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Abstract

Team formation is a critical step in deploying a
multi-agent team. In some scenarios, agents coor-
dinate by voting continuously. When forming such
teams, should we focus on the diversity of the team
or on the strength of each member? Can a team
of diverse (and weak) agents outperform a uniform
team of strong agents? We propose a new model
to address these questions. Our key contributions
include: (i) we show that a diverse team can over-
come a uniform team and we give the necessary
conditions for it to happen; (ii) we present opti-
mal voting rules for a diverse team; (iii) we per-
form synthetic experiments that demonstrate that
both diversity and strength contribute to the perfor-
mance of a team; (iv) we show experiments that
demonstrate the usefulness of our model in one of
the most difficult challenges for Artificial Intelli-
gence: Computer Go.

1 Introduction
Team formation is essential when dealing with a multi-agent
system. Given limited resources, we must select a strong
team to deal with a complex problem. Many works model
team formation as selecting a team that accomplishes a cer-
tain task with the maximum expected value, given a model
of the capabilities of each agent [Nair and Tambe, 2005;
Guttmann, 2008]. Other works go beyond a simple sum of
skills, for example by considering synergetic effects in a team
of agents [Liemhetcharat and Veloso, 2012] or studying how
to automatically configure a network of agents [Gaston and
desJardins, 2005].

After forming a team, their members must work together.
There are many different ways for a team to coordinate. One
common and simple way is to use voting. By voting, a team
of agents can get closer to finding the best possible decision
in a given situation [List and Goodin, 2001]. Only one vot-
ing iteration might not be enough, sometimes the agents must
vote continuously in many different scenarios. Consider, for
example, agents that are cooperating in a board game [Obata
et al., 2011], deciding together stock purchases across differ-
ent economic scenarios, or even picking items to recommend

to a large number of users [Burke, 2002]. This situation im-
poses a conflict for team formation: should we focus on the
diversity of the team or on the strength of each individual
member? Previous works do not address this issue. Diversity
is proposed as an important concept for team formation in the
field of Economics and Social Science [Hong and Page, 2004;
LiCalzi and Surucu, 2012]. However, [Hong and Page, 2004;
LiCalzi and Surucu, 2012] assume a model where each agent
brings more information, and the system converges to one of
the best options known by the group. When a team votes
to decide its final opinion, their model and theorems do not
hold anymore. In the current literature on voting it is as-
sumed a model where agents have a fixed probability to take
the best action [Condorcet, 1785; List and Goodin, 2001;
Young, 1995; Conitzer and Sandholm, 2005; Xia, 2011], and
under that model it is not possible to show any advantage in
having a diverse team of agents. Our experiments show, how-
ever, that a diverse team can outperform a uniform team of
stronger agents. It is necessary to develop, therefore, a new
model to analyze a team of voting agents.

In this work, we present a new model of diversity and
strength for a team of voting agents. The fundamental nov-
elty of our model is to consider a setting with multiple world
states, and each agent having different performance levels
across world states. Under this model, we can show that a
team of diverse agents can perform better than a uniform team
composed by strong agents. We present the necessary condi-
tions for a diverse team to play better than a uniform team,
and study optimal voting rules for a diverse team.

We present synthetic experiments with a large number of
teams that demonstrate that both diversity and strength are
important to the performance of a team. We also show re-
sults in one of the main challenges for Artificial Intelligence:
Computer Go. Go is an iterative game, and the possible board
states can represent a great variety of different situations, in
such a way that the relative strength of different Go playing
software changes according to the board state. Therefore, we
can use our model to study a team of agents voting to play
Computer Go. By using a diverse team we were able to in-
crease the winning rate against Fuego (one of the strongest
Go software) by 17%, and we could play 7% better than a
team of copies of Fuego. Moreover, we could play 7% to
9% better than one of the versions of parallelized Fuego. We
could also improve the performance of the diverse team by



12% using one of our proposed voting rules. Therefore, we
effectively show that a team of diverse agents can have com-
petitive strength, and even play better, than a uniform team
composed by stronger agents. Our new model provides a the-
oretical explanation for our results.

2 Related Work
This work is related mainly to the study of team formation,
diversity and voting. We will first introduce general works on
team formation, then we will talk about diversity, and finally
we will discuss voting.

