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Abstract— In this paper, we address navigation and coordi-
nation methods that allow swarms of robots to converge and
spread along complex 2D shapes in environments containing
unknown obstacles. Shapes are modeled using implicit functions
and a gradient descent approach is used for controlling the
swarm. To overcome local minima, that may appear in these
scenarios, we use a coordination mechanism that reallocates
some robots as “rescuers” and sends them to help other
robots that may be trapped. Simulations and real experiments
demonstrate the feasibility of the proposed approach.

I. I NTRODUCTION

The use of large groups of robots in the execution of
complex tasks has received much attention in recent years.
Generally calledswarms, these systems employ a large
number of simpler agents to perform different types of
tasks, oftentimes inspired by their biological counterparts.
In general, swarms of robots must perform without a desig-
nated leader and using limited communication. Due to these
challenges, new algorithms to control and coordinate these
very large groups of robots have been developed.

In this paper, we present navigation and coordination
methods that allow swarms of robots to converge and spread
along complex 2D shapes in environments containing ob-
stacles. We build on our previous work in which implicit
functions and gradient descent techniques were used to syn-
thesize shapes and patterns in obstacle free environments [1].
Here, along with gradient descent, robots are repelled by
locally sensed obstacles using a potential field approach. As
expected, this can lead to the appearance of local minima
compromising the convergence. To overcome this, we rely
on multi-robot coordination: some robots become rescuers
and retrace their paths to help others stuck in local minima.

The general area of motion planning for large groups of
robots has been very active in the last few years. One of the
first works to deal with the motion control of a large number
of agents was proposed for generating realistic computer ani-
mations of flocks of birds (calledboids) [2]. Basically, local
interactions among neighboring agents create an emergent
behavior for the whole flock. In robotics, these interactions
can be considered as a special case of the potential field
approach [3], in which robots are attracted by the goal and
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repelled by obstacles and other robots. In swarms, attractive
forces are generally modeled through the gradient descent
of specific functions [4], [5]. Unfortunately, as in regular
potential field approaches, the presence of obstacles and local
repulsion forces among the robots may cause convergence
problems in general gradient descent approaches, mainly
when robots are required to synthesize shapes. Hsieh and
Kumar [6] are able to prove convergence properties and the
absence of local minima for specific types of shapes and
environments. Also, special types of navigation functions can
be used to navigate swarms in cluttered environments [7].
But these approaches may be hard to compute in real time
and may not be applicable to all types of environments.

Other approaches to navigate large groups in obstructed
environments consist in treating the swarm as a simpler
entity with a smaller number of degrees of freedom and then
perform the motion planning for this entity. The work pre-
sented in [8], for example, models a group with a deformable
shape and uses aProbabilistic Roadmapto plan for this
shape. Belta et al. [9] show how groups of robots can be
modeled as deformable ellipses, and presented decentralized
controllers that allowed the control of the shape and position
of the ellipses. This approach was extended in [10] with
the development of a hierarchical framework for trajectory
planning and control of swarms. A hierarchical approach
was also used in [11] in which planning was simplified by
dynamically grouping robots using a sphere tree structure. A
related work, that investigates coordination mechanisms for
boundary coverage with swarms is presented in [12].

In this paper, instead of restricting our environment,
developing complex controllers, planners, and navigation
functions, or relying on random movements to escape local
minima, we use the composition of simple controllers and
decentralized coordination to allow swarms of robots to
navigate and synthesize patterns, overcoming local minima
in environments containing unknown obstacles. This is the
main contribution of this work.

This paper is organized as follows. Next section presents
the approach used to generate the implicit functions, the
controllers used to navigate the swarm, and an example of
a complex shape synthesized in an environment containing
obstacles. Section III explains the coordination methodology
used to overcome local minima and shows simulations of a
local minima scenario. Section IV presents some experiments
performed with a couple ofe-puckrobots that demonstrate
the feasibility of the proposed approach. Finally, Section V
brings the conclusion and directions for future work.
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II. SYNTHESIZING SHAPES

As stated in the previous section, we want to control a
very large group of robots to converge and spread along
complex shapes in environments containing obstacles. As in
[1], robots spread along a 2D curveS given by implicit
functions of the forms(x, y) = 0. This implicit function can
be viewed as the zero isocontour of a 3D surfacef = s(x, y)
whose value is less than zero for all points(x, y) that are
inside theS boundary and is greater than zero for all points
outside theS boundary. By controlling individual robots to
perform a gradient descent onf2, we are able to make
the group converge toS. In order to compute the gradient
forces, robots must know their global position. This is a
strong assumption, but it is generally accepted when dealing
with swarm navigation. Besides, advances in localization
technologies have been providing affordable and scalable
ways to localize large number of robots (see Section IV-A).

