMF growth technique is promising for the development of photonic devices operating at extended 

wavelengths based on GaAs substrates. 
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1. Introduction 

Antimonide based quantum wells and nanostructures continue to attract considerable interest 

due to their potential for accessing technologically important applications in the spectral range 

beyond 1.5 µm. In particular GaInSb/GaSb offers a route towards the development of sources and 

detectors for use in remote gas sensing instrumentation, medical diagnostics and night vision 

technologies [1,2]. GaSb-based diode lasers, LEDs and photodetectors have been developed with 

excellent performance characteristics operating at many of the key wavelengths including      

methane [3], CO2 [4] and CO. However, the lack of semi-insulating GaSb substrates precludes the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76960387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


88 

AIMS Materials Science                                                                       Volume 2, Issue 2, 86-96. 

development of monolithic focal plane arrays and more complex devices, while the relatively high 

cost of GaSb wafers makes large volume applications cost-sensitive. Consequently, it is worthwhile  

investigating alternative growth methods for GaInSb based device structures on inexpensive GaAs 

substrates, which are readily available as semi-insulating wafers and for which there exists a mature 

processing technology. Recently, the growth of GaSb on GaAs has been successfully demonstrated 

using the interface misfit (IMF) [5,6,7] technique, which accommodates the lattice mismatch by 

forming lateral misfit dislocations along the GaSb-GaAs interface rather than threading dislocations 

in the GaSb bulk. However, samples grown using this molecular beam epitaxy (MBE) technique 

have shown reduced optical quality compared with homoepitaxial material since not all the 

dislocations are accommodated at the heterointerface and the remaining threading dislocations can 

still be problematic. In the present work we report on the MBE growth of AlGaSb as a ternary IMF 

metamorphic buffer layer on GaAs and study the properties of GaInSb quantum wells grown on this 

novel relaxed quasi substrate. AlGaSb conveniently provides substantial offsets in both the 

conduction and valence bands and results in improved photoluminescence efficiency from 

AlGaSb/InGaSb MQWs. 

2. Materials and Method 

The Ga1-xInxSb MQW structures were grown on a (100) orientated n-GaSb substrate, or in the 

case of the IMF samples a (100) n-GaAs substrate, by solid source MBE using a VG-V80H reactor 

fitted with a Sb valved cracker cell. The GaSb MQW sample (QA216) in Figure 1(a) was grown at a 

substrate temperature of 510 °C using growth rates of 0.65 ML/s for the GaSb and 1 ML/s for the 

Ga1-xInxSb QW respectively. Once a buffer layer of GaSb was grown, GaInSb QWs with 50 nm 

GaSb barriers were repeated 5 times. The GaSb IMF (QA276) in Figure 1(b) was grown using these 

conditions with the GaSb IMF growth based on the method used previously for GaSb IMF on    

GaAs [8]. The ternary AlGaSb IMF sample (QJ410), in Figure 1(c) was grown in a similar manner 

with a 1μm AlGaSb buffer layer. For the AlGaSb MQW sample a growth rate of 0.46 ML/s with a 

substrate temperature of 515 °C was used. After the IMF growth a 1 μm buffer had been grown, 5x 

InGaSb QWs with 50 nm Al0.53Ga0.47Sb barriers were grown before finally capping with 100 nm of 

AlGaSb. Details of the resulting structures are given in Table 1. 

The structural properties of the resulting samples were studied using high resolution x-ray 

diffraction (XRD) and transmission electron microscopy (TEM), to obtain information about 

dislocations, In content, thickness and perfection of the MQWs. In order to probe the optical 

properties of the samples, PL spectroscopy (4-300 K) was carried out using a continuous flow helium 

cryostat (Oxford Instruments Optistat). Excitation at 514 nm was provided by an Ar+ ion laser giving 

an adjustable power density of 0.4 to 10 Wcm−2 at the sample surface. The PL emission was detected 

and analysed using a Bentham M300 monochromator having a grating blazed at 3.5 µm, with a 77 K 

InSb photodiode detector and lock-in amplifier. 
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Table 1. A summary of the properties of the different samples under investigation 

and the resulting measured parameters. 

