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Abstract

Homeless youth are prone to Human Immunodeficiency
Virus (HIV) due to their engagement in high risk be-
havior such as unprotected sex, sex under influence of
drugs, etc. Many non-profit agencies conduct interven-
tions to educate and train a select group of homeless
youth about HIV prevention and treatment practices and
rely on word-of-mouth spread of information through
their social network. Previous work in strategic se-
lection of intervention participants does not handle un-
certainties in the social network’s structure and evolv-
ing network state, potentially causing significant short-
comings in spread of information. Thus, we developed
PSINET, a decision support system to aid the agencies
in this task. PSINET includes the following key nov-
elties: (i) it handles uncertainties in network structure
and evolving network state; (ii) it addresses these uncer-
tainties by using POMDPs in influence maximization;
and (iii) it provides algorithmic advances to allow high
quality approximate solutions for such POMDPs. Sim-
ulations show that PSINET achieves∼60% more infor-
mation spread over the current state-of-the-art. PSINET
was developed in collaboration with My Friend’s Place
(a drop-in agency serving homeless youth in Los Ange-
les) and is currently being reviewed by their officials.

1 Introduction
Homelessness affects ∼2 million youths in USA annually,
11% (10 times the infection rate in the general population)
of whom are HIV positive (NAHC 2011). Peer-led HIV pre-
vention programs such as POL (Kelly et al. 1997) try to
spread HIV prevention information through network ties and
recommend selecting intervention participants based on De-
gree Centrality (i.e., highest degree nodes first). Such peer-
led programs are highly desirable to agencies working with
homeless youth as these youth are often disengaged from
traditional health care settings and are distrustful of adults
(Rice and Rhoades 2013; Rice 2010).

Agencies working with homeless youth prefer a series of
small size interventions deployed sequentially as they have
limited manpower to direct towards these programs. This
fact and emotional and behavioral problems of youth makes
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managing groups of more than 5-6 youth at a time very dif-
ficult (Rice et al. 2012b). Strategically choosing interven-
tion participants is important so that information percolates
through their social network in the most efficient way.

The purpose of this paper is to introduce PSINET
(POMDP based Social Interventions in Networks for
Enhanced HIV Treatment), a novel Partially Observable
Markov Decision Process (POMDP) based system which
chooses the participants of successive interventions in a so-
cial network. The key novelty of our work is a unique com-
bination of POMDPs and influence maximization to han-
dle uncertainties about (i) friendships between people in the
social network; and (ii) evolution of the network state in
between two successive interventions. Traditionally, influ-
ence maximization has not dealt with these uncertainties,
which greatly complicates the process of choosing interven-
tion participants. Moreover, this problem is a very good fit
for POMDPs as (i) we conduct several interventions sequen-
tially, similar to sequential actions taken in a POMDP; and
(ii) we must handle uncertainty over network structure and
evolving state, similar to partial observability over states in
a POMDP.

However, there are scalability issues that must be ad-
dressed. Unfortunately, our POMDP’s state (2300 states) and
action spaces (

(
150
10

)
actions) are beyond the reach of current

state-of-the-art POMDP solvers and algorithms. To address
this scale-up challenge, PSINET provides a novel on-line
algorithm, that relies on the following key ideas: (a) com-
pact representation of transition probabilities to manage the
intractable state and action spaces; (b) combination of the
QMDP heuristic with Monte-Carlo simulations to avoid ex-
haustive search of the entire belief space; and (c) voting
on multiple POMDP solutions, each of which efficiently
searches a portion of the solution state space to improve
accuracy. Each such POMDP solution (which votes for the
final solution) is a decomposition of the original problem
into a simpler problem. Thus, PSINET efficiently searches
the combinatorial state and action spaces based on several
heuristics in order to come up with good solutions.

Our work is done in collaboration with My Friend’s
Place1, a non-profit agency assisting Los Angeles’s home-
less youth to build self-sufficient lives by providing educa-

1See http://myfriendsplace.org/
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tion and support to reduce high-risk behavior. Thus, we eval-
uate PSINET on real social networks of youth frequenting
this agency. This work is being reviewed by officials at My
Friend’s Place towards final deployment.