Team formation is the problem of selecting the best pos-
sible team to accomplish a certain goal, given limited re-
sources. In the traditional model, certain skills are necessary
to accomplish a task, and we must select a team that has all
the necessary skills with the maximum expected value [Nair
and Tambe, 2005; Guttmann, 2008]. More recent work go be-
yond a simple sum of skills and also models the synergy of a
group [Liemhetcharat and Veloso, 2012], how to lead a group
to the optimal joint action with a new ad-hoc agent [Agmon
and Stone, 2012] or how to automatically configure a network
of agents [Gaston and desJardins, 2005]. In [Matthews et al.,
2012], a team formation procedure is presented for a class of
online soccer prediction games, and the system is able to play
successfully against a large number of human players. How-
ever, the existing models do not cover the situation where we
must select a team to vote together at each step of a com-
plex problem. In this work, we present a new perspective to
team formation, and we also introduce a new problem: in the
pursuit of the best possible team of voting agents should we
focus on the diversity of the team or on the strength of each
individual member?

Hong and Page presented a contribution to team formation
in the Social Science literature by showing the importance of
diversity [Hong and Page, 2004]. They proposed a model for
agents, and proved that a team of diverse agents can perform
better than a team of high-ability agents. In their model, each
agent has a set of local minima that they reach while trying
to maximize an objective function. The agents can improve
the solution from the local minima of their team members,
therefore the search of a team stops only in the intersection
of the local minima of all agents. By using a large number of
diverse agents the system is able to converge to the optimal
solution. Many papers followed their work [Luan et al., 2012;
Lakhani et al., 2007; Krause et al., 2011], showing the im-
portance of diversity in different settings. Their model, how-
ever, does not cover situations where agents are unable to im-
prove the solution from their team members’ local minima.
This can happen, for example, when we use existing soft-
ware, that were not architectured to collaborate in this way or
when there are time constraints. Therefore, there are many
situations where the agents have to collaborate in other ways,
such as voting. If a team of agents votes, the system will not
necessarily converge to an option in the intersection of their
local minima. However, as we will show, it is still possible
for a diverse team to play better than a uniform strong team.

A recent model to analyze diversity was proposed in [Li-
Calzi and Surucu, 2012]. It is an equivalent model to Page’s

and do not overcome the limitations previously described. In
[Braouezec, 2010], the authors show the benefits of diverse
agents voting to estimate the optimum of a single peaked
function. In our work we are dealing with a harder problem,
as the function to be optimized changes at every iteration.
Another work that uses voting to study diversity is [West and
Dellana, 2009], but they assumed that Page’s model would
work in a voting context, and do not propose a new model.

Concerning voting, the field has two possible views: voting
for aggregating different preferences, and voting to estimate
the best possible decision. Our work is related to the sec-
ond view. The classical work in this line is the Condorcet’s
Jury Theorem [Condorcet, 1785]. According to the theorem,
when facing a binary decision, as long as the average of the
probability of each individual being correct is higher than 1

2 , a
group of independent individuals doing majority voting will
have a higher probability of being correct than the individ-
uals alone. This theorem is extended to the k options case
in [List and Goodin, 2001], where it is shown that if each
of the individuals have a probability of choosing the best an-
swer higher than choosing any other answer, the group per-
forming majority voting will be stronger than the individuals
alone. These theorems, however, do not present any bene-
fits in having diverse agents. Researchers in Artificial Intel-
ligence contributed to this view of voting by using a maxi-
mum likelihood approach to find the optimal voting rule. The
idea is that given the votes, we can find which option has
the highest probability of being the best, if we have a model
of the probability distribution of the agents [Young, 1995;
Conitzer and Sandholm, 2005; Xia, 2011]. However, they
still do not address the issue of diversity and team formation
in the context of voting, as they assume that all agents follow
the same probability distribution. As all agents are essentially
the same, team formation is not yet an issue in their work.

3 Methodology
Let Φ be a set of agents φi voting to decide an action a in
the set of possible actions A and Ω be a set of world states
ωj . We assume that we can rank the actions from best to
worst and Uj is the vector of expected utilities of the actions
in world state ωj , ordered by rank. The agents do not know
the ranking of the actions, and will vote according to some
decision procedure, characterized by a probability distribu-
tion function (pdf) over action ranks. Hence, each agent φi
has a pdf Vi,j for deciding which action to vote for in state
ωj . Agents that have the same Vi,j in all world states will be
referred as copies of the same agent.

