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Abstract

Background: It is useful to incorporate biological knowledge on the role of genetic determinants in predicting an
outcome. It is, however, not always feasible to fully elicit this information when the number of determinants is large.
We present an approach to overcome this difficulty. First, using half of the available data, a shortlist of potentially
interesting determinants are generated. Second, binary indications of biological importance are elicited for this much
smaller number of determinants. Third, an analysis is carried out on this shortlist using the second half of the data.

Results: We show through simulations that, compared with adaptive lasso, this approach leads to models containing
more biologically relevant variables, while the prediction mean squared error (PMSE) is comparable or even reduced.
We also apply our approach to bone mineral density data, and again final models contain more biologically relevant
variables and have reduced PMSEs.

Conclusion: Our method leads to comparable or improved predictive performance, and models with greater face
validity and interpretability with feasible incorporation of biological knowledge into predictive models.

Keywords: Bone mineral density, Elicitation, Lasso

Background
In medicine and genetics it is common to have a large
number of covariates available to predict a response. Prior
information concerning the relevance of each covariate
in predicting the response may also be available. The
response could be, for example, bone mineral density
(BMD), and the covariates are expression levels of 20,000
genes, measured in 100 independent samples. Other
examples include disease subtyping, as in breast cancer
where the aim is to predict the type of disease (bymultino-
mial regression say) based on gene expressions. There are
two challenges when modelling such data. First, the num-
ber of covariates, P, is often much larger than the number
of samples, n. Second, it may not be feasible, or practical,
to elicit prior information concerning such a large number
of covariates, P.
The first challenge, dealing with P > n, has been thor-

oughly studied, particularly over the last two decades.
When fitting regression models, instability and overfitting
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problems can be mitigated using regularization meth-
ods, which shrink the coefficients of the regression model
towards zero; the extent of shrinkage is controlled by a
regularization parameter, which is commonly chosen to
minimize the out-of-sample prediction error.
One commonly studied regularization method is the

lasso [1], which adds a L1 penalty to the likelihood that
relates the predictors to the response. The regulariza-
tion parameter is typically chosen by cross validation.
The lasso has the appealing property that it induces
sparseness: in the selected model, generally only a small
number of covariates have a non-zero coefficient. In
many fields, such as genetics, it is reasonable to believe
that this corresponds to reality — with only a small
subset of the available genetic markers being needed to
predict a phenotype. Accurate recovery of a subset of rel-
evant independent predictors is of interest both to under-
stand underlying aetiological processes, and to produce a
predictive model that is transparent, has face validity and
has good generalizability.
There are results describing the settings in which the

lasso can recover the correct covariates, and ignore the
incorrect ones [2–4]. However, these results are asymp-
totic, consequently this property is not guaranteed in
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finite samples, and place strong restrictions on the covari-
ate design matrix — typically related to ensuring that the
covariates are not too highly correlated with each other
and that the signal (in terms of the absolute value of
the regression coefficients of the true variables) strongly
exceeds the noise, i.e. the absolute value of the coef-
ficients of the nuisance variables. In practice, sample
sizes are small, covariates are highly correlated, and sig-
nal to noise ratios may be low, so we cannot expect to
recover the correct set of covariates with a naive use
of lasso.
Various extensions of lasso have therefore been pro-

posed that partially address these issues. For example,
adaptive lasso [3] allows the L1 penalty to apply unequally
to different coefficients, and in doing so has improved per-
formance compared with lasso in recovering the correct
predictors. The elastic net [5] tends to include clusters of
correlated variables, whereas lasso would typically include
a single representative, so elastic net has better sensi-
tivity for detecting relevant predictors, at the expense
of poorer specificity. Besides the different approaches to
select relevant covariates, a number of different ideas have
been presented that allow the relevance of the selected
covariates to be inferred [6–8].
The second challenge, feasibly eliciting prior informa-