2 Related work

There are two primary areas of related work that we dis-
cuss in this section. First, we discuss work in the field of in-
fluence maximization, which was first explored by Kempe,
Kleinberg, and Tardos (2003), who provided a constant-
ratio approximation algorithm to find ’seed’ sets of nodes
to optimally spread influence in a graph. This was fol-
lowed by many speed up techniques (Leskovec et al. 2007;
Kimura and Saito 2006; Chen, Wang, and Wang 2010). All
these algorithms assume no uncertainty in the network struc-
ture and select a single seed set. In contrast, we select sev-
eral seed sets sequentially in our work to select interven-
tion participants. Also, our problem takes into account un-
certainty about the network structure and evolving network
state. Golovin and Krause (2011) introduced adaptive sub-
modularity and discussed adaptive sequential selection (sim-
ilar to our work) in viral marketing. However, unlike our
work, they assume no uncertainty in network structure and
state evolution.

The second field of related work is planning for re-
ward/cost optimization. In POMDP literature, a lot of work
has been done on offline planning but we focus on online
planning, since offline planning approaches are unable to
scale up to problems of interest in our work (Smith 2013).
We focus on the literature on Monte-Carlo (MC) sampling
based online POMDP solvers since that sub-field is most
related to our work. Silver and Veness (2010) proposed
POMCP algorithm that uses Monte-Carlo tree search in on-
line planning. Also, Somani et al. (2013) improved the worst
case performance of POMCP in DESPOT algorithm. These
two algorithms maintain a search tree for all sampled his-
tories to find the best actions, which may lead to better so-
lution qualities, but it makes the algorithm less scalable (as
we show in our experiments). Therefore, our algorithm does
not maintain a search tree and uses the QMDP heuristic
(Littman, Cassandra, and Kaelbling 1995) to find best ac-
tions.

Others have also looked at planning/scheduling problems
for optimization. Just like our work, Burns et al. (2012) sam-
ple possible futures to find optimal plans. However, while
they consider online continual planning problems (i.e., prob-
lems in which additional goals arrive during execution of
previous goals), we have fixed goals and uncertain obser-
vations in our problem. Just like our work, Siddiqui and
Haslum (2013) and Asai and Fukunaga (2014) use ideas
of decomposition of planning problems into simpler prob-
lems in order to improve efficiency. Finally, Keller and
Helmert (2013) introduce Trial-Based Heuristic Tree Search
for solving finite-horizon MDPs, which is a generalization
of Monte-Carlo tree search techniques.

3 Our Approach
Partially Observable Markov Decision Processes (POMDPs)
are a well studied model for sequential decision making
under uncertainty (Puterman 2009). Intuitively, POMDPs
model situations wherein an agent tries to maximize its ex-
pected long term rewards by taking various actions, while
operating in an environment(which could exist in one of
several states at any given point in time) which reveals it-
self in the form of various observations. The key point is
that the exact state of the world is not known to the agent
and thus, these actions have to be chosen by reasoning about
the agent’s probabilistic beliefs about the world state(belief
state). The agent, thus, takes an action, based on its current
belief, and transitions to a new world state. However, infor-
mation about this new world state is only partially revealed
to the agent through observations that it gets upon reaching
a new world state. Based on the agent’s current belief state,
the action that it took in that belief state, and the observa-
tion that it received, the agent updates its belief state and it
repeats the entire process until it either reaches a terminal
state or the number of steps(actions) taken exceed the hori-
zon length. More formally, a POMDP is a tuple ℘ given by:

℘ = 〈S,A,O,T,Ω,R〉 (1)

where the various symbols are defined as follows:

• S :=set of possible world states,

• A :=set of possible actions,

• O :=set of possible observations,

• T(s,a, s′) :=Transition probability of reaching s′ from s,
upon taking action a,

• Ω(o,a, s′) :=Observation probability of observing o,
upon taking action a and reaching state s′

• R(s,a) :=Reward of taking action a in state s

A POMDP policy Π maps every possible belief state b
to an action a = Π(b). Our aim is to find an optimal
policy Π∗ = arg maxπ P

π (given an initial belief b0),
which maximizes the expected long term reward PΠ =∑H
t=1E[R(st, at)] whereH is the horizon. Computing opti-

mal policies offline for finite horizon POMDPs is PSPACE-
Complete. Thus, focus has recently turned towards online
algorithms, which only find the best action for the current
belief state. Upon reaching a new belief state, online plan-
ning again plans for this new belief. Thus, online planning
interleaves planning and execution at every time step.

POMDP Model of our Domain
In describing our model, we first outline the homeless youth
social network and then map it onto our POMDP. The so-
cial network of homeless youth is a digraph G = (V,E)
with |V | = n. Every v ∈ V represents a homeless youth,
and every {e = (a, b)|a, b ∈ V } ∈ E represents that
youth a has nominated (listed) youth b in their social cir-
cle. Further, E = Ec ∪ Eu, where Ec(|Ec| = l) is the
set of certain edges, i.e., friendships which we are certain
about. Conversely, Eu(|Eu| = m) is the set of uncertain



edges i.e., friendships which we are uncertain about. For ex-
ample, youth may describe their friends “vaguely”, which
is not enough for accurate identification (Rice et al. 2012b;
2012a). In this case, there would be uncertain edges from the
youth to each of his “suspected” friends.