 QA216 QA276 QJ410 

Buffer layer  GaSb GaSb IMF AlGaSb IMF 

QW thickness (Lz)/ nm 4±1 4±1 7±4 

QW In content (%)   34 32 28 

Strain (%) 2.1 2.0 1.4 

PL peak  
Wavelength (μm)  1.77 1.77 1.70 

Energy (eV) 0.699 0.703 0.728 

Relative  PL intensity (10 K) 1 0.025 0.66 

FWHM (meV) at 4 K  15.4 16.7 20.5 

Confinement energy (meV) 
e- 49 48 506 

h+ 98 98 345 

Z  parameter 
4K 1.9 1.2 1.8 

225K 2.2 - 2.3 

 

Figure 1. A schematic diagram showing the different structures studied. (a) QA216: 

InGaSb/GaSb MQW grown homoepitaxially on GaSb substrate; (b) QA276: the 

same MQW structure as in (a) but grown on GaAs using the GaSb IMF buffer layer; 

(c) QJ410: a ternary Al0.53Ga0.47Sb layer is used instead of GaSb for the IMF and 

also in the MQW barriers for additional confinement. (The IMF is represented with 

a red dashed line). 
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3. Results and Discussion 

The high resolution XRD spectra obtained from each of the samples is shown in Figure 2. 

Sample (QA216) which was grown homoepitaxially on GaSb, has clearly defined satellite peaks with 

a full width half maximum (FWHM) of 78 arcsecs and a GaSb peak with FWHM of 27 arcsecs, 

indicating high crystalline quality. For sample (QA276) the satellite peaks are less distinct, being 

reduced in intensity with a FWHM of ~200 arcsecs, while the peak from the GaSb grown IMF layer 

is broadened with a FWHM of ~220 arcsecs; although this behaviour is consistent with the 

broadening of quasi substrate peaks seen in other IMF samples [9]. 

 

Figure 2. High resolution x-ray diffraction (XRD) spectra obtained from each of the 

samples. (a) QA216 MQW on GaAs; (b) QA276 MQW on GaSb IMF grown on 

GaAs and (c) QJ410 MQW with AlGaSb barriers grown on ternary AlGaSb IMF 

on GaAs. 

The XRD spectrum of QJ410 with the ternary AlGaSb IMF metamorphic buffer structure 

shown in Figure 1(c) has no observable satellite peaks and a rather broad AlGaSb “quasi-substrate” 

broad band with a FWHM of 473 arcsecs. The lack of satellite peaks is normally indicative of a 

mixed composition layer, or a structure which contains several different lattice parameters. To help 

elucidate this, TEM images of this sample are shown at different magnifications in Figure 3. The 

ternary IMF dislocation array is clearly evident at the AlGaSb-GaAs interface in Figure 3(a) and the 

MQW are shown in the higher magnification image of Figure 3(b). Figure 3(c) shows that the overall 
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quality of the metamorphic buffer using the AlGaSb is high with relatively few threading 

dislocations. Abrupt thickness fluctuations in the QWs are clearly observable under high 

magnification in Figure 3(b). The target QW thickness was 6 nm but the actual QWs vary in a step-

like fashion with thickness from 7 nm to 12 nm across the sample, which is sufficient to prevent the 

observation of the satellite peaks in the XRD spectrum. The appearance of these abrupt thickness 

variations is reminiscent of the early stages of quantum dot formation as the strain limit is 

approached but may also be related to the growth temperature, since 515 °C was used throughout to 

avoid the growth interrupt normally employed to grow InGaSb and AlGaSb  layers at their respective 

optimum temperatures, (480 °C and 515 °C respectively).  

 

                                      (a)                                                     (b)                                                           (c) 

Figure 3. Cross-sectional TEM images of the Al0.53Ga0.47Sb IMF MQW sample; (a) 

an image of the IMF AlGaSb-GaAs interface showing the misfit dislocation array; 

(b) a high resolution image of the MQW region, showing the non-uniform thickness 

of the InGaSb QWs; (c) a low magnification image showing the buffer layer which 

contains only a few threading dislocations. 

A comparison of the 4 K PL spectra from each of the MQW samples is shown in Figure 4. The 

relative intensities, peak energy and FWHM are given in Table 1. The peak energies are in 

reasonable agreement with the calculated values obtained using a Schrödinger solver for a finite 

quantum well within the effective mass approximation. The corresponding confinement energies for 

electrons and holes are given in Table 1. The calculations are based on the indium compositions and 

QW thickness values obtained from the growth parameters, XRD measurements and TEM images. 

Although the MQW in samples QA216 and QA276 have nominally the same structure, the QA276 GaSb 

IMF sample has a slightly higher peak energy of 0.703 eV compared with 0.699 eV due to a decrease 

in Indium content of 1.7% which originates from a change in growth rate when growing on the IMF 

buffer. Meanwhile, in sample QJ410 the higher band offset provided by the Al0.53Ga0.47Sb produces 

higher confinement and consequently the peak energy is further increased to 0.729eV.  

