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Abstract Text reuse is the act of borrowing text from existing documents to
create new texts. Freely available and easily accessible large online repositories
are not only making reuse of text more common in society but also harder to
detect. A major hindrance in the development and evaluation of existing/new
mono-lingual text reuse detection methods, especially for South Asian languages,
is the unavailability of standardized benchmark corpora. Amongst other things,
a gold standard corpus enables researchers to directly compare existing state-of-
the-art methods. In our study, we address this gap by developing a benchmark
corpus for one of the widely spoken but under resourced languages i.e. Urdu. The
COUNTER (COrpus of Urdu News TExt Reuse) corpus contains 1,200 documents
with real examples of text reuse from the field of journalism. It has been manually
annotated at document level with three levels of reuse: wholly derived, partially
derived and non derived. We also apply a number of similarity estimation methods
on our corpus to show how it can be used for the development, evaluation and
comparison of text reuse detection systems for the Urdu language. The corpus is a
vital resource for the development and evaluation of text reuse detection systems
in general and specifically for Urdu language.
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1 Introduction

Text reuse occurs when pre-existing text(s) (source(s)) are reused to create a new
text (derived). It is the process of reusing someone else’s work by changing its form.
Text reuse has become a common phenomenon in recent years due to the large
amount of readily available text on the Web. It can vary from literal word-by-word
reuse or paraphrasing the content using substitutions, insertions, deletions and re-
orderings (Clough et al. 2002a; Maurer et al. 2006), or reuse of facts, concepts and
even style. In general, reuse is not limited to text only but ideas, software source
code, images and music, are often subjects of reuse, however, our focus is on text
reuse only.

As the amount of text that is reused varies, text reuse is commonly classified as
either local or global. When small phrases, sentences or paragraphs are borrowed
from the source, it is considered local text reuse whereas when the text from the
entire source document(s) is considered to create new document, we name it as
global text reuse (Seo and Croft 2008; Mittelbach et al. 2010).

Text reuse can be mono-lingual or cross-lingual. In mono-lingual, source-derived
text pair is in the same language while in the case of cross-lingual, the derived text
is in a different language than the source text. In journalism, text reuse is known to
be a standard practice. Plagiarism, on the other hand, represents unacknowledged
text reuse in which no proper reference to the source is provided.

In recent years, due to the exponential growth of World Wide Web with vast
amounts of information easily accessible, exposure to social media and collabo-
rative content authoring systems, the reuse of text is on the rise (Butakov and
Scherbinin 2009; Osman et al. 2012; Sousa-Silva 2014). Consequently, it has be-
come a serious issue for educational institutions, online publishers and researchers
worldwide (Maurer et al. 2006). To address this challenge, text reuse detection
has become vitally important. Moreover, detecting text reuse has a number of key
applications in different fields such as automatic plagiarism detection (Hoad and
Zobel 2003; Sánchez-Vega et al. 2013), paraphrase identification (Thenmozhi and
Aravindan 2015; Tsatsaronis et al. 2010), detecting breach of copyright (Aplin
2010) and news monitoring systems (Clough et al. 2002a).

Automatic text reuse detection is the task of determining whether a text, either
full or partial, has been produced by exploiting another as its source. However,
in both cases the task depends heavily on the underlying algorithm. The task is
much simpler in the case of global text reuse detection whereas in local text reuse
detection, the algorithm requires not only to find all the source(s) from where a
small part of the document may have been borrowed but also the location of the
borrowed fragment within the derived document (Seo and Croft 2008).

One key bottleneck in the development and evaluation of computational meth-
ods for automatic text reuse detection, is the lack of benchmark corpora which
contain various levels of reuse, e.g. exact copy, minor paraphrasing, extensive para-
phrasing and so on. Although in the past, the research community has developed
benchmark datasets but the majority (see Section 2) are for English language and
we see much less focus been devoted on South Asian languages (Becker and Riaz
2002). The research on these languages is still in its infancy (Anwar et al. 2006)
and we are not aware of any sizeable corpora with real examples of text reuse
cases. However, the Natural Language Processing (NLP) community seems highly
desirous in research of South Asian languages (McEnery et al. 2000), and a re-
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view by Baker and McEnery (1999) showed that there is a deficiency of work on
these under resourced Indic (or Indo-Aryan1) languages. Hence, there is a need to
develop standard evaluation resources to foster research in these languages.

In this paper, we present research on developing a benchmark Urdu text reuse
corpus. Urdu, belonging to the Indo-Aryan language family, is the official language
of Pakistan and one of the most popular languages spoken by around 175 million
people around the globe. In contrast to English, Urdu is conventionally written
right-to-left in Nastaliq style and relies heavily on Arabic and Persian sources for
literary and technical vocabulary. However, for NLP it is a low-resource language
with respect to even the core processing tasks like part-of-speech (POS) tagging or
morphological analysis. Our corpus, named COUNTER2 (COrpus of Urdu News
TExt Reuse) is developed with an approach that is closely related to the METER
corpus (Gaizauskas et al. 2001). It contains real examples of Urdu text reuse from
the field of journalism. There are a total of 1,200 documents in the corpus, half of
them are source documents and the remaining half, derived documents. The source
documents are produced by leading news agencies of Pakistan, whereas the derived
documents are a collection of corresponding newspapers stories published in the
major newspapers of Pakistan. The derived collection contains documents with
various degrees of text reuse. Some of the newspaper stories (derived documents)
are rewritten (either verbatim or paraphrased) from the new agency’s text (source
document) while others have been written by the journalists independently on
their own. For the former case, source-derived document pairs are either tagged as
Wholly Derived (WD) or Partially Derived (PD) depending on the volume of text
reused from the news agency’s text for creating the newspaper article while for
the latter case, they are tagged as Non Derived (ND) as the journalists have not
reused anything from the news agency’s text but based on their own observations
and findings, developed and documented the story.