Figure 1: A 6 node uncertain graph

Each uncertain edge (e ∈ Eu) exists with an existence
probability u(e), the exact value of which is determined
from domain experts. For example, if it is uncertain whether
node B is node A’s friend, then u(A,B) = 0.5 (say) implies
that B is A’s friend with a 0.5 chance. Accounting for these
uncertain edges is important as our node selection might de-
pend heavily on whether these edges exist with certainty or
not. We call this graph G an “uncertain graph” henceforth.
Figure 1 shows an uncertain graph on 6 nodes (A to F) and
7 edges. The dashed and solid edges represent uncertain and
certain edges respectively.

In our work, we use the independent cascade model, a
well studied influence propagation model (Kimura and Saito
2006). In this model, every node v ∈ V has an h-value,
where h : V → {0, 1}. h(v) = 1 and 0 determines whether
a node is influenced or not respectively. Nodes only change
their h-value (from 0 to 1) when they first get influenced.
If node v ∈ V gets influenced at time step t, it influences
each of its 1-hop un-influenced neighbors with a propaga-
tion probability p(e) ∀e ∈ E for all future time steps. More-
over, every edge e ∈ Eu has an f-value (which represents
a sampled instance of u(e) and is unknown apriori), where
f : Eu → {0, 1}. f(e) = 1 and 0 determines whether the
uncertain edge exists with certainty in the real graph or not
respectively. For e ∈ Eu, the influence probability (given by
p(e) ∗ u(e)) is contingent on the edge’s actual existence.

Recall that we need a policy for selecting nodes for suc-
cessive interventions in order to maximize the influence
spread in the network. Nodes selected for interventions are
assumed to be influenced (h(v) = 1) post-intervention with
certainty. However, there is uncertainty in how the h-value
of the unselected nodes changes in between successive in-
terventions. For example, in Figure 1, if we choose nodes
B and D for the 1st intervention, we are uncertain whether
nodes C and E (adjacent to nodes B and D) are influenced
before nodes for the 2nd intervention are chosen. We now
provide a POMDP mapping onto our problem.

States Consider strict total orders <v and <u on the sets
V and Eu respectively. A state S = 〈H,F 〉 is a 2-tuple.
H = 〈h(v1), h(v2), ..., h(vi), ...〉 ∀i ∈ 1..n is a binary tuple
representing the h-values of all nodes (ordered by<v). Also,
F = 〈f(e1), f(e2), ..., f(ei), ...〉 ∀i ∈ 1..m is a binary tuple
representing the f-values of all uncertain edges (ordered by
<u) in the graph. Our POMDP has 2n+m states.

Actions Every α ⊂ V s.t. |α| = k (k is the number of
nodes selected per intervention) is a POMDP action. For ex-
ample, in Figure 1, one possible action is {A,B} (assuming
k = 2). Our POMDP has

(
n
k

)
actions.

Observations We assume that we can “observe” the f-
values of uncertain edges outgoing from the nodes chosen in
an action. This translates to asking intervention participants
about their 1-hop social circles, which is within the agency’s
capacity (Rice et al. 2012b). For example, by taking action
{B,C} in Figure 1, the f-values of edge 4 and 5 (i.e., un-
certain edges in the 1-hop social circle of nodes B and C)
would be observed. Consider Θ(α) = {e | e = (a,b) s.t. a ∈
α ∧ e ∈ Eu} ∀α ∈ A, which represents the ordered tuple of
uncertain edges that are observed when the agency takes ac-
tion α. Then, our POMDP observation upon taking action α
is defined as o(α) = 〈f(e1), f(e2), ..., f(ei)〉 ∀ei ∈ Θ(α)
i.e., the f-values of the observed uncertain edges. In our
POMDP, the number of observations is exponential in the
size of Θ.