Let αj be the likelihood of world state ωj . If the world
states are equally frequent, we can use αj = 1/|Ω|. We de-
fine strength as the weighted average of the expected utility
of an agent or a team. It is given by the following dot product:
s =

∑
ωj∈Ω αjVj ·Uj,where Vj is the pdf of the agent/team

in world state ωj . Vj can be calculated given a team of agents
and a voting rule. A voting rule is a function that given the
(single) votes of a team of agents, outputs an action.

We define the team formation problem as selecting from
the space of all possible agents Ψ a set of n agents Φ that has
the maximum strength in the set of world states Ω. An appli-



Agent State 1 State 2 State 3 State 4 Strength
Agent 1 1 0 1 1 0.75
Agent 2 0 1 1 0 0.5
Agent 3 1 1 0 0 0.5
Agent 4 1 1 0 1 0.75
Agent 5 0 0 1 1 0.5

Table 1: A team of deterministic agents that can reach perfect
play under simple voting. “1” indicates agent plays perfect
action.

cation does not necessarily know Vi,j for all agents and for
all world states. In this work, we will focus on showing that
the naı̈ve solution of forming a team by selecting the strongest
agents (or copies of the best agent) is not necessarily the op-
timal solution. Therefore, we are introducing a new problem
to the study of team formation.

We define diversity as how different are the probability
distributions of agents in Φ in the set of world states Ω:
d = 1

|Φ|2
∑
ωj∈Ω

∑
φi∈Φ

∑
φk∈Φ αjH(Vi,j,Vk,j), where

H is a distance measure between two pdfs. In this paper,
we used the Hellinger Distance [Hellinger, 1909], given by:

H(Vi,j,Vk,j) = 1√
2

√∑
a∈A(

√
Vi,j(a)−

√
Vk,j(a))2.

At each iteration, each agent will examine the current
world state and submit its (single) opinion about which one
should be the next action. The opinions are then combined
using plurality voting, that picks as a winner the option that
received the most votes. We consider in this paper three dif-
ferent voting rules: simple - break ties randomly, static - break
ties in favor of the strongest agent overall, optimal - break ties
in favor of the strongest agent of each world state. We con-
sider the static voting rule because in some applications we
might have a clear idea of which is the strongest agent overall,
but the information of which is the strongest agent for a given
world state might not be available. We will encounter this sit-
uation in the Computer Go domain, as will be clear in Section
4.2. This voting procedure will repeat at every iteration, until
the end, when the system can obtain a reward.

3.1 Diversity Beats Strength
We present examples to demonstrate that a diverse team can
play better than a uniform team. First, let’s consider the
simplest case, when all agents are deterministic. The team
made of copies of the strongest agent will play as well as the
strongest agent, no matter how many members we add in the
team. However, a team of diverse agents can overcome the
strongest agent, and even reach perfect play, as we increase
the number of agents. Consider, for example, the team in Ta-
ble 1. This diverse team of 5 agents will reach perfect play
under simple voting, while copies of the best agent (Agent 1
or Agent 4) will be able to play well only in 3 out of 4 world
states, no matter how many agents we use in the team.

We can easily change the example to non-deterministic
agents, by decreasing slightly the probability of them play-
ing their deterministic action. A detailed description of the
agents used in this example is available in the Appendix 1.

1In http://teamcore.usc.edu/people/sorianom/ijcai13a.pdf

The resulting strength of the teams is very similar to the de-
terministic case. Assuming all world states are equally likely,
the strength of the diverse team is 0.9907, while copies of the
best agent have strength 0.7499. Therefore, it is possible for
a team of weak diverse agents to overcome a uniform team of
stronger agents, when in certain states the individual agents
are stronger than the overall strongest agent.

Even if we make the number of agents go to infinity, copies
of the best agent will still be unable to perform the best action
in one world state, and will play worse than the diverse team
with only five agents. This situation is not considered in the
Condorcet’s Jury Theorem, neither in the classical nor in the
extended version, because they assume independent agents
with a fixed pdf. Therefore, in the previous models, we would
not be able to show the importance of diversity.

