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Abstract

Relational databases are commonplace in a wide variety of applications and are

used by a broad range of users with varying levels of technical understanding.

Extracting information from relational databases can be difficult; novice users

should be able to do so without any understanding of the database structure or

query languages and those who wish to become experts can find it difficult to learn

the skills required. Many applications designed for the novice user demand some

understanding of the underlying database and/or are limited in their ability to

translate keywords to appropriate results. Some educational applications often

fail to provide assistance in key areas such as using joins, learning textual SQL

and building queries from scratch. This thesis presents two applications: Context

Aware Free Text ANalysis (CAFTAN) that aims to provide accurate keyword query

interpretations for novices, and SQL in Steps (SiS) designed for students learning

SQL. Both CAFTAN and SiS are subject to detailed evaluations; the former is

shown to be capable of interpreting keyword queries in a way similar to humans;

the latter was integrated into an undergraduate databases course and showed the

potential benefits of introducing graphical aids into a student’s learning process.

The findings presented in this thesis have the potential to improve keyword search

over relational databases in both a generic and customised context, as well as easing

the process of learning SQL for new experts.
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Chapter 1

Introduction

Relational databases are commonplace within a huge number of computing appli-

cations. They form an important backbone to many different applications from

small smart-phone applications to high-traffic web servers. Although not the only

database model (Section 2.2), the relational model has, for a long time, been the de

facto standard for many applications meaning almost all computer users interact

with them on a daily basis.

The widespread use of the relational database means they are used by a huge

number of different users (Sections 2.4 and 6.1) (Chen, 1999; Elmasri and Navathe,

2010; Jarke and Vassiliou, 1985; Martin, 1973; Shneiderman, 1978). Some of these

users (experts) are equipped with a detailed knowledge of the database structure

and how best to use it while others (novices) have no such knowledge and interact

with databases through customised interfaces and potentially without realising

they are using databases.

The desire to improve the way in which information is extracted from databases

has drawn attention within the research community for a number of decades (Chap-

ter 3). Zloof (1975) is generally credited with the first visual query language (VQL):

Query By Example (QBE). QBE was designed to remove the need for database

users to understand the physical arrangement of data on disk and it remains a

popular style of querying databases with similar query styles used in mainstream

applications such as Microsoft Access (Section 3.1.1). In the years following the
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release of QBE a number of form based query languages (e.g. Embley (1989);

Epstein (1991); Heiler and Rosenthal (1985); Houben and Paradaens (1989); Shu

(1985)) featured in the literature in an attempt to relieve users of the need to

build complex textual queries. As the graphical capabilities of computers began

to extend beyond simple forms a number of digram (e.g. Clark and Wu (1994);

Danaparamita and Gatterbauer (2011); Larson and Wallick (1984)) and icon (e.g.

Massari et al. (1994); Tsuda et al. (1989)) based VQLs were introduced along with

hybrid languages (e.g. Ahlberg and Shneiderman (1994); King and Melville (1984);

Pietriga et al. (2001)) that utilise a combination of forms, diagrams and/or icons.

Although VQLs were a popular area of research their target audience remains some-

what unclear; they can be difficult for novice users to understand (Section 3.1.5.4)

and they lack the power needed for many expert users (Section 3.1.5.1).

In response to the rise of internet search engines, keyword search over relational

databases became increasingly popular, which resulted in a large body of work aimed

directly at meeting the needs of the novice user. There are a number of different

techniques used to integrate keyword search with relational databases, some of

which remodel the data (e.g. Bhalotia et al. (2002); Wang et al. (2006)) while

others attempt to use indexing structures to find the most appropriate response to a

keyword query (e.g. Agrawal et al. (2002); Hristidis and Papakonstantinou (2002)).

Despite the clear aim at the novice user, some keyword search applications are

limited in their querying capabilities or demand database knowledge not normally

associated with the novice (Section 3.2.5).

The complexity of SQL that places it beyond the reach of the novice user also

means learning the language can be problematic for many students (Cembalo et al.,

2011; Kearns et al., 1996; Prior, 2003; Russell and Cumming, 2004; Sadiq et al.,

2004). Despite a large body of research in the area of education much of the existing

work suffers from some key pitfalls such as the use of confusing illustrations (e.g.

Cvetanovic et al. (2011)) or only working with a finished statement rather than
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being used throughout the building process (e.g. Abelló et al. (2008); Mitrovic

(1998b); Sadiq et al. (2004)) (Section 3.3.4).

1.1 Research problem

The wide range of users and uses of relational databases allows for many avenues of

research within the field. The focus of this work is on the extraction of information

from relational databases. Despite a single aim, to ease the extraction of data

from relational databases, the work produced in response to the problem is almost

entirely dictated by the target user. The extensive capabilities of SQL and the range

of databases it can be used with mean that a single solution is unlikely to satisfy

the needs of all database users. The all-encompassing research aim investigated in

this thesis is the process of easing access to relational databases.

This general problem can be broken down further to provide some direction

and focus for the work. First, it is important to identify the users of relational

databases and their needs. The identification of users is important in order to

produce software that is designed to meet their specific needs; designing for all

users will likely result in a system too complex for novice users but that lacks the

power needed for expert users. Once the users and their requirements are clearly

identified it is possible to investigate how software can be used to improve

the way in which they interact with relational databases.

1.2 Research approach

The research approach taken in this thesis involves identifying the specific area of

database interactions to investigate along with the users making such interactions.

After identifying the users and their needs within the scope of the problem, proto-

types can be designed, developed and evaluated. The following steps were taken in

order to complete this research:
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Define the specific area of database interactions to investigate. Database

interactions include the extraction, insertion, deletion or modification of the

database contents and schema. Designing a system to remedy problems across

all these areas is not only unreasonable but quite possibly unnecessary. The

vast majority of users are not concerned with interacting with the schema and

primarily build queries to extract the necessary data from databases. As a

result, the primary focus of this work is the extraction of data, the SELECT

clause; the reason for this is its popularity in both real world applications and

long-standing presence on Computer Science courses (e.g. Harvard University

(2015); Lancaster University (2015); Stanford University (2015); University

College London (2015); University of Cambridge (2015); University of Oxford

(2015)).

Identify the different users of relational databases. The ubiquitous use of

databases results in a huge number of different database users. There are a

number of existing classifications of database users however; some are very

fine grained resulting in a large number of categories. Within the context of

extracting information many of these categories can often be merged into one.

Elmasri and Navathe (2010) describe “Database Administrators”, “Database

Designers” and a selection of “End Users” ; for the purpose of extracting

information, designers, administrators and even some casual end users all

demand the ability to construct SELECT statements that accurately reflect

their needs. For the purpose of this work the users are divided into two main

categories: novice and expert (Section 2.4), an additional category of “student”

describes those users transitioning from novice to expert (Section 6.1)

Identify the ways in which software can assist users. In response to the

popularity of keyword search the novice demands database applications that

return relevant information in exchange for associated keywords. Much of

the existing work has some significant limitations (Section 3.2.5) that restrict

the extent to which they can be used beyond simple searches. New searching
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techniques have the potential to improve the way in which search terms

are handled. Expert users typically interact with databases using textual

environments that enable them to produce very accurate, powerful queries

without being restricted by GUIs; because of this they make very few demands

of database user interfaces (Section 2.6). However, becoming an expert is a

well recognised problem (Danaparamita and Gatterbauer, 2011; Kearns et al.,

1996; Mitrovic, 1998b; Russell and Cumming, 2004; Sadiq et al., 2004) and

many students find learning SQL difficult. Learning SQL within a textual

environment can be intimidating for users whose only prior experience with

databases might be through the use of customised UIs aimed at novices.

GUIs have a real potential to improve the learning environment but must be

carefully designed to avoid users becoming dependant on the system such that

they are incapable of interacting with databases without graphical assistance.

Develop prototype applications to meet the needs of the given users.

Two prototype applications were developed (CAFTAN and SiS, presented

in Chapters 5 and 6 respectively) to meet the needs of our two classes of

user. CAFTAN aims to interpret keyword queries over any given relational

database, combining them with a mixture of AND and OR operations where

appropriate. SiS is an online learning environment in which students can

graphically construct queries whilst building a good understanding of textual

queries. Key features of SiS include graphical representations of the database

structure and Boolean expressions along with live query translations and

results that adapt as the student builds their query.

Evaluate the prototypes to quantify their quality. Both CAFTAN and

SiS were subject to detailed evaluations that attempted to quantify their

quality (Chapter 7). The evaluation of CAFTAN involved comparing the

interpretations of keyword queries made by CAFTAN against those made

by a humans and two bespoke query applications. SiS was integrated into

a live databases course in an attempt to observe the differences between
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learning SQL with/without graphical aids. Both evaluations show that the

tools developed each have the potential to resolve problems with existing

applications; CAFTAN offers query interpretations beyond the capabilities of

some bespoke applications and SiS provides students with a number of useful

resources throughout their learning process.

1.3 Contributions

The contributions of this work in relation to extracting information from relational

databases can be categorised as empirical and practical.

1.3.1 Empirical contributions

The evaluations of both CAFTAN and SiS present large quantities of both quali-

tative and quantitative data. The evaluation of CAFTAN resulted in a data set

that not only facilitates a comparison of it against other applications but also

offers an insight into the querying habits of novice users. This data was collected

independently of CAFTAN and, therefore, is available for use with future iterations

of CAFTAN and other keyword search applications. The user study of SiS produced

large amounts of qualitative data in response to the various features and their

eligibility to be included as part of an educational course. This data was collected

from the 101 participants in the form of multiple questionnaires and a focus group.

1.3.2 Practical contributions

Although both applications developed for this work were designed and implemented

as prototypes they offer many potential benefits in real world scenarios. CAFTAN

out-performs a number of bespoke applications in query interpretation showing

that it could be used as a stand-alone search application or used as the basis for

a customised user interface. SiS demonstrates the benefits of learning SQL with
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Chapter 6
Teaching SQL (SiS)

Expert/student

Chapter 4
Automating join operations

Chapter 5
Keyword search (CAFTAN)

Novice

Prototype design and development

Chapter 2
Motivation and requirements

Chapter 3
Literature review

Background

Chapter 7
Evaluations

Chapter 8
Conclusions

Figure 1.1: Thesis structure

graphical assistance without making students dependant on the UI such that they

cannot further develop their skills beyond the need for SiS.

1.4 Outline of thesis

Figure 1.1 shows the structure of this thesis, it is structured over eight chapters,

starting with the background and literature review, followed by details of the two

key applications. These applications are subject to detailed evaluations and the

findings of the work are summarised in the final chapter.

Chapters 2 and 3 provide some background to the research presented in this

thesis. Chapter 2 describes some of the different database models currently in

use and categorises users as novices or experts according to their needs and un-

derstanding. Chapter 3 provides a detailed review of the literature relating to the

extraction of information from relational databases; this is divided into three main

parts: visual query languages, keyword search and educational applications.

Chapter 4 describes Shorthand SQL (SSQL), a software library designed to

automate the process of joining the required relations in queries involving multiple

relations. The use of SSQL is explored throughout various different applications

presented in this thesis.

Chapter 5 describes an application, CAFTAN, designed to meet the needs of

novice user described in Chapter 2. This application is designed to operate over

any given relational database and attempts to address the shortcomings of some of

the existing work explored in Chapter 3. The main focus of CAFTAN is to enable
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the user to build queries involving a mixture of AND and OR operations without

any need to understand the structure of the database they are querying.

The process of becoming an expert relational database user involves learning

theoretical elements and mastering SQL. Chapter 6 describes the student user

as someone who is transitioning from a novice to an expert and describes an

application, SiS, designed to assist students in their learning process. SiS aims to

allow students to graphically build a query while maintaining an understanding of

its textual counterpart by displaying live translations of the query along with the

results it yields.

Chapter 7 describes the evaluations of both CAFTAN and SiS. The evaluation

of CAFTAN involves comparing the interpretation of keyword queries made by

CAFTAN with those made by participants and bespoke query applications. The

evaluation shows that CAFTAN is capable of quickly producing query interpreta-

tions that closely resemble those made by humans along with highlighting a number

of benefits over bespoke systems. The evaluation of SiS involved integrating it

into a live undergraduate databases course; throughout this process participants

highlighted the need for such an application and identified a number of strengths

and weaknesses of the application.

Chapter 8 concludes the thesis and presents a number of avenues for future

research stemming from this work.

1.4.1 Movie database

All work explored in this thesis is done in a generic manner and is not targeted at

any given database. To provide some context a movie database is used throughout

this work. The data used to populate the database was obtained via TMDb (Apiary,

2015) and is described in detail in Appendix A.
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Motivation and requirements

This chapter offers an overview of various database technologies and the users who

interact with them. The chapter is structured as follows:

• Section 2.1 discusses the popularity of databases within the context of a

number of different domains.

• Section 2.2 compares the relational model against recent NoSQL alternatives

in terms of their functionality and the way in which information is extracted

from them.

• Section 2.3 describes the use of software designed to ease the construction

of queries with a particular focus on Elcee, a piece of software designed for

querying email data that provided much of the inspiration for this work.

• Section 2.4 categorises users of databases while Section 2.5 and Section 2.6

discuss the requirements for novice and expert database users respectively.

• Finally, Section 2.7 summarises the contents of this chapter.

2.1 Popularity of databases

Databases are hugely popular and are a staple of almost all computer applications.

They are used to varying extents in many applications with some relying heavily
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on them and others using them to satisfy much smaller use cases. This section

discusses the popularity of databases within the following contexts:

• Web applications

• Smartphone applications

• Desktop applications

• Sensor data/IoT

Web 2.0 has been commonplace for many years, websites that allow users

to create and modify content are all built using a storage system of some sort.

Databases are exceedingly popular for web applications with many websites being

built on relational databases. Many popular Content Management Systems (CMSs)

such as WordPress, Joomla and Drupal utilise relational databases to store the

information upon which these websites heavily rely (Drupal, 2015; Joomla!, 2015;

WordPress, 2015). Websites required to handle larger volumes of traffic, such as

large scale social media sites (e.g. Facebook1, Twitter2 etc.), use a combination

of different database applications or customised versions of existing ones that are

optimised to handle the heavy traffic the sites receive.

Persistently storing data within a mobile application is a common requirement.

All three of the most popular mobile operating systems (Kantar Worldpanel, 2015),

Android (Android, 2015), iOS (Apple, 2015) and Windows Phone (Denning, 2013)

employ SQLite to enable developers to persistently store information. SQLite is

a relational database well suited to mobile applications as the entire database is

contained within a single file that requires no administration and provides the

vast majority of functionality offered by client-server databases designed for larger

scale applications (SQLite, 2015a). In addition to smartphone applications the

self-contained database is also used in a vast range of applications in which a
1https://www.facebook.com/
2https://twitter.com/
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client-server database is not an option and storing data in a simple file is too

restrictive, such as desktop applications.

The term Internet of Things (IoT) refers to the integration of real-world objects

with sensors and connectivity; it has become a popular area for both the research

community and the everyday consumer. Sensors are embedded into a huge range of

devices with data gathered from them fed to users in an attempt to provide them

with meaningful information. The information gathered may relate to data from

home appliances such as thermostats or motion sensors (e.g. Nest3) or information

gathered by mobile devices. Fitness tracking using specialised devices (e.g. Fitbit4

and Jawbone5) or the sensors present in many smartphones (using applications

such as Strava6 or MapMyRide7) is also an increasingly popular trend. This use

of sensors has the potential to generate vast quantities of data that needs to be

stored and analysed to enable meaningful information to be passed to the users.

Data gathered from such devices is stored in databases of various types enabling

users to extract the desired information at a later date.

2.2 Databases types

There are many different types of databases and the relational model, proposed by

Codd (1970), was the de-facto standard for many years. More recently other data

models such as graph and document databases have become increasingly popular.

Here we discuss a number of different database models that are currently in

widespread use, highlighting their strengths and weaknesses.
3https://nest.com/
4http://www.fitbit.com/
5https://jawbone.com/
6https://www.strava.com
7http://www.mapmyride.com/
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2.2.1 Relational databases

The relational model was introduced in 1970 by Codd in an attempt to remove the

need for users to understand the physical arrangement of data on disk. Since then

it has gained popularity and is frequently regarded as the “go-to” data model, and

as a result is used in a massive range of applications.

There are a number of different implementations of the relational database

however all are based upon the same data model and offer similar features and

methods of interaction. The following are a selection of features of the relational

model.

2.2.1.1 ACID properties

Relational databases typically provide the four ACID properties:

• Atomicity

• Consistency

• Isolation

• Durability

The ACID properties, a term first coined by Haerder and Reuter (1983) ensures

the reliable handling of transactions within a database.

Atomicity refers to way in which transactions are handled in relational

databases. Preserving atomicity ensures that a transaction will be completed

in its entirety or not at all. The classic example to demonstrate the benefits of

atomicity is the transfer of money from one person to another: Person A pays

Person B £100. The balance for Person A must be reduced by £100 and the

balance of Person B must be increased by £100, this involves two operations that

form a single transaction. To preserve atomicity it must be impossible for only one

of the two operations within the transaction to be completed.
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Consistency ensures that any operations executed on the database will not

leave it in an invalid state. This refers to the preservation of relationships and data

types specified within the database. If the transaction would result in an invalid

state then the database is returned to the state prior to the start of the transaction.

Isolation prevents transactions interacting with each other. The aim of this is

to ensure that multiple transactions that are executed on a database concurrently

would have the same end result as if they were executed one after another.

Durability of a database simply means that once a transaction is complete

the effects of its operations will remain even in the event of subsequent errors or

crashes. For instance, if the insertion of data was immediately followed by a power

failure the newly inserted data would remain present once power was restored.

The preservation of these ACID properties makes relational databases a popular

choice when consistency and quality of data is of paramount importance.

2.2.1.2 Normalisation

Normalisation is a technique used in database design and aims to remove duplicated

data by spreading information across multiple tables within a database. This process

allows single entities to be represented only once, meaning modifications to the

data are less likely to result in inconsistencies across the database.

Spreading data across multiple tables requires connections to be made between

them; primary-foreign key relationships facilitate this by maintaining references

to one table in another. For instance, a university course might store a reference

to the department that manages the course rather than repeating the information

relating to the department.

Normalisation can lead to the use of multiple tables even in simple, small scale

databases. To extract information spread across multiple relations users must

construct queries containing join operations which connect multiple tables in order

to extract the desired information.
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2.2.1.3 SQL

Relational databases and Structured Query Language (SQL) are almost inseparable,

it was first established as an ANSI standard in 1986 and ISO in 1987 (International

Organization for Standardization, 1987) and continued to evolve over multiple

iterations until the latest release in 2011 (International Organization for Standard-

ization, 2011), all implementations of relational databases provide a variant of the

standard. Throughout the various iterations of the SQL standard the language

has matured to introduce new features as a result of new demands on database

systems. The language allows for the creation, modification and extraction of

information from databases. Very few, if any, implementations adhere strictly to

the standard however, the majority of systems follow large portions of the standard

allowing developers to use different databases without the need to learn a new query

language. The standardisation and widespread use of SQL enables developers to

choose a database application based upon its strengths and the resources available

rather than because of a familiarity with the query language.

2.2.2 NoSQL databases

Although the relational model was, for a long time, seen as the only viable option

for database applications there are now a wide range of different models available

that can be chosen to best suit the application. The presence of NoSQL options in

a world in which relational databases have ruled has threatened its dominance.

Not only SQL (NoSQL) is the term that refers to database systems that utilise

models other than the relational model. An aim of many NoSQL technologies is

to allow for horizontal scaling to allow the system to handle the potentially vast

quantities of data and high volume of data requests.

There are a number of different data models that various NoSQL databases

utilise; here we present a selection, by no means a complete set, of the common

structures and their potential applications.
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2.2.2.1 Key-value

Key-value databases such as MemcacheDB8 and Redis9 are perhaps the simplest of

all NoSQL databases. They offer the functionality of maps or associative arrays

and allow for the retrieval and assignment of values in response to a key value.

2.2.2.2 Document model

The document model is used to store primarily text information in a semi structured

format. MongoDB10 and CouchDB11 are popular document databases; both store

data in the JSON format using the attribute-value notation to enable the contents

of a database to be read easily by both humans and computers.

A benefit of utilising semi-structured data for data stores is the flexibility that

such a structure brings. Consider a database designed for use with an online shop;

using JSON notation allows a single collection to store data for the entire shop

regardless of the variation in products. For example, some products such as DVDs

have a cast associated with them while musical CDs do not, they have track listings.

This variation in data can lead to unusual and complex schema designs when using

the relational model but the flexibility of a document store lends itself perfectly to

such a scenario; attributes can be added where necessary allowing the database to

develop with the needs of the system.

In contrast to the relational model, document databases do not support strictly

enforced relationships between documents, they are achieved through the use

of nested data or references to other documents. In the case of one-to-many

relationships such as a single customer having multiple delivery addresses this

information is all stored as multi-value attributes within the customer document.

When many-many relationships are needed such as that between products and

customers (one customer can order many products and one product can be ordered

by many customers) references to both ends of the relationship are required. In
8http://memcachedb.org/
9http://redis.io/

10https://www.mongodb.com
11http://couchdb.apache.org/
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Figure 2.1: A snippet of a graph database representing the relationship
between various people

this scenario the customer document stores a reference to the products ordered

and the product stores a reference to the customers who ordered it; this type of

relationship needs to be carefully managed by users or management software to

avoid the formation of one-way relationships in which a customer might be linked

to a non existent product, or vice-versa.

2.2.2.3 Graph databases

Graph databases model the data as a series of nodes that are connected by edges.

Graph databases perform particularly well when modelling large quantities of

interconnected data, social networks are good examples of this. Figure 2.1 shows a

small extract of data from a sample graph database that might be used to store

data to support a social network. The nodes represent seven people and one

institution and are connected via five different types of edge depending upon the

relationship between the various nodes. In many popular graph databases, such as

Neo4j12, both nodes and edges can contain information; in our example the nodes

representing people might contain additional information such as their date of birth

while the edges might contain information such as anniversaries for relationships or

dates of employment for employees.

The process of querying graph databases is optimised for traversing edges and

finding connections between different nodes. To imitate graph databases using
12http://neo4j.com/



2.2 Databases types | 17

relational technologies requires the use of a junction table, allowing one record to be

linked with one or more other records, this approach is common within relational

database design. The use of junction tables allows for immediate connections (e.g.

friends) and indirect connections (e.g. friends of friends) to be quickly found but

beyond this level (e.g. friends of friends of friends) the performance of relational

databases suffer significantly while graph databases remain capable of handling

such queries (Robinson et al., 2013, page 20). This example illustrates how the

choice of database can impact on the performance of a system.

2.2.2.4 Query languages

NoSQL databases are, unlike their relational counterparts, not manipulated using

SQL. SQL depends heavily on the structured nature of data stored within relational

databases, NoSQL databases typically contain unstructured or semi-structured

data and utilise their own query languages instead. Unlike SQL there is no

standardisation of NoSQL query languages, this is largely due to the differing data

structures and requirements of the database styles. The following is a selection of

different NoSQL query languages along with brief descriptions of their meaning.

Key-value databases As a result of the simple nature of key-value databases

the process of extracting data from such databases is also simple. To add a value

to a key-value database such as MemcacheDB database the set command is used,

the following example sets the value of the mykey entry to “myvalue”.

set mykey myvalue

Values associated with keys can be extracted by using the get command, the

following example extracts the value associated with the mykey key.

get mykey

MemcacheDB also includes a number of commands to facilitate the modification

and removal of data. As key-value databases do not allow the formation of queries
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based upon their values more complex criteria regarding the extraction of data is

impossible.

Document databases As discussed in Section 2.2.2.2 document databases such

as MongoDB and CouchDB store data in the JSON format; to query such databases

the user specifies the criteria for the documents that are to be returned. To query

a MongoDB database the user specifies their requirements in a query document,

any documents in the collection that match the given criteria are returned by the

query. In the following example the query specifies that the type attribute should

be equal to “DVD” and the price attribute must be less than 10; all DVDs with a

price of less than £10 are returned following this query:

db. inventory .find( { type: 'DVD ', price: { $lt: 10.00 }

} )

MongoDB also allows for more complex queries including grouping operations

that allow users to perform summation and counting operations on documents.

CouchDB queries are performed through the use of HTTP requests, these have the

same functionality as MongoDB in that the user specifies criteria for the desired

documents but use a different request format.

Graph databases The following is an extract of the cypher query language

used in the Neo4j graph database. Cypher allows users to specify a starting node,

according to its attributes, and constraints regarding its edges, such a query returns

the nodes connected to the starting nodes by the given edges. The following

example extracts the node representing “Phil” and all the nodes connected to it

via a SIBLING_OF edge; the details for “Phil” and all his siblings are returned.

When executed on the sample database shown in Figure 2.1 this will return the

nodes representing “Phil”, “Beck”, “Chris” and “Clare”.

MATCH (you {name:"Phil"}) -[: SIBLING_OF ]->( siblings )

RETURN you , siblings
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This query can be expanded to find more complex connections within the

database, such as friends of friends, functionality that has clear benefits in scenarios

such as social network applications.

2.2.3 Is the relational model dead?

Although some (e.g. Fleming (2007)) have interpreted the rise of NoSQL databases

as the death of the relational model, the introduction of new models should be

seen as alternatives, rather than replacements, to the relational model. NoSQL

database applications allow developers to choose a database model that best suits

their system rather than being forced to use the relational model when it is not

best suited to their application.

Different database models offer different benefits, the relational model prioritises

high quality, consistent, data strictly maintaining the ACID properties. These

features allow for fast and efficient joins and aggregations to be performed. Many

NoSQL models such as the document and graph model prioritise flexibility and the

handling of vast quantities of data that many modern systems demand.

In summary, different data models offer different sets of strengths and weaknesses

and the decision of which database to use should be made based upon the needs of

the application. The relational model remains a perfectly viable option in a world

where NoSQL databases are of increasing popularity.

The recent work by Google into their F1 database, a system designed to support

their AdWords13 business, highlights the enduring relevance of the relational model.

They identified that the scalability of NoSQL databases is unmatched by existing

relational models but the lack of ACID compliance introduces problems: “if you need

a highly scalable, high-throughput data store, the only viable option is to use a NoSQL

key/value store, and to work around the lack of ACID transactional guarantees

and the lack of conveniences” (Shute et al., 2013). The lack of ACID properties in

most NoSQL databases means that developers are responsible for ensuring these
13https://www.google.co.uk/adwords/
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requirements are adhered to. As a difficult task to solve at the application level

this was described as: “an unacceptable burden to place on developers and that

consistency problems should be solved at the database level” (Shute et al., 2013).

2.2.3.1 Focus on relational databases

Despite the introduction of other databases, the relational model remains exceed-

ingly popular and it maintains its dominance in the database world. In a recent

poll the developer community voted SQL as the second most popular technology,

behind JavaScript, for the second year running (Stack Overflow, 2015).

As a result of its vast popularity and widespread use the remainder of this work

focusses exclusively on the relational model and SQL as a means to manipulate

such databases.

2.3 Layers of abstraction

The problem of extracting information from databases, particularly relational

databases, is a well recognised problem and there are numerous applications that

work in conjunction with them to ease the extraction of their data. Such systems

come in various levels of abstraction, typically the lower the level of abstraction the

more powerful a system is. Figure 2.2 shows some examples of systems at various

levels of abstraction. Syntax highlighting offers very little in addition to a simple

command line and therefore sacrifices none of a query language’s capabilities but a

keyword search systems offering high levels of abstraction offer limited capabilities

to the user and experienced users may be unable to specify queries to the level of

detail they require.

Section 3.1 describes a number of query systems designed to simplify access to

relational databases. The following section describes an application designed to

improve the extraction of email data, Elcee; this software provided much of the

inspiration for the work described in this thesis and some aspects of it remain in

the software accompanying this work.
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Figure 2.2: Levels of abstraction

2.3.1 Email search with Elcee

Since the early 1970s the popularity of email has exploded, revolutionising the

way in which we communicate in both a business and social setting. The total

number of email accounts was estimated at over 2.9 billion in 2010 and is predicted

to continue growing into the future (The Radacti Group, 2010). Although the

massive number of email accounts shows the popularity of email it is not without

its drawbacks. Information overload is a term that is commonly used to define

excessive amounts of information to the point at which it impedes decision making;

the term was initially proposed by Schroder et al. (1967) who stated that the ability

to make decisions correlates directly with the amount of information available - to

a point. The idea of users being unable to handle excessive amounts of information

extends to email data and email overload.

The term email overload has various definitions within the literature, in the

context of this work we adopt the definition used by Dabbish and Kraut (2006):

“users’ perceptions that their own use of email has gotten out of control because

they receive and send more email than they can handle, find, or process effectively”.

This definition directly expands upon that proposed by Schroder et al. (1967) in

that an excessive amount of email information can make dealing with the emails

very difficult.

As part of my undergraduate final year project an investigation into how

advanced search functionality could alleviate email overload took place. The focus
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Figure 2.3: The Sandpit Search within Elcee showing the following query:
(folder: inbox AND (subject: “photo” OR subject: “picture”))

of the work was a number of searching and visualisation user interfaces designed

to help users extract information through search then explore the results using

appropriate visualisation styles. The result of this investigation was an application

called Elcee, the software has the appearance of an email client but included two

advanced search features and five data visualisation styles.

A small scale evaluation of Elcee showed that the Sandpit Search (Figure 2.3)

was the most popular search tool as it allowed for users to specify, in great detail, the

requirements of their search leading to small but accurate result sets (high precision

and recall). Sandpit Search used individual widgets on screen to represent a single

criterion, these could be grouped together with Boolean operations by drawing

boxes around them. Boxes represent AND or OR operations and can be nested

within other boxes to allow for the construction of complex Boolean operations

within a graphical environment. Each attribute of an email has a customised

widget to input data when searching, as a result users can utilise drop-down menus,

checkboxes and text input where appropriate.

Throughout the evaluation it became clear that Elcee included search tools

considerably more capable than those in many email clients but it also became

apparent that these features were capable of more than email search alone. All
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participants in the evaluation believed that the capabilities of Elcee reached beyond

email search alone.

Transforming Sandpit Search from an email specific search tool to a generic

database query builder presents a number of potential stumbling blocks:

• Visualising the database structure

• Mapping data types to widget styles

• Handling large databases

• Comparing attributes

• Specifying the data to view in the results

• The use of largely meaningless attributes (e.g. tuple identifiers)

This list of potential problems offers a brief insight into some of the problems

that arise when developing a generic search tool or visual query language that is

applicable to any database.

2.4 Users of databases

As discussed in Section 2.1, there are a huge range of applications for databases,

this widespread use inevitably leads to a broad range of users. Different users of

databases bring different requirements for using them and their technical ability

varies significantly.

This section presents a review of some existing classifications of users and defines

categories of users that will be referred to throughout this work.

2.4.1 Categorising users

The categorisation of users of database systems has evolved over many years and

there is no single, universally accepted, definition of different classes of user. Some,
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including Elmasri and Navathe (2010) and Chen (1999, page 124), divide the users

into many categories, making small distinctions in the way in which they interact

with databases while others define fewer categories (e.g. Shneiderman (1978)).

Martin (1973) categorised novice, non-expert, users as “operators” and stated

that user interfaces designed for these users should “appear as natural as possible, or

bewilderment will quickly turn into annoyance, criticism, or behaviour that amounts

to rejection of the system”. Jarke and Vassiliou (1985) described the “casual” user

as “having only a general idea about structure and content of the database”, a

definition similar to that used by Shneiderman (1978). This demonstrates how

the categorisation of users changes over time; the widespread use of databases

means that many users interact with them on a daily basis with no knowledge of

their structure at all (rather than a “general idea”). This change is highlighted

by Catarci and Santucci (1995) who describes “naive” user as, amongst other

things, “unfamiliar with the details of the internal organization of an information

system”. They also acknowledge the broad range of user classifications and attempt

to simplify the definitions by dividing users into two groups: “those who have had

a certain instruction period and have computer and database knowledge, and those

who do not have specific training in computer usage and database interaction”.

A more recent classification involves categorising users according to their re-

quirements for extracting data from the Internet of Things (IoT): “Casual users

will need to access the IoT via a user-friendly graphical user interface [. . . ], and

more flexible, powerful, and efficient access interfaces will be needed for expert

users” (Cooper and James, 2009).

For the purpose of this work users can be divided into two main categories:

novice and expert. By focussing exclusively on the extraction of data we can merge

categories described by others in the literature.
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2.4.1.1 Novice users

Novice users are required to extract information from databases but are unlikely to

have an awareness of the underlying database structure. They may be required to

insert of modify data within a database but this will typically be done through the

use of customised user interfaces designed to ease the process. Such systems may

be customised user interfaces designed specifically for extracting information from

a given database or generic applications that are built to interact with any given

database. Novice users will never be required to interact with databases using

textual query languages.

We refer to novice users according to the following definition, similar to the

“naive” user described by Catarci and Santucci (1995):

Definition 2.1 (Novice user) Someone who has no understanding or require-

ment to understand how to interact with databases using textual query languages.

They may interact with databases using various specialist interfaces or graphical

systems. These users have no understanding of database design or the structure of

the databases they query.

2.4.1.2 Expert users

An expert user is classified as someone who is required to form textual queries.

The use of textual queries to interact with databases is common and numerous

users fall into this category. Some expert users may only produce simple queries to

extract small sets of data from databases while others may build complex queries

that are integrated into other software applications. Regardless of the complexity

of the queries produced expert users are required to have an understanding of the

database structure and query language syntax to meet their individual needs; as a

minimum users are required to understand where in the database certain pieces of

information can be found.

The following definition of an expert is used throughout this work:
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Definition 2.2 (Expert user) Someone who is required to interact with databases

using textual query languages. Expert users encompass a wide variety of users

from those required to submit small textual queries to those designing, building and

maintaining large scale databases. An understanding of the database structure is

crucial for expert users.

2.5 Novice requirements

Two defining characteristics of novice users is their lack of understanding of both

query language syntax and database structures; as a result systems designed to

facilitate novice access to relational databases must not demand prior knowledge

in these areas.

Lacking the understanding of query languages and their syntax means that

if novice users are to build queries they must be assisted in their construction

to help them avoid mistakes. This can be achieved through the use of graphical

systems that attempt to hide the intricacies of textual query languages from the

user or through the use of keyword search systems that convert textual input to

appropriate results.

Users unaware of the underlying database structure can struggle to query

databases, particularly as normalisation can lead to data being stored across

multiple tables, even in small scale databases. Without a good understanding of

the database structure novice users can make false assumptions leading to erroneous

queries; to tackle this problem novice users should either be made aware of the

structure or have no need to understand it. The use of diagrams and textual

descriptions can make users more aware of the underlying structure; however novice

users typically have no need to become experts and it is often more beneficial to

ensure there is no requirement for them to understand the underlying database

structure.
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2.6 Expert requirements

As discussed in Section 2.4.1.2 expert users are required to have an understanding

of the query language syntax and an appreciation of various database structures

that might be used. For users who interact with databases using textual interfaces,

graphical systems can often act as less of a help and more of a hindrance (Aversano

et al., 2002; Catarci et al., 1996). Graphical systems rarely offer the full scope of a

textual language and can slow down those proficient in writing textual queries.

Although experts require little in the way of graphical assistance when building

queries it can be difficult for users to initially learn SQL (Cembalo et al., 2011;

Kearns et al., 1996; Matos et al., 2006; Mitrovic, 1998a,b; Prior, 2003; Renaud and

van Biljon, 2004; Russell and Cumming, 2004; Sadiq et al., 2004; Shneiderman,

1978). The process of learning SQL is fraught with potential stumbling blocks

for new users; although GUIs may have little appeal to expert users there are

numerous opportunities to use them within the learning environment.

2.6.1 Requirements for educational systems

Designing systems with the aim of teaching users to become experts in building

textual queries requires that a number of considerations are taken into account.

The following is a brief outline of the areas for consideration when designing an

educational system:

• Who is the system for?

• What is their reason for learning SQL?

• What are the common stumbling blocks?

• Does the purpose of the software extend beyond education?

• What is the scope of the language covered by the software?
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2.6.1.1 Who is the system for?

As previously described, experts can find the lack of flexibility in graphical systems

limiting in comparison to their textual counterparts. As a result, graphical systems

are rarely targeted at this category of user. Despite this, graphical systems can

prove highly beneficial throughout the process of educating users in becoming

experts.

The relevant experience of users learning SQL may vary significantly, some may

have no experience in computer languages while others may want to transfer their

skills from one query language to another. A common user of such educational

systems are Computer Science undergraduates who may have some experience in

programming languages and are expanding their knowledge into SQL.

2.6.1.2 Reasons for learning

The requirement to learn SQL can arise for a number of different reasons, these

can loosely be divided into two categories:

• Learning for subject knowledge

• Learning for a specific task

Learning to gain subject knowledge is the scenario in which the user is learning

a skill to be able to become competent at analysing and solving related problems.

This level of knowledge is not focused at a specific task but rather at a greater

understanding of the type of problems that may arise and the way in which they

can be tackled. This sort of learning is present in degree schemes and similar

courses.

An alternative to learning to gain subject knowledge is learning to complete a

given task; in this case a user is less interested in the overall skill and is simply

required to learn enough to complete a task or series of tasks. Learning to solve

a given task might be used when training an employee to complete a task as

part of their job, learning in this setting involves focused tasks in which the user
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might be expected to work towards their goal. Learning for a given task will likely

involve focussing on only the skills needed to complete the task rather than a more

generalised set of techniques that can be applied to a number of different problems;

this can lead to mastering certain techniques quickly but can result in very few

transferable skills.

Within this thesis we focus on learning to master a skill rather than to complete

a specific task. This includes learning within a classroom/course setting or as an

individual but not to complete a task without a greater appreciation of the query

language.

2.6.1.3 Common problems

Learning to extract information from relational databases using SQL presents a

number of problems, including:

• Visualising the database structure (Dekeyser et al., 2007; Kearns et al., 1996;

Mitrovic, 1998b; Prior, 2003)

• Understanding the syntax of SQL (Mitrovic, 1998b)

• Visualising the results (Cembalo et al., 2011)

As previously discussed, relational databases are typically spread over multiple

tables as a result of normalisation (Section 2.2.1.2). This means that to extract

anything but the simplest of data users must be capable of visualising how the

data is spread across these tables. A key skill in SQL is the ability to construct

join operations, enabling users to extract information from multiple tables. A

learning environment must supply users with adequate descriptions of the database

structure allowing the user to form a good understanding of the data enabling

them to form accurate queries.

The extensive capabilities of SQL mean that it includes a number of features

many users are unlikely to use. Users must gain an understanding of the core

components that they are likely to use on a regular basis but also become confident
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in their ability to extend beyond this understanding into more powerful and

specialist features. Misconceptions as to the meaning of features can lead to users

building on these misunderstandings and making false assumptions that might lead

to erroneous results. Syntax errors in queries are met with error messages, however,

these are a well recognised problem and they frequently offer little insight into the

actual cause of a problem or offer a meaningful solution (Cembalo et al., 2011;

Mitrovic, 1998b; Prior, 2003; Russell and Cumming, 2004).

Visualising the results of a query can be divided into two important skills:

visualising the desired results of a query and also understanding the results of the

intermediate steps during query production. Before building a query the user must

have a good understanding of the desired output, as with any problem solving

activity it is important to understand the end goal before attempting to solve it.

Visualising the intermediate steps of a query is also an important skill to learn,

users frequently build queries without executing them at the intermediate steps

leading to them making assumptions about the result of some operations (Prior,

2003). Users must gain confidence in the correct use of each component of the

language, enabling them to accurately visualise the intermediate steps of a query.

2.6.1.4 Outgrowing educational systems

A goal of educational software is often for users to eventually outgrow it. In the

context of a tool used to teach computing languages the users should use the system

to learn the required skills and then gradually stop using it as their confidence

increases. Avoiding reliance on an educational system is important, such software

is not designed for real world applications but should be used to build the skills to

allow a user to tackle real world problems independently.

2.6.1.5 Meeting the needs of different “experts”

As discussed in Section 2.4.1.2 there are a broad range of expert users, some require

the ability to write simple queries to extract information from a database while
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others are required to create and maintain large databases. The wide range of users

categorised as expert users means that software designed to teach users SQL must

allow users to use it to the extent they require; while the system must cater for

users requiring advanced skills it must not deter users seeking a more basic skill

set. Similarly, an educational system must allow users who wish to explore more

advanced features the ability to do so.

2.7 Chapter summary

In this chapter we have highlighted the overwhelming popularity of databases

across a multitude of different applications. A number of different data models

were highlighted, addressing strengths and weakness of each. The widespread use

of databases means they attract a massive range of users, here we have described

the various users of such systems and categorised them as novice or expert within

a specific context. The two user groups share very few requirements for database

software designed to help them extract information from databases, as a result of

this it is impossible to develop a single software solution that meets the needs of

both users. A simple solution designed for novice users would lack the capabilities

for an expert user as experts require little assistance when building complex textual

queries. The enormous breadth of functionality required by expert users also makes

developing software for them problematic, however, educational tools can help ease

the process of becoming an expert by addressing a number of key problems.



Chapter 3

Literature review

The process of extracting information from relational databases has attracted

considerable attention within the research community over the past forty years.

This chapter presents a review of the literature relevant to this thesis, the work

reviewed here largely falls into one of three categories:

• Visual Query Language (VQL)

• Keyword search

• Educational systems

Visual (or graphical) query languages are designed as direct replacements to

their textual counterparts; there are various different approaches to VQLs and their

functionality and target audience may vary between implementations. Section 3.1

details a number of VQLs and analyses their strengths and weaknesses.

Keyword search is a popular method of data extraction that allows novice users

to access the contents of databases that normally require specialist understanding

of database structures and query languages. Keyword search presents a set of

results in response to a series of relevant terms provided by the user; different

applications use a range of techniques to interpret the given terms as accurately

as possible. Section 3.2 discusses the use of keyword queries within the context of

relational databases.
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As discussed in Section 2.6, expert users require more power and flexibility than

is offered by those systems targeted at novice users. Educational systems designed

to improve the learning process for future expert users are popular as learning SQL

using textual interfaces alone frequently presents problems. Section 3.3 discusses

the various approaches to systems designed to teach SQL, highlighting some areas

in which they can be improved.

3.1 Visual query languages

Visual query languages (VQLs) provide an alternative to textual interfaces when

interacting with databases. There are numerous definitions of VQLs, Epstein (1991)

succinctly describes them as “a visual language which is intended as a database

interface and which employs visual metaphors in order to express the semantics of

a database language”.

VQLs provide an often needed graphical interpretation of concepts that can be

difficult for users to interpret through text alone. “The use of visual technologies

enables a better human-computer interaction by representing database elements in

a more natural way and creating an intuitive correspondence between the visual

representation provided by the tool and the concepts of interest to a user” (Aversano

et al., 2002). More specifically, the role of VQLs is twofold: “first, they aim to help

the user understand the database they are working with. [. . . ] The second aim of

visual query languages is of course the visual formulation of queries themselves”

(Hartl and Weiand, 2009). Despite being described as the second aim of VQLs by

Hartl and Weiand, the ability to graphically build queries is often considered the

primary aim with the need to understand the database stemming from this. The

normalisation of data within relational databases requires that users have a good

understanding of the database structure prior to building queries, this is discussed

in Section 2.2.1.2.
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3.1.1 Early VQLs

Query By Example (QBE) is generally regarded as the first attempt to introduce

graphics into database query languages to increase their appeal to non-professionals

(Zloof, 1975).

QBE allows users to specify criteria for attributes in a databases, diagrams are

used to represent the database and criteria are entered below each attribute. A

notation (entering a P below the attribute) is used to specify the attributes to

be displayed in the results allowing the formation of SELECT, FROM, WHERE

queries by entering data in the required forms. Additional capabilities such as

the negation of criteria (¬) and grouping (double underline) are enabled through

the use of various symbols and special notations. Although QBE allows for the

formation of queries without the use of textual languages it still requires some

understanding of the database structure; join operations are not automatically

handled so users must manually specify these.

The use of symbols and special notations allows for the formation of relatively

complex queries, however, users are not required to have a complete understanding

of the entire notation to use the system at a basic level. This premise is one shared

by the majority of visual query languages in their attempt to appeal to experienced

and novice users alike. The ability for a user to be able to use a small set of

the operations available in a VQL without the unused parts interfering with its

simplicity is crucial to its success in appealing to a broad range of users; similarly

the advanced features of a visual query language must be easily accessible without

basic features impeding advanced actions.

Building queries by specifying how the results are required to appear, as in QBE,

remains a popular approach and is used in a wide range of modern applications.

Both Microsoft Access1 (Figure 3.1) and Microsoft SQL Server Management Studio2

use a UI with clear similarities to QBE.
1https://products.office.com/en-gb/access
2https://msdn.microsoft.com/en-gb/library/hh213248.aspx
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Figure 3.1: The Microsoft Access visual query editor showing the formula-
tion of a query on the movie database (Appendix A)

3.1.2 Classification of VQLs

There are a huge number of VQLs, Vadaparty et al. (1993) identified over fifty in

1993 and numerous more have been developed since. Catarci et al. (1997) produced

a well recognised classification of VQLs, defining the following categories:

• Forms

• Diagrams

• Icons

• Hybrids

Form-based VQLs (e.g. aMAZE LightBench by Lemer et al. (2004)) use text

input fields, such as those found in widespread use as part of advanced search

systems online, to build a familiar interface that may appeal to novice users. Form-

based query languages were a popular area of research when VQLs were initially

developing but have become less prominent whilst the development of more abstract

icon and diagram-based approaches became popular.
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Visually representing database queries through the use of diagrams can often

be considered more appropriate than form-based techniques; diagrams can often

give the user a good overall view of the structure of a query and how different

elements interact with each other (Danaparamita and Gatterbauer, 2011).

Icon-based visualisations use graphical representations of components in a

database to allow the user to better understand the structure and to query a

database. As discussed by Catarci et al. (1997) the use of icons is effective when

used to represent an abstraction of a physical entity, however databases are not

limited to storing only this sort of data. When representing data that cannot be

displayed pictorially icon based languages can become difficult to use.

Hybrid representations of databases and their queries are combinations of

other classifications. Most visual query systems fall into the hybrid category whilst

still consisting predominately of one of the categories (Catarci et al., 1997). The

use of a hybrid visualisation system allows the best components of each type to

be combined into a single visualisation technique that utilises elements from each

style.

3.1.3 Review of systems

The following is a review of a number of VQLs; due to the vast quantity of systems

within the literature this is not a survey of all systems but a subset to illustrate

common elements.

3.1.3.1 Forms

Form-based systems were popular with early visual query languages; they could

be implemented using the limited software and hardware resources available at

the time. As technology advanced, more graphically complex alternatives became

possible and increased in popularity. Despite this, elements of form-based systems

can be found in many modern applications.
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PART PART_NBR NAME WIDTH

wing 10 U. 10.1
20 U. 20.1
 ? U. WIDTH * 1.5

Figure 3.2: A G-WHIZ query to update the width of all the parts with the
name “wing” (Heiler and Rosenthal, 1985).

As discussed in Section 3.1.1 Query By Example is well recognised as the first

visual query language; QBE utilises form elements arranged in a tabular layout

to allow users to enter criteria and notations to form a query. G-WHIZ (Heiler

and Rosenthal, 1985) extends the functionality of QBE, allowing it to operate in

conjunction with the functional data model and introducing the ability for users to

construct recursive queries. Heiler and Rosenthal stated that a tabular layout such

as that found in QBE removes “much of the syntax burden from the user, allowing

different parts of a complex query to be generated in whatever order is convenient”.

In a similar manner to QBE, G-WHIZ utilises special notations to allow users

access to various different features of the language. Unlike QBE, G-WHIZ also

allows for the modification of data within the database through the use of update

and delete operations. Figure 3.2 shows a G-WHIZ form used to update the width

attribute of all parts with the name “wing” ; the update will increase those wings

with a width of 10 or 20 to 10.1 and 20.1 respectively and update all other wings

to 1.5 times their current width.

Many form-based systems offer little abstraction from the database structure,

relying on the user maintaining an awareness of the schema or educating them as

they use the system. The R2-interface by Houben and Paradaens (1989) is aimed

at “inexperienced” users but uses nested headings above forms to replicate the

structure of the database; this method of arranging forms below nested headings is

also used in FORMAL (Shu, 1985).

NFQL (Embley, 1989) allows designers to build customised forms that can

be completed by novice users who are required to extract information from the

underlying database.
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ORDERS

DATEN=N90-12-18

BOOKS

unique

BOOK5 TITLE PRICE

B1 VISUALNPROGRAMMING 32.95

B2 PRINCIPLESNOFNVISUAL
PROGRAMMINGNSYSTEMS

33.95

B3 THENARTNOFNHUMAN-COMPUTER
INTERFACENDESIGN

49.95

Figure 3.3: A TableTalk query to find books ordered on a given date
(Epstein, 1991).

TableTalk (Epstein, 1991) guides users through the construction of a query

using rows in a table to narrow down their search requirements. Figure 3.3 shows

a TableTalk query that extracts book numbers, titles and prices for all books

ordered on the 18th December 1990 and only shows each book once (regardless of

the number of times it was ordered). The top five rows of the table specify the

query:

Row 1 Tells the system to use the orders table

Row 2 Specifies the date required for the query

Row 3 Connects the orders table with the books

Row 4 Ensures books only appear once in the results

Row 5 Specifies the information to be displayed in the results

Although some of the work in relation to form-based systems is almost four

decades old it can still be found in modern systems. The query designer in

Microsoft Access (Figure 3.1) and Microsoft SQL Server Management Studio uses

a form layout very similar to QBE, albeit in conjunction with a diagrammatic

representation of the database structure.

3.1.3.2 Diagrams

With the rise of increasingly powerful hardware and software the potential to use

more graphically complex query systems became increasingly popular in the 1980s.
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PARTS
QUANTITY
ON HAND

SELLING
PRICE

?

x

(a) Find the total value (SELLING
times QUANTITY) of all parts.

ORDER PART #
CUSTOMER
LOCATION

PRICE PART #
SUPPLIER

#

SUPPLIER
SUPPLIER

#
SUPPLIER
LOCATION

? =

= =

(b) Retrieve the part numbers
whose destination and origin are the
same city.

Figure 3.4: Two CUPID queries (McDonald and Stonebraker, 1975).

McDonald and Stonebraker (1975) identified two possible ways in which databases

could be made more accessible to casual users: Natural Language Processing (NLP)

and picture modelling. NLP refers to the interpretation and processing of queries

submitted in a natural, human readable, form while picture modelling is the

process of visually representing queries as graphical elements with the aim of

making them easier to understand than their textual counterparts. A number

of problems relating to NLP were identified including the large vocabulary and

ambiguity associated with the English language: “It is very unlikely that any two

English-speaking persons understand precisely the same English” (Codd, 1974).

Due to the potential pitfalls of NLP the Casual User Pictorial Interface Design

(CUPID) system was developed. CUPID uses shapes to depict various elements of

a database, allowing for the construction of queries that appear to closely resemble

their textual counterparts. Figure 3.4 shows two queries drawn using the CUPID

notation, Figure 3.4a shows how arithmetic operations can be used in conjunction

with attributes while Figure 3.4b shows how joins can be performed and values

can be compared across different relations.

Larson and Wallick (1984) attempt to improve the understanding of novice

users by breaking problems down into smaller problems and guiding the users

towards a syntactically valid solution. Their system involves the use of diagrams to

illustrate the structure of the database (in the form of entity relationship diagrams)
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select

student gpa > 3.5

(a) Find the students with a GPA
of more than 3.5

project

snoselect

enroll grade = 'A'

(b) Find student number (sno) for
those students with a grade A

Figure 3.5: Two DFQL queries (Clark and Wu, 1994).

and the correct syntax for a query. The syntax diagrams used to ensure users form

valid queries share many similarities with those used in some computer language

manuals (e.g. the SQLite manual3). The approach taken by Larson and Wallick is

to attempt to move novice users to more advanced user interfaces; this represents

an unusual aim of a visual query language as, frequently, novice users have little or

no need to become an expert in the field. The DFQL system (Clark and Wu, 1994)

also offers very little abstraction from a textual language and appears almost as a

means to visualise a written query rather than as a method to alleviate users of this

requirement. Figure 3.5 shows two examples of DFQL in use, the close relationship

with textual queries is clear; the functionality of the language extends beyond these

examples and it can be used to perform a wide array of operations including join

operations and aggregate functions. DFQL includes the ability to define common

operations that can be reused as required, a potentially useful feature for those

users who regularly perform the same query.

The QueryViz system (Danaparamita and Gatterbauer, 2011) is designed to

allow users to understand queries written by others, something that has the potential

to become difficult with more complex queries. It uses a UML-like visualisation to

illustrate existing queries; this is justified by the statement that “most database

users have seen UML diagrams before”. Although this may be true for expert

users it is unlikely that many novice users are familiar with UML diagrams; this
3https://www.sqlite.org/lang_select.html
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assumption has the potential to limit the appeal of QueryViz to those with prior

experience in system design or database applications.

3.1.3.3 Icons

Unlike diagrammatic approaches to VQLs, the comparatively small body of work

relating to icon-based visualisations are frequently targeted at the novice user and

attempt to remove the need to understand the database structure.

IconicBrowser (Tsuda et al., 1989) focused on the fact the user should not

need to understand the database structure to be able to query it using icons. The

IconicBrowser uses icons to represent entities within the database and dropdown

menus to select criteria from a list of possible values. Similarly, Query By Icon

(QBI) (Massari et al., 1994) is primarily targeted at inexperienced users and was

partly developed as diagrams can become “too complex to be accepted by inexpert

users”.

Although icons can be extremely effective in representing database entities with

physical counterparts, problems can occur when the need to visualise more abstract

properties arises (Section 3.1.5.3).

3.1.3.4 Hybrids

Hybrid visual query languages combine a mixture of forms, diagrams and/or icons

to represent queries. Few VQLs belong exclusively to one category and the vast

majority utilise a combination of forms, diagrams and/or icons to some extent.

The FilmFinder system (Ahlberg and Shneiderman, 1994) utilises form elements,

in the shape of number sliders and checkboxes, to allow users to specify the criteria

for finding film data. The results of a query are shown, live, in the form of a scatter-

graph style diagram. Users can then further refine their query by interacting with

the diagram. Although the FilmFinder uses forms to query and diagrams to show

the results the PESTO (Portable Explorer of STructured Objects) system (Carey



3.1 Visual query languages | 42

et al., 1996) uses forms arranged on a diagram closely resembling the database

structure; these forms are then used to enter criteria for the query.

Unlike some systems (e.g. Benzi et al. (1999)) Ski (King and Melville, 1984)

automatically generates diagrams for use in its query system rather than relying

on expert users to define the layouts to be used by novice users. The Ski system

uses a series of predefined steps represented on a diagram to guide a user through

the process of extracting or modifying the contents of a database. Some elements

of the diagrams include form components to allow for the entry of data.

Although not an interface to databases, but rather a means to manipulate

XML data, the VXT system (Pietriga et al., 2001) uses a combination of icons and

diagrams to illustrate operations to be performed on XML documents. Figure 3.8

shows a snippet of the VQT interface, its use of extremely abstract notations has the

potential to disorient unfamiliar users, this is discussed further in Section 3.1.5.3.

3.1.4 Target audience

The target audience of VQLs varies between implementations; Hartl and Weiand

(2009) summarised this: “the people using VQLs range from the expert database

administrator, to the secretary that always uses one and the same query to create

an employee list, to the hobbyist web programmer”. Despite this, only a handful

are aimed primarily at the expert user (e.g. Kuntz (1993)) and the majority are

targeted at novice users (e.g. Benzi et al. (1999); Houben and Paradaens (1989);

Massari and Chrysanthis (1995); McDonald and Stonebraker (1975); Shu (1985);

Tsuda et al. (1989)). Although there are some systems targeted at the expert

user the limitations inherent to visual systems (Section 3.1.5.1) means that they

are often more suited to novice users with more basic requirements. Massari and

Chrysanthis (1995) recognised the simpler requirements and only allows for simple

queries in which the user can specify criteria and the attributes to view in the

results (SELECT, FROM, WHERE queries).
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3.1.5 Shortcomings of visual query languages

Although visual query languages have experienced widespread popularity in the

research community for many years they are not without their shortcomings. Many

problems can be associated with visual systems in general rather than individual

approaches. Here we discuss the following potential problems with VQLs:

• Their ability to satisfy the needs of expert users

• Managing the screen space, particularly when handling large databases

• Accurately representing abstract concepts in an easy to understand manner

• Ensuring graphical representations remain understandable, even when repre-

senting complex queries

3.1.5.1 Expert capabilities

Section 2.6 outlines the requirements of an expert database user. In summary,

they are required to build potentially complex queries using many different aspects

of the database structure and query language syntax that novice users may be

unaware of. To establish this level of skill requires training to learn the query

language and time spent studying the database structure. The assistance provided

by graphical systems often comes at the cost of flexibility and power, as a result,

expert users will rarely require the assistance of a graphical system and can find

they act as more of a hindrance than a help (Aversano et al., 2002; Catarci et al.,

1996).

This limitation of graphical systems means they are not generally appropriate

for professional use and should be focused, as they usually are, on novice or

inexperienced users.

3.1.5.2 Utilising screen real estate

Diagrammatic systems, in particular, have the potential to become overcrowded

when used in conjunction with complex schemas or queries. Query interfaces based
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Figure 3.6: The Mac OSX 10.10 Yosemite dock showing a fisheye effect
in response to a mouse-over event. The highlighted “Slack” application is
shown bigger than the others around it.

upon ER or schema diagrams (e.g. Czejdo et al. (1989)) are particularly vulnerable

to this as the visualisation must grow to reflect the structure of the database.

Burnett et al. (1995) identified the problem of fitting the required information onto

the screen space available and highlighted two common solutions to the problem:

“make the drawing smaller and look at the whole, or partition the drawing into pieces

and look at each piece separately”. Although the two approaches to dealing with

limited screen real estate offer viable solutions they are not without drawbacks;

decreasing the size of a diagram to enable it to fit on screen runs the risk of making

it unreadable while partitioning the drawing could potentially remove the much

needed context the diagram as a whole provides. As the capability of computers

has expanded beyond the capabilities of simplistic 2D graphics more solutions have

become possible such as the use of fisheye (e.g. Bederson et al. (2004) and the

Mac OSX dock in Figure 3.6) along with 3D visualisations that allow the user to

arrange information in 3D space.

3.1.5.3 Accurately representing the database

The use of icons to represent entities within databases allows novice users to visualise

them graphically, making it easier to quickly identify the desired components within

a user interface. However, icons can become difficult to use when the need to

represent an abstract concept arises; something with no physical counterpart is

difficult to display using an icon. The Keiron query language (Aversano et al.,

2002) is designed to teach users a textual query language such as SQL through

the use of icons. It uses the example of querying a database of books by using

icons (Figure 3.7). Even in this idyllic example there are clear issues found when

representing attributes of a book with icons. The title attribute of a book is
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Figure 3.7: A selection of icons used in Keiron (a year has no obvious
physical counterpart so is simply represented by the word “YEAR”)

Figure 3.8: VXT’s XML manipulation language, an example of how visual
query languages can become difficult to understand

identified by a small icon of an open book, without the additional information of

the attribute name it would be very unclear as to what this icon was representing.

The year attribute is simply represented by an icon containing the word “YEAR” ;

the use of text within icons entirely defeats the objective of an icon-based query

language and perhaps suggests a hybrid language would be more appropriate.

3.1.5.4 Excessively abstract interfaces

A common problem with many visual query languages is a level of abstraction so

high the system is rendered useless, as expressed by Andries and Engels (1996):

“one also gets the impression that some of this research overshoots its mark in the

sense that pure graphical formulation of a query sometimes even looks more complex

than its textual equivalent”. The VXT language (Pietriga et al., 2001) (Figure 3.8)

is used for manipulating XML documents using icons and diagrams; although not

used for querying data, it is a good example of how such tools can become so

massively abstract that they are almost unusable.

3.2 Keyword search

In Section 3.1.3.2 we highlighted a quote by McDonald and Stonebraker where it

was argued that visual query languages were more appropriate than keyword search
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due to the associated pitfalls. After identifying a number of problems with Natural

Language Processing (NLP) McDonald and Stonebraker developed CUPID to allow

novice users to build queries using diagrams. Although in 1975 NLP presented

significant challenges, two key changes have occurred since then:

• Software and hardware advancements

• Frequent exposure to keyword search

Both software and hardware capabilities have increased massively in the past

few decades, as a result, tasks that were previously seen as impractical can now be

completed with relative ease. Hardware and software constraints from the past are

often not applicable to modern applications.

Web based search engines have exploded in popularity since first established

in the early 1990s (Brin and Page, 2012) and Google now handles in excess of

1.2 trillion searches per year (Google, 2012). As a result of the widespread use of

keyword search across the internet the majority of users are accustomed to building

keyword queries and submitting them in exchange for a series of relevant results

(Park and Lee, 2010). The popularity of keyword search across the internet means

that it has become a popular area of research within the databases community.

The application of keyword search over relational databases can largely be

divided into two distinct categories: graph-based and relational approaches. Ex-

amples of each techniques, along with discussions regarding their strengths and

weaknesses are discussed in this section.

Manning et al. (2008) described keyword queries (also referred to as free text

queries) as “queries that simply consist of query terms with no specification on their

relative order, importance or where [. . . ] they should be found”. A keyword query,

Q, can be defined as Q{t1 . . . tn} where t represents a series of terms specified by

the user, this notation will be used throughout this work.
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3.2.1 Web search relational databases

To the casual user, both keyword search on the web and over relational databases

are much the same; they expect to submit a series of keyword queries and receive a

list of appropriate results in response. Although, from the users perspective, the

two systems appear to have the same functionality, the implementations of the

systems are significantly different (Bhalotia et al., 2002; Khine et al., 2011; Liu

et al., 2006; Park and Lee, 2010).

The following are some of the challenges presented in implementing keyword

search over relational databases:

• Matching criteria to attributes

• The presentation of results

• Joining the appropriate relations

An important requirement for novice users (as discussed in Section 2.5) is that

they must be able to interact with databases without an understanding of its

structure or language syntax. As a result of this, a keyword search system should

not assume any understanding of the database structure and should therefore match

the given criteria to the appropriate attributes automatically.

The presentation of results in both web search engines and bespoke relational

database search systems are predefined and always take the same form. However,

two different keyword queries executed on relational databases might demand

drastically different results visualisations. Jagadish et al. (2007) identified the

difference in results styles: “In the case of a web search, a user expects simply

a set of links, with almost no interrelationship between them. In the case of a

database search, a user may expect to see a table, a network, a spatial presentation

on a map, or a set of points in a multidimensional space”. This quote clearly

identifies the differences between the various styles of presenting results, however,

the description of what a novice user might expect in response to a keyword query
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on relational databases is controversial. In contrast to Jagadish et al., and in

keeping with avoiding the need for novice users to learn the database structure, it

may be more desirable to respond to keyword queries with a list of appropriate

results, much like web search engines. However, the details displayed in these

lists might vary considerably depending upon the area of the database queried.

To automatically generate appropriate results visualisations presents a number of

problems, particularly when choosing the attributes to display in response to a

given set of criteria. Often the criteria specified can bear very little resemblance to

the desired results; for instance a search for an actor on a movie database might

require that a list of their acting credits are displayed.

Due to the normalisation of data in relational databases information is often

spread across many different tables (Section 2.2.1.2). As a result of this, users

building queries are expected to join tables together for the purpose of specifying

criteria and visualising results, novice users are unlikely to have this understanding

so the appropriate join operations must be automated. To automatically generate

join operations can be difficult as there are often multiple routes through a database

to connect the desired relations, frequently passing through junction tables that

hold no meaningful data and are only used to facilitate many-many relationships

between other relations. Chapter 4 discusses this problem and proposes a solution

that is applicable to various different applications.

3.2.2 Approaches to keyword queries

Keyword search over relational databases is largely tackled using one of two

approaches: graph-based or relational systems. In this section we discuss the two

approaches within the context of a number of examples.

3.2.2.1 Graph technique

Graph based systems extract the information from within relational databases and

build a graph structure to manage keyword queries. Graph structures for handling
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Figure 3.9: A graph, G, representation of a small portion of a movie
database. The relations the nodes map to are also shown.

keyword queries take various different forms; attributes and terms are typically

represented as nodes, edges connect attributes together along primary-foreign keys

and to keywords that appear in within them. A solution to a keyword query

submitted to a graph-based query system is often defined as a sub-graph that

contains all the given keywords.

Figure 3.9 shows the graph, G, which represents a snippet of the movie database

found in Appendix A; for illustrative purposes we only show a small section of the

graph and actual key values have been replaced with sample data. Adopting the

definition of an answer to a keyword query as a sub-graph containing all the terms

provided we can assume that the query Q1{laurence fishburne warner bros} has

two valid answers:

S1.1 Laurence Fishburne ←ai1 →Man of Steel ←pb1 →Warner Bros

S1.2 Laurence Fishburne ←ai2 →The Matrix ←pb2 →Warner Bros
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Both sub-graph S1.1 and S1.2 contain all the given keywords and therefore qualify

as solutions to Q1.

BANKS (Aditya et al., 2002; Bhalotia et al., 2002) matches criteria against

textual attributes and defines an answer to a keyword query as a “rooted tree

that connect tuples that match individual keywords in the query”. The results of a

query are presented as a list of ranked information nodes, these nodes are chosen

to represent the results of the query and can then be further expanded to reveal

more information (Figure 3.10). Hyperlinks are used to navigate between nodes

representing data from different relations in the database. Although this technique

presents an effective means of allowing the user to quickly view the results, while

still being able to explore them further, it undoubtedly requires the user to build

some understanding of the database structure, something best avoided in novice

systems. Ranking in the BANKS system is achieved using a PageRank (Page et al.,

1999) style algorithm that applies a prestige value to each node according to the

number of edges connecting to it. The system allows some tables to be manually

excluded from becoming information nodes, avoiding tables such as is_genre or

acts_in in our sample database (Appendix A) from being used in the results

visualisation. Although these tables can be excluded from being presented as nodes

in the initial results they must still be navigated through in order to find nodes

connected to the information node (in Figure 3.10 the user has navigated through

the writes table to find the author of a paper presented in the results). The use

of web-like links to allow users to navigate through structured data in a familiar

environment is similar to the earlier work of DataSpot (Dar et al., 1998) which

presents a list of answers that can be clicked to view additional information.

The backwards search algorithms used in BANKS were improved upon in

BANKS2 (Kacholia et al., 2005) to use bidirectional search; this increases the speed

and efficiency with which results could be found, particularly when some criteria

match a large number of nodes in the graph. Something that might arise as a
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Figure 3.10: The results of the query “soumen sunita” in the BANKS
system (Bhalotia et al., 2002).

result of the system’s ability to match criteria against database meta data such as

attribute names.

3.2.2.2 Relational technique

The relational technique of keyword search differs from graph-based approaches

in that it does not rely on alternative models of the data but utilises the existing

database structure. The aim of such systems is to build query that can be

executed directly on the database, in the case of relational databases this means

the production of SQL statements suitable for execution on the target database.

To build these statements relational systems utilise various indexing structures;

these index structures may be generated and maintained by the query system or

they may utilise the indexes already in place.

Many commercial products such as MySQL (MySQL, 2012) and Oracle (Oracle,

2015b) include text indexing systems that allow users to submit text queries directly

on the database without the use of third party applications. The following is an

example of a text query that might be submitted on a movie database such as that

described in Appendix A:
SELECT *
FROM movie
WHERE MATCH (title) AGAINST ('matrix ');

This query illustrates how, although text indexing can be useful, it still requires

an understanding of the underlying database schema; if a relational system were
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to utilise such an index the system would be required to automatically match

keywords to attributes and joins relations where necessary.

Early work that uses the relational technique includes DBXplorer (Agrawal

et al., 2002), developed at Microsoft; the main focus of this work was the way in

which the system builds an index appropriate for translating keyword queries into

SQL SELECT statements. DBXplorer first adds auxiliary tables to the database to

store the symbol table (or index) used to process keyword queries. To find answers

to a query, DBXplorer uses the symbol table to find all entries in the database that

contain the keywords provided; an answer to a query may consist of a single tuple

or a series of tuples joined by primary-foreign key relationships.

Another early example of the relational technique is DISCOVER (Hristidis and

Papakonstantinou, 2002) which uses a master index to locate the occurrence of

the given keywords. Using some understanding of the database schema the system

attempts to locate a Minimum Total Joining Networks of Tuples (MTJNT) that

contain all the specified criteria. An MTJNT refers to a series of joined tuples

that contain all the given terms and cannot be reduced in size by removing any

tuples from the join without the loss of some keywords. In an attempt to reduce

the likelihood of irrelevant results being presented in the form of a large MTJNT,

DISCOVER includes the ability to limit their size to a given value; although this

reduces the likelihood of irrelevant results, choosing the maximum allowable size can

be difficult (see Section 3.2.5.8). DISCOVER was improved upon in DISCOVER2

(Hristidis et al., 2003) which utilises the advanced free-text indexing available in

database management systems to improve the ranking features of DISCOVER

and offer Boolean OR functionality in addition to the ANDs that many previous

systems support.

The SPARK (Luo et al., 2007) system was designed to improve the ranking

systems used in other systems; the identification of a number of problems with

existing ranking systems led to a number of improvements in SPARK, which utilises

free-text indexes to locate criteria within the database. Two factors considered by
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SPARK are the “completeness” and the size of a result. The completeness refers

to the number of the supplied terms that appear in the results. The need for this

metric stems from the potential for systems, such as DISCOVER2 (Hristidis et al.,

2003), to rank an answer containing multiple occurrences of one term (and none of

the other criteria) over one which contains all the specified criteria but only once.

SPARK will prioritise answers containing all the criteria over those with multiple

occurrences of a single term. The number of join operations is often used as a

rudimentary ranking system, however, Luo et al. identify the potential pitfalls of

simply prioritising those answers with fewer joins and present a more advanced

alternative. The proposed algorithm not only takes into account the number of

joins in the result but also the distribution of the given terms across the results.

LABRADOR (Mesquita et al., 2007) matches the given criteria, one by one, to

attributes within the database. Matching terms to corresponding attributes within

the database allows LABRADOR to build a candidate query, for instance the query

Q2{tom cruise} might produce the following candidate queries to be considered for

execution:

S2.1 (name: tom ), (name: cruise)

S2.2 (name: tom ), (title: cruise)

S2.3 (title: tom ), (title: cruise)

The possible solutions to Q2 are then passed to the database management system

in the form of SQL SELECT statements and are then executed and ranked according

to their perceived relevance. LABRADOR is presented as a system upon which

other interfaces might be built; a sample interface is presented (Figure 3.11) in which

the user submits keyword queries and then views the structured interpretations

generated by LABRADOR along with the ranked results this query produces. The

flexibility of LABRADOR means that it can be used to produce a wide range of

different query interfaces (an example of browsing possible interpretations using

hyperlinks is given) and can utilise a number of different database tools depending
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Figure 3.11: An interface built using LABRADOR. The user submits their
query (a), views the structured interpretation (b) and the ranked results (c).

upon those available with the chosen RDBMS, for example terms can be matched

to attributes using simple equality comparisons or more advanced string operations

such as the LIKE or CONTAINS functions.

3.2.3 Ranking

Keyword search, by its very nature, is ambiguous and is liable to return irrelevant

results. In an attempt to combat this many systems use various ranking metrics in

an attempt to place the most relevant result at the top of the list shown to the

user; this process is often referred to as top-k ranking. There are various ranking

metrics employed by different systems; some use simple techniques such as ranking

solutions with the fewest edges or joins (e.g. Agrawal et al. (2002); Dar et al.

(1998); Hristidis and Papakonstantinou (2002)) as the most appropriate. Other

systems use more complex ways of ranking the results including BANKS which

employs algorithms similar to Google’s PageRank (Page et al., 1999) to rank the

results appropriately.

There is a large amount of work into top-k ranking systems (Bhalotia et al.,

2002; Ding et al., 2007; Golenberg et al., 2008; Kacholia et al., 2005; Kimelfeld and

Sagiv, 2006); some of this work focusses on the implementation of ranking within

new keyword systems and others discuss the inclusion of new ranking systems to

existing, typically graph based, systems. Often these systems offer high recall and

low precision rates; they display almost, if not all, the desired results but these
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DBLP IMDb
Baid et al. (2010); Balmin et al.

(2004); Bhalotia et al. (2002); He
et al. (2007); Hristidis et al. (2003,

2008); Hulgeri et al. (2001); Kacholia
et al. (2005); Khine et al. (2011); Li
et al. (2009, 2011, 2008); Luo et al.
(2007); Park and Lee (2010); Qin

et al. (2010, 2012); Wang et al.
(2006); Wheeldon et al. (2004); Xie
et al. (2012); Xu et al. (2012); Zeng

et al. (2012)

Chaudhuri et al. (2006a); Demidova
et al. (2010); Deokmin Haam et al.

(2010); Fakhraee and Fotouhi (2012);
He et al. (2007); Kacholia et al.

(2005); Li et al. (2009, 2008); Luo
et al. (2007); Qin et al. (2012); Zeng
et al. (2012); Zhou and Pei (2011)

Table 3.1: The use of various datasets in keyword search systems

are hidden by many irrelevant results. Ranking systems are crucial when handling

such large result sets as they attempt to display the most relevant results at the

top of the list, limiting the negative impact of such large result sets.

3.2.4 Demonstrations and evaluations

There are various methods of evaluating keyword search systems, some of the

literature includes attempts to quantify the quality of a system but many simply

provide a demonstration. Generally, demonstrating and evaluating a keyword

system involves using a given database and executing a series of keyword queries

on it; measuring various metrics and drawing conclusions from them.

3.2.4.1 Data sets

Although some systems have requirements regarding the database engine or indexing

structure (e.g. Hristidis et al. (2003)) they are generally capable of operating with

any database. The DBLP and IMDb are popular datasets for demonstrations and

evaluations, Table 3.1 shows how these datasets are used within the literature.

These data sets are often chosen because they offer a familiar environment in which

to execute queries that users can easily relate to.
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3.2.4.2 Performance overhead

Much of the early work concentrated on evaluations based upon a system’s perfor-

mance (e.g. Agrawal et al. (2002); Bhalotia et al. (2002); Khine et al. (2011); Li et al.

(2008); Markowetz et al. (2007)) but in light of advancements in both hardware and

software recent evaluations attempt to quantify the accuracy of keyword systems

focussing less on their performance overhead. Provided a system offers adequate

performance it is more reasonable to focus the evaluation of a keyword search

system on the accuracy it offers rather than the resources it requires.

3.2.4.3 Precision and recall

Precision and recall values can be used to compare a model result set to one

provided by a query system; these metrics are a popular means to quantify the

quality of keyword query results (e.g. Chaudhuri et al. (2006a); Fakhraee and

Fotouhi (2012); Kacholia et al. (2005); Liu et al. (2006); Mesquita et al. (2007);

Patil and Chen (2012); Xie et al. (2012)).

Precision is a measure of the percentage of results returned that are relevant

to the given search terms while recall refers to the percentage of relevant results

returned. The following formulae are used to calculate the two accuracy measures:

Precision = number of correct results returned
total number of results returned

Recall = number of correct results returned
total number of correct records

Systems with low precision values would return many irrelevant results alongside

any valid ones; this could mean the user finds it difficult to extract the desired

information within the unwanted information. Queries resulting in low recall values

would not contain all the correct results from the dataset, this would often result

in the user needing to re-query the database to find the desired information.
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3.2.5 Problems with existing work

Although there is a large body of work in relation to incorporating keyword search

into relational database there are some areas in which many systems are limited.

The following highlights a selection of these problems, some of which are applicable

to many systems while others only to a few.

• Section 3.2.5.1 discusses the problem of automating join operations in relational-

based systems.

• Section 3.2.5.2 addresses the reliance that some applications have on the

databases upon which they operate.

• Maintaining graphs and indexes can sometimes be problematic, Section 3.2.5.3

outlines some problems with this.

• Section 3.2.5.4 discusses the potential problems introduced by some graph

systems that only support AND operations but not OR.

• Many-many queries occur when two relations, either side of a junction table,

are involved in a query, Section 3.2.5.5 highlights a number of problems

introduced by these queries.

• Section 3.2.5.6 discusses the need for both Boolean AND and OR operations

and the support offered for such queries.

• Keyword should not require an understanding of the database structure, de-

spite this some functionality often relies on this understanding: Section 3.2.5.7.

• Section 3.2.5.8 discusses the potential for graph-based systems to produce

undesirable answers as a result of joining nodes together that lack a real-world

connection.

• The presentation of results is often overlooked, Section 3.2.5.9 highlights why

the results visualisation is important and introduces a number of challenges

to overcome.
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• Relational databases utilise many different data types Section 3.2.5.10 dis-

cusses how various systems handle the processing of different data types.

• Generic search systems can struggle to match bespoke ones that have been

specifically designed to handle certain criteria, Section 3.2.5.11 addresses

some of the differences in these systems.

3.2.5.1 Joins (in the relational technique)

Join operations are a vital component in querying relational databases, normalisa-

tion means that even simple queries can require information from multiple relations.

A crucial, and commonly accepted, requirement of novice users is that they should

not need to understand the database structure (Section 2.5). In order to prevent

the user from needing to understand the database structure keyword systems must

handle all join operations automatically.

In graph-based systems that maintain a series of nodes and edges representing

tuples and their connections join operations are automated in the process of finding

paths that connect the supplied keywords. For instance the query Q3{hugo weaving

action}, submitted to the graph G, would find a path between the person “Hugo

Weaving” and the genre “action” through the various intermediate tables. In

traversing the graph to find the connections joins are automatically completed by

connecting tuples in different relations.

The relational-based systems that utilise various indexing structures must rely

on other techniques to find connections between the attributes in which the supplied

terms occur. Indexes can be used to find the location of words but they typically

offer no knowledge of the database structure. Some relational techniques (e.g.

Agrawal et al. (2002)) utilise a schema graph that is used to identify connections

between the relations in which the keyword terms appear.
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3.2.5.2 Reliance on application specific tools

Some keyword search tools are designed to be very generic implementations that

are applicable to a wide range of data models. BANKS2 (Kacholia et al., 2005) can

be applied to a wide range of different data stores including relational databases,

XML (often connected through IDREF tags) and HTML documents connected with

hyperlinks. In contrast, other systems (e.g. Hristidis and Papakonstantinou (2002))

rely on a specific underlying database implementation and utilise functionality

limited to the chosen RDBMS. Although systems reliant on a given data structure

still offer an interesting insight into solving the problem of keyword search over

relational databases, they limit the potential for expansion into other areas.

3.2.5.3 Maintaining data models

Many systems, both graph and relational, build their own models of the data; graph

based systems use nodes and edges to represent the data while relational systems

used indexes to locate terms within the database. Both of these structures require

some degree of maintenance, if records are modified, added or deleted from the

databases these models must be changed to reflect this, otherwise the likelihood of

erroneous results increases the more out of date the data model becomes.

Manning et al. (2008) suggested that graph based systems are not scalable due

to the large memory footprint and the significant maintenance overhead required.

Independently constructed indexes that are not maintained by the RDBMS can be

considered to have the same problem, ensuring they remain up-to-date involves

monitoring changes and adapting the data structure to reflect them. Other than

the work that utilises the indexes provided by the chosen RDBMS the maintenance

of indexes or graph structures is rarely addressed.

3.2.5.4 OR operations in graph systems

As previously discussed (Section 3.2.2.1) graph-based systems often define an answer

to a keyword query as a sub-graph that contains all of the terms provided. This
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approach effectively applies AND operations between the terms; although this

satisfies a wide range of keyword queries the OR operation is not redundant.

The definition that a valid response to a keyword query is a sub-graph containing

all the given keywords limits such systems to AND operations only. OR operations

are possible only when they can be re-written as AND operations: for example

Q4{james bond skyfall casino royale} may represent a query attempting to find films

called “Skyfall” OR “Casino Royale” containing a character called “James Bond”.

Q4 would successfully be executed on a graph-based system because both “Skyfall”

and “Casino Royale” have characters called “James Bond”. However, consider the

query Q5{james bond skyfall matrix}, this query might be interpreted as meaning

movies with a character called “James Bond” AND a title of “Skyfall” OR “Matrix”.

As in Q4, there is a movie called “Skyfall” containing a character called “James

Bond”, however, this character does not appear in any movies containing “Matrix”

in the title. The query Q5 cannot be re-written to use AND operations alone, one

of the conditions fails, in this scenario graph based systems defining an answer as a

sub-graph containing all the given terms would fail and not provide a valid answer.

Consider the generic query Q6{x y1 y2} in which x is required in the search

results along with either y1 or y2. The success of a graph-based system correctly

handling Q6 is dependant upon whether Q6a{x y1} and Q6b{x y2} produce valid

responses. If they both produce valid responses then x acts as the root of a tree

connecting to both y1 and y2. If x cannot be connected to both y1 and y2 then

there is no sub-graph that will connect all three criteria, representing a failure of

such graph-based systems.

This restriction of graph-based systems has the potential to be perceived as

inconsistent handling of queries by novice users who have no understanding of the

underlying query algorithms.
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3.2.5.5 Many-many queries

Many-many relationships, facilitated by junction tables, are common in relational

databases; in the movie database (Appendix A) there are four examples of this,

the relationship between movies and genres, facilitated by the is_genre junction

table, is one such example.

We use the term “many-many queries” to describe those queries that include

relations which have a many-many cardinality between them. An example of such

a query might be when a user searches for a movie co-staring two given actors

Q7{fishburne weaving}. The relationship between movie and people is many-many.

The SQL statement to execute such a query cannot be made using Boolean

operations alone; this is because there is no single tuple in the joined relations that

contains all the required terms. The combination of GROUP BY and HAVING

clauses ensures that only movies staring the given two actors are present in the

results. The SQL required is as follows4:
SELECT movie .*
FROM movie INNER JOIN acts_in ON movie.id= acts_in . movie_id

INNER JOIN people ON people .id= acts_in . person_id
WHERE people .name='Fishburne '

OR people .name='Weaving '
GROUP BY movie.id
HAVING COUNT(movie.id)=2;

The WHERE clause in the above query requires that the joined tuples must

contain at least one of the two given actors while the grouping clause combines

multiple results relating to the same movie into a single row. The HAVING

clause restricts the output to only those movies that have satisfied two (all) of the

conditions in the WHERE clause. If three actors were given then the HAVING

clause would be changed to restrict the output to those movies containing all three

of the given actors.

The IMDb (IMDb, 2013) uses a separate user interface5 to allow users to search

for movies containing two actors. Two limitations introduced by this approach are

accessibility and query limitations. As the many-many query functionality is not
4In this sample query the actors are referred to by their last name, in practice they would

likely be identified by their full name or ID.
5http://www.imdb.com/search/common
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integrated within the main search interface the user is required to navigate through

the advanced search options to find this functionality. A second limitation is that

this user interface can only accept the names of two people; it is not possible to

find movies in which three people appear. The approach taken by IMDb shows

both a recognition of the need to facilitate such many-many queries and a lack of

integration with existing free-text user interfaces.

Recognition and appropriate handling of this type of query is important for

free-text systems. If they do not effectively handle these queries they may return

no results and if the user has little or no knowledge of the database schema the

reason for this might be unclear.

In graph based systems such as BANKS (Aditya et al., 2002) and EASE (Li

et al., 2008) these connections would, assuming they exist, be identified. This

is because all knowledge of the original schema is discarded in favour of a graph

structure that connects related terms, bypassing the need for SQL. Relational

systems (e.g. DBXplorer (Agrawal et al., 2002) and DISCOVER (Hristidis and

Papakonstantinou, 2002)) that use an index to locate occurrences of keywords must

recognise and handle these queries appropriately or they risk returning no results

for queries that do have valid answers in the database.

3.2.5.6 Using both AND and OR

The vast majority of keyword search systems only facilitate the AND operation

(e.g. Agrawal et al. (2002); Hristidis and Papakonstantinou (2002); Khine et al.

(2011); Li et al. (2008); Markowetz et al. (2007); Mesquita et al. (2007); Wheeldon

et al. (2004); Widom (2005)), that is they require that all the supplied keywords

are present to constitute a valid response to a query. By default the NUITS

system Wang et al. (2006) applies an AND operation between all the given criteria,

however, it includes a “Boolean mode” which allows the user to submit queries

such as Q8{james bond AND (skyfall OR matrix)}. Although the use of a Boolean

mode enabling the user to submit queries such as Q8 undoubtedly increases the
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B

CA
(a) (A AND B) OR C

B

CA
(b) A AND (B OR C)

Figure 3.12: Two Venn diagrams showing the importance of the position
of parenthesis when mixing AND and OR operations. Both diagrams show
A AND B OR C with different parenthesis positions.

power of a search system it also increases the level of understanding required by the

user. It is well recognised that novice users have an incomplete understanding of

Boolean expressions (Hildreth, 1989; Nielsen, 1997), so making the use of them the

only means to use OR operations seems counter-intuitive when the target audience

of such systems is novice users. “One of the common mistakes users made was to

substitute the AND logical operator for the OR logical operator when translating an

English sentence to a linear text query” (Young and Shneiderman, 1993).

The use of a single Boolean operation (AND or OR) between the given criteria

allows systems to apply universal rules defining how multiple criteria are handled.

Dynamically allocating a mixture of AND and OR operations between keywords

requires a more detailed understanding of the contents of the database than many

systems are equipped with. Using a mixture of different Boolean operations also

requires an ability to group criteria together with parentheses, as is manually

defined in Q8, to ensure consistent handling of Boolean expressions (Figure 3.12).

3.2.5.7 Schema understanding

A crucial requirement of novice users is their need to query a database with no

understanding of its structure (Section 2.5). Although this is a well recognised

requirement for novices many systems include the ability to submit keyword queries

that reference elements of the database schema (e.g. (Bhalotia et al., 2002; Wang

et al., 2006; Xie et al., 2012)). Meta-data such as attribute names can often be
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used to force the system to find the given word in a specified location; for example

a query such as Q9{name: weaving} would force the system to locate the term

“weaving” in the name attribute. The most obvious problem with this stems from the

very real possibility that a novice user might only be equipped with an incomplete

understanding of the database schema. For instance, the name of a person may be

stored in a single name field or they may be split across two attributes: last_name

and first_name. If the user has only a partial understanding of the database they

may either get unexpected results or even no results at all.

3.2.5.8 Unrestricted graph sizes

Sub-graphs defined as answers to keyword queries (Section 3.2.2.1) are designed

to connect the supplied terms to form an appropriate response to the query given.

Consider the query Q10{matrix action} executed on the graph G, there are four

sub-graphs that satisfy the query Q10, they are as follows:

S10.1 action ←ig2 →The Matrix

S10.2 action ←ig1 →Man of Steel ←pb1 →Warner Bros ←pb2 →The Matrix

S10.3 action ←ig1 →Man of Steel ←ai1 →Laurence Fishburne ←ai2 →The Matrix

S10.4 action ←ig3 →Lord of the Rings ←ai4 →Hugo Weaving ←ai3 →The Matrix

Although these sub-graphs are all valid responses to the given query it is clear

that S10.1 is more appropriate than S10.2, S10.3 or S10.4.

In graph based systems it is often assumed that an answer to a keyword query

is any sub-graph which contains all the keywords provided, however sub-graphs

can become very large if they are not restricted or managed to some extent. Luo

(2009) discusses this problem and states that SPARK does not limit the size of

the sub-graph. This could result in a massive sub-graph; consider the many-many

relationship between people and movies in the movie database (Appendix A) which

is facilitated by the acts_in junction table.
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Two actors who have no credits on the same movies, Laurence Fishburne and

Sean Bean could be connected through a series of movies as follows: Sean Bean →ai5

→Lord of the Rings →ai4 →Hugo Weaving ←ai3 →The Matrix ←ai2 →Laurence

Fishburne (i.e. Laurence Fishburne co-starred in a movie with someone (Hugo

Weaving) who co-starred in a movie with Sean Bean). These chains across many-

many relationships are unrestricted in size and could potentially present problems

with respect to results presentation and ranking systems. DISCOVER (Hristidis

and Papakonstantinou, 2002) and QUICK (De Virgilio et al., 2012, page 109)

include the means to set the maximum size of a candidate network, which prevents

the generation of such large sub-graphs but this introduces the problem of giving a

value to such a maximum. Ranking answers to queries based upon the number of

join operations or edges can help make such results become less prominent in the

results, this technique is employed by DISCOVER and DBXplorer (Agrawal et al.,

2002).

3.2.5.9 Presentation of results

The presentation of query results is often overlooked, with many systems focusing

entirely on the generation of results without considering how to display them

(Manning et al., 2008; Park and Lee, 2010). Although rarely discussed, this step is

crucial within the process of extracting information from a database:

1. Decide upon the search criteria relating to the desired results

2. Submit the keywords to the search system

3. Review the results and extract the desired information

Without an appropriate results visualisation the user will not be able to extract

the desired information from the final result set.

In simple search applications a tabular user interface would be sufficient for

displaying results but this is not the case for more complex systems such as those

operating over relational databases. In graph based systems the various sub-graphs
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which are chosen as potential results could consist of nodes representing tuples

from different relations in the database. An example of this is Q10 which searches

for the name of a movie, “matrix” and a genre, “action” (Section 3.2.5.8). In this

scenario there are four possible solutions from three different sets of attributes. This

mis-match of different attributes within the results would make them very difficult

to display in the same results presentation; for instance a tabular layout could not

be used in this setting as the the headings may not apply to all the results. One

potential solution to this may be to spread the results across multiple visualisations

but this could, particularly in large databases, result in many different windows

and, as a result, make it difficult for a user to extract the desired information. The

use of multiple results representations would also make it difficult to represent any

ranking or ordering functions which have been applied to the results.

An alternative way to overcome this problem might be join all relations in the

database together resulting in all headings becoming appropriate for all results.

Although this would make it possible to display various different solutions to queries

on the same visualisation it has the potential to include vast quantities of irrelevant

information, particularly in large databases such as MONDIAL6, a database of

geographical data comprising of 33 relations and used by Luo et al. (2007) and

Sagiv (2013).

BANKS (Bhalotia et al., 2002) uses a tree structure (Figure 3.10) to represent

the results of a query; this structure very closely follows that of the database and

shows an entry for each table in the database. For instance the results of a query

relating to two actors would display a movie they co-starred in at the root, followed

by two entries in the acts_in relation and two in the people relation. Although an

effective means of displaying the results this approach has two main drawbacks:

• A requirement for schema understanding

• The potential for repetitive browsing actions
6http://www.dbis.informatik.uni-goettingen.de/Mondial/
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As the results are presented on a visualisation closely related to the database

schema the user must have some awareness of it to efficiently find the desired

information. Within the context of a movie database a novice user might believe

that a movie is linked directly to the actors who starred in it but, when following

the structure of the database, they must navigate through the acts_in junction

table. The potential for repetitive browsing actions is also a problem that might

arise when users are repeatedly performing similar queries on a regular basis.

The NUITS system (Wang et al., 2006) uses a graphical representation of

the nodes in a graph to display the answers to a query (Figure 3.13). Consider

the query Q11{man of steel hugo weaving}, the movie “The Matrix” and the

actor “Laurence Fishburne” are used to connect the given criteria, these paths

are graphically represented, highlighting the occurrences of the keywords. In an

attempt to simplify the visualisation and hide unnecessary information NUITS

classifies the nodes as one of two types: K-nodes and C-nodes. K-nodes contain

keywords and show some of the contents of the node (relation and attribute names

along with the contents of that attribute) while C-nodes are used to connect them

and are denoted by the relation name alone. As this approach to visualising the

results heavily relies on the structure of an answer, which may vary, a single query

has the potential to produce a large number of graphs as potential answers. To

reduce the overhead of navigating through the results, they are clustered together

according to their underlying structure, for instance S10.3 and S10.4 both represent

answers from the same sets of tuples so they would be clustered together.

3.2.5.10 Data types

Relational databases use a wide variety of data types to best represent the data

stored within them. These data types can largely be categorised into three groups:

• Textual

• Numeric
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people [name] Laurence
Fishburne

acts_in

movie [title] The Matrix

acts_in

people [name] Hugo
Weaving

acts_in

movie [title] Man of Steel

Figure 3.13: The tuple-connection tree view in NUITS following a query,
Q11, on the movie database.

• Temporal

Although many database systems allow for other data types (e.g. BLOBs),

these are unlikely to be used as the criteria for a query so are understandably

disregarded from all work we are aware of.

In keyword systems, all criteria is entered as text and the user does not specify

whether the criteria should be treated otherwise. It is important for data types

to be treated appropriately and not simply as text; this becomes clear when you

consider a date attribute within a database. A date may be stored using the

dd/mm/yyyy format but if a user were to enter criteria using a single digit for a day

or month (e.g. 1/12/2015) value then it would be overlooked by the system because

it does not match the format the database uses. A keyword system should be

able to recognise the different formats of a date and handle them all appropriately,

similarly numeric values should be handled appropriately within keyword search

systems.

Existing work generally fails to support data types other than text although

there are some systems that support numeric input (Chaudhuri et al., 2006b).

Some systems (e.g. Qin et al. (2012)) exclusively support textual values and others

(e.g. Wang et al. (2006); Xie et al. (2012)) support numeric values but only when

an attribute and equality operation is specified, for example Q12{year < 1989}.
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Figure 3.14: The results of a search on the IMDb website

3.2.5.11 Generic vs bespoke systems

Generic keyword query systems, the focus of this section, are designed to be

applicable to potentially any database (as long as certain structural requirements

are met, Section 3.2.5.2). Building a query system for any database means they

cannot be optimised for a particular data set; this allows for transferability between

databases but lacking the understanding of the database contents can limit the

potential of such a system. Bespoke systems that are tuned to meet the needs of a

single data set can include an awareness of how to handle certain sets of criteria

and how to display the results.

Figure 3.14 shows how the IMDb uses its understanding of the contents of the

database to display the results of a query relating to a movie with the title, year

of release and a thumbnail of the movie poster. Without an understanding of the

contents of the database this style of visualisation is impossible in a generic system.

3.3 Systems for education

Section 2.6 describes the needs of expert users of databases; they typically interact

with databases by submitting textual queries in an environment with very few, if

any, graphical aids. The reason for this is that the power and flexibility is difficult,

if not impossible, to match in a GUI. Although a textual interface is well suited to

the expert user it is far from ideal as a means to teach a new generation of experts.
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The many problems associated with learning SQL have prompted a large body

of work focused on the development of systems designed to ease the process of

learning the language. The majority of this work can be divided into two categories:

analytical and animated systems.

In this section we provide an outline of some of the problems encountered when

learning SQL, followed by an analysis of the existing work targeted at solving the

problems.

3.3.1 Problems faced when learning

As a result of the popularity of the relational model, mastering SQL is an important

skill required as part of a Computer Science degree and many related professions.

Despite its importance and widespread use across many different applications

learning SQL is often a difficult skill for novice users to master.

As applications become increasingly reliant on data (collected by sensors, inter-

actions and people) it becomes crucial that students have a good grasp on the basics

of SQL. With Computer Science being added to both primary and secondary school

syllabi in the UK (National Curriculum, 2015), the need for effective teaching tools

is vital.

3.3.1.1 Declarative nature

The process of learning SQL often takes place as part of a university degree scheme,

as part of this students will, most likely, be learning one or more object-oriented

or procedural programming languages. In such languages the student describes

the steps required to achieve their goal rather than the result of that goal. The

following shows a Java method to find the longest runtime from an array of movie

objects, it describes the steps of checking the various runtimes in-turn and returning

the largest value.
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public int getMaxRuntime (Movie [] movies){

int longest = 0;

for(Movie m : movies){

if(m. getRuntime () > longest )

longest = m. getRuntime ();

}

return longest ;

}

In contrast, the following is an SQL statement to find the maximum runtime

from a table of movies:
SELECT MAX( runtime ) FROM movie;

These examples show how the declarative nature of SQL means the user de-

scribes the data they want to view rather than the process of obtaining it. Mentally

switching from procedural to declarative languages is a recognised problem associ-

ated with learning SQL (Matos and Grasser, 2002; Sadiq et al., 2004). Cembalo

et al. (2011) identified that students solve procedural problems by breaking them

down into smaller steps but “this approach cannot be followed with SQL, because

in a complex query there are no intermediate steps to solve separately, but instead

temporary sets of data which result from the execution of the different operators of

the same query”. “SQL requires learners to think in sets rather than steps” (Sadiq

et al., 2004).

3.3.1.2 Visualising the database/performing joins

Normalising databases means that relational databases frequently consist of many

tables that are connected via primary-foreign key relationships. As a result all

but the very simplest of queries require joining multiple tables together. To

confidently build queries involving join operations users of SQL must maintain a

good understanding of the database structure. “The user has to remember too many

things, the names of the record types and attributes have to be remembered before the
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user can express a query” (Wong and Kuo, 1982). Building and maintaining this

mental picture can be difficult for novice users, particularly as they may be exposed

to a wide range of schemas throughout their learning process: “It is a burden for

students to memorize the database schema, possibly resulting in erroneous solutions

due to incorrect table or attribute names.” (Dekeyser et al., 2007). Without the

required level of understanding of the database structure join operators can become

difficult and/or confusing for newcomers to SQL (Kearns et al., 1996; Mitrovic,

1998b; Prior, 2003).

3.3.1.3 Help and error messages

SQL is often learnt in a textual, command driven, environment that offers very

little help or guidance for new users. Textual interfaces have no awareness of the

database structure and frequently lack basic features such as syntax highlighting.

This lack of feedback during the query process means that a user may be unaware

of any problems in their query until they attempt to execute it (Wong and Kuo,

1982). When an erroneous query is submitted to the RDBMS the user will be

met with an error message, these messages are a well recognised problem and

frequently offer little insight into the actual cause of a problem or offer a meaningful

solution (Cembalo et al., 2011; Mitrovic, 1998b; Prior, 2003; Russell and Cumming,

2004). These features of the interface to SQL can make interacting with relational

databases a daunting prospect, particularly for new users.

3.3.1.4 Understanding functions

Many implementations of SQL include a wide array of functions for manipulating,

processing and formatting data. An incomplete understanding of these functions

can result in the formation of misconceptions regarding their proper use; if the

correct use of such functions is not clarified then it may result in users building

erroneous queries with little understanding of the reason for such errors. If students

extrapolate on these misconceptions it has the potential to lead to queries that
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do not return the desired results when executed on different datasets (Mitrovic,

1998b).

3.3.1.5 Daunting user interface

When students begin to learn a computer language it is often their first exposure

to Command Line Interfaces (CLIs). Many students are likely to be familiar and

confident in their use of Windows, Icons, Menus and Pointer (WIMP) based user

interfaces but the use of CLIs can initially be daunting to new users. Using a CLI,

as opposed to a graphical application such as an IDE, can improve a students

understanding of low level operations needed to solve computing problems but at

the cost of a steeper learning curve (Dillon et al., 2012). Although, in the long

term, users can benefit from using CLIs they remain a daunting prospect for many

users who are more accustomed to scanning sets of icons to find the desired feature

rather than having to remember the appropriate commands.

With the introduction of highly graphical programming environments such as

Scratch (Malan and Leitner, 2007; Resnick et al., 2009) even those students with

programming experience might have little experience in using CLIs. The use of

the command line is something that students must become comfortable with as

they develop into expert users; avoiding the command line can appear beneficial

at the start of the learning process but it has been shown that the transition

from graphical environments to CLIs is significantly more difficult than the reverse

(Dillon et al., 2012). This presents a problem for educational institutions, using

command line interfaces can result in long term benefits but also has the potential

to overwhelm users not used to such an interface.

3.3.1.6 Boolean expressions

Boolean expressions are often considered difficult for novice users to master (Nielsen,

1997), one reason for this is the difference between their use in the spoken language

compared to their logical meanings. Young and Shneiderman (1993) summarises
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Passenger Safety and Vandalism” and it illustrates the differences between
the spoken word and logical operations. Although the use of AND may be
considered correct English this is not be the case in logical set operations
where OR would be more appropriatex. (Hadfield, 2014)

this problem as follows: “One of the reasons for this difficulty is that novice users

use terms that they are familiar with (indeed the terms “and” and “or” are used

often in natural language); but these terms take on different meanings when used to

form a query (Figure 3.15). Thus, when constructing queries in SQL, users tend to

make errors because they resort to their knowledge of English. This result was noted

in experiments conducted by Boyle et al. (1983); Greene et al. (1990); Michard

(1982). One of the common mistakes users made was to substitute the AND logical

operator for the OR logical operator when translating an English sentence to a

linear text query.”

Building Boolean expressions is an important aspect of creating an SQL query,

they are used in the WHERE and HAVING clauses of the SQL SELECT statement

and a good understanding of them is crucial in ensuring the desired results are

returned. Visualising Boolean expressions can also be difficult for students, partic-

ularly when these expressions contain multiple, even nested, sets of parenthesis.
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3.3.2 SELECT statement priority

Although SQL consists of many statements that are used for building, manipulating

and extracting information from databases the most common statement is SELECT.

The SELECT statement has the potential to become more complex than other

clauses, as a result, many educational systems focus exclusively on this. Learning

the SELECT statement has the additional benefit of including a number of skills

that can be transferred to other statements; the WHERE clause is used in many

different statements, mastering it within the context of SELECT enables users to

utilise these skills in other statements (Cembalo et al., 2011; Danaparamita and

Gatterbauer, 2011; de Raadt et al., 2007; Kearns et al., 1996; Mitrovic, 1998b;

Prior, 2003; Russell and Cumming, 2004).

3.3.3 Existing techniques

Approaches to software designed to teach users how to build SQL queries can

largely be divided into two categories: analytical and animated systems. Analytical

systems are designed to provide feedback or marking based upon a given query

while animated systems attempt to graphically represent the steps taken to achieve

the results of a query.

3.3.3.1 Analytical

Analytical systems operate by processing a given SQL statement to produce useful

feedback, be it a binary right/wrong mark (e.g. Prior (2003); Sadiq et al. (2004)),

a more fine-grained score (e.g. Russell and Cumming (2004)) or more in-depth

help messages.

SQLTutor (Mitrovic, 1998b) is an early example of an analytical system with the

aim of providing detailed and helpful error messages in a personalised environment.

The desire to improve error messages within SQLTutor is clear recognition of

their, frequently documented, shortcomings (Cembalo et al., 2011; Mitrovic, 1998b;

Prior, 2003; Russell and Cumming, 2004). Utilising a series of predefined questions
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SQLTutor is aware of the solution to a question a student is attempting to answer;

this enables it to present students with challenging questions and provide useful

and detailed error messages where appropriate.

Abelló et al. (2008) highlight the fact there are often multiple valid SQL

solutions to a given data request. To address this problem Abelló et al. designed

LEARN-SQL to focus on analysing the results of a query rather than the SQL used

to achieve the results. This allowed students to obtain the correct results using

techniques best suited to them without being penalised if their chosen technique

differed from that used in the model answer. An example of where this might be

useful is the use of implicit and explicit inner join operations; both constitute valid

queries but they use markedly different notations.

Many analytical systems such as SQLator (Sadiq et al., 2004), WinRDBI

(Dietrich et al., 1997) and AsseSQL (Prior, 2003) use the analysis of queries as

support for teachers and course administrators by automatically marking questions.

SQLify (de Raadt et al., 2007) extends this further by allowing students to review

queries written by their peers, potentially leading to benefits for both the author

and reviewer of the query.

3.3.3.2 Animation

Many animation based systems require the input of a textual SQL statement that

is then animated in one or more steps.

A common approach, adopted by eSQL (Kearns et al., 1996) and SAVI (Cembalo

et al., 2011), is to use a system similar to a programming language debugger. These

systems allow users to step through the various stages of a query to observe the

impact of each statement until the final results are achieved. An animation is often

used for each clause in a SELECT statement but they are frequently displayed in

an order different to that which they actually appear in the query; for example the

SELECT clause is the first to appear in a query but is often shown towards the

end of a series of animations.
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The development of eSQL by Kearns et al. (1996) focusses on algorithms used

to select a subset of table a table or tables that illustrate a given query. This

technique means that users can observe the impact of a query on a small subset of

data and apply this understanding to larger, real-world datasets.

3.3.3.3 Commercial applications in education

When faced with the difficulties of learning SQL some institutions resort to the use

of commercial applications as a result of a lack of appropriate educational software.

Applications such as Microsoft Access7, HeidiSQL8 and phpMyAdmin9 are designed

to best facilitate the extraction of information from relational databases and are

“not designed for educational purposes but for the professional management of

databases” (Grillenberger and Brinda, 2012). The use of such applications as a

teaching tool can lead to significant problems when students are required to transfer

their skills to a textual environment (Mayes and Fowler, 1999; Renaud and van

Biljon, 2004). These applications can allow students the ability to use the Query

By Example builder to produce the SQL without gaining any understanding of its

meaning (Cigas and Kushan, 2010).

3.3.4 Problems with existing systems

Despite the popularity work focused on developing applications to aid students

in their learning of SQL there remain a number of common problems within the

literature. These include:

• Confusing illustrations

• A significant time overhead for teachers

• The need for a complete SQL statement in animated systems

• Quantifying the quality of a query
7http://office.microsoft.com/en-gb/access
8http://www.heidisql.com/
9http://www.phpmyadmin.net/
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Figure 3.16: A query and its representation in the ADVICE educational
system.

3.3.4.1 Confusing illustrations

In Section 3.1.5.4 the problem of VQLs becoming so abstract that they become

harder to understand than their textual counterparts is addressed. This has the

potential to also become an issue in educational systems. Figure 3.16 shows the

query visualisation feature within the ADVICE system (Cvetanovic et al., 2011);

this effectively illustrates how the concept of an illustration that might seem simple

and easy to follow at first can become abstract to the point at which it is unusable.

3.3.4.2 Time overhead for teachers

In order to obtain enough understanding of the user’s needs and therefore provide

comprehensive feedback many analytical systems rely on the use of predefined

banks of questions that students can answer (e.g. Abelló et al. (2008); Allen (2000);

Mitrovic (1998b); Sadiq et al. (2004)). Although this leads to increased analytical

capabilities it comes at the cost of a significant time overhead for teachers or course

administrators who are required to enter the questions and model answers. It

could also be argued that, if students only interact with a database to answer a

predefined question, it may somewhat limit their desire to explore other areas of

the database.
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3.3.4.3 Need for complete SQL statements

A key problem with animation based systems is their ability to work only with

a fully formed SQL statement. This restriction means that such systems may be

more appropriate for demonstrating examples or pre-prepared queries rather than

as educational tools for teaching novice users.

Danaparamita and Gatterbauer (2011) appear to have recognised the problem

that animated systems require fully formed SQL statements and present QueryViz

as a tool for “novice SQL users to browse through existing repositories and thus

intuitively familiarise with the logical patterns behind the SQL syntax”. Unlike

eSQL or SAVI, QueryViz uses a single static illustration, rather than a dynamic

animation, to illustrate a SELECT query.

3.3.4.4 Quantifying the quality of a result

Analytical systems rely on their ability to quantify the quality of a query, be it

for feedback or marking purposes. There are a number of means to complete this,

assuming a model answer is also known. The system can compare either the query

string or the results of the query, both techniques have potential pitfalls.

Comparing the query itself may introduce problems as, particularly for more

complex queries, there can often be a number of different ways to solve the problem,

neither of which are definitively better than the other. Consider a inner join

submitted to the movie database (Appendix A), the following two queries both

perform identically and return the same results:
SELECT name , character_played
FROM people , acts_in
WHERE people .id = acts_in . person_id ;

SELECT name , character_played
FROM people INNER JOIN acts_in

ON people .id = acts_in . person_id ;

The first query uses implicit joins and specifies the connection criteria in the

WHERE clause whereas the second explicitly defines the join. Both queries can be

considered correct and personal preference often dictates the best choice. If the
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model answer is specified using one notation and a student submits another they

should not be penalised for choosing an alternative method, this makes comparing

queries based upon their query string alone difficult.

Abelló et al. (2008) addressed this in the production of LEARN-SQL and

compare the results of a query to determine if they offer the same functionality.

In the same way that different, perfectly valid, queries might produce the same

answer there can also be instances of two queries that would produce identical

answers but one technique is favourable over the other. Consider the scenario in

which a user is attempting to extract the longest runtime for a movie; the following

queries both produce identical results:
SELECT MAX( runtime )
FROM movie;

SELECT runtime
FROM movie
ORDER BY runtime DESC
LIMIT 1;

Despite the two above queries providing the same, correct, result the first one is

generally considered a more desirable solution. In an attribute that is not indexed

(as is likely the case with the runtime attribute) the first query requires a single

pass of the data to locate the lowest value whereas the second query demands

the use of a sorting algorithm (e.g. MySQL (2015)) to order the results before

only displaying the top one as a result of the LIMIT clause. This example clearly

shows that the results of a query alone cannot be used to determine its accuracy.

WebSQL (Allen, 2000) is an example of a system that marks the response to a

query according to the results alone; Figure 3.17 demonstrates the pitfalls of such

an approach and shows a query marked as “correct in every detail” by WebSQL

despite clear flaws in the solution used.

3.4 Chapter summary

In this chapter we highlighted an overview of the literature relevant to the work

presented in this thesis. Visual Query Languages were initially introduced to allow
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19/01/2016 Answer sheet

http://websql.org/websql/websql.aspx?mode=15&assignment=SQL+Answers&qid=undefined 1/1

SQL Answers
Philip Garner garnerp 1/19/2016

Chapter: 7

Simple Queries
page 249

4a What is the name of customer 433?

Tuesday, January 19, 2016 10:21 AM
SELECT TOP 1 cust_name
FROM customer
WHERE cust_name LIKE '%liners%'
ORDER BY cust_id;

  OK  This query appears to be correct in every detail.

Chapter: 4

Query Basics
page 197

1 Which animals were born after August 1, 2013? Show AnimalID and Name.

Friday, January 15, 2016 8:54 AM
SELECT AnimalID, Name
FROM Animal
WHERE DateBorn > '2013-08-01';

  OK  This query appears to be correct in every detail.

Summary
Chapter 7
Simple Queries
4a   OK  
Chapter 4
Query Basics
1   OK  

Correct: 2

Errors: 0

Not Scored: 0

Questions Answered: 2

Figure 3.17: WebSQL has marked this query as “correct in every detail”
whereas it is clearly not the most appropriate way to solve the problem.

users easier access to relational databases but many of them lack the power and

flexibility required for expert users and/or the simplicity for novice users.

In light of advancements in both hardware and software capabilities keyword

search applications have become more popular. There are two main approaches

to keyword search: graph and relational techniques, both allow a set of terms to

be submitted and return a set of appropriate results. Much of the work regarding

keyword search is limited in its capabilities, this might be as a result of its results

visualisation style, requirements of the user or its ability to handle certain search

scenarios.

Learning SQL can also be a difficult, but often essential, task for users attempting

to become experts in the field. There are a number of systems, both animation

and analytical based, that attempt to alleviate some of this burden; analytical

systems attempt to offer feedback or marking to the student while animations are

used to provide an insight into the steps taken to achieve query results. Accurately

analysing queries presents a number of difficulties as there are often multiple

approaches to solving a query problem. Animating queries can be hugely beneficial

to demonstrate an existing query but is often incapable of helping students in

building their own queries.

Chapters 5 and 6 detail two systems designed to tackle the problem of keyword

search over relational databases and teaching the SQL language respectively.



Chapter 4

Automating join operations

Join operations are a crucial part of constructing SQL SELECT statements. They

allow users to extract data from multiple relations in a database, a common

requirement due to the normalisation of data. In this chapter we outline the need

for join operations along with difficulties faced by both the user of databases and

developers of applications designed to operate in conjunction with them. In a bid

to tackle this problem Shorthand SQL (SSQL), a software library that automates

join operations, is introduced in a bid to assist developers when building generic

database applications.

• Section 4.1 highlights some of the difficulties faced when constructing join

operations, both from the user and developer’s point of view.

• Section 4.2 presents SSQL as a system to provide an improved understanding

of the underlying database structure. SSQL can be used to automate the

construction of join operations as well as offering some ambiguity resolution.

• Section 4.3 outlines how SSQL is designed, not as a stand alone application,

but as a software library that can be integrated into other applications. To

illustrate this point, examples of SSQL being integrated into four different

applications are given.
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4.1 Join operations

One of the advantages of the relational model over its predecessors, the network

and hierarchical models, is that it does not require that the user understands how

the information is arranged on the disk (Codd, 1970). Although the relational

model successfully avoids the need for actual pointers it introduces foreign keys to

connect relations. We can think of these foreign keys as symbolic pointers, linking

tuples in one relation to tuples elsewhere.

This need to connect relations together, even to complete relatively simple

queries, can be a burden for both end users and developers of database applications.

End users are required to build a mental map of the database and developers are

required to integrate joins, often on the fly, into their applications.

4.1.1 User’s perspective

Users who interact with databases using SQL are required to maintain an under-

standing of the database structure to enable them to build join operations across

multiple relations. As discussed in Chapter 3, there are a number of different

systems that use various different techniques in an attempt to alleviate the user

of this burden. Diagrams can offer an effective means to allow users to visualise

the database structure as a whole; some systems such as Microsoft Access provide

automatic generation of joins between relations used in a query.

Microsoft Access (and Microsoft Server Management Studio) offers both a dia-

grammatic representation of the database structure and automatic join operations.

Despite this, neither of these functions are entirely automated. The creation of a

database diagram relies on the user manually adding and arranging tables one by

one, directly related tables are graphically connected with the appropriate links

but indirectly related tables are not. Figure 4.1 shows how the intermediate tables

must be added to the diagrams to show the links between them; this is also a

requirement for the automatic generation of joins. Microsoft Access will join the

tables as shown in the diagram, all relations are joined together if present in the
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(a) Microsoft Access query designer failing
to show links between indirectly connected
tables

(b) Microsoft Access showing links between
directly connected tables

Figure 4.1: Microsoft Access fails to show connections between indirectly
connected attributes so the user is required to add junction tables to the
diagram to view the connections.

diagram regardless of whether they are used in other elements of the query. If

tables are indirectly connected and their junction tables are not included in the

diagram no joins will be performed and the resultant output will be a Cartesian

product between the given tables.

Although somewhat limited, this automatic generation of join operations un-

doubtedly provides some greatly needed assistance to many users, as highlighted

by Aversano et al. (2002): “The reason why students perform better when express-

ing this type of queries [joins] in MS Access seems to be the fact that MS Access

graphical query composer automatically generates inner join constructs whenever a

foreign key relationship has been previously defined between two tables”.

4.1.2 Developer’s perspective

Although the burden to remember the database structure is significant for end

users, it can be even greater for a developer. Developers who build applications that

allow novice users to interact with relational databases must develop algorithms

that can, on the fly, identify the use of different relations and how they should

sensibly be connected.

To automatically generate join operations, such that the end user of the appli-

cation is presented with the results they expect, demands an understanding of the
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database structure that can be used to construct join operations in a wide variety

of situations. The difficulty of the problem increases in the development of generic

applications that are not tailored to a specific database, these should be capable of

building joins over potentially huge and complex database schemas.

In application specific software that is designed to operate in conjunction with

a given database the developer might use views to avoid the need to repeatedly

construct the same join operations. Views act as stored queries and can be built

from multiple relations, this means joins can be managed during development rather

than at runtime. Although views might offer a viable alternative to managing joins

on the fly for bespoke systems they are of little help to generic systems because

they require prior knowledge of the database schema.

The Universal Relation Model (URM) has the potential to be more valuable

than views to the developer of a generic database application. The URM offers

the user a single view of the entire database: “The universal relation model aims

at achieving complete access-path independence in relational databases by relieving

the user of the need for logical navigation among relations.” (Maier et al., 1984).

The user is then able to query this view without the need to understand the

multi-relation structure of the database. Although the exclusive use of the URM

would, in most circumstances1, remove the need for join operations to be calculated

it also has some significant drawbacks. One of the main drawbacks stems from the

way in which the URM removes many of the benefits introduced with the relational

model. Normalisation allows users to query the portion of the database that is

of interest to them without interacting with other relations, the use of the URM

means that users are constantly interacting with the entire database irrespective of

whether their interest is much more focused.

Alleviating the need for developers to manage join operations in their database

applications would allow them to focus exclusively on providing the optimum
1excluding some less common problems such as self joins
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environment for users to extract information rather than also managing the structure

of the database.

4.2 Shorthand SQL (SSQL)

Shorthand SQL (SSQL) was developed to remove the need for developers and, in

turn, end users to gain an in-depth understanding of the database structure before

being able submit queries to it. The functionality of SSQL is twofold, its primary

focus is centred around the use of path finding algorithms to enable automatic

joins between different relations in the database. By gaining an understanding of

the database such that the system is capable of automatically traversing connections

between relations SSQL is also able to offer some ambiguity resolution.

4.2.1 Automating joins using path finding algorithms

To facilitate automatic join operations across a relational database the schema

must first be modelled as a graph in which relations are represented by nodes that

are connected by edges representing the primary-foreign key relationships between

them (Figure 4.2). SSQL considers an edge to be bi-directional, this allows one

table to be connected to its neighbour regardless of whether that involves travelling

from primary to foreign key or vice versa. In the movie database (Appendix A)

this allows a character to be connected to the movie they appear in in the same

way that a movie can be linked to the characters that appear in it. Figure 4.2

shows the schema graph generated for the movie database.

To automatically generate joins between any given tables in the database SSQL

uses a combination of Dijkstra’s (Dijkstra, 1959) and Prim’s (Jarník, 1930; Prim,

1957) algorithms. The following steps, along with Algorithm 1, describe how SSQL

builds the joins for any given query, to provide some context these steps are given in

relation to a query on the movie database that demands the use of three relations:

acts_in, prod_company and genre.
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prod_company

produced

is_genre

genre

movie

crew_on

acts_in

people

Figure 4.2: A graph representation of the schema of the movie database in
Appendix A.

Require: graph ◃The schema graph
Require: relations ◃The directly accessed relations

prims← [] ◃The graph used to perform Prim’s algorithm on
for each relation1 ∈ relations do

for each relation2 ∈ relations do
if relation1! = relation2 then ◃When the nodes are different

path← graph.doDijkstras(relation1, relation2)
prims.addNode(relation1) ◃Add the node (if it doesn’t already exist)
prims.addNode(relation2) ◃Add the node (if it doesn’t already exist)
prims.addEdge(relation1, relation2, path.getLength()) ◃Connect the two

end if
end for

end for
mst← prims.doPrims() ◃Use Prim’s to find the minimum spanning tree
required_relations← [] ◃The set of relations needed to build the query
for each edge ∈ mst do

required_relations.addAll(edge.getRelations()) ◃Store the used relations
end for
return required_relations

Algorithm 1: How SSQL finds the relations needed in a query given a set
of directly accessed relations and a schema graph
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prod_company

produced

is_genre

genre

movie

crew_on

acts_in

people

(a) Pick the relations to
use

prod_company

genreacts_in

43

3

(b) Build a weighted graph

prod_company

genreacts_in

43

3

(c) Perform Prim’s

Figure 4.3: SSQL steps

1. Establish the relations required in the query. This can be achieved through

unambiguous notation or through ambiguity resolution (Section 4.2.2). In

our example the three relations used are: acts_in, prod_company and genre.

(Figure 4.3a).

2. Take the chosen relations from the database and perform Dijkstra’s algorithm

to find the shortest path between each.

3. Build a new graph with each of the chosen tables as nodes, they are connected

with edges with a weight defined by the length of the path calculated in step

2. (Figure 4.3b).

4. Perform Prim’s algorithm on the weighted graph to find the minimum span-

ning tree (i.e. the shortest route that connects all the nodes in the graph).

(Figure 4.3c). Any duplicate connections (e.g. that between movie and

acts_in) are only represented once.

4.2.1.1 Dijkstra’s and Prim’s algorithms

Modelling the database schema as a graph introduces the potential to use many

different path finding algorithms. To find the connection between two given

nodes (relations) SSQL uses Dijkstra’s algorithm (Dijkstra, 1959); the algorithm is

simple to implement and is guaranteed to find the shortest path without any prior

knowledge of the graph structure or estimates of path lengths. Although other path

finding algorithms, such as A*, may offer improved efficiency in certain scenarios

these can largely be discounted because the graph only represents the schema, not
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the data, meaning it is unlikely to be of such a size that this performance difference

becomes noticeable, let alone significant.

Although Dijkstra’s algorithm alone is sufficient to find the shortest path through

a schema to connect two given relations it cannot be used to find connections for

three or more given relations. To provide SSQL with this functionality Prim’s

algorithm (Jarník, 1930; Prim, 1957) is used. SSQL builds a complete graph with

the directly accessed relations as nodes and edges connecting every node to every

other node (Figure 4.3b). As Prim’s algorithm is only ever run on a graph built

by SSQL it can be certain that all nodes are connected and a single spanning

tree can be found, therefore more advanced algorithms for finding the minimum

spanning forest in a potentially disconnected graph are unnecessary. As with the

use of Dijkstra’s algorithm in SSQL, the size of the graph upon which Prim’s will

be used is likely to be very small; for n given relations the number of nodes in the

graph is n and the number of edges is equal to n(n−1)
2 . The use of exclusively small

graphs in SSQL means that the performance relative to other algorithms is largely

insignificant, enabling algorithms to be chosen based on their capabilities and ease

of implementation.

4.2.1.2 Multiple equal length paths

Although SSQL is capable of traversing a large database schema to find the shortest

path connecting given relations some database designs can cause problems with

the algorithms used. One such scenario is when a decision has to be made between

two paths of equal length.

When traversing the schema graph SSQL attempts to identify the smallest join

network that contains all the given relations. In many scenarios this is sufficient,

however, when equal length paths are found SSQL must pick one. Consider

the relationship between the movie and people relations in the movie database

(Appendix A, also shown in Figure 4.4a), people can be associated with movies as

actors and/or crew members. A query involving attributes in the movie and people
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people

acts_in crew_on

movie

(a) Multiple paths in the movie database
(Appendix A)

a

j1 j2 … jn

b

(b) Multiple paths in a generic setting

Figure 4.4: Multiple junction tables between two relations

relations have two possible connections, one via acts_in and one via crew_on.

In its current form SSQL makes no considerations for which might be the most

appropriate path and therefore the choice is essentially random.

There are two potential solutions to this problem that future iterations of SSQL

could employ: identify the best route or use both routes. Choosing the best route

from a set of equally expensive paths becomes problematic as the system must

also maintain an understanding of the database contents that define the most

appropriate path. In the movie database example the best connection between

movie and people is the one that returns the most appropriate results, for many

people one path will return no results while the other will return appropriate results

(i.e. many people are cast or crew on movies, rarely both). Performing this check

at runtime has the potential to be costly, particularly in a generic application that

has no awareness of the potential size or indexing of the database upon which it

might be operating. Without the system containing a set of hard-coded preferences

it would have to execute all possible paths and make a judgement of which is the

most appropriate based upon the given results.

An alternative approach is to use all the given paths in a single query through

the use of union operations. Consider again the act of joining the movie and people

relations, if a temporary relation were to be used that combined the acts_in and

crew_on relations then the two initial tables could be joined using both possible

junction tables. The following query can be used to find all movies “Laurence

Fishburne” is connected to irrespective of whether the connections is made as an
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actor or a crew member. The temporary junction table, u, is used to combine the

appropriate keys in the acts_in and the crew_on relations.
SELECT people .name , movie.title
FROM people INNER JOIN

( SELECT person_id AS i, movie_id AS o
FROM acts_in
UNION
SELECT person_id AS i, movie_id AS o
FROM crew_on ) AS u ON people .id = u.i
INNER JOIN movie ON movie.id = u.o

WHERE people .name = 'Laurence Fishburne ';

In a more generic sense the following is a FROM clause that can be used to

connect relation a with relation b through any number of junction tables (j1, j2,

. . . , jn as shown in Figure 4.4b). In this example individual junction tables could

also be substituted with a series of joined relations if the two initial relations are

connected through more than one junction table.
FROM a INNER JOIN

( SELECT j1.in AS i, j1.out AS o
FROM j1
UNION
SELECT j2.in AS i, j2.out AS o
FROM j2
UNION
...
SELECT jn.in AS i, jn.out AS o
FROM jn) AS u
ON a.out = u.i
INNER JOIN b ON b.in = u.o

4.2.2 Ambiguity resolution

SSQL accepts the input of ambiguous queries, this can arise when using attribute

names that appear in multiple relations (e.g. “id” or “name” in the movie database

example). When an attribute is named in a query without the user specifying a

relation SSQL will analyse the possible locations for this attribute. When SSQL

encounters an ambiguous attribute it will generate every combination of these

unknown attributes.

The inclusion of ambiguous attributes inevitably leads to numerous interpreta-

tions for single query; SSQL generates all possible interpretations of a query and

attempts to rank them accordingly. Firstly queries are ranked according to the

number of join operations the query uses, where fewer joins are considered more
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desirable. This ranking metric can be calculated quickly using the path finding

algorithms that automatically generate joins. After the initial ranking it is possible

that multiple interpretations will be equally ranked; if the developer allows, these

interpretations can be further ranked according to the number of results they

return (the more results the higher the ranking). This has the potential to be a

computationally expensive operation, depending upon the size of the database and

the indexing structures used, for this reason the developer, with an understanding

of such characteristics of the database, must enable this functionality.

4.2.3 Sample SSQL queries

SSQL is designed to be used in conjunction with other software applications, as

such it does not interact directly with the user but requires another application

to act as an intermediary. The following are a selection of queries, shown here as

textual SSQL statements, to illustrate the various features and capabilities of the

library.

4.2.3.1 From clause generation

Query 4.1 uses the movie and genre tables. Dijkstra’s algorithm is used to connect

them through is_genre relation. SSQL generates a FROM clause including the

intermediate junction table, the resultant SQL query is shown in Query 4.2.
SELECT genre.name
WHERE movie.title = 'The Matrix ';

Query 4.1: An SSQL query to find the genre(s) of the movie called “The
Matrix”

SELECT genre.name
FROM genre INNER JOIN is_genre ON is_genre . genre_id =genre.id

INNER JOIN movie ON is_genre . movie_id =movie.id
WHERE movie.title = 'The Matrix ';

Query 4.2: The SQL translation of Query 4.1, a query to find the genre(s)
of the movie “The Matrix”

Section 4.2.1 describes a query involving three disconnected tables, Query 4.3

uses the three tables used in the example (acts_in, prod_company and genre). This
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illustrates the extent to which a query can be simplified and, as a result, alleviating

the developer of generating the lengthy FROM clause.
SELECT character_played
WHERE genre.name = 'action ' AND prod_company .name = 'Warner

Bros.';

Query 4.3: An SSQL query to find all the characters in movies with the
genre “action” produced by “Warner Bros.”

SELECT acts_in . character_played
FROM acts_in INNER JOIN movie ON acts_in . movie_id =movie.id

INNER JOIN produced ON produced . movie_id =movie.id
INNER JOIN prod_company ON prod_company .id= produced .

prod_id
INNER JOIN is_genre ON movie.id= is_genre . movie_id
INNER JOIN genre ON is_genre . genre_id =genre.id

WHERE genre.name = 'action ' AND prod_company .name = 'Warner
Bros.';

Query 4.4: The SQL translation of Query 4.3 including all the necessary
joins

4.2.3.2 Ambiguity resolution

Within the movie database there are numerous attributes that appear in multiple

relations; the name attribute is a good example of this, it is present in three

relations: people, prod_company and genre. The short query in Query 4.5, therefore

has three possible interpretations, each with no join operations and therefore must

be ranked according to the number of results they return. Query 4.6 shows the

different interpretations in the order deemed most appropriate by SSQL; there

are more actors than production companies and more production companies than

genres.
SELECT name;

Query 4.5: An SSQL statement to find a list of names within the movie
databse

SELECT name
FROM people ;

SELECT name
FROM prod_company ;

SELECT name
FROM genre;

Query 4.6: The SQL translations of Query 4.5 in order from most to least
likely
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If multiple ambiguous terms are used in the same query the number of inter-

pretations can quickly increase. Using the name attribute twice in a query means

that both occurrences can be attributed to any one of the three relations in which

name appears. Query 4.7 has nine possible interpretations, Query 4.8 shows the

three that return at least one result.
SELECT name
WHERE name = 'Laurence Fishburne ';

Query 4.7: An SSQL query to show the name where the name is “Laurence
Fishburne”

SELECT people .name
FROM people
WHERE people .name = 'Laurence Fishburne ';

SELECT prod_company .name
FROM people INNER JOIN acts_in ON people .id= acts_in .

person_id
INNER JOIN movie ON movie.id= acts_in . movie_id
INNER JOIN produced ON movie.id= produced . movie_id
INNER JOIN prod_company ON prod_company .id= produced .

prod_id
WHERE people .name = 'Laurence Fishburne ';

SELECT genre.name
FROM people INNER JOIN acts_in ON people .id= acts_in .

person_id
INNER JOIN movie ON movie.id= acts_in . movie_id
INNER JOIN is_genre ON movie.id= is_genre . movie_id
INNER JOIN genre ON genre.id= is_genre . genre_id

WHERE people .name = 'Laurence Fishburne ';

Query 4.8: The SQL translations of Query 4.7 in order from most to least
likely. For illustrative purposes only those interpretations that yield at least
one result are shown.

4.3 SSQL as part of other software

As previously discussed, SSQL is not designed as a stand-alone application but as a

means to allow developers to focus on building an application to best suit the needs

of the user rather than handling the generation of FROM criteria. Throughout the

development of SSQL it has been integrated into a number of different applications

to demonstrate its effectiveness. Table 4.1 shows how four applications utilise the

various different features of SSQL, these four programs are described in more detail

in the following sections:
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QBE-SSQL T-SSQL Sandpit Search CAFTAN
Automatic joins X X X X

Ambiguity resolution × X × ×

Table 4.1: Different prototypes that use SSQL

(a) Show only the movies
with the title “The Ma-
trix”

(b) Display the contents
of the character_played at-
tribute

(c) Display the contents of
the name attribute

Figure 4.5: A QBE-SSQL query to find the list of all the actors in the film
“The Matrix” along with the characters they played.

4.3.1 QBE-SSQL

Query By Example (QBE) (Zloof, 1975) is well recognised as the first attempt at

using graphical representations to ease the process of extracting data from relational

databases. QBE-SSQL takes a very similar approach but with the addition of

SSQL to automate the joining of the necessary relations.

Each relation is represented by a window containing a row for each attribute

within that relation. Each attribute has an associated checkbox and text field,

the checkbox is used to specify that the attribute should be shown in the results

(instead of the “P” notation used in QBE) and the text field is used to enter criteria

for that attribute. Figure 4.5 shows three three windows used to build a query to

list the actors, along with the characters they portray, in the movie “The Matrix”.

Figure 4.5a shows the movie relation, no checkboxes are ticked meaning none of

the attributes are shown in the results and the criteria for the title is entered in

the text field. Figures 4.5b and 4.5c show the acts_in and people relations used to

request the character and actor names appear in the results.



4.3 SSQL as part of other software | 96

The following SQL is generated from the graphical representations in Figure 4.5,

the SELECT and WHERE clauses reflect the contents of the GUI while the three

tables are joined together automatically in the FROM clause.
SELECT acts_in . character_played , people .name
FROM movie INNER JOIN acts_in ON movie.id = acts_in . movie_id

INNER JOIN people ON people .id = acts_in . person_id
WHERE movie.title='The Matrix ';

4.3.2 T-SSQL

Although graphically the simplest of all systems presented in this chapter, Textual

SSQL (T-SSQL) utilises more of SSQL’s functionality than the other systems.

None of the other systems utilise the ambiguity handling offered by SSQL but T-

SSQL demands the use of both ambiguity resolution and FROM clause generation.

T-SSQL allows users to submit what are essentially incomplete SQL statements,

allowing the system to generate the missing content. Section 4.2.3 demonstrates a

number of textual SSQL statements and their SQL counterparts.

T-SSQL is built to resemble a database client such as MySQL, upon logging

in and choosing a database the user manually enters queries that, when executed,

are processed with SSQL to generate an SQL equivalent. To process a textual

SSQL statement it is parsed with CUP (Hudson, 1999) and JLex (Berk, 2003)

before passing the relevant information to SSQL for processing. As discussed in

Section 4.2.2 ambiguous queries have the potential to produce many interpretations,

when an ambiguous query is encountered by T-SSQL all interpretations are executed

(in order from most to least likely), showing the results in a tabular layout.

4.3.3 Sandpit Search

The Sandpit Search was initially developed as part of the Elcee application for

searching over email data (see Section 2.3.1). To extend the capabilities of Sandpit

Search a fully functional working prototype was built that was capable of operating

over any relational database. To enable the system to operate in a generic fashion

required a number of modifications, to avoid the need for the system to be able to
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Figure 4.6: Sandpit Search

understand the underlying schema it visualises the database as a tree structure

that allows the user to explore areas of the database of interest to them while

ignoring others. The tree structure also enables the user to tell the system which

attributes they wish to view in the results by ticking the appropriate box next to

the attribute name.

Figure 4.6 shows the layout of the generic Sandpit Search that displays a

graphical representation of a query requesting a list of actors, and the characters

they play, starring in “The Matrix” or “Man of Steel”. The following SQL is

produced from this graphical representation, the widgets and boxes are translated

to textual Boolean expressions and the chosen attributes appear in the SELECT

clause. The FROM clause is generated automatically by SSQL and the user does

not need to specify the linkage criteria.
SELECT acts_in . character_played , people .name
FROM movie INNER JOIN acts_in ON movie.id= acts_in . movie_id

INNER JOIN people ON acts_in . person_id = people .id
WHERE movie.title = 'The Matrix '

OR movie .title = 'Man of Steel ';



4.4 Chapter summary | 98

4.3.4 CAFTAN

Chapter 5 describes the keyword search system Context Aware Free Text ANalysis

(CAFTAN) designed to allow novice users to build and submit SQL queries without

any understanding of the database schema or query language syntax. CAFTAN

uses fine-grained indexes to identify the most likely interpretation of a keyword and

SSQL is used to connect all the appropriate relations together (Section 5.4.1.4).

4.4 Chapter summary

In this chapter we reiterate the challenge of building queries involving joins from

both end user and developer perspectives. With the focus on developers and, in

particular, the challenges they face when building generic database applications,

SSQL is presented. SSQL allows developers to outsource the process of managing on

the fly construction of joins to a small library included in their code. By modelling

the database schema as an undirected graph and utilising two different path finding

algorithms SSQL can generate automatic joins between any number of directly or

indirectly connected relations. The understanding of the database structure SSQL

has also enables it to offer some ambiguity resolution that can aid developers in

choosing the most likely interpretation of a query. SSQL has successfully been

integrated into four different applications and, in each case, generates a linkage

criteria without the need for intervention by either the user or the developer.



Chapter 5

Keyword search (CAFTAN)

Keyword search is an exceedingly popular means of finding relevant information,

the popularity of online search engines means that almost all computer users are

familiar with the process of submitting relevant keywords in exchange for a series

of appropriate results. The following chapter describes Context Aware Free Text

ANalysis (CAFTAN), a keyword search system capable of operating over any

relational database, and is structured thus:

• Section 5.1 describes the importance of keyword search in relation to the

target audience and what they expect from such applications.

• Bespoke search systems can provide highly appropriate responses to queries

because they are specifically tailored to meet the needs of a given database.

Section 5.2 highlights some challenges that generic systems face when at-

tempting to match the capabilities of customised systems.

• Section 5.3 describes some requirements that generic keyword search systems

should endeavour to meet.

• The CAFTAN system is described in Section 5.4 along with descriptions of

the indexing structure and algorithms used to produce appropriate query

responses.

• Finally, Section 5.5 summarises this chapter and its contributions.
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5.1 Why keyword search?

The popularity of keyword search has exploded with the rise of internet search

engines in the 1990s. This popularity means that almost all computer users, both

novice and expert, are familiar with the concept of submitting relevant keywords

to extract desired information from a dataset.

5.1.1 Who is the target audience?

Although keyword search is applicable to all computer users, within the context of

relational databases, the novice user (Section 2.4.1) is the primary target audience.

Experts typically have precise requirements that demand the formation of textual

queries to meet their exact needs whereas novice users have no understanding of

how to do this so rely on the automatic processing of terms and the production of

results.

5.1.2 What do they expect from keyword search?

A defining characteristic of the novice user is their lack of understanding of both

the database structure and query language syntax. Novice users expect a keyword

search system to respond to these limitations and provide appropriate responses in

relation to all areas of the database.

Novice users expect to be able to submit queries to the database by simply

providing a series of related terms without any description about how they should

be processed or connected. They expect the response of such queries to take the

form of a suitable visualisation that accurately represents the expected results. The

results should display only the information relevant to the query, hiding irrelevant

information such as meaningless key fields and parts of the database unrelated to

the search terms.
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5.1.3 Why do they expect it?

The expectation that it should be possible to find relevant information by entering a

set of related keywords undoubtedly stems from the ability to do so while searching

the web. Although applying keyword search to web documents and relational

databases are very different problems, to the uninformed, they can appear the same.

These expectations put pressure on developers to produce keyword interfaces to

different data structures, including relational databases.

5.2 Bespoke vs generic applications

Section 3.2.5.11 describes the differences between bespoke and generic search

applications. They are two very different tasks and developing a generic application

to match the capabilities of bespoke software is difficult for a number of reasons,

which all stem from the application’s awareness of the system upon which it operates.

Bespoke applications are aware of likely searches and can prioritise and ignore

certain attributes or terms in the query to optimise the results. This also extends to

the visualisation of the results, a knowledge of the domain allows carefully crafted

results to be presented whereas generic systems must automatically choose the

appropriate attributes to show along with an appropriate style and layout.

5.3 Requirements of keyword search

The user requirements of keyword search systems are relatively simple as there are

only a limited number of ways in which the user can interact with the database. It

is imperative that the requirements of keyword search systems reflect the level of

understanding associated with the target audience, novice users (Section 2.4.1.1).
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5.3.1 Technical understanding

Building keyword queries should be possible without an understanding of any

technical aspects normally associated with querying a relational database. Users

must not require an understanding of database design techniques or the structure

of the database upon which they are working. It must be assumed that the user

has no understanding of the relations, their contents or how they are connected.

Similarly no understanding of query languages, their syntax or Boolean operations

and how they are used to connect criteria should be needed to use a keyword search

system.

5.3.2 Query responses

The response to a query should include data from the appropriate relations, joined

together to maintain referential integrity where necessary. The data displayed

should avoid synthetic primary and foreign key values used as joining fields and

must not simply join all relations in the database together to achieve the result set.

If the response to a query is inaccurate, as is an unavoidable possibility with

keyword search, the user should be able to re-query the database for an improved

interpretation.

5.3.3 Customisation

In an attempt to match the capabilities of bespoke applications administrators

should be able to customise a keyword search system to improve the way in which

it handles search terms and displays the results. This customisation should allow

for a generic application to match the capabilities of those designed for a specific

purpose.
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5.4 CAFTAN

Context Aware Free Text ANalaysis (CAFTAN) is a generic keyword search proto-

type that is capable of operating over any relational database. It uses fine-grained

indexes and an awareness of the database structure to enable it to accurately

interpret keyword queries and provide results that closely resemble those of bespoke

systems. CAFTAN differs from existing work in the field as a result of its ability

to:

• Build queries with a combination of AND and OR operations

• Appropriately apply search criteria to different data types

• Provide customised query results that closely resemble bespoke applications

5.4.1 How it works

CAFTAN uses an index that associates a weight value to each occurrence of a term.

Weights are used to build an SQL query suitable for execution on the database. To

build such statements four steps are used:

1. Construction of the index

2. Utilisation of the index

3. Joining the desired terms using SSQL

4. Adjustments made in response to customisations

5.4.1.1 Weights

Each word in an attribute, in a given tuple, has an associated weight. The weighting

is based upon the number of occurrences of a word in the database and, crucially,

the relationship it has with other tuples. This value defines the likelihood of a word

being matched to a given attribute following the execution of a query.
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The importance of integrating an awareness of the database structure into the

index becomes clear when you consider the word “Noah” within the movie database;

this is the name of twenty-six actors, twenty-seven characters and is in the title of

two movies within our dataset (Appendix A). If the weighting was based purely on

number of occurrences then it might be reasonable to assume that a search made

for the word “Noah” refers to characters with this name; however this does not take

into account the number of movies they appear in. It is important to adjust these

weights according to the number of references in other relations as it ensures that

more prominent tuples are more likely to be matched against keywords provided;

in our movie example this means actors with more credits are more likely to form

the results of a query. CAFTAN analyses database relationships and increases

the weight accordingly, thus the weight of the term “Noah” the title of a movie is

increased to 122 as a result of the number of actors and crew appearing in these

movies. The weight of “Noah” referring to an actor is increased to 94 because of the

number of movies these actors have appeared in but the most likely interpretation

is calculated to be the movie title.

5.4.1.2 Building the index

The following describes how the index is built, this involves scanning the database

contents and meta data.

We store the location (relation, tuple and attribute) of every word in the

database. Initially these occurrences have a weight of one; if the same word is found

in the same location then the weight is further increased by one. The database is

then scanned for primary-foreign key relationships; every time a tuple is referenced

in another relation (e.g. a person is referenced in the “acts_in” relation) the weight

of all this tuple’s contents are increased accordingly.

The index has the potential to be very large, for this reason and for simplicity

while the system is at prototype stage, it is stored persistently in an SQLite
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database (Section 5.4.4) and must be rebuilt if records are added or removed from

the database (see Section 5.4.5.2).

Algorithm 2 describes how the index is built for a relational database (database).

The indexing structure can be accessed by supplying a word (word) and an attribute

(attribute); in this case attribute refers to the given attribute within a specific

tuple.

Require: database ◃The relational database
index← [][] ◃Initialise the empty index
for each relation ∈ ddatabase do ◃For each relation in the database

for each tuple ∈ relation do ◃For each tuple in the relation
for each attribute ∈ tuple do ◃For each attribute in the tuple

for each word ∈ attribute do ◃For each word in the attribute
if index[word][attribute]exists then ◃If an entry in the index already exists

index[word][attribute] + + ◃Increment the index value
else

index[word][attribute]← 1 ◃Initialise the index value to 1
end if

end for
end for

end for
end for
for each relation ∈ database do ◃For each relation in the database

if relation has primary key then
for each tuple ∈ relation do ◃For each tuple in the relation

increment← count references to t in other relations
for each attribute ∈ tuple do ◃For each attribute in the tuple

for word ∈ attribute do ◃For each word in the attribute
index[word][attribute]+ = increment ◃Adjust weight for relationships

end for
end for

end for
end if

end for
return index ◃Return the populated index

Algorithm 2: Building the CAFTAN index

5.4.1.3 Utilising the index

The following describes how the index is used to produce appropriate responses to

keyword queries; throughout this description the following terms are referred to:
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Definition 5.1 (Search term) A single criterion extracted from the user input.

These often take the form of a single words but can also be temporal or numeric

ranges (e.g. “100-200”)

Definition 5.2 (Tuple) A single record within the database. These are identified

by a primary key value or tuple identifier.

Definition 5.3 (Tuple set) A set of one or more tuples that can all be retrieved

using the same search term(s). The weight of a tuple set is equal to the sum of

weights of the tuples within it.

Definition 5.4 (Weight) A numeric value that represents the likelihood of a

search term or search terms being matched against a tuple or tuple set.

Definition 5.5 (Strength) A optional, manually defined, value that is used to

adjust the automatically generated weights. These are specified by administrators

using their knowledge of the database structure and contents. Strength values are

associated with attributes, not tuples.

Definition 5.6 (Adjusted weight) The weight value multiplied by the strength

value. If no strength is provided the adjusted weight is equal to the weight.

The fine granularity of the index used by CAFTAN allows it to identify the

attribute within a specific tuple in which a word arises. This high level of detail is

required to allow the effective use of AND and OR Boolean operations. The use of

the index involves building tuple sets which satisfy different search terms. Tuple

sets are combined using union and intersection operations to imitate AND and OR

operations where necessary, something not possible in some graph based systems

(Section 3.2.5.4).

The following, along with Algorithm 3, describes how the index is utilised by

CAFTAN to produce accurate free-text queries. To provide some context, this

process is illustrated by the example query of Q13{thriller gary oldman}.
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Require: index ◃The CAFTAN index
Require: stops ◃A set of stop words
Require: strengths ◃User defined strengths (optional)
Require: q ◃The keyword query

matches← [] ◃Attributes that match search terms
q ← q.remove(stops) ◃Remove stop words
for each term ∈ q do ◃Loop through the search terms

for each m ∈ index[term] do ◃Loop through the matches in the index
a← m.getAttribute() ◃Get the attribute (and tuple) for this match
if a ∈ matches then ◃If an entry for this attribute already exists

matches[a]+ = m.getWeight()× strength[a]
else

matches[a]← m.getWeight()× strength[a]
end if
matches[a].addSearchTerm(term) ◃Store a reference to the search term

end for
end for
tuple_set← []
for each match ∈ matches do

tuple_set[match.getSearchTerms()].add(match) ◃Aggregate by search term(s)
end for
tuple_set.sort() ◃Sort by the number of search terms and then by accumulated weight
i← 0
chosen_tuples← []
while !q.empty() AND i < tuple_set.size() do

if tuple_set[i].getTerms() ⊆ q then ◃If the tuple set contains some search terms
chosen_tuples.add(tuple_set[i])
q.remove(tuple_set[i].getTerms()) ◃Remove the matched terms

end if
i + +

end while
return chosen_tuples ◃Return the tuples that make up the SELECT statement

Algorithm 3: Querying the CAFTAN index
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1. The criteria first has any stop words removed (IDOM, 2002), this ensures only

meaningful terms are used in the query. Once stop words are removed the

input is separated into search terms. In Q13 the search terms are “thriller”,

“gary” and “oldman” (no stop words are present in the query).

2. The index is next queried to find all tuples that are referenced by a search

term. All tuples extracted from the index have an associated weight (and

adjusted weight if strengths are supplied). Table 5.1 shows an extract of the

index, the strengths applied are described in Section 5.4.1.5.

Search Term Attribute Tuple
identifier Weight Adjusted

weight
thriller genre.name 53 934 1120
gary people.name 4068 34 40

thriller movie.tagline 19380 25 12
thriller movie.tagline 11219 20 10
gary people.name 4507 18 21
gary people.name 2048 15 18
gary people.name 64 14 16
gary people.name 21163 14 16

oldman people.name 64 14 16
thriller movie.tagline 110465 13 6
gary people.name 3953 12 14
gary people.name 37932 12 14
gary people.name 33 11 13
gary people.name 1077782 11 13
gary people.name 5501 10 12

Table 5.1: The results of querying the CAFTAN index

3. When a single tuple is matched against multiple criteria (e.g. tuple 64 in

the people relation is matched against both “gary” and “oldman” in Q13) the

weight associated with this tuple is set to the sum of all the contributing

weights extracted from the index (Table 5.2). This process effectively applies

an AND operation between the contributing search terms.

4. Where tuples are accessed by the same search term(s) we can build a tuple

set. In our example the term “gary” is matched against many (Gary Oldman

and 152 others called Gary) people, all of these entries make up a single tuple
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Terms Attribute Tuple identifier Weight
thriller genre.name 53 934
gary people.name 4068 34

gary AND oldman people.name 64 28
thriller movie.tagline 19380 25
thriller movie.tagline 11219 20
gary people.name 4507 18
gary people.name 2048 15
gary people.name 21163 14

thriller movie.tagline 110465 13
gary people.name 3953 12
gary people.name 37932 12
gary people.name 33 11
gary people.name 1077782 11
gary people.name 5501 10

Table 5.2: Search terms referencing the same tuple

set with a weight value equal to the sum of all tuples within it. Table 5.3

shows the tuple sets generated by Q13, the tuple sets are ordered first by the

number of terms and then by their weight.

Terms Relation Weight No. of tuples
gary AND oldman people 28 1

thriller genre 934 1
gary people 556 152

thriller movie 58 3
gary acts_in 36 36
gary prod_company 6 1

oldman acts_in 1 1

Table 5.3: Applying a union operation between tuple sets

5. The tuple sets are analysed in turn to assess their eligibility for inclusion in

the final SQL statement. If a tuple satisfied one or more previously unsatisfied

search terms it is chosen for inclusion in the final query. Table 5.4 shows the

tuple sets chosen for the final query.

Once the interpretations of the search terms are calculated these can be used

to extract the tuples containing the relevant information. In the above scenario

the WHERE clause for the resolved SELECT statement is as follows:
WHERE genre.id = 53 AND people .id = 64
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Terms Relation Weight No. of tuples
gary AND oldman people 28 1

thriller genre 934 1

Table 5.4: The final tuple sets chosen: there is one actor called “Gary
Oldman”, and one genre called “thriller”.

If multiple tuple sets are chosen from the same relation an OR operation is

applied between them as the use of AND would simply return no results (the

potential for AND operations has already been explored in step 3). When multiple

relations are referred to, as in our example, SSQL (Section 5.4.1.4) is used to

connect the given relations. This provides the following SQL SELECT statement

in response to Q13
1:

SELECT *
FROM people INNER JOIN acts_in ON people .id = acts_in .

person_id
INNER JOIN movie ON movie.id = acts_in . movie_id
INNER JOIN is_genre ON is_genre . movie_id = movie.id
INNER JOIN genre ON genre.id = is_genre . genre_id

WHERE genre.id = 53 AND people .id = 64;

5.4.1.4 SSQL

Chapter 4 described SSQL, a means to automatically generate join operations to

connect a set of given relations within a relational database. It uses path finding

algorithms (Dijkstra’s and Prim’s) to determine the shortest possible connection

between the given relations. SSQL plays an important role in CAFTAN; the

index is used to locate the terms provided and SSQL is used to connect the given

relations to form the FROM clause in the SELECT statement. The use of SSQL

as a software library allows CAFTAN to focus on locating the appropriate terms

and combining them into a Boolean expression, outsourcing the processing of the

database structure to SSQL.

5.4.1.5 Customisation

Bespoke query systems have the potential to be customised to provide optimum

query interpretations and results presentation. This provides customised systems
1Note: The SELECT clause can be customised by administrators (see Section 5.4.1.5)
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with significant advantage when compared with generic interfaces to the same

database. CAFTAN introduces a number of customisation capabilities that allow

various different aspects to be fine tuned according to the database upon which

it is operating. These features are designed to be customised by administrators

who have an understanding of the database structure and likely queries, not novice

users of the system.

Weight strengths In relational databases there are often attributes that store

data that can be considered meaningless to many users; examples of this include

primary and foreign keys that are primarily used to connect multiple relations and

are unlikely to form search criteria for a keyword query. In a generic implementation

of keyword search these attributes have the potential to skew interpretations; an

example of this within the movie database might be Q14{100-180}, most would

consider this to refer to movies with a runtime of between 100 and 180 minutes

however there is the potential for a generic system to interpret this as a range of

IDs rather than runtimes.

CAFTAN includes the ability for administrators to customise weights of various

attributes by specifying an associated strength. The strengths are applied when the

weights are extracted from the index and they multiply the weights by the given

strength value. Attributes such as IDs and those unlikely to be used for search

terms can be given a low weight which makes them unlikely to be chosen when

interpreting keyword searches and more important attributes can be given higher

weights to increase their likelihood of being chosen as query interpretations. The

following describes the strengths associated with the movie database (Appendix A):

• All IDs: 0.2 (searches based upon the ID are extremely unlikely)

• Movie tagline: 0.5 (taglines contain many terms that can skew results but

rarely constitute search terms)

• Release date, genre name, people’s names: 1.2 (these attributes are frequently

used as search terms)
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Figure 5.1: CAFTAN’s customised results view in response to Q13

• Movie title: 1.5 (titles are common search terms)

The strengths are specified in an XML file that is read when extracting data

from the index; Appendix B shows the sample XML file used to specify the above

strengths.

Customised results visualisation As discussed in Section 3.2.5.9 the presenta-

tion of results is an important yet often overlooked element of keyword search. The

desired results can often have little in common with the search criteria provided,

for instance, Q13 described in Section 5.4.1.3 contains three keywords relating to a

genre and an actor; despite this it is likely that details about movies relating to the

given actor and genre are more desirable than simply displaying the actor name

and genre.

Automatically determining the optimal results visualisation for a given query

is impossible without some level of human intervention, to meet these particular

needs of a keyword search system CAFTAN includes the ability to customise the

results for given search criteria. Administrators can specify that when search terms

are matched to a given relation or attribute they direct the system to present the

results in a customised format. Figure 5.1 shows how the results to Q13 have been

customised to display the relevant movie information. The customisation allows

administrators to specify the attributes to display, a layout and font style along
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Figure 5.2: CAFTAN’s non-customised results view for Q13

with an ORDER BY clause if necessary. Appendix B shows the XML file used to

specify this layout.

If no custom visualisation is specified for the given query a tabular layout is

used to display all attributes from all relations in the query (effectively performing

SELECT *). This table (Figure 5.2) allows the user to reorder the columns by

dragging them and reorder the rows by clicking the associated headings.

5.4.2 Features of CAFTAN

In addition to the core functionality of CAFTAN it includes a number of additional

features that separate it from existing work. These features include:

• Handling many-many queries

• Handling different data types

• Managing numeric and temporal ranges

• Re-querying the database using the same criteria

5.4.2.1 Many-many queries

As discussed in Section 3.2.5.5 many-many queries are those which require the use

of an OR operation and the HAVING clause to display relevant results. The need

for such an approach arises when the cardinality between two relations used in

the results is many-many, an example of this may be when the results of a query

consist of information from both the people and movie relations within the movie

database.
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Consider the query Q15{laurence fishburne hugo weaving}; both Laurence Fish-

burne and Hugo Weaving are actors however simply applying an OR operation

between the two criteria would result in the user being shown a list of all the

movies staring at least one of the given actors. CAFTAN recognises this situation

and will include the appropriate HAVING clause to display the movies staring

both actors, if the user requests a re-query then this restriction is removed showing

movies staring either actor. As with all elements of CAFTAN, this is implemented

in an generic fashion, as a result, it can be applied to any database sharing these

characteristics and is not limited to two search terms.

The following represents the resolved SQL for Q15 where 2975 and 1331 represent

the IDs of Laurence Fishburne and Hugo Weaving respectively.
SELECT movie .*, people .*
FROM movie INNER JOIN acts_in ON movie.id = acts_in . movie_id

INNER JOIN people ON people .id = acts_in . person_id
WHERE people .id IN (2975 ,1331)
GROUP BY movie.id
HAVING COUNT(movie.id) = 2;

5.4.2.2 Data types

Relational databases are used to store a wide variety of data, broadly speaking

these can be divided into textual, numeric and temporal (date/time) attributes.

CAFTAN supports all of these attribute types using the appropriate SQL functions.

The entry of a date, Q16{19/12/1989}, is a good example of CAFTAN’s ability

to handle input appropriately rather than always as textual values (as in a lot of

other systems). In the case of Q16 19 is recognised as the day, 12 as the month

and 1989 as the year, recognising this input as a date allows CAFTAN to utilise

SQL functions to extract matching date values. This processing of different data

types is unique to CAFTAN with many systems treating all values as text and

some completely ignoring non-textual values (Qin et al., 2012).
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5.4.2.3 Ranges

In addition to supporting numeric and temporal values, CAFTAN also supports

the use of ranges. As with all elements of the system no additional knowledge of

the database is required to build queries involving ranges and they can be used

in conjunction with other search terms. Ranges are specified using a single dash

to separate the lower and upper limit. Q17{100-180} specifies a numeric range

between 100 and 180 ; in the movie database this is associated with the runtime

of a movie and returns all those movies with a runtime of between 100 and 180

minutes (inclusive).

5.4.2.4 Re-querying

Ambiguity is an unavoidable problem within keyword search, the query Q18{Noah}

may be used to refer to movies containing “Noah” in the title but the same search

term may be used in reference to people called “Noah”. Re-queries can be requested

using the menu in the results window. Table 5.5 shows the different interpretations

of Q18 and their associated weights. When a re-query is requested the highest

weighted tuple set is removed from the list and the process of calculating the

appropriate SQL is repeated. In this simple example, the re-query of Q18 would

remove the association of the search term with the title of a movie and the response

to the query is recalculated. As a result, “Noah” is associated with people names

in the first re-query.

Relation Attribute Weight No. of tuples
movie title 122 2
people name 94 26
acts_in character_played 27 27

Table 5.5: The different interpretations of Q18
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5.4.3 Classification of CAFTAN

Section 3.2.2 describes the two main approaches to keyword search over relational

databases: graph and relational. Graph techniques remodel the database contents

as a series of interconnected nodes; nodes can represent attributes or keywords and

the solution to a query is typically defined as a sub-graph that contains all the

supplied criteria. Relational techniques use indexing structures to build an SQL

statement suitable for execution on the database.

CAFTAN can primarily be classified as a relational system as a result of its

heavy reliance on the index used to locate the most appropriate interpretation

of a query. The result of a query submitted to CAFTAN is an SQL SELECT

statement that can be executed directly on the database rather than a customised

representation of the data that might be used in a purely graph based system.

Despite being primarily a relational system CAFTAN also utilises graph structures

in the form of a schema graph used by SSQL (Chapter 4).

5.4.4 Implementation

CAFTAN is implemented in Java and operates in conjunction with MySQL

databases. Communication between the Java application and MySQL is han-

dled by JDBC meaning that the application could be used with any relational

database that provides a JDBC connector with minimal modification.

In its prototype form CAFTAN uses SQLite to store the indexing structure.

This provides efficient storage of the large amount of information required for

such a fine grained index whilst also allowing for the rapid development of the

software. Figure 5.3 shows the simple database structure used to act as the index

for CAFTAN, an index is applied to the word attribute in the words relation to

allow for quicker lookups.

As discussed in Section 5.4.1.4 CAFTAN relies on SSQL to build the join

operations between the locations of the various terms provided by the user. SSQL

communicates independently with the database to construct the graph structures
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words
id : INTEGER
word : TEXT

appears_in
word_id : INTEGER
tuple_pk : INTEGER
relation_name : TEXT
attribute : TEXT
weight : INTEGER
data_type : INTEGER

1

Figure 5.3: The CAFTAN indexing structure

JDBC SSQL
SQLite

MySQL

Java

XML

Figure 5.4: The CAFTAN prototype’s system architecture

required to find connections between different relations. This independence of

SSQL means that CAFTAN has no requirement to build and maintain database

connections for SSQL and simply passes a request to it and receives the appropriate

response.

A highlight of CAFTAN is its ability to allow a number of customisation options

in relation to both the searching and results presentation; all customisation options

are defined in an XML file, the CAFTAN application reads the customisation files

as and when they are needed (Appendix B shows some sample XML files).

Figure 5.4 shows the various elements of CAFTAN and how they are connected.

5.4.5 Limitations

Although CAFTAN offers some significant improvements over existing work in the

field of keyword search over relational databases it is not without some drawbacks.

Some of these drawbacks are due to the implementation of the prototype and could

be eradicated in future iterations of the software while others were design decisions

intentionally included in CAFTAN.
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5.4.5.1 Non-integer ranges

CAFTAN supports range operations that are defined by the use of a single dash

separating the lower and upper bounds of the range (Section 5.4.2.3). This feature

enabled CAFTAN to outperform bespoke systems when handling queries such as

Q19{180-240} which would most likely be interpreted as a range of runtimes in the

context of a movie database (see Section 7.1.3 for details of query interpretations).

CAFTAN also interpreted such queries to refer to a range of numbers representing

the runtime of a movie.

Although this ability to recognise and handle ranges without demanding any

specialist knowledge of the database structure from the user sets CAFTAN apart

from other systems tested it is only effective when operating on integer fields.

To enable effective use of the indexing structure CAFTAN effectively2 interprets

queries such as Q19 as:
WHERE runtime = 180 OR runtime = 181 OR runtime = 182 OR ...

OR runtime = 240;

This technique has a number of limitations, it is not applicable to non-integer

values and it has the potential to computationally expensive as the difference

between the lower and upper limits increases. Both of these problems could be

solved by utilising SQL functions instead of interacting CAFTANs index, for

instance the query Q19 could be rewritten as:
WHERE runtime BETWEEN 180 AND 240;

The drawback to using such functions, and the reason this approach was not

taken in CAFTAN, was the risk that such a function might be run on a non-indexed

field which would result in a potentially very slow query execution. One of the

requirements for CAFTAN was that it would not interfere with the existing database

structure, contents or indexes; as a result CAFTAN could not add indexing to

improve the performance of functions such as BETWEEN.
2The actual CAFTAN interpretation would refer to the IDs of movies with a runtime within

the given range.
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5.4.5.2 Index maintenance

In its prototype, proof-of-concept, stage CAFTAN has no means to adjust the

index as the contents of the database changes (Section 5.4.1.2). The contents of

the database are analysed and the index reflects the dataset at the moment it is

built but remains unchanged until it is entirely rebuilt. To adjust the index as the

database changes a listener (possibly using database triggers) would be required

to monitor any changes and apply adjustments to weights and new entries in the

index.

Without the ability for the index to reliably represent the contents of the

database the potential for CAFTAN to be widely adopted is limited although this

does not detract from the benefits the searching algorithms in CAFTAN can bring.

Section 7.1.5 shows that, although CAFTAN does not adapt the index to reflect a

changing database it can be built from scratch relatively quickly.

5.4.5.3 Rankings

CAFTAN produces an SQL SELECT statement in response to keywords, the

database structure, contents (Section 5.4.1.2) and any manually defined customi-

sations (Section 5.4.1.5). The only ordering applied to the results of the query

are those defined by the customisations, if none are specified then the order of

the results are not guaranteed (in SQL no assumptions regarding the order of the

results should be made when not using an ordering clause). Candidate queries are

ranked in order of their perceived relevance but the results of a query are not; in

the production of an SQL query CAFTAN demands that all results of a query

contain all the given terms in at least their associated fields but these results are

not sorted further.

To order the results of a query such that the most relevant result is at the top

of the list of results is difficult to do without an understanding of the database

structure or contents, something CAFTAN attempts to avoid. For instance, in the

movie database used throughout this work (Appendix A), the user might want
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the results of a query for movies to be displayed in order of revenue (i.e. the most

successful, well known, movies first). Without an understanding of the meaning

behind the database this type of ordering is difficult to automate.

To automatically sort the results of a query a generic application must rely

on the information that can be derived from the structure and contents of the

database. For instance, it would be possible for CAFTAN to order the results

of a query according to the number of connections the results have with tuples

in other relations, as is the case in DISCOVER (Hristidis and Papakonstantinou,

2002), or even between the joined tuples. This would result in movies being ordered

according to the number of genres, actors and crew members it is related to.

Although this rather crude method of ranking would provide some ordering it is

heavily reliant on the quality of the data and the number of connections is not

always a marker of significance. The movie Gravity is a good example of when the

number of connections to other relations does not correlate to relevance; the small

cast of seven might falsely give it a low ranking despite it being considerably more

successful (with a revenue of over $700m) than movies with a much larger cast.

5.5 Chapter summary

This chapter introduces Context Aware Free Text ANalysis, a keyword search

system that can be used in conjunction with any relational database. CAFTAN

differs from existing keyword search systems in that it supports a number of

different criteria formats (different data types and ranges) and allows for extensive

customisation to allow it to provide more appropriate results. A primary aim for

CAFTAN is to operate without any understanding of the database structure or

query language syntax. CAFTAN uses its understanding of the database structure

to build SQL SELECT statements that involve Boolean expressions including a

mixture of AND and OR operations as well as those spanning multiple relations.

Table 5.6 summarises the features of CAFTAN in comparison to other work in this
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field. To quantify the quality of CAFTAN an evaluation of its performance and

how it interprets keyword queries was carried out; this is described in Chapter 7.
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CAFTAN - R3 X X X X × X × X X X

DISCOVER Hristidis and

Papakon-

stantinou

(2002)

R3 X ×4 ×4 - X - × X ×

DBXplorer Agrawal et al.

(2002)

R - - - - × - × X × -

S-KWS Markowetz

et al. (2007)

R - - - - × × × X × -

EASE Li et al.

(2008)

G X ×5 ×5 - X - × × X X6

BANKS Aditya et al.

(2002)

G X ×5 ×5 - X X7 ×8 X × ×

- Li et al.

(2011)

G X ×5 ×5 × X - × × X -

- Khine et al.

(2011)

G - - - - X - × X × -

- Liu et al.

(2006)

G X × × × X - ×8 × X X9

3With schema graph
4Limited by interMedia Text (Oracle, 2002)
5Treated as text
6Different ranking algorithms can be used
7Visualisation closely resembles the database structure
8Optional
9 Can generate synonyms to map to schema elements
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NUITS Wang et al.

(2006)

G X X10 × X10 X X7 ×8 X X11 X12

EKSO Widom

(2005)

R X ×13 ×13 × X × × X × -

DbSurfer Wheeldon

et al. (2004)

R3 X × × × X X7 × × X ×14

LABRADOR Mesquita et al.

(2007)

R X ×5 ×5 × X ×15 × X × ×15

Table 5.6: A comparison of CAFTAN against other published work. A
single dash denotes a feature that is not described.

10When specified with a given database attribute
11When used in “Boolean mode”
12Some options to customise “UI elements” and configuration options
13Limited to text by Net Search Extender (IBM, 2015)
14Although not directly customisable DbSurfer can be a “foundation for a customised interface”
15LABRADOR is presented as an API to be used by other systems so has no native UI but

can be customised by those systems that use it



Chapter 6

Teaching SQL (SiS)

Learning SQL is well recognised as an important, yet often difficult, skill to

master. There are a number of proposed solutions from within both academic and

commercial circles. Despite this, it remains a difficult task for many students and

there is little uptake of proposed systems designed to alleviate the problem.

In this chapter SQL in Steps (SiS) is presented, a web based application designed

to break down the process of building SQL queries into smaller, more manageable,

steps that the user can easily understand. The chapter is structured as follows:

• Section 6.1 introduces the concept of a third category of user: students who

are in a transitional stage between novice and expert users.

• There are many differences between the requirements for educational software

packages and those designed for the professional management of databases,

Section 6.2 highlights some of these.

• Section 6.3 discusses the potential for using SSQL (described in Chapter 4)

in an educational environment.

• A series of requirements for software designed to help teach SQL are outlined

in Section 6.4.

• SQL in Steps (SiS) is introduced in Section 6.5. SiS is an educational

application that aims to improve a users understanding by allowing them to
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graphically build a query whilst maintaining an understanding of its textual

counterpart.

• Section 6.7 highlights a number of necessary limitations of SiS and the

reasoning behind them.

• SiS is a web based application that operates in conjunction with SQLite. The

architecture of SiS is presented in Section 6.6.

• Section 6.8 summarises this chapter and its contributions.

6.1 Students

In Section 2.4.1 two classes of user were defined: novices and experts. Novice

users have no awareness of the database structure or query language syntax and

often interact with databases through customised applications, such as CAFTAN

(Chapter 5), that ensure no specialist knowledge is required to extract information.

Expert users are aware of the database structure and interact with databases using

textual query languages with little or no assistance from other applications. Users

learning SQL are in a transitional stage between the novice and expert users, as a

result a third category of user can be introduced:

Definition 6.1 (Student) A database user transitioning from a novice user to

an expert. They might have little/no understanding of database design or query

languages at first but they must gain skills to such a level that they can then be

classified as experts.

The process of transitioning from a novice to an expert requires that the user

gains an understanding of the theoretical concepts that underpin databases along

with the practical skills associated with designing, building, maintaining and using

them. The ability to create and modify databases using query languages such as

SQL is a crucial part of the learning process, occupying a large portion of many

database courses.
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6.2 Educational vs professional use

Educational software designed to teach students the concepts and skills required

to become an expert database user differs greatly from software designed for the

professional management of databases. Despite this, as discussed in Section 3.3.3.3,

management software is often used in an educational setting for lack of a more

appropriate alternative. The use of such software can appear to benefit students

greatly but when required to transfer their skills from a management application to

a textual environment they can struggle (Mayes and Fowler, 1999; Renaud and van

Biljon, 2004). Students are required to build textual queries because the demands

of more advanced queries can quickly outgrow the capabilities of graphical software

applications. As a result, it is important that the appropriate software is used at

the various stages in the learning process. The reason management applications

can ultimately hinder students stems from their differing aims. Broadly speaking,

management software is designed to enable users to quickly extract the desired

information without using SQL whereas educational software is focussed on teaching

users how to form SQL statements independent of any software help.

6.3 SSQL in education

Understanding and building join operations is an important skill as it enables

users to extract information from multiple relations, something that is a crucial

requirement in normalised databases. Chapter 4 introduced Shorthand SQL (SSQL),

a software library that allows join operations to be automatically calculated. If used

in an educational system, students could specify the relations they wish to directly

access allowing SSQL to automatically generate the missing join operations. This

approach has the potential to show users the correct formulation of join operations

they might otherwise be unsure of. The use of SSQL within an educational

setting has the potential to expose users to correctly formed joins that meet the

individual needs of any given query, however this benefit could be outweighed by
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the disadvantage of students not building their own joins. To fully understand

a join operation, as with many components of a query, the student must build

them independently with minimal automatically generated content. When using

SSQL in an educational setting with a large schema the user might build a query

with two directly accessed relations that results in the automatic generation of

a series of join operations, the temptation to use the resultant query without a

strong understanding of its meaning has the potential to severely hinder the user

when they are required to build joins without the assistance of such applications.

For this reason, SSQL was not included in the educational work presented in this

thesis.

6.4 Requirements

The following are the requirements that the educational software presented here,

SiS, aimed to adhere to. They can be divided into three categories: those designed

to help specific problems when learning of SQL, those relating to assistance given

to students and those relating to the implementation of the application.

6.4.1 Problem based requirements

There are a number of particularly challenging topics within the process of learning

SQL, the following are some key problems that SiS aims to tackle.

6.4.1.1 Breaking down problems

Procedural and object-oriented programming languages involve the author describ-

ing the steps needed to reach their goal (Section 3.3.1.1). These steps mean that

breaking problems down into smaller steps for educational purposes is often simple;

declarative languages such as SQL describe the end result rather than the steps to

achieve it, making breaking problems down into smaller steps more difficult.
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The ability for a user to incrementally build a query would enable students to

gain a good understanding of what each component of a query does, decreasing

the likelihood of them forming misconceptions regarding various areas of SQL.

This potential benefit of an incremental query builder was identified by Wong and

Kuo (1982): “The chances of formulating a complex query correctly on the first try

(or even the first few trials) are slim. When using current languages, there is the

fear and doubt as to whether the query is complete or whether some conditions are

missing. Users could benefit from a facility that allows them to build a query in a

piecemeal fashion with feedback of partial results available to them at any time.”.

6.4.1.2 Visualising the database and building joins

When learning SQL users are likely to be exposed to a number of different databases,

varying in complexity and design. SQL demands that users build a mental picture of

the database in order to locate the appropriate attributes and build joins. Building

joins requires a good overall understanding of the database structure, the textual

descriptions provided by many database, and educational, applications can make

visualising these connections difficult. To enable students to quickly visualise the

database and how the different relations are connected educational software should

provide an appropriate description of the database, in a graphical form.

6.4.1.3 Close relationship to textual queries

As discussed in Section 3.3.1.5, learning SQL in a purely textual environment can

be a daunting prospect for many new students; the interface offers little feedback

or assistance in resolving errors and there are no graphical cues to help users

remember commands or schema design. Despite this, using graphical interfaces

can make transferring skills to a textual environment difficult (Cigas and Kushan,

2010; Dillon et al., 2012; Mayes and Fowler, 1999; Renaud and van Biljon, 2004).

Graphical systems make interacting with databases more accessible to new students

however, for educational purposes, they are frequently too detached from their
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textual counterparts. For example, Microsoft Access allows users to build queries

using the graphical query builder and also view the generated SQL but users can

easily avoid the textual SQL entirely, beneficial for users uninterested in SQL

but potentially limiting for students. An educational system employing graphical

components should ensure that the textual translation of a query is both easily

visible and accurately represents the query.

In addition to viewing the textual version of a query the system should also

encourage the frequent execution of queries so the user can compare their expecta-

tions of a query against its actual results. This would help users eliminate any false

assumptions or misconceptions about the functionality of their query; furthermore,

in an educational setting that uses comparatively small databases there is little

downside to frequently executing queries as they are built.

6.4.1.4 Boolean expressions

As discussed in Section 3.3.1.6, mastering the use of Boolean expressions is key

part of learning SQL that is often considered difficult for many users. They are

used widely throughout SQL, the WHERE and HAVING clauses that are used

to filter the results of a query are good examples of this. Software designed to

educate users in building SQL statements should include functionality to assist

users in the construction of Boolean operations. Although assistance is required it

should not automate the process to the extent that the users would be unable to

independently build Boolean expressions without the software.

6.4.2 Assistance based requirements

The following requirements of educational software relate to its features that provide

assistance rather than those that focus on tackling specific problems relating to

learning SQL.
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6.4.2.1 Generic application

An educational application must be capable of handing the wide range of databases

a student will encounter during their learning process, offering relevant assistance

appropriate to each database.

6.4.2.2 Contextual help

Examples are an invaluable resource when learning any computer language (Song,

2015; van Gog et al., 2011). However, if a student is learning SQL with one database

and an example is given within the context of another they must first familiarise

themselves with the contents and schema of the new database before making full

use of the example. Examples provided within the context of the database currently

in use can allow them to easily relate to it, benefiting from its content without the

need to learn another database structure.

6.4.2.3 New and experienced students

Students learning SQL can have very different levels of understanding when they

start the learning process and they can also have significantly different goals. Some

users only require enough knowledge to perform simple queries while others might

demand a larger skill set enabling them to use the more complex features of the

language. Educational software should cater for a broad range of these users, also

allowing users who have confidence in a particular area to explore it further without

deterring new users.

6.4.2.4 Minimal teacher input

Throughout many Computer Science courses the students are presented with

information that often requires further, independent, study to become sufficiently

knowledgeable in. Educational software must respond to the potentially large

amount of independent learning and allow students to explore the software and the

related concepts without the input of a teacher. This concept of learner directed
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education allows students of varying ability to explore the system at their own rate

without feeling rushed or held back by their peers (Beale and Sharples, 2002).

Within educational software the demands of a teacher can often extend beyond

directly helping students; for instance, AsseSQL (Prior, 2003) and SQLator (Sadiq

et al., 2004), amongst others, both require a predefined bank of questions and model

answers that can be used for automatic marking. The time overhead associated

with producing such questions is potentially huge and a burden that should not

be given to teachers. The set-up of educational software should be quick, allowing

teachers to adapt the software as the needs of the students develop throughout the

course.

6.4.3 Implementation requirements

There are a number of implementation requirements that can impact the success

of software, educational or otherwise. The following two requirements relate to the

accessibility of educational applications.

6.4.3.1 Specialist hardware/software

Educational software is likely to be used by a wide range of users on a wide range

of hardware and software set-ups; many students are equipped with their own

computers and do not only complete work in a laboratory environment. Demanding

certain requirements of the student’s computers is only likely to deter them from

using the software, as a result it should be capable of running on all major operating

systems without making any unreasonable hardware or software demands.

6.4.3.2 Web based

Web based applications are seeing a recent rise in popularity to reflect the needs of

users who require consistent interfaces to software when accessed from any location

on a multitude of different devices. Browser based software (e.g. Google Docs,

Sheets and Slides) uses various web technologies to allow the applications to be
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run in almost any browser on almost any operating system. This offers a means

to satisfy the requirement outlined in Section 6.4.3.1 by only demanding that a

computer can run a modern browser to enable it to run the application. Additional

benefits from web based software include the fact that any data required by the

application can be stored on the web server and accessed directly rather than

requiring that the user stores data on their device.

6.5 SiS

In order to address both the problems of learning SQL in a textual environment

and the flaws outlined in the existing literature (as discussed in Chapter 3), SQL

in Steps (SiS) (Garner and Mariani, 2015a,b) was developed. The main focus

of SiS is to allow the student to build an SQL statement in small steps using a

GUI while gaining an understanding of the textual query they are building in

the background. The user interface is designed with the textual translation at its

heart. Every change made to the user interface prompts a change in the textual

translation which, in turn, refreshes the results of the query. By bringing the

textual translation of a query to the forefront and avoiding an excessively abstract

user interface, SiS addresses the difficulty of transferring from a graphical to a

textual environment.

6.5.1 Design process

Beale and Sharples (2002) defined a guide designing educational software; this

process was followed closely throughout the design of SiS:

Define the educational aims and objectives Allow novice users to become

experts in SQL with a particular focus on the SELECT statement. Stu-

dents should be able to explore the various components of the statement,

incrementally building on their understanding.
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Identify the learning needs Areas considered particularly challenging include

visualising the database, performing joins and maintaining an understanding

of a textual query. Misunderstandings relating to Boolean expressions and

the correct use of some clauses must be clarified.

Decide which needs could be addressed by computer Graphically visualis-

ing the database structure has the potential to help users in understanding the

database structure as well as assisting in building join operations. Graphical

representations of many components of a query can be used to improve the

accessibility of query production, however, these must be closely coupled with

an understanding of textual queries as students must learn to build queries

independent of graphical aids.

Determine the general teaching and learning approach SiS is designed to

be learner directed software for an individual to discover elements of SQL.

Learner directed software refers to the software being used without the

assistance of a teacher and discovery software allows students to explore

concepts and practice skills.

Determine the teaching strategy SiS provides tools and resources to support

students in addition to the resources usually available throughout the databases

course.

Choose the teaching components SiS acts as both a model and a learning

resource. Models provide dynamic representations of a complex system, a

query, that can be manipulated by the user to reach their goal. A learning

resource provides online information to assist students.

Design and test the software SiS was designed and built to fulfil the needs

identified. Once developed, some small-scale informal testing was carried out

in the form of questions with a selection of first year undergraduate students

on the databases course (2013/14 cohort).
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Evaluate the entire system After further development in response to some of

the students comments a formal evaluation of SiS was carried out involving

101 students from the undergraduate databases course (2014/15 cohort).

Details of this can be found in Chapter 7.

6.5.2 Focus on the SELECT statement

SQL consists of many different statements that can be used to create, access and

modify the database schema and its contents. The SELECT statement is used to

read data from a pre-existing database, it consists of a number of different clauses

(typically between two and seven) and can vary in complexity depending upon the

individual needs of the user and the database structure. Cembalo et al. (2011);

Danaparamita and Gatterbauer (2011); de Raadt et al. (2007); Kearns et al. (1996);

Mitrovic (1998b); Prior (2003); Russell and Cumming (2004); Sadiq et al. (2004)

all focus primarily on the SELECT statement, as does SQL in Steps. There are a

number of reasons for this decision:

• Transferable skills

• Frequency of use

• Potential for complex statements

Mastering the SELECT clause provides the student with a number of trans-

ferable skills that can be applied to other statements within SQL. For example,

the use of Boolean expressions in the WHERE and HAVING clauses are directly

applicable to the UPDATE and DELETE statements and the process of unam-

biguously referring to attributes using the <relation>.<attribute> notation is used

throughout the language.

The frequency of use of the SELECT clause is another reason for many systems

focusing primarily on this clauses, the SELECT clause is the most common SQL

statement. The construction or modification of the schema is rarely needed, once
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a good database structure is established it can remain unmodified throughout its

entire lifetime; conversely, users frequently need to extract information. The ability

to confidently and quickly build SELECT statements is an important skill for all

expert database users.

The SELECT statement also has the potential to become more complex than

other statements. The large number of clauses that can make up the statement

along with elements such as handling joins and subqueries means that SELECT

statements can become large and complex. Despite the potential complexity of a

SELECT clause they have no possibility of permanently modifying the database

structure meaning that no SELECT statement submitted, regardless of errors or

inaccuracies, will impede the users ability to further work with the database.

6.5.3 Overview of the SiS user interface

The SiS system is consists of four main panels (clockwise from top left in Figure 6.1):

1. Clause selection and query builder

2. Database visualisation

3. Results panel

4. Textual query

6.5.3.1 Clause selection and query builder

This panel is used to specify the details of the query (all bar the FROM clause).

The clauses are arranged in the menu at the top of the panel in the order in which

they appear in the textual query ensuring consistency between the GUI and the

textual translation. Each clause has a customised UI that is dynamically generated

according to the database structure; the UI is intentionally not very abstract to

make clear the connection between the graphical and textual versions of a query.
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Figure 6.1: The SiS learning environment

6.5.3.2 Database visualisation

The database visualisation is permanently visible on the right hand side of the

SiS window, it shows the different relations within the database and how they are

connected. The visualisation can be manipulated by the user, repositioning nodes

if necessary, and can zoomed in and out to show more or less detail as required.

Figure 6.2 shows the various levels of zoom available, the default (Figure 6.2b) shows

relations and the join criteria used to connect them, something often overlooked by

students.

In addition to being used as a visual aid the database visualisation is also used

as a means to build a FROM clause. To query a single relation the user can select

the appropriate node in the visualisation and to build a join operation the user

can select one or more of the connection nodes between relations.

6.5.3.3 Results panel

The results panel shows the results, displayed in a table, of the current SELECT

statement in the textual query panel. These results are updated as the query

changes, if the query contains an error or returns no results an appropriate message

is displayed (Figure 6.3).
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(a) The minimum zoom level showing the
relations in the database

(b) The database visualisation showing re-
lations and connections (default view)

(c) Showing relations, connections and at-
tributes

(d) Showing relations, connections, at-
tributes and their data types

Figure 6.2: The various levels of zoom on the database visualisation in SiS

(a) When an error is present in the SQL.
The top message is that which is received
from SQLite when attempting to execute
the query.

(b) When the query returns no results

Figure 6.3: Messages returned when results are unavailable in SiS
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6.5.3.4 Textual query

The textual query in SiS is kept permanently up to date to reflect any changes

made to the graphical components of the system. Every change to the query builder

is reflected in the textual query which also uses highlighting to show the recently

changed parts of the query along with syntax highlighting in an attempt to make

the textual query as readable as possible.

6.5.4 Features of SiS

In order to meet the requirements described in Section 6.4 the following key features

are included in SiS:

• Textual translations

• Live results

• Visualisation of the database (including join assistance)

• Graphical construction of Boolean operations

• Contextual help and examples

• Features appealing to a wide variety of users

• A not excessively abstract user interface

• Customisation

6.5.4.1 Textual translations

The aim of teaching SQL is to provide students with an understanding of SQL

such that they are capable of building textual queries independently; from the

students perspective this can initially seem a daunting task. As previously discussed

(Section 3.3.3.3), attempts to simplify this process have involved introducing

students to graphical systems before transferring to a textual user interface. A
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significant problem of using graphical systems comes in the transition between a

GUI and a text-based system.

SiS attempts to avoid this problem by allowing the user to build a query using

a simple user interface while the textual translation remains clear, unavoidable,

and up to date. Every change made to the user interface prompts a change to

the textual translation and the results the query currently yields. This use of

a textual translation in conjunction with live results enables the user to gain

confidence in the different clauses of SQL, their syntax and their impact on the

results. This evolutionary approach to building queries allows novice users to start

with a relatively simple query that can be developed into a more complex SQL

statement through small, gradual, changes. This style of building a query in a

step-by-step fashion ensures the user is always aware of the textual query and

means SiS is the only system (we are aware of) that satisfies the description of a

desirable system by Wong and Kuo (1982) in Section 6.4.1.1.

6.5.4.2 Live results

Every change made to a query using the graphical query builder is reflected in

a re-execution of the query, prompting an update of the results. This repeated

execution of a query as it is built has numerous benefits within an educational

environment. Repeatedly executing the query has the potential to reduce the build

up of misconceptions or false assumptions that students might make as they write

textual queries (Section 6.4.1.1). Ensuring the user is constantly aware of the

impact of their query removes the need to make assumptions regarding their query.

Allen (2000) identified similar benefits in the development of WebSQL: “students

can easily test assumptions made about syntax”. SiS extends this concept further

by executing queries after every change, this means that students do not need to

actively test their assumptions and they can continually analyse the results of a

query as it is built. The identification of errors is also improved when the user can

clearly see the point at which the error is introduced to the query; error messages
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are notoriously difficult understand (Cembalo et al., 2011; Mitrovic, 1998b; Prior,

2003; Russell and Cumming, 2004) and identifying the exact location of the cause

of the error can greatly ease the process of resolving it. Prior (2003) identified that

the way in which students and database professionals build queries differs in that

students often write a query in its entirety and then execute it while experts use

multiple executions to “verify the results of preliminary queries” before refining

it. The live results of a query in SiS can promote this refinement style of query

production in student users.

6.5.4.3 Visualisation of the database

When learning SQL students may be exposed to a wide variety of different database

structures, they may be introduced to more complex schemas as their understanding

increases. A common problem faced by many new users is the need to visualise the

database schema before querying it; students should not be penalised for failing

to remember the structure of a database but should be encouraged to learn how

to best utilise the various different schemas they are exposed to. As discussed

in Section 3.3.1.2 this is a problem acknowledged in eSQL (Kearns et al., 1996),

SQLify (de Raadt et al., 2007) and SQLTutor (Mitrovic, 1998b) by the inclusion

of a database description. Although a description of the individual relations in a

database provides useful information they offer little assistance in visualising the

connections between them.

To familiarise the user with the structure of the database SiS presents them with

a graphical representation of the database structure (Figure 6.2). This illustration

can be zoomed in and out to discover details such as the attributes within a relation

and the ways in which they are connected to other relations. This part of the user

interface is not only used as a prompt when the user is interrogating the database

but is also used as a means to build the FROM clause of a query. The use of

this visualisation, visible at all times, allows the user to quickly build queries and

explore the database without studying lengthy textual descriptions.
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The visual representation of the database structure consists of nodes that

represent the different components of the schema and are connected by edges where

appropriate. The following nodes are used:

• Tables. Shown in blue at all zoom levels.

• Connections. Shown in orange at all bar the first zoom level. The connection

criteria for a join is shown on these nodes.

• Attributes. Shown in green in the last two zoom levels.

Building a query using one table can be done from any zoom level by clicking the

appropriate node representing a table in the diagram. To build a query involving a

join operation the student can select the orange connection nodes that lie between

relations, this can be achieved in all except the first zoom level (Figures 6.2b

to 6.2d). When querying an individual relation clicking on a different table node

changes the contents of the FROM clause to reflect the new selection whereas join

operations across more than two relations can be achieved by selecting more than

one connection node.

6.5.4.4 Graphical construction of Boolean operations

Building Boolean expressions is an important aspect of creating an SQL query,

they are used in the WHERE and HAVING clauses of the SQL SELECT statement

and a good understanding of them is crucial in ensuring the desired results are

returned. The understanding of Boolean expressions is something that many novice

users struggle with (Nielsen, 1997; Young and Shneiderman, 1993). As discussed in

Section 6.4.1.4 the difference in how Booleans are used in logical operations and

spoken language can introduce confusion leading to some users using incorrect set

operations (Section 3.3.1.6). Visualising Boolean expressions can also be difficult

for students, particularly when these expressions contain multiple, even nested,

sets of parenthesis.
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Figure 6.4: Sandpit Search within SiS showing actors.name = ‘Laurence
Fishburne’ OR actors.name = ‘Hugo Weaving’.

To allow the user to visualise their Boolean expressions in a more graphical

sense SiS introduces a graphical representation of Boolean expressions, the sandpit

(Figure 6.4). This component is a continuation of the work developed to enable

users to build powerful queries for searching through email data (Section 2.3.1) and

acts as a generic interface to any Boolean expression. As with all elements of SiS

the sandpit is intentionally closely linked to its textual counterpart; each individual

component of a Boolean expression is represented using a single widget on screen,

the user can input their criteria on this widget. Individual widgets are combined

by drawing boxes around them, these boxes represent any Boolean expressions

and their associated parenthesis, boxes can be in an AND or an OR state and can

contain a mixture of both widgets and other boxes enabling them to potentially

build complex Boolean expressions in a graphical environment closely linked to the

textual equivalent. In addition to graphically representing the Boolean expressions

the sandpit also includes an auto-complete feature that prompts users with the

names of attributes in the database to avoid them making avoidable mistakes by

misspelling the attribute names.

The assistance of a graphical environment coupled with live results ensures that

students can easily build Boolean expressions and verify them against the results

the query yields as they do so.
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6.5.4.5 Contextual help and examples

As discussed in Section 6.4.2.2, examples and demonstrations are an invaluable tool

when learning any computer language (van Gog et al., 2011), SQL is no exception.

SiS includes the ability to provide contextual examples for all clauses in relation

to the database currently in use. These examples are generated automatically by

analysing the structure and contents of the chosen database. SiS will analyse the

database and select the attributes and values that best demonstrate a particular

clause. For instance, when demonstrating the GROUP BY clause, the system will

attempt to identify a foreign key containing duplicate values in numerous tuples, a

grouping and counting function will be applied to demonstrate how many of each

foreign key there are. The content and structure of the database is used to provide

a description of the query’s meaning along with the query itself and the results it

yields.

As with many of the functions within SiS the help functionality can be cus-

tomised by course administrators; once the examples are generated they are stored

in an XML file, this file can be edited to include more appropriate examples if

necessary. Results of the sample queries are not stored but obtained by executing

the query on the database as required.

Appendix C shows the automatically generated examples for a simplified version

of the movie database in Appendix A.

6.5.4.6 Catering for a wide variety of users

Section 2.4.1.2 defines expert users as a wide range of users who need to be able to

build textual queries. The broad range of users and the differing rates at which

they learn SQL means that educational software such as SiS must cater for a

large spectrum of users from the new student to those on the cusp of becoming

experts. SiS attempts to appeal to all such users by breaking each clause down

into their own tabs allowing less confident users to avoid more advanced features

while other users can explore further at their own pace. The customisation of SiS
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by teachers (Section 6.5.4.8) also helps them ensure the interface is appropriate for

their students.

6.5.4.7 Abstract user interface

In Section 3.3.4.1 the potential problems relating to the use of abstract graphical

representations of queries are highlighted; in summary they can reach a point at

which they become so abstract they act as more of a hindrance than a help in

the process of learning SQL. The user interface for SiS is intentionally not overly

abstract and closely follows the structure of an SQL clause. This allows the user to

easily map the functions of the user interface to the different components of an

SQL statement. For instance, to include attributes in the SELECT clause involves

selecting attributes using a check-box, selecting relations to be used in the query

is done by clicking on a graphical representation of the database structure; both

actions are easily mapped to their effect on the query.

6.5.4.8 Customisation

As previously discussed, there are a wide range of needs for expert users, some

have much more complex requirements than others. The ability to customise an

educational application to meet the needs of these various students is important;

SiS includes a number of customisable features. The generic implementation of SiS

that allows it to be used in conjunction with any SQLite database allow teachers

or course administrators to pick a database that suits the needs of the students. In

addition to this SiS has a number of elements that can be enabled/disabled using

a configuration file (Appendix C), these include:

• Individual join types (inner, left, right, outer)

• Clauses (all except SELECT and FROM can be disabled)

• Sub queries

• The ability to save queries
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• Explicit/implicit joins

6.5.5 Classification of SiS

As discussed in Section 3.3.3 software designed to aid students in learning query

languages can, largely, be categorised as analytical or animated. SiS can loosely be

categorised as an animated system. Nevertheless, it differs from those previously

discussed in that it guides the user towards incrementally building a query before

submitting it to view the results. This guidance through the process of building a

query provides the user with the steps taken to achieve the final result set; this

differs from other animated systems in that the steps for animation are prompted

entirely from the user and not through the use of predefined stages. The student

can choose to build their SQL SELECT statement in almost any order; for instance,

they could build the WHERE clause (and view the effects this has on the results)

then add some ordering information before changing back to the WHERE clause

to refine it further.

Animations used in educational software have the potential to become a distrac-

tion rather than a benefit to the user Justice (2000); Rieber (1988). To avoid this

problem occurring in SiS the animations are subtle and non-intrusive; they can be

viewed as transitions from one query to another rather than elaborate animations

designed to demonstrate a concept.

6.6 System architecture

SiS is a web based system that is built using HTML and various JavaScript libraries

(Section 6.6.0.1); SQLite was chosen for the database upon which SiS operates

as databases are self-contained within a single file allowing many databases to be

quickly added to the system.

Figure 6.5 shows how the various components of SiS connect to allow for live

updates to the SQL translation and results. The HTML elements of the user
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PHP
PHP/Data/Objects

SQLite

JavaScript
jQuery/functions

SiS
HTML/elements

Client Server

AJAX
call/response

Figure 6.5: The SiS prototype’s system architecture

interface are processed on the client machine using JavaScript functions to produce

an SQL SELECT statement, this statement is then sent to the server, via an AJAX

call, where a PHP script uses PDO to execute the query on the appropriate SQLite

database. Upon receiving the results from the database the script compiles the

results into an HTML table before passing them back to the client to be displayed

along with the SQL executed.

6.6.0.1 Libraries used

The implementation of SiS is made possible through the use of a number of freely

available JavaScript libraries, the following were used to varying extents:

jQuery (https://jquery.com/) Handling AJAX and various elements of dy-

namic page generation.

jQuery user interface (http://jqueryui.com/) Allows for the movement and

resizing required for the Sandpit components.

vis.js (http://visjs.org/) Used to draw the database visualisation.

fancybox (http://fancybox.net/) Popup windows used throughout the system

(e.g. help windows).

jQuery Splitter (https://github.com/jcubic/jquery.splitter) To form the

different panels and allow them to be resized by dragging the dividers.

jQuery.textcomplete (http://yuku-t.com/jquery-textcomplete/) Auto-complete

attribute names in the Sandpit.

https://jquery.com/
http://jqueryui.com/
http://visjs.org/
http://fancybox.net/
https://github.com/jcubic/jquery.splitter
http://yuku-t.com/jquery-textcomplete/
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attrchange (http://meetselva.github.io/attrchange/) Listen for changes to

the database visualisation size to ensure it is redrawn when necessary.

6.7 Limitations of SiS

Despite the potential benefits of SiS, it is not without limitations. Some of these

limitations stem the implementation choices but many were conscious design

decisions, sometimes with unintended consequences.

6.7.1 SQLite limitations

SiS is built using SQLite because of the benefits that self contained databases can

bring (see Section 6.6). As a result, there are a number of limitations that SiS

inherits from SQLite, the most notable of which is the limited support for join

operations.

SQLite supports the INNER and LEFT join but not RIGHT or FULL OUTER

joins (SQLite, 2015c). This limitation of SQLite represents a potentially significant

drawback in its suitability for educational use. Section 3.3.1.2 discusses the impor-

tance of gaining a good understanding of join operations and without support for

RIGHT and FULL OUTER joins a students understanding has the potential to

be somewhat limited. To address this issue a solution is integrated into SiS that

enables it to simulate both RIGHT and FULL OUTER joins without the student

needing to understand the conversion performed. This simulation of SiS is the

only scenario in which the SQL shown to the user is not the same as that which is

executed on the SQLite database.

The following query is used to find all the people named “Smith” and the

characters they have played regardless of whether they have had any acting roles;

if the person found has had no acting roles then null values will be shown in the

acts_in relation.

http://meetselva.github.io/attrchange/
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SELECT *
FROM acts_in RIGHT JOIN people

ON people .id = acts_in . person_id
WHERE people .name LIKE ' %Smith ';

The query can simply be re-written using a left join by swapping the order of

the relations and using LEFT JOIN instead of RIGHT JOIN. If the above query

were to be built in SiS it would be displayed to the user as a RIGHT JOIN but

executed using the LEFT JOIN notation:
SELECT *
FROM people LEFT JOIN acts_in

ON people .id = acts_in . person_id
WHERE people .name LIKE ' %Smith ';

Full outer joins can also be simulated using a union of a left and right (simulated)

join, for example:
SELECT *
FROM a OUTER JOIN b ON a.id = b.id;

can be re-written as:
SELECT *
FROM a LEFT JOIN b ON a.id = b.id

UNION
b LEFT JOIN a ON a.id = b.id;

As with the right joins the use of FULL OUTER JOIN is displayed to the user

as a full join but executed on the database as the union of two left joins. This

simulation of different join styles allows students to develop a good understanding

of the various types of join, something widely found to be a difficult skill to master,

while still using SQLite and the limited join types it supports.

6.7.2 Subqueries

In SiS each query is represented by the SiS window and all the elements within

it, this style of visualisation means that representing subqueries would be very

difficult without using a potentially complex series of interlinked windows. In

many relational database implementations the number of subqueries allowed is,

essentially1, unlimited meaning any user interface designed to represent this must
1Although, in practical terms, there is no limit on the depth of subqueries there is often a

limit, albeit a large one, enforced by the database implementation. SQLite has a limit of 1000
levels (SQLite, 2015b), OracleDB imposes no limit in the FROM clause but a limit of 255 levels in
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be capable of scaling to an infinite size whilst remaining easy for a new student to

understand.

The use of subqueries in SiS is limited to the FROM clause and these can only

be used by referring to an SQL file containing the subquery (i.e. the subquery

must be build graphically and then saved to a file that can be imported into the

new query). The more common use for subqueries, in the WHERE clause, is not

possible in SiS meaning the following query could not be represented in SiS:
SELECT name
FROM people
WHERE id IN(

SELECT person_id
FROM acts_in
WHERE character_played = 'Morpheus ');

6.7.3 Unusual joins

Join operations in SiS are primarily built using the graphical representation of the

database on the right of the window (Section 6.5.3.2). This graph is automatically

generated from the schema of the database and allows for the quick building of

joins involving primary-foreign key relationships. This construction of joins ensures

that the user is aware of the join condition used as they are required to click this

to build the join.

In some unusual circumstances users might be required to form joins that are

not built around a primary-foreign key relationship. For example, the following

query can be used to find people with a name that is also a movie title (this could

also be achieved using a number of alternative techniques):
SELECT *
FROM movie INNER JOIN people ON people .name=movie.title;

If a student is required to build such a join operation they must first start with

a standard primary-foreign key join and customise it in the FROM clause tab to

meet their specific needs (Figure 6.6). Although this functionality might not be

the WHERE clause (Oracle, 2015a) and Microsoft SQL Server has a limit of 32 levels (Microsoft,
2014).
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If you want to query only one table then select that table from the graph to the right.

If you need to query multiple tables then you can add them to the query by clicking on the relationships
between the tables.

Joins between multiple tables can appear in the FROM or WHERE clause, pick your style of join:

Joins in FROM clause  
Joins in WHERE clause

Now you can edit the FROM clause to meet your specific needs:

movies

INNER JOIN actors ON actors.name=movies.title

SELECT FROM WHERE GROUP BY HAVING ORDER BY LIMIT

SELECT * 
FROM movies 
   INNER JOIN actors ON actors.name=movies.title;

cw_movies.db

    Key: Table  Connection  Attribute

Your query returned no results

Figure 6.6: Building unusual joins with SiS

How would you like your results ordering?

Attribute/aggregate Order by
movies.title
COUNT(*)

How would you like your results ordering? Asceniding (A-Z, 1-9) or Descending (Z-A, 9-1).

Ascending order

Descending order

SELECT FROM WHERE GROUP BY HAVING ORDER BY LIMIT

SELECT movies.title, COUNT(*) 
FROM movies 
   INNER JOIN acts_in ON movies.id=acts_in.movie_id 
GROUP BY movies.id 
ORDER BY COUNT(*) DESC;

cw_movies.db

    Key: Table  Connection  Attribute

title COUNT(*)
Les Miserables 208

Star Trek 169
Iron Man 2 114

Moulin Rouge 100

Figure 6.7: The ORDER BY clause in SiS

immediately obvious to new users it is something that is unlikely to be often used,

particularly when learning SQL.

6.7.4 Advanced ordering and grouping

SQL allows for both the ordering and grouping of the results according to multiple

attributes therefore allowing for the results of a query to be finely tuned according

to the users specific needs. SiS allows results to be ordered and grouped according

to multiple attributes but these cannot be rearranged and the type of ordering

(ascending or descending) cannot be applied to each attribute in turn. In addition

the ORDER BY clause is restricted to those attributes found in the SELECT

clause, attributes must appear in the results to form the ordering criteria. This

limitation is imposed in an attempt to reduce the confusion that might occur by

ordering results by an attribute that is not visible.
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6.8 Chapter Summary

In this chapter the concept of a third category of user, the student, who is transi-

tioning from a novice to an expert user is introduced. In response to the needs of

the student a number of requirements for educational SQL software are outlined

along with the introduction of SQL in Steps (SiS) a web based application designed

specifically for education. SiS allows students to graphically build queries whilst

remaining aware of the textual translation of a query and the results it yields. The

low level of abstraction allows students to easily transition from SiS to textual

SQL as their confidence increases. Table 6.1 summarises the contributions of SiS

in comparison to other work within the field. An evaluation of SiS involving first

year undergraduate students from the databases course is detailed in Chapter 7.
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SQL in Steps Garner and Mariani

(2015a,b)

X × S X × X × B X2 X3 ×4

SQLator Sadiq et al. (2004) × X S × X X X5 D X6 - -

SQL-Tutor Mitrovic (1998b) × X S X × X X D X7 - X8

- Russell and Cum-

ming (2004)

× X R X X X X D - - -

LEARN-SQL Abelló et al. (2008) × X S X X × X D - - -

eSQL Kearns et al. (1996) X × - X × X × D X7 - -

QueryViz Danaparamita and

Gatterbauer (2011)

X × S -9 -9 X × D - - -

SAVI Cembalo et al. (2011) X × S X × X × D X10 - ×

ADbC Murray and

Guimaraes (2008)

X × S X × × X B X11 - -

WinRDBI Dietrich et al. (1997) × X S × X × × D X7 - -

AsseSQL Prior (2003) × X S × X X X D - - -

SQLify De Raadt et al.

(2006)

X X R X X X X D X7 - -

Table 6.1: A comparison of SiS against other published work. A single
dash denotes a feature that is not described.

2Graphical representation (Section 6.5.4.3)
3See Section 6.5.4.4
4See Section 7.2.7.4
5SQLator used 300 queries, sorted by difficulty
6Entity relationship diagrams and snapshots of the table contents used
7Textual description
8“Hints” give more information about the type of error
9QueryViz is targeted at practical use rather than at education

10Displays the relation contents as the query is animated
11ER diagrams are used



Chapter 7

Evaluations

This thesis presents two different software prototypes that both stem from the

same problem: how to ease access to relational databases. The solution to this

problem differs greatly depending upon the type of user the solution is built for.

In Chapter 2 two classes of user were identified and the resultant applications were

built to reflect their differing needs. CAFTAN was built to meet the needs of novice

users with no database understanding and SiS was developed to help students

(Section 6.1) to become expert users. The following chapter presents evaluations of

both systems and is structured as follows:

• Section 7.1 details the evaluation of Context Aware Free Text ANalysis (CAF-

TAN) which involves comparing query interpretations made by participants

with those made by CAFTAN along with performance tests in relation to

both indexing and query processing.

• Section 7.2 presents the evaluation of SQL in Steps which involved the

deployment of the system into a live undergraduate databases course.

• Section 7.3 summarises these evaluations.
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7.1 Keyword search

The Context Aware Free Text ANalysis (CAFTAN) system was introduced in

Chapter 5, it aims to interpret keyword queries and represent their results in a

generic way that offers improvements over existing systems.

7.1.1 Methodology

The evaluation of CAFTAN is twofold, it involves quantifying the quality of

interpretations made by CAFTAN and also its performance. To quantify the

quality of CAFTAN we compared interpretations of keyword queries made by

humans against those made by CAFTAN and other systems; this methodology

avoids the need to make assumptions regarding how queries are interpreted by

users (Section 3.2.4) and enables the evaluation of the system without the need

for participants to use it (Section 7.1.2). Participants were presented with a series

of keyword queries and three possible interpretations of their meaning; they were

asked to rank the interpretations from most to least likely. Once multiple users

had ranked the different interpretations averages could be calculated to find the

most common interpretation of a particular set of keywords.

These averages can be used to compare various different search systems against

the interpretations provided by the participants. If we assume that the partici-

pants choices represent the ideal standard for interpreting keyword queries we can

measure how close to this ideal standard various systems come. As discussed in

Section 5.4.1.3, CAFTAN utilises its index to produce an SQL statement which is

executed directly on the database; as a result, if the interpretation of the query is

accurate the precision and recall values will always be at their maximum. Testing

the precision and recall of an accurately formed SQL SELECT statement simply

tests the quality of the database implementation, not the software generating those

statements, as a result this evaluation ranks the quality of the interpretations of

queries and operates under the assumption that accurate interpretations lead to

accurate results. This part of the evaluation is designed under the assumption that
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keyword search systems operate best when they interpret queries in the same way

as the humans using the system.

The performance of CAFTAN was evaluated by repeatedly indexing and query-

ing a database in order to find average times for each operation. The index for the

movie database was constructed, from scratch, 200 times while 100 queries were

executed 100 times each in both the generic and customised versions of CAFTAN,

a total of 20000 query executions.

7.1.1.1 Database

Keyword search aims to make relational databases accessible to users who have

little or no understanding of database structures or how to extract information from

them. In order to make the evaluation accessible to a wide range of participants the

database of movies referred to throughout this thesis was chosen, this is something

the majority of users can relate to without the need to familiarise themselves with

the database contents (Appendix A). Participants were not aware of the database

structure or its exact contents.

7.1.1.2 Participants

The participants were recruited through links shared on social media and the

questionnaire was available for seven weeks. Although the participants were

completely anonymous it can be assumed that they represent a wide variety of

different ages and computer literacy. Throughout the duration of the study the

survey was completed by 96 different users, each user was asked to complete up to

ten queries and on average they completed 9.05 questions each, as a result each set

of keyword terms was interpreted on average 8.7 times. Thirty-seven participants

registered and agreed to the conditions of the study but failed to answer any

questions.
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7.1.1.3 Question generation

Questions were manually generated by joining various different tables within the

movie database, from these joined tuples a selection of keywords were used to

generate query terms. The average length of queries was 2.64 terms with six terms

representing the longest query and one the shortest. A pool of 100 keyword queries

was generated and, because each set of terms was generated from joined tuples,

they all had at least one valid answer in our database. Appendix B shows the

questions generated for this evaluation.

Each set of terms were given three possible interpretations, these interpretations

were manually generated by assessing their possible different meanings.

7.1.1.4 Questionnaire structure

Upon accessing the questionnaire participants were first given a description of the

research along with contact details should they have any questions, comments or

criticisms. After this the participants were shown a consent form that they must

agree to before proceeding to the questionnaire (both research description and

consent form can be found in Appendix B). Finally, users were presented with

instructions for completing the questionnaire including screenshots demonstrating

how to answer each question.PHIL GARNER / PHD STUDY
What do you think this keyword search means?

Tim Robbins DreamWorks
Answer 1 2 3

Movies produced by 'dreamworks' AND with a character called 'tim robbins'

Movies produced by 'dreamworks' AND staring an actor called 'tim robbins'

Movies produced by 'dreamworks' AND staring an actor called 'tim' OR 'robbins'

NEXT

Figure 7.1: An example of a question used for the evaluation of SiS

Once users proceed past the instructions they were presented with their first

question, Figure 7.1 shows an example query. The keyword terms are shown in

large font at the top and participants can order the queries according to how
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they interpret the given query by using the radio buttons to the right of the

interpretations. The radio buttons are used to rank the interpretations and they

restrict the choices such that each interpretation can only hold one ranking position.

As the participant ranked the interpretations they were colour coded to reassure

them that 1 represents the most likely and 3 the least. Participants were unable to

advance to the next question until they ranked the existing interpretations. Below

the “Next” button a progress bar shows users how far through the questionnaire

they are (Figure 7.1).

Questions are chosen from the pool of 100 possible queries at random and the

possible interpretations are also ordered at random to ensure the order in which

they are presented has minimal effect on the order participants give. No two

participants answered the same series of questions.

7.1.1.5 Performance tests

The performance tests for CAFTAN are divided into two main categories:

• Index building

• Query response times

To test the speed at which a database index can be constructed for use with

CAFTAN the movie database was repeatedly indexed 200 times. After the index

was built it was completely removed only to be re-built in its entirety again.

To test the query response times a test mode integrated into the CAFTAN

application enabled the automatic execution of queries, as a result, we can analyse

the performance of a large number of query executions. The test mode does not

remove any graphical elements of the query system, it automatically enters the

query terms into the text field and submits the query, waiting for the results window

to be shown before repeating the process for the next query. The 100 queries used

to evaluate the accuracy of CAFTAN were also used in the performance tests. Each

query was executed 100 times on CAFTAN implementations with and without
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customisations resulting in a total of 20000 query executions than can be used to

analyse the performance of CAFTAN.

All performance tests were executed on the same computer, a mid-range laptop

(Samsung NP-RF511) with the following specifications:

• Hardware:

– Intel Core i5 2450M @ 2.50GHz

– 8.00GB Dual-Channel DDR3 @ 665MHz

– 1TB Seagate ST1000LM024 HN-M101MBB (SATA)

• Software:

– Windows 10 Home 64-bit

– Java SE Runtime Environment (build 1.8.0_51-b16)

– MySQL v14.14

– JDBC for SQLite version 3.7.2

– JDBC for MySQL version 5.1.24

The results are presented in Section 7.1.5.

7.1.2 Transferable methodology

The aim of the evaluation of CAFTAN was primarily, although not exclusively, to

ascertain the quality of the query interpretations it generates. It was also designed

to:

• Provide an insight into users’ searching habits.

• Allow for comparisons between CAFTAN and other systems.

• Produce a reusable data set that could be used with future iterations of

CAFTAN or with other applications.

http://www.samsung.com/uk/support/model/NP-RF511-A02DX
http://ark.intel.com/products/53452/Intel-Core-i5-2450M-Processor-3M-Cache-up-to-3_10-GHz
http://www.samsung.com/global/business/semiconductor/file/2011/product/2011/9/2/412764ds_ddr3_2gb_d-die_based_sodimm_rev14.pdf
https://www.seagate.com/files/staticfiles/support/docs/samsung-ds/100698122c.pdf
http://www.microsoft.com/Windows10
http://www.oracle.com/technetwork/java/javase/8u51-relnotes-2587590.html
https://dev.mysql.com/doc/relnotes/mysql/5.5/en/news-5-5-27.html
https://bitbucket.org/xerial/sqlite-jdbc
https://dev.mysql.com/doc/relnotes/connector-j/en/news-5-1-24.html
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• Provide a comprehensive evaluation of CAFTAN without users needing to

interact with the system.

The evaluation involved capturing the way in which users interpret keyword

queries, this provides an insight into how they process the meaning of keyword

queries. This can be used to ensure that keyword search applications respond in a

manner appropriate to the users expectations (Section 7.1.2).

The users collectively produced a “gold standard” of query interpretation that

all keyword query systems should aim for. If a system is capable of consistently

interpreting queries in the same way as humans then it would always respond in a

predictable and effective manner. This “gold standard” data set also allows for a

detailed and accurate evaluation of CAFTAN without the need for participants

to use the system; this allows the results to be used in conjunction with future

iterations of CAFTAN without re-running the evaluation. The data generated

by users for the evaluation of CAFTAN can be applied to any keyword search

application and, as such the complete dataset is freely available (see Section B.3

for details).

7.1.3 User interpretations

The evaluation involved collecting 869 interpretations of 100 different queries, this

provides an insight into how keyword queries are handled by different users.

Perhaps the most interesting observation taken from the results of evaluation

is the lack of use of Boolean OR operations. A third (99/300) of the possible

interpretations of queries contained at least one OR operation, however, none

of the highest ranked interpretations contained an OR operation. Of the 896

interpretations only 62 (7.1%) were thought to contain an OR operation. Although

these queries are not interpreted as requiring an OR operation some of their SQL

translation may require an OR operation, examples of such a situation may include

a many-many query used to find the set of films falling into two genre categories

(e.g. Q20{war horror}, see Section 3.2.5.5 for an explanation of many-many queries).
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Figure 7.2: The frequency of the participants’ favourite interpretations

This observation suggests that when users construct keyword queries they are often

seeking answers that contain all the given keywords and that AND operations

should be favoured over OR. This is the case in CAFTAN which will apply an

AND where possible and if impossible use an OR operation (Section 5.4.1.3).

Figure 7.2 and Table 7.1 show the variation in interpretations of the 100 queries

used in the evaluation; the interpretation value refers to the average of the user

ranks (1 = most likely, 3 = least likely), therefore a value of 1 indicates a unanimous

decision. Thirty-six of the one hundred queries had a unanimous decision as to the

most likely interpretation and only one had no favourite with each interpretation

receiving an average ranking of 2. This graph shows that interpretations were

generally close to a unanimous decision with 75% of the queries having an average

highest ranking of less than 1.4.
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Average user interpretation Frequency
1.0 - 1.1 36
1.1 - 1.2 17
1.2 - 1.3 15
1.3 - 1.4 7
1.4 - 1.5 6
1.5 - 1.6 13
1.6 - 1.7 3
1.7 - 1.8 2
1.8 - 1.9 0
1.9 - 2.0 1

Table 7.1: The frequency of the participants’ favourite interpretations

7.1.4 Comparisons

The aim of any keyword search system is to interpret queries in a predictable

manner such that users are shown the results appropriate to their interpretations of

the entered terms. In order to quantify the quality of CAFTAN the interpretations

made were compared to those made by IMDb and TMDb1. Almost all search terms

can be interpreted in various different ways and all of the different systems ranked

the interpretations according to different criteria. As discussed in Section 5.4.1.3

CAFTAN ranks the different interpretations according to how likely they are to

be the best interpretation; both IMDb and TMDb apply search terms to a single

field and rank these fields according to the number of results they each contain.

Figure 7.3 and Table 7.2 show how the highest ranked (participant) interpretations

were handled by various different systems. In an ideal scenario a search application

would rank the participants best match as its first choice. The graph shows that

the generic implementation of CAFTAN interpreted queries in the same way as the

participants 64% of the time and adding customised strengths and user interface

(Section 5.4.1.5) increased this to 81%.

Despite the fact that systems such as IMDb and TMDb are designed specifically

to handle data relating to movies they only matched the same interpretation as

the participants 24% and 26% of the time respectively. Their second choice rarely
1These comparisons were made in April 2015 and reflect the capabilities of IMDb and TMDb

at that time.
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matched the most likely interpretation according to the participants, as a result,

they frequently failed to return any appropriate results. IMDb and TMDb failed

to interpret the queries over 70% of the time while the customised implementation

of CAFTAN only failed 16% of the time.
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Figure 7.3: How participants’ best match was handled by various different
systems

CAFTAN
(generic)

CAFTAN
(customised) IMDb TMDb

1st choice 64 81 24 26
2nd choice 4 2 2 1
3rd choice 0 1 0 0

No
interpretation 32 16 74 73

Table 7.2: How participants’ best match was handled by various different
systems

The number of terms in a keyword query appear to have an impact on the

success rate of bespoke systems such as IMDb and TMDb. Figure 7.4 and Table 7.3

show how different query lengths were handled; neither IMDb nor TMDb correctly

interpreted any queries containing three or more terms. The most common number
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of search terms within the 100 queries used in the evaluation was 3 (38/100 queries

contained 3 terms), the generic implementation of CAFTAN correctly resolved

63% of these queries while the addition of strengths increased this to 82%. The

benefits of the inclusion of strengths are clear when observing the accuracy of

CAFTAN when interpreting queries containing 4 terms; the generic system correctly

interpreted 50% of the 16 queries while the customised implementation correctly

interpreted 94%, only failing on one account.
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Figure 7.4: How different systems handle different number of search terms

No. of
terms Total CAFTAN

(generic)
CAFTAN

(customised) IMDb TMDb

1 13 9 8 3 5
2 31 22 26 21 21
3 38 24 31 0 0
4 16 8 15 0 0
5 1 1 1 0 0
6 1 0 0 0 0

Table 7.3: How different systems handle different number of search terms
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7.1.4.1 vs CAFTAN (generic)

The generic implementation of CAFTAN involves executing the queries using no

customisation other than that which is programmatically generated by analysing the

database structure and contents. In this scenario the system has no awareness of the

relative importance of different attributes so all weights are generated automatically.

Despite this CAFTAN interpreted 64 of the 100 queries in the same way as the

participants and was more accurate than the customised version when interpreting

single term queries.

In the following sections we look at how the participants’ interpretations compare

with CAFTAN (both generic and customised), IMDb and TMDb.

7.1.4.2 vs CAFTAN (customised)

Unlike the generic implementation of CAFTAN, the customised version allows for

some customisation by defining the relative importance of the attributes and the

information that should be displayed in certain circumstances (Section 5.4.1.5).

The strengths applied to the database were manually assigned as follows:

• All IDs: 0.2 (searches based upon the ID are extremely unlikely)

• Movie tagline: 0.5 (taglines contain many terms that can skew results but

rarely constitute search terms)

• Release date, genre name, people’s names: 1.2 (these attributes are frequently

used as search terms)

• Movie title: 1.5 (titles are common search terms)

The strengths were not generated in response to the results of the generic

queries but were generated by increasing the weight of those attributes believed

to be commonly used in queries relating to movie data. When using CAFTAN

without strengths some of the query terms were incorrectly interpreted because the

system treated all the attributes equally, in practice this is rarely the case. A good
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example of this is the tagline attribute in the movie table, this attribute contains

a large number of terms that can be easily confused with a genre: “adventure”,

“war”, “romance” etc. Despite this, it seems unlikely that a user would search for a

movie based upon it’s tagline rather than its genre, to customise CAFTAN for the

movie database the weight of the tagline was reduced and the weight of a genre

name increased.

The improvements described here increased the rate at which CAFTAN inter-

prets queries in the same way as the participants from 64% to 81%.

7.1.4.3 vs IMDb

The Internet Movie Database (IMDb) is a popular website containing a wide variety

of movie data and is consistently ranked in the top fifty websites in the world

(Alexa, 2015a). As a result the expectation might be that such a popular website

would utilise systems that result in consistently accurate interpretations of keyword

queries. This evaluation shows that IMDb is only capable of handling relatively

simple queries which contain data from one domain (e.g. actors or movies, not

both). This limitation was also identified by Luo et al. (2007) who found the

searching capabilities of IMDb were limited to “pre-built template queries” and if

the user strays beyond these its capabilities are significantly diminished; the query

Q21{2001 hanks} was used to illustrate how IMDb fails to provide appropriate

results for queries beyond the scope of these templates.

All of the searches made using IMDb were done so using the keyword search

available from any page on IMDb, the site offers advanced search options but these

cannot be considered keyword search as the user is required to specify the field in

which the terms appear.

IMDb employs a simple ranking technique for the different interpretations of

the keywords provided. This system appears to sort the possible interpretations

according to the number of results they yield with the most results earning the
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highest ranking, this simplistic approach seems to be sufficient for the majority of

cases.

When presented with the same 100 keyword queries as our participants IMDb

interpreted them in the same way only 24 times; in addition the participant’s top

interpretation was twice chosen as IMDb’s second choice. The primary reason

for this low success rate is the system’s inability to apply different search terms

to multiple fields, all search terms are applied to a single field which often leads

to the search terms returning no results. An example of how this severely limits

the capabilities of the search system is the query Q22{Thriller Gary Oldman},

all of the nine participants who interpreted this believed it should show movies

with the genre “thriller” staring the actor “Gary Oldman”, despite this seemingly

obvious interpretation IMDb returns no results because all the keywords cannot be

found within the same field. As a result of this restriction IMDb is incapable of

interpreting the majority of the queries used in this evaluation.

7.1.4.4 vs TMDb

The Movie Database (TMDb) offers similar services to those offered by IMDb with

the inclusion of an API that can be freely used to access the content of the database

behind TMDb. The website is considerably less popular than IMDb and is ranked at

approximately 20,000 in the Alexa rankings (Alexa, 2015b). Despite the difference

in popularity, and possibly due to the apparent simplicity of TMDb’s system, the

two operate in a very similar manner with TMDb slightly out-performing IMDb

and interpreting queries in the same way as humans 26% of the time.

In a similar fashion to IMDb, TMDb appears to rank the different interpreta-

tions of keyword queries according to the number of results each interpretation

brings. Similarly the system also runs each keyword query in a fixed number

of interpretations (people, movies, TV shows, collections, companies, keywords

and lists), not allowing terms to be found in different fields. One of the reasons

TMDb appeared to slightly out perform IMDb was, in fact, due to its simplistic
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approach to queries; when presented with a search term that is unusual or would

yield few results IMDb will attempt to find a more appropriate search term without

notifying the user. These automatic corrections were observed when searching for

“Domino”, IMDb displayed a selection of actors with the nickname “Domino” but

also displayed a selection of actors and actresses called “Dominic” or “Dominique”

etc. IMDb adjusts the search criteria despite also returning, in the second category,

five movies containing the word “domino” in the title, in the same situation TMDb

does not alter the search criteria and displays the appropriate movies. TMDb never

alters the search criteria and will display no results without correcting or suggesting

corrections for search terms. This example shows that it can be detrimental to

alter the users keyword terms, particularly without notifying the user; perhaps

the best approach is for systems to adopt a “Did you mean . . . ” system similar

to those used by search engines such as Google. These systems use statistical

machine learning to observe how users make corrections to search terms when

they make a spelling mistake allowing them to intelligently make recommendations

or corrections to certain criteria (Google, 2007). Such applications rely on large

numbers of users to build an accurate model of users behaviour, perhaps a reason

why TMDb hasn’t adopted such techniques.

As described above TMDb will only match keywords against a static set of

fields within the database, this set of fields does not include the name of characters

so searching for a character name may not yield any appropriate results.

7.1.5 Performance

Irrespective of the accuracy with which a query can be interpreted the system must

provide query responses within a reasonable time. The following performance tests

of CAFTAN were carried out to ensure the system represents a viable option for

real world applications. All performance tests were carried out on the same test

machine (Section 7.1.1.5) using a movie database (Appendix A).



7.1 Keyword search | 167

0

5

10

15

20

25

30

35

40

45

37-38 38-39 39-40 40-41 41-42 42-43 43-44 44-45 45-46 46-47 47-48 48-49 49-50 50-51

Fr
eq

ue
nc

y

Indexing time (seconds)

Figure 7.5: A frequency distribution graph for the time taken by CAFTAN
to index the movie database

7.1.5.1 Index construction

The index was built 200 times on the test machine to reduce the impact of any

anomalous results and to provide accurate average times for index construction. The

mean time taken to build the index was 41.8 seconds (σ = 2.3 seconds), the movie

database containing a total of 198668 tuples spread over eight relations meaning,

on average, one tuple was indexed every 0.21 milliseconds. Figure 7.5 and Table 7.4

shows a frequency distribution for the 200 index constructions performed for this

evaluation.

7.1.5.2 Query response times

A testing mode in CAFTAN was used to automate the repeated running of the 100

queries that were also used in the evaluation of the accuracy of CAFTAN. Each

query was submitted to CAFTAN 100 times for both the generic and customised

implementations of the system. Queries were executed one after another 100 times
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Indexing time (seconds) Frequency
37 - 38 4
38 - 39 8
39 - 40 42
40 - 41 38
41 - 42 28
42 - 43 12
43 - 44 27
44 - 45 28
45 - 46 6
46 - 47 3
47 - 48 1
48 - 49 1
49 - 50 1
50 - 51 1

Table 7.4: Indexing times for 200 repeated indexes of the movie database

rather than one query being executed 100 times before executing the next query

100 times; query caching2 was disabled to ensure that disproportionately fast

queries were not included in the evaluation in response to caching. Timings were

made from the point of submitting the query until the results window, containing

all appropriate information, was displayed; this includes query interpretation and

execution times along with building and displaying the appropriate GUI components.

Section B.1.3 shows both the queries executed along with their average execution

times after 100 executions in both implementations of CAFTAN.

Figure 7.6 and Table 7.5 shows how the number of terms supplied impact the

performance of CAFTAN. The graph shows that the performance of CAFTAN in

both customised and generic form were largely unaffected by the number of terms

supplied. The average execution time was less than half a second for all queries in

both the generic and customised implementations of CAFTAN, irrespective of the

number of terms.

The 100 test queries included three main types of query: dates, numeric ranges

and textual queries. Table 7.6 shows the average execution time for each types

of query; in both implementations of CAFTAN queries involving dates performed

best with each implementation returning the associated results in less than 100ms
2http://dev.mysql.com/doc/refman/5.5/en/query-cache.html
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Figure 7.6: Number of query terms vs execution time

Terms Query
count

Mean Standard deviation
Generic Customised Generic Customised

1 13 210.5 215.0 190.2 259.2
2 31 216.9 179.5 143.8 120.7
3 38 248.7 224.5 144.4 143.4
4 16 215.8 186.6 107.7 111.4
5 1 244.8 251.4 113.2 136.0
6 1 366.3 361.1 161.3 200.6

Table 7.5: Response times for queries of various length

99.5% of the time for the generic implementation of CAFTAN and 97.5% of the

time with the addition of customisations. Ranges performed the least well, most

likely in response to the way in which they are calculated in CAFTAN and the

large result sets (Section 5.4.5.1); despite giving the slowest response times the

generic implementation always returned results in less than two seconds in both

implementations of CAFTAN. All other queries within our sample data can be

considered textual queries, these are the most common type of query and CAFTAN

responded to them quickly, providing results in less than half a second 99.2% of
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the time in the generic implementation and 98.8% of the time in the customised

version.

Query type Generic average
time (ms)

Customised
average time (ms)

Dates 63 38
Ranges 451 429
Text 211 186
All 230 205

Table 7.6: Types of queries and their average execution times

7.1.6 Study limitations

The methodology used to evaluate CAFTAN differs from that which was used to

evaluate much of the existing work; it is focussed on quantifying the quality of

query interpretations with respect to accuracy and performance. This technique

introduced a number of advantages such as the production of a reusable dataset

that could be used for the evaluation of other applications or during the further

development of CAFTAN and the in depth analysis of how users interpret keyword

queries. Despite these benefits the evaluation was not without its drawbacks;

participants never used the application and it was only shown operating with one

database.

A major strength of the evaluation was the comparison of human interpretations

of queries and those made by CAFTAN but the users never directly interacted

with the CAFTAN system. This lack of interaction with CAFTAN means that

users could not provide feedback regarding the quality of some features such as the

results visualisation.

CAFTAN was developed as an entirely generic application that can be applied

to any relational database and it was in no way tailored to meet the needs of the

database used in the evaluation (Appendix A). However, the use of CAFTAN with

one database only demonstrates its capabilities within the confines of the chosen

database; elements of database design that are not present in the movie database

are not tested in the evaluation of CAFTAN.
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7.1.7 CAFTAN evaluation summary

This evaluation involved analysing the way in which keyword queries are interpreted

by humans and comparing these to those generated by CAFTAN along with two

bespoke systems (IMDb and TMDb) along with assessing the performance of the

system. Key points of the evaluation include:

• Exploring the searching habits of novice users and finding out what they

expect from keyword search, avoiding the need for developers to make such

assumptions.

• Illustrating that CAFTAN is capable of interpreting keyword queries in a

manner close to that of the human participants.

• Showing that CAFTAN outperforms bespoke systems, with regards to query

interpretations, and adding customised strengths further improves its ability

to search over a specific data set.

• The identification of weaknesses in some bespoke systems, particularly in

relation to their inability to search over multiple fields or beyond predefined

template queries.

• Performance test showed that CAFTAN is capable of both indexing and query

resolution in within reasonable time; responding to the 20000 test executions

in less than half a second 96% of the time.

7.2 SQL in Steps

In contrast to CAFTAN, which is designed for the novice user, SQL in Steps is

designed to provide students with an understanding of SQL that will enable them to

become expert users. The following evaluation describes the process of introducing

SiS as part of an undergraduate databases course. The evaluation focusses on both

the differing experiences of learning SQL with and without SiS and on some key

areas highlighted by users of SiS.
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sqlinsteps.co.uk 

(a) Front

Help 

youtube.sqlinsteps.co.uk 

Email 

phil@sqlinsteps.co.uk 

p.garner@lancaster.ac.uk 

Availability 

10th November –28th November 

(b) Back

Figure 7.7: The SiS business card given to participants at the start of the
study

7.2.1 Methodology

The evaluation of SiS involved 101 first year Computer Science undergraduates

enrolled on a databases course. Upon agreeing to participate in the study they

completed an assessment consisting of ten questions; the questions required that

participants provide the SQL to answer questions regarding a given relational

database (see Appendix C for the questions). On completion of the assessment

students were randomly assigned to a group; one group would be granted access

to SQL in Steps while the other would complete the study without access to

SiS using only the usual course materials (lectures, work books and help from

teaching assistants/lecturers). Users with access to SiS were given a business card

(Figure 7.7) showing the URL of the tool along with information regarding help

available, the dates for the study and email contacts.

Every week the students completed formative assessments, these assessments

were used in conjunction with questionnaires to assess the improvements made by

the students throughout the study. In addition, an assessment with an identical

structure to the one completed prior to the study commencement was given to

participants at the end of the study. This approach allowed for the measure of

both the students understanding and their confidence in their understanding.

After the three weeks of using SiS a selection of participants were invited to

attend a focus group to further discuss various aspects of SiS and how they could

be improved in further iterations of the software. The focus group took place
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two weeks after access to SiS was withdrawn allowing for the discussion of the

participants experiences during the remainder of the course without access to SiS

(for details on where to find a full transcription of the focus group see Appendix C).

7.2.1.1 Participants

All first year undergraduates who were enrolled on the databases course (149

students in total) were given the opportunity to participate in the study, a brief

description of the study was presented to the students during a lecture prior to the

study commencing. On the databases course the students are split into four groups

for practical assignments; in the first of these practicals the students were given

the opportunity to participate in the study. Students were made fully aware that

participating in the study did not guarantee them access to SQL in Steps and that

they would be randomly assigned to a group: sixty-one had access to SiS, forty did

not.

To ensure that the random assignment of students into groups resulted in an

even distribution of ability all participants were required to complete an assessment

prior to the study commencing. Participants in the SiS and non-SiS groups scored

6.6% and 6.1% respectively. These scores show that there was no significant

difference between the capabilities of the groups prior to the commencement of the

databases course.

7.2.1.2 Recording SiS use

Prior to accessing SiS students were required to log in using their university

network credentials (a facility provided by the university, no personal information

or passwords were stored by SiS), the reason for this was twofold; it prevented

participants who have not got access to SiS from using the tool and it provides the

ability to match use against specific participants.

Every time a query is executed, and hence every time a change is made to

the UI, a record of this is made. These records show the popularity of the tool
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and also how individuals interact with it. All logs were compiled with participant

assessments and anonymised allowing for comparison of use against performance

but with no means to connect this information to actual participants.

7.2.1.3 Course structure

SQL in Steps is not intended to replace any components of an existing databases

course but is designed to supplement it. As a result, with the exception of access

to SiS, the course and resources made available were the same irrespective of group

or participation in the study. These resources include one lecture per week and a

workbook to be completed in a two hour practical session. In the practical sessions

the students had the opportunity to use MySQL or SQLite with many opting to

use both throughout the course.

The databases course spans five continuous weeks of a term and the practicals

took the following structure:

Week 1 building and modifying databases using CREATE, INSERT and UPDATE

statements

Week 2 Basic SELECT statements including SELECT, FROM (no joins), WHERE,

ORDER BY, GROUP BY clauses

Week 3 Advanced SELECT statements including various different joins and set

operations

Week 4-5 Assessed coursework (combining work from previous weeks)

The study spanned the first three weeks of the course ensuring that all students,

irrespective of their involvement in the study, had access to identical resources

during the assessed coursework.
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7.2.1.4 Help with SiS

Throughout the study there were a number of different resources available to

participants to help them in using SiS. The help available took the form of videos,

written guides and both verbal and written communication.

Throughout the study, in the database lab sessions, there was always a researcher

present to answer any questions or queries the participants had regarding SiS. All

participants had access to an email address that could be used to contact the

researchers outside of timetabled sessions.

A five page guide to using SiS was produced and made available on the SiS

homepage, the Moodle pages for the database course and in the weekly lab sessions

(see Appendix C for the guide). This guide includes descriptions of all the elements

of the user interface along with step-by-step instructions to building a simple query.

Some frequently asked questions were also included in the document to answer

some common questions regarding the software and study.

A series of eleven videos were made to demonstrate the various features of SiS,

these allowed the user to watch a walk through showing the various features of SiS.

One video was made for each clause along with separate videos showing various

other features including a “Getting started” video showing how to build a simple

query in SiS. The videos could be accessed through a YouTube channel (Figure 7.8),

a link to the videos could be found on the SQL in Steps home page was shared

with students at the beginning of the study.

Analysis regarding the way in which this help was used can be found in

Section 7.2.7.

7.2.2 Usage

Of the sixty-one participants granted access to SiS twenty-seven of them (44%)

executed at least one query totalling 5674 queries over the three week period, this

represents an average of 210 queries per user and a total of 7 hours and 29 minutes

spent using SiS. Of the twenty-seven participants nineteen students (31% of all
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Figure 7.8: The YouTube channel homepage for SQL in Steps

participants with access) executed more than ten queries with an average of 297

queries and 23 minutes use per person. Seven students (11% of all SiS users)

submitted more than one hundred queries with an average of 740 queries and 56

minutes use per person. The most active participant submitted 1871 queries and

spent 2 hours 59 minutes using SiS over 19 sessions.

Although the relatively low number of students may initially be interpreted as

them finding the tool of little help, it is unlikely that this is the main reason for

low use of SiS. Of the 61 students with access 34 (55.7%) failed to use the tool at

all and a further 3 (4.9%) logged in but did not interact with the tool in any way.

The fact that over half of the participants with access to SiS never had first hand

experience with it means they did not dismiss the tool in response to it’s perceived

quality. Other factors that may have contributed to a small number of active SiS

users include:

• Lack of a need for additional resources. Many participants commented

on the high quality of the resources available throughout the course: “the

workbooks are actually pretty good so there is no reason for you to drag away

from [them]”. Participants were able to complete the coursework exercises
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without the need for additional resources therefore they rarely encountered

the desire to seek out additional help.

• Lack of knowledge of the study. Throughout the study participants were

never directly encouraged to use SiS, as a result some simply forgot about it

and others were unsure of when SiS was available to use.

The relatively low uptake of SiS means making conclusive quantitative claims

about the benefits of SiS is difficult, however, there are some areas of learning SQL

that the use of SiS appears to have impacted.

At the end of the study participants were asked to rate their confidence in

various different aspects of SQL (48 (78.7%) SiS users and 34 (85%) non-SiS users

responded, 82 (81.2%) responses in total); scores were given on a Likert scale

(1 = very low confidence to 5 = very high confidence) (see Appendix C for the

questionnaires). SiS users rated themselves as having a better understanding

of both visualising the database (4.2 vs 3.75) and join operations (3.0 vs 2.79);

this is likely a response to being shown the means to to visualise the database

and graphical representations of joins. Although SiS appears to assist users in

visualising and performing joins on the database it appears to slightly hinder the

users’ ability to interpret error messages. SiS users rated their understanding at 3.0

while non-SiS users rated their understanding at 3.53. SiS simply forwards the error

messages from SQLite to the user without providing any additional information

(Section 6.6) so irrespective of their group participants were exposed to the same

error messages. The reason for the improved understanding of errors in non-SiS

users may be as a result of increased exposure to them; SiS users are less likely to

make syntactical errors, as they are lead through the building process, so are less

likely to have seen error messages.

7.2.3 Student performance

Assessments given to students before and after the study were designed to show

improvements made over the three week period. All students were expected to
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make significant improvements as many had no prior experience in the field (74%

of participants scored 0% in the first assessment). In analysing the improvements

made it was hoped that any additional progress made in the SiS group could be

attributed to the availability of the tool throughout their learning process.

Section 7.2.8.2 discusses some limitations introduced by the willingness, or

lack thereof, of participants to complete questionnaires and assessments required

for the study. The low number (25%) of participants who completed the final

assessment somewhat limits the conclusions that can be drawn from their results.

Nevertheless greater improvements were made by those with access to SiS. The

average improvement for a non-SiS user (from 15 completed assessments) was 50.6%

whereas the improvement made by SiS users (from 5 completed assessments by

active users of SiS3) was 66.9%.

The low rate at which the formative assessments were completed also limits

the extent to which concrete conclusions can be made from them. Of the 101

participants 18 completed all three formative assessments; Table 7.7 shows the

average results for these participants according to their assigned group. The second

and third formative assessments are of particular interest as their focus was the

SELECT statement (Section 7.2.1.3), problems for which SiS could have been of

assistance. Some participants with access to SiS used it very little (less than 10

query executions) or never at all, as a result these participants can be considered as

non-SiS users, these adjusted figures are shown in the last two columns of Table 7.7.

These results show that active users of SiS increased their performance between

the second and third assessments whereas students who did not use SiS achieved

slightly lower results in the third assessment. This could be an indicator that SiS

is particularly beneficial when students are presented with more complex problems,

such as those found in the third and final formative assessment.

Anonymised data regarding student performance and their use of SiS are

available in their entirety, see Section C.3.1 for details.
35 participants with access to SiS but who showed little or no activity with the tool are

excluded from this statistic
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Non-SiS SiS Actual non-SiS Actual SiS
Number of participants 7 11 13 5

Initial assessment 7.5% 6.8% 4.0% 15%
Formative assessment 1 67% 83% 73% 87%
Formative assessment 2 90% 85% 89% 82%
Formative assessment 3 90% 85% 86% 90%

Table 7.7: Formative assessment results for the 18 participants who com-
pleted all assessments

7.2.4 Concerns with the command line

A Command Line Interface (CLI) such as the MySQL or SQLite client can be

an intimidating environment for students who have previously only interacted

with databases and other software through the use of graphical user interfaces.

Participants described the command line as “disorientating” particularly “when

coming from Microsoft Access [or other GUIs]”. Participants highlighted the fact

that formatting of the results of a query often make them hard to interpret. Other

factors contributing to the confusion introduced by a command driven environment

include the ability to view both the query and results on screen at the same time;

even common tasks such as repositioning the cursor and copying information to the

clipboard are achieved in an unconventional manner. An aim of SiS was to ease the

learning curve of the command line by using the same notation in a more familiar

environment. Throughout the study some participants explored other GUIs such

as phpMyAdmin to aid their learning, however, some described how they returned

to SiS because they “loved the visualisation”.

The use of a CLI can mean that students are not only learning SQL but also

how to interpret and interact with the command line, for many this can be an

unwelcome addition to their workload. The use of user interfaces, such as SiS,

designed as a transitional tool between highly graphical and textual interfaces can

serve to ease this step.

The live updates to the SQL translation and the results are a cornerstone of SiS

(Section 6.5.4.1) and were largely well received by the participants. They found

that the live UI enabled them to build a good understanding of an SQL SELECT
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statement while they constructed one using the user interface: “its really helpful to

have the results always showing up as well [as the SQL]”.

7.2.5 Database visualisation

Some students find visualising the database structure possible without help but

many find drawing the database structure beneficial: “I use the .schema command

and then draw out the table [and some contents]”, this is a common approach, an

example of this is shown in Figure 7.9. The database visualisation included in SiS

was generally well received, however, many participants believe improvements are

needed to maximise its potential. Joins often represent a stumbling block for many

students and it requires that they are able to visualise the database as a whole,

the visualisation was praised for easing this problem: “It was great how it showed

inner joins, that was the hardest part for me”. Despite the praise for visualising

the database as a whole, for some participants it wasn’t clear that this was more

than just a visual aid and you had to click it to build a FROM clause: “It wasn’t

readily apparent [how to do joins]”. Other participants failed to realise that to

perform multiple joins they were required to click more than one connection in the

visualisation: “I don’t think there is much support for multiple joins”.

One area participants believed needed improvement was in the appearance of

some elements of the database visualisation. As the nodes representing connections

between tables were biggest many of them were initially drawn to them rather

than the smaller table nodes; suggestions to improve this aspect of the system

included changing the shape of the nodes or ensuring the table node is the biggest.

Participants felt that improvements to the way in which information was added

and removed from the visualisation were also needed; in its current state “zoom”

buttons allow the user to add/remove information from the visualisation. This was

described as confusing by some participants: “you expect it to make a section of the

visualisation larger [...] but it actually goes to a different view”. After participants

discussed various different methods of changing the information viewed on the



7.2 SQL in Steps | 181

Figure 7.9: A participants drawing to help them visualise the database
structure

visualisation check-boxes were the most popular choice: “check-boxes can be used

to show different levels of information [...] you can select all the information you

want”.

Despite participants believing that the visualisation needed some minor refine-

ment it was highly praised as one of the best features of SiS. The visualisation

allowed many participants to build a mental picture of the database without the

use of additional diagrams or drawings enabling them to concentrate on building

the appropriate queries (see Section 7.2.2 for details). This visualisation style also

presents itself as something that could easily be manually recreated by the students

should they need to visualise a database without SiS.



7.2 SQL in Steps | 182

7.2.6 Boolean expressions

As discussed in Section 3.3.1.6 Booleans are often difficult for novice users to visualise

often resulting in the misuse of AND and OR operations or misunderstandings

regarding nested expressions.

To combat the difficulty presented by Boolean expressions SiS includes a graph-

ical representation of Boolean expressions that is aimed at allowing users to build

expressions in a graphical environment while still gaining an understanding of how

to construct them textually (Section 6.5.4.4). This element of the system was the

least well received and was described as “complicated” by almost all participants

within the focus group. The perception of complexity may have been due to the

participants unwillingness to access the help available (Section 7.2.7). The help

for this feature described how to create Boolean expressions and included a video

showing how this was done; as with many of the help features, these features were

rarely accessed with the help button never being clicked throughout the entire

study and the video for the WHERE clause only viewed twice (Section 7.2.7).

Participants also suggested that their prior experience in textually constructing

Boolean expressions meant there was no need for them to use a graphical repre-

sentation: “we’re doing Boolean expressions in C [and other modules] so we know

about AND, OR and XOR etc. Its easy for us to just write it in textual form, there

is no need to make Boolean expressions graphical.”. With this in mind it may be

more beneficial to replace the graphical representation of Boolean expressions with

a simple text input with syntax highlighting in future iterations of SiS.

Despite participants feeling that the Boolean expression visualisation was

unnecessary this opinion is largely dictated by their prior understanding of Booleans;

had the databases course taken place prior to the other modules in which students

learnt about Booleans this feature may have been very useful. While Boolean

visualisations may not be necessary for university students it may be more suited

to a more inexperienced or younger user base.
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Figure 7.10: Automatically generated help for the GROUP BY clause in
SiS

7.2.7 Help

Help provided throughout the study came in two forms: help with SQL (Sec-

tion 6.5.4.5) and help with SiS (Section 7.2.1.4). SiS included various features to

help users understand the various aspects of SQL and as part of the study partic-

ipants had access to numerous resources to provide them with a comprehensive

introduction to SiS.

7.2.7.1 Help with SQL

All of the help with SQL was accessed through the help button displayed on each of

the clause pages. Some users found that, despite its presence in the form of a large

question mark button (Figures 6.1 and 7.10), the location of the help functionality

was not clear enough. Increasing the prominence of help features introduces the

risk of it becoming an annoyance or inconvenience for users who do not require

any assistance.

Throughout the focus group it became apparent that the lack of use of the help

features was not solely as a result of participants being unable to locate it but also

of their reluctance to use in-built help in software packages. Participants discussed

how they would use a search engine to find help with SQL instead of accessing the

help within SiS. There is a stigma attached to in-software help that makes users
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assume it will be of little help and many users totally avoid it. The quality of the

help is irrelevant if users never access it and ensuring that users do use the help

available when needed is a difficult task.

This negative attitude towards help in software is not a new phenomenon; Carroll

and Rosson (1987) described how the user is often, paradoxically, preoccupied with

the end result of their task (learning SQL in this case) that they have little time to

use the help functionality, despite it potentially helping them complete their tasks.

Grayling (1998) also observed the reluctance to use help: “After carefully reviewing

all the tools, menus, and dialogs, and not finding any commands or functions that

would seem to help them with the scenario task at hand, the test subjects would

sigh (audibly), and then start back at the beginning, reviewing all the menus, tools,

and dialogs again. [. . . ] they preferred to revert to the as-yet-unsuccessful trial and

error strategy rather than go to the Help menu and review the very material that

was designed to assist them.”. User Interface Engineering (2004) noted that the

word “help” implies that the user must admit failure and recommended the use

of “tips” or “hints” instead; this approach was taken by the University of Arizona

when redesigning their library system to increase the number of students accessing

the feature (Dickstein and Mills, 2000).

Some users suggested the help would be more obvious if it were to take the

form of the Office Assistant “Clippy” as used by Microsoft (Figure 7.12). Whilst

making the help more obvious is a desirable feature this level of intrusiveness would

likely deter the user further. A balance between hidden help and the intrusiveness

of the unpopular Office Assistants must be found to ensure the help is used but

not disruptive to the users workflow. This could take the form of an introductory

tour or a occasional suggestions for help following the use of a new feature.

In order to make the help functionality more appealing in future iterations a

number of considerations must be taken into account:

• The terms “help” should not be used, favouring “tips” or “hints” has the

potential to increase the likelihood of users accessing this functionality.
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• Short, relevant help (with links to more in depth help) ensure users can access

the information quickly without breaking away from the task in hand for

long periods of time.

• Some prompting for use (e.g. an introductory tour) may make users more

aware of the available help but also speed up the process of familiarising

themselves with the system.

7.2.7.2 Help with SiS

Throughout the SiS study all participants had a wide range of assistance in the form

of videos, documents and contact with the researchers (Section 7.2.1.4). Despite

the large amount of help available some students struggled with certain elements

of SiS but failed to use the help systems in place.

Videos for each clause were viewed an average of twice over the duration of the

entire study (Table 7.8) and no participants emailed researchers for assistance in

using SiS. The help functionality within SiS was used 10 times by eight different

students throughout the study, this represents an average of one help request

for every 567 queries executed. During the focus group one of the participants

acknowledged that their request for help was accidental and they immediately

closed the associated dialogue box.

The low use of help is as a result of two main factors: the prominence of help

features and the reluctance of users to use the help available.

7.2.7.3 Introduction to the software

Some participants described their first impression of SiS as a feeling of “where do

I start” whereas others described their desire to explore: “I saw SELECT so I

started with SELECT”. Although some users found exploring without instruction

satisfactory the general consensus of opinion was that some help or instructions are

needed. In the focus group some users wanted discrete help that they could ignore

when not needed while others wanted something more prominent: “you could use
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Video Views
SELECT clause 2
FROM clause 1

WHERE clause 2
GROUP BY clause 1
ORDER BY clause 2

HAVING clause 2
LIMIT clause 4

Database visualisation 2
Help with clauses 1

What is SiS? 3
Getting Started 2

Total 22

Table 7.8: YouTube views during the SiS study

what Microsoft used to and have a little paper clip at the side” (Figure 7.12). One

participant suggested the use of “speech bubbles over aspects [of the user interface]”

as a means to provide information on how to use the system. This approach is

relatively common and is often used for new applications or when major changes

are made to a user interface, the BBC used this technique following the release of

an update to their news application for Android (Figure 7.11) (Google Play, 2015).

Other participants believed that a less intrusive introduction to the system would

be more appropriate, a popular suggestion was a “take a tour” feature. The lack

of an introduction embedded into the software may be a contributing factor to the

fact that 19 (31% of 61) participants only submitted between 1 and 99 queries.

Requests for help in the form of an animated assistant such as the Microsoft

Office Assistant was an unexpected contribution, especially considering the over-

whelming unpopularity of these within Microsoft Office. “Clippy” was widely

considered annoying, intrusive, distracting and even rude (Whitworth, 2005; Xiao

et al., 2003) but some success has been found when introducing similar tools

into educational applications (Mitrovic and Suraweera, 2000). Given the attitude

towards software help observed in this study it seems likely that, despite requests

for an assistant, had such a feature been included in SiS it would likely have been

ignored or disabled. The suggestion of an intelligent help system that reacts to
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Figure 7.11: The help offered to users after major changes were made to
the user interface of the BBC News Android App in early 2015 (Google Play,
2015)

Figure 7.12: A drawing by a participant that closely resembles “Clippy”,
the Microsoft assistant
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a users actions is likely a response to the large quantity of information that the

participants felt they needed to effectively use all the features of SiS.

7.2.7.4 Error messages

The quality of error messages in SQL are a well recognised problem (Section 2.6.1.3)

and some of the participants in the SiS study echoed this: “If you compare it [SQL

errors] to the syntax errors in C it’ll print out the line and it’ll [C] have the line

number and it’ll have a little arrow showing where the error is if you’re missing a

semi-colon or missing a brace or whatever but with SQL it just says “syntax error”,

it doesn’t really say anything apart from that.”.

A request from the students was to improve the usability of error messages

by utilising the knowledge of the database that SiS has in order to provide more

helpful error messages. Due to the commonly held belief that error messages are

unhelpful this issue was not overlooked in the design of SiS but the error messages

were intentionally left unchanged. The reason for SiS using the same error messages

as SQLite (the database SiS uses) was in an attempt to ease the transition between

the graphical environment of SiS and the textual environment in which students

must become comfortable using. If the errors were changed to show improved

messages that accurately described the problem and how to remedy them then

transitioning to the less obvious SQL errors would likely make bug fixing difficult

for users of SiS.

A more reasonable solution that would both provide the user with the skills

to decode error messages without SiS would be to introduce a means to help the

student decipher the errors meaning and correct any problems. The understanding

that SiS has of the database structure, and its contents, could allow it the ability

to help users find the true meaning of an error, its cause and a means to fix it. In

providing students with a set of skills that enables them to handle SQL errors SiS

could improve their error handling as they move onto textual environments.
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7.2.8 Study limitations

The process of evaluating SiS presented a number of limitations that had the

potential to hinder the success of the study. These can largely be divided into two

categories: ethical constraints and the willingness of students to participate in the

study.

7.2.8.1 Ethical constraints

As with all studies involving current students on an active course there were a large

number of ethical considerations to take into account during the planning stage of

the evaluation. The process of ethical approval was time consuming and restricted

the study structure.

The ethical limitations stemmed from a number of different sources:

• Potential to disadvantage students

• Influence on assessed coursework

• Assignment of groups

The study conducted is a modification of the original design as a result of

changes that were dictated by ethical considerations. The initial study design

would have spanned the full five weeks of the course utilising the assessed coursework

as a major indicator of student progress. Students were to be divided into two

groups according to their timetabled practical session with half of the groups using

SiS and the other half completing the course as normal.

A major concern, understandably so, within the course administrators stemmed

from the potential of creating an unfairly balanced course as a result of the

difference in resources available. Students in different groups have the potential to

be advantaged or disadvantaged depending upon SiS’ ability to enhance or disrupt

the learning process. Concerns were raised as to how, if at all, grades would be

adjusted to reflect the different resources available
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In an attempt to reduce the impact of SiS on the assessed coursework the length

of the study was reduced to three weeks, ensuring that all students had access to

the same resources throughout the study; as a result, all access to SiS was revoked

prior to the assessed coursework being distributed in the fourth week of the course.

This significant reduction in study length limited the observations possible and,

had it been available to the students, the frequency of use might have increased in

response to the motivation to complete the assessed coursework. One participant

described their disapproval of SiS’ withdrawal in the last two weeks, saying it was

“when we could have used it the most”.

Week Queries No. of users
Week 1 30 5
Week 2 2523 19
Week 3 3121 12
Total 5674 –

Table 7.9: The number of queries submitted in SiS per week showing
a steady increase as the weeks progressed (week one did not require any
SELECT statements).

Table 7.9 shows the steady increase in the number of queries submitted to SiS

as the weeks progressed. Had the study been able to continue into the fourth

and fifth weeks of the course, when the content became more difficult and the

contribution towards a final grade was introduced there would likely have been

a further increase of SiS’ use. This would have increased the significance of the

evaluation results and potentially exposed the software to more students resulting

in more feedback in relation to the benefits it brings.

Excluding the last two weeks of the study also made the assessed coursework

unavailable for inclusion in the study; as a result the formative assessments became

the primary means to quantify student progress. Using these assessments as part of

the study introduces a new set of problems with regards to establishing a reliable

dataset, these problems are discussed in Section 7.2.8.2.

Prior to taking part in the study students were made fully aware that participa-

tion did not guarantee them access to SiS but that their access would be decided
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at random with the toss of a coin. This technique ensured that students were fairly

divided into groups and they had no grounds to dispute the assignment of groups

or the benefits this may bring. The initial study design involved splitting the

participants into two depending upon their assigned lab sessions; had this approach

been taken demonstrations and examples could have been shown to the entire

group without having an impact on non-SiS users, this would likely have increased

the exposure of SiS and therefore the extent to which it was used. In practice each

lab session included a mixture of SiS and non-SiS users meaning demonstrating

the tool and providing instructions to the group as a whole was impossible.

An alternative study structure that was considered was to make the tool available

to all participants and then compare the improvements made by those who chose to

use the tool with those who chose not to. Although this structure would potentially

expose more students to SiS and ease some logistical problems of conducting the

study this would be at the expense of introducing a self-selection bias. It is likely

that students willing to try experimental software such as SiS are also those willing

to spend more time ensuring they have a good understanding of the subject matter,

resulting in higher assessment scores. This methodology has the potential to falsely

show that SiS significantly increased the participants understanding of SQL, when

in reality the attitude of the students may have had more impact on their improved

understanding.

Ethical constraints dictate that the introduction of experimental software such

as SiS cannot be made a compulsory part of the course so students were never

instructed to use the tool or provided with demonstrations, as a result, many

students never accessed the tool (see Section 7.2.2).

7.2.8.2 Willingness of SiS participants

The use of students within academic studies can introduce a number of limitations,

many of which stem from their motivation to participate in the study. In the case

of SiS, students had little motivation to complete the various assessments and
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questionnaires upon which the study heavily relied. The study consisted of two

assessments and one questionnaire and participants also granted the researchers

access to the weekly formative assessment results.

The first assessment was to be completed before the study commenced, imme-

diately after signing a consent form, without submitting a completed assessment

students were not accepted as a participant on the study, this provided the moti-

vation for students to complete the assessment. In each of the three weeks of the

study all students (not only those participating in the study) were given a formative

assessment; it was made clear to students that the results of these assessments

did not contribute towards their final grade for the course but were used as a

means to modify and improve the course content based upon their understanding.

From 101 participants 85 completed the first formative assessment with 61 and

20 students completing assessments two and three respectively. At the end of

the study the students were presented with a questionnaire designed to establish

their confidence relating to the different aspects of SQL and an assessment to

quantify their improvement, 82 students completed the questionnaire however only

25 completed the final assessment.

Following the study a random selection of 49 students were asked why, as the

weeks progressed, there was an increasing reluctance to complete the formative

assessments (see Appendix C for the questionnaire). A wide variety of reasons were

given for this; some believed the content was too difficult (4 out of 49 students)

while others felt it wasn’t challenging enough (3 out of 49 students). The most

common reason given, with 41% of the students asked (20 out of 49) agreeing, was

the lack of contribution towards the course grade: “It didn’t count towards our

grades so there was less incentive to complete them”. Research into the link between

motivation in students and the use of formative assessment has been popular in

recent years and the general consensus is that the use of such assessment serves

to increase the motivation in students (Black and Wiliam, 1998; Brookhart, 1997;
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Cauley and McMillan, 2010; McMillan, 1996); despite this, our findings show that

motivating students to complete the formative assessments can be difficult.

In contrast to the relatively low number of participants completing the formative

assessments and the questionnaires for the study all 101 participants completed the

assessed coursework presented to them in the final weeks of the course, after the

study finished, however these results are not eligible for inclusion in the study. This

stark contrast in student uptake shows that the low number of students completing

the resources required for their studies is not as a result of a lack of understanding

of the course or a lack of engagement with the study but a lack of motivation. The

motivation to complete the initial assessment was to gain a place on the study while

the motivation for the assessed coursework its contribution towards the students

final grade for the course.

Motivation can be, amongst other types, intrinsic or extrinsic; intrinsic motiva-

tion is “behaviour that is energised by the pleasure derived from engaging in the

activity” while extrinsic motivation is driven by rewards or punishments given by

others (Hill, 2013). The results of this study show that the participants were largely

extrinsically motivated and the reward of grades or participation in a study drive

them to complete certain tasks. Despite much of the existing research within the

literature concluding that formative assessments can increase motivation in many

students this study showed that some students struggled to find the motivation to

complete the formative assessments as the rewards were not considered sufficient

for many students. However, the sense of a tangible reward such as participation

in a research study or a contribution towards their module grade encouraged all

participants to complete the necessary assessments.

7.2.9 SiS evaluation summary

The evaluation of SiS involved introducing it into a live databases course and

observing how it was used. It presented a numerous key points, the following were

discussed:
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• The need for an alternative interface for the process of teaching SQL

• The benefit of presenting the users with a graphical representation of the

database structure

• The need, or lack thereof, for a visualisation to improve the understanding of

Boolean expressions

• The low use of help and the reasons for this

• Limitations of the study

Participants in this study stressed some of the difficulties associated with learning

SQL using a command driven user interface alone; they are considered a daunting

prospect as a result of their lack of assistance and poor feedback in response to

errors. SiS showed that presenting the students with a graphical representation

of the database schema can assist them in understanding the database structure

and provide them with a good understanding of join operations and how to build

them. SiS also includes a graphical representation of Boolean expressions along

with the database structure; although Booleans can be a difficult concept for many

users to grasp, particularly when transferring skills from the spoken word, this

was not the case for many participants. The prior experience in constructing

Boolean expressions that the participants had allowed them to build the necessary

criteria without graphical support, as a result many participants found the graphical

representation of Booleans unnecessarily complex and difficult to grasp. Some

participants with access to SiS found the lack of introduction meant that getting

started with the software was difficult, in anticipation of this problem there were a

number of tools available to help the students. Despite the ample help available

it was rarely accessed resulting in some students failing to get beyond an initial

glance at the software. The reason for this lack of use was, in part, due to the

way in which it was presented but also in response to the stigma associated with

help in software. Help is regularly ignored and the challenge in improving its use
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lies in making it more appealing to the user rather than in improving the quality

of its contents. Limitations throughout the study restricted both the design and

results available from the evaluation; these limitations came in the form of both

participant introduced problems, such as a lack of motivation to participate in the

study, and ethical considerations, such as providing additional resources to some

students but not others.

In summary, this evaluation of SiS illustrates the potential for introducing

graphical applications into the learning environment for database students. Al-

though some elements of the system may require refinement the features of SiS

were largely met with a positive reception.

7.3 Chapter summary

This chapter presents the evaluation of two database applications, SiS (Chapter 5)

and CAFTAN (Chapter 6). Both evaluations show that the systems introduce real

benefits into their respective fields and offer the potential for further improvement.

CAFTAN was designed for the novice user who must interact with relational

databases without an understanding of its structure of the appropriate query

language. The interpretations of keyword queries CAFTAN made were compared

against both bespoke systems and, crucially, those made by humans. The evaluation

of CAFTAN provides:

• An insight into how humans expect keyword queries to be interpreted.

• An evaluation that illustrates that CAFTAN outperforms bespoke applications

by consistently interpreting queries in a way close to human interpretations.

• A rigorous performance evaluation showing that CAFTAN is capable of

returning appropriate results in a timely fashion.

• A data set that can be reused in future iterations of CAFTAN or in the

development of other applications.
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SiS is designed as an educational application to ease students into the process of

building textual queries. The evaluation involved comparing the process of learning

SQL with and without access to SiS. It highlighted:

• The need for improved interfaces for educational purposes and the benefits

they can bring.

• The impact of introducing graphical representations of the database structure

and Boolean expressions.

• The stigma attached to help integrated into software packages and the

reluctance to use such systems.



Chapter 8

Conclusions

This research aimed to explore how the process of extracting information from

relational databases can be improved; this area of research is important due to the

widespread use of relational databases in a broad array of applications by a large

number of users.

The initial aim of this work outlined in Section 1.1 was to “ease access to

relational databases” ; this problem was broken down into two further problems:

1. Identify the users of relational databases and their needs.

2. Investigate how software can be used to improve the way in which people

interact with relational databases.

This thesis identifies two main classes of user and describes the differences in

the way these users interact with relational databases. Two applications designed

to assist these two types of user in extracting information were developed and

subsequently evaluated.

8.1 Background, motivation and literature review

Chapter 2 highlights some background information in relation to this research

including the various database models along with the different users of such systems.

The relational model is by no means the only way in which data can be modelled



8.1 Background, motivation and literature review | 198

but until recently it enjoyed a relatively uninterrupted reign as the default database

choice for almost all applications. The rise of NoSQL databases in the early 21st

century provided developers with an alternative to the relational model. It is

important to view NoSQL databases as alternatives rather than replacements

to the relational model; they offer some functionality that is unavailable in the

relational model, just as the relational model offers some functionality unavailable

in NoSQL alternatives (Section 2.2.3).

The widespread use of databases means that there are large number of different

users who interact with them. These users range from the expert who is knowl-

edgable in the area of database design and query languages to the novice who has

little or no understanding of such areas. There are numerous classifications of users

in the literature (Catarci and Santucci, 1995; Chen, 1999; Elmasri and Navathe,

2010; Jarke and Vassiliou, 1985; Martin, 1973; Shneiderman, 1978) but many define

a large number of categories in response to the wide range of database operations

that different users can make (designing, building, modifying and extracting data).

Section 2.4.1 describes a refined categorisation of users that is the result of purely

focussing on the extraction of data and ignoring other database interactions. Fo-

cussing on this small area of database interactions means that many of the previous

categories can be merged into one, this results in the following categories of user:

• Novice (Section 2.4.1.1): Those with no understanding of the database

structure or query languages.

• Expert (Section 2.4.1.2): Those with knowledge of textual query languages

and the underlying database schema.

• Student (Section 6.1): Those users transitioning from novice to expert. They

are in the process of learning textual SQL and schema design.

The potential to improve the process of extracting information from relational

databases was initially, albeit briefly, explored in an undergraduate project within
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the context of email data (Section 2.3.1). The Elcee application uses a graph-

ical representation of Boolean expressions that enables users, with little expert

knowledge, to be able to build potentially complex Boolean expressions. This

Boolean visualisation style, the Sandpit Search, was also used in a proof-of-concept

application for SSQL (Section 4.3.3) along with the SiS prototype (Section 6.5.4.4)

Chapter 3 presents a detailed literature review of a number of areas relevant to

the process of extracting information from databases:

• Visual Query Languages (Section 3.1)

• Keyword search (Section 3.2)

• Educational applications (Section 3.3)

The first advances in the area of extracting such information came in the form of

visual query languages (VQLs); these were initially form based (e.g. QBE by Zloof

(1975)) but, in response to hardware and software advancements, they became

graphically more complex and used icons and diagrams. Although an improvement

on their textual counterparts VQLs still demand some knowledge of the database

structure. In order to make databases more accessible to the novice user keyword

search systems became increasingly popular and they use a range of different

techniques to translate keyword search terms to appropriate results. The expert

user typically interacts with databases using textual query languages; the reason

for this is that their power and flexibility that means they are capable of describing

complex and accurate queries. Learning such a language can be difficult and, as a

result, there are a number of applications that are designed to ease the process.

Educational applications typically use animations or analysis to provide students

with knowledge that aims to improve their understanding of query languages.

Although there is a large body of work that explores both keyword search

and educational applications they are not without limitations. Many keyword

applications are limited in their ability to build Boolean expressions, frequently

limited to the use of AND or OR operations rather than an appropriate mix of
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both. Some applications are also limited in the variety of data types they can

interpret with the vast majority of systems either interpreting non-textual data as

text or simply ignoring it. Much of the existing work within the field of educational

applications is also limited with many only suitable for the exploration of complete

queries rather than being aimed at helping students with the construction of queries.

Many educational applications also fail to address some well recognised difficulties

associated with learning SQL such as visualising the database, constructing join

operations and building Boolean expressions.

8.2 Prototype development

In response to the needs of various different database users a number of prototypes

were developed as part of this work.

Building join operations can be difficult for both developers and end users of

databases; Chapter 4 is dedicated to exploring a potential solution to this problem.

It introduces Shorthand SQL (SSQL), a software library that uses path finding

algorithms to automate the production of joins. As a proof-of-concept SSQL was

integrated into a number of different applications to simplify the query process

for the end user without burdening the developer with the task of generating

links between relations. The use of SSQL was also explored within the context

of CAFTAN and SiS; CAFTAN uses SSQL to connect the relations containing

given keywords, enabling it to perform cross-relation queries in a generic setting

(Section 5.4.1.4). The use of SSQL in an educational environment was also explored

but subsequently dismissed because of its potential to build a reliance on the system

to the point at which transitioning to a textual query language would become

difficult (Section 6.3).

Chapter 5 describes the Context Aware Free Text ANalysis (CAFTAN) pro-

totype that uses a weighted index to provide appropriate responses to keyword

queries in a generic environment. CAFTAN builds a detailed index that associates

a weight with each occurrence of textual, numeric or temporal data. The weights
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are combined in response to search terms to locate the most likely interpretation of

a query and the necessary relations are joined using SSQL. Features of CAFTAN

include:

• Boolean operations (Section 5.4.1.3): The index for CAFTAN is used in

such a way that enables it to build Boolean expressions with an appropriate

mix of AND and OR operations.

• Many-many queries (Section 5.4.2.1): CAFTAN automtically recognises

the cardinality between relations in a query and is capable of building queries

that can effectively extract information from relations connected in this way.

• Data types (Section 5.4.2.2): Unlike many existing systems CAFTAN will

recognise the presence of different data types in a query and will build

appropriate queries in response to this.

• Ranges (Section 5.4.2.3): The recognition of data types also extends to

ranges; CAFTAN is capable of recognising ranges, denoted with a single dash,

and applying them appropriately to the data within the database.

Chapter 6 begins by introducing the student user in addition to the primary

categories of novice and expert users (Section 6.1). In response to the needs of the

student user the SQL in Steps (SiS) prototype was developed; its primary aim was

to enable students to graphically build queries whilst building an understanding of

their textual counterparts. Key features of SiS include:

• Textual translations and live results (Sections 6.5.4.1 and 6.5.4.2): The

main focus of SiS is its live display of textual queries and their results. These

remain up to date as the student graphically builds a query.

• Visualisation of the database (Section 6.5.4.3): Visualising the database

structure as a whole is often considered difficult by many students; the

graphical representation of the database in SiS enables students to view the

schema as a whole in various levels of detail.
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• Graphical representations of Booleans (Section 6.5.4.4): Booleans are

frequently difficult for novice users to understand; in an attempt to combat

this SiS includes the graphical representation of Boolean expressions originally

developed for Elcee (Section 2.3.1).

• Contextual help (Section 6.5.4.5): To provide students with examples that

might help them with their learning process SiS automatically generates

examples for each of the clauses within the context of the database the

student is currently using. This avoids the need for users to learn a new

database schema to understand an example.

• Customisable/generic implementation (Section 6.5.4.8): No elements

of SiS are developed for a specific database and it is capable of working with

any SQLite database. This generic implementation along with numerous

customisable features means that SiS is suitable for a wide array of students

with a wide array of needs.

8.3 Evaluations and conclusions

The evaluations of both CAFTAN and SiS are presented in Chapter 7. The

evaluation of CAFTAN (Section 7.1) was twofold and involved quantifying the

accuracy of query interpretations along with the performance of indexing and

query execution. The methodology used to evaluate CAFTAN is both unique and

powerful in that it offers an insight into the way in which people interpret keyword

queries along with producing a dataset that can be used in future iterations of

CAFTAN or with other search applications. Comparing query interpretations

made by humans and two popular bespoke applications showed that, even without

customisations, CAFTAN consistently interpreted queries more accurately than

bespoke applications. When compared to the “gold standard” dataset generated by

participants CAFTAN interpreted 64% of queries in the same way, with the addition

of customisations increasing this to 81%. This represents significant benefits when
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compared to IMDb and TMDb, which interpreted queries in the same way as

humans 24% and 26% of the time respectively. CAFTAN performed particularly

well when presented with queries that span multiple relations or those beyond the

scope of the “template queries” used by many bespoke applications (Luo et al.,

2007) (Section 7.1.4.3). Rigorous performance tests on CAFTAN show that, for

the movie database (Appendix A), CAFTAN is capable of supplying fast query

responses. Tests showed that CAFTAN consistently returns results in less than

half a second, irrespective of the number of search terms or type of query.

To evaluate SiS it was integrated into a live undergraduate databases course and

the intention was to compare those students who used SiS against those who did not

(Section 7.2). Some limitations of the study (Section 7.2.8) meant this comparison

was not entirely possible but the potential benefits of the system were made clear.

Participants expressed concerns with learning SQL in a purely textual environment

and described how features such as the graphical representation of the database

structure improved their understanding of the language. Despite the majority of SiS

features being well received not all features were popular; the Boolean visualisation,

for example, was seen as confusing by many users. The help system used in SiS

also prompted much discussion; participants agreed there was a need for such help

but further development into the way in which it is presented was necessary. A

common dislike of help systems means they demand careful consideration to be

effectively integrated into a system. Although the study structure limited the

ability to make quantifiable claims regarding the benefits of SiS the qualitative

data gathered shows the system has real potential to provide students with benefits

that are unavailable, yet sorely needed, in a textual environment.

8.4 Future areas of research

Although the benefits of the work presented here are significant within the context

of both the novice and student users, there is undoubtedly scope for further work
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and improvements in this field. The following outlines a number of areas with the

potential for further work within the field.

8.4.1 CAFTAN and real world applications

The methodology used in the evaluation of CAFTAN (Section 7.1.1) is powerful

and brings numerous benefits such as the production of a reusable data set along

with an insight into the habits and expectations of the keyword search user.

Despite these benefits, the software was never used by participants and this

somewhat limits the extent to which it can be considered a viable alternative for

real world applications. To assess the potential for distributing CAFTAN as part

of a real world system it must be used in such an environment for testing purposes.

To encourage the mass use of CAFTAN the application would likely have to be

modified or reimplemented to aid the distribution of the software. It would be

possible to reimplement the algorithms CAFTAN uses in almost any programming

language that facilitates a database connection so a version of the system could

conceivably be integrated into a web based application allowing users to query a

database stored on a web server without demanding any specialist hardware or

software on the participants machine.

By integrating the capabilities of CAFTAN into a web based application with

a facility for users to rank the quality of the results of a query it would be possible

to establish a good understanding of the potential for it to be used in a real world

scenario.

8.4.2 Automating CAFTAN strengths

CAFTAN enables database administrators to specify strengths that can be used to

influence the interpretation of keyword queries (Section 5.4.1.5). These strengths

act as a multiplier and increase or decrease the weights associated with search

terms in the CAFTAN index; using sensible values for these weights can improve
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the quality of the interpretations made by CAFTAN, preventing the association of

terms with largely irrelevant attributes.

These strengths must be manually specified by the database administrator

using their knowledge of the schema and attribute contents. In future iterations of

CAFTAN it would be possible to automate the production of these strengths by

monitoring how the re-query functionality is used (??). Without strengths applied

to the movie database there is the potential for CAFTAN to misinterpret a query

for a movie title as one for a tagline; following this erroneous interpretation the user

is likely to request a re-query which indicates that the tagline interpretation was

incorrect. Observing similar behaviour by multiple users would make it possible

to automatically reduce the strength associated with the tagline to avoid future

misinterpretations.

8.4.3 Redesigned SiS study

Although SiS showed a lot of potential for improving the way in which learning

SQL can be approached the participants also addressed a number of ways in which

it could be improved. These include improvements in relation to the construction

of Boolean expressions (Section 7.2.6) and improvements regarding the help and

introductions given to students (Section 7.2.7). In light of the study and focus

group the appeal and benefits of SiS have the potential to be greatly improved, in

light of these improvements a more comprehensive study involving SiS could be

carried out. The study could be improved in the following ways:

• The duration of the study could be extended (ethical and departmental

approval permitting)

• The exposure of SiS could be improved, presenting it as an option when

students approach a new or challenging topic.
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• Decreased reliance on formative assessment and study based assessment.

Section 7.2.8.2 describes the lack of motivation for students to complete these

assessments so the study should not rely on them.

• Analysing the behaviour of those participants not using SiS (including speed

of query production and number of executions etc. See Section 8.4.4)

• Analysing the participants use of textual SQL after the study finishes. This,

coupled with the analysis of non-SiS participants, would enable a direct

comparison between the habits of those participants exposed to SiS against

those without access.

8.4.4 Observational study on textual queries

The evaluation of SiS (Section 7.2) attempts to show how the introduction of a

graphical system can improve the way in which students learn SQL. While this

evaluation undoubtedly highlighted a number of ways in which the learning process

could be improved its comparison against textual systems could have been improved.

All analysis of learning SQL in a textual environment was based upon existing

literature (Section 3.3.1) and the opinions of students (Section 7.2.4) without an

in-depth analysis of the problem.

To establish a detailed understanding of how new students interact with textual

SQL would require an observational study. Such a study would be need to be

unobtrusive to ensure the study itself did not impact on the learning process.

This could be achieved using a simple keylogging application that captures all the

interactions between a student and a database and would enable the collection of

data relating to:

• Number of query executions

• How databases are visualised (use of .schema or describe commands)

• Error handling (how quickly errors are resolved)
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Although this study would provide a valuable source of data relating to how new

students interact with databases in a textual environment it would undoubtedly

bring ethical constraints as a result of the use of keylogging software. The process

of capturing key strokes would need to be entirely voluntary and the participants

would need to be able to pause or stop the logging at any time.

8.4.5 Observational study on the use of help

The help made available to participants during the evaluation of SiS was rarely used

and the reason for this is largely due to the stigma associated with such assistance

integrated into software applications. There is little research into the reasons for

this negative association or the means to remedy it. To provide an insight into

the attitude that users have towards help systems an observational study could be

carried out to ascertain when, if ever, a user would use the software help.

To provide this information users could be presented with a small application

(of any type) with the task of completing an impossible task. After realising the

task is not obvious the user will have a number of options:

• Continue, in vain, manually searching through the functions of the program

to find the means to complete the task.

• Access the help.

• Give up and conclude that the task is impossible.

If the user were to access the appropriate help menu in the application they

would be met with a message informing them that their participation in the study

is over and the task is in fact impossible. Various metrics could be measured while

participants complete the study, including the time taken to locate the help menu

or give up. Throughout the study different help menus could be used to investigate

the extent to which the style of help effects how quickly users are willing to access

it. The help styles that could be used include:
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• Traditional help menu in toolbar

• “Take a tour” That can be dismissed at any point

• The use of “Tips” or “Hints” rather than the term “Help”

• Microsoft Office Assistant style help that attempts to offer automatic guidance

to users

The findings of the SiS study suggest that encouraging users to access the

help features will be difficult and very few users will use it before giving up and

failing to complete the task. Finding the best means of presenting help would have

huge benefits for the way in which software makes assistance available and could

potentially be applied to a broad range of different software applications.

8.5 Closing remarks

This thesis described the need to simplify access the contents of relational databases;

their widespread use means a massive number of different users demand access to

their contents through the use of applications that reflect their technical under-

standing. Two main classes of user were defined: novice and expert with a third

category of students describing those users transitioning from novice to expert.

In response to the needs of novice and student users two prototypes were

designed, developed and evaluated. CAFTAN is a keyword search application

that translates search terms to SQL that can be executed directly on a relational

database. The evaluation of CAFTAN showed that it is capable of consistently and

quickly interpreting search terms in the same way as humans, out performing two

bespoke applications in many areas. An educational application, SiS, was developed

to help students become expert users; it utilises many graphical components in

order to assist users in learning the intricacies of textual SQL. The integration

of SiS into a live undergraduate databases course showed that the inclusion of

carefully designed graphical elements can assist new users in many areas such as
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building join operations and maintaining an awareness of the result that a query

will yield.

Although both applications are designed to meet similar goals, easing access to

relational databases, they are significantly different in response to the category of

user they are designed for. These prototypes offer interesting improvements over

much of the existing work in the field and also provide the potential for further

research and integration into real world applications.
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Appendix A

Movie database

The following outlines a sample database which is referred to throughout this thesis.

This movie database is used to provide context in a number of examples and also

in the evaluation of the CAFTAN system (Chapter 5).

A.1 The Movie Database (TMDb)

TMDb is a website similar in functionality to the more well known IMDb; it allows

users to contribute information and provides a set of APIs to extract its contents

(Apiary, 2015). These APIs were used to obtain information from TMDb and

populate a relational database representing a subset of the data.

A.1.1 API responses

The contents of the TMDb database can be accessed using a REST API that

returns JSON strings containing the relevant information. HTTP GET parameters

are used to pass any data required with a request such as IDs and an access token

(required for all API calls). To populate the database used in this work three API

calls were used:

1. Production companies - providing a list of movies produced by a given

company
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2. Movies - providing details of a given movie, including genres

3. Credits - providing a list of actors and the characters they portray along with

crew members and their jobs for the given movie

The following shows sample API calls for each of the above, for brevity the

JSON responses are not given in their entirity.

A.1.1.1 Production companies

The following call returns a list of the movies produced by “Warner Bros”, with

the ID 6194. The ID of the production companies can be found manually on the

TMDb website: http://api.themoviedb.org/3/company/6194/movies
{

"id" : 6194 ,

"page" : 1,

" results " : [{

" adult " : false ,

" backdrop_path " : "/ 7u3pxc0K1wx32IleAkLv78MKgrw.jpg ",

" genre_ids " : [12 , 28 , 53 , 878],

"id" : 603 ,

" original_language " : "en",

" original_title " : "The Matrix ",

" overview " : " Thomas A. Anderson is a man living two lives. By day he is an average computer programmer

and by night a malevolent hacker known as Neo , who finds himself targeted by the police when he

is contacted by Morpheus , a legendary computer hacker , who reveals the shocking truth about our

reality. ",

" release_date " : "1999 -03 -30",

" poster_path " : "/ gynBNzwyaHKtXqlEKKLioNkjKgN.jpg ",

" popularity " : 5.088707 ,

" title " : "The Matrix ",

" video " : false ,

" vote_average " : 7.6 ,

" vote_count " : 4507

}, {

" adult " : false ,

" backdrop_path " : "/ 65JWXDCAfwHhJKnDwRnEgVB411X.jpg ",

" genre_ids " : [28 , 80 , 18],

"id" : 272 ,

" original_language " : "en",

" original_title " : " Batman Begins ",

" overview " : " Driven by tragedy , billionaire Bruce Wayne dedicates his life to uncovering and defeating

the corruption that plagues his home , Gotham City. Unable to work within the system , he instead

creates a new identity , a symbol of fear for the criminal underworld - The Batman. ",

" release_date " : "2005 -06 -15",

" poster_path " : "/ xiosOeLfzPbfLfqui41kSWnO0sZ.jpg ",

" popularity " : 4.573057 ,

" title " : " Batman Begins ",

" video " : false ,

" vote_average " : 7.2 ,

" vote_count " : 3428

http://api.themoviedb.org/3/company/6194/movies
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}

],

" total_pages " : 61 ,

" total_results " : 1220

}

A.1.1.2 Movies

Once a list of movies, and their associated IDs, is established these IDs can be

used to find further information regarding a specific movie. The following finds

the information about the movie “The Matrix” (ID 603 - found in the production

companies API call): http://api.themoviedb.org/3/movie/603
{

" adult " : false ,

" backdrop_path " : "/ 7u3pxc0K1wx32IleAkLv78MKgrw.jpg ",

" belongs_to_collection " : {

"id" : 2344 ,

"name" : "The Matrix Collection ",

" poster_path " : "/ lh4aGpd3U9rm9B8Oqr6CUgQLtZL.jpg ",

" backdrop_path " : "/ bRm2DEgUiYciDw3myHuYFInD7la.jpg "

},

" budget " : 63000000 ,

" genres " : [{

"id" : 12 ,

"name" : " Adventure "

}, {

"id" : 28 ,

"name" : " Action "

}, {

"id" : 53 ,

"name" : " Thriller "

}, {

"id" : 878 ,

"name" : " Science Fiction "

}

],

" homepage " : "http :// www.warnerbros.com / movies /home - entertainment /the - matrix /37313ac7 -9229 -474d -a423 -

44b7a6bc1a54.html ",

"id" : 603 ,

" imdb_id " : " tt0133093 ",

" original_language " : "en",

" original_title " : "The Matrix ",

" overview " : " Thomas A. Anderson is a man living two lives. By day he is an average computer programmer and

by night a malevolent hacker known as Neo , who finds himself targeted by the police when he is

contacted by Morpheus , a legendary computer hacker , who reveals the shocking truth about our reality. "

,

" popularity " : 3.617395 ,

" poster_path " : "/ gynBNzwyaHKtXqlEKKLioNkjKgN.jpg ",

" production_companies " : [{

"name" : " Village Roadshow Pictures ",

"id" : 79

}, {

"name" : " Groucho II Film Partnership ",

"id" : 372

http://api.themoviedb.org/3/movie/603
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}, {

"name" : " Silver Pictures ",

"id" : 1885

}, {

"name" : " Warner Bros. ",

"id" : 6194

}

],

" production_countries " : [{

" iso_3166_1 " : "AU",

"name" : " Australia "

}, {

" iso_3166_1 " : "US",

"name" : " United States of America "

}

],

" release_date " : "1999 -03 -30",

" revenue " : 463517383 ,

" runtime " : 136 ,

" spoken_languages " : [{

" iso_639_1 " : "en",

"name" : " English "

}

],

" status " : " Released ",

" tagline " : " Welcome to the Real World. ",

" title " : "The Matrix ",

" video " : false ,

" vote_average " : 7.6 ,

" vote_count " : 4508

}

A.1.1.3 Credits

The ID of a movie can also be used to find the credits (cast and crew) for a movie.

The following API call produces the credits for the movie “The Matrix” (ID 603):

http://api.themoviedb.org/3/movie/603/credits
{

"id" : 603 ,

"cast" : [{

" cast_id " : 34 ,

" character " : "Neo",

" credit_id " : " 52fe425bc3a36847f80181c1 ",

"id" : 6384 ,

"name" : " Keanu Reeves ",

" order " : 0,

" profile_path " : "/ id1qIb7cZs2eQno90KsKwG8VLGN.jpg "

}, {

" cast_id " : 21 ,

" character " : " Morpheus ",

" credit_id " : " 52fe425bc3a36847f801818d ",

"id" : 2975 ,

"name" : " Laurence Fishburne ",

" order " : 1,

" profile_path " : "/ mh0lZ1XsT84FayMNiT6Erh91mVu.jpg "

http://api.themoviedb.org/3/movie/603/credits
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}, {

" cast_id " : 22 ,

" character " : " Trinity ",

" credit_id " : " 52fe425bc3a36847f8018191 ",

"id" : 530 ,

"name" : "Carrie -Anne Moss",

" order " : 2,

" profile_path " : "/ 8iATAc5z5XOKFFARLsvaawa8MTY.jpg "

}, {

" cast_id " : 23 ,

" character " : " Agent Smith ",

" credit_id " : " 52fe425bc3a36847f8018195 ",

"id" : 1331 ,

"name" : "Hugo Weaving ",

" order " : 3,

" profile_path " : "/ 3DKJSeTucd7krnxXkwcir6PgT88.jpg "

}

],

"crew" : [{

" credit_id " : " 52fe425bc3a36847f8018117 ",

" department " : " Directing ",

"id" : 9339 ,

"job" : " Director ",

"name" : "Andy Wachowski ",

" profile_path " : "/ nh5SBuv9cm1FByTc7dlV0zyO3GO.jpg "

}, {

" credit_id " : " 52fe425bc3a36847f801811d ",

" department " : " Directing ",

"id" : 9340 ,

"job" : " Director ",

"name" : "Lana Wachowski ",

" profile_path " : "/ fxZ7SpJCZ9DgJERWEpGmn5a4mdp.jpg "

}

]

}

A.2 Structuring the data

The API requests submitted to TMDb, and their responses, offer little insight as to

the structure TMDb uses to store the data. As a result it is necessary to design a

database schema suitable for storing the subset of the data used in this work. The

standard practice of normalisation was carried out in order to eliminate duplicate

entries from the database. The result of this process is a database consisting of

eight relations; four of them contain meaningful information relating to genres,

production companies, people and movies while the remaining four act primarily

as junction tables with acts_in and crew_on including the role associated with

the relationship. Figure A.1 shows the structure of the database.
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movie
id : INT
original_title : VARCHAR(200)
release_date : DATETIME
revenue : INT
runtime : INT
title : VARCHAR(200)
tagline : VARCHAR(500)

produced
id : INT
prod_id : INT
movie_id : INT

is_genre
id : INT
movie_id : INT
genre_id : INT

genre
id : INT
name : VARCHAR(200)

crew_on
id : INT
movie_id : INT
person_id : INT
job : VARCHAR(200)
department : VARCHAR(200)

people
id : INT
name : VARCHAR(200)

acts_in
credit_id : INT
movie_id : INT
person_id : INT
character_played : VARCHAR(500)

prod_company
id : INT
name : VARCHAR(200)

8
8

8
8

8
8

8

8

1

1

1

1

1

Figure A.1: The movie database schema

A.3 The relational movie database

To populate the database three API calls (Section A.1.1) were used to find the

information relating to movies produced by a selection of the highest grossing

production studios1. A small application was written to automate the process,

extracting all films produced by the given studios along with their associated genres

and credits and populating a database with the results. A relational data structure

was designed and implemented for this purpose, in practice the information was

stoed in a MySQL database.

By using the TMDb APIs and the schema described here a database containing

5735 movies and their associated actors, crew, genres and production companies

was produced. Generating the database from the highest grossing film studios

increases the likelihood that its contents would be familiar to many users.

1http://www.the-numbers.com



Appendix B

CAFTAN

This appendix includes information relevant to the CAFTAN prototype described

and evaluated in Chapters 5 and 7 respectively. It includes sample customisation

descriptions, forms and questionnaires used in the evaluation.

B.1 CAFTAN study forms

In Chapter 7 the evaluation for CAFTAN is described, the following forms were

presented to users, online, prior to their commencement in the study.

B.1.1 Research description

The aim of this document was to make clear the aims of the study as well as the

methodology used to achieve them. The document also included contact details of

both the researcher and an independent third party should any complaints arise.



PHIL GARNER / PHD STUDY
Welcome

Thanks for coming to help me with my PhD. This should only take you 5 minutes and
it'll really help me out with my research. Thank you!

Research description
Can a computerised system accurately determine the meaning of keyword search
terms?

There is a lot of research into how computer systems interpret keyword searches.
Unlike Google and other web search engines this research is looking at relational
databases and how novice users extract data from them.

Relational databases are used for loads of different applications across the web and in
other areas too; usually people get data out of these databases by writing SQL. This is
what SQL looks like:

SELECT title, year

FROM film

WHERE title LIKE '%Indiana Jones%';

As you can imagine, SQL isn't really suited to the novice user, the aim of this research
is to convert keyword queries like 'Indiana Jones' to SQL as accurately as possible. To
work out how accurately these translations are we need to build up a picture of how
humans interpret keyword queries, that's where you come in!

Your participation
Your participation in this study is completely voluntary and you can withdraw at any
time during the study. Once you submit the questionnaire your responses are
completely anonymised, as a result you cannot withdraw from the study after your
final submission.

After clicking "Next" you will be asked to complete a consent form before continuing
to the study.

Concerns or complaints
If you have any concerns or complaints about this project then you can contact Gerald
Kotonya (Director of PhD studies):

Email: g...@lancaster.ac.uk (click to view address)

Phone: 01524 510308

Address:
C33,
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School of Computing and Communications,
InfoLab21,
South Drive,
Lancaster University,
Lancaster,
LA1 4WA

Philip Garner
I am a PhD student researching at InfoLab21 at Lancaster University. Before I started
my PhD I studied on the Computer Science undergraduate degree. Both my final year
project for my degree and my PhD focus on enabling easier access to the contents of
relational databases.

Email: p...@lancaster.ac.uk (click to view address)

Address:
C22, School of Computing and Communications,
InfoLab21,
South Drive,
Lancaster University,
Lancaster,
LA1 4WA

NEXT
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B.1.2 Consent form

The following consent form was used to clarify that the participants understood

the details of the study before it commenced.

PHIL GARNER / PHD STUDY
Consent

The purpose of this consent form is to check that you are aware of your rights,
understand what will be required of you and agree to take part in the study. Please
read the following and tick the box below and click 'I agree'.

1. I have read the information page and had any questions answered by the
researchers satisfactorily.

2. I agree to take part in the research and understand that my participation is
voluntary.

3. I am satisfied that the information I provide will be treated confidentially by the
researchers.

4. I understand that I have the right to terminate my involvement at any time
during this questionnaire. This can be done by selecting clicking the header at
the top of any page to reveal the menu then clicking 'Withdraw'.

5. I agree that any quotations from this questionnaire can be used in the thesis
and any other publications (if applicable). I understand that my quotations will
be used anonymously.

I agree to the above terms

NEXT
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B.1.3 Evaluation questions

The following 100 keyword searches were used in the evaluation of CAFTAN. They

are shown here in alphabetical order but were used at random in the accuracy

study. In the performance evaluation of CAFTAN (Section 7.1.5) each query

was executed 100 times on both the generic and customised implementations

of CAFTAN; the average execution times are shown (in milliseconds) for each

CAFTAN implementation respectively.

1. 08/07/2011 (59, 37)

2. 100-150 (371, 380)

3. 100-180 romance comedy (453,

442)

4. 120-180 Drama (329, 291)

5. 120-180 Drama Thriller (357, 315)

6. 14/10/1999 (68, 40)

7. 180-240 (235, 209)

8. 180-240 Thriller (241, 218)

9. 1999 Thriller (147, 114)

10. 2001 (135, 111)

11. 2001 Gary Oldman (253, 234)

12. 2002 Drama (145, 130)

13. 2003 Will Ferrell (249, 245)

14. 2005 (230, 219)

15. 2005 Bruce Willis (184, 169)

16. 2007 Adventure (144, 117)

17. 60-120 (989, 979)

18. 60-120 Family (465, 452)

19. 60-120 action thriller (616, 572)

20. Action Donald Sutherland (374,

332)

21. Action Eva Green (344, 306)

22. Action Fox 2000 Pictures (178,

151)

23. Action Paramount Pictures (179,

148)

24. Action Thriller Drama (141, 115)

25. Action Universal Pictures (142,

125)

26. Adam Scott Dimension Films (233,

234)

27. Adventure Buena Vista (152, 134)
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28. Alexander (238, 288)

29. Animation Thriller (317, 143)

30. Anna Kendrick Universal Pictures

(368, 250)

31. Anne Hathaway Legendary Pic-

tures (373, 276)

32. Astro (180, 128)

33. Avatar (155, 111)

34. Cameron Diaz (244, 211)

35. Chris Evans Mark Ruffalo (213,

179)

36. Christian Bale Heath Ledger (176,

147)

37. Christopher Walken Amanda

Plummer (169, 154)

38. Colin Farrell (208, 195)

39. Comedy John Cleese (278, 279)

40. Comedy Justin Timberlake (258,

242)

41. Comedy Sophie Evans (260, 246)

42. Crime Jim Broadbent (288, 262)

43. Crime Pruitt Taylor Vince (308,

260)

44. Crime Uma Thurman (294, 249)

45. Crime Universal Pictures (180,

148)

46. Crime Warner Bros (156, 128)

47. Dominic West (217, 195)

48. Domino (126, 101)

49. Drama Arron Shiver (216, 196)

50. Drama Island Pictures (146, 127)

51. Drama Legendary Pictures (116,

96)

52. Drama Phyllis Somerville (195,

188)

53. Drama Richard Gere (227, 249)

54. Emma Thompson Village Road-

show Pictures (245, 251)

55. Family Adam West (274, 249)

56. Family Comedy Romance (145,

126)

57. Fantasy Joel Fry (230, 216)

58. Fantasy Megan Fox (246, 227)

59. Fight Club (138, 114)

60. George Clooney Brad Pitt (179,

169)

61. Harry Potter (130, 117)
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62. History War (111, 93)

63. Horror Cold Day Ltd (102, 85)

64. Horror Dimension Films (104, 87)

65. Iron Man (111, 104)

66. Jackie Brown (99, 93)

67. Jamie Parker (159, 160)

68. Jasmine Dustin (165, 162)

69. Jimmy Fallon Perdido Prod (185,

187)

70. Josh Gad (188, 183)

71. Julie Walters Harry Potter (231,

223)

72. Katie Holmes (227, 203)

73. Keanu Reeves Laurence Fishburne

(169, 144)

74. Knocked Up 17 Again (113, 93)

75. Lauren Tom (203, 191)

76. Lincoln (119, 95)

77. Lord of the Rings Deep Impact

(366, 361)

78. Lucy Liu (293, 241)

79. Matt Winston (279, 237)

80. Musical Woody Buck (301, 254)

81. Mystery Drama (145, 118)

82. Noah Ringer (226, 210)

83. Pat Corley (240, 215)

84. Robbie Coltrane (251, 221)

85. Romance Miramax Films (164,

117)

86. Romance Trent Ford (257, 198)

87. Ron Cook (250, 195)

88. Science Fiction Adventure (156,

120)

89. Shrek (126, 96)

90. Skye Dennis (203, 173)

91. Star Trek (133, 94)

92. Suspense Alec Baldwin (230, 183)

93. The Core Up (410, 355)

94. Thriller Gary Oldman (310, 273)

95. Thriller Joe Dixon (318, 288)

96. Tim Robbins DreamWorks (302,

288)

97. Tim Robbins Morgan Freeman

(213, 198)

98. Tom Hardy Michael Caine (242,

234)

99. War Horror (141, 125)

100. William Hurt (230, 250)
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B.2 CAFTAN customisations

Chapter 5 describes CAFTAN, a generic keyword search system that can be

customised with respect to both the way in which it handles search terms and also

the style with which the results are displayed. The following XML documents show

how the customisations are described.

B.2.1 Weight strengths

The following is an example of an XML file used to customise the weights of

attributes within the movie database
<? xml version ="1.0" encoding =" UTF -8" standalone =" no"?>

<strengths >

<!-- acts_in -->

<strength relation =" acts_in " attribute =" credit_id " strength ="0.2"></ strength >

<strength relation =" acts_in " attribute =" movie_id " strength ="0.2"></ strength >

<strength relation =" acts_in " attribute =" person_id " strength ="0.2"></ strength >

<!-- crew_on -->

<strength relation =" crew_on " attribute =" credit_id " strength ="0.2"></ strength >

<strength relation =" crew_on " attribute =" movie_id " strength ="0.2"></ strength >

<strength relation =" crew_on " attribute =" person_id " strength ="0.2"></ strength >

<strength relation =" crew_on " attribute ="job" strength ="0.8"></ strength >

<strength relation =" crew_on " attribute =" department " strength ="0.8"></ strength >

<!-- genre -->

<strength relation =" genre " attribute ="id" strength ="0.2"></ strength >

<strength relation =" genre " attribute ="name" strength ="1.2"></ strength >

<!-- is_genre -->

<strength relation =" is_genre " attribute ="id" strength ="0.2"></ strength >

<strength relation =" is_genre " attribute =" movie_id " strength ="0.2"></ strength >

<strength relation =" is_genre " attribute =" genre_id " strength ="0.2"></ strength >

<!-- movie -->

<strength relation =" movie " attribute ="id" strength ="0.2"></ strength >

<strength relation =" movie " attribute =" original_title " strength ="1.5"></ strength >

<strength relation =" movie " attribute =" release_date " strength ="1.2"></ strength >

<strength relation =" movie " attribute =" revenue " strength ="1.0"></ strength >

<strength relation =" movie " attribute =" runtime " strength ="1.0"></ strength >

<strength relation =" movie " attribute =" title " strength ="1.5"></ strength >

<strength relation =" movie " attribute =" tagline " strength ="0.5"></ strength >

<!-- people -->

<strength relation =" people " attribute ="id" strength ="0.2"></ strength >

<strength relation =" people " attribute ="name" strength ="1.2"></ strength >

<!-- prod_company -->

<strength relation =" prod_company " attribute ="id" strength ="0.2"></ strength >

<strength relation =" prod_company " attribute ="name" strength ="1.0"></ strength >

<!-- produced -->
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<strength relation =" produced " attribute ="id" strength ="0.2"></ strength >

<strength relation =" produced " attribute =" movie_id " strength ="0.2"></ strength >

<strength relation =" produced " attribute =" prod_id " strength ="0.2"></ strength >

</ strengths >

B.2.2 Visualisation

The following is a sample XML file used to produce customised results visualisations.
<query_descriptions >

<query_description >

<search >

<relation name=" genre "></ relation >

</ search >

<show >

<row >

<attribute relation =" movie " attribute =" title " span="3" style =" italic "></ attribute >

</row >

<row >

<attribute relation =" movie " attribute =" revenue "></ attribute >

<attribute relation =" movie " attribute =" runtime "></ attribute >

<attribute relation =" movie " attribute =" release_date "></ attribute >

</row >

</show >

<order_by >

<order relation =" movie " attribute =" title " type = "ASC"></ order >

</ order_by >

</ query_description >

<query_description >

<search >

<relation name=" people "></ relation >

</ search >

<show >

<row >

<attribute relation =" movie " attribute =" title " span="3" style =" italic "></ attribute >

</row >

<row >

<attribute relation =" movie " attribute =" revenue "></ attribute >

<attribute relation =" movie " attribute =" runtime "></ attribute >

<attribute relation =" movie " attribute =" release_date "></ attribute >

</row >

</show >

<order_by >

<order relation =" movie " attribute =" title " type = "ASC"></ order >

</ order_by >

</ query_description >

</ query_descriptions >
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B.3 Complete dataset

The raw data used in the evaluation of CAFTAN, including performance data and

user interpretations, is openly available from Lancaster University data archive at

http://dx.doi.org/10.17635/lancaster/researchdata/79

http://dx.doi.org/10.17635/lancaster/researchdata/79


Appendix C

SiS

Chapter 6 describes SQL in Steps which is evaluated in Chapter 7. Throughout

this evaluation a number of forms, questionnaires and assessments were used. This

appendix includes all material relating to SiS and it’s evaluation.

• Section C.1 includes all the forms, questionnaires and assessments used

throughout the study.

• Section C.2 describes the various configurable options in SiS.

• Section C.3.2 is a full transcription of the focus group that took place following

the SiS study.

C.1 SiS study forms

The following forms, questionnaires and assessments were given to students at

various points in the SiS evaluation.

C.1.1 Start of study

At the start of the study, participants were given three documents:

• A research description

• A participation consent form
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• An initial assessment

C.1.1.1 Research description

The aim of this document was to make clear the aims of the study as well as the

methodology used to achieve them. The document also included contact details of

both the researcher and an independent third party should any complaints arise.

 

Learning SQL in steps 

Can the way in which you learn SQL be improved through the introduction of 

graphical user interfaces specifically designed for educational purposes? This 

research is about exploring whether the introduction of software specifically 

designed for educational purposes can improve students understanding of SQL. 

A central part of any database course involves developing the ability to extract 

information from a relational database using SQL. Traditionally this is taught using a 

textual interface such as that used with MySQL or SQLite. 

As part of this research we have developed a user interface specifically designed 

for teaching SQL: SQL in Steps (SiS). This user interface will guide you through the 

process of building an SQL statement, enabling you to view the SQL you are building 

and the results it will return. The intention is that you will become comfortable using 

the user interface to build SQL statements to the point at which you can write SQL 

statements without the use of SiS. 

This study will involve observing your interaction with relational databases through SiS 

and other interfaces. If you agree to take part in the study we will first assess your 

understanding of SQL using a short series of questions; your answers to these 

questions will only contribute towards this research and will, in no way, have an 

impact on your grade for the course. After assessing your understanding we will 

randomly allocate you into one of two groups; one group will have access to SiS for 

the first three weeks of your SQL workshops and the other will complete the course 

without access to SiS. If you do not agree to take part in the study you will not be 

given any access to SiS. At the end of week eight all access to SiS will be terminated 

prior to the assessed coursework which you will receive in week nine for marking in 

week ten. At the end of the study you may get invited to attend a focus group to 

further discuss SiS and its potential development in the future, this is entirely optional. 

Throughout the study we will use various different pieces of information to follow you 

through the process of learning SQL; these include Moodle logs, SiS usage logs, 

formative assessment results and questionnaires. All of this information will be 

anonymised at the earliest opportunity and you will never be identified in any 

subsequent publications or thesis that stem from this work. 

  



 

Concerns or complaints 

If you have any concerns or complaints about this project then you can contact 

Gerald Kotonya (Director of PhD studies): 

Email:   g.kotonya@lancaster.ac.uk 

Phone:  01524 510308 

Address:  C33,  

School of Computing and Communications, 

InfoLab21, 

South Drive, 

Lancaster University, 

Lancaster, 

LA1 4WA 

Philip Garner 
I am a PhD student researching at InfoLab21 at Lancaster University. Before I started 

my PhD I studied on the Computer Science undergraduate degree. Both my final 

year project for my degree and my PhD focus on enabling easier access to the 

contents of relational databases. 

Email:   p.garner@lancaster.ac.uk 

Address: C22, 

School of Computing and Communications, 

InfoLab21, 

South Drive, 

Lancaster University, 

Lancaster, 

LA1 4WA 
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C.1.1.2 Consent form

The following consent form was used to clarify that the participants understood

the details of the study before it commenced.

 

Participant consent form 
Project title: Assessing the effectiveness of purpose build graphical 

user interfaces on the process of learning SQL 

Name of participant:  

Names of researchers: Philip Garner (p.garner@lancaster.ac.uk) 

John Mariani (jam@comp.lancs.ac.uk)  

The purpose of this consent form is to check that you are aware of your rights, 

understand what will be required of you and agree to take part in the study. Please 

read the following, tick next to each point and sign the consent form. 

1. I have had the opportunity to consider the information, ask questions 

about the research and have had these answered satisfactorily. 

2. I agree to take part in the research and understand that my 

participation is voluntary. 

3. I am satisfied that the information I provide will be treated 

confidentially by the researchers. 

4. I understand that I have the right to terminate my involvement in the 

study at any point during the study without giving reason for this. The 

study will end on 12th December 2014 (the end of Michaelmas term). 

5. I agree that quotations from questionnaires can be used in the thesis 

and any other publications (if applicable). I understand that my 

quotations will be used anonymously. 

6. I agree that the researchers may, anonymously, use logs from 

Moodle relating to the SCC130 course.  

7. I give permission for the researchers to use anonymous results from 

formative assessments I participate in during the SCC130 module. 

Participant’s signature: 

 

Researcher’s signature: 

 

Date: 
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C.1.1.3 Assessment

The participants completed the following initial assessment to establish their

understanding prior to the commencement of the study.

 

Initial SQL assessment 

Name of participant:  

Given the following database structure answer the questions below to the best of 

your ability. Your answers should take the form of an SQL SELECT statement. 

 

1. Display all the information in the actors table. 

2. Display all the information in the films table. 

3. Show a list of actors names ordered alphabetically by their last name. 

4. Provide a list of the top ten films according to their rating (you can disregard the 

possibility that two films might have the same rating). 

5. 



 

Show a list of all the actors with the last name “Connery”. 

6. Show a list of all the actors with the last name “Tom” and the first name “Cruise”. 

7. Show a list of all the characters played by actors with the first name “Morgan” 

and the last name “Freeman”. 
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8. Show a list of all the actors who appeared in the film called “The Dark Knight”, 

sort these results alphabetically according to the actors last name. 

9.  Show a list of actors and the number of films they have appeared in. 

10. Show a list of films and the number of actors that have in them, only display those 

films with more than 10 actors.  
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C.1.1.4 Getting started guide

The following guide was made available to students on the home page for SQL in

Steps and also on the Moodle pages for the module.

sqlinsteps.co.uk 

Getting started with SQL in Steps 

sqlinsteps.co.uk 

Thanks for taking part in the study regarding the way in which you learn SQL. I hope 

you find SQL in Steps (SiS) useful throughout the next couple of weeks. 

Familiarising yourself with the user interface 
 

 

The user interface for SiS consists of five main components: 

1. The workflow bar – used for switching between clauses 

2. The query builder – Used for most of your query building 

3. The database visualisation – Used for building the FROM clause and visualising 

the database structure 

4. The SQL – The textual version of your query, this is the actual SQL executed 

5. The query results – The results of your query are shown here 

Any changes you make to the query builder or the database visualisation will be 

immediately reflected in the SQL and results panel. 

Getting started 
Here we’ll talk you through building your first query with SiS. 

Head to sqlinsteps.co.uk 

Go to sqlinsteps.co.uk and pick a database to use. 

1 

2 

4 

5 

3 



sqlinsteps.co.uk 

Log in using your university credentials 

Use your usual university username and password to log into SiS. 

Pick a table to query 

On the right of SiS is a graphical representation of the database structure, tables are 

shown in blue and relationships in orange. Click on a table to view its contents. You 

should have noticed that the SQL has updated to show the table you chose in the 

FROM clause and the results display the contents of the table. You have now built 

your first query using SiS, you should be able to understand how your actions with the 

graphical user interface (GUI) have affected the SQL and the results. 

Choosing the attributes (or columns) to view 

The select clause can be used to show different columns in your results, if you don’t 

pick any then SiS uses SELECT * which will show all columns. To edit your SELECT 

clause place a tick next to the boxes you would like to see in the results. As you do 

this you will see both the SQL and results update. Remember, the columns you pick 

must be from tables that appear in your FROM clause. 

 

 

Adding a condition 

Often you don’t want to see all the rows in the table, we use the WHERE clause to 

only show the ones we are interested in. SiS uses a graphical representation of 

WHERE clauses to help you understand them. To add criteria switch to the WHERE 

clause using the workflow at the top of the page. Click “Add criteria” to insert a new 

criteria widget, enter your criteria on the widget, these generally take the form of 

<attribute> <comparison> <criteria>; for example: id = 1. 
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sqlinsteps.co.uk 

 

Order your results 

SQL makes no promises about the order the results are returned in so, if you want to 

display your results in a sensible order you can use an ORDER BY CLAUSE. Switch to 

the ORDER BY clause in the workflow bar at the top of the page. Here you will see a 

set of attributes you can order by, pick one. Then select the way in which you want 

the results to be ordered (ascending or descending). As you do this you will see the 

SQL and results update accordingly. 

 

Customise your query more 

In this quick tutorial we have built a SELECT statement consisting of a SELECT, FROM, 

WHERE and ORDER BY clause, it gives you an insight into how SiS can be used and 

hopefully provides you with an idea of its capabilities. If you wish to customise your 
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sqlinsteps.co.uk 

query further then feel free to do so by switching between the clauses and making 

adjustments accordingly. Always try and understand how the changes you make 

impact the SQL and the results it produces. 

FAQ 

What databases will we use SiS with? 

The databases from your weekly lab sessions will be made available for use with SiS. 

You do not have to do anything to make these available, they will be added to SiS 

for you. 

Can I use SiS at home? 

Yes, you can use SiS anywhere you like. You will always need to log in using your 

university details but it doesn’t matter where in the world you are! 

Can I use SiS on a mobile device? 

SiS has been designed to be used at a computer while you learn SQL rather than as 

a second screen. Although it will work on a mobile device it is best used on a 

desktop. 

What database engine does SiS use? 

Throughout your SCC130 labs you will have the opportunity to use MySQL and 

SQLite; SiS uses SQLite behind the scenes. SQLite was chosen for its ease of setup, we 

can add new databases to SiS by simply adding a new SQLite file to a directory. 

Who are the researchers involved? 

Philip Garner is the primary researcher and is working on his PhD under the 

supervision of John Mariani. 

Why do I have to log in to use SiS? 

This ensures that only those people who have been granted access actually have 

access to SiS and also allows us to check how different users use SiS. 

Can I share my log in details with a friend? 

Sharing your log in details is not only a security risk on your part (they are the same 

details used to access all of your university details) but it can also skew the study 

results so please do not do it. If you suspect someone has access to your account 

then change your password immediately 

When will I be able to use SiS until? 

28th November 2014. At the end of week 8 all access to SiS will be removed and you 

won’t be able to access it anymore, this means that no one will have access to it 

during the assessed coursework. 
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sqlinsteps.co.uk 

I can’t get to grips with SiS, what shall I do? 

First of all check out some of the videos made to show you how to use SiS, you can 

find these on youtube.sqlinsteps.co.uk. If these don’t make things any clearer please 

do contact me either in the SCC130 labs or by email at p.garner@lancaster.ac.uk or 

phil@sqlinsteps.co.uk.  

I feel like I don’t need SiS anymore. 

If you feel like SiS has helped you master SQL and you can write textual queries 

without it then there is no need to use it anymore. The aim is to make you 

comfortable writing textual queries, if you need some more help then come back to 

SiS whenever you need. 

I’ve found a bug, can you fix it? 

If you find a problem with SiS please get in touch with me on 

p.garner@lancaster.ac.uk or phil@sqlinsteps.co.uk, I cannot promise to fix the bug 

but I will look into it and fix it where possible. 

I don’t like SiS, do I have to use it? 

Absolutely not; if you don’t think SiS is not benefiting your learning or you can’t get to 

grips with it there is no requirement that you use it. It will remain available to you 

throughout the study but you have no obligation to use it. 
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C.1.2 End of study

To establish the extent to which the user improved throughout the duration of the

study they were each given an assessment and a questionnaire at the end of the

three week study.

C.1.2.1 Assessment

The following assessment aimed to establish the understanding of SQL after three

weeks of practical assignments with/without SiS use.



 

Final SQL assessment 

Name of participant:  

Library Card number:  

Username (in block capitals): 

Given the following database structure answer the questions below to the best of 

your ability. Your answers should take the form of an SQL SELECT statement. 

 

1. Display all the information in the students table. 

2. Display a list of all course titles and their descriptions. 

3. Show a list of students names (first and last) ordered alphabetically by their last 

name. 
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4. How many grades are above 70?  

5. Find the title of the course with the code “SCC130”. 

6. Find the IDs of the students with the first name “Philip” and the last name 

“Garner”. 

7. Show a list of all the course titles and codes that the student with the ID 123456 is 

registered on. 

C.1 SiS study forms | 261



 

8. Show a list of all the students (first name and last name) registered on the course 

with the code “SCC110”. 

9. Show a list of students and the number of courses they are enrolled on. 

10. Show a list of the courses that have less than 20 students enrolled on them.  
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C.1.2.2 Non-SiS user questionnaire

Those participants who did not use SiS were given a questionnaire including

questions relating to their understanding of SQL and learning it in a textual

environment.

 

Questionnaire (non SiS user) 

Name of participant:  

Library Card number:  

Username (in block capitals): 

SQL understanding 
1. How easy did you find the following areas of SQL to master: 

a. Error messages 

 

b. Join operations (querying multiple tables) 

 

c. Visualising the database structure 

 

d. Boolean expressions (AND and OR operations) 

 

2. How would you rate your understanding of the following SQL clauses: 

a. SELECT 

 

b. FROM 

 

  



 

c. WHERE 

 

d. ORDER BY 

 

e. GROUP BY 

 

f. LIMIT 

 

g. HAVING 

 

Interface to SQL 
To what extent do you agree with the following statements: 

3. The lack of graphical component made learning SQL seem daunting. 

 

4. A textual interface alone is sufficient for a novice user to learn SQL. 

 

5. Did you use any graphical tools outside of the lab sessions (including access 

to SiS through your peers) to supplement your learning? If so, which ones? 
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C.1.2.3 SiS user questionnaire

Participants with access to SiS were given a questionnaire similar, in large part, to

that given to the non-SiS users but with the addition of questions relating to SiS.

 

Questionnaire (SiS user) 

Name of participant:  

Library Card number:  

Username (in block capitals): 

SQL understanding 
1. How easy did you find the following areas of SQL to master: 

a. Error messages 

 

b. Join operations (querying multiple tables) 

 

c. Visualising the database structure 

 

d. Boolean expressions (AND and OR operations) 

 

2. How would you rate your understanding of the following SQL clauses: 

a. SELECT 

 

b. FROM 

 

  



 

c. WHERE 

 

d. ORDER BY 

 

e. GROUP BY 

 

f. LIMIT 

 

g. HAVING 

 

SQL in Steps (SiS) 
3. How easy was it to learn how to use SiS? 

 

4. How easy was it to transfer your skills from SiS to textual SQL? 

 

5. Which area of SiS did you find most useful? 

 

6. Which area of SiS did you find the least useful? 
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7. Were there any areas of SiS that you found confusing? If so, which areas? 

 

8. If you used the WHERE or HAVING clauses how easy did you find the visual 

representation of these clauses to understand? 
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C.1.3 Focus Group

After the completion of the study a selection of students were invited to attend a

focus group to further discuss SiS and how it might be further developed in the

future.

C.1.3.1 Consent form

The focus group participants were asked to complete a consent form allowing the

group to be recorded.



 

Focus group consent form 
Project title: Assessing the effectiveness of purpose build graphical 

user interfaces on the process of learning SQL 

Name of participant:  

Names of researchers: Philip Garner (p.garner@lancaster.ac.uk) 

John Mariani (jam@comp.lancs.ac.uk)  

The purpose of this consent form is to check that you are aware of your rights, 

understand what will be required of you and agree to take part in the study. Please 

read the following, tick next to each point and sign the consent form. 

1. I have had the opportunity to consider the information, ask questions 

about the research and have had these answered satisfactorily. 

2. I agree to take part in the research and understand that my 

participation is voluntary. 

3. I am satisfied that the information I provide will be treated 

confidentially by the researchers. 

4. I understand that I have the right to terminate my involvement in the 

study at any point during the study without giving reason for this. The 

study will end on 12th December 2014 (the end of Michaelmas term). 

5. I give permission for both the audio and video of my involvement in 

this focus group to be recorded.  

6. In understand that any recordings or transcripts will only be accessible 

to the research team. All recordings will be immediately deleted from 

the recording device and transferred to an encrypted medium. 

7. I agree that quotations and/or written material (e.g. drawings or 

notes) taken from this focus group can be used in the thesis and any 

other publications (if applicable). I understand these will be used 

anonymously. 

Participant’s signature: 

 

Researcher’s signature: 

 

Date: 
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C.1.3.2 Questionnaire

A more detailed questionnaire was also given to the focus group participants to

establish an in-depth understanding of their knowledge of SQL.

 

Questionnaire (focus group) 

SQL understanding 

 

Answer the following questions in relation to the cars above database 

1. Describe what the following SQL queries mean in English. 

SELECT name, established 

FROM manufacturer 

ORDER BY established ASC; 

 

 

SELECT manufacturer.name, COUNT(*) 

FROM manufacturer INNER JOIN model 

 ON manufacturer.id=model.manufacturer_id 

GROUP BY manufacturer.id; 

 

SELECT designer.name 

FROM designer INNER JOIN designed 

 ON designer.id=designed.designer_id 

 INNER JOIN model 

 ON model.id=designed.model_id 

WHERE model.name='Enzo' 



 

 

2. Write an SQL SELECT statement to answer these questions. 

a. How many designers worked on BMW’s M3 model? 

b. Show all of the designers who worked on cars currently in production 

(show each designer once) 

c. Show a list of manufacturers who have not produced a car since the 

year 2000. 

After SQL in Steps 

3. How confident do you feel with SQL 2 weeks after SiS was made unavailable? 
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4. Does SiS do what it’s supposed to do? 

 

5. Do you think you’d have done as well in the SCC130 course without it? 

 

6. Did you use any other graphical tools as well as SiS, if so which ones? 

a. If you used other tools, did you return to SiS? Why? 
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C.1.4 Formative assessment question

After the completion of the study a random selection of 49 anonymous students

were asked why they believed the number of students completing the formative

assessments steadily decreased as the weeks progressed. The following is the

questionnaire they were presented with:

 

Formative assessment 
In weeks 6-10 (just before Christmas) you completed the SQL labs for SCC 130. As part of this you 

were asked to complete formative assessments in the form of weekly workbooks, these didn’t 

contribute towards your grades but were designed to help improve the course where necessary. 

The number of students completing these workbooks significantly decreased throughout the 

course. 

Why do you think students were reluctant to complete the formative assessments? 

 

C.2 SiS configuration file

In Chapter 6 SiS is described, one of the features of SiS is the level of customisation

available that allows it to appeal to a broad range of students.

C.2.1 SiS configuration

The following is the configuration file used during the evaluation described in

Chapter 7.
[ joins ]

; Format joins explicitly (FROM/ON clause ) or implicitly ( WHERE clause )

explicitJoin = true

; Allow the use of full joins (note: not natively supported in SQLite - will translate to INNER JOIN

operations )

fullJoin = false
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; Allow the use of right joins (note: not natively supported in SQLite - will translate to LEFT JOIN

operations )

rightJoin = false

[ui]

;Show a warning when the user attempts to navigate away from the page

redirectWarning = false

; Allow the input of a custom SELECT item , this is required to enable SELECT clauses such as SELECT a+1 FROM

table ;

custom_select = true;

;Show the option for nested queries

nested = false ;

;Show the save button on the SQL translation

save_button = false ;

[ clauses ]

;Show the WHERE clause panel

showWhere = true

;Show the GROUP BY clause panel - If set to false the HAVING panel will also be hidden , you cannot display

the HAVING panel without the GROUP BY

showGroupBy = true

;Show the HAVING clause panel - showGroupBy must also be set to true

showHaving = true

;Show the ORDER BY clause panel

showOrderBy = true

;Show the LIMIT clause panel

showLimit = true

[ database ]

;The directory containing the database - this is relative to the base directory containing all the teaching

SQL files (the parent of this directory )

sqlite_dir = db

[ developer ]

;If in debug mode will print out information to the console

debug = false

;Keep a log of the activity performed by the users

log = true

;The name for the log file

log_file = log.txt

C.2.2 SiS automatically generated help

The following are automatically generated examples for a simplified version of the

movie database found in Appendix C.

C.2.2.1 SELECT

In the SELECT query you define the information you would like to see in your

results, this can consist of a list of attributes and/or functions. The different

attributes/functions you wish to see can be given aliases using AS.
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With the following query we can show only the name column from the actors

table (use SELECT * to display all columns within the tables).
SELECT name FROM actors ;

C.2.2.2 FROM

The FROM clause is used to define the tables you want to extract information

from. If you want to extract information from more than one table then you need

a join. For example ... FROM table1 JOIN table2 ON table1.pk=table2.fk ...

With the following query we can extract all the information from the acts_in

table.
SELECT * FROM acts_in ;

C.2.2.3 WHERE

In the WHERE clause you must provide a Boolean expression which all records in

your results must meet. This is not required but is a commonly used clause in the

SELECT statement.

With the following query we can show only those rows in the actors table with

a id value of 3 OR 1366382.
SELECT * FROM actors WHERE id = 3 OR id = 1366382;

C.2.2.4 GROUP BY

Grouping using the GROUP BY function can be used to collect your results

according to a certain attribute, this enables you to apply aggregate functions to

different groups of your results all at the same time.

With the following query we can show how many entries there are in the acts_in

table for each movie_id.
SELECT movie_id , COUNT( movie_id ) FROM acts_in GROUP BY

movie_id ;
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C.2.2.5 HAVING

The HAVING clause can be used to apply restrictions to the aggregate functions

used in a GROUP BY clause.

With the following query we can show the movie_id entries which have more

than 4 entries in the acts_in table.
SELECT movie_id , COUNT( movie_id ) FROM acts_in GROUP BY

movie_id HAVING COUNT( movie_id ) > 4;

C.2.2.6 ORDER BY

The ORDER BY clause can be used to display your results by one or more attributes

in ascending or descending order.

With the following query we can order the actors table by the name attribute

(use DESC instead of ASC to order in descending order).
SELECT * FROM actors ORDER BY name ASC;

C.2.2.7 LIMIT

The LIMIT clause can be used to only show a portion of the full results. If your

query will return many results you can restrict this number using LIMIT. Note: it

should not be used in place of functions such as MIN or MAX.

With the following query we can show 5 records of the actors table, starting at

the 10th record.
SELECT * FROM actors LIMIT 10, 5;

C.3 Evaluation data

Data gathered throughout the evaluation of SiS is openly available from Lancaster

University data archive.
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C.3.1 Complete dataset

The anonymised student data used in the evaluation of SiS can be found at

http://dx.doi.org/10.17635/lancaster/researchdata/80

C.3.2 SiS focus group transcription

A complete transcription of the focus group can be found at http://dx.doi.org/10.

17635/lancaster/researchdata/64

http://dx.doi.org/10.17635/lancaster/researchdata/80
http://dx.doi.org/10.17635/lancaster/researchdata/64
http://dx.doi.org/10.17635/lancaster/researchdata/64


Glossary

Application programming interface A set of rules that programs follow to

communicate with each other. This includes web services and the use of a

software library in another application.

attribute A single data field within a tuple.

cardinality The type of relationship between two relations in a relational database.

These can take the form of one-one(1-1), one-many(1-∞) or many-many(∞-

∞).

column See attribute.

explicit join When join conditions in an SQL SELECT statement are defined

using ON in the FROM clause.

field See attribute.

IDREF A means to connect elements in an XML document. Allows elements to

have parent and child elements, similar in functionality to relationships in

relational databases.

implicit join When join conditions in an SQL SELECT statement are defined in

the WHERE clause.

JavaScript Object Notation An attribute-value pair notation for representing

data. Many REST interfaces provide responses in JSON format.
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junction table A relation in a database used to facilitate a many-many relation-

ship between two other relations. See cardinality.

normalisation The process of organising data within a relational database with

the aim of reducing data redundancy.

relation A set of tuples that belong to the same domain. For example, in a movie

database (such as that described in Appendix A) a relation might contain a

series of tuples that describe production companies.

Representational State Transfer The use of GET, POST, PUT, DELETE

requests sent over HTTP. REST interfaces are often used to programmatically

manipulate datasets.

row See tuple.

table See relation.

tuple The information relating to a single entry in a table in a database.

Unified Modelling Language A standard means to visualise the design of a

system (not specific to database applications).



Acronyms

ACID Atomicity, Consistency, Isolation, Durability.

API Application programming interface.

CAFTAN Context Aware Free Text ANalysis.

CLI Command Line Interface.

CMS Content Management System.

ER Entity Relationship.

GUI Graphical User Interface.

IDE Integrated Development Environment.

IoT Internet of Things.

JSON JavaScript Object Notation.

NLP Natural Language Processing.

NoSQL Not only SQL.

QBE Query By Example.

RDBMS Relational database management system.

REST Representational State Transfer.
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SiS SQL in Steps.

SQL Structured Query Language.

SSQL Shorthand SQL.

UI User Interface.

UML Unified Modelling Language.

URM Universal Relation Model.

VQL Visual Query Language.

WIMP Windows, Icons, Menus and Pointer.

XML eXtensible Markup Language.
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