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1. INTRODUCTION
Influencing a social network is an important technique, with

potential to positively impact society, as we can modify the behavior
of a community. For example, we can increase the overall health of a
population; Yadav et al. (2015) [4], for instance, spread information
about HIV prevention in homeless populations. However, although
influence maximization has been extensively studied [2, 1], their
main motivation is viral marketing, and hence they assume that the
social network graph is fully known, generally taken from some
social media network. However, the graphs recorded in social media
do not really represent all the people and all the connections of a
population. Most critically, when performing interventions in real
life, we deal with large degrees of lack of knowledge. Normally
the social agencies have to perform several interviews in order to
learn the social network graph [3]. These highly unknown networks,
however, are exactly the ones we need to influence in order to have
a positive impact in the real world, beyond product advertisement.

Additionally, learning a social network graph is very valuable
per se. Agencies need data about a population, in order to perform
future actions to enhance their well-being, and better actuate in their
practices [3]. As mentioned, however, the works in influence maxi-
mization are currently ignoring this problem. Each person in a social
network actually knows other people, including the ones she cannot
directly influence. When we select someone for an intervention (to
spread influence), we also have an opportunity to obtain knowledge.
Therefore, in this work we present for the first time the problem of
simultaneously influencing and mapping a social network. We study
the performance of the classical influence maximization algorithm
in this context, and show that it can be arbitrarily low. Hence, we
study a class of algorithms for this problem, performing an exper-
imentation using four real life networks of homeless populations.
We show that our algorithm is competitive with previous approaches
in terms of influence, and is significantly better in terms of mapping.

2. INFLUENCING AND MAPPING
We consider the problem of maximizing the influence in a social

network. However, we start by knowing only a subgraph. Each
time we pick a node to influence, it may teach us about subgraphs.
Our objective is to spread influence, at the same time learning
the network. We call this problem “Simultaneous Influencing and
Mapping” (SIAM). We consider a version of SIAM where we only
need to map the nodes that compose the network. We assume that
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we always know all the edges between the nodes of the known
subgraph. Formally, let G := (V,E) be a graph with a set of nodes
V and edges E. We pick one node at each one of η interventions.
The selected node is used to spread influence and map the network.
We do not know the graph G, we only know a subgraph Gk =
(Vk, Ek) ⊂ G, where k is the current intervention number. Gk starts
as Gk := G0 ⊂ G. For each node vi, there is a subset of nodes
V i ⊂ V , which will be called “teaching list”. Each time we pick a
node vi, the known subgraph changes to Gk := (Vk−1 ∪ V i, Ek),
where Ek contains all edges between the set of nodes Vk−1 ∪ V i in
G. Our objective is to maximize |Vk|, given η interventions.

For each vi, we assume we can observe a number γi, which
indicates the size of its teaching list. We study two versions: in one
γi is the number of nodes in V i that are not yet in Gk (hence, the
number of new nodes that will be learned when picking vi). We
refer to this version as “perfect knowledge”. In the other, γi := |V i|,
and thus we cannot know how many nodes in V i are going to be
new or intersect with already known nodes in Vk. We refer to this
version as “partial knowledge”. Note that we may also have nodes
with empty teaching lists (γi = 0). The teaching list of a node vi
is the set of nodes that vi will teach us about once picked, and is
not necessarily as complete as the true set of all nodes known by
vi. Some nodes could simply refuse to provide any information.
We assume the teaching list and the neighbor list to be independent.
That is, a node may teach us about nodes that it is not able to directly
influence. For instance, it is common to know people that we do not
have direct contact with, or we are not “close” enough to be able
to influence. Similarly, a person may not tell us about all her close
friends, due to limitations of an interview process, or even “shame”
to describe some connections. We consider a probability ϕ that a
node will have a non-empty teaching list.

We also want to maximize the influence over the network. We
consider the traditional independent cascade model, with observa-
tion, as in Golovin and Krause (2010) [1]. That is, a node may
be either influenced or uninfluenced. An uninfluenced node may
change to influenced, but an influenced node will never change back
to uninfluenced. Each time we pick a node for an intervention, it will
change to influenced. When a node changes from uninfluenced to
influenced, it will “spread” the influence to its neighbors with some
probability. That is, at each edge e there is a probability pe. When
a node v1 changes to influenced, if there is an edge e = (v1, v2),
the node v2 will also change to influenced with probability pe. Sim-
ilarly, if v2 changes to influenced, it will spread the influence to
its neighbors by the same process. Influence only spreads in the
moment a node changes from uninfluenced to influenced. As in [1],
we consider that we have knowledge about whether a node is influ-
enced or not (but in our case, we can only know about nodes in the
current known subgraph Gk). Let Ik be the number of influenced
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nodes after k interventions. Our objective is to maximize Ik given
η interventions. Influence may spread beyond Gk. We consider Ik
as the number of influenced nodes in the full graph G. We denote
as σi the expected number of nodes that will be influenced when
picking vi (usually calculated by simulations).

