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Abstract

Influence Maximization is an active topic, but it was
always assumed full knowledge of the social network
graph. However, the graph may actually be unknown
beforehand. For example, when selecting a subset of a
homeless population to attend interventions concerning
health, we deal with a network that is not fully known.
Hence, we introduce the novel problem of simultane-
ously influencing and mapping (i.e., learning) the graph.
We study a class of algorithms, where we show that: (i)
traditional algorithms may have arbitrarily low perfor-
mance; (ii) we can effectively influence and map when
the independence of objectives hypothesis holds; (iii)
when it does not hold, the upper bound for the influence
loss converges to 0. We run extensive experiments over
four real-life social networks, where we study two alter-
native models, and obtain significantly better results in
both than traditional approaches.

1 Introduction
Influencing a social network is an important technique, with
great potential to positively impact society, as we can modify
the behavior of a community. For example, we can increase
the overall health of a population; Yadav et al. (2015), for
instance, spread information about HIV prevention in home-
less populations. However, although influence maximization
has been extensively studied (Kempe, Kleinberg, and Tardos
2003; Cohen et al. 2014; Golovin and Krause 2010), their
main motivation is viral marketing, and hence they assume
that the social network graph is fully known, generally taken
from some social media network (such as Facebook).

However, the graphs recorded in social media do not really
represent all the people and all the connections of a popula-
tion. Most critically, when performing interventions in real
life, we deal with large degrees of lack of knowledge. Nor-
mally the social agencies have to perform several interviews
in order to learn the social network graph (Marsden 2005).
These highly unknown networks, however, are exactly the
ones we need to influence in order to have a positive impact
in the real world, beyond product advertisement.

Additionally, learning a social network graph is very valu-
able per se. Agencies also need data about a population, in
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order to perform future actions to enhance their well-being,
and better actuate in their practices (Marsden 2005). As men-
tioned, however, the works in influence maximization are
currently ignoring this problem.

Each person in a social network actually knows other peo-
ple, including the ones she cannot directly influence. Hence,
each time we select someone for an intervention (to spread
influence), we also have an opportunity to obtain knowledge
from that person. Therefore, in this work we present for
the first time the problem of simultaneously influencing and
mapping a social network. We study the performance of the
classical greedy influence maximization algorithm in this con-
text, and show that it can be arbitrarily low. Hence, we study
a class of algorithms for this problem, and show that we can
effectively influence and map a network when independence
of objectives holds. For the interventions where it does not
hold, we give an upper bound in our loss, which converges
to 0. We study an approximation of our main algorithm, that
works as well but requiring fewer assumptions.

We perform a large scale experimentation using four real
life social networks of homeless populations, where we show
that our algorithm is competitive with previous approaches in
terms of influence (even outperforming them in hard cases),
and is significantly better in terms of mapping.

2 Related Work
The influence maximization problem has recently been a very
popular topic of research. Normally, the main motivation is
viral marketing in social media (like Facebook or MyPlace).
Hence, previous works assume full knowledge of the social
network graph. The classical result is Kempe, Kleinberg, and
Tardos (2003), where they study the approximation guarantee
of a greedy algorithm for the “independent cascade model”.
Golovin and Krause (2010) further extended that result to the
case where before picking each node we are able to observe
which ones are already influenced or not. However, they still
assume full knowledge of the graph. Cohen et al. (2014)
focus on how to quickly estimate the potential spread of one
node, since running simulations (as needed by the greedy
algorithm) in large graphs is computationally expensive. A
different view was studied by Yadav et al. (2015), where they
analyze a model where nodes try to influence their neighbors
multiple times, and each edge has an existence probability.
We deal here with a different kind of uncertainty, as in our
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model whole portions of the graph are completely unknown.
This work also relates to the problem of submodular op-

timization (influence is a submodular function) by selecting
elements without knowledge of the whole set. Badanidiyuru
et al. (2014) present an algorithm for selecting the best sub-
set, giving elements arriving from a “stream”. Hence, given
enough time the full set would be seen, and which elements
are discovered does not depend on which ones are selected.

Our problem is also related to the classical max-k-cover
problem (Khuller, Moss, and Naor 1999), where we must
pick k subsets that maximize our coverage of a set. In that
case, however, the elements of each subset is known. There
is also an online version of the max-k-cover problem (Alon
et al. 2009), where we pick one subset at a time, but an ad-
versary fixes which element must be covered next. However,
the set and the available subsets are still known in advance.
Similarly, Grandoni et al. (2008) study the case of covering a
set whose elements are randomly chosen from a universe of
possible elements. Another important related problem is the
submodular secretary problem (Bateni, Hajiaghayi, and Zadi-
moghaddam 2013), where we again pick a subset to optimize
a submodular function. However, in that case, we receive one
element at a time, and we must make an irrevocable decision
of either keeping it or not.

Finally, this work also relates to sequential decision mak-
ing with multiple objectives (Roijers et al. 2013). Here we do
not aim at computing an optimal policy (which is computa-
tionally expensive), but at studying a greedy method, similar
to other works in influence maximization. Our algorithm is a
scalarization over two objectives, but such method was never
studied before to influence and map social networks.