The need for such a corpus is clear from the above discussion, and for us, it
represents the first stage in a larger project. First, we intend to use this corpus
to inform the design of an Urdu text reuse detection system. Second, the corpus
will serve as a benchmark standard for evaluation of the proposed methods to
automatically detect mono-lingual text reuse for Urdu language. Third, it can be
used to develop automatic techniques which can be employed in journalism, for
measuring the amount of news source copy reused, for taking appropriate actions.

The rest of the paper is organized as follows: Section 2 describes existing cor-
pora developed for the text reuse detection. Section 3 introduces the COUNTER
corpus, explaining in detail the corpus generation process, its statistics and anno-
tations, sample documents from the corpus and an analysis on the linguistic prop-
erties of the corpus. Section 4 explains the similarity estimation methods that we
applied on our corpus to show how it can be useful in the development and eval-
uation of text reuse detection systems for Urdu language. Section 5 presents the
experimental setup. In Section 6, we report and discuss the experimental results
and Section 7 concludes the paper.

1 http://en.wikipedia.org/wiki/Indo-Aryan_languages - Last visited: 16-06-2016
2 The corpus is freely available to download at http://ucrel.lancs.ac.uk/textreuse/

counter.php and through Lancaster’s DOI http://dx.doi.org/10.17635/lancaster/
researchdata/96

http://en.wikipedia.org/wiki/Indo-Aryan_languages
http://ucrel.lancs.ac.uk/textreuse/counter.php
http://ucrel.lancs.ac.uk/textreuse/counter.php
http://dx.doi.org/10.17635/lancaster/researchdata/96
http://dx.doi.org/10.17635/lancaster/researchdata/96
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2 Related Work

To develop large scale freely available resources to investigate the problem of text
reuse detection is not a trivial task. However, there has been a number of efforts
in the recent past, to develop standard evaluation datasets for text reuse detec-
tion, although mostly for the English language. The outcome of these efforts are
the METER corpus (Clough et al. 2002a) and the Lancaster Newsbooks corpus
(McEnery et al. 2010). There are a few others, the Reuters-21578 news corpus
(Lewis et al. 2004) and the Text REtrieval Conference (TREC)3 collections, that
contain repeated news stories released by news-wire services. While these have
not been designed to study text reuse, some researchers have used them for this
purpose (Chowdhury et al. 2002; Metzler et al. 2005).

The most prominent effort in the recent years, for the development of mono-
lingual text reuse corpora for English language, is the METER corpus (Gaizauskas
et al. 2001). It consists of 1,716 documents with over 500,000 words. The corpus
contains 771 Press Association (PA) articles as source documents. The remain-
ing 945 documents are news stories published in 9 British newspapers (5 tabloids
and 4 broadsheets) that are derived from some of the source(s) documents. These
derived documents are categorised as (1) Wholly Derived (WD); where the news-
paper text is entirely based on the source document, (2) Partially Derived (PD);
where the newspaper text is partly based on the source document and (3) Non
Derived (ND); the situation in which the news story is written completely indepen-
dent of the source document. The corpus includes documents from two domains:
court and law (769 documents) and show-business (176 documents). From the 945
derived documents, 301 are tagged as WD, 438 as PD and 206 as ND. Although,
in journalism, text reuse is acceptable, but as suggested by Clough (2003) the cor-
pus has been used in the past to evaluate the performance of extrinsic plagiarism
detection systems Barrón-Cedeño et al. (2009).

The Lancaster Newsbooks corpus (McEnery et al. 2010) is a compilation of
news stories texts from newsbooks published in the 17th century (especially for-
eign and political news). Journalists of that time used more or less the same para-
phrasing mechanisms we use today for reproducing the source text about similar
events in generating the newsbooks. To develop the corpus, the text was extracted
from newsbooks between December 1653 and May 1654 and comprised of approx-
imately 800,000 words. The authors used a sentence alignment algorithm (Piao
et al. 2003) to determine the extent of similarity between two newsbook stories.
However, the corpus has rarely been used for the development and evaluation of
text reuse detection systems.

There are similar efforts for building datasets that contains artificial as well as
simulated (manual) examples of plagiarism (a superficial type of text reuse). We
discuss two such datasets, (1) the Short Answer Corpus (Clough and Stevenson
2011) (simulated plagiarism), and (2) the PAN-PC Corpora (Webis and NLEL
2009; Potthast et al. 2010b, 2011, 2012, 2013, 2014) (simulated and artificial pla-
giarism). The Short Answer corpus consists of 100 documents of length between
200-300 words. The documents are manually created with four levels of reuse i.e.
Near copy, Light revision, Heavy revision and Non-plagiarism. The corpus has 5
source documents which are used to create 57 plagiarised and 38 non-plagiarised

3 http://trec.nist.gov/ - Last visited: 16-06-2016

http://trec.nist.gov/


COUNTER - COrpus of Urdu News TExt Reuse 5

documents. The PAN-PC corpora (Stein et al. 2009; Potthast et al. 2010a, 2011,
2012, 2013, 2014) have been developed and matured over the years, and contain
documents from Project Gutenberg4. In these corpora, the plagiarised documents
contain either artificial, simulated or both cases of plagiarism. The majority of
plagiarism cases are mono-lingual (in English language). A number of modifi-
cation strategies were applied to create different levels of obfuscation. PAN-PC
corpora provides an opportunity for NLP researchers to evaluate plagiarism de-
tection systems using common resources and evaluation criteria, in a competition
held annually5.

Although this research is aimed at developing a mono-lingual text reuse corpus
for Urdu language, a recently released cross-lingual plagiarism corpus for Urdu-
English language pair (CLUE) is worth mentioning here. The CLUE Text Align-
ment Corpus Hanif et al. (2015) contains 1,000 documents (500 Urdu source and
500 English suspicious documents). 270 of the suspicious documents are plagia-
rised while the remaining 230 are non-plagiarised. The documents of the corpus
are collected from on-line sources (mainly Wikipedia6) and belong to two do-
mains i.e. computer science and general topics. Volunteers (university students)
were asked to generate (by manual and semi automated means) plagiarism cases
(fragments) of lengths i.e. small (<50 words), medium (50-100 words) and large
(100-200 words) and three levels of obfuscation i.e. Near Copy (CP), Light Revi-
sion (LR) and Heavy Revision (HR). These fragments were then inserted into the
suspicious documents. The basic purpose of the corpus is to facilitate research in
cross-language (Urdu-English) plagiarism detection.