tion for a large number of covariates, is the primary focus
of this paper. In genetics, for example, many genes are
already believed or known to play important roles in
the underlying mechanistic processes related to a phe-
notypic outcome. The generality and reliability of such
understanding varies, with certain genes clearly playing
a strong role in diseases (like P53 in cancer, e.g [9]), but
the role of other genes being more hypothetical. Biologists
and clinicians would be rightly skeptical of the value of
a predictive model, if none of the well understood trait-
relevant genes were present. Therefore, a balance must
be struck between the face validity and generalizability
of the model, through inclusion of a prior that favours
trait-relevant genes. In principle, this can be achieved in
a Bayesian framework, which favours data with prior bio-
logical knowledge. This can be combined with the lasso
using Bayesian lasso [10], or the weighted lasso [11].
However, to use a Bayesian approach, an expert such

as a geneticist or biologist would be required to produce
a prior distribution over a large number of variables (in
excess of 1000 variables, even after pre-screening). This is
infeasible both because of the size of the task, and mostly
because of the difficulty of formalizing prior knowledge
for predicting a specific trait, based on knowledge about
molecular processes known to influence related traits. For
example, a limited number of genes are known to play
a role in bone formation, and variation in bone mineral
density (BMD) but it is likely that many so far unrec-
ognized genes are also important for BMD. Therefore,

construction of appropriate informative priors could be
guided by also having some information available about
the predictive ability of the genes for the outcome under
consideration.
In this paper, we present an approach that allows bio-

logical expectations on the role of a reasonable number
of genes in prediction of a specific outcome to be elicited,
and incorporated into a model, in a manageable and
coherent manner. This is made possible through a two-
stage approach. In the first step, we use the data only to
determine, by cross-validation guided adaptive lasso, the
optimal set for prediction of the phenotype. For each gene
in the adaptive lasso set, we derive a further set of genes
(denoted a bag of genes) that could take the place of the
gene in the adaptive lasso set with minimal loss in pre-
dictive power. The union over all bags of genes, which
will be substantially smaller than the initial longlist of
genes, is then taken forward. Biologists are then asked
to assess the biological importance for each gene in the
bag union.
This knowledge can be expressed in various ways,

including full ranking of all genes in each bag, in terms of
expected biological relevance. To simplify, we assume here
that genes are simply classified as biologically relevant or
not for the trait under investigation. A gene in the lasso
set can then be switched with a biologically relevant gene
present in its bag. The final model is fitted using separate
data to the first step. This method allows us to find gene
sets with predictive power, which have been derived from
relevant data sets, but incorporating biological knowledge
in a feasible manner. We show through simulations that
this contributes to robust prediction signatures.

Methods
Consider a linear model

E [Yi] =
P∑

j=1
βjXij, i = 1, 2, . . . , n, (1)

where Yi is a response variable (centered to have zero
mean) measured in sample i, Xij is the jth covariate mea-
sured in sample i (centered to have zero mean, and scaled
to have unit variance), i = 1, . . . , n and j = 1, . . . ,P with
potentially P � n. Here, we used centered mean and
unit variance for easy to interpret the regression mod-
els. The response may be a continuous phenotype and the
covariates may be genes.
We wish to build a sparse model that incorporates

biological information on the relevance of the covari-
ates, to produce a final model with a relevant aetiolog-
ical interpretation. We do so via a two-stage approach.
First the data are split into three portions: D1 =
{(Yi,Xi1, . . . ,XiP); i=1, . . . ,m}, D2 = {(Yi,Xi1, . . . ,XiP);
i = m + 1, . . . , 2m} and D3 = {(Yi,Xi1, . . . ,XiP); i =
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2m + 1, . . . , n} where m = n/3 is our default choice.
Stage one of the approach uses D1 to produce a short-
list of covariates that are potential members of the final
sparse model; we then elicit for each of these covariates
whether it is biologically relevant or not. Stage two uses
D2 to fit the final sparse model, incorporating this rele-
vance information. The final third (D3) is only necessary
in our simulation experiments, where it is used for vali-
dation of the model derived in the second stage. In real
applications the data can be divided into two portions.