Transition Probabilities Consider states s = 〈H,F 〉 and
s′ = 〈H ′, F ′〉 and action α ∈ A. In order for T (s, α, s′)
to be non zero, we require the following three conditions to
hold:

F ′[i] = F [i] ∀ i s.t. ei /∈ Θ(α) (2)

H ′[i] = H[i] ∀ i s.t. H[i] = 1 (3)

H ′[i] = 1 ∀ i s.t. vi ∈ α (4)
If any of the conditions (2), (3) or (4) is not true, then

T (s, α, s′) = 0. Intuitively, equation 2 means that all un-
certain edges which were not observed will not change their
f-values. Equations 3 and 4 mean that all nodes which were
already influenced in the previous state, along with all nodes
that we influence as a result of action α will remain influ-
enced in the final state. Otherwise, if these conditions hold,
we provide a heuristic method to calculate transition proba-
bilities in the next section (as accurate calculation needs to
consider all possible paths in a graph through which influ-
ence could spread, which is O(n!) in the worst case).

Transition Probability Heuristic Consider a weighted
adjacency matrix representation for graph Gσ (created from
graph G) s.t.

Gσ(i, j) =


1 if (i, j) ∈ Ec ∧ (H[i] = 1 ∨ α[i] = 1)

u(i, j) if (i, j) ∈ Eu ∧ (H[i] = 1 ∨ α[i] = 1)

0 if otherwise.
(5)



Gσ is a pruned graph which contains only edges outgo-
ing from influenced nodes. We prune the graph because in-
fluence can only spread through edges which are outgoing
from influenced nodes. Note that Gσ does not consider in-
fluence spreading along a path consisting of more than one
uninfluenced node, as this event is highly unlikely in the
limited time in between successive interventions. However,
nodes connected to a chain (of arbitrary length) of influenced
nodes get influenced more easily due to reinforced efforts of
all influenced nodes in the chain. We use Gσ to construct a
diffusion vector D, the ith element of which gives us a mea-
sure of the probability of the ith node to get influenced. This
diffusion vector D is then used to estimate T (s, α, s′).

A known result states that if G is a graph’s adjacency ma-
trix, then Gr(i, j) (Gr = G multiplied r times) gives the
number of paths of length r between nodes i and j (Dies-
tel 2005). Additionally, note that if all edges ei in a path of
length r have different propagation probabilities p(ei) ∀ i ∈
[1, r], the probability of influence spreading between two
nodes connected through this path of length r is Πr

i=1p(ei).
For simplicity, we assume the same p(e) ∀e ∈ E; hence, the
probability of influence spreading becomes pr. Using these
results, we construct diffusion vector D:

D(p,T)nx1 =
∑

t∈[1,T]

( (
pGσ

)t ∗ 1nx1

)
(6)

Here, D(p,T) is a column vector of size nx1, p is the
constant propagation probability on the edges, T is a vari-
able parameter that measures number of hops considered for
influence spread (higher values of T yields more accurate
D(p,T) but increases the runtime2), 1nx1 is a nx1 column
vector of 1’s and Gσ is the transpose of Gσ . This formula-
tion is similar to diffusion centrality (Banerjee et al. 2013)
where they calculate influencing power of nodes. However,
we calculate power of nodes to get influenced (by usingGσ).
Proposition 1. Di, the ith element of D(p,T)nx1, upon
normalization, gives an approximate probability of the ith
graph node to get influenced in the next round.2.

Consider the set4 = {i | H ′[i] = 1 ∧H[i] = 0 ∧ α[i] =
0}, which represents nodes which were uninfluenced in the
initial state s (H[i] = 0) and which were not selected in
the action (α[i] = 0), but got influenced by other nodes
in the final state s′ (H ′[i] = 1). Similarly, consider the set
Φ = {j | H ′[j] = 0 ∧ H[j] = 0 ∧ α[j] = 0}, which rep-
resents nodes which were not influenced even in the final
state s′ (H ′[j] = 0). Using Di values, we can now calcu-
late T (s, α, s′) = Πi∈4DiΠj∈Φ(1−Dj), i.e., we multiply
influence probabilities Di for nodes which are influenced in
state s′, along with probabilities of not getting influenced
(1−Dj) for nodes which are not influenced in state s′.

Observation Probabilities Given action α ∈ A and fi-
nal state s′ = 〈H ′, F ′〉, there exists an observation o(α, s′),
which is uniquely determined by both α and s′. More for-
mally, o(α, s′) is given as follows: o(α, s′) = {F ′[i] ∀ei ∈
Θ(α)}. Therefore, we have the following result:

2https://www.dropbox.com/s/sh8pkiavlyk3zha/appendix.pdf
provides details/proofs.

Ω(o, α, s′) =

{
1 if o = o(α, s′)

0 if otherwise
(7)

Rewards The reward of taking action α ∈ A in state s =
〈H,F 〉 (denoted by R(s, α)) is given as:

R(s, α) =
∑

s′∈S
T (s, α, s′)(‖s′‖ − ‖s‖) (8)

where ‖s′‖ is the number of influenced nodes in s′. This
gives the expected number of new influenced nodes.