Table 1 Summary of the available text reuse (and plagiarism) corpora (English)

Corpus Source docs Derived docs Levels of rewrite Domain

METER 771 945 WD, PD, ND Journalism
Lancaster Newsbooks N/A N/A N/A Journalism
Short Answer 5 95 NC, LR, HR, NP Wikipedia
PAN-PC∗ 11,094 11,094 P, NP Literature
∗Statistics of the PAN-PC-11 corpus which contains both artificial and simulated cases
of plagiarism

Table 1 summarizes the corpora and their properties discussed above. It can
been seen that the mono-lingual corpora are available only for English language
and contain artificial and simulated cases of reuse (plagiarism) only. In order to
stimulate research in Urdu, there is a need to develop standard evaluation resources
for this language as well. As far as we are aware, no Urdu language text reuse
corpus with real cases of text reuse has been previously developed.

4 https://www.gutenberg.org/ Last visited: 16-06-2016
5 http://pan.webis.de/ Last visited: 16-06-2016
6 https://en.wikipedia.org/wiki/Main_Page Last visited: 16-06-2016

https://www.gutenberg.org/
http://pan.webis.de/
https://en.wikipedia.org/wiki/Main_Page
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3 Corpus

3.1 Corpus generation process

Our main intention was to develop a standard benchmark resource for the evalua-
tion of existing systems available for text reuse detection in general and specifically
for Urdu language. To generate a corpus with realistic examples, we opted for the
field of journalism. In journalism, the same news story is published in different
newspapers in different forms. It is a standard practice followed by all the newspa-
pers (reporters and editors) to reuse (verbatim or modified) a news story released
by the news agency.

It has been observed (Bell 1991; Fries 1997; Jing and McKeown 1999) that
newspaper editors use different paraphrase mechanisms such as lexical or syn-
tactical substitution, inflectional or derivational changes and summarisation to
rewrite a newspaper story. Mostly these operations include deletion due to redun-
dancy, making syntactic changes, use of appropriate synonyms, word re-ordering,
splitting or merging sentences, tense and voice changes, use of abbreviation and
verb/noun nominalisation. The choice of data collection from the press was fur-
ther motivated by the fact that it is straightforward to collect news stories data
with the majority of it readily and freely available on the Web in electronic form.
However, some of the Urdu newspapers publish text on Web in graphics (images)
form. These images were saved and later converted into electronic form (Urdu
text) manually.

The COUNTER corpus consists of news articles (source documents) released
by five news agencies in Pakistan i.e. Associated Press of Pakistan (APP), Inter-
national News Network (INN), Independent News Pakistan (INP), News Network
International (NNI) and South Asian News Agency (SANA). The corresponding
news stories (derived documents) were extracted from nine daily published and
large circulation national news papers of the All Pakistan Newspapers Society
(APNS), who are subscribed to these news agencies. These include Nawa-e-Waqt,
Daily Dunya, Express, Jang, Daily Waqt, Daily Insaf, Daily Aaj, Daily Islam and
Daily Pakistan. All of them are part of the mainstream national press, long estab-
lished dailies with total circulation figures of over 4 million7. News agency texts
(source documents) were provided (in electronic form) by the news agencies on a
daily basis when they released the news. Newspaper stories (derived documents)
were collected by three volunteers over a period of six months (from July to De-
cember 2014). National, Foreign, Business, Sports and Showbiz were the domains
targeted for data collection. Table 2 shows distribution of documents in the pro-
posed COUNTER corpus.

3.2 Corpus properties and analysis

The corpus is composed of two main document types: (1) source documents and
(2) derived documents. There are total 1,200 documents in the corpus: 600 are
news agency articles (source documents) and 600 are newspapers stories (derived

7 https://pakpressfoundation.wordpress.com/2006/05/05/pakistan-press-foundation
- Last visited: 16-06-2016

https://pakpressfoundation.wordpress.com/2006/05/05/pakistan-press-foundation
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Table 2 Distribution of documents by News agencies, Newspapers and Domains

News Agencies News Papers Domains

APP 543 Nawa-e-Waqt 145 Sports 222
INN 39 Daily Dunya 132 National 181
NNI 8 Express 115 Foreign 121
SANA 6 Daily Waqt 89 Showbiz 49
INP 4 Daily Insaf 55 Business 27

Daily Islam 36
Jang 21
Daily Aaj 6
Daily Pakistan 1

documents). The corpus contains in total 275,387 words (tokens8), 21,426 unique
words and 10,841 sentences. The average length of a source document is 227 words
while for derived documents it is 254 words. Table 3 shows detailed statistics of
the proposed COUNTER corpus.

Table 3 Corpus statistics

Source Derived

Total number of documents 600 600
Average no of words per document 227 254
Average no of sentences per document 9 8
Smallest document (by words) 52 43
Largest document (by words) 1,377 2,481

3.3 Annotations and inter-rater agreement

The annotations were performed by three annotators (A, B and C), who were
native Urdu language speakers and experts of paraphrasing mechanisms. All three
were graduates, experienced in text annotations and having an advanced Urdu
level. The corpus has been annotated at the document level with three classes of
reuse i.e. Wholly Derived (WD), Partially Derived (PD) and Non Derived (ND).
The annotations were carried out in three phases: (1) training phase, (2) anno-
tations, (3) conflict resolving. During the training phase, annotators A and B
manually annotated 60 document pairs, following a preliminary version of the an-
notation guidelines. A detailed meeting was carried out afterwards, discussing the
problems and disagreements. It was observed that the highest number of disagree-
ments were between PD and ND cases, as both found it difficult to distinguish
between these two classes. The reason being that adjusting the threshold where a
text is heavily paraphrased or new information added to it that it becomes inde-
pendently written (ND). Following the discussion, the annotation guidelines were
slightly revised, and the first 60 annotations results were saved. In the annotation
phase, the remaining 540 document pairs were manually examined by the two an-
notators (A and B). Both were asked to judge, and classify (at document level)

8 Compound words in Urdu were treated as single words during tokenisation.
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whether a document (newspaper story) depending on the volume of text rewritten
from the source (news agency article) falls into one of the following categories:

Wholly Derived (WD): The News agency text is the only source for the reused
newspaper text, which means it is a verbatim copy of the source. In this case,
most of the reused text is word-to-word copy of the source text.