We must maximize both |Vk| and Ik. Similarly to previous influ-
ence maximization works [2, 1], we study greedy solutions. The
fundamental problem of SIAM is whether to focus on influencing or
mapping the network. Hence, we propose as a general framework to
select the node vi such that: vi = argmax(c1× σi + c2× γi). Con-
stants c1 and c2 control the balance between influencing or mapping.
c1 = 1, c2 = 0 is the classical influence maximization algorithm
(“influence-greedy”); c1 = 0, c2 = 1, on the other hand, only
maximizes the knowledge-gain at each intervention (“knowledge-
greedy”). c1 = c2 = 1 is an algorithm where both objectives are
equally balanced (“balanced”). In order to better handle partial
knowledge, we also propose the “balanced-decreasing” algorithm,
where c2 constantly decreases until reaching 0. Hence, we define c2

as: c2 :=

{
c′2 − 1

d
× c′2 × k if k ≤ d

0 otherwise , where c′2 is the value

for c2 at the very first iteration, and d controls how fast it decays.
We begin by studying influence-greedy. It was shown that when

picking the node v which argmax(σv) at each intervention, we
achieve a solution that is a (1 − 1/e − ε) approximation of the
optimal, as long as our estimation of σv (by running simulations) is
“good enough” [2]. However, even though the actual influence spread
may go beyond the known graph Gk, we can only run simulations
to estimate σv in the current Gk. Hence, the previous results are no
longer valid. We show with an example that we can obtain arbitrarily
low-performing solutions by using influence-greedy.
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Figure 1: Greedy al-
gorithm has low per-
formance.

Consider the graph in Figure 1, and
assume we will run 2 interventions (i.e.,
pick 2 nodes). There is a probability 1 to
spread influence in any edge. Our initial
knowledge is V0 = {A,A′, B,B′, C}.
A and B can influence A’ and B’, respec-
tively. However, C cannot influence any
node. A, B, A’ and B’ have empty teach-
ing lists. C, on the other hand, can teach
us about a connected graph of z nodes.
Influence-greedy, by running simulations
on the known graph, picks nodes A and
B, since each can influence one more node. The optimal solution,
however, is to pick node C, which will teach us about the connected
graph of z nodes. Then, we can pick one node in that graph, and
influence z + 1 nodes in total. Hence, the influence-greedy solution
is only 4

z+1
of the optimal. As z grows, influence-greedy will be

arbitrarily far from the optimal solution.

3. RESULTS
We run experiments using four real life social networks of the

homeless population of Los Angeles, provided by Eric Rice, from
the School of Social Work of the University of Southern California.
All the networks are friendship-based social networks of homeless
youth who visit a social agency. We run 100 executions per network.
At the beginning of each execution, 4 nodes are randomly chosen to
compose our initial subgraph (G0). We noticed similar tendencies in
the results across all four social networks. Due to space constraints,
we plot here the results considering all networks simultaneously
(that is, we average over all the 400 executions). In all graphs, the
error bars show the confidence interval, with ρ = 0.01.

We measure the percentage of influence in the network (“Influ-
ence”) and percentage of known nodes (“Knowledge”). We consider
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Figure 2: Results in real world networks across many interventions.

balanced-decreasing with c′2 = 1.0, and d = 5. In order to esti-
mate the expected influence spread (σv) of each node, we run 1000
simulations before each intervention. Simulations are run in the
current known subgraph Gk, although the actual influence may go
beyond Gk (which will be considered when we measure Influence).
Concerning γv , we consider it to hold the number of new nodes that
would be learned if v is selected, for balanced and knowledge-greedy
(i.e., perfect knowledge). For balanced-decreasing, we consider γv
to hold the full teaching list size, including nodes that are already
known (i.e., partial knowledge). Hence, we evaluate if balanced-
decreasing approximates well balanced.

We simulate the teaching lists, since there are no real world data
available yet (we only have data about the connections in the four
networks). If a node has a teaching list, we fix its size according to
a uniform distribution from 0 to 0.5× |V |. Each node in the graph
is also equally likely to be in the teaching list of a node vi.

Figure 2 shows the result at each intervention for ϕ = 0.5 and
p = 0.5. The Influence obtained by influence-greedy, balanced,
and balanced-decreasing are similar. Out of all 40 interventions,
their result is not significantly different in any of them (and they
are significantly better than knowledge-greedy in around 75% of
the interventions). This shows that balanced is able to successfully
spread influence in the network, while at the same time mapping
the graph. We also notice that perfect knowledge about the number
of new nodes in the teaching lists is not necessary, as balanced-
decreasing obtained close results to balanced. In terms of Knowl-
edge, all algorithms clearly outperform influence-greedy with sta-
tistical significance. Moreover, the result for knowledge-greedy,
balanced and balanced-decreasing are not significantly different in
any of the interventions. This shows that we are able to successfully
map the network (as well as knowledge-greedy), but at the same
time spreading influence successfully over the network (as well as
influence-greedy), even in the partial knowledge case.
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