PSINET
Initial experiments with the ZMDP solver (Smith 2013)
showed that state-of-the-art offline POMDP planners ran out
of memory on 10 node graphs. Thus, we focused on online
planning algorithms and tried using POMCP (Silver and Ve-
ness 2010), a state-of-the-art online POMDP solver which
relies on Monte-Carlo (MC) tree search and rollout strate-
gies to come up with solutions quickly. However, it keeps
the entire search tree over sampled histories in memory, dis-
abling scale-up to the problems of interest in this paper.
Hence, we propose a MC based online planner that utilizes
the QMDP heuristic and eliminates this search tree.

POMDP black box simulator: MC sampling based plan-
ners approximate the value function for a belief by the av-
erage value of n (say) MC simulations starting from states
sampled from the current belief state. Such approaches
depend on a POMDP black box simulator Γ(st, αt) ∼
(st+1, ot+1, rt+1) which generates the state, observation and
reward at time t + 1, given the state and action at time t, in
accordance with the POMDP dynamics. In Γ, ot+1, st+1 and
rt+1 are generated as follows:

• ot+1 :Every edge e in Θ(αt) is sampled (either kept or re-
moved) according to the existence probability on the edge
in order to generate ot+1.

• st+1 :Let st+1 = 〈H ′, F ′〉 and st = 〈H,F 〉. To
get st+1 from st and αt, we normalize D(p,T)nx1 to
get probabilities of nodes getting influenced. Let K =
{H[i] = 1 ∨ αt[i] = 1} represent the set of nodes
which are certainly influenced. Then, H ′[i] = 1 ∀i ∈
K and for all other i, H ′[i] is sampled according to
D(p,T)nx1[i]. Also, F ′[i] = F [i] ∀i /∈ Θ(αt) and
F ′[i] = ot+1[i] ∀i ∈ Θ(αt). Note that st+1 calcu-
lated this way represents a state sampled according to
T (st, αt, st+1). Thus, using D(p,T)nx1, we compactly
represent T (st, αt, st+1) ∀{st, αt, st+1}.

• rt+1 : ‖st+1‖ − ‖st‖, where ‖st+1‖ is the number of
influenced nodes in st+1.

QMDP It is a well known approximate offline plan-
ner, and it relies on Q(s, a) values, which represents the
value of taking action a in state s. It precomputes these
Q(s, a) values for every (s, a) pair by approximating them
by the future expected reward obtainable if the environ-
ment is fully observable (Littman, Cassandra, and Kael-
bling 1995). Finally, QMDP’s approximate policy Π is given



Algorithm 1: PSINET
Input: Belief state β, Uncertain graph G
Output: Best Action κ

1 Sample graph to get ∆ different instances;
2 for δ ∈ ∆ do
3 FindBestAction(δ, αδ, β);

4 κ = V oteForBestAction(∆, α)
5 UpdateBeliefState(κ, β);
6 return κ;

by Π(b) = arg maxa
∑
sQ(s, a)b(s) for belief b. Our in-

tractable POMDP state and action spaces makes it infeasible
to calculate Q(s, a) ∀ (s, a). Thus, we propose to use a MC
sampling based online variant of QMDP in PSINET.

Algorithm Flow Algorithm 1 shows the flow of PSINET.
In Step 1, we randomly sample all e ∈ Eu in G (according
to u(e)) to get ∆ different graph instances. Each of these
instances is a different POMDP as the h-values of nodes are
still partially observable. Since each of these instances fixes
f(e) ∀e ∈ Eu, the belief β is represented as an un-weighted
particle filter where each particle is a tuple of h-values of all
nodes. This belief is shared across all instantiated POMDPs.
For every graph instance δ ∈ ∆, we find the best action αδ
in graph δ, for the current belief β in step 3. In step 4, we
find the best action κ for belief β, over all δ ∈ ∆ by voting
amongst all the actions chosen by δ ∈ ∆. Then, in step 5,
we update the belief state based on the chosen action κ and
the current belief β. PSINET can again be used to find the
best action for this or any future updated belief states. We
now detail the steps in Algorithm 1.

Sampling Graphs In Step 1, we randomly keep or remove
uncertain edges to create one graph instance. As a single in-
stance might not represent the real network well, we instan-
tiate the graph ∆ times and use each of these instances to
vote for the best action to be taken.