Partially Derived (PD): The Newspaper text has been either derived from more
than one news agency or most of the text is paraphrased by the editor when
rewriting from news agency text source. In this case, most parts of the derived
document contain paraphrased text or new facts and figures added by the
journalist’s own findings.

Non Derived (ND): The News agency text has not been used in the production
of the newspaper text (though words may still co-occur in both documents),
it has completely different facts and figures or is heavily paraphrased from
the news agency’s copy. In this case, the derived document is independently
written and has a lot more new text.

Table 4 Classification of document pairs in the COUNTER corpus and its comparison with
METER corpus (Gaizauskas et al. 2001)

Classification COUNTER METER

WD 135 (22.5%) 301 (31.8%)
PD 288 (48.0%) 438 (46.3%)
ND 177 (29.5%) 206 (21.7%)

After the annotation phase, the inter-annotator agreement was computed. The
inter-rater score was calculated to be 85.5% as the annotators had agreement on
513 of the 600 pairs. The Kappa Coefficient was computed to be 77.28% (Weighted
Kappa 81.4%) (Cohen et al. 1960; Cohen 1968). The inter-rater agreement score
of 85.5% is good, considering three levels of classification involved in the difficulty
of the rating task. In the third and last phase, the conflicting 87 pairs were given
to the third annotator (C) for conflict resolution. The decision of the third anno-
tator was considered final. Out of the 600 document pairs, the final gold standard
annotated dataset contains 135 (22.5%) WD, 288 (48%) PD and 177 (29.5%) ND
documents. Table 4 lists the classification of documents in the COUNTER corpus
and compares it with the METER corpus (Gaizauskas et al. 2001). It highlights
the similarity of our corpus with METER as both corpora have majority of the
documents in the PD class i.e. 48% (METER) and 46.3% (COUNTER).

3.4 Examples of text reuse cases from the corpus

This section shows examples of the WD, PD and ND document pairs from the
corpus. As expected, the derived document in WD (see Figure 1) is word-to-
word copy of the source document9. The information described in the derived
text is the same as in the text reported by the news agency. In case of PD (see

9 Words common in both documents are underlined.
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Fig. 1 Example of a WD document pair

Figure 2), source text has been rephrased by changing the passages with different
paraphrasing techniques. Also, in some cases, the derived text contains additional
events not reported by the new agency source. For ND (see Figure 3), a lot more
new information has been added in the derived document independently without
using the source. For standardisation purposes, the documents in the corpus have
been saved as standard XML documents. Details of the XML tags and DTD can
be found in the README file available with the corpus.

3.5 Linguistic analysis of the corpus

There are numerous ways to rewrite texts and in the previous studies, researchers
have classified the ‘edit operations’ (paraphrase mechanisms) into different types,
in different corpora, to form paraphrase topologies (Clough 2003; Barrón-Cedeño
et al. 2013; Vila et al. 2014). Following the same approach, we also identified the
paraphrase mechanisms used (by journalists) to formulate the newspaper story
(derived document), in our corpus.
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Fig. 2 Example of a PD document pair

The typology (see Table 5) we followed, to present a linguistic analysis of our
corpus, consists of a concise but concrete list of linguistic phenomena underlying
paraphrasing. It is a two level typology, with 6 classes and 14 paraphrasing types.
At the first level, each class describes the nature of paraphrase phenomenon while
a second more fine-grained level lists the actual paraphrase mechanism used.

In the following discussion, we describe each of the 14 types of our typology
with examples10 from our corpus.

Morphology-based changes

Inflectional changes often involves changing a grammatical category (e.g. from
singular to plural or vice versa) with a prefix/suffix. In the example below,
word [wickets] is transformed into [wicket] to produce the change.

10 The examples shown here are just small fragments extracted from the source/derived
documents. Refer to Section 3.4 to see full examples of source/derived documents. The
words/phrases in focus of discussion are enclosed in square brackets to emphasize them.
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Fig. 3 Example of a ND document pair

Derivational changes consists of word alteration that forms a new word by
adding an affix to the root form of the word. In the example below, the word
[Pakistan-i] (adjective) is changed to [Pakistan] (noun).
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Table 5 The paraphrase typology showing 6 classes and 14 types.

Class Type

Morphology-based changes Inflectional changes
Derivational changes

Lexicon-based changes Spelling and format changes
Same-polarity substitutions
Synthetic-analytic substitutions
Opposite-polarity substitutions

Syntax-based changes Diathesis alterations
Negation switching

Discourse-based changes Punctuation and format changes
Direct/Indirect style alterations

Semantics-based changes Semantic changes

Miscellaneous changes Change of order
Addition/deletion of information
English to Urdu translation changes

Lexicon-based changes

Spelling and format changes are lexical changes that occur in the spellings and
representation of the text (e.g. abbreviations, or digit/letter alternations). In
example below, abbreviations are changed to their full forms.

Same-polarity substitutions comprises of replacing the appropriate word or phrase
with similar meaning (synonym). The corpus text has many such examples, the
sentence below shows a word in the source text [victim] substituted with [sus-
pected case] in the derived text.

Synthetic/analytic substitutions involves addition/deletion of single to multiple
lexical terms that do not affect the meaning of the word. The example that
follows shows specifier deletions in the derived text.