Necessary Conditions
We present a formal proof of the conditions necessary for a
diverse team to play better than copies of the best agent, un-
der the simple voting rule. If the conditions of the theorem
are not met, we can simply use copies of the best agent as
the optimal team. To simplify the presentation of the proof,
we will consider a utility function with a value of 1 for the
optimal action and 0 for the other actions. That is, we will
consider the optimal team in a fixed world state as the team
that has the highest probability of performing the optimal ac-
tion. Let ψbest be the strongest agent in Ψ, and abest be the
best action in a given world state.
Theorem 1. For a diverse team to be the optimal team under
the simple voting rule it is necessary that at least one agent
in Ψ has a higher probability of taking the best action than
ψbest or a lower probability of taking a suboptimal action
than ψbest in at least one world state.

Proof We develop the proof by showing that copies of the
best agent of a given world state will be the optimal team
in that world state. Therefore, it is necessary that the agents
in the diverse team play better than the best agent overall in
at least one world state. Let ψbest,j be the strongest agent
in world state ωj . Let’s define the pdf of this agent as <
p1, ..., pk >, where p1 is the probability of taking the best
action. We will show that a team of n copies of ψbest,j doing
simple voting will have a higher probability of taking the best
action than a team of n agents composed of x copies ofψbest,j
and m agents ψi doing simple voting, where the probabilities
of each ψi are given by < p1 − εi, p2 + γi2, ..., pk + γik >,
γil ≥ 0 ∀l ∈ (2, k) and

∑k
l=2 γil = εi.

Given a team of agents, let them all vote. We will start
with a team of x copies of agent ψbest,j . We will perform m
iterations, and at each one we will add either another agent
ψbest,j or agent ψi, where i is the current iteration. Let vi−1
be the current vote result. The result of vi−1 is either: (i)
victory for abest, (ii) tie between abest and other options, (iii)
defeat for abest.

(i) If vi−1 is a victory for abest, the new agent can change
the result only when it votes for another option. Suppose al
is an option that upon receiving one more vote will change a
victory for abest into a tie between abest and al. Agent ψbest,j
will vote for option al with probability pl, while agent ψi will
vote for option al with probability pl+γil. Therefore, if vi−1



is such that one vote can change a victory for abest into a tie
between abest and other options, agent ψi will have a higher
probability of changing a victory for abest into a tie between
abest and other options.

(ii) If vi−1 is a tie between abest and other options, ψbest,j
will break the tie in favor of abest with probability p1 while ψi
with probability p1 − εi. Therefore, agent ψbest,j will have a
higher probability of breaking the tie in favor of abest. More-
over, if al is an option that is currently tied with abest, agent
ψbest,j will vote for al with probability pl, while agent ψi
with probability pl + γil. Therefore, agent ψi will have a
higher probability of changing a tie between abest and other
options into a defeat for abest.

(iii) If vi−1 is a defeat for abest, ψbest,j will vote for abest
with probability p1 while ψi will vote for abest with probabil-
ity p1−εi. Therefore, if vi−1 is such that one vote can change
a defeat for abest into a tie between abest and other options,
agent ψbest,j will have a higher probability of changing a de-
feat for abest into a tie between abest and other options.

In all three cases, agent ψbest,j leads to a higher increase in
the probability of picking abest than agent ψi. Therefore, up
to any iteration i, copies of ψbest,j will have a higher proba-
bility of playing the best action than a diverse team. Hence,
if ψbest,j = ψbest∀j, then copies of the best agent ψbest will
be the best team in all world states, and therefore it will be
the optimal team. Therefore, for a diverse team to perform
better, at least one agent must have either a higher probabil-
ity of taking the best action or a lower probability of taking a
suboptimal action than ψbest in at least one world state. �

This theorem, however, only gives the necessary conditions
for a diverse team to be stronger than a non-diverse team. The
sufficient conditions will depend on which specific game the
agents are playing. Basically, given the pdf of the agents for
a set of world states, we can calculate the pdf of both the
diverse team, and the team made of copies of the best agent.
If the diverse team has a higher probability of taking the best
action in a subset of the world states that is enough for it to
play better, considering that it will have a lower probability of
taking the best action in the complementary subset, then the
diverse team will play better than copies of the best agent.