3 Influencing and Mapping
We consider the problem of maximizing the influence in a
social network. However, we start by knowing only a sub-
graph of the social network. Each time we pick a node to
influence, it may teach us about subgraphs of the network.
Our objective is to spread influence, at the same time learning
the network graph (i.e., mapping). We call this problem as
“Simultaneous Influencing and Mapping” (SIAM). In this
paper, we consider a version of SIAM where we only need to
map the nodes that compose the network. We assume that we
always know all the edges between the nodes of the known
subgraph. For clarity, we will define formally here only the
version of SIAM that we handle in this work. Therefore,
unless otherwise noted, henceforth by SIAM we mean the
version of the problem that is formally defined below.

Let G := (V,E) be a graph with a set of nodes V and
edges E. We perform η interventions, where at each one we
pick one node. The selected node is used to spread influence
and map the network. We assume we do not know the graph
G, we only know a subgraphGk = (Vk, Ek) ⊂ G, where k is
the current intervention number. Gk starts as Gk := G0 ⊂ G.
For each node vi, there is a subset of nodes V i ⊂ V , which
will be called “teaching list”. Each time we pick a node vi, the
known subgraph changes to Gk := (Vk−1 ∪ V i, Ek), where
Ek contains all edges between the set of nodes Vk−1 ∪ V i in
G. Our objective is to maximize |Vk|, given η interventions.

For each node vi, we assume we can observe a number
γi, which indicates the size of its teaching list. We study two
versions: in one γi is the number of nodes in V i that are
not yet in Gk (hence, the number of new nodes that will be
learned when picking vi). We refer to this version as “perfect
knowledge”. In the other, γi := |V i|, and thus we cannot
know how many nodes in V i are going to be new or intersect
with already known nodes in Vk. We refer to this version as
“partial knowledge”. The partial knowledge version is more
realistic, as by previous experience we may have estimations
of how many people a person with a certain profile usually
knows. We study both versions in order to analyze how much
we may lose with partial knowledge. Note that we may also
have nodes with empty teaching lists (γi = 0). The teaching
list of a node vi is the set of nodes that vi will teach us about
once picked, and is not necessarily as complete as the true set
of all nodes known by vi. Some nodes could simply refuse to
provide any information.

Additionally, note that we are assuming the teaching list
and the neighbor list to be independent. That is, a node may
teach us about nodes that it is not able to directly influence.
For instance, it is common to know people that we do not
have direct contact with, or we are not “close” enough to be
able to influence. Similarly, a person may not tell us about all
her close friends, due to limitations of an interview process,
or even “shame” to describe some connections. However,
some readers could argue that people would be more likely
to teach us about their direct connections. Hence, we will
handle the case where the independence does not hold in our
empirical experiments in Section 4.2.

Simultaneously to the problem of mapping, we also want
to maximize the spread of influence over the network. We
consider here the traditional independent cascade model, with
observation, as in Golovin and Krause (2010). That is, a node
may be either influenced or uninfluenced. An uninfluenced
node may change to influenced, but an influenced node will
never change back to uninfluenced. Each time we pick a node
for an intervention, it will change to influenced. When a node
changes from uninfluenced to influenced, it will “spread”
the influence to its neighbors with some probability. That
is, at each edge e there is a probability pe. When a node
v1 changes to influenced, if there is an edge e = (v1, v2),
the node v2 will also change to influenced with probability
pe. Similarly, if v2 changes to influenced, it will spread the
influence to its neighbors by the same process. Influence only
spreads in the moment a node changes from uninfluenced
to influenced. That is, a node may only “try” one time to
spread influence to its neighbors. As in Golovin and Krause
(2010), we consider that we have knowledge about whether a
node is influenced or not (but in our case, we can only know
about nodes in the current known subgraph Gk). Let Ik be
the number of influenced nodes after k interventions. Our
objective is to maximize Ik given η interventions. Influence
may spread beyondGk. Hence, we consider Ik as the number
of influenced nodes in the full graph G. We denote as σi
the expected number of nodes that will be influenced when
picking vi (usually calculated by simulations).

As mentioned, we want to attend both objectives simul-
taneously. Hence, we must maximize both |Vk| and Ik. It is



easy to show that SIAM is an NP-Complete problem:
Proposition 1. SIAM is NP-Complete.

Proof. Let κ be an instance of the influence maximization
problem, with graph G. Consider now a SIAM problem
where no node carries information and G0 := G. If we can
solve this SIAM problem we can also solve the influence max-
imization problem κ. Therefore, SIAM is NP-Complete.

As SIAM is NP-Complete, similarly to previous influence
maximization works (Kempe, Kleinberg, and Tardos 2003;
Golovin and Krause 2010), we study greedy solutions. Like
the exploration vs exploitation dilemmas in online learning
(Valizadegan, Jin, and Wang 2011), the fundamental problem
of SIAM is whether to focus on influencing or mapping the
network. Hence, we propose as a general framework to select
the node vi such that:

vi = argmax(c1 × σi + c2 × γi) (1)
Constants c1 and c2 control the balance between influenc-

ing or mapping. c1 = 1, c2 = 0 is the classical influence max-
imization algorithm (“influence-greedy”); c1 = 0, c2 = 1,
on the other hand, only maximizes the knowledge-gain at
each intervention (“knowledge-greedy”). c1 = c2 = 1 is an
algorithm where both objectives are equally balanced (“bal-
anced”). Different weights may also be used.