Bags of biologically relevant variables
The lasso [1] involves an optimisation of the form

β̂ lasso = argmin
β

‖Y − Xβ‖22 + λ ‖β‖1 , (2)

which is the usual least squares minimisation plus an L1
penalty on the βs, where λ is the tuning parameter denot-
ing the severity of the penalty. An equivalent formulation
is also available for generalised linear models and Cox
proportional hazard models. All of these can be solved
efficiently using the glmnet package in R [12].
The adaptive lasso [3] modifies the lasso by introducing

weights

β̂ lasso = argmin
β

‖Y − Xβ‖22 + λ‖wβ‖1, (3)

where the weight vector w comprises the reciprocal abso-
lute values of the ordinary least squares coefficients. This
modification means the adaptive lasso consistently esti-
mates variables, while the original lasso does not [3].
The first step of the proposed approach is to fit an

adaptive lasso model, using data D1, to select a list of
covariates, denoted by S, where k-fold cross validation is
used to determine the penalty λ.
Next we propose a range of approaches to augment the

list of covariates S, selected by the adaptive lasso. The gen-
eral idea is that for each covariate j ∈ S, we generate a bag
of covariates that are potential substitutes. Covariates may
appear in more than one bag. Three different methods for
selecting the bags of covariates are considered:

• Bag type 1 (B1):
For each j ∈ S, compute the correlation Corr(Xj,Xk)
for all other covariates k �= j. Take the q covariates
that are correlated with each selected covariate from
adaptive lasso most. This produces a bag of alternative
covariates for each gene in the adaptive lasso set.

• Bag type 2 (B2):
Instead of using a fixed bag size, define a threshold on
the correlation and select covariate Xj if its
correlation exceeds this threshold; e.g. select
covariate Xk if Corr(Xj,Xk) ≥ 0.25.

• Bag type 3 (B3):
For each j ∈ S, compute the mean squared error
(MSE) when replacing Xj with Xk , for each j �= k,
using ordinary least squares in the regression with |S|
covariates. Usually |S| < n. Take the q covariates
with the smallest MSE.

We assume that every covariate in the bag can be a pri-
ori classified as preferred or not, from a subject matter
biological point of view. We call the preferred variables
biologically relevant variables. Given the bags, the next
step is to consider switching each variable selected by
lasso with a variable contained in the corresponding bag.

• If there is just one biologically relevant covariate in
the bag, then we switch it with the corresponding
covariate selected by adaptive lasso.

• If we find more than one biologically relevant
covariate in the same bag, we need to select which
one to switch with the corresponding originally
selected one. For bag of type B1 and type B2 we chose
the biologically relevant covariate which has the
largest correlation with the one selected by adaptive
lasso. For bag of type B3 we chose the covariate which
leads to the small prediction mean square error when
switched with the one selected by adaptive lasso.

• If the lasso selects a biologically relevant variable, it is
kept.

• If there are no biologically relevant covariates in the
bag, then the original covariate from the adaptive
lasso solution is retained.

In bag type B3, if for a bag variable the MSE ratio (MSE
of replaced model/MSE of adaptive lasso model) is less
than one, then introducing that variable is particularly
appealing because this leads to a reduction in the MSE of
the model. Note that should a biologically relevant vari-
able be selected into the model from two or more bags, it
will appear only once in the final model (thus leading to a
sparser final model).
For comparison, we also present results using the stan-

dard lasso in the first step. All fitting is carried out
efficiently using the glmnet package in R [12].