Optimal Voting Rules
Given the result of a voting iteration, and the pdf of all agents
in a world state, we can calculate which action has the highest
probability of being the best. Formally, let < pi1, ..., p

i
k > be

the pdf of agent φi in world state ωj , where pil is the proba-
bility of playing the action with rank l. The optimal voting
rule is the one that given a voting pattern, selects the action
ax that has the highest probability of being the best. Let Y
be the set of all other possible rank combinations for all other
actions. We write an element of Y as a sequence y1...yk′−1,
where yl is a position in the ranking, and k′ is the number
of actions in the given voting pattern. We also define Φal

as
the set of agents in Φ that voted for an action al, and Aγ as
the set of all actions in the given voting pattern. Assuming
a uniform prior probability for the ranking of all actions, we
can calculate the probability of ax being the best action by:∑

y1...yk′−1∈Y

∏
φix∈Φax

pix1
∏
al∈Aγ−{ax}

∏
φil∈Φal

pilyl

The derivation of the expression is available in the Ap-
pendix. We can extend this definition to picking the option
with maximum expected utility by calculating the probability
of each possible rank (instead of only the best one) and mul-
tiplying the resulting probability vector by a utility vector to
obtain the expected utility of an option ax.

However, it is possible to use a simpler voting rule. In
our next theorem, we show that given some conditions, the
optimal voting rule for a diverse team is to consider major-
ity voting, but break ties in favor of the strongest agent that
participates in the tie. Basically, we have to assume that all
agents are strong enough to contribute to the team, so no agent
should be ignored. If there are harmful agents in the team, we
can try to remove them until the conditions of the theorem are
satisfied. Again, we consider a utility function with a value
of 1 for the optimal action and 0 for the other actions. Given
a team Φ with size n, our conditions are:

Assumption 1 Weak agents do not harm
For any subset of Φ with an even number of agents n′, and

for a fixed world state ωj , let φ′best,j be the best agent of the
subset. We divide the agents in 2 sets: Weak containing the
n′/2− 1 agents that have the lowest probability of taking the
best action and the highest probability of taking a suboptimal
action, and Strong containing the n′/2 agents that have the
highest probability of playing the best action and the lowest
probability of taking a suboptimal action (except for the best
agent φ′best,j , that is in neither one of the sets). We assume
that when all agents in Weak and φ′best,j vote together for an
option ax, and all agents in Strong vote together for another
option ay , the probability of ax being the best action is higher
than the probability of ay being the best action.

Assumption 2 Strong agents are not overly strong
Given a fixed world state ωj , we assume that if m1 agents

voted for an action ax and m2 agents voted for an action ay ,
the probability of ax being the best action is higher than ay
being the best action, if m1 > m2. If there is a situation
where the opinion of a set of agents always dominates the
opinion of another set, we can try to remove the dominated
agents until the assumption holds true.

Theorem 2. The optimal voting rule for a team is to consider
the vote of all agents, but break ties in favor of the strongest
agent if the above assumptions are satisfied.

Proof Sketch Our detailed proof is available in the Ap-
pendix. We present here a proof sketch. By Assumption 2 we
know that we are looking for a tie-breaking rule, as the action
chosen by the majority of the votes should always be taken.
By Assumption 1 we know that in the worst possible case, we
should still break ties in favor of the strongest agent. If in
the worst case, the group with the strongest agent still has a
higher probability of selecting the best action than the group
without the strongest agent, for any other case the group with
the strongest agent will still have a higher probability. �

As we are going to see in the next section, an application
may not have the knowledge of the pdf of the agents in indi-
vidual world states. Therefore, we also study an approxima-
tion of the optimal voting rule, that break ties in favor of the
strongest agent overall, instead of breaking ties in favor of the
strongest agent in a given world state. In the next section we



will see that both the optimal voting rule and our approxima-
tion improves the performance of a diverse team.

4 Results
4.1 Synthetic
We perform experiments using the quantal response (QR)
model for the agents [McKelvey and Palfrey, 1995]. The
quantal response model is a pdf from behavioral game theory
to approximate how human beings (or non-rational players)
behave while playing a game. It states that the probability of
playing the best action is the highest, and it decays exponen-
tially as the utility of the action gets worse. We use the QR
model in our experiment, because it is a convenient way to
represent non-rational agents with different strengths playing
a game with a great number of options.

The pdf depends on a parameter, λ, that defines how ra-
tional (i.e., strong) is the agent. As λ gets higher, the agent
provides a closer approximation to a perfect player. We define
a λij for each agent i and world state j.