FindBestAction Step 3 uses Algorithm 2, which finds the
best action for a single network instance, and works sim-
ilarly for all instances. For each instance, we find the ac-
tion which maximizes long term rewards averaged across n
(we use n = 28) MC simulations starting from states (par-
ticles) sampled from the current belief β. Each MC simula-
tion samples a particle from β and chooses an action to take
(choice of action is explained later). Then, upon taking this
action, we follow a uniform random rollout policy (until ei-
ther termination, i.e., all nodes get influenced, or the horizon
is breached) to find the long term reward, which we get by
taking the “selected” action. This reward from each MC sim-
ulation is analogous to a Q(s, a) estimate. Finally, we pick
the action with the maximum average reward.

Multi-Armed Bandit We can only calculate Q(s, a) for
a select set of actions (due to our intractable action space).
To choose these actions, we use a UCT implementation of a
multi-armed bandit to select actions, with each bandit arm
being one possible action. Every time we sample a new
state from the belief, we run UCT, which returns the action
which maximizes this quantity: Υ(s, a) = QMC(s, a) +

c0

√
logN(s)
N(s,a) . Here, QMC(s, a) is the running average of

Q(s,a) values across all MC simulations run so far. N(s)
is number of times state s has been sampled from the be-
lief. N(s, a) is number of times action a has been chosen in
state s and c0 is a constant which determines the exploration-
exploitation tradeoff for UCT. High c0 values make UCT
choose rarely tried actions more frequently, and low c0 val-
ues make UCT select actions having high QMC(s, a) to get
an even better Q(s, a) estimate. Thus, in every MC simula-
tion, UCT strategically chooses which action to take, after
which we run the rollout policy to get the long term reward.

Voting Mechanisms In Step 4, each network instance
votes for the best action (found using Step 3) for the uncer-
tain graph and the action with the highest votes is chosen.
We propose three different voting schemes:

• PSINET-S Each instance’s vote gets equal weight.

• PSINET-W Every instance’s vote gets weighted differ-
ently. The instance which removes x uncertain edges has
a vote weight of W (x) = x ∀x ≤ m/2 and W (x) =
m − x ∀x > m/2. This weighting scheme approximates
the probabilities of occurrences of real world events by
giving low weights to instances which removes either too
few or too many uncertain edges, since those events are
less likely to occur. Instances which remove m/2 uncer-
tain edges get the highest weight, since that event is most
likely.

• PSINET-C Given a ranking over actions from each in-
stance, the Copeland rule makes pairwise comparisons
among all actions, and picks the one preferred by a major-
ity of instances over the highest number of other actions
(Pomerol and Barba-Romero 2000). It is a popular voting
rule because it is Condorcet consistent (i.e., if an action is
preferred to every other action in a majority of the votes,
it will be selected with certainty). Similar to (Jiang et al.
2014), we generate a partial ranking for each instance by
using D runs of Algorithm 2.

Belief State Update Recall that every MC simulation
samples a particle from the belief, after which UCT chooses
an action. Upon taking this action, some random state (parti-
cle) is reached using the transition probability heuristic. This
particle is stored, indexed by the action taken to reach it. Fi-
nally, when all simulations are done, corresponding to every
action α that was tried during the simulations, there will be
a set of particles that were encountered when we took action
α in that belief. The particle set corresponding to the action
that we finally choose, forms our next belief state.

4 Experimental Evaluation
We provide two sets of results. First, we show results on
artificial networks to understand our algorithms’ properties
on abstract settings, and to gain insights on a range of net-
works. Next, we show results on the two real world homeless
youth networks that we had access to. In all experiments,
we select 2 nodes per round and average over 20 runs, un-
less otherwise stated. PSINET-(S and W) use 20 network



Algorithm 2: FindBestAction
Input: Graph instance δ, belief β, N simulations
Output: Best Action αδ

1 Initialize counter = 0;
2 while counter + + < N do
3 s = SampleStartStateFromBelief(β);
4 a = UCT MultiArmedBandit(s);
5 {s′, r} = SimulateRolloutPolicy(s, a);

6 αδ = action with max average reward;
7 return αδ;

instances and PSINET-C uses 5 network instances (each in-
stance finds its best action 5 times) in all experiments, unless
otherwise stated. The propagation and existence probabil-
ity values were set to 0.5 in all experiments (based on find-
ings by Kelly et al. (1997)), although we relax this assump-
tion later in the section. In this section, a 〈X,Y, Z〉 network
refers to a network with X nodes, Y certain and Z uncer-
tain edges. We use a metric of “indirect influence spread”
(IIS) throughout this section, which is number of nodes “in-
directly” influenced by intervention participants. For exam-
ple, on a 30 node network, by selecting 2 nodes each for
10 interventions (horizon), 20 nodes (a lower bound for any
strategy) are influenced with certainty. However, the total
number of influenced nodes might be 26 (say) and thus, the
IIS is 6. All comparison results are statistically significant
under bootstrap-t (α = 0.05).
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Figure 2: Comparison on BTER graphs

Artificial networks First, we compare all algorithms on
Block Two-Level Erdos-Renyi (BTER) networks (having
degree distribution Xd ∝ d−1.2, where Xd is number of
nodes of degree d) of several sizes, as they accurately cap-
ture observable properties of real-world social networks (Se-
shadhri, Kolda, and Pinar 2012).