Results
Simulation experiments
We test the performance of the proposed approach com-
pared with a standard lasso approach, using simulations.
We take the sample size n = 300 and the number of
covariates P = 1000. The true model which is used to
generate the outcome has 20 covariates xj, j = 1, . . . , 20:

yi =
20∑

j=1
βjxij + εi, (4)
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where εi ∼ N(0, σ 2), with σ 2 chosen to achieve a
range of signal to noise ratios (SNR). Different βj val-
ues are also chosen, across different simulation set-
tings. Additional biologically relevant covariates xj, j =
21, . . . , 60, were generated with varying levels of corre-
lation with the true covariates xj, j = 1, . . . , 20. The
true covariates are themselves considered biologically rel-
evant. The remaining covariates xj, j = 61, . . . , 1000 are
considered not biologically relevant and are generated
independently. In other words, we have a total of 60
biologically relevant variables. Of these, 20 were used
in generating model. The remaining biologically relevant
variables can therefore be considered to have zero β

values.
We split the data into three sets each of size 100: the

‘first stage’ set D1, the ‘second stage’ set D2, and the val-
idation set D3. We used 5-fold cross validation to select
the penalty parameter in the lasso using data set D1. Bag
types B1 and B3 were fixed to have size q = 20; we used
the correlation threshold 0.25 for bag type B2. We did 100
simulation runs for each experiment, that means we sim-
ulated 100 data sets using our simulation process and split
into three parts D1, D2 and D3 for each such data set. We
compared the performance by computing the prediction
mean squared error (PMSE) in the independent dataset
D3 for the derived models.
The 40 additional biologically relevant variables are pos-

itively correlated to the true ones as given in Table 1. For
example, x1, x2, x3, x4, x5 are correlated to x21, x22, . . . , x30
with correlation 0.55. The level of correlation is similar to
the correlation found between genes within a pathway in
[13]. We use two levels of signal to noise ratios, namely
SNR = 0.5 and SNR = 2. In the experiments we used one
of three levels for (βj = 0.1or0.2or0.8, for j = 1, 2, . . . , 20)
to generate response variable using (4).
In addition, we used standard lasso to select the vari-

ables in the first step, in alternative to adaptive lasso.

Sensitivity analysis
We experimented with various choices of thresholds and
bag sizes, namely varying the correlation threshold for bag
type B2 and the ‘q’ for bag types B1 and B3. We show
the average number of selected variables in Table 2. The
average number of biologically relevant variables is getting

Table 1 Correlation structure for simulation study 1

Covariates in true model Biologically relevant variables Correlation

x1, x2, x3, x4, x5 x21, x22, . . . , x30 ρ = 0.55

x6, x7, x8, x9, x10 x31, x32, . . . , x40 ρ = 0.6

x11, x12, x13, x14, x15 x41, x42, . . . , x50 ρ = 0.65

x16, x17, x18, x19, x20 x51, x52, . . . , x60 ρ = 0.7

stable for q = 20 for bag types B1 and B3 and when the
correlation threshold is ρ = 0.25 for bag type B2. There-
fore we present results q = 20 for bag types B1 and B3 and
correlation threshold ρ = 0.25 for bag type B2 in all our
simulations.

Simulation results
First we investigate to what extent our replacement
method generates final models with more biologically rel-
evant variables than using adaptive lasso or standard lasso
alone.
Table 3 shows that selecting bags of types B1 and B2

leads to more biologically relevant variables than when
using bag type B3. Adaptive lasso selects 29.3 % biolog-
ically relevant variables on average over 100 simulation
runs. In our 100 runs, bag types B1 and B2 produce mod-
els with on average 92.7 % and 82.9 % biologically relevant
covariates respectively, while bag type B3 has 70.7 %.
This is more than a doubling in terms of presence of
biologically relevant variables.
To compare the predictive performance of using dif-

ferent type of bags, we report in percentage the average
(over 100 runs) ratio between PMSE of the substitute
model and the adaptive lasso model(PRPMSE), using data
D3 for each type of bag, see Table 3. It shows that gen-
erating the model from bag types B1 and B2 performs
slightly better than the adaptive lasso in terms of predic-
tion performance — i.e. the predictive ability of the model
is improved by incorporating the information on which
genes are biologically relevant. But generating model from
bag type B3 did not lead to improvement in terms of
prediction.
To investigate this closer, we calculated the 95 % confi-