To synthesize specific shapes, we considerf as a weighted
sum of radial basis functions (RBFs) created interpolating
from a set of constraint points. We specify some constraint
pointspj along the shape boundary such thatf(pj) = 0 and
at least one constraint smaller than zero inside the boundary
(to avoid degenerate solutions). Each of these constraints will
be the center of one RBF. Then, solving a simple linear
system, we determine the weights(wj) of all the RBFs that
comprise the functionf :

f(q) =
∑

j

wjh(|q− pj |) (1)

where the term|q − pj | is the Euclidean Distance(d)
between the point where the function is being evaluated
and a constraintpj . In this paper functionh is given by
h(d) = d2 log(d).

For obstacle avoidance, we use a regular potential field
approach: if an obstacle is detected by the robot, this obstacle
applies a repulsive force that is inversely proportional to
the distance between them. The same approach is used
for modeling repulsion between robots. In simulation, we
consider that the robot’s sensing region is determined by a
circle with radiusr centered at the robot. So, we define two
setsOi and Ni containing, respectively, the obstacles and
robots detected inside this region.

Thus, considering a fully actuated roboti with dynamic
model given byq̇i = vi and v̇i = ui, whereqi = [xi, yi]T

is the configuration of roboti, ui is its control input andvi

is the velocity vector, the control law is given by:

ui = −α∇f2(qi)− Cq̇i − β
∑
k∈Oi

1

dik
− γ

∑
j∈Ni

1

qj − qi
. (2)

Constantsα, β, γ, and C are positive. The first term is
the gradient of the square of the RBF function given by
equation 1, used to guide the robots toward the specified
shape. The second term is a damping force. The third term
is the sum of repulsive forces applied by the obstacles (dik is
the distance vector between roboti and obstaclek). Only the
obstacles that are inside roboti sensing region, represented

by the setOi, are considered in the computation of forces.
The fourth term computes the repulsive interaction of a robot
with its neighbors, represented by the setNi.

To illustrate this approach, we performed simulations in
which a swarm should generate a pattern (letter ‘G’) in
an environment containing obstacles. We used MuRoS, a
multirobot simulator that allows us to implement various
tasks, test different controllers, and observe the robots in real
time. Constantsα, β andγ were tuned to balance attractive
and repulsive forces adequately and velocities were limited
to an acceptable maximum (saturation). The sensing radius
r is set to 3 times the size of the robot. Figure 1 shows a
sequence of snapshots of robots converging to the target.

III. OVERCOMING LOCAL M INIMA

The approach presented in the previous section can lead
to situations of local minima. Since robots are attracted by
the goal and repelled by obstacles and other robots, they
can be trapped in regions where the resultant force is zero
or where the force profile leads to repetitive movements
(for example, continuous circular movements in a specific
region). In general, the local minima regions depend on the
shape of the obstacles and on the number of robots. So, it
is difficult to model these regions precisely and there are no
formal guarantees that the robots will converge to the desired
pattern. To overcome this, we use coordination strategies
that allow robots to escape from local minima with the help
of their teammates. The general idea is to use some of the
robots that reach the target as “rescuers”. These rescuers will
retrace their path looking for other robots that may be stuck
in local minima. For this, two additional assumptions are
made: a robot must have a small memory in order to save
their path and must be able to send messages to the robots in
its neighborhood. The amount of storage needed is not high,
a few KBytes will suffice in most situations. Also, affordable
short range communication mechanisms, such as Bluetooth,
are commonly available nowadays. Thus, these assumptions
do not compromise the applicability of our methodology.

The strategies developed take advantage of some char-
acteristics of swarms in general: the presence of a large
number of members and the possibility of local interactions
among them. Since we have a very large group, it is possible
to allocate different roles to some of the robots while the
others perform the original mission. As an example, we
have the rescuers to help other robots. Also, when a large
number of robots are trapped, local force interactions allow
robots to “push” some teammates out of the local minima
and local communication allows rescuers to broadcast free
paths to the neighboring robots trapped in regions of local
minima. Finally, an important characteristic of using swarms
is fault tolerance. The loss of some team members do not
compromise the mission as a whole. So the algorithm does
not need to be complete: we can have robots that may not
be rescued and will be considered “missed in action”.