In Figure 2(a), we compare solution qualities of Degree
Centrality (DC) (which selects nodes based on their out-
degrees, and e ∈ Eu add u(e) to node degrees), POMCP and
PSINET-(S,W and C) on BTER networks of varying sizes.
We choose DC as our baseline as it is the current modus
operandi of agencies working with homeless youth. The x-
axis shows number of network nodes and the y-axis shows
IIS across varying horizons (number of interventions). This
figure shows that all POMDP based algorithms beat DC
by ∼60%, which shows the value of our POMDP model.
Further, it shows that PSINET-W beats PSINET-(S and C).
Also, POMCP runs out of memory on 30 node graphs.

In Figure 2(b), we show runtimes of DC, POMCP and
PSINET-(S,W and C) on the same BTER networks. The x-

axis shows number of network nodes and the y-axis shows
log (base e) of runtime (in seconds). Figure 2(b) shows that
DC runs quickest (as expected) and all PSINET variants run
in almost the same time. Thus, Figures 2(a) and 2(b) tell
us that while DC runs quickest, it provides the worst solu-
tions. Amongst the POMDP based algorithms, PSINET-W is
the best algorithm that can provide good solutions and can
scale up as well. Surprisingly, PSINET-C performs worse
than PSINET-(W and S) in terms of solution quality. Thus,
we now focus on PSINET-W.
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Figure 3: Increasing number of graph instances

Having shown the impact of POMDPs, we analyze the
impact of increasing network instances (which implies in-
creasing number of votes in our algorithm) on PSINET-W.
In Figure 3(a), we show solution quality of PSINET-W with
increasing network instances, for a 〈40, 71, 41〉 BTER net-
work with a horizon of 10. The x-axis shows the number of
network instances and the y-axis shows IIS. Unsurprisingly,
this figure shows that increasing the number of network in-
stances increases IIS as well.

In Figure 3(b), we show runtime of PSINET-W with in-
creasing network instances, for a 〈40, 71, 41〉 BTER net-
work with a horizon of 10. The x-axis shows the number
of network instances and the y-axis shows runtime (in sec-
onds). This figure shows that increasing the number of net-
work instances increases the runtime as well. Thus, a solu-
tion quality-runtime tradeoff exists, which depends on the
number of network instances. Greater number of instances
results in better solutions and slower runtimes and vice
versa. However, for 30 vs 70 instances, the gain in solution
quality is <5% whereas the runtime is ∼2X, which shows
that increasing instances beyond 30 yields marginal returns.
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Figure 4: Comparison of Degree Centrality with PSINET-W
across varying parameters

Next, we relax our assumptions about propagation (p(e))
probabilities, which were set to 0.5 so far. Figures 4(a)
shows the solution quality, when PSINET-W and DC
are solved with different p(e) values respectively, for a



〈40, 71, 41〉 BTER network with a horizon of 10. The x-
axis shows p(e) and the y-axis shows IIS. This figure shows
that varying p(e) minimally impacts PSINET-W’s improve-
ment over DC, which shows our algorithms’ robustness to
these probability values (We get similar results upon chang-
ing u(e)).

In Figure 4(b), we show solution qualities of PSINET-W
and DC on a 〈30, 31, 27〉 BTER network (horizon=3) and
vary number of nodes selected per round (K). The x-axis
shows increasing K, and the y-axis shows IIS. This figure
shows that even for a small horizon of length 3, which does
not give many chances for influence to spread, PSINET-W
significantly beats DC. For increasing values ofK, PSINET-
W beats DC with increasing margins.