dence interval for the PRPMSE, for each of the 100 simula-
tion runs, by bootstrap. This gave 100 confidence intervals
and we computed the proportion of those that contain 1
or less than 1, which would mean that the replacement
does not significantly worsen the prediction power of the
model. This percentage of favorable replacements is given
in Table 3.
We compute the mean integrated squared error to com-

pare the estimation accuracy of the approaches and report
it in Table 3. It shows that the estimation accuracy is
almost the same for all selection procedures, but our pro-
posed bags give more biologically relevant variables than
the adaptive lasso.
The results from the standard lasso is given in the bot-

tom of Table 3. A larger number of variables are selected
by adaptive lasso as expected. We get a lower percent-
age of biologically relevant variables compared to plain
lasso. We also get a slightly lower percentage of favorable
replacements from lasso than adaptive lasso. Predictive
performance is worse for the lasso based models than for
adaptive lasso. As before, compared with the lasso, for
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Table 2 Average number and percentage of biologically relevant variables in the model with SNR = 0.5 and (βj = 0.1, j = 1, 2, . . . 20)

Over 100 runs Adaptive lasso B1 B2 B3

Average number of selected variables 41 41 41 41

q = 10 and ρ = 0.1

Average number of Biologically relevant variables 12 20 15 14

Average percentage of Biologically relevant variables 29.3 % 48.8 % 36.6 % 34.1 %

Standard deviation 9.1 0.86 1.24 3.11

q = 20 and ρ = 0.25

Average number of Biologically relevant variables 12 38 34 29

Average percentage of Biologically relevant variables 29.3 % 92.7 % 82.9 % 70.7 %

Standard deviation 9.1 0.85 1.22 3.08

q = 30 and ρ = 0.3

Average number of Biologically relevant variables 12 39 35 30

Average percentage of Biologically relevant variables 29.3 % 95.1 % 85.4 % 73.2 %

Standard deviation 9.1 0.85 1.23 3.09

q = 40 and ρ = 0.4

Average number of Biologically relevant variables 12 39 36 31

Average percentage of Biologically relevant variables 29.3 % 95.1 % 87.8 % 75.6 %

Standard deviation 9.1 0.84 1.22 3.07

Over 100 runs Lasso B1 B2 B3

Average number of selected variables 53 53 53 53

q = 10 and ρ = 0.1

Average number of Biologically relevant variables 12 24 18 16

Average percentage of Biologically relevant variables 22.6 % 45.3 % 34.0 % 30.2 %

Standard deviation 10.2 0.99 1.55 3.94

q = 20 and ρ = 0.25

Average number of Biologically relevant variables 12 46 39 34

Average percentage of Biologically relevant variables (%) 22.6 % 86.8 % 72.1 % 64.2 %

Standard deviation 10.2 0.97 1.53 3.89

q = 30 and ρ = 0.3

Average number of Biologically relevant variables 12 47 39 36

Average percentage of Biologically relevant variables (%) 22.6 % 88.7 % 73.6 % 67.9 %

Standard deviation 10.2 0.97 1.53 3.89

q = 40 and ρ = 0.4

Average number of Biologically relevant variables 12 48 40 37

Average percentage of Biologically relevant variables (%) 22.6 % 90.6 % 75.5 % 69.8 %

Standard deviation 10.2 0.96 1.51 3.86

Percentage and standard deviations are over 100 runs from dataD2 using correlation structure for simulation study 1 with different bag sizes q and correlation thresholds ρ

from Adaptive lasso and Bag types B1, B2 and B3 based on Adaptive lasso selection and also from Lasso and Bag types B1, B2 and B3 based on lasso selection