Remember that we defined two versions for the γ values:
perfect knowledge, where we know how many new nodes
a node will teach us about; and partial knowledge, where
we do not know how many nodes will be new. In order to
better handle the partial knowledge case, we also propose
the “balanced-decreasing” algorithm, where c2 constantly
decreases until reaching 0. Hence, we define c2 as:

c2 :=

{
c′2 − 1

d × c
′
2 × k if k ≤ d

0 otherwise , (2)

where c′2 is the desired value for c2 at the very first iteration,
and d controls how fast c2 decays to 0.

3.1 Analysis
We begin by studying influence-greedy. It was shown that
when picking the node v which argmax(σv) at each interven-
tion, we achieve a solution that is a (1 − 1/e − ε) approx-
imation of the optimal solution, as long as our estimation
of σv (by running simulations) is “good enough” (Kempe,
Kleinberg, and Tardos 2003). However, even though the ac-
tual influence spread may go beyond the known graph Gk,
we can only run simulations to estimate σv in the current Gk.
Hence, the previous results are no longer valid. In fact, in
the next observation we show that we can obtain arbitrarily
low-performing solutions by using influence-greedy.
Observation 1. The performance of influence-greedy can
be arbitrarily low in a SIAM problem.

We show with an example. Consider the graph in Figure 1,
and assume we will run 2 interventions (i.e., pick 2 nodes).
There is a probability 1 to spread influence in any edge. Our
initial knowledge is V0 = {A,A′, B,B′, C}. A and B can in-
fluence A’ and B’, respectively. However, C cannot influence

A

A’

B

B’

C
Connected graph

of z nodes

Figure 1: A graph where the traditional greedy algorithm has
arbitrarily low performance.

any node. A, B, A’ and B’ have empty teaching lists. C, on the
other hand, can teach us about a connected graph of z nodes.
Influence-greedy, by running simulations on the known graph,
picks nodes A and B, since each can influence one more node.
The optimal solution, however, is to pick node C, which will
teach us about the connected graph of z nodes. Then, we can
pick one node in that graph, and influence z + 1 nodes in
total. Hence, the influence-greedy solution is only 4

z+1 of the
optimal. As z grows, influence-greedy will be arbitrarily far
from the optimal solution.

If we make some assumptions about the distribution of
the teaching lists across the nodes, however, influence-greedy
eventually maps the full graph given enough interventions.
Let n = |V |, and nk = |Vk|. We show the expected number
of interventions to learn all n nodes (subtracted by a small
ε, for numerical stability). We study the partial knowledge
version. Assume the size of the teaching list of each node
is drawn from a uniform distribution on the interval [0, u],
and any node is equally likely to be in a teaching list. We
consider that there is a probability ϕ that a node will have a
non-empty teaching list.
Proposition 2. The expected number (kfull) of interventions

for influence-greedy to learn n− ε nodes is
log(− ε

n0−n )

log(1−ϕ×u
2×n )

.

Proof. Since influence-greedy is not considering γ, it picks
nodes arbitrarily in terms of knowledge-gain. Hence, on
average it selects the expected value of the uniform distri-
bution, u/2. For each node v in a teaching list, the prob-
ability that it is not yet known is n−nk

n . Therefore, the
expected number of nodes known at one iteration k is:
E[nk] = ϕ× u

2 ×
n−E[nk−1]

n + E[nk−1]. Solving the recur-
rence gives:E[nk] = n0×(1− ϕ×u

2×n )
k−n×(1− ϕ×u

2×n )
k+n.

Solving for E[nk] = n − ε gives that the expected number

of interventions is: kfull =
log(− ε

n0−n )

log(1−ϕ×u
2×n )

.

kfull quickly increases as ϕ (or u) decreases. In Section 4,
we study experimentally the impact of ϕ on the performance
of influence-greedy.

Now, let’s look at balanced. Clearly, it will learn the full
graph with a lower number of expected interventions than
influence-greedy. However, although intuitively balanced
may seem reasonable, its performance may also quickly de-
grade if we assume partial knowledge (i.e., γi = |V i|).
Proposition 3. The performance of the balanced algorithm
degrades as nk → n, if γi = |V i|.



Proof. Each node in the teaching list of a node vi has prob-
ability n−nk

n of being a yet unknown node. Hence, the ex-
pected number of unknown nodes that will be learned by pick-
ing a node with teaching list size γi is: E[new] = γi× n−nk

n .
As nk → n, E[new]→ 0. Hence, when nk → n, balanced
picks a node v that maximizes σv+γv , thus missing to select
nodes vo (if available) with σo > σv, σo + γo < σv + γv,
with no actual gains in mapping.

This problem does not happen in the perfect knowledge
version. Since the γ values only include new nodes, γ → 0 as
nk → n, for all γ. Hence, in the perfect knowledge version,
balanced converges to the same behavior as influence-greedy
as k increases. In order to approximate this behavior for the
partial knowledge case, we propose the balanced-decreasing
algorithm, where the constantly decreasing c2 “simulates”
the decreasing γ values.

We now show that balanced can match the performance
of influence-greedy in terms of influence, but at the same
time mapping better the network. As we just discussed that
perfect knowledge can be approximated by using balanced-
decreasing, we focus here on the perfect knowledge case. We
show that when the independence of objectives hypothesis
holds (defined below), balanced plays the same as influence-
greedy or better, while influence-greedy may still fail in terms
of mapping. If the hypothesis does not hold, our influence
loss at one intervention will be bounded by u/2→ 0.