Opposite-polarity substitutions contains change in the word or phrase with its
antonym. However, to preserve the meaning, either double polarity change or
inverse argument is needed. In the first example text from our corpus, [lose] is
replaced with [success] and another substitution [win] is added in the derived
text.
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The second example again shows an antonym substitution, but to preserve the
meaning, the order of the subject (country name i.e. New Zealand) is shuffled.

Diathesis alternations are changes that occur when a participating verb can be
used in its various diathesis frames.

Syntax-based changes

Negation switching in a text occurs when swapping a ‘negation term’ occurrence.
The below example depicts one such occurrence in our corpus.

Discourse-based changes

Direct/indirect style alternations changes employ active to passive style changing
and vice versa. In the example below, the statement is expressed in direct and
indirect style.

Punctuation and format changes often include changes that appear due to place-
ment of punctuation marks or change in format of text. Normally these changes
do not effect the lexical units. The first part of the following example shows
punctuation mark (,) added in the derived text. Further, the sentence delimiter
(.) is replaced with a comma to add a new clause in the derived sentence.

Semantics-based changes

Semantic changes consist of rephrasing lexical units in the derived text by
adding new words or word patterns but of the similar contents. The COUNTER
corpus has plentiful examples of such cases. The one case shown in the example
below highlights the words [Iraqi militants] replaced with [ISIS] and [approved]
rephrased as [declared] in the derived sentence.

Miscellaneous changes

Add/delete information often implies compression or expansion of the source
text. The lexical and functional units are added to or deleted from the source
text to recompose it.
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Change of order includes any type of change of order from the word level to
the sentence level. In the example, a word [noun: Nawaz Sharif] and a phrase
[verb: do not care] changed their position in the derived text.

English to Urdu translation changes consists of changes that occur when an
English word written using Urdu script can be rewritten by translating it into
Urdu language word. Our corpus is rich with such examples, some of which are
added below.

To show which paraphrase mechanisms are most frequently used (by journal-
ists) to constitute the newspaper stories, we took a subset of first 50 documents
from the corpus11 and calculated the paraphrase type frequencies for each of the
14 types (see Table 5).

Table 6 Paraphrase type frequencies occurring within the 50 document subset corpus. Bold
values are the sum of the corresponding types within the main classes.

frequenciesabc frequenciesrel

Morphology-based changes 17 0.030
— Inflectional changes 8 0.014
— Derivational changes 9 0.016
Lexicon-based changes 212 0.379
— Spelling and format changes 6 0.011
— Same-polarity substitutions 174 0.312
— Synthetic/analytic substitutions 24 0.043
— Opposite-polarity substitutions 8 0.014
Syntax-based changes 18 0.032
— Diathesis alternations 11 0.019
— Negation switching 7 0.012
Discourse-based changes 47 0.084
— Punctuation and format changes 18 0.032
— Direct/indirect style alternations 29 0.052
Semantics-based changes 112 0.200
— Semantic changes 112 0.200
Miscellaneous changes 152 0.272
— Change of order 32 0.057
— Addition/deletion of information 94 0.168
— English to Urdu translation changes 26 0.046

Table 6 shows that ‘Same-polarity substitutions’ emerges as the most frequent
(0.312) paraphrase type present in the subset of the corpus, followed by ‘Semantic

11 This sub-corpus is also available to download with the main corpus.
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changes’ (0.200) and ‘Addition/deletion of information’ (0.168) which also con-
tribute to a major extent12. This was expected as the corpus text (of derived
documents) is reformulated by journalists and in the process they have opted for
the most simple paraphrase mechanism i.e. substituting words with others of more
or less the same meaning. Closely related to this, and in general, are the semantic
changes which involve replacing lexical units. Moreover, journalistic writing in-
volves an editor’s own observations which naturally results in the addition/deletion
of information. We conclude that same polarity substitutions, semantic changes
and addition/deletion of information are the most favourite mechanism used by
journalists as they are relatively easy to apply and preferable by individuals when
reusing text.

4 Text reuse similarity estimation methods

In the past, different text similarity estimation methods have been proposed based
on syntactic or semantic features (Clough et al. 2002a; Mihalcea et al. 2006; Daniel
et al. 2012). This section describes a few popular text similarity estimation meth-
ods that we choose to apply on the corpus in order to show how it can be used in
the evaluation of state-of-the-art methods for text reuse detection. These meth-
ods generate similarity scores, by comparing each source-derived document pair,
based on features which can be derived from the given texts. The higher the score
the more similar the contents of the two documents (Wise 1992; Brin et al. 1995;
Gitchell and Tran 1999; Lyon et al. 2001).

We choose to apply a range of methods, based on three different character-
istics i.e. content, structure or style of the given text (Daniel et al. 2012). For
content based methods, we chose Word n-grams overlap (see Section 4.1), Vector
Space Model (VSM) (see Section 4.3), Longest Common Subsequence (LCS) (see
Section 4.4) and Greedy String-Tiling (GST) (see Section 4.5). For structural sim-
ilarity we opted for Stop-words based n-grams overlap (see Section 4.2) and for
stylistic features extraction, we applied sentence/token ratio (see Section 4.6).

4.1 Word n-grams overlap

One of the popular methods, word n-grams overlap, computes the resemblance of
a document pair by simply calculating the common n-grams and dividing it by
the length of one or both documents. The method has already proven to provide
good results for detecting plagiarism (on mono-lingual English corpora) (Lane
et al. 2006; Barrón-Cedeño et al. 2009; Clough and Stevenson 2011), detection of
near duplicates (Shivakumar and Garcia-Molina 1995) and measuring text reuse
(Clough et al. 2002a; Chiu et al. 2010). In our experiments, we used the Contain-
ment similarity co-efficient measure13 (Broder 1997) to compute similarity between
document pairs (see Equation 1).