B1 and B2 there is an improvement in predictive perfor-
mance; however, there is a deterioration in performance
using bag type B3.
Other choices for the correlations than the one given

in Table 1, are reported in Appendix A of the Additional
file 1. They gave qualitatively similar results, see Table 2 in
Appendix B in Additional file 1, where we used SNR = 0.5

and (βj = 0.1, j = 1, 2, . . . , 20) . Table 3 in Appendix B in
Additional file 1 reports an experiment with SNR = 0.5
and (βj = 0.2, j = 1, 2, . . . , 20). In Table 4 in Appendix B
in Additional file 1 we used SNR = 0.5 but (βj = 0.8, j =
1, 2, . . . , 20).
Next we decreased the noise level to SNR = 2. We

used (βj = 0.1, j = 1, 2, . . . , 20) to generate the response
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Table 3 Average number and percentage of biologically relevant variables in the model with SNR = 0.5 and (βj = 0.1, j = 1, 2, . . . 20)

Over 100 runs Adaptive lasso B1 B2 B3

Average number of selected variables 41 41 41 41

Average number of Biologically relevant variables 12 38 34 29

Average percentage of Biologically relevant variables (%) 29.3 % 92.7 % 82.9 % 70.7 %

Standard deviation 9.1 0.85 1.22 3.08

PMSE (absolute) 1.148 1.145 1.143 1.154

PRPMSE % 100 % 99.7 % 99.6 % 100.5 %

(St.dev) (0.89) (1.53) (5.98)

Favorable substitution% 91 % 78 % 69 %

(St.dev) (0.99) (1.07) (6.93)

MISE 1.572 1.598 1.605 1.643

Over 100 runs Lasso B1 B2 B3

Average number of selected variables 53 53 53 53

Average number of Biologically relevant variables 12 46 39 34

Average percentage of Biologically relevant variables (%) 22.6 % 86.8 % 72.1 % 64.2 %

Standard deviation 10.2 0.97 1.53 3.89

PMSE (absolute) 1.576 1.570 1.567 1.596

PRPMSE % 100 % 99.6 % 99.4 % 101.3 %

(St.dev) (0.97) (1.81) (6.71)

Favorable substitution% 88 % 71 % 63 %

(St.dev) (1.02) (1.52) (7.68)

MISE 1.876 1.914 1.927 1.941

Percentage and standard deviations are over 100 runs from dataD2. The average of the PMSE and PRPMSE over 100 runs and the percentage of such runs for which the
bootstrap 95 % CI includes 1 or less than 1 and mean integrated squared error (MISE), with SNR = 0.5 and (βj = 0.1, j = 1, 2, . . . , 20) from dataD3 using correlation structure
for simulation study 1

variables using model (4) as before. Table 4 shows that the
results are very similar to the previous simulations: Bag
type B1 and B2 performed better than Bag type B3, and
the quality improved with reduced noise.

Bonemineral density data
We applied our method to a gene expression data set pre-
viously studied in [14]. The data have been submitted to
the European Bioinformatics Institute (EMBL-EBI) Array-
Express repository, ID: E-MEXP-1618. R-code is given in
Appendix C in Addtional file 1. For 84 women who had a
trans-iliacal bone biopsy, gene expression measurements
for 22815 gene probes were obtained. The data were nor-
malized as described in [14] and we fit a linear regression
model with L1 penalization with bone mineral density as
response and preselected P = 8649 covariates with the
largest empirical variance.
We split the data into two sets, one set for training (2/3

of data) and the rest for validation of the selected model.
We used the training data and run adaptive lasso using
5-fold cross validation. We applied our proposed method
with the three different bag types.We computed predicted

means square error (PMSE) using the test data for the
adaptive lasso selectedmodel and for the replacedmodels,
to measure the percentage of loss in prediction. In Tables
5, 6 and 7 of Appendix B in Additional file 1 we list all
genes selected by Lasso and their bags, for Bag type B1, B2
and B3 respectively. We used bags with 20 genes or cor-
relation threshold 0.5. Our expert biologist (SR) selected
the biologically relevant genes from each bag, and pos-
sible substitutions with the lasso genes were carried out,
as detailed in the methods section. This led to new mod-
els with genes as in Table 6. The prediction in the test set
was measured comparing the new models with the adap-
tive lasso model. Also, we re-analysed the data using a
bootstrapping approach and present the averaged PMSE
over 100 bootstrap samples(B-PMSE) in Table 6. Simi-
larly, we present the list of the genes selected by standard
lasso and the new models based on our bags, PMSE and
B-PMSE in Table 5.
We can see from Tables 5 and 6, that the PMSE is