AlGaSb 

GaAs 
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(a) 

 

(b) 

Figure 4. (a) The normalised photoluminescence at 10 K from each of the MQW 

samples. The FWHM were measured as 15.4, 16.7 and 20.5 meV for GaSb, GaSb 

IMF and AlGaSb respectively; (b) The 10 K and 300 K PL obtained from sample 

QJ410. 

The FWHM of the samples at 4 K (Table 1) compare favourably with samples grown 

previously both on native GaSb substrates and on Si [10]. The temperature dependent PL of QJ410 
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exhibits emission up to room temperature due to the stronger carrier confinement provided by the 

AlGaSb barriers. The FWHM increases to 39.5 meV as shown in Figure 4(b), and an exponential tail 

is observed which extends up to higher energy which is associated with band filling and thermal 

broadening in the QWs. 

 

Figure 5. The temperature dependence of the Z value  for each of the MQW samples; 

QA216—black solid diamonds, QJ410—solid blue points, QA276—solid red 

squares.  

The power dependence of the PL emission from each of the samples was also measured to 

determine the dominant recombination process based on the PL intensity (L) vs pump power (I) 

expression; ܮ ∝ ܫ
೥

మ  where the exponent Z = 1 corresponds to Shockley-Read-Hall (SRH), Z = 2 

corresponds to radiative recombination and Z = 3 corresponds to non-radiative Auger recombination 

respectively [11]. The corresponding Z parameter are given in Table 1 from which we observe that 

recombination is predominantly radiative in these samples except for QA276 where SRH 

recombination is more significant at 10 K. These values are also plotted in Figure 5 showing the 

much lower value for QA276 which is attributed to defects in the lattice structure whilst showing a 

nominally constant radiative-dominated process in both QA216 and QJ410. Due to the limitations of 

this method, differences in Z paramter of ~0.1 can be considered negligible due to the assumptions in 

the model including the need for a constant number of carriers. 
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Figure 6. The temperature dependence of the integrated PL emission intensity for 

each of the MQW samples; QA216—black solid points, QJ410—solid blue 

diamonds, QA276—solid red squares  

The temperature dependence of the integrated PL emission intensity is shown in Figure 6. The 

high initial intensity of QA216 at 10 K is attributed to better crystalline perfection. The 

recombination is predominantly radiative and the thermal quenching is determined by limited carrier 

(electron)  confinement in the MQWs. Sample QA276 quenches at about the same rate as QJ410 but 

has the lowest 4 K PL intensity which is as expected from the increased threading dislocation density 

originating from the heteroepitaxial growth mediated by the IMF buffer layer. By comparison the 4 

K PL intensity of the AlGaSb ternary IMF sample (QJ410) is about one order higher over the entire 

temperature range. The increased confinement arising from the AlGaSb barriers helps to maintain PL 

emission up to room temperature compared to the other two samples which are quenched above 

~250 K. This is also supported by the nominally equal recombination processes in QA216 and QJ410 

but weaker emission from the smaller barriers of QA216. Both IMF based samples (QA276 and 

QJ410) are also more susceptible to carrier recombination in the barriers due to the higher levels of 

threading dislocations and structure defects compared with the homoepitaxial sample QA216.  

4. Conclusion 

In summary, we have reported the MBE growth of strained InGaSb/(Al)GaSb MQW structures 

containing ~30% In on GaSb and GaAs substrates using IMF buffers of both GaSb and ternary 

AlGaSb. The structural properties of the different samples and the effect on the PL emission 

efficiency and thermal quenching were compared. The structural perfection and crystallinity of the 

homoepitaxial MQW was found to be superior and the thermal quenching in this case is determined 

mainly by the electron-hole confinement in the QW. Transferring this structure directly onto GaAs 
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using a GaSb IMF approach resulted in inferior PL emission intensity at 4 K and thermal quenching 

of the emission above 250 K, which we attributed to non-radiative SRH recombination within the 

GaSb barriers. By comparison, it has been shown that when a ternary AlGaSb IMF is used instead, 

the 4 K PL intensity is considerably recovered and the PL emission persists up to room temperature, 

due to the improved crystallinity of the ternary IMF and the additional carrier confinement for both 

electrons and holes arising from the AlGaSb barriers. In each case the PL emission peaks were 

reconciled with the calculated values. Although further optimisation is required to improve the 

thickness uniformity of the InGaSb MQW, we have shown that Al0.53Ga0.47Sb/Ga0.7In0.3Sb MQWs 

grown on GaAs using a ternary Al0.53Ga0.47Sb  IMF buffer layer can provide a viable alternative to 

growth on GaSb substrates to access longer wavelength applications since it facilitates the use of 

both inexpensive and semi-insulating substrates.     
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