12 We expect that the paraphrase types occurring most frequently in the subset of the corpus
will be reflected with similar proportions in the whole corpus since this subset is a substantial
representative sample of the whole corpus.
13 We also applied Jaccard, Dice and Overlap similarity coefficients but the results were low
when compared to Containment similarity measure. Therefore, we only reported results with
Containment measure in this study.
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Cn(X,Y ) =
|S(X,n)

∩
S(Y, n)|

|S(X,n)|
(1)

In the above equation, S(X,n) and S(Y, n) represents the number of unique
word n-grams (tokens) of size n in documents X and Y , respectively. The method
computes how much content (word n-grams) of the document X is shared by
Y . Further, it generates a similarity score between 0 and 1. A similarity score
of 0 means that the two documents have no common word n-grams whereas 1
means that all the word n-grams are common. The scores are reported for sets
of n-grams of length [1 − 5], to indicate the degree of similarity between source-
derived document pairs for various lengths of n. Moreover, we experiment both
with and without text preprocessing. During text preprocessing, all punctuation
marks, illegal characters14 (if any) and stop-words were removed.

4.2 Stop-words based n-grams overlap

Another method, however grounded on the syntactic similarity, between source and
derived document pair, is stop-words based n-grams overlap (Stamatatos 2011).
The method works with a list of stop-words (also known as very frequent words)
and the fact that these words are often preserved while modifying texts where
the editor commonly replaces or rearranges content words (with synonyms). In
our experiments, we first extracted all the stop-words15 from a source-derived
document pair. Secondly, all the stop-words based n-grams of both documents
were then compared using the same Equation 1 i.e. Containment measure.

The similarity scores between source-derived document pairs are computed for
sets of stop-words based n-grams of length [1− 5].

4.3 Vector Space Model

Vector Space Model (VSM) or its variants (Salton et al. 1975), originally proposed
for IR, have recently been used in the experiments on text reuse (Clough 2003;
Bendersky and Croft 2009) and detecting document duplicates (Hoad and Zobel
2003; Runeson et al. 2007). Moreover, it was a popular choice for majority of the
participating systems in the PAN Competitions (Sanchez-Perez et al. 2014).

In VSM, both source and derived documents are represented as term (word
or phrase) vectors. The number of unique terms in each document corresponds
to a dimension in the vector space. The similarity between both (source-derived
document pair) vectors is measured by the cosine similarity measure (the angle
between them), calculated as:

sim(dSOU , dDER) =
−−−→
dDER • −−−→dSOU

|−−−→dDER| × |−−−→dSOU |
=

∑n
i=1 dDERi × dSOUi√∑n

i=1(dDERi)2 ×
∑n

i=1(dSOUi)2
(2)

14 The characters that are not part of the standard Urdu language character set.
15 The stop-words list that we used is available with the corpus download.
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where |−−−→dDER| and |−−−→dSOU | represent the lengths of the derived and source docu-
ment vectors respectively. Before computing the similarity, we applied the popular
tf.idf (see Equation 3) weighting scheme (Jurafsky et al. 2000) to weight individual
terms in the source and derived documents.

tfidfi,d = tfi,d · idfi =
ni,d∑
k nk,d

· log |D|
|Di|

(3)

Using the VSM method, we also investigated the effect of stop-words removal.

4.4 Longest common subsequence

Longest Common Subsequence (LCS) is another similarity estimation method used
in our experiments. In LCS, the degree of resemblance between a document pair is
calculated by taking into account the total number of changes made when the text
was rewritten. In the first step, both documents are represented as sequences of
tokens (words or phrases). Given a piece of text (called sub-string), a subsequence
is a contiguous stream of tokens even if some terms are removed from that sub-
string. Let us assume, X and Y are two strings (texts) to be compared, then LCS

is the longest subsequence common between them. For example, if X = “123456”
and Y = “129456”, then 456 is a subsequence and 12456 is the longest common
subsequence.

A normalised similarity score (LCSnorm) (see Equation 4), is computed by
dividing the length of LCS (|LCS(X,Y )|) with the length of shorter string.

LCSnorm(X,Y ) =
|LCS(X,Y )|
min(|X|, |Y |)

(4)

Moreover, the LCS algorithm is order preserving. The length of LCSnorm shows
the modifications in the text caused by lexical substitutions, word re-ordering and
other text altering operations. Again, similar to other methods, the effect of pre-
processing was explored for this method as well.

4.5 Greedy String-Tiling

The Greedy String-Tiling (GST) algorithm is based on sub-string matching and
was proposed for identifying biological sub-sequences and computing similarity
between free texts (Wise 1992). GST can detect block move (caused by transpo-
sition of tokens), which are missed by LCS (Longest Common Subsequence, see
Section 4.4) method. GST method tries to find a 1 : 1 match of tokens between two
texts, such that one sequence of tokens is covered with maximum length (called
tiles) sub-strings from the other. However, to avoid specious matches of very small
lengths, a minimum Match Length (mML) value is used.

In our experiments, we were interested to know how much derived text (words)
is overlapped with source text. So, given source a document X, a derived document
Y and a set of matching tiles of a given length between the two documents, the
similarity, gst-sim(X,Y), is obtained using Equation 5
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gst− sim(X,Y ) =

∑
i∈tiles lengthi

|Y | (5)

The GST experiments are conducted on the corpus, both with and without
text preprocessing.

4.6 Sentence/Token ratio

Based on the fact that rewritten texts are, to a certain degree, similar in terms of
stylistic features, we also experiment with statistical properties of texts to estimate
similarity among them. We applied two simple methods, sentence ratio and token
ratio (Yule 1939) to compute average number of sentences and tokens respectively.
As the corpus contains news stories, documents are mostly structured as single
paragraph essays. Therefore, we computed the number of sentences per document
and the average number of tokens per sentence16. Further, for sentence ratio we
computed the ratio of sentences whereas for token ratio we compared the average
token length between the reused text and the source text.

5 Experimental set-up

5.1 Dataset

For the set of experiments carried out in this study, the entire COUNTER Corpus
is used (see Section 3). There are total 600 document pairs in the corpus (WD =
135, PD = 288 and ND = 177).