smaller for the models based on bag types B1 and B2
compared with the initial adaptive lasso or lasso method.
This demonstrates themerits of the proposedmethod: the
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Table 4 Average number and percentage of biologically relevant variables in the model with SNR = 2 and (βj = 0.1, j = 1, 2, . . . 20)

Over 100 runs Adaptive lasso B1 B2 B3

Average number of selected variables 44 44 44 44

Average number of Biologically relevant variables 16 42 41 37

Average percentage of Biologically relevant variables (%) 36.4 % 95.5 % 93.2 % 84.1 %

Standard deviation 9.01 0.92 1.11 3.91

PMSE (absolute) 1.895 1.878 1.880 1.901

PRPMSE % 100 % 99.1 % 99.2 % 100.3 %

(St.dev) (1.01) (2.14) (6.16)

Favorable substitution% 92 % 78 % 70 %

(St.dev) (0.99) (1.37) (8.92)

MISE 1.986 2.003 2.052 2.097

Over 100 runs Lasso B1 B2 B3

Average number of selected variables 55 55 55 55

Average number of Biologically relevant variables 16 48 45 40

Average percentage of Biologically relevant variables (%) 22.8 % 87.3 % 81.8 % 72.7 %

Standard deviation 10.2 0.99 1.53 4.12

PMSE (absolute) 2.132 2.104 2.117 2.158

PRPMSE % 100 % 98.7 % 99.3 % 101.2 %

(St.dev) (1.11) (2.31) (6.89)

Favorable substitution% 89 % 70 % 68 %

(St.dev) (1.01) (1.69) (9.53)

MISE 2.234 2.298 2.306 2.342

Percentage and standard deviations are over 100 runs from dataD2. The average of the PMSE and PRPMSE over 100 runs and the percentage of such runs for which the
bootstrap 95 % CI includes 1 or less than 1 and mean integrated squared error (MISE), with SNR = 2 and (βj = 0.1, j = 1, 2, . . . , 20) from dataD3 using correlation structure
for simulation study 1

model with more biologically relevant genes also leads to
better out of sample predictions. On the other hand, the
PMSE for bag type B3 is larger than for the other methods.

Discussion
We have presented a method that allows biological rel-
evance of a large number of covariates to be elicited in
a feasible manner, by fitting an initial model to generate
a list of ‘interesting’ covariates. This list is produced by
using an adaptive lasso model to generate a shortlist of
variables, then extending this list to include a ‘bag’ of vari-
ables that are related to the original variables. Each gene in
the union of these bags can then be classed, by a domain
expert, as biologically interesting or not, and the adaptive
lasso variables can be substituted for biologically inter-
esting genes where possible. Simulations and a real data
example demonstrate that our method leads to a model
with more biological relevance, and better out-of-sample
predictions compared with applying adaptive lasso alone,
and we found similar results using standard lasso.
Based on our simulations, we recommend populating

the ‘bags’ using genes highly correlated with the adaptive

lasso genes, rather than considering the PMSE. We rec-
ommend a correlation threshold of 0.25 for constructing
these bags; however, it is useful to conduct sensitivity anal-
ysis around this threshold to ensure that there is stability
in selection of biologically relevant variables.
It is of interest to explore why bag types 1 and 2 (correla-

tion based) perform better than bag type 3 (PMSE based).
Our initial investigations show that this is because, with
the PMSE bags, a small number of biologically relevant
genes appear in many bags. This leads to a number of
duplicate substitutions, and hence a sparser final model.
A strength of this approach is that it is more efficient

to perform than a fully informative Bayesian approach,
which would involve eliciting priors scaled to all genes.
However, it takes longer than applying adaptive lasso or
lasso with no incorporation of prior information. We
believe the approach is a good trade-off between mod-
elling effort, domain expert input, and quality of the
final model. The involvement of domain experts in the
modelling process is also a strength because they may per-
ceive the resulting model as being more relevant as they
have invested in its production. A weakness is that the
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Table 5 Selected genes from adaptive lasso and each bag type
(B1, B2, B3) based on biological reasons and PMSE and averaged
PMSE over 100 bootstrap samples (B-PMSE) in the test data