Our coordination is based on a mode switching mechanism
similar to the dynamic role assignment presented in [13]. A
robot can switch between different modes (or roles) during



Fig. 1. A group of 80 robots synthesizing a complex shape (letter ‘G’) while avoiding obstacles. Robots are represented by the small circles.

the execution of the task. Each mode determines a different
behavior for the robot and will be executed while certain
internal and external conditions are satisfied. The mode
switching together with local interactions allow robots to
escape local minima and converge to the desired target.

A. Modes

Robots in the swarm can be in one of five different modes
during task execution:normal, trapped, rescuer, attachedand
completed. These modes can be represented by a finite state
machine (FSM), in which the edges represent the possible
transitions between different modes. Figure 2 shows the finite
state machine used in our coordination mechanism.

Fig. 2. Finite state machine showing the possible modes and transitions
for each swarm member.

A normal robot simply behaves as explained in Section
II. It performs a gradient descent, following paths that will
avoid obstacles and eventually lead to the target. All robots
start in thenormal mode and becometrapped if they fall
in a local minima region. Atrapped robot acts similarly to
a normal one, except for the following facts: (i) atrapped
robot strongly repels anothertrappedrobot and this repulsion
is stronger than the one between twonormal robots. As a
local minima region tends to attract many robots, the local
interactions through these stronger repulsion forces will help
some of the robots to escape this region; (ii)trappedrobots
accept messages fromrescuersor attachedrobots that will
help them to escape from local minima and move towards
the target. This will be better explained later in this section.

To change its mode fromnormal to trapped (and vice-
versa), a robot considers the variation of its position over
time. If its position do not change much during a certain
amount of time, it becomestrapped. Since robots can have
small or repetitive movements in the local minima area, the
transition backtrappedto normal is harder. It only gets back
to thenormal mode with larger variations in its position.

When a robot arrives at the target it may become arescuer.
Basically, when moving towards the goal, a robot saves a

sequence of waypoints that is used to mark its path. If it be-
comes arescuerit will retrace its path backwards looking for
trappedrobots. After retracing its path backwards, the robot
moves again to the goal following the path in the correct
direction. In order to minimize the memory requirements of
the algorithm, the robot discards redundant information in
the path stored. Therefore, if there is a straight line in the
path, ideally only two waypoints will be used. If there is
a complicated and narrow curve, the robot will save more
waypoints to be able to follow the path.

An important point is to define which and how many
robots will becomerescuers. To control this we use “co-
ordination tokens”1. We start withn tokens at the target.
Every robot that arrives removes one token. The first robot
that does not find any token to remove becomes arescuerand
putsm new tokens at the target, withm < n. This inequality
is important because we do not want the first robots to
arrive to become rescuers since they probably started near
the target and will not find manytrappedrobots in their path.
This procedure is repeated withm tokens until a maximum
numberτ of rescuersare sent. The values ofm, n and τ
are determined empirically and may vary depending on the
total number of robots and characteristics of the environment.
With an appropriately large number of robots and correctly
specified constants, generally we will have enoughrescuer
robots to achieve a good convergence rate.

A trapped robot keeps sending messages announcing its
state. When arescuer listens to one of these messages,
thereby detecting atrapped robot in its neighborhood, it
broadcasts its current position and its path. Anytrappedrobot
will receive the message if it is within a certain distance from
the rescuerand there is a direct line of sight between them.
After receiving it, thetrapped robot changes its mode to
attached.

An attachedrobot will move to the received position and
then follow the received path to the goal. Anattachedrobot
can also communicate with othertrapped robots, spreading
the information about the feasible path to the goal. In this
situation, the trapped robots will change their status to
attachedand will be able to also spread the information to
their neighbors, creating a powerful communication chain. To
avoid congestion with many robots converging to the same
waypoint, a circular area around the waypoint is considered.

1We borrow this term from the multi-agent community where tokens are
used to transmit information between agents in a scalable way [14]. Here,
tokens are basically distributed counters used to coordinate the robots.
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Fig. 3. A swarm of 110 robots escaping from local minima and converging to the target. The robot shapes represent the different modes.

Finally, a robot will change its mode tocompletedwhen it
reaches the target. In this case, it will spread along the zero
isocontour of the implicit function as explained in section II.
Completedrobots will not switch totrappedagain but may
becomerescuersaccording to the coordination tokens.

This idea of saving and communicating feasible paths to
the target is inspired in the use of pheromones by social
insects. A pheromone is any chemical or set of chemicals
produced by a living organism that transmits a message to
other members of the same species [15]. For example, certain
ants leave a trail of pheromones as they return to the nest
with food. This trail attracts other ants and serves as a guide,
thereby creating an implicit form of communication. In this
paper, a phromone inspired approach is implemented using
explicit communication due to the difficulties of artificially
creating and detecting real pheromones. Instead of being
marked on the ground, feasible trails are saved by the robots
and transmitted to teammates.

B. Classical Example

To demonstrate the coordination strategy, we modeled
a classical local minima scenario: an u-shaped obstacle
forming a dead end. We simulated 110 robots in this scenario
and were able to successfully achieve convergence, with
all robots escaping local minima and spreading along the
target. The variables that control the number and frequency
of rescuers are set ton = 12, m = 4, τ = 10.

The initial state of the simulation can be seen in Figure
3(a). The robots are in the left (white circles), in the middle
we have an u-shaped obstacle and in the right we have our
target (dashed square). In Figure 3(b), some robots have
already arrived at the target, but many robots are stuck in
the region of local minima. It is interesting to note how
the trapped robots (gray squares) are spread in this region
due to the stronger repulsion forces that exist among them.
As mentioned, this enables some of these robots to escape
from the local minima. In Figure 3(c), the initial effect
of the rescuers can be observed. There are someattached

robots (right-pointing white triangles) using the information
transmitted by therescuers(left-pointing black triangles) to
escape the dead end in the bottom left of the obstacle. Others
are already moving in the correct direction while theattached
robots re-transmit the rescuer’s information.

Figure 3(d) shows all robots escaping the local minima
region, thanks to the communication network created by the
attachedrobots that enabled all of them to receive a feasible
path. Soon we achieve the situation in 3(e) where most robots
are reaching the target region (black diamonds) while there
are still somerescuer robots that are looking fortrapped
ones and will later move back to the goal (Figure 3(f)).

IV. EXPERIMENTS

To demonstrate the feasibility of the proposed approach,
we performed some experiments with a couple ofe-puck
robots. The e-puck is a small-sized (7cm diameter) differen-
tial drive robot that is very suitable for swarm experimenta-
tion [16]. Each robot is equipped with a ring of 8 IR sensors
that allows proximity sensing and a group of colored leds
to indicate robot status. Local processing is performed by
a dsPIC microprocessor and a bluetooth wireless interface
allows robot to robot communication and remote control.
The robot is also equipped with a micro-camera, a 3D
accelerometer, speakers and a microphone. Figure 4 shows
the robots used in the experiment.

Fig. 4. Pair ofe-puckrobots used in the experiments.



Despite not being executed with swarms of robots, these
experiments demonstrate three fundamental robot competen-
cies for the execution of the proposed algorithm: (i) the
robot’s ability of localizing itself, following the negative
gradient to a specific goal, and retracing its path; (ii) the
ability of communicating its path to a trapped robot that will
follow this path to the goal; and (iii) the capacity of detecting
that it is trapped in a local minima.

A. Localization, Gradient Descent, Path Retracing

As discussed in Section II, robots navigate to the goal
following the negative gradient of an implicit function and
avoid obstacles and other robots using repulsion forces. For
gradient computation, robots must know their position. In
this paper, we use a localization system specifically designed
for swarm localization in indoor environments [17]. In this
system, robots are tagged with geometrical markers and a
group of overhead cameras is used to localize and uniquely
identify the robots. The use of geometrical markers makes
the system scalable to large numbers of robots while the
association of multiple cameras allows the coverage of a
larger work area. A modular and distributed software system
that may run in different computers is responsible for gather-
ing information from multiple cameras, localize the robots,
and transmit this information in real time to the robots.
Experiments performed in [17] showed that the system is
capable of detecting up to 40 different markers at 25Hz on
a single computer, with 1cm accuracy.

Since we are using differential drive robots in these
experiments, some changes had to be made in the controller
of Equation 2. The resultant acceleration vector generated by
the controller is integrated to linear and angular velocities
using the approach proposed in [18]. The repulsive potential
field generated by the obstacles is also based on [18], using
distances measured through the IR sensors (the sensing range
is about 4.5 cm). Constants are set toα = 2, β = 0.002,
γ = 0.002, and the maximum velocity is set to 2.05 cm/s.

Figure 5 shows a trajectory performed by one robot using
this controller in a environment containing a single obstacle.
The implicit function sets the goal region approximately
around position (0,0). The start and end points are marked
with a triangle and a circle respectively. It can be observed
that the robot successfully follows the inverse of the gradient
from a initial position to the goal while avoiding obstacles.
After reaching the goal, it retraces its path using the saved
waypoints. The total number of waypoints in this path is 118
(without discards). Considering that each waypoint needs
64 bits, the total memory required for storing the path is
less than 1KB. Notice that due to the robot’s differential
constraints, the retraced trajectory is not identical to the saved
one, but both are sufficiently close for the rescue mission.

B. Communication and Rescue

Figure 6 shows a complete run of the algorithm in a
scenario containing a local minima. The graphs show the
trajectories executed by two robots (robot 1 - solid, robot 2
- dashed). In figure 6(a), robot 1 moves from a start position

−0.5 −0.4 −0.3 −0.2 −0.1 0
0.1

0.2

0.3

0.4

0.5

0.6

x (m)

y 
(m

)

Fig. 5. E-puck’s trajectory: the robot moves from a start position (triangle)
to the goal and then retraces its path.
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Fig. 6. A complete run of the algorithm. (a) Robot 1 (solid) gets trapped
while robot 2 (dashed) reaches the goal and retraces its path. (b) Robot 1
escapes local minima after receiving a message from robot 2. The triangles
mark the start of the trajectories.

until getting trapped in a local minimum, while robot 2
reaches the goal around position (0,0) and then becomes
a rescuer and retraces its path. Figure 6(b) shows robot 1
escaping from the local minimum and moving to the goal
after receiving a message from robot 2 containing a free path.
As explained in Section III, robot 1 first moves to the position
from where robot 2 sent the message and then follows the
received waypoints to the goal. Robot 2, after retracing its
path, also follows its saved waypoints to the goal.

Robots communicate using a bluetooth interface. In this
experiment, differently from the simulations, robots do not
need to “see” each other to communicate, i.e., they exchange
messages even when there is no line of sight between them.
This leads to an interesting situation: after receiving the
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Fig. 7. Robot changes to thetrapped state at the vertical line when the
variation in its recent positions is small.

waypoints, robot 1 changes its status to attached and tries
to move towards robot 2 to start the waypoint following.
But since there is no direct path between them, robot 1 gets
trapped again. This happens 8 times until robot 2 sends a
message from a position that can be reached by robot 1. This
may explain the movements performed by robot 1 inside the
local minima while robot 2 is retracing its path in Figure 6(a).

C. Trapped State Detection

To be able to execute the mode switching presented in
Section III, robots must have the ability of detecting that
they are trapped in a local minimum. To do this, a robot
keeps track of its recent positions. If the distance from its
current location to one of these positions is less than a certain
threshold, it considers itself trapped. To demonstrate this
ability we ran some experiments in which one robot gets
trapped in a local minima caused by an u-shaped obstacle,
in a scenario similar to Figure 6(a).

Figure 7 shows the robot’s coordinates x (dashed) and y
(solid) as a function of time. The vertical line marks when
the robot changes its status fromnormal to trapped. It can be
noticed that the robot correctly detects that it is trapped when
the variation of both coordinates during a specific amount
of time is small. The position variation that activates the
trappedstate must be tuned according to the robot expected
velocities, otherwise a robot that is moving very slowly
may consider itself trapped. But it is important to mention
that these “false-positives” generally do not compromise the
algorithm, since, as explained in Section III, robots in the
trappedstate still perform the gradient descent.

V. CONCLUSION

This paper presented a methodology for controlling and
coordinating large groups of robots to navigate and synthe-
size complex shapes in environments containing unknown
obstacles. Shapes are modeled using implicit functions gen-
erated interpolating from a set of constraint points. A compo-
sition of gradient descent and potential fields is used to guide
robots to the target while avoiding obstacles. To overcome
local minima, that may appear in these scenarios, we devel-
oped a distributed coordination mechanism based on mode
switching that reallocates some robots as rescuers and sends

them to help the robots that may be trapped. Simulations
and real experiments demonstrated that this composition of
simple controllers and explicit coordination allowed robots
to successfully navigate and synthesize shapes in these
environments. We believe that the use of local interactions
and task allocation mechanisms with robot swarms opens an
interesting path for research and we intend to investigate this
further.
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