5.2 Evaluation methodology

In the experiments performed, to distinguish between multiple levels of Urdu text
reuse at document level, the problem is tackled as a supervised classification task.
We used both binary and ternary classifications of the task. In the former, the tar-
get is to differentiate between 2 classes (i.e. Derived (D) and Non Derived (ND))
while in the latter case, the target is to differentiate between 3 classes (i.e. Wholly
Derived (WD), Partially Derived (PD) and Non Derived (ND)). For the binary
classification task, the documents categorised as Wholly Derived and Partially De-
rived are coupled to make the “Derived” class while the documents categorised as
Non Derived are part of the “Non Derived” class. Due to the adequate number of
examples (600) present in the corpus, and to better evaluate the performance of
the similarity estimation methods used, we applied 10-fold cross-validation. The
WEKA17 (Hall et al. 2009; Witten et al. 2011) implementations of the Bayes the-
orem based Näıve Bayes classifier, with its default parameter settings, is used for
the classification task. Näıve Bayes is appropriate for these kind of experiments as

16 For sentence boundary detection, we used potential sentence termination markers such as
‘’, ‘’ and ‘!’.

17 http://www.cs.waikato.ac.nz/ml/weka/ Last visited: 16-06-2016

http://www.cs.waikato.ac.nz/ml/weka/
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it can handle the numeric features generated by the similarity estimation methods
applied on the corpus (see Section 4). The similarity scores for each source-derived
document pair are used as features for the classifier. Weighted average F1 results
are computed and reported for both binary and ternary classification tasks.

6 Results and analysis

Table 7: Weighted average F1 results for binary and ternary classifi-
cation tasks using different text reuse detection methods

Binary Ternary

Content based measures

Word n-grams overlap

Uni-gram 0.80 0.73

Uni-gram + SWR 0.80 0.72

Bi-gram 0.66 0.64
Bi-gram + SWR 0.70 0.68

Tri-gram 0.57 0.56
Tri-gram + SWR 0.60 0.64

Four-gram 0.52 0.52
Four-gram + SWR 0.55 0.57

Five-gram 0.49 0.52
Five-gram + SWR 0.50 0.53

Combined 0.56 0.54
Combined + SWR 0.57 0.57

Vector Space Model

VSM 0.66 0.54
VSM + SWR 0.64 0.53

Longest Common Subsequence

LCS 0.77 0.70
LCS + SWR 0.77 0.71

Greedy String Tiling

mML1 0.81 0.72
mML1 + SWR 0.81 0.73

mML2 0.77 0.71
mML2 + SWR 0.74 0.67

mML3 0.70 0.65
mML3 + SWR 0.63 0.60

mML4 0.63 0.60
mML4 + SWR 0.60 0.57

mML5 0.58 0.59
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mML5 + SWR 0.55 0.53

mML6 0.56 0.53
mML6 + SWR 0.53 0.51

mML7 0.54 0.52
mML7 + SWR 0.48 0.50

mML8 0.51 0.50
mML8 + SWR 0.46 0.50

mML9 0.47 0.49
mML9 + SWR 0.44 0.47

mML10 0.46 0.49
mML10 + SWR 0.43 0.45

Structure based measures

Stop-words based n-grams overlap

Stop-words Uni-gram 0.58 0.40

Stop-words Bi-gram 0.63 0.42

Stop-words Tri-gram 0.47 0.44

Stop-words Four-gram 0.41 0.46

Stop-words Five-gram 0.35 0.34

Stop-words Combined 0.40 0.37

Style based measures

Sentence/Token Ratio

Sentence Ratio 0.58 0.32

Token Ratio 0.68 0.45

Combination of features

All features combined 0.70 0.68

Table 7 presents Näıve Bayes classifier reported F1 results on the COUNTER
corpus for the binary and ternary classifications tasks using Word n-grams over-
lap, Vector Space Model, Longest Common Subsequence, Greedy String Tiling,
Stop-words based n-grams overlap and Sentence/Token ratio methods. Uni-gram

means that the results are obtained using word 1-gram as a single feature for the
classifications task. Similarly, Bi-gram, Tri-gram, Four-gram and Five-gram means
that the results are obtained using word 2-grams, 3-grams, 4-grams and 5-grams
respectively as a single feature. Combined means that results are obtained by sim-
ilarity scores of word unigram, bigrams, trigrams, fourgrams and fivegrams as a
set of features (5 features) for the classification task. SWR after each method
means that the similarity score is computed for the method after removing stop-
words. Likewise, Stop-words Uni-gram means that the results are reported using
stop-words based 1-gram, Stop-words Bi-gram means stop-words based 2-grams,
Stop-words Tri-gram means stop-words based 3-grams, Stop-words Four-gram means
stop-words based 4-grams, Stop-words Five-gram means stop-words based 5-grams
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and Stop-words Combined means that similarity scores of stop-words based n-grams
of length 1− 5 are used as a set of features (5 features) for the classification tasks.
VSM means results obtained using Vector Space Model, LCS means results ob-
tained using Longest Common Subsequence and GST means results obtained using
Greedy String Tiling methods. For GST, mML1 to mML10 means results with min-
imum match lengths of tiles from 1 to 10, respectively. Again, SWR means results
computed after stop-words removal. In the last part of the table, “All features
combined” means that the results are reported by combining features of all the
methods used in this study. The best results obtained overall are presented as bold
letters whereas best resulted obtained category-wise are underlined in the table.