Adaptive lasso Bag type B1 Bag type B2 Bag type B3

AK3L1 ADAMTS2 ADAMTS2 RARA

CSRNP3 RUNX2 RUNX2 CSRNP3

FKBP14 SPTBN1 SPTBN1 VDR

NF1 NF1 NF1 CSNK1G3

PIAS4 ESR1 ESR1 PIAS4

PLIN5 PLIN5 HGF RHO

PPIL2 BMP5 BMP5 SRGAP3

RNF31 RNF31 RNF31 GLP1R G

SRR SMAD3 SRR SRR

TRPS1 SFRP1 SFRP1 TRPS1

ZMAT3 ZMAT3 ZMAT3 ZMAT3

PMSE 1.292 0.251 0.343 1.306

B-PMSE 1.074 0.242 0.298 1.286

Table 6 Selected genes from lasso and each bag type (B1, B2,
B3) based on biological reasons and PMSE and averaged PMSE
over 100 bootstrap samples (B-PMSE) in the test data

Lasso Bag type B1 Bag type B2 Bag type B3

AK3L1 ADAMTS2 ADAMTS2 RARA

CCHCR1 CCHCR1 CCHCR1 CCHCR1

CRYGS PPARA PPARA ESR1

CSRNP3 RUNX2 RUNX2 CSRNP3

FAF1 FAF1 FAF1 BMPR2

FKBP14 SPTBN1 SPTBN1 VDR

FLRT2 PDGFA PDGFA FLRT2

KDM4A SLC44A1 KDM4A7 KDM4A

LOC642852 OSTM1 OSTM1 LOC642852

MAPK8 BMP7 BMP7 WHAMML1 /// WHAMML2

NF1 NF1 NF1 CSNK1G3

PIAS4 ESR1 ESR1 PIAS4

PLIN5 PLIN5 HGF RHO

PPIL2 BMP5 BMP5 SRGAP3

RNF31 RNF31 RNF31 GLP1R G

SRR SMAD3 SRR SRR

TRPS1 SFRP1 SFRP1 TRPS1

ZMAT3 ZMAT3 ZMAT3 ZMAT3

PMSE 1.900 1.009 1.086 5.810

B-PMSE 1.871 1.001 1.024 5.053

‘pre screening’ stage could eliminate genes that the
domain experts have a very strong prior belief of involve-
ment in the relevant mechanistic processes. This could
be alleviated by allowing a small number of prior known
genes to appear in the substitution bags regardless of
meeting the correlation or PMSE criteria. For clarity, we
explained the method using linear models, but the exten-
sion to generalised linear models and multilevel models
is clear. One possible criticism of the approach is that the
preference for using ‘known’ genes in the final models may
prevent discovery of novel mechanisms. If there is a very
strong signal for an unknown gene being a prognostica-
tor, this would survive the post-processing to appear in the
final model.
This work could be extended by incorporating richer

biological information about the genes—we used a binary
classification of ‘interesting’ and ‘not interesting’ — this
could be extended to a continuous importance measure of
each gene. The challenge then would be how to weight the
biological information appropriately against the predictive
ability.

Conclusion
Our method allows feasible incorporation of biological
knowledge into predictive models with a large number
of potential covariates, leading to models with greater
face validity, generalisability and interpretability, without
adversely affecting predictive performance.

Additional file

Additional file 1: More simulation results and interpretations in Appendix
A and Appendix B. R-code for data is presented in Appendix C. (PDF 141 kb)
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