We generated 1200 random teams of 4 agents, playing in
10 world states, and with 82 possible actions. We define each
λij as a random number in the interval (0, 7), according to
a uniform distribution. For each team, we can calculate the
diversity and the average strength of the agents, according
to the equations defined earlier. In Figure 1, we can see the
performance of each team, as a function of diversity and the
strength of its members. The strength of a team can be calcu-
lated after we generate the pdf of the team, by calculating the
probability of all possible situations where the system would
pick a particular ranking position. We assume that all world
states are equally likely, hence the strength of a team is the
average over all world states. We used a utility vector that
gives a value close to 1 to the best action, and a low value to
the other actions.

We performed a multiple linear regression for each vot-
ing rule. The following models were found: simple: z =
−0.09 + 1.48s+ 0.45d; static: z = −0.03 + 1.36s+ 0.55d;
optimal: z = 0.09 + 0.92s + 1.29d. The variable s is the
average strength of the team members, d is the diversity of
the team, and z is the strength of the team. The coefficient
of multiple determination (R2) of the models are 0.96, 0.81,
0.88, respectively.

As can be seen, both diversity and strength had a posi-
tive weight. This shows that groups with more diversity are
stronger, given a fixed strength for their members. It is in-
teresting to note that the impact of diversity increases as we
change the voting rule from simple to static, and from static
to optimal. The mean strength of all teams are 0.56(±0.08),
0.61(±0.08), 0.74(±0.06), respectively. We can note that, as
expected, simple had the lowest strength, followed by static,
and optimal had the highest strength. The optimal voting rule
is 30% stronger than simple voting in average.

4.2 Experiments in Computer Go
We perform experiments with four Go software: Fuego 1.1
[Enzenberger et al., 2010], GnuGo 3.8, Pachi 9.01 [Baudiš
and Gailly, 2011], MoGo 3 [Gelly et al., 2006], and two
(weaker) variants of Fuego (Fuego∆ and FuegoΘ), in a total

Player # Higher Pbest
GnuGo 17% (12%)
Pachi 21% (11%)
MoGo 20% (7%)

Fuego∆ 25% (6%)
FuegoΘ 26% (6%)

Table 2: Weak agents can play better in some board states. In
parentheses, when the difference in Pbest is 99% significant.

of 6 different agents. These are all publicly available Go soft-
ware. Fuego is known to be the strongest Go software among
all of them. Fuego, Pachi and MoGo follow an UCT Monte
Carlo Go algorithm [Gelly et al., 2006]. The description of
Fuego∆ and FuegoΘ is available at the Appendix. All re-
sults presented are obtained by playing 1000 9x9 Go games,
in a HP dl165 with dual dodeca core, 2.33GHz processors
and 48GB of RAM. Our system will play as white, against
the original Fuego playing as black with opening database.
Therefore, we will compare the winning rate of different
agents and teams when playing against the same opponent.
When we say that a result is significantly better than another,
we use a t-test with 1% significance level (α = 0.01).

Before introducing our results, we will use Theorem 1 to
justify that it is worth it to explore a diverse team. If Fuego,
the strongest agent, is always stronger in all board positions,
then we can just use copies of Fuego as the optimal team.
Therefore, we will first test if all agents are able to play bet-
ter than Fuego in some board positions. In order to analyze
the probability of an agent playing the best move in a certain
board position, we need an estimate of the best move. Given
a board position, we will ask Fuego to perform a movement,
but we will give Fuego a time limit 50x higher than the de-
fault one. Therefore, Fuego is approximating how a perfect
(or at least much stronger) player would play. We selected
100 board states, and we played all agents 50 times for each
board state. Based on our estimate, we can calculate the prob-
ability of each agent playing the best move (Pbest) for each
board state. In Table 2, we can see in how many board states
the agents have a higher Pbest than Fuego (in its default time
limit). As can be observed, all agents are able to play better
than Fuego in some board positions, therefore it is possible
for a diverse team to play better than copies of the best agent.
As the number of board states where an agent plays better is
not small, we can expect that a diverse team should be able to
overcome the uniform team.

According to Theorem 2, if we assume that the weak agents
(like GnuGo) are not weak enough to harm the system, and
the strong agents (like Fuego and its variants) are not strong
enough to dominate a subset of the agents, then the optimal
voting rule is to break ties in favor of the strongest agent.
However, during a game the system does not have access to
the pdf of the agents, and has no way to identify which is the
strongest agent. Therefore, we present results using the static
voting rule, that break ties in favor of the strongest agent over-
all. Based on our synthetic results, we can predict that static
should perform better than simple. We also tried a weighted
voting rule, which allowed us to empirically learn the best



(a) Simple Voting (b) Static Rule (c) Optimal Rule

Figure 1: 1200 random teams of 4 agents.

weights by a hill climbing algorithm. The resulting rule was
equivalent to the static voting rule.