Let V σk be a subset of Vk where each v ∈ V σk maximizes σ
in the current intervention k. Similarly, let V γk ⊂ Vk, where
each v ∈ V γk maximizes γ in the current intervention k. As
before, we consider that the teaching list size of a node is
given by a uniform distribution, but since γ tends to decrease
at each intervention, we denote the interval as [0, uk].

Clearly, any node in the set V Goodk := V σk ∩ V
γ
k should

be selected, as they maximize both objectives. Hence, when
V Goodk 6= ∅ it is possible to simultaneously maximize both ob-
jectives, and thus we say that the independence of objectives
hypothesis holds. Since we are studying greedy-algorithms,
both balanced and influence-greedy lack optimality guaran-
tees. Hence, we focus here on a “local” analysis, and show
that given a set of k possible interventions (with the same
graph state across both algorithms at each intervention), bal-
anced is able to pick nodes that spread as much influence as
influence-greedy. Moreover, when balanced picks a different
node, our loss is bounded by uk/2. As uk → 0 with k →∞,
our loss also converges to 0.

Proposition 4. Balanced selects nodes that spread as much
influence as influence-greedy, if |V σk | > nk/2 and |V γk | >
nk/2, or as k → ∞. Influence-greedy, on the other hand,
selects worse nodes than balanced in terms of mapping with
probability 1 − |V

σ
k ∩V

γ
k |

|V σk |
. Moreover, when balanced selects

a node with worse σ than influence-greedy, the expected
influence loss is bounded by uk/2, which→ 0 as k →∞.

Proof. As balanced plays argmax(σ + γ), if there is a node
v ∈ V Goodk , balanced picks v. Influence-greedy, however,
selects an arbitrary node in V σk . Hence, it picks a node
v ∈ V Goodk with probability |V

σ
k ∩V

γ
k |

|V σk |
. Therefore, for all in-

terventions where V Goodk 6= ∅, balanced selects a node in
V Goodk , while influence-greedy makes a mistake in terms of
mapping with probability 1− |V

σ
k ∩V

γ
k |

|V σk |
.

We consider now the probability of V Goodk 6= ∅ across k
interventions. Clearly, if |V σk | > nk/2, and |V γk | > nk/2,
we have V Goodk 6= ∅. If not, note that as k → ∞, nk → n.
Therefore, V γk → Vk (since all γ → 0, all nodes will have
the same teaching list size), thus V Goodk → V σk 6= ∅. Hence,
the probability of V Goodk 6= ∅ goes to 1 as k →∞.

Let’s study now the case when V Goodk = ∅. Let v1 be
the node in V σk picked by influence-greedy, and v2 be the
node in Vk \ V σk with the largest γ2. Since V Goodk = ∅,
we must have that σ1 > σ2, and γ2 > γ1. However, as
long as γ2 − γ1 < σ1 − σ2, balanced still selects v1 (or
an even better node). In the worst case, the expected value
for γ2 is the expected maximum of the uniform distribution:
E[γ2] = uk − uk/(nk + 1) ≤ uk. γ1, on the other hand,
has the expected value of the uniform distribution E[γ1] =
uk/2. Hence, as long as σ1 − σ2 > uk/2, in expectation
balanced still picks v1 (or an even better node). Moreover,
when balanced does not pick v1, our loss in terms of influence
at intervention k is at most uk/2. Since γ → 0 as nk → n,
uk/2→ 0 as k →∞.

Proposition 4 shows that we may experience loss in one in-
tervention, when comparing influence-greedy with balanced.
However, the loss is bounded by uk/2, which goes to 0 as the
number of interventions grows. Moreover, when we do not
update the γ values, we can use the balanced-decreasing algo-
rithm to simulate the same effect. Additionally, in Proposition
4 we considered the same graph states at each intervention
across both algorithms. In practice, however, since balanced
is able to map the network faster, any loss experienced in
the beginning when k is low can be compensated by playing
better later with full knowledge of the graph, while influence-
greedy may still select nodes with lower σ due to lack of
knowledge. As noted in Observation 1, lack of knowledge of
the full graph can make influence-greedy play with arbitrarily
low performance. In Section 4.2 we perform an empirical
analysis assuming a power law model for the teaching lists,
and we note here that our main results still hold.

4 Results
We run experiments using four real life social networks of the
homeless population of Los Angeles, provided by us from
Eric Rice, from the School of Social Work of the University
of Southern California. All the networks are friendship-based
social networks of homeless youth who visit a social agency.
The first two networks (A, B) were created through surveys
and interviews. The third and fourth networks (Facebook,
MySpace) are online social networks of these youth cre-
ated from their Facebook and MySpace profiles, respectively.
Computation for the work described in this paper was sup-
ported by the University of Southern California’s Center for
High-Performance Computing (hpc.usc.edu).

We run 100 executions per network. At the beginning
of each execution, 4 nodes are randomly chosen to com-



pose our initial subgraph (G0). As mentioned, we consider
that we always know the edges between the nodes of our
current knowledge graph (Gk). We noticed similar tenden-
cies in the results across all four social networks. For clar-
ity, due to space constraints, we plot here the results con-
sidering all networks simultaneously (that is, we average
over all the 400 executions). In the appendix (available
at http://teamcore.usc.edu/people/sorianom/a16-ap.pdf) we
show the individual results for each network. In all graphs,
the error bars show the confidence interval, with ρ = 0.01.
When we say that a result is significantly better than another,
we mean with statistical significance according to a t-test
with ρ ≤ 0.01, unless noted otherwise. The size of each net-
work is: 142, 188, 33, 105; for A, B, Facebook and MySpace,
respectively. We evaluate up to 40 interventions.