From Table 7, as expected, overall, results are lower for the ternary classifica-
tion task (best F1 = 0.73) compared to the binary classification task (best F1 =
0.81). For both classifications, the same pattern of differences in the results can
be seen across all the methods used in the study. This demonstrates that, in text
reuse problem, it is easier to distinguish between two levels of reuse than three.
For binary classification problem, best F1 score is obtained using GST mML1

(F1 = 0.81), nearly matching the result with Word Uni-gram overlap (F1 = 0.80
). It can also be noticed that both of these results didn’t improve after removal of
stop-words. For ternary classification task, the highest F1 score of 0.73 is obtained
for both GST mML1 + SWR and Word n-grams overlap Uni-gram and we can
see a small effect of stop-words removal on both methods (improvement of 0.01
in GST while decline of 0.01 in Word n-grams overlap). These results show that
GST and Word n-grams overlap are the most appropriate methods for Urdu text
reuse detection on the COUNTER Corpus. It also highlights that, in text reuse
detection, a smaller length of blocks (tokens) (n = 1 or mML = 1) is more effective
especially when the text has been heavily modified or rephrased (as majority of
examples in our corpus are rewritten).

GST outperformed all other methods for binary classification task and its per-
formance for ternary classification task is same as Uni-gram method. Word n-grams
overlap was the second best. This shows that GST is able to deal better with para-
phrased text, identifying individually longest sub-strings in the rearrangements of
tokens (lexical units) of the rephrased text. For both classification tasks, decline
in performance was observed as the length of tokens/chunks increases (n > 1 or
mML > 1). The possible reason for this is that the derived text is rewritten in
PD and ND documents, which makes it difficult to find matching chunks of longer
lengths (n = 2− 5 or mML = 2− 10). Consequently, that makes it difficult to dis-
criminate different levels of text reuse. Note that these observations are consistent
with the METER study (Clough et al. 2002b), which also showed that best results
are obtained using word unigrams and an mML of 1, and further an increase in
the length of n or mML effects performance.

As expected, performance using the LCS method (F1 = 0.77) is lower compared
to the GST because it is not able to deal with block move problem. Furthermore,
the removal of stop-words did not show any improvement in LCS results for the
binary classification task, however, there is a slight improvement of 0.01 for ternary
classification task.

The results using the VSM method, for both binary (F1 = 0.66) and ternary
classifications (F1 = 0.54) are lowest compared to all the other content based
methods (Word n-grams overlap, LCS, GST). This is likely to happen because
VSM aims to identify topical similarity among document pairs for Information
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Retrieval (IR) task, whereas in text reuse detection task, aim is to identify overlap
between document pairs.

The performance of the structure-based and stylistic-based methods i.e. Stop-
words based n-grams overlap (F1 = 0.63 (Bi-gram) for binary classification; F1

= 0.46 (Four-gram) for ternary classification) and Sentence/Token ratio (F1 =
0.58 and 0.68 for binary classification), is low overall and they demonstrated poor
results in both classification tasks. This shows that structure-based as well as
stylistic-based methods are comparatively not suitable for the Urdu text reuse
detection task.

The results for the combination of features, using Word n-gram overlap fea-
ture “Combined” and Stop-words based n-gram overlap feature “Stop-words Com-
bined”, does not improve performance. For both classification tasks, from all the
methods used in this study, Word n-grams overlap performed consistency better
for n > 1 and above, after the removal of stop-words from the text. This improve-
ment is statistically significant as tested with Wilcoxon signed-rank test (p < 0:05)
(Wilcoxon et al. 1970). LCS also demonstrated slightly better results, for ternary
classification task, on pre-processed text with stop-words removed. However, re-
sults using VSM and GST methods does not show improvement after the removal
of stop-words. This highlights the fact that this pre-processing is useful in some
cases for text reuse detection on the Urdu text.

We also conducted experiments by combining all the features from all the meth-
ods (All features combined method) used in this study i.e. similarity scores reported
by 12 features of Word n-grams overlap, 20 features of GST, 6 features of Stop-words
based n-gram overlap and 2 features of each VSM, LCS and Sentence/Token Ratio

methods were combined and best feature selection method applied on the com-
bination of all features. We applied the attribute selected classifier from Weka
(again, the highest results were reported by Näıve Bayes’ classifier). However, the
All features combined method does not improve performance.

Table 8 shows the confusion matrix for the GST “mML1” method (it produced
best results for both classification problems, see Table 7). The columns and rows of
the matrix represents the instances in the predicted and actual classes respectively.

Table 8 Confusion matrix for ternary classification using GST mML1

WD PD ND

WD 91 43 1
PD 16 232 40
ND 2 68 107

Among all the three classes shown in the confusion matrix, it can be noted that
it is easier to discriminate between WD and ND, however, difficult in the cases of
WD-PD and PD-ND pairs. Furthermore, many WD instances are misclassified as
PD (43) and similarly ND ones are also misclassified as PD (68), highlighting PD
as the most problematic class for the classification problem. As a consequence, for
ternary classification, the overall performance decreases.



COUNTER - COrpus of Urdu News TExt Reuse 23

7 Conclusion

Text reuse detection has attracted the attention of researchers for more than a
decade now and it has gained increasing attention recently. For any language, the
lack of large scale standardized evaluation resources with real examples of text
reuse is a major problem in the analyses and development of text reuse detection
systems. This paper presented our novel contribution in terms of the development
of the first mono-lingual text reuse corpus for the Urdu language. The new corpus is
modelled on the original English METER corpus and contains source and derived
documents extracted from the news domain. The source documents contain news
articles released by the news agencies whereas the derived documents are the news
stories published in newspapers rewritten by journalists using the news agencies
text as source. The corpus has been manually annotated by three annotators at
document level with three classes of rewrite i.e. Wholly Derived, Partially Derived
and Non Derived, and we have made it freely available online. A detailed set
of twenty-four similarity estimation methods (content, structure, and style based
measures) were used to conduct experiments on the corpus to show how such a
resource can be useful in the development and evaluation of mono-lingual text
reuse detection systems. Results showed that GST with mML1 feature is the most
effective in text reuse detection on our corpus.

In the future, we plan to use character n-grams which is capable of capturing
both stylistic and content information based on the selected value of n. Further-
more, the corpus will be evaluated on other state-of-the-art semantic similarity
estimation methods, after customisation, if necessary, for the Urdu language.
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