We call a team composed by different Go software as “Di-
verse” or by the name of the voting rule that they use (“Sim-
ple” or “Static”). The team of copies of the strongest agent
(Fuego) will be called “Copies”. The copies are initialized
with different random seeds, therefore due to the nature of
the search algorithms, they will not always choose the same
movement. When we want to be explicit about the number of
agents in a team we will add a number after the name of the
team. “Diverse” is composed by Fuego, GnuGo, Pachi and
MoGo when executed with four agents, and is composed by
all agents when executed with six agents. We also work with
a parallelized version of Fuego (“Parallel”), and we will add
a number after its name to indicate the number of threads.

We can see a summary of all our results in Figure 2. Di-
verse plays significantly better than Fuego, with 6 agents or
when using the static voting rule. When we keep the opening
database, Diverse plays significantly better than Copies and
Parallel with 6 agents. Without the opening database, Diverse
still plays significantly better than Parallel with 6 agents, but
the difference between Diverse and Copies is not statistically
significant. Static is either significantly better than Simple, or
the difference between them is not statistically significant.

By the classical view of voting, our experimental result is
not expected. If we view each agent as having a fixed pdf,
we would predict that copies of the best agent would per-
form much better than a diverse team with weaker agents.
However, in our results we showed that the diverse team has
a competitive strength, and is able to play even better than
copies of the best agent when we keep the opening database.
Our model provides a theoretical explanation for our results.

5 Conclusion
This paper opens a new path for multi-agent team formation.
Unlike existing work, we study team formation in the context
of agents that vote together at each step of a complex prob-
lem. This introduces a new conflict between focusing on the
diversity of a team or on the strength of each individual mem-
ber when we pursue the best possible team. We opened this
new path by showing that the naı̈ve solution of selecting the
strongest agents does not work, as it is possible for a team of
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Figure 2: Results in the Computer Go domain. The error bars
show the confidence interval, with 99% of significance.

weak but diverse agents to perform better than a uniform team
made of copies of the strongest agent. We also introduced the
study of optimal voting rules for a diverse team, and showed
both via mathematical analysis and experimentation that our
proposed rules improve the performance of a team. Our ex-
periments with a set of Go playing agents demonstrate the
importance of our model, as the model provides a theoretical
explanation of our results that would not be possible other-
wise. It is also a concrete example that diversity can over-
come strength in multi-agent team formation.
Acknowledgments: This research was supported by MURI
grant W911NF-11-1-0332.
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Pachi: State of the Art Open Source Go Program. In Ad-
vances in Computer Games 13, November 2011.

[Braouezec, 2010] Yann Braouezec. Committee, expert ad-
vice, and the weighted majority algorithm: An application
to the pricing decision of a monopolist. Computational
Economics, 35(3):245–267, March 2010.

[Burke, 2002] Robin Burke. Hybrid recommender systems:
Survey and experiments. User Modeling and User-
Adapted Interaction, 12(4):331–370, November 2002.

[Condorcet, 1785] Marquis de Condorcet. Essai sur
l’application de l’analyse a la probabilite des decisions
rendues a la pluralite des voix. L’Imprimerie Royale,
1785.

[Conitzer and Sandholm, 2005] Vincent Conitzer and Tuo-
mas Sandholm. Common voting rules as maximum like-
lihood estimators. In Proceedings of the Twentieth Con-
ference on Uncertainty in Artificial Intelligence, UAI’05,
pages 145–152. Morgan Kaufmann Publishers, 2005.

[Enzenberger et al., 2010] M. Enzenberger, M. Müller,
B. Arneson, and R. Segal. Fuego - An open-source frame-
work for board games and go engine based on Monte
Carlo Tree Search. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):259 –270, dec. 2010.

[Gaston and desJardins, 2005] Matthew E. Gaston and
Marie desJardins. Agent-organized networks for dynamic
team formation. In Proceedings of the Fourth Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’05, pages 230–237, New
York, NY, USA, 2005. ACM.

[Gelly et al., 2006] Sylvain Gelly, Yizao Wang, Rémi
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