We measure the percentage of influence in the network
(“Influence”) and percentage of known nodes (“Knowl-
edge”) for influence-greedy, knowledge-greedy, balanced and
balanced-decreasing (with c′2 = 1.0, and d = 5). In order to
estimate the expected influence spread (σv) of each node, we
run 1000 simulations before each intervention. Estimating the
expected influence through simulations is a common method
in the literature. In our case, the simulations are run in the cur-
rent known subgraph Gk, although the actual influence may
go beyondGk. Influenced nodes inG\Gk will be considered
when we measure Influence, but will not be considered in our
estimation of σv. Concerning the teaching list size (γv), we
consider it to hold the number of new nodes that would be
learned if v is selected, for balanced and knowledge-greedy
(i.e., perfect knowledge). For balanced-decreasing, we con-
sider γv to hold the full teaching list size, including nodes
that are already known (i.e., partial knowledge). Therefore,
we can evaluate if balanced-decreasing approximates well
balanced, when perfect knowledge is not available.

We simulate the teaching lists, since there are no real world
data available yet (we only have data about the connections
in the four real life social networks). We study two models:
(i) uniform, which follows the assumptions of our theoretical
analysis; (ii) power law, which considers that nodes are more
likely to teach us about others which are close to them in
the social network graph. We present the second model to
show that our conclusions hold irrespective of the uniform
assumption. For each node, we decide whether it will have a
non-empty teaching list according to a probability ϕ. We run
experiments using different combinations of ϕ, probability
of influence p, and c1 and c2 values.

4.1 Uniform Model
Under the uniform model, if a node has a teaching list, we
fix its size according to a uniform distribution from 0 to
0.5× |V |. Each node in the graph is also equally likely to be
in the teaching list of a node vi. We consider here the teaching
list and the neighbor list to be independent, as people may
know others that they cannot influence, and they may also
not tell us all their connections, as described before. The
case where the teaching list and the neighbor list are not
independent is considered in Section 4.2.

We run several parametrizations. Figure 2 shows the result
at each intervention for ϕ = 0.5 and p = 0.5. As we see
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Figure 2: Results of 4 real world networks across many inter-
ventions, for p = 0.5 and ϕ = 0.5 (uniform distribution).

in Figure 2 (a), the Influence obtained by influence-greedy,
balanced, and balanced-decreasing are very similar. In fact,
out of all 40 interventions, their result is not significantly
different in any of them (and they are significantly better than
knowledge-greedy in around 75% of the interventions). This
shows that balanced is able to successfully spread influence
in the network, while at the same time mapping the graph. We
can also notice that a perfect knowledge about the number of
new nodes in the teaching lists is not necessary, as balanced-
decreasing obtained close results to balanced.

Figure 2 (b) shows the results in terms of Knowledge. All
algorithms clearly outperform influence-greedy with statisti-
cal significance. Moreover, the result for knowledge-greedy,
balanced and balanced-decreasing are not significantly dif-
ferent in any of the interventions. This shows that we are
able to successfully map the network (as well as knowledge-
greedy), but at the same time spreading influence success-
fully over the network (as well as influence-greedy), even
in the partial knowledge case. Hence, the independence of
objectives hypothesis seems to hold at most interventions
in the networks, since we could maximize both objectives
simultaneously, as predicted in Proposition 4. Given enough
interventions, however, influence-greedy is also able to map
the network, as we discussed in Proposition 2.

It is also interesting to note that even though influence-
greedy has much less information about the network (with
significantly lower mapping performance in around 16 in-
terventions), it is still able to perform as well as the other
algorithms in terms of Influence. Observation 1, however,
showed that its Influence performance can be arbitrarily low.
As we discuss later, for some parametrizations we actually
found that influence-greedy has significantly lower results
than the other algorithms in terms of Influence as well.

In order to compare the results across different parametriza-



tions, we calculate the area under the curve (AUC) of the
graphs. The closer the curves are to 1.0 the better, hence an
AUC of 39 (that is, always at 1.0 across all 40 interventions)
would be an “ideal” result. In Figure 3 (a) we show the results
for a fixed influence probability value (p = 0.5), but different
teaching probability (ϕ) values. First we discuss the results
in terms of Influence (left-hand side of the graph). As we
can see, except for knowledge-greedy, all algorithms obtain
very similar results. However, for ϕ = 0.1, the Influence
for balanced and balanced-decreasing is slightly better than
influence-greedy, in the borderline of statistical significance
(ρ = 0.101 and 0.115, respectively). Moreover, we can see
that ϕ does impact the influence that we obtain over the net-
work, although the impact is not big. For influence-greedy,
from ϕ = 0.5 to ϕ = 1.0, the difference is only statisti-
cally significant with ρ = 0.092. However, from ϕ = 0.1
to ϕ = 0.5 the difference is statistically significant with
ρ = 3.26× 10−27. Similarly, for all other algorithms there
is a significant difference from ϕ = 0.1 to ϕ = 0.5, while
from ϕ = 0.5 to ϕ = 1.0 the difference is only significant
with ρ < 0.1 (except for knowledge-greedy, its difference is
not significant between ϕ = 0.5 and ϕ = 1.0).

Let’s look at the results in terms of Knowledge, on the
right-hand side of Figure 3 (a). We can see that ϕ has a
much bigger impact in our mapping, as expected. Knowledge-
greedy, balanced and balanced-decreasing are all signifi-
cantly better than influence-greedy. However, we can notice
that the difference between influence-greedy and the other
algorithms decreases as ϕ increases. Similarly, when compar-
ing knowledge-greedy, balanced and balanced-decreasing,
we can notice that the difference between the algorithms also
decreases as ϕ increases. For both ϕ = 0.1 and ϕ = 0.5,
however, the algorithms are not significantly different. In-
terestingly, when ϕ = 1, because of the lower variance,
knowledge-greedy and balanced become significantly bet-
ter than balanced-decreasing, even though the differences
between the algorithms decreases.

In Figure 3 (b), we keep ϕ = 0.5, and change p. In the
left-hand side we see the results for Influence. As expected,
there is clearly a significant difference when p changes from
0.1 to 0.5. However, we can notice that the difference be-
tween the algorithms does not change significantly when
p changes. In both cases, the differences between influence-
greedy, balanced and balanced-decreasing are not significant.
Additionally, in both cases all algorithms are significantly
better than knowledge-greedy. In terms of Knowledge (right-
hand side of the figure) we see that the influence probability
has no impact in any algorithm, as it would be expected. For
all algorithms, the difference between p = 0.1 and p = 0.5
is not statistically significant.

We also compare the regret obtained by the different al-
gorithms at different influence probabilities and teaching
probability values. First, we run the influence-greedy algo-
rithm, but considering that we know the full graph (that is,
Gk := G). Although that solution is not optimal, it is the
best known approximation of the optimal, hence we call it
“perfect”. We calculate the AUC for perfect, and define the
regret of an algorithm x as: AUCPerfect − AUCx. We an-
alyze the regret in terms of Influence in Figure 4. Note that,
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Figure 3: Results of Influence and Knowledge for different
teaching and influence probabilities (uniform distribution).
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Figure 4: Regret for different teaching and influence proba-
bilities (uniform distribution). Lower results are better.

in the figure, the lower the result the better. On the left-hand
side we show the regret for p = 0.1 and different ϕ values,
while on the right-hand side we show for p = 0.5. All algo-
rithms (except knowledge-greedy) have a similar regret, as it
would be expected based on the previous results. However,
we can notice here that the regret for balanced and balanced-
decreasing when ϕ = 0.1 and p = 0.5 is actually lower than
influence-greedy. The difference is statistically significant,
with ρ = 0.069 and ρ = 0.092, respectively. Hence, we can
actually have a significantly better influence on the social
network graph than the traditional greedy algorithm, when
the teaching probability is low. However, when ϕ = 0.1 and
p = 0.1, even though the regret for balanced and balanced-
decreasing is still lower than influence-greedy, it is not sig-
nificant anymore (as there is larger variance when p = 0.1).
Additionally, we note that the difference in regret for bal-
anced and balanced-decreasing is always not significant. It
is also interesting to note that for some parametrizations,
the regret of influence-greedy is actually close to 0, which
means that in some cases lack of knowledge of the full graph
does not significantly harm the influence performance. When
p = 0.1, and ϕ = 0.5 or ϕ = 1.0, the regret is not significant
(ρ = 0.410, and ρ = 0.78, respectively). For p = 0.5 and
ϕ = 1.0, the regret is in the borderline of not being significant
(ρ = 0.102). In all other cases, the regret is significant.

We discussed 4 algorithms, but our framework can ac-



tually generate a variety of behaviors by using differ-
ent c1 and c2 values. We tested 6 more combinations:
{(0.5, 2), (1, 0.5), (1, 1.5), (1, 2), (2, 0.5), (2, 1)}, but we
did not observe significant differences in comparison with
the previous algorithms in the four social networks graphs.
Hence, finding a good parametrization of c1 and c2 does not
seem to be a crucial problem for the balanced algorithm.

4.2 Power Law Model
In order to show that our conclusions still hold under different
models, we also run experiments considering a power law
distribution for the teaching lists. The power law is a very
suitable model for a range of real world phenomena. In fact,
Andriani and McKelvey (2007), in a very comprehensive
literature survey, lists 80 different kinds of phenomena which
are modeled in the literature by power law distributions, and
half of them are social phenomena. For example, it has been
shown to be a good model for social networks, co-authorships
networks, the structure of the world wide web and actor
movie participation networks. A power law model also seems
suitable in our case, as we can expect that a person will be
very likely to teach us about the people who she has a direct
connection with, and less and less likely to report people
that are further away in the graph. Hence, when generating
the teaching list of a node vi in our experiments, each node
vo (vo 6= vi) will be in its teaching list according to the
following probability: po := (a− 1.0)× h−ao , where 1.0 <
a ≤ 2.0, and ho is the shortest path distance between node
vi and vo. a − 1.0 represents the probability of a neighbor
node vo (i.e., ho = 1) being selected. If node vi and vo
are completely disconnected, we set ho := |V |. Under this
model the probability of a person teaching us about another
is always strictly greater than 0, even though it may be very
small if the respective nodes are very distant in the graph.

We fix a = 1.8 (80% probability of each of a nodes’ neigh-
bors being in its teaching list). We show results for a = 1.2
in the appendix, for the interested reader (and our conclu-
sions still hold in the alternative parametrization). Similarly
as before, Figure 5 shows the result at each intervention for
ϕ = 0.5 and p = 0.5. As we can see, our main conclusions
still hold in the power law model. The Influence obtained
by influence-greedy, balanced, and balanced-decreasing are
very similar. Out of 40 interventions, their results are not
significantly different in 39 (ρ ≤ 0.05), and they are signif-
icantly better than knowledge-greedy in around 60% of the
interventions (ρ ≤ 0.05).

This time, however, balanced-decreasing obtained worse
results than balanced in terms of Knowledge. Although up
to iteration 4, knowledge-greedy, balanced and balanced-
decreasing are not significantly different; both knowledge-
greedy and balanced are significantly better than balanced-
decreasing after that iteration. It is harder to obtain Knowl-
edge under the power law model than under the uniform
model (all algorithms converge slower to 1.0 than before).
Hence, balanced-decreasing would require a slower decay
speed (i.e., higher d) in this case, in order to perform better.

We can also notice that all algorithms are significantly bet-
ter than influence-greedy in all iterations, in terms of Knowl-
edge. Note that under the uniform model, influence-greedy
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Figure 5: Results of 4 real world networks across many inter-
ventions, for p = 0.5 and ϕ = 0.5 (power law distribution).

was not significantly worse than the other algorithms after
iteration 20 (ρ ≤ 0.1). Hence, as expected, influence-greedy
becomes relatively worse than the other algorithms when we
assume a model where mapping is harder.

We calculate the AUC, in order to compare different
parametrizations. Figure 6 (a) shows the result for a fixed
influence probability value (p = 0.5), and different teach-
ing probability (ϕ) values. As before, except for knowledge-
greedy, all algorithms in general obtain similar results in
terms of Influence. We notice, however, that for ϕ = 0.1, the
result for balanced and balanced-decreasing is actually sig-
nificantly better than influence-greedy (ρ = 0.064 and 0.038,
respectively). Again, we also notice that ϕ significantly im-
pacts the influence that we obtain over the network, although
the impact is small. For all algorithms, the impact is signif-
icant from ϕ = 0.1 to ϕ = 0.5. For influence-greedy, the
difference is statistically significant with ρ = 1.39× 10−31,
while for knowledge-greedy, balanced and balanced de-
creasing, there is statistically significant difference with
ρ = 4.529 × 10−6, 3.258 × 10−14 and 8.429 × 10−20, re-
spectively. However, the impact of ϕ increasing from 0.5 to
1 is not that significant for knowledge-greedy, balanced and
balanced-decreasing (ρ = 0.41, 0.02, 0.03, respectively),
while for influence-greedy the change has significant impact
(ρ = 10−6). In terms of Knowledge, we can see that all algo-
rithms are significantly better than influence-greedy for all ϕ
values (with ρ ≤ 3.464015× 10−19). However, this time we
notice that knowledge-greedy and balanced are significantly
better than balanced-decreasing for all ϕ. As mentioned, a
different decay speed d is necessary in this case.

In Figure 6 (b), we show different values of p for ϕ =
0.5. As before, in terms of Influence the difference between
influence-greedy, balanced and balanced-decreasing is not
significant, and all algorithms are significantly better than
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Figure 6: Influence and Knowledge for different teaching and
influence probabilities (power law distribution).
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Figure 7: Regret for different teaching and influence proba-
bilities (power law distribution). Lower results are better.

knowledge-greedy. In terms of Knowledge, the influence
probability does not affect knowledge-greedy, balanced nor
balanced-decreasing significantly, as expected. This time,
however, influence-greedy obtains a significantly better result
for p = 0.1 than for p = 0.5. This may happen because for
p = 0.1 influence-greedy has a higher tendency of selecting
nodes with a high number of neighbors, which also tends to
be the ones with large teaching lists. Note that this does not
happen when the teaching and neighbor lists are independent.

Figure 7 shows the regret (lower results are better). We can
notice similar results as before: all algorithms have similar
regret (except for knowledge-greedy), and the regret for bal-
anced and balanced-decreasing when ϕ = 0.1 and p = 0.5
is again significantly lower than influence-greedy (ρ = 0.019
and 0.009, respectively). This time, however, we can notice
that for some parametrizations balanced-decreasing is actu-
ally the algorithm with the lowest regret. For p = 0.5 and
ϕ = 0.5, balanced-decreasing is better than balanced with
ρ = 4.7 × 10−4. Hence, even though balanced-decreasing
performed relatively worse than under the uniform model in
terms of Knowledge, it is actually the best algorithm in terms
of Influence for some parametrizations.

5 Conclusion
We introduced the novel problem of simultaneously influenc-
ing and learning the graph of (i.e., mapping) a social network.

We show theoretically and experimentally that an algorithm
which locally maximizes both influence and knowledge per-
forms as well as an influence-only greedy algorithm in terms
of influence, and as well as a knowledge-only greedy ap-
proach in terms of knowledge. We present an approximation
of our algorithm that gradually decreases the weight given to
knowledge-gain, which requires fewer assumptions. Results
show that the approximation works well, and all algorithms
can even significantly influence more nodes than the tradi-
tional greedy influence maximization algorithm when nodes
have a low knowledge probability.
Acknowledgments: This research was supported by MURI
grant W911NF-11-1-0332, and by IUSSTF. The authors
would like to thank Eric Rice for the social networks data.
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A Appendix
A.1 Results for each network
Since in Section 4 we presented our results across 4 differ-
ent social network graphs, in this section we present those
individually for each network, for the interested reader. As-
suming a uniform model for the teaching lists, we can see the
results for network A in Figures 8, 9, 10; for network B in
Figures 11, 12, 13; for the Facebook network in Figures 14,
15, 16; and finally for the MySpace network in Figures 17, 18,
19. Assuming a power law model, we can see the results for
network A in Figures 20, 21, 22; for network B in Figures 23,
24, 25; for the Facebook network in Figures 26, 27, 28; and
finally for the MySpace network in Figures 29, 30, 31. As we
can see, the results for each network show similar tendencies
as the results across all networks presented in the main paper.
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Figure 8: Results for network A across many interventions,
for influence probability p = 0.5, teaching probability ϕ =
0.5, assuming uniform distribution.

A.2 Additional results for power law distribution
In Section 4.2 we presented results for the power law dis-
tribution for a = 1.8. In this section, we present results for
a = 1.2 (that is, each neighbor has a 20% probability of
being in a teaching list). We show in Figure 32 the result at
each intervention for ϕ = 0.5 and p = 0.5. In Figure 33, we
show the AUC results for different parametrizations of p and
ϕ. Finally, we present the regret for this case in Figure 34.
As we can see, our main conclusions still hold for a different
parametrization of a.
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Figure 9: Results of Influence and Knowledge in network A
for different teaching and influence probabilities, assuming
uniform distribution.
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Figure 10: Regret in network A for different teaching and
influence probabilities, assuming uniform distribution.
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Figure 11: Results for network B across many interventions,
for influence probability p = 0.5, teaching probability ϕ =
0.5, assuming uniform distribution.
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Figure 12: Results of Influence and Knowledge in network B
for different teaching and influence probabilities, assuming
uniform distribution.
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Figure 13: Regret in network B for different teaching and
influence probabilities, assuming uniform distribution.
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(c) Influence + Knowledge

Figure 14: Results for Facebook network across many inter-
ventions, for influence probability p = 0.5, teaching proba-
bility ϕ = 0.5, assuming uniform distribution.
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Figure 15: Results of Influence and Knowledge in Facebook
network for different teaching and influence probabilities,
assuming uniform distribution.
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Figure 16: Regret in Facebook network for different teaching
and influence probabilities, assuming uniform distribution.
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(b) Knowledge
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(c) Influence + Knowledge

Figure 17: Results for MySpace network across many inter-
ventions, for influence probability p = 0.5, teaching proba-
bility ϕ = 0.5, assuming uniform distribution.
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(a) Changing teaching probability
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(b) Changing influence probability

Figure 18: Results of Influence and Knowledge in MySpace
network for different teaching and influence probabilities,
assuming uniform distribution.
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Figure 19: Regret in MySpace network for different teaching
and influence probabilities, assuming uniform distribution.
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(b) Knowledge
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(c) Influence + Knowledge

Figure 20: Results for network A across many interventions,
for influence probability p = 0.5, teaching probability ϕ =
0.5, assuming power law distribution.
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(a) Changing teaching probability
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(b) Changing influence probability

Figure 21: Results of Influence and Knowledge in network A
for different teaching and influence probabilities, assuming
power law distribution.
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Figure 22: Regret in network A for different teaching and
influence probabilities, assuming power law distribution.
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(c) Influence + Knowledge

Figure 23: Results for network B across many interventions,
for influence probability p = 0.5, teaching probability ϕ =
0.5, assuming power law distribution.
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(a) Changing teaching probability
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(b) Changing influence probability

Figure 24: Results of Influence and Knowledge in network B
for different teaching and influence probabilities, assuming
power law distribution.
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Figure 25: Regret in network B for different teaching and
influence probabilities, assuming power law distribution.
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(b) Knowledge
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(c) Influence + Knowledge

Figure 26: Results for Facebook network across many inter-
ventions, for influence probability p = 0.5, teaching proba-
bility ϕ = 0.5, assuming power law distribution.
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(a) Changing teaching probability
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(b) Changing influence probability

Figure 27: Results of Influence and Knowledge in Facebook
network for different teaching and influence probabilities,
assuming power law distribution.
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Figure 28: Regret in Facebook network for different teaching
and influence probabilities, assuming power law distribution.
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(c) Influence + Knowledge

Figure 29: Results for MySpace network across many inter-
ventions, for influence probability p = 0.5, teaching proba-
bility ϕ = 0.5, assuming power law distribution.

ϕ = 0.1 ϕ = 0.5 ϕ = 1 ϕ = 0.1 ϕ = 0.5 ϕ = 1

A
re

a
 U

n
d
e
r 

C
u
rv

e

0

10

20

30

40

Influence−greedy

Knowledge−greedy

Balanced

Balanced−decreasing

Influence Knowledge

(a) Changing teaching probability
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(b) Changing influence probability

Figure 30: Results of Influence and Knowledge in MySpace
network for different teaching and influence probabilities,
assuming power law distribution.
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Figure 31: Regret in MySpace network for different teaching
and influence probabilities, assuming power law distribution.
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(c) Influence + Knowledge

Figure 32: Results of 4 real world networks across many
interventions, for p = 0.5 and ϕ = 0.5, assuming power law
distribution with a = 1.2.
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(a) Changing teaching probability
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(b) Changing influence probability

Figure 33: Results of Influence and Knowledge for different
teaching and influence probabilities, assuming power law
distribution with a = 1.2.
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Figure 34: Regret for different teaching and influence proba-
bilities, assuming power law distribution with a = 1.2. Lower
results are better.