0

5

10

15

20

10 30 50 70 90

In
fl
u
e
n
ce
 S
p
re
a
d

Number of Network Nodes

DC

PSINET‐S

PSINET‐W

(a) ER Networks

0

5

10

15

20

25

30

1st graph 2nd graph

In
fl
u
e
n
ce
 S
p
re
a
d

DC PSINET‐S PSINET‐W

(b) Solution Quality

Figure 5: ER networks and Real world networks

Next, Figure 5(a) shows solution quality of DC and
PSINET-(S and W) on simple Erdos-Renyi (ER) networks
(p = 0.5). Even though ER networks do not capture most
properties of real-world networks, we run on ER networks
to see how our algorithms perform on a different kind of net-
work. The x-axis is number of network nodes and the y-axis
shows IIS. Figure 5(a) shows that PSINET-(S and W) beat
DC on ER networks as well, with PSINET-W beating all
other algorithms. However, the difference between DC and
PSINET on ER networks is not as much as on BTER net-
works. However, since real-world networks are rarely simi-
lar to ER networks, this result does not invalidate PSINET-
W’s real-world applicability.

Figure 6: Sample BTER Graph

Real world networks Figure 5(b) compares PSINET vari-
ants and DC (horizon = 30) on two real-world social
networks (created by our collaborators through surveys
and interviews of homeless youth frequenting My Friend’s
Place’s) of homeless youth (each of size∼ 〈155, 120, 190〉).
The x-axis shows the two networks and the y-axis shows IIS.
This figure clearly shows that all PSINET variants beat DC

on both real world networks by ∼60%, which shows that
PSINET works equally well on real-world networks. Also,
PSINET-W beats PSINET-S, in accordance with previous
results. Above all, this signifies that we could improve the
quality and efficiency of HIV based interventions over the
current modus operandi of agencies by ∼60%.

We now differentiate between the kinds of nodes selected
by DC and PSINET-W for the sample BTER network in Fig-
ure 6, which contains nodes segregated into four clusters (C1
to C4), and node degrees in a cluster are almost equal. C1 is
biggest, with slightly higher node degrees than other clus-
ters, followed by C2, C3 and C4. DC would first select all
nodes in cluster C1, then all nodes in C2 and so on. Select-
ing all nodes in a cluster is not “smart”, since selecting just a
few cluster nodes influences all other nodes. PSINET-W re-
alizes this by looking ahead and spreads more influence by
picking nodes in different clusters each time. For example,
assuming K=2, PSINET-W picks one node in both C1 and
C2, then one node in both C1 and C4, etc.

5 Implementation Challenges
Looking toward the future of testing the deployment of this
procedure in agencies, there are a few implementation chal-
lenges that will need to be faced. First, collecting accurate
social network data on homeless youth is a technical and fi-
nancial burden beyond the capacity of most agencies work-
ing with these youth. Members of this team had a large three
year grant from National Institute of Mental Health to con-
duct such work in only two agencies. Our solution, moving
forward would be to use staff at agencies to delineate a first
approximation of the network, based on their ongoing re-
lationships with the youth. The POMDP procedure would
subsequently be able to correct the network graph iteratively
(by resolving uncertain edges in each step). We see this as
one of the major strengths of this approach.

Second, our prior research on homeless youth (Rice and
Rhoades 2014) suggests that some structurally important
youth may be highly anti-social and hence a poor choice
for change agents in an intervention such as this. We sug-
gest that if such a youth is selected by the POMDP program,
we then choose the next best action (subset of nodes) which
does not include that “anti-social” youth. Thus, the solution
may require some ongoing management as certain individ-
uals either refuse to participate as peer leaders or based on
their anti-social behaviors are determined by staff to be in-
appropriate.

Third, because of the history of neglect and abuse suf-
fered by most of these youth, many are highly suspicious of
adults. Including a computer-based selection procedure into
the recruitment of peer leaders may raise suspicions about
invasion of privacy for these youth. We suggest an ongoing
public awareness campaign in the agencies working with
this program to help overcome such fears and to encour-
age participation. Along with this issue, is a secondary is-
sue about protection of privacy for the individuals involved.
Agencies collect information on their clients, but most of
this information is not to be shared with third parties, such
as researchers. We suggest working with agencies to cre-
ate procedures which allow them to implement the POMDP



program without having to provide identifying information
to our team.

6 Conclusion
This paper presents PSINET, a POMDP based decision sup-
port system to select homeless youth for HIV based inter-
ventions. Previous work in strategic selection of interven-
tion participants does not handle uncertainties in the social
network’s structure and evolving network state, potentially
causing significant shortcomings in spread of information.
PSINET has the following key novelties: (i) it handles un-
certainties in network structure and evolving network state;
(ii) it addresses these uncertainties by using POMDPs in in-
fluence maximization; and (iii) it provides algorithmic ad-
vances to allow high quality approximate solutions for such
POMDPs. Simulations show that PSINET achieves ∼60%
improvement over the current state-of-the-art. PSINET was
developed in collaboration with My Friend’s Place and is
currently being reviewed by